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Flight Test Validation of a Neural Network based Long Term 
Learning Adaptive Flight Controller  

Girish Chowdhary,*  and Eric N. Johnson† 

Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332,  

The purpose of this paper is to present and analyze flight test results of a Long Term 
Learning Adaptive Flight Controller implemented on a rotorcraft and a fixed wing 
Unmanned Aerial Vehicle. The adaptive control architecture used is based on a proven 
Model Reference Adaptive Control (MRAC) architecture employing a Neural Network as 
the adaptive element. The method employed for training the Neural Network for these flight 
tests is unique since it uses current (online) as well as stored (background) information 
concurrently for adaptation. This ability allows the adaptive element to simulate long term 
memory by retaining specifically stored input output data pairs and using them for 
concurrent adaptation. Furthermore, the structure of the adaptive law ensures that 
concurrent training on past data does not affect the responsiveness of the adaptive element 
to current data. The results show that the concurrent use of current and background data 
does not affect the practical stability properties of the MRAC control architecture. The 
results also confirm expected improvements in performance. 

Nomenclature 
Frequently used symbols: subscripts and acronyms: 
e model tracking error vector ad 

cmd 
crm 
pd 
 
 
 
LIP  
NN  
PCH 
SHL 
UAS 
UAV 
 

Adaptive element pseudo control output 
Command 
Reference model pseudo control output 
Linear part of the pseudo control output 
 
 
 
Linear In Parameters  
Neural Network 
Pseudo Control Hedging  
Single Hidden Layer 
Unmanned Aerial System 
Unmanned Aerial Vehicle 

δ  actuator input 
Δ  model error 

WV ΓΓ ,  NN learning rates 

ν  pseudo control 
P  Solution to the Lyapunov equation 
A State matrix in the canonical linear system 
B Input matrix in the canonical linear system 
r Error vector 
σ  sigmoidal activation function 
V,W NN weights 

x state vector Learning Paradigms 
x  neural network input vector 

 
Online Only current data is used for learning. 
Concurrent Both stored (background) and current data 

are used concurrently for learning. 

I. Introduction 
daptive control has been extensively studied for Aerospace applications. Many active research directions exist, 
for example Calise6, Johnson7,8,5,13, Kannan22 and others have developed Model Reference Adaptive control 

methodology for control of Unmanned Aerial Vehicles. Lewis11,10 et al and Patiño29 et al have developed methods in 
adaptive control for the control of robotic arms. Cao, Yang, Hovaykiman, and others have developed the paradigm 
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of L1 adaptive control33,34. Lavertsky30 et al have extended direct adaptive control methods to fault tolerant control. 
The increasing interest in adaptive control stems from its ability to handle changes in system dynamics, provable 
robustness to uncertainty, and the relatively direct extension to fault tolerant control. 
 
 Central to all these approaches, is an adaptive element (e.g. Neural Network) which recursively trains based on 
some form of input output data pairs presented in a sequential manner. The purpose of training is to develop a 
parameterized map that maps the given input data to the output data. Ideally, we would like this parametric map to 
map the complete input space to the complete output space. Where the complete input space should be considered as 
the feasible regions of the state space that the plant can traverse, and the complete output space should be considered 
as the expected range of the modeling error. This parametric map is then used in the control architecture in order to 
improve the performance by handling the unknown model error. Radial Basis Function (RBF) Neural Networks 
(NN), or Single Hidden Layer (SHL) feedforward NN are often employed as the adaptive element. The attractive 
Universal Approximation properties that these NN posses are the leading reason behind their choice as the adaptive 
element. Particularly, given sufficient number of Neurons, the SHL NN is able to approximate any piece wise 
continuous function (in the sense of a norm) over a compact domain. Hence, it can be expected that the NN used in 
the adaptive control approaches mentioned previously should be able to successfully parameterize the complete 
input output space. However, in practice only a local parameterization is ever achieved.  
 
 If a global parameterization of the error were indeed to be achieved, then an improvement in the performance of the 
adaptive control algorithm would be seen. For example, if a global parameterization of the error were to be 
achieved, the flight controller would have improved performance when the aircraft performs a maneuver that has 
been previously performed. This improvement in performance would be a result of retention of adaptation from the 
previous maneuver.  In biological analogy, this behavior indicates long term learning in the NN. Whereas, if the 
adaptation were not retained, then the no improvement in performance over repeated maneuvers would be seen as 
the adaptive element relearns the underlying model error function every time the maneuver is performed. In 
biological analogy, this behavior indicates short term learning in the NN. Current adaptive training algorithms are 
only able to retain a local parameterization of the error, that is, no improvement in performance is seen when a 
maneuver is performed repetitively. We now discuss the reasons for this suboptimal behavior. 
 
 Consider the commonly used approach of Model Reference Adaptive Control (MRAC) with a SHL or an RBF NN 
used as an adaptive element.  This approach has been extensively employed in the work of Lewis11,10, Calise6, 
Johson7,8, Kannan22, Kim19, Hovaykiman33, Lavertsky30, and others for flight control purposes. In the most common 
form of this approach, the tracking error equations can be effectively reduced to the following form:  
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 Where ∆ .  is the model error and between       (real and the approximate model) that needs to be cancelled by 
the NN output . The Neural Network is often trained using a linear function of the tracking error ( ) as 
output data and the system state vector as input data. This approach has proven to be fairly successful in designing 
controllers that guarantee bounded tracking error.  However, since the NN output needs to cancel the model error, 
classical NN training techniques26,20,21 require the output data to be the difference between the NN estimate of the 
model error and the actual model error ( Δ .  The main reason this input is not used for training NN 
online is because the model error ∆ is unknown.  
 
 This can be contrasted with the relatively accurate parameterization over all presented data set achieved when the 
Neural Network is trained offline using standard methods such as batch processed error backpropagation, and the 
Levenberg Marquardt algorithm. The reason for this improved performance is two folds. Firstly, in most offline 
training approaches, the model error ( Δ  is directly used for training instead of the tracking error. This 
allows the NN to directly adapt to the model error. Secondly, offline approaches allow flexibility in the way the 
input-output data pairs can be presented and weighs updated. This flexibility manifests itself in preconditioning of 
the training signals which may consists of smoothing, normalizing, scaling, batch processing etc.  
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Based on these observations, the reasons for achieving only a local parameterization when using instantaneous 
(sequential) data for recursively training NN in adaptive control architectures can be summarized as follows: 
 

- Lack of direct training information: Direct training information ( Δ  is not presented to the 
NN