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CHAPTER I 

INTRODUCTION 

The purpose of this study is to determine what proper-

ties are invariant under certain types of mappings. An attempt 

is made to find the weakest kind of function which will insure 

that some property of the domain is inherited by the range 

space. Often examples are given to show that the results ob-

tained cannot be improved to a great extent. 

To read this thesis, a basic knowledge of topology is 

needed, since many basic topological results are used without 

explanation throughout the thesis. Terms used in this study 

may be assumed to be defined as in Kelley [3] unless other 

definitions are stated. 

In Chapter II, invariances of compactness properties 

are studied. A knowledge of this subject will be found use-

ful in showing other results throughout the exposition. The 

properties studied in this chapter include compactness, count-

able compactness, sequential compactness, B-compactness, local 

compactness, and semi-compactness. The LindelOf property is 

taken up here because of its close relationship to compactness. 

Some other compactness properties -- paracompactness, meta-

compactness, and precompactness -- are considered in Chapter V. 
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In Chapter III, separation properties are studied. The 
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spaces considered include spaces which are T o'  T 1 , Hausdorff, 

T3 , T4 , regular, normal, completely regular, and Tychonoff. 

It is necessary to discuss first and second countability and 

also dense subsets and separability in order to show that the 

property of being a compact metric space is an invariant. 

In Chapter IV, connectedness properties are considered. 

Spaces which are connected, locally connected, and connected 

im kleinen  are studied. Quasi-components are taken up brief-

ly; then a few theorems are given leading up to showing that 

arcwise connectedness is invariant under continuous functions 

whenever the range is Hausdorff. Next compact connected spaces, 

that is continua, including decomposable, indecomposable, and 

unicoherent continua, are considered. In addition, the prop-

erty that all connected subsets are locally connected is 

studied. A characterization of monotone mappings is obtained. 

In Chapter V, some interesting results are brought to-

gether which do not fit well into any of the first three chap-

ters. These topics are unrelated; therefore the topics may 

be read in any order. The section on uniform spaces assumes 

considerable knowledge of this subject on the part of the 

reader. The main result of this section is the invariance of 

total boundedness under uniformly continuous functions. In 

the other sections, the subjects studied include cut points, 

homogeneous spaces, upper and lower semi-continuous decompo-

sitions, non-separated collections, saturated collections, 

paracompactness and metacompactness, and dimension. 



3 

This study is far from being a complete treatment of 

the subject of invariances. This is a large subject on which 

much work has been and is being done. It is hoped, however, 

that this study will provide an adequate introduction to the 

subject. 



CHAPTER II 

COMPACTNESS PROPERTIES 

Definition 2.1. A topological space is said to be com-

pact if every collection of open sets which covers the space 

has a finite subcollection which also covers the space. That 

is, every open cover has a finite subcover. 

Definition 2.2. A function f from a space X onto a 

space Y is said to be continuous provided that for each open 

set U in Y, f-1 (U) is open in X. 

Definition 2.3. The notationfX: proposition about xJ 

will be used to designate the set of all x such that the pro-

position about x is correct. 

Theorem 2.4. Let f be a continuous function from a 

compact space X onto a space Y. Then Y is compact. 

Proof. Let 2( be an open cover of Y. Let f i nd() = 

0 CX: 0 = f-1 (U) for some U in 	Then f-1 (2A) is an open 

cover of X. Choose a finite subset Hof f-lcu  ■ ) which covers 

X. Then f(3) = &(0): 0 is in  j is a finite subcover of 24. 

Thus Y is compact. 0 

Definition 2.5. A topological space is said to be 

countably compact if every countable open cover has a finite 

subcover. 

Theorem 2.6. Let f be a continuous function from a 

countably compact space onto a space Y. Then Y is also 
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countably compact. 

Proof. A proof may be obtained by making obvious 

alterations in the proof of Theorem 2.4. 0 

Definition 2.7.  A topological space is said to be 

sequentially compact if every sequence in the space has a 

subsequence which converges to a point of the space. 

Theorem 2.8. Let f be a continuous function from a 

sequentially compact space X onto a space Y. Then Y is also 

sequentially compact. 

Proof. Let&T be a sequence of points in Y. For i i=„1  

each i choose a point x i  in X so that f(xi ) = y i . The sequence 

fx0 in X has a convergent subsequence {x 
n1

. }°0 which converges 
nii=1 

to some point, say p. But this implies that the subsequence 

f yri 3 °' in Y converges to f(p), for if U is any open set con- 
li=1 

taining f(p), then f-1 (U) is an open set about p and thus con-

tains all but a finite number of members of the sequence 

{

x 	. This implies that U contains all but a finite num- ni i=1 

 ber of members of fy 	°° • so the subsequence converges. Thus nii.1  

Y is sequentially compact. 0 

Definition 2.9. A topological space is said to be B-

compact (Bolzano compact) 1  if every infinite subset has an 

accumulation point. 

Definition 2.10. The discrete topology for a set is 

the topology in which all sets are open. 

1This terminology is not standard. To the best of 
my knowledge, it was first used in Kneece [4] • 
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3-compactness is not invariant under continuous func-

tions, as shown by the following example. 

Example 2.11. A continuous function which maps a B-

compact space onto a space which is not B-compact. 

Let the domain X be given by X = f0,1 0 2, . . .3, with 

a base for the topology consisting of sets of the form i2n, 

2n + 13. The range Y consists of the same set of points with 

the discrete topology. The function f maps each point n into 

the greatest integer in n/2. For this function the inverse 

of each point is just a member of the base of the topology of 

X. Clearly Y is not B-compact, while X is B-compact, for 

each odd integer is an accumulation point of any set con-

taining the next lower even integer and each even integer is 

an accumulation point of any set containing the next larger 

odd integer. 

Definition 2.12. A topological space is said to be 

LindelOf if every open cover has a countable subcover. 

Theorem 2.13. Let f be a continuous function from a 

LindelOf space X onto a space Y. Then Y is LindelOf. 

Proof. A proof may be obtained by replacing the word 

"finite" with the word "countable" everywhere in the proof of 

Theorem 2.k. 0 

Definition 2.14. A topological space is said to be 

semi-compact if it is the union of a countable number of com-

pact subsets. 

A semi-compact space is Lindel8f, but the converse is 

not true. 
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Example 2.15..  A LindelOf space which is not semi-

compact. 

Let X be an uncountable set with open sets being the 

complements of countable sets. It is easy to see that the 

space is LindelOff since each open set contains all but a 

countable number of points. However, since the only compact 

subsets are finite, the space is not semi-compact. 

Theorem 2.16.  Let f be a continuous function from a 

semi-compact space X onto Y. Then Y is semi-compact. 

com-

pact. Then Y = f(t1.1)Lif(A2 ) LJ . • 	, where each f(Ai ) is 

compact by the continuity of f. Thus Y is semi-compact. 0 

Definition 2.17.  A topological space is said to be 

first countable  if for every point p of the space there exists 

a countable collection of open sets containing p, so that if 

U is any open set containing p, there is a member of the 

countable collection contained in U. That is, a topological 

space is first countable if the neighborhood system of every 

point has a countable base. 

Definition 2.18.  A topological space is said to be 

second countable if it has a countable base. 

Next are stated some interesting results involving 

compactness which can be used to extend the results already 

obtained. Many of these results will be used later. 

Compact spaces are always countably compact, and count-

ably compact spaces are always 13-compact. Countably compact 
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spaces which are second countable are always compact. B-

compact spaces which are T l  are countably compact; if they 

are both T 1 and the first countable, they are sequentially 

compact. Sequentially compact spaces are countably compact 

and B-compact. Proofs of statements made in this paragraph 

may be found in Kneece [4]. 

Examples which show that the results of the preceding 

paragraph cannot be improved will not be given in all cases. 

However, some examples are in order. The domain space in 

Example 2.11 is B-compact but not compact, countably compact, 

or sequentially compact. The following example is also in-

teresting. 

Example 2.19. The first uncountable ordinal with the 

order topology, a space which is countably compact but not 

compact. 

Let X be the first uncountable ordinal with the order 

topology. That is, a base for the topology of X consists of 

all sets of one of the following three forms: 

(1) 1x:x < x < b where a and b are members of Xj 
(2) Ex: a < x for some a in Xj 

(3) fx: x< a for some a in Xj. 

Here < is the usual well-ordering for the members of X. Note 

that X is an uncountable set, but that each member of X has 

only a countable number of predecessors. To see that X is not 

compact, consider the open covering 2,( which consists of all 

sets of the form Lx: x < aJ for a in X. Suppose there is a 
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finite subcovering U 1 , U2 , . 	.,Un  where Uk  = fx: x < aki, 

1 < k < n. Then let a be the largest ak . There are only a 

countable number of elements that precede a, and X is uncount-

able. Thus there is a point b in X such that a < b. This b 

is not in any Uk . This is a contradiction. Hence X is not 

compact. 

Next it is shown that X is B-compact. Let S be an in-

finite subset of X. Let St be an arbitrary countably infinite 

subset of S. It will be shown that St has an accumulation 

point in X. Since S' is a subset of an ordinal, it inherits 

the ordering of the ordinal. Let S' ==i1c 1 , x2 , . . .,xn , . 	:J* 

The set of all points less than x k  is always countable for all 

k = 1, 2, . 	• . Thus the set A = ix: x < xk for some 

k = 1, 2, . . .J is the union of a countable number of count-

able sets and is thus countable. But X is uncountable; so 

there is a point p in the complement of A. By the definition 

of A, p is an upper bound for the set S'. Since S' has an 

upper bound, it has a least upper bound, by the properties of 

well-orderings. Let z be the least upper bound of St. In-

side any open set containing z an open set of the form Ex: 

c < x < di which contains :z can be chosen. Consider such an 

open set. Since c < z, c is not an upper bound for the set 

S'. Thus there is an x r such that c < X. But xr z < d 

so c < xr 
< d. Thus x r is a member of the open set. Thus 

any open set which contains z contains a member of St. Thus 

z is an accumulation point of S' and hence of S. Thus X is 
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B-compact. Since Lx: x < q and fx: q < xj are both open 

sets, the complements of points are open. Hence X is T 1 . 

Since B-compact spaces which are T 1  are countably compact, 

X is countably compact. 

Theorem 2.20.  A closed subset of a compact space is 

compact. (For a proof, see Hocking and Young [1], p. 20.) 

Theorem 2.21.  A compact subset of a compact Hausdorff 

space is closed. (See Hocking and Young [1], p. 38.) 

Definition 2.22.  A function is said to be closed  if 

the image of closed sets are closed in the range. 

Theorem 2.23.  If f is a continuous function from a 

compact space X onto a Hausdorff space Y, then f is closed. 

Proof.  Let C be a closed subset of X. Since X is 

compact, so is C. Thus f(C) is compact. Since Y is Haus-

dorff, f(C) is closed. Thus f is a closed mapping. 0 

Definition 2.24.  A function is said to be compact  if 

the inverse of compact sets in the range is compact in the 

domain. 

Theorem 2.25.  If f is a continuous function from a 

compact space X onto a Hausdorff space Y, then the inverse of 

compact sets is compact. That is, f is a compact mapping. 

Proof.  Let C be a compact subset of Y. Since Y is 

Hausdorff, C is closed. Thus, f -1 (C) is closed by the con-

tinuity of f. But X is compact; so f(C) is compact, since 

it is closed. This is the desired result. 0 

Theorem 2.26.  The property that compact sets are 
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always closed is invariant under functions which are both 

closed and compact. 

Proof. Let f be a closed and compact function from 

X onto Y. Let A be a compact set in Y. It will be shown 

that A is closed. Since the function is compact, f -1
(A) is 

■ compact. Thus f -1  (A) is closed. But since f is closed, 

f[f-1 (A)] = A is closed. This is the desired result. 0 

The reader familiar with the notion of "quasi-compact 

mapping" will notice from the proof that "closed" can be re-

placed by "quasi-compact" in Theorem 2.26. 

It is well known that Hausdorff spaces have the prop-

erty in the above theorem. The converse is not true. Example 

2.15 is an example of a space which is not Hausdorff and each 

of whose compact sets is closed. 

Definition 2.27. A topological space is said to be 

locally compact if each point has a compact neighborhood. 

Definition 2.28. A function is said to be open if the 

image of open sets is always open in the range. 

Theorem 2.29. Local compactness is invariant under 

open continuous functions. 

Proof. Let f be a continuous open function from the 

space X onto the space Y. Let p be any point of Y. Choose 

a point q in X such that f(q) = p. Choose a compact neighbor-

hood, N of q. Since f is open, f(N) is a neighborhood of p. 

It is compact since f is continuous. 0 

Some authors define locally compact to mean that each 
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point of the space has a closed compact neighborhood. Under 

this definition the last theorem is not true, as shown by the 

following example, constructed by P. S. Schnare in [5]. 

Example 2.30.  Let An 	fSn, 1), (n, 2), . . . , (n, n)}. 00 
DefineX=U 1An ' Abase for the topology of X will be the 

collection of all sets which are contained in A n for some n 

and which contain (n, 1). Since each A n is open, closed, and 

compact, X is locally compact. Clearly X is T o  but not T1 . 

Let Y be the set of positive integers with a topology 

which includes only the empty set and all sets containing 1. 

Clearly Y is T o  but not T1 , and not locally compact, if we re-

quire closed compact neighborhoods of each point. This fol-

lows since the closure of the set consisting of the single 

point 1 is Y. 

Define f from X onto Y by f(n, m) = m. Then f is both 

continuous and open. In fact, f is a local homeomorphism 

from X onto Y. 



CHAPTER III 

SEPARATION PROPERTIES 

Definition 3.1. Let f be a function from X into Y. 

( The degree of f is the maximum number of points in any f-1 ky) 

where y is a point in Y, if this is finite. If f is not of 

finite degree, then f is said to be of infinite degree. If 

-1 
f (y) is finite for all y in Y, then f is said to be finite- 

to-one. 

Definition 3.2. A topological space is said to be T 1 

 if, and only if, for every two distinct points x and y there 

are two open sets, one of which contains x but not y, while 

the other contains y but not x. In other words, a set which 

consists of a single point is closed. 

Theorem 3.3. The property of being T l  is invariant 

under closed functions. 

Proof. Since points are closed in the domain, their 

images are closed in the range. Thus the range is T 1 . 0 

Theorem 3.4. The property of being T 1  is invariant 

under open finite-to-one functions. The functions need not 

be continuous. 

Proof. Let f be an open finite-to-one function from a 

TI  space X onto Y. Let p and q be any two distinct points of 

Y. Let S = tx1 , x2, . .,xk, „xial be the set of 
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all points in X which map into p or q, with f(x i ) = p if 

1 < i < k and f(x.) = q if k < j < n. For each i, q < i < n, 

choose an open set O li  which contains xi  but does not contain 

x.. Let 01 
be the intersection of all the sets 0. Then 0 1 

is an open set containing x 1 , but no other x i . Choose a set 

On whichcontainsxn butnootherx.in a similar manner. Then 

f(01 ) is an open set containing p but not q, and f(On) is an 

open set containing q but not p. Thus Y is T 1 , 0 

Definition 3.5.  A topological space is said to be To 

 if for every pair of distinct points of the space there is an 

open set which contains one point but not the other. 

An analogous result may be obtained for T o  spaces, but 

first the following lemma is needed. 

Lemma 3.6.  If x1 , x2 , . . . , xn  is any finite set of 

distinct points in a T o  space X, then there is an open set 

about one of the points which does not contain any of the 

others. 

Proof.  The proof is by induction. The result is clear-

ly true for n = 2. Assume the result is true for n = k, and 

let x1 , x2, • • • ' xk' xk+1 be any k+1 distinct points of X. 

Consider only the first k of these points. About one of them, 

say x i , there is an open set 0 that does not contain any other 

x for 1 < j < k and j 	i. If xk+1 is not in 0, the proof is 

completed. If x lc+1  is in 0, then an open set 0' may be found 

about x i  or xk+1 which does not contain the other. In either 

case 0(l 0' is the desired open set. 0 



Theorem 3.7.  The property of being T o  is invariant 

under open finite-to-one functions. 

Proof.  Let f be an open finite-to-one function from 

a To space X onto Y. Let p and q be any two distinct points 

of Y. Let xl , x2 , . . ,,xn  be the set of all points in X 

which  

an open set O i  containing x i , but not containing x i  for 

1< j< n and j 	i. Then f(0i ) is an open set containing p 

or q but not both. Thus Y is T o . 0 

Definition 3.8.  A topological space is said to be 

Hausdorff  if for every pair of distinct points x and y of the 

space there are disjoint open sets, one of which contains x 

and the other y. 

Theorem 3.9.  The image of a Hausdorff space under an 

open one-to-one function is Hausdorff. 

Proof.  Let f be an open one-to-one function from a 

Hausdorff space X onto Y. Let p and q be any two distinct 

■ 
points of Y. Then f

-1 
 (ip) and f

-1 
 (q) are distinct points in 

X. Choose disjoint open sets 0 and 0 in X with f -1 (p) in 

0 and f-1 (q) in 0 q. Then p is in f(0 ), and q is in f(0 ). 

Also f(0 p ) and f(0 ) are disjoint, since 0 p  and 0 q  are dis-

joint and f is one-to-one. Thus Y is Hausdorff. 0 

This theorem may be restated in another form which is 

often useful. 

Theorem 3.10.  If f is a one-to-one continuous function 

from X onto Y and Y is Hausdorff, then X is Hausdorff. 
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Proof. For a proof apply the previous theorem to f -1
. 0 

If the requirement that f be one-to-one is dropped, 

Theorem 3.9 is false, as shown by the following example. 

Example 3.11. An open discontinuous function of degree 

two which maps a Hausdorff space onto a space which is not 

Hausdorff. 

The domain space X consists of the two distinct closed 

unit intervals U, from (0, 1) to (1, 1), and L from (0, 0) to 

(1, 0) in the Euclidean plane. The topology is the relativised 

topology of the plane. The range space Y consists of the unit 

interval LI from (0, 0) to (1, 0) and the unit interval UI 

from (0, 1) to (1, 1) with all the rational points omitted. 

Rational points are points with both rational coordinates 

when the space is thought of as a subset of the Euclidean 

plane. Other points are said to be irrational. A base for 

the topology of Y consists of all rational points in any open 

(relative to the plane) interval of L' together with an arbi-

trary collection of irrational points within that interval 

and the corresponding interval in U'. 

The function f takes points of L into corresponding 

points of L'. Corresponding points are points which lie on 

a vertical line when the space is thought of as a subset of 

the Euclidean plane. The function f takes irrational points 

of U into corresponding points of U' and rational points of U 

into corresponding points of L'. Although the function f is 

very discontinuous, it is open, for any open interval in U or 
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L is carried into a member of the base for the topology of Y. 

The space Y is T1 , but not Hausdorff, since two corre-

sponding irrational points, one in Uf and the other in L', can-

not be separated by disjoint open sets. 

Thus f is an open function which maps a compact metric 

space into a space that is T1  but not Hausdorff. The range 

is not compact, nor even LindelOf. 

Definition 3.12.  A topological space is said to be 

regular if, for each closed set A and each point p not in A, 

there are two disjoint open sets, one of which contains A and 

the other p. A Tl  regular space is called a T1  space. 

It is easily seen that a space is regular if, and only 

if, for each point p and each open set U containing p, there 

is an open set V containing p with V contained in U. That is, 

the set of all closed neighborhoods of a point is a base for 

the neighborhood system of the point. To construct a proof 

of this, let the complement of U be the closed set A in the 

definition of regularity. 

Theorem 3.13.  If f is a continuous closed finite-to-

one function which maps a regular space X onto a space Y, 

then Y is regular. 

Proof.  Let A be any closed subset of Y, and let p be 

any point not in A. Now f-1 (A) is a closed subset of X which 

\ does not contain any member of f-1 (p). Let f -1  (p) 	fa -I' q2 ,  

• • ., 
qn3. Choose for each i between 1 and k disjoint open 

setsU.andV.with q. in U. and f -1 (A) contained in V.. Let 
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U = i=lui and V = i
n1v.. Then U is an open set containing 
= 

f-1 (p), and V is an open set containing f -1 (A). Furthermore, 

U and V are disjoint. Define U' = 	f(X-U) and vl 

Y 	f(X-V). Since X - U is closed, f(X-U) is also closed, 

and thus Y - f(X-U) is open. Similarly Y - f(X-V) is open. 

/ Since f-1  (p) is contained in U, p is in Y 	f(X-U). In the 

same way, A is contained in Y - f(X-V). Furthermore, Y - 

f(X-U) is disjoint from Y - f(X-V), for if z is in both sets, 

then f-1  (z ) is contained entirely in both U and V, which is 

impossible. Thus Y is regular. 0 

Notice that a slight generalization of the proof of 

Theorem 3.13 will yield the following stronger result. 

Theorem 3.14.  If f is a continuous closed function 

with compact point inverses, then if the domain is regular so 

is the range. 

Corollary 3.15.  If f is a continuous finite-to-one 

closed function which maps a T
3 

space X onto a space Y, then 

Y is T3 . 

Proof.  From Theorem 3.13, Y is regular. Since f is 

closed, Y is also T l . Thus Y is T 3 . 0 

Definition 3.16.  A topological space is said to be 

normal  if for every two disjoint closed subsets A and B there 

are two disjoint open subsets, one of which contains A and the 

other B. A normal space which is also T 1  is called a T4  space. 

Theorem 3.17.  If f is a closed continuous function 

which maps a normal space X onto a space Y, then Y is normal. 
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Proof. Let A and B be two disjoint closed subsets of 

Y. Then f -1  (A) and f-1 (B) are disjoint closed subsets of X. 

Choose disjoint open sets U and V with f -1 (A) contained in U 

and f-1 (B) contained in V. Let Uf = Y - f(X-U) and V' = Y - 

f(X-V). Then A is contained in U', and B is contained in VI, 

and U' and vl are both open and disjoint. Thus Y is normal. 0 

Corollary 3.18. If f is a closed continuous function 

which maps a T4  space X onto a space Y, then Y is T 4 . 

Proof. Clearly Y is both normal and Tl  and hence Ty  0 

Definition 3.19. A topological space X is said to be 

completely regular if, and only if, for every point p of X and 

every open set U containing p, there is a continuous real valued 

function which maps X onto (0, 1] so that f(p) = 0 and f is 

identically 1 on the complement of U. A completely regular 

space which is T l  is called a Tychonoff space. 

A completely regular space X is regular, for if p is 

any point, U is any open set containing p, and f is a con-

tinuous function from X into [0, 1]; then the inverse under 

f of [0, 1/2) is an open set containing p whose closure is 

contained in U. A regular T1  space is Hausdorff, and hence 

a Tychonoff space is Hausdorff. 

Definition 3.20. A one-to-one continuous function 

whose inverse is also a continuous function is called a 

homeomorphism. That is, homeomorphisms are one-to-one open 

continuous functions. 

Theorem 3.21. If f is a homeomorphism which maps a 

completely regular space X onto a space Y, then Y is com- 
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pletely regular. 

Proof. Let p be any point of Y, and let U be any open 

set containing p. Than f-1 (U) is an open set containing f (p). 

Thus there is a real-valued function g which maps X into [0, 1] 

with ef-1 (p)] = 0 and g(x) = 1 for all x in X - f -1 (U). The 

function h defined by h(y) = g[f-1 (y)] maps Y into [0, 1] and 

is continuous, since it is the composite of two continuous 

functions. Clearly h(p) = gf -1 (p)] = 0 and h(y) = ef-1 (y)] = 1 

for all y not in U. Thus Y is completely regular. 0 

Definition 3.22. A function is exactly k to 1 if the 

inverse of each point in the range contains exactly k points. 

Theorem 3.23. If f is an open, continuous, exactly k 

to 1 function which maps a Tychonoff space X onto a space Y, 

then Y is also a Tychonoff space. 

Proof. Let p be any point of Y and let U be any open 

set containing p. Let f -1  (p) = fq1„ q2,  . . .,q1c 3. Then 

f-1 (U) is an open set containing f -1 (p) and hence each qi . 

For each i, 1 < i < k, choose a function g i  which maps X onto 

[0, 1] with gi (qi ) = 0 and gi  identically 1 on the complement 

of f-1 (U). Define g by g(x) = min Igi (x), g2(x), . . . 0 gk (x) .3. 

It is easy to see that g is a continuous function, for, given 

any point z and e > 0, there exist open sets 0 11  02 , . 	„Ok  

containing z so that Ig i (z ) - gi (x)I < 	for all x in Oi . 

Let 0 = A0 i . It is easy to see that Ig(z - ) - ex)! < es, for 

all x in 0. Hence, g is a continuous function. Clearly 

gf-1 (p)] = 0 and g is identically equal to 1 on X - f-1(U). 
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Define a function F from Y onto [0, 1] by F(x) = min fg( Z ): 

is in f-1 (x) ' . Then F(p) = 0, since g maps each member of 

f-1 (p) into 0, and F is identically equal to 1 on Y U, since 

g is identically 1 on X - f -1 (U). To see that F is continuous 

at a point x, let e > 0 be given. Let f-1 (x) = fx i , x2 , . 

xj. About each x i , 1 < i < k, choose an open set V i  so that, 

if y is in Vi , then Ig(xi ) 	g(y)I < e. Since Tychonoff 

spaces are Hausdorff, there is no loss in generality in assum-

ing that the Vi  be disjoint sets. Let V = filf(V i ). Since f 

is open, V is the intersection of a finite number of open sets; 

so V is open. If w is any point in V, then let f -1 (w) = 

f w1 , w2 , . 	. wij where wi  is in V, for 1 < i < k. Thus 

Ig(x i ) 	g(wi ) I < e for all i, 1 < i < k. But it can be 	shown 

that this implies' 1 	k {g(xi )3- 1 < e; solF(x) - 

F(w)1 < e. Thus F is a continuous function. Since F(p) = 0 

and F is identically 1 on Y - U, Y is completely regular. 

Clearly Y is T 1  since f is open and of finite degree. Thus 

Y is a Tychonoff space. 0 

Theorem 3.24. Let f be a continuous open function from 

a first countable space X onto a space Y; then Y is first 

countable. 

Proof. Let p be any point of Y. Choose a point q in 

X so that f(q) = p. Choose a countable base for q, say U1 , 

U2 , U3 , . . . . Then f(17 1 )„ f(U2 ), . 	. is a countable 

collection of open sets containing p. To show that this is a 

countable base for the neighborhood system of p, let 0 be any 
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\ open set containing p. Then f ""1  (0) is an open set containing 

q. Choose a Uk  contained in f -1 (0). Then f(Uk) is contained 

in 0. Thus f(U1  )' f(U
2 )

, 
f(U), . . . is a countable base for 

the neighborhood system of p. Thus Y is first countable. 0 

Theorem 3.25.  Let f be a continuous open mapping from 

a space X onto a space Y. Let 8 be a base for the topology of 

X. Then c(8 ) =C0 CY: f(V) = 0 for some V in 8iis a base for 

the topology of Y. 

Proof.  Let p be any point of Y, and let U be any open 

set containing p. Let q be a point in X so that f(q) = p. 

Then f-1 (U) is an open set in X which contains q. Choose an 

open set V in ,8 which contains q and is contained in f -1 
 (U). 

Then f(V) is a member of f(8 ) that contains p and is con-

tained in U. Thus f(8 ) is a base for the topology of Y. 

Theorem 3.26.  Let f be a continuous open mapping from 

a second countable space X onto a space Y. Then Y is second 

countable. 

Proof.  Let 8 = U1 , U 2 , . . .3 be a countable base 

for X. Then f(8 ) = ff(U 1 ), f(U2 ), . . ..3is a countable base 

for Y. Thus Y is second countable. 0 

Definition 3.27.  A subset A of a topological space X 

is said to be dense  in X if the closure of A is X. Equiva-

lently A is dense in X if every non-empty open subset of X 

contains at least one member of A. 

Definition 3.28.  A space is said to be separable  if 

it contains a countable dense subset. 

Theorem 3.29.  If A is a dense subset of a topological 
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space X and f is a mapping from X onto Y, then f(A) is dense 

in Y. 

Proof.  Let 0 be any open subset of Y. Then f (0) is 

open in X and thus contains a point of A. Hence, 0 contains 

a point of f(A) and f(A) is dense in Y. 0 

From this theorem, the following invariance follows 

immediately. 

Theorem 3.30.  Let f be a continuous function from a 

separable space X onto Y. Then Y is separable. 

Theorem 3.31.  Compact Hausdorff spaces are normal. 

(For a proof, see Kelley [3], p. 141.) 

Theorem 3.32.  In a metric space, being second count-

able and being separable are equivalent conditions. 

Proof.  First assume that X is a separable metric space 

with a countable dense subset A. The collection of all sets 

of the form Lx: d(x, a) < r for r, a positive rational num-

ber, and a in AJ form a countable base for X, where d is the 

metric for X. Thus X is second countable. 

If X is second countable, then a countable dense sub-

set may be found by taking a point out of each member of a 

countable base for X. Thus X is separable. 0 

Theorem 3.33.  Compact metric spaces are separable and 

second countable. 

Proof.  For each positive integer n we can choose a 

finite open cover all of whose members have diameter less than 

1/n. The collection of all sets obtained in this way, for all 
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n, is a countable base. Thus the space is second countable 

and hence separable. D 

Theorem 3.34(Urysohn) . A regular, second countable, 

TI space is metrizable. (For a proof, see Kelley [3], p. 125.) 

Theorem 3.35.  Let f be a continuous mapping from a 

compact metric space X onto a Hausdorff space Y. Then Y is 

also a compact metric space. 

Proof.  Since f is continuous, Y is compact. But 

Theorem 3.31 implies that compact Hausdorff spaces are nor-

mal. Thus Y is normal and thus regular. From the theorem by 

Urysohn, Theorem 3.34, a regular, T 1 , second countable space 

is metrizable. Thus it is sufficient to show that Y is sec-

ond countable. Compact metric spaces are second countable by 

Theorem 3.33; so X is second countable. Let U 1 , U2, • • " Un' 

. 	. be a countable base for X. Now f is a continuous func- 

tion from a compact space to a Hausdorff space; so f is a 

closed mapping by Theorem 2.23. Thus f(X - UUk) is closed in 
ke3 

Y wherej-  is any finite subset of the positive integers. It 

is to be shown that the collection Z( of all sets of the form 

Y - f(X-k e9-  Uk  ) is a countable base for Y. Certainly these 

sets are open. First it is shown that there is only a count-

able number of such sets, or equivalently, that there is only 

a countable number of possible choices for 3 . For any integer 

n there is only a countable number of choices of 3-that contain 

exactly n members. Thus, since there are only countably many 

choices of n, there are only countably many choices for j- 



25 

Thus there are only countably many open sets of the form 

Y f(X 

Let p be any point in Y, and let 0 be any open set con-

taining p. Clearly f -1 (0) is an open set containing the closed 

set f-1 (p). Since X is compact, f -1 (p) is compact. The col-

lection of all open sets U.1  which are contained in f
-1 (0) is 

an open cover for f -1  (p). Choose a finite subcollection Ul 1' 
% U

2
I

' 	k . . .,UI of these which covers f-1  (p). Then f-1 (p) is 

contained in U t=11  U!. Hence, f(X 1=1  UI) is an open set of the  i 

desired form which contains p. Since each U!
1 
 is contained in 

k 
f-1 (0), it is easy to see that Y - f(X -.1U 1k 

11!1 ) is contained = 

in 0. Thus all sets of the form Y - f(X -.0 1  U!) form a count- 

able base for Y. So Y is regular, T
1 , and second countable, 

and thus metrizable, as desired. 0 

It appears as if the last theorem can be extended to 

semi-compact metric spaces. This is not true, as shown by 

the following example. 

Example 3.36.  A one-to-one continuous function which 

maps a semi-compact, separable metric onto a Hausdorff space 

which is not metrizable. 

Let X be the Euclidean plane E 2  with the usual topology 

together with a disjoint point w 1  which is both open and closed. 

Let Y be the Euclidean plane with the usual topology together 

with a disjoint point w2 , where open sets containing w2  are 

complements of closed subsets of finite two dimensional Le-

besgue measure in E2 . The proof that this is a topology for 
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Y, although tedious, is not difficult; so it is omitted. Let 

f be the function from X onto Y, which is the identity func-

tion on E2  and maps w1  onto w2 . It is easy to see that f is 

continuous. 

A metric for the space X may be obtained by using the 

metric, 

d(x,y) 

for points in E2  and by letting d(x,w1 ) = 1 for all x in E 2 . 

Any compact subset of E2  together with w1  is compact; so X is 

semi-compact. To show that Y is not metric, we must use w 2 . 

Assume that Y is metric with metric d. Since fw2 3 is not 

open, there are points in Y - iw2 3 which are arbitrarily close 

to w2° Choose a sequence of points (X 5 	
' 

so that d(x. w2 ) i. =1 	 1 	2 

< 1A for all i. Clearly the sequence txT ;'° converges to w2 . 
ia 

But Y - i 1 fx.. is an open set containing w 2 but none of the = 

points .x.. This is a contradiction. Thus Y is not metrizable. 

Notice that Y is Hausdorff and regular, but not second count-

able. The proof that Y is not second countable is similar to 

the proof that Y is not metric. 

Example 3.37.  A continuous open function which maps a 

compact metric space into a space with the trivial topology. 

Let X be the unit interval [0, 1] with the usual topol-

ogy. For each point x in X define x' =ly e [0, 1]: Ix - yl 

is rationalj. It can be easily shown that xl1  = x2 whenever 

lx1  - x2 I is rational. It is also easily seen that every open 

interval contained in [0, 1] contains members of each xf. By 
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the structure theorem for open sets in E
l' 

each non-empty 

open set is a union of open intervals. Thus every open set 

contains members of each xt. Let f be the mapping defined by 

f(x) = x' for all x in [0, 1], where the range Y is the set of 

all x' and has the trivial topology, the topology whose only 

open sets are Y and the empty set. Clearly f is continuous, 

since the inverse of Y is X and the inverse of the empty set 

is empty. Since each non-empty open set in X contains members 

of each x' and is thus mapped into all of Y, the mapping is 

open. Thus f maps the unit interval [0, 1] into a space with 

the trivial topology which is not even T. The degree of f 

is infinity. 



CHAPTER IV 

CONNECTEDNESS PROPERTIES 

Definition )4.l.  Let X be a topological space. Two 

subsets A and B are said to be separated  if An 13-  and xnB 
are both void. Equivalently two disjoint sets A and B are 

separated if neither set contains an accumulation point of 

the other. 

Definition 4.2.  A topological space X is connected  if 

it is not the union of two separated non-empty sets. Equiva 

lently, X is connected if the only subsets which are both open 

and closed are the entire space X and the empty set. A sub-

set of X is connected if it is connected in the relative topol-

ogy. 

Definition 4.3.  Let X be a topological space. If X = 

AUB where A and B are non-empty separated subsets of X, then 

we say AUB is a _separation  for X. 

Theorem 4.4.  Let f be a continuous function from a con-

nected space X onto a space Y. Then Y is also connected. 

Proof.  Suppose that Y is not connected and that Y = 

AUB is a separation. That is, A and B are both open and 

closed, non-empty, disjoint subsets of Y. Then X = f -1 (A) U 

f-1 (B), which is a separation of X. This is a contradiction. 

Thus Y is connected. 0 

Definition 4.5.  A topological space is said to be 

locally connected  at a point x if for every open set U con- 

28 
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taining x there is a connected open set V which contains x 

and is contained in U. A topological space is locally con-

nected if it is locally connected at each point. 

Definition 4.6. Let A be a subset of a topological 

space X. The component of A containing a point p in A is 

the maximal connected subset of A that contains p. 

Theorem 4.7. If f is a continuous function from a 

space X onto a space Y and A is a subset of X with a compo-

nent C, then f(C) is contained in a component of f(A). 

Proof. The proof follows from the fact that f(C) is 

connected. 0 

Corollary 4.8. If f is a continuous function from a 

space X onto Y and K: is a component of a subset B of Y, then 

f-1 (K) is a union of components of f -1 (B). 

Proof. Otherwise some component of f -1 (B) maps into 

more than one component of B. 0 

Theorem 4.9. A topological space X is locally con-

nected if, and only if, for every point p contained in X and 

every open set 0 containing p, the component of 0 that con-

tains p is open. 

Proof. If all components of open sets are open, it is 

clear that the space is locally connected. Let p be any point 

in X and let 0 be any open set containing p. Let O p  be the 

component of 0 containing p. Assume that 0 is not open. 

Let q be a point in 0 p  and also in the closure of X - 0
p. 

 Now 0 is an open set containing q and the space is also lo- 
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cally connected at q. Choose U to be a connected open sub-

set of 0 which contains q. Then U is contained entirely in 

the component of 0 that contains q, namely O p . But q is a 

limit point of X - Op  and hence of X - U; so U is not open. 

This is a contradiction. Thus, the component of 0 that con-

tains p is open. 0 

The results of this theorem are needed in the next 

proof. 

Theorem 4.10. Let f be a continuous function from a 

compact locally connected space X onto a Hausdorff space Y. 

Then Y is compact and locally connected. 

Proof. From the fact that f is continuous, it follows 

that Y is compact. It is to be shown that Y is locally con-

nected. Let p be any point of Y, and let 0 be any open set 

containing p. It will be shown that the component of 0 which 

contains p, say Op , is open. By Corollary 4.8 it follows that 

f-1 (0 ) is a union of components of f -1 (0). Thus by the local 

connectedness of X, it follows that f -1 (0 ) is open. Thus 

X - f-1 (0 ) is closed. But since Y is Hausdorff, f is a 

closed mapping. Thus f[X - f-1 (0 )] = Y - 0 is closed. 

Thus 0 is open. Hence Y is locally connected. 0 

If the assumption that the domain space is compact is 

dropped, Theorem 4.10 is not true. (For an example showing 

this, see Hocking and Young [1], p. 124.) 

Definition 4.11.  A topological space is  connected im  

kleinen at a point x if for each neighborhood N of x the com- 
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ponent of N that contains x is a neighborhood of x. (Recall 

that N is a neighborhood of x if N contains an open set con-

taining x.) A topological space is connected im kleinen if 

it is connected im kleinen at each point. 

If a space is locally connected at a point, then it is 

certainly connected im kleinen at that point. The converse 

of this is not true. (For an example showing this, see Hock-

ing and Young [1], p. 113.) However, for spaces the follow-

ing result is true. 

Theorem 4.12. A topological space X is connected im 

kleinen if, and only if, it is locally connected. 

Proof. If X is locally connected, then clearly it is 

connected im kleinen. If it is connected im kleinen, then 

let p be any point of X, and let U be any open set contain-

ing p. Consider the component U of U that contains p. 

Suppose this is not open. Choose a point q in both U and the 

boundary of Up . Then the component of U that contains q is Up , 

and U is not a neighborhood of q. This is a contradiction. 

Thus U is open, and so the space is locally connected. 0 

In view of the last theorem, any invariance of local 

connectedness which applies to an entire space also applies 

to connectedness im kleinen. 

Definition 4.13. A function f is said to be quasi-

compact  if the image of each closed inverse set is closed, or 

equivalently if the image of each open inverse set is open. 

Theorem 4.14. Local connectedness is invariant under 
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quasi-compact mappings. 

Proof. Let f be a quasi-compact mapping from the lo-

cally connected space X onto Y. Let p be any point in Y, and 

let 0 be any open set in Y containing p. Let C be the compo-

nent of 0 which contains p. Then f -1 (0) is open, and f-1 (C) 

is an open inverse set. Thus C = f(f -1 (C)) is open in Y, 

and Y is locally connected. 0 

Definition 4.15. A subset Q of a space X is a quasi-

component of X provided that for any separation of X, say 

X = AUB where A and B are non-empty separated sets, Q is con-

tained in either A or B; but Q is not a proper subset of an-

other set with this property. If S is a subset of a topolog-

ical space X, then quasi-components of S are quasi-components 

in the relative topology. 

Theorem 4.16. Let f be a continuous function from a 

topological space X onto a space Y. Let S be a subset of X 

with a quasi-component Q. Then f(Q) is contained in a quasi-

component of f(S). 

Proof. Let f(S) = AUB be a separation of f(S). Sup-

pose f(Q) is not contained entirely in A or B. Then choose 

p in An f(Q) and q in Br1f(Q). Clearly S = [silf - 1(A)] U 

[srlf-1 (3)] is a separation of S, since f -1 (A) and f-1 (B) 

are open in the relative topology. Choose points p l  and q1  

in Q so that f(p 1 ) = p and f(q1 ) = q. Then p 1  is in Srlf-1 (A) 

and q1 is in Sli r, f-1 (B). Thus Q has at least one point in 

each member of the separation for S. This is a contradiction. 
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Thus f(Q) is contained in one quasi-component of f(S). 0 

Definition 4.17.  An arc is a homeomorphic image of 

the unit interval. A space is arcwise connected  if there is 

an arc connecting any two distinct points. 

Theorem 4.18.  The continuous image of a closed inter-

val in E1 of finite length onto a Hausdorff space Y is compact, 

connected, locally connected, and metric. 

Proof.  The finite closed interval is connected, com-

pact locally connected, and compact metric. All of these are 

invariant under continuous functions when the range is Haus-

dorff. Thus, Y is compact, connected, locally connected, and 

metric, as required. 0 

Theorem 4.19.  A compact, connected, locally connected, 

metric space is arcwise connected. (For a proof, see Whyburn 

[6], p. 36.) 

Theorem 4.20.  Let f be a continuous function from an 

arcwise connected space X onto a Hausdorff space Y. Then Y 

is arcwise connected. 

Proof.  Let p and q be any two points of Y. Choose p' 

and q' in X so that f(p 1 ) = p and NW) = q. Choose an arc 

A between p' and q'. Now A is the homeomorphic image of the 

unit interval I, and thus a continuous image of the unit in-

terval. Let g be a continuous function from the unit interval 

onto A. Then f(A) = f[g(I)]; so f(A) is the continuous image 

of the unit image. Hence f(A) is compact, connected, locally 

connected, and metric, by Theorem 4.18. Thus f(A) is arcwise 
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and q that is contained in f(A) and thus in Y. Thus Y is 

arcwise connected. 0 

Definition 4.21. A topological space is said to be a 

continuum if it is both compact and connected. A subset of 

a space is a continuum if it is a continuum in the relative 

topology. 

Theorem 4.22. The property of being a continuum is 

invariant under continuous functions. 

Proof. The result is clear since both compactness and 

connectedness are invariant under continuous functions. 0 

Theorem 4.23. Let f be a closed function from a topo-

logical space X onto a space Y. Let A be a subset of X which 

is an inverse set. Let g be f restricted to A. Then g is a 

closed function from A onto f(A). 

Proof. Let C be a closed subset of A. Then C = C rIA 
where Co, is closed in X. Thus g(C) = g(C o nA) = f(C o nA)= 

f(C o )r)f(A). Since f(C 0 ) is closed in Y, g(C) is closed in 

f(A). Thus g is a closed function. 0 

Definition 4.24. Let f be a function from a space X 

onto a space Y. If f-1 (y) is a continuum for all y in Y, 

then f is said to be monotone. 

Theorem 4.25• Let f be a continuous function from a 

compact space X onto a Hausdorff space Y. Then f is monotone 

if, and only if, the inverse of connected sets is connected. 

Proof. If the inverse of connected sets is connected, 
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then the inverse of points are connected. They are also 

closed and thus compact. Thus, f is monotone. 

Now assume that f is monotone. Clearly f is closed 

since X is compact and Y is Hausdorff. Let A be a connected 

subset of Y. Suppose f-1 (A) is not connected. Let f -1 (A) = 

Al L)A2  where Al  and A2  are disjoint, non-empty and open in 

f-1 (A). Since f is closed, and hence closed if restricted to 

the inverse set f-1 (A), f(A1 ) and f(A2 ) are closed in A. 

Since f(A1 ) and f(A2 ) are non-empty, they must not be disjoint, 

since otherwise they form a separation of A. Let p be a point 

in both f(A1 ) and f(A2 ). Choose q1  in both f-1 (p) and Al , and 

q2  in f-1 (p) and A2 . But f-1 (p) is contained in f -1 (A) and 

thus in A11i A2 . Hence , [A1r)f-1 
(p)] U rA ' 2f-i(p) is a sep- 

aration of f-1 (p). This is a contradiction. Thus f -1 (A) is 

connected. 0 

CorollaryLt26.  Let f be a compact mapping from a 

space X onto a Hausdorff space Y. Then f is monotone if, and 

only if, the inverse of connected sets is connected. 

Proof.  If the inverse of each connected set is con-

nected, then the inverse of each point is connected. The 

inverse of each point is compact since f is compact. Thus f 

is monotone.. The other part of the proof is the same as in 

Theorem 4.25. 0 

Theorem 4.27.  Let X be a compact space with the prop-

erty that every connected subset is locally connected. Let f 

be a continuous, monotone mapping from X onto a Hausdorff 
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space Y. Then every connected subset of Y is locally con-

nected. 

/ Proof.  Let A be a connected subspace of Y. Then f -1 (A) 

is connected since the mapping is monotone. Thus f -1 (A) is 

locally connected. But f is closed, since it is a monotone 

mapping from a compact space to a Hausdorff space. But being 

locally connected is invariant under a closed mapping. Thus 

A is locally connected. This is the desired result. 0 

Theorem 4.28.  If f is a compact monotone mapping of a 

topological space X onto a Hausdorff continuum Y, then X is 

also a continuum. 

Proof.  Since the mapping is compact, we have X is 

compact. Assume X is not connected, and let X = AL)B where 

AL)B is a separation for X. Since X is compact, both A and B 

are compact. Thus f(A) and f(B) are compact sets. They are 

disjoint since the mapping is monotone. Also f(A) and f(B) 

are closed, and hence open, since they are compact and Y is 

Hausdorff. Thus Y = f(A)L)f(B) where f(A)Uf(B) is a separ-

ation of Y. This is a contradiction. Thus X is connected 

and hence a continuum. 0 

By a slight modification of the proof of Theorem 4.28, 

the following corollary may be established. 

Corollary 4.29.  Let f be a compact monotone mapping 

from a topological space X onto a Hausdorff space Y. Let D 

be a continuum contained in Y. Then f -1 (D) is a continuum 

in X. 
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Definition 4.30.  A continuum is said to be decompos-

able  if it is the union of two proper subsets which are Ilso 

compact and connected. A continuum which does not have this 

property is said to be indecomposable. 

Theorem 4.31.  Being decomposable is invariant under 

continuous one-to-one functions. 

Proof.  Let f be a continuous one-to-one function from 

a decomposable continuum X onto a space Y. Let X = AUB where 

A and B are proper subcontinua. Then Y = f(A)Uf(B) where f(A) 

and f(B) are continua by the continuity of f. Since f(A) and 

f(B) are proper by the one-to-one property of f, it follows 

that Y is decomposable. 0 

Theorem 4.32.  Being an indecomposable continuum is 

invariant under compact monotone mappings if the range is 

Hausdorff. 

Proof.  Let f be a compact monotone mapping from an 

indecomposable continuum X onto a Hausdorff space Y. Clear-

ly Y is a continuum, since f is continuous. Suppose Y is 

decomposable into proper subcontinua A and B. Then f -1 (A) 

and f
-1

(B) are also proper subcontinua of X, and X equals 

their union. Thus X is decomposable. This is a contradic-

tion. Thus Y is also indecomposable. 0 

Definition 4.33.  A continuum C is unicoherent  if 

whenever C equals AUB with A and B continua, then An B is a 
continuum. 

Theorem 4.34.  Unicoherence is invariant under monotone 
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mappings if the range is Hausdorff. 

Proof.  Let f be a monotone mapping from a unicoherent 

continuum C onto a Hausdorff space Y. Since f is continuous 

it follows that f(C) is a continuum. Let f(C) = Alf B where 

A and B are continua. Since f is monotone it follows that 

f-1 (A) and f -1 (B) are connected. Since the range is Haus-

dorff, A and B are closed. Thus f -1 (A) and f -1 (B) are 

closed subsets of a compact set C. Thus f -1 (A) and f -1 (B) 

are continua, and C = f -1 (A)U f-1 (B). So f -1 (A) fl f-1 (B) is 

, a continuum. But f -1  (m in f-1( B ) = f-1k Ai 1B); so f[r-i(AnB)] 

B is a continuum. Thus f(C) is unicoherent. 



CHAPTER V 

MISCELLANEOUS RESULTS 

Cut Points and Homogeneous Spaces  

Definition 5.1. A point x of a component C is a cut 

point of C if CHRlis separated. 

Theorem 5.2. The image of a cut point under a homeo-

morphism is a cut point. 

Proof. Let X be a connected topological space, and let 

x be a cut point of X. Let X - fx1 = AUB where A and B are 
both open and closed in X - txj. Let f be a homeomorphism of 

X onto Y. Then Y - (f(x)} 	f(A)U f(B) where f(A) and f(B) 

are both open and closed in Y - ff(x)j. Thus Y 	{f(x)) is 

separated. But Y = f(X) is connected, since X is connected. 

Thus f(x) is a cut point in Y. 

Definition 5.3. A topological space X is said to be 

homogeneous if for any two points x and y in X there is a 

homeomorphism from X onto itself that carries x onto y. 

Theorem 5.4.  The property of being homogeneous is 

invariant under homeomorphisms. 

Proof. Let h be a homeomorphism from a homogeneous 

space X onto a space Y. Let p and q be any two points in Y. 

Then h-1 (p) and h-1 (q) are two points in X. Choose a homeo-

morphism f from X onto itself with f[h -1 (p)] = h-1 (q). Thus 

qlf[h l (p)]) = q. Thus the composite function hofoh-1  is a 
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homeomorphism of Y onto itself which maps p onto q. Thus Y is 

homogeneous. 0 

Before giving examples showing some cases where being 

homogeneous or being not homogeneous is not invariant, the 

following theorem is needed. 

Theorem 5.5.  Let X be a topological space with at least 

one cut point and at least one non-cut point. Then X is not 

homogeneous. 

Proof.  The result is clear, since a homeomorphism can 

not map a cut point onto a non-cut point. 0 

Example 5.6.  A continuous, open, and closed function 

of degree two which maps a homogeneous space onto a space 

which is not homogeneous. 

Let the domain X be the unit circle centered at the 

origin with the relativised topology of the plane. Any circle 

is homogeneous, since any point can be mapped into any other 

point by a rotation; and rotations are homeomorphisms. The 

range Y is the closed interval [-1, 1], with the relativised 

topology of the plane. The interior points of Y are cut points 

while the end points of Y are not cut points. Thus Y is not 

homogeneous. Let f be the function which maps the point (x, y) 

on the unit circle onto the point x in the closed interval 

[ - 1, 1]. That is, f(x, y) = x. It is easy to see that f is 

continuous, open, closed, and of degree two. 

Example 5.7.  A continuous, open, and closed function 

of degree two which maps a space which is not homogeneous onto 



a space which is homogeneous. 

Let the domain X be two unit circles centered at (1, 0) 

and (-1, 0). The circles are tangent at the origin, and the 

origin is a cut point. However, all other points are not cut 

points. Thus X is not homogeneous. Let Y be the unit circle 

centered at the point (1, 0). Any circle is homogeneous; so 

Y is homogeneous. Define the function f from X onto Y by 

f(x, y) = (1x1, y). It is easy to see that f is continuous, 

open, closed, and of degree two. 

Decompositions  

Definition 5.8. A disjoint collection of subsets which 

covers a space X is said to be a decomposition of X. 

Definition 5.9. A decomposition of a space X into a 

collection .5' of disjoint closed sets is upper semi-continuous  

provided the union of all elements of.0 intersecting any 

closed set is closed. Equivalently the union of all members 

of the decomposition contained in any open set is open. 

Theorem 5.10. If X is a topological space, o is an upper 

semi-continuous decomposition of X, and f is a homeomorphism 

from X onto a space Y, then f(c) is an upper semi-continuous 

decomposition of Y. 

Proof. Since f is a homeomorphism, the members of f(.0) 

are closed and disjoint. Let C be any closed subset of Y. 

Then f-1 (C) is a closed subset of X. Let A be the union of all 

members of cm(:).  that intersect f-1 (C). Then A is closed. Thus 



f(A) is closed. But f(A) is the union of all members of f(Z) 

that intersect C. Thus f(.0) is an upper semi-continuous de-

composition of Y. 0 

Definition 5.11. A decomposition e0 is lower semi-con-

tinuous provided that each member of 	is closed and the union 

of all elements of 00 intersecting an open set in X is open. 

Evivalently the union of all members contained in any closed 

set is closed. 

Theorem 5.12. If h is a homeomorphism from X onto Y and 

if d  is a lower semi-continuous decomposition of X, then h(.0) 

is a lower semi-continuous decomposition of Y. 

Proof. Let U be an open set in Y. Then h -1  (U) is 

open in X. Let A be the union of all members ofogthat inter-

sect h
1 (U). Then A is open. But h(A) is open and the union 

of all members of h(.0) that intersect U. Thus h(..olill) is lower 

semi-continuous. 0 

Theorem 5.13. Let f be a continuous closed function 

from X onto Y. Lett be an upper semi-continuous decomposition 

of Y. Then the decomposition 00' of X generated by the in-

verse under f of members of or) is an upper semi-continuous 

decomposition of X. 

Proof. The members of 40 1  are closed, disjoint, and 

cover X. Thus they form a decomposition of X. Let C be any 

closed set in X. Then f(C) is closed in Y. Let V be the 

union of all members of 	that intersect f(C). This is a 
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closed set, and so f -1 (V) is closed. Clearly f -1 (V) is the 

union of all members of 06, 1  that intersect C. Thus 00 1  is 

upper semi-continuous. 0 

Theorem 5.14. If f is an open mapping from X onto Y 

and 	is a lower semi-continuous decomposition of Y, then the 

decomposition .01 of X obtained from the inverse under f of 

members of 	is also lower semi-continuous. 

Proof. The members of Gejr are disjoint, closed, and 

cover X. Thus they form a decomposition of X. Let U be any 

open subset of X. Then f(U) is an open subset of Y. Thus the 

union of all members of which intersect U is open. Call this 

union A. Then f-1 (A) is open. Also f
-1

(A) is the union of all 

members of 	that intersect U. Thus .0 1  is lower semi- 

continuous. 0 

Theorem 5.15. Let f be a quasi-compact mapping from 

X onto Y. Let .0 be a decomposition of Y. Let ZI be the 

decomposition of X obtained from the inverse under f of mem-

bers of 00 . If .451 is upper semi-continuous, thenda0 is also 

upper semi-continuous. 

Proof. Let C be any closed subset of Y. Let B be the 

union of all members of ot) that intersect C. Clearly, f -1 (C) 

is closed. The union, A, of all members of 00 that intersect 

f-1 (C) is closed. Furthermore, A = f -1 (B); so A is a closed 

inverse set. Thus f(A) = B is closed. Thus O is upper semi-

continuous. 0 

Theorem 5.16. Let f be a quasi-compact mapping from X 



onto Y. Let o° be a decomposition of Y. Let 00 1  be the de-

composition of X obtained from the inverse under f of members 

of 05. If eat is lower semi-continuous , then CO is also lower 

semi-continuous. 

Proof. Let C be any closed set in Y. Let B be the 

union of all members 01'00 that are contained in C. Since 

f-1 (C) is closed, the union A of all members of CO' that are 

contained in f-1 (C) is closed. Furthermore, A = f -1 (B); so A 

is a closed inverse set. Thus f(A) = B is closed. Thus d9 is 

lower semi-continuous. 0 

Results in Uniform Spaces  

In this section some results in uniform spaces are 

proved. It is assumed that the reader has a basic knowledge 

of uniformities and uniform spaces. (The terminology used is 

the same as that of Kelley [3], Chapter 6.) 

Definition 5.17. Let X be a topological space with the 

topology determined by the uniformity 1(. Let Y be a space 

with the topology determined by the uniformity 2t. Let f be 

a function from X into Y. Then f is a uniformly continuous  

function relative to 2t and if for each member V of 2/ the 

set f(x, y): (f(x), f(y)) e V3 is in the uniformity R. 

Definition 5.18. Let X be a topological space with the 

topology determined by the uniformity a. The gage of u is the 

family of all pseudo-metrics which are uniformly continuous on 

X X X relative to the product uniformity determined by 2,t 



Definition 5.19. A uniform space X with uniformity lt 

is said to be totally bounded if for each positive r and each 

pseudo-metric d in the gage of Z( there is a finite number of 

sets with d-diameter less than r that covers X. The term Ere-
compact is often used to mean totally bounded. 

Total boundedness is invariant under uniformly continu-

ous functions. To prove this the following lemma is needed. 

Lemma 5.20. Let X be a uniform space with uniformity 2,t, 

and Y be a uniform space with uniformity t. Let B x be the 

gage of and 	be the gage of Y.  Then a function f from 

X onto Y is uniformly continuous if, and only if, for each 

positive number r and pseudo-metric d 2 in the gage 11 there 

is a positive number t and a pseudo-metric d 1  in tl x  such that 

if d1(p' 
q) < t then d

2 (f(p), f(q)) < r. 

Proof. The proof follows quickly from the fact that the 

collection of all sets of the form V dr  = L(x , y): d(x, y) < rj 

for r positive and d in b x  forms a base for ?A and a similar 

collection forms a base for lr. 
Theorem 5.21. Let X be a uniform space with uniformity 

2k and Y be a uniform space with uniformity Assume that X 

is totally bounded and that f is a uniformly continuous func-

tion from X onto Y. Then Y is totally bounded. 

Proof. Let t' x  be the gage for 1A and B y  be the gage 

for lk. Let d2 in the gage B y  and a positive number r be 

given. It is to be shown that Y can be covered by a finite 

collection of sets of d 2-diameter less than r. By Lemma 5.20, 



choose d 1  in tj x  and a positive number t so that di (p, q) < t 

implies that d2(f(p), f(q)) < r. Cover X with a finite number 

of sets with d l-diameter less than t. The images of these sets 

under f cover Y and each has a d 2-diameter less than r. Thus 

Y is totally bounded. 0 

Definition 5.22. Let X be a uniform space with the 

uniformity jk. Then a sequence {.. xn1 is said to be a Cauchy  

sequence if for each member U of the uniformity 2)( there is an 

integer N so that wherever n and m are greater than N, we have 

that (xn, xm ) is in U. 

Theorem 5.23. Let fxni be a Cauchy sequence in a uniform 

space X with uniformity 2.t. Let f be a uniformly continuous 

function from X onto the uniform space Y with uniformity 11". 

Then the sequence ff(xn ).1 is a Cauchy sequence in Y. 

Proof. Let V be a member of V- . Let Z = 1(x, y): 

(f(x), f(y)) a Vi. Then Z is a member of /4. Choose N so that 

m > N and n > N implies that (xn' xm) is in Z. Then m > N and 

n > N also implies that (f(x n), f(xm )) is in V. Thus {f(x n )} 

 

is a Cauchy sequence in Y. 0 

Theorem 5.23 is still true if we replace the Cauchy 

sequence by a Cauchy net. The proof is completely analogous 

and is thus omitted. 

It should be pointed out that being a Cauchy sequence 

is not invariant under homeomorphisms, even in metric spaces. 

Example 5.24.  A homeomorphism which maps a Cauchy se-

quence into a sequence that is not a Cauchy sequence. 



Let X be the half open interval (0, 1] with the usual 

topology. Let Y be the interval [1,") also with the usual 

topology. Define f(x) = l/x for all x in X. It can be shown 

that f is a homeomorphism. The Cauchy sequence (1/n3 is 

mapped into the sequence fill which is not a Cauchy sequence. 

Definition 5.25.  A metric, or uniform, space is said 

to be complete if each Cauchy sequence has a limit. 

Completeness is another property which is not invariant 

under homeomorphisms. 

Example 5.26.  A homeomorphism which maps a complete 

metric space onto a metric space which is not complete. 

Let X be the interval [1, 00) with the usual topology 

and Y be the interval (0, 1] with the usual topology. Define 

f(x) = l/x for all x in X. It can be shown that f is a homeo-

morphism from X onto Y. It is clear that X is complete, but 

Y is not complete, as shown by the sequence .El/n. 

Non-separated and Saturated Collections  

Definition 5.27. Let x and y be two points of a topo-

logical space X. Then a subset A of X is said to separate x 

and y in X if there are disjoint sets U 1  and U2  both open in 

X - A such that X - A = U1
Uu2 and x is in U1 while y is in 

U2 . That is, UlL)U2  is a separation of X - A, with x in U1 

 and y in U2 . 

Definition 5.28. Let 	be a disjoint collection of sub- 

sets of a topological space X. Then ti is said to be non-separ- 



ated in X if no two points in one member oftf is separated in 

X by any other member of 21 

Theorem 5.29. Letb be a non-separated collection in 

a space X. Let f be a one-to-one continuous function from X 

onto Y. Then the collection f(.. ) of all images of members of 

1/ is non-separated in Y. 

Proof. Suppose the theorem is not true. Let A and B 

be members ofli such that f(A) separates two points f(x) and 

f(y) both in f(B). Let Y - f(A) = AlUA2  where f(x) is in Al 

f(y) is in A2 , and AlUA2  is a separation of Y - f(A). Clearly 

X-A = f-1 (A1 ) 

	

1 (A
2
) where x is in f-1 (A

1
) and y is in f -1 (A2

). 

To show that f-1( A1 ) U f-1(A2
) is a separation of X_- A, it only 

needs to be shown that f-1 (A1 ) and f -1 (A2 ) are open in X - A. 

Let Al = Ul my - f(A)) and A2 = U2 fl(Y - f(A)) where both U 1 

and U2  are open in Y. Then f -1 (A1 ) = f-1(U1 )mx - A) and 

f-1(A2) = f-1, u- 2
n x 

k 	)1 (X 
	 an - A). Since f -1 (U1 ) and f -1 (U2) are 

open in X, it follows that f -1 (A1 ) and f-1 (A2 ) are open in 

X- A. Thus f-1 ( Al) U f- 1 (A2 ) is a separation of X- A with x 

in f-1 (Al ) and y in f
-1

(A2 ). This is a contradiction. Thus 

f(b) is non-separated in Y. 0 

Definition 5.30. Let f be a function from a topological 

space X onto a space Y. Then f is said to be weakly monotone  

if the inverse of each point of Y is connected. 

Theorem 5.31. Let 9i be a non-separated collection of 

subsets of a space Y. Let f be an open weakly monotone func-

tion, not necessarily continuous, which maps a topological 



space X onto the space Y. Then the collection f -1(Z) of in-

verse sets of members ofb are non-separated in X. 

1 Proof.  Assume that the theorem is false. Let f -1 (A) 

separate two points p and q of f-1 (B) where A and B are in 

Let X - f (A) = A
1 
 LjA

2 
 where Al  and A

2 
 are disjoint and both 

open in X - f-1 (A) with p in Al  and q in A2 . Then Y - A = 

f(A1 )Uf(A2 ). Since Al  is open in X - f-1 (A), Al  = 0 1  n  

Ex - f-1 (A)]. Thus 

f(A1  ) = f[01 r1(X - f-1 (A))] = f(0 1 ) n cy - A). 

The latter equality may be proved using the fact that X - f -1 (A) 

is an inverse set. Since f(0 1 ) is open in Y, it follows that 

f(A
1
) is open in Y - A. In an analogous way it may be shown 

that f(A2 ) is open in Y - A. 

Clearly f(p) is in f(A1 ) and f(q) is in f(A 2 ) with both 

f(p) and f(q) in B. It must be shown that f(A 1 ) and f(A2 ) are 

disjoint. Suppose z is a point in both f(A1 ) and f(A2 ). Then 

f-1 (z) is contained in A
1
U A2 . But this is impossible since 

z is in both f(A1 ) and f(A2 ). Thus A separates two points of 

B in Y. This is a contradiction. Thus f -1 (t1 ) is non-separ-

ated in X. 0 

Definition 5.32.  A collection of subsets ,2i  of a space 

X is said to be saturated  if A is in 23 and p is in X but p is 

not in A; then there is a member B of that separates A from p. 

Theorem 5.33.  If 2j is a saturated collection of sub-
sets of a topological space X and f is a one-to-one open 
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function from X onto Y, then f(1/ ) is saturated in Y. Notice 

that f need not be continuous. 

Proof.  Let p be any point in Y which is not in a mem-

ber f(A) of f(0 ). Then f-1 (p) is not in A. Let B be a mem-

ber of which separates f -1 (p) and A. Let X - B = Ai U A2  be 

( a separation of X - B with f -1  tip) in Al  and A contained in A2 . 

Then Al 
= Un(x - B) for some open set U. Since 

f(A1 ) = ftUn (X 	B) = f (U)n f( X 	B), 

it follows that f(A1 ) is open in Y f(B). Similarly f(A 2 ) is 

open in Y 	f( B) 	Also Y - f( B) = f( Ai ) U f( A2 ) . Since f(A1 ) 

and f( A2 ) are dis joint, it follows that f( ) U f( A 2 ) is a 

separation of Y - f(B). Clearly p is in f(A 1 ) and f(A) is 

contained in f(A2 ) • Thus f(B) separates p and f(A). Thus the 

collection f(b ) is saturated in Y. 0 

Since for one-to-one functions, being open and being 

closed are equivalent, the requirement that f be open may be 

replaced with the requirement that f be closed in Theorem 5.33. 

Paracompactness and Metacompactness  

Definition 5.34.  Let a be a cover of a topological 

space X. A cover 	of the space is said to be a refinement  of 

the cover 	if if each member of V-  is contained in some member of /A. 

Definition 5.35.  Let 14 be a family of subsets of a 

topological space X. Then lt is said to be locally finite  if for 

each point of the space there is an open set which intersects 
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at most a finite number of members of U . 

Definition 5.26. A topological space is said to be 

paracompact if it is regular and every open cover has an open 

locally finite refinement. 

Theorem 5.37. Being paracompact and T 1  is invariant 

under open mappings that are exactly k to 1. 

Proof. Let f be an open mapping which is exactly k to 1 

from a paracompact T l  space X onto Y. It follows that Y is 

regular and T 1  by a previous theorem. Let Z,( be any open cover 

of Y. Then X is covered by the set of all inverses of members 

of U, that is, f-1 (U). Choose a locally finite refinement 

nl% of f-1  (u). Then f(r), the collection of images under f of 
members of 2)", is an open refinement of U. 

It will be shown that f(it) is locally finite. Let p 

be any point of Y. There are exactly k points ql , q2 , . • ., qk 

 in X that map onto p. About each of these qi ls choose an open 

set O. that intersects only a finite number of members of 2t. 

Since X is Hausdorff, there is no loss in generality in taking 

the O. to be disjoint. Let 0 be the intersection of all the 

f(0.) as i varies from 1 to k. Then 0 is an open set in Y that 

contains p. It will be shown that 0 intersects only a finite 

numberofmembersoff(1}'),IfVisin"Itandintersects0.for 

some i, then it is possible for f(V) to intersect 0. But there 

are only a finite number of such V, for there are only k of the 

sets 0 i , and only a finite number of members of Vdintersect 

each one. It is sufficient to show that no other member of f(2/-) 
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can intersect O. Let V° be a member of R'which does not 

intersect any O i . Suppose f(V°) intersects 0 at a point, 

say y. Then f-1 (y) contains at least k + 1 points, one in 

each 0i and one in V°. This is a contradiction. Thus 0 in-

tersects only a finite number of members of f(/)'). Thus f(2fr) 

is locally finite. Thus Y is paracompact, and the theorem is 

proved. 0 

Definition 5.38.  Leta( be a family of subsets of a 

topological space X. Then is said to be point finite  if 

each point of X is contained in at most a finite number of 

members of 

Definition 5.39.  A topological space X is said to be 

metacompact if each open cover has an open, point finite re-

finement. 

Theorem 5.40.  Being metacompact is invariant under 

open finite-to-one mappings. 

Proof.  Let f be an open finite-to-one mapping which 

maps a metacompact space X onto a space Y. Let Ube an open 

cover of Y. Then f -1 (14) is an open cover of X. Choose an 

open point finite refinement 2}' of f-1 (?,(). Then f(/)-) is an 

open refinement of 2X . Let p be any point of Y. Let q1,  q2, 

0 	qk  be the finite collection of all points, such that 

f(qi ) = p. Only a finite number of members of ?1 intersect any 

gi. But the images of these members of 21-  are the only members 

of f(? ,- ) which can contain p. Thus, only a finite number of 

members of f(2/- ) contain p. Thus f(2)-) is a point finite 
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refinement of 2t. Thus Y is metacompact. 0 

Dimension  

DefinitionilAl.  Let A be a subset of a topological 

space X. Then p is a boundary point of A if every open set 

containing p intersects both A and the complement of A. The 

boundary  of A is the set of all boundary points of A. 

Theorem 5.4.2.  Let f be a homeomorphism from a topo-

logical space X onto a space Y. Let A be a subset of X. Then 

the boundary of f(A) is the image of the boundary of A under f. 

Proof.  Let p be any point in the boundary of A. Let 

U be any open set containing f(p). Then f -1 (U) is an open 

set containing p. Thus f-1 (U) intersects both A and X - A. 

Hence, U intersects both f(A) and Y 4  f(A). Thus f(p) is in 

the boundary of f(A). 

Let q be any point in the boundary of f(A). Let V be 

any open set containing f-1  (q). Then f(V) is an open set 

containing q. Thus f(V) intersects both f(A) and Y o  f(A). 

Hence V intersects both a and X - A. Thus f -1 (q) is in the 

boundary of A. 

Definition 5.L3.  The dimension  of the empty set is -1. 

No other space has -1 for its dimension. 

Definition  75.44.  Let p be a point in a topological 

space X. Then X is said to have dimension  n at p if for 

every neighborhood of U of p there is a neighborhood V con-

taining p and contained in U whose boundary has dimension 
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n 	1. Here it is assumed that n is non-negative. The di- 

mension of X at p is said to be n if the dimension of X at p 

is  i 	n, but it is false that the dimension of X at p is 

n 	1. 

Definition 5.45.  A topological space X has dimension n 

if the dimension of X at each of its points is f- n and there 

is at least one point of X at which the dimension is n. The 

space X is said to have dimension on if the dimension of X 

is not n for any finite n. 

Theorem 5.4§.  The dimension of a space is invariant 

under a local homeomorphism. 

Proof. The proof will be by induction. The result is 

clearly true for dimension equal to -1. For dimension equal 

to 0 the result follows, since sets with empty boundaries, 

that is, both open and closed sets, are mapped into sets 

which are both open and closed by local homeomorphisms. 

Assume that the result is true for all dimensions less 

than or equal to n m  1. The result is to be shown for dimen-

sion n. Let h be a local homeomorphism from an n dimensional 

topological space X onto a space Y. Let y be any point in Y. 

Let U be a neighborhood of y. Choose a point x in X so that 

h(x) = y. Then h-1 (U) is an open set containing x. Choose 

an open set 0 containing x so that h restricted to 0 is a 

homeomorphism. Choose a neighborhood V of x and contained 

in both 0 and h-1 (U), which has a boundary with dimension 

less than n. Then h(V) is a neighborhood of y which is 
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contained in U. The boundary of h(V) is the image of the 

boundary of V under h, since h restricted to an open set 

containing V is a homeomorphism. But the dimension of the 

boundary of V is less than n. Thus by our inductive assumption, 

the dimension of h(V) is less than n. Thus the dimension of Y 

is less than or equal to n. 

To show that the dimension is equal to n, choose a 

point x in X at which X has dimension n. There is a neigh-

borhood, say N, of x such that any neighborhood of x that is 

contained in N has a boundary with dimension n - 1 or greater. 

There is no loss in generality in choosing N so that h re-

stricted to N is a homeomorphism. Clearly h(N) is a neigh-

borhood of h(x). Let U be any neighborhood of h(x) which is 

contained in h(N). Let g be the inverse function for h re-

stricted to N. Then g is a homeomorphism from h(N) onto N. 

Assume that the dimension of the boundary of U is less than 

n 1. Then g(U) is a neighborhood of x contained in N whose 

boundary has dimension less than n 1. This is a contra-

diction. Thus the dimension of the boundary of U is n - 1 or 

more. Hence the dimension of Y at h(x) is greater than or 

equal to n. With what has already been shown, it is clear 

that the dimension of Y is exactly n. 

Suppose that f is a function from a space X onto a 

space Y. Suppose the dimension of X is n. It is sometimes 

possible to obtain bounds on the dimension of Y even though 

the dimension of Y may not be known exactly. Next two such 
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results are stated without proof concerning closed mappings. 

The abbreviation dim X for the dimension of the space X is 

used. 

Theorem521L41.  Let f be a closed continuous function 

from a separable metric space X onto a separable metric space 

Y. Suppose dim X - dim Y = k where k is a positive integer. 

Then there is a point y in Y so that f -1 (y) has dimension at 

least k. (See Hurewicz and Wallman [2], pp. 91-93.) 

In this theorem the dimension of the range is lower 

than the dimension of the domain. An analogous result holds 

if the dimension of the range has a higher dimension than the 

range. 

Theorem  5.48.  Let f be a closed mapping from a separ-

able metric space X onto a separable metric space Y. Suppose 

that dim Y - dim X = k where k is positive. Then f is of de-

gree at least k + 1. That is, f -1 (y) contains at least k + 1 

points for some y in Y. (See Hurewicz and Wallmn [2], p. 93.) 

Definition  5.49. A topological space has covering 

dimension n if each open cover has an open refinement in which 

at most n + 1. sets intersect at a point and there is at least 

one open cover for which at least n + 1 sets intersect at 

some point in each open refinement. 

Definition 5.50. A topological space has countable  

covering_dimension  n if each countable open cover has a 

countable open refinement in which at most n 1 sets inter-

sect at a point, and there is at least one open cover for 
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which at least n + 1 sets intersect at some point in each 

countable open refinement. 

A definition of finite cov rein dimension may be ob-

tained by replacing the word countable by the word finite 

everywhere in Definition 5.50. 

Theorem 5.51. If f is an open mapping of degree k 

from a topological space X of covering dimension n onto a 

space Y, then the covering dimension of Y is at most [(n+l)k-1]. 

Proof. Let 1( be an arbitrary open cover of Y. Then 

f-1 (a) is an open cover of X. Choose an open refinement if' 

of f-I CU) such that at most n + 1 members of .27 intersect. 

Now f(Y) is an open refinement of /2 in Y. Let p be a point 

in Y. Then f
-1  (p) contains at most k different points. At 

each of these at most (n + 1) members of -'can intersect. 

Hence at p at most (n + 1)k members of f(//- ) can intersect. 

Thus an open refinement of the arbitrary open cover 4 of Y 

in which at most (n + 1)k members intersect is found. Thus 

the covering dimension of Y is at most [(n+l)k-1]. 0 

In Theorem 5.51, covering dimension may be replaced by 

countable covering dimension or by finite covering dimension 

without affecting the correctness of the theorem. The proof 

is essentially the same as before and is omitted. 

In separable metric spaces it is well known that finite 

covering dimension is equivalent to the dimension previously 

defined. (See Hurewicz and Wallman [2], p. 67.) Thus, for 

separable metric spaces, the following theorem may be used 
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with either definition of dimension. 

Since the concept of dimension is so closely related 

to boundary points, the following results are included here. 

Theorem 5.52.  Let f be a function which is both open 

and closed, but not necessarily continuous, from a topological 

space X onto a topological space Y. Let A be a subset of X. 

Then every boundary point of f(A) is of the form f(p) where 

p is in the boundary of A. 

Proof. Since f(A) is a closed set containing f(A), all 

boundary points of f(A) are of the form f(p) where p is in the 

boundary of A or in the interior of A. But if p is in the in-

terior of A, it follows that f(p) is not a boundary point of 

f(A) by the fact that f is open. Thus the result follows. 0 

Corollary 5.53.  Let f be a function which is both 

open and closed from a topological space X onto a topological 

space Y. Let A be a subset of X. Then the cardinality of 

the set of boundary points of f(A) is less than or equal to 

the cardinality of the set of boundary points of A. 

Proof.  The result is clear since each boundary point 

of f(A) is the image of a boundary point of A. 0 

Theorem 5.5.L.  Let B be a subset of a topological space 
X such that each point p of B has arbitrarily small open sets 

in X whose boundaries are finite. That is, inside of each 

open set containing p there are open sets with finite bound-

aries. If f is an open, closed, continuous function from X 

onto Y, then each point of f(B) also has arbitrarily small 
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open sets with finite boundaries. 

Proof. Let q be any point of f(B). Let U be any open 

set containing q. Then f-1  (U) is an open set about some point 

p in B with f(p) = q. Choose an open set V containing p and 

contained inside f-1  (U) with a finite boundary. Then f(V) 

is an open set containing q which has a finite boundary and 

is contained in U. This is the desired result. 0 

If the word finite is replaced by the word countable 

everywhere in the preceding theorem and proof, another correct 

theorem is obtained. 
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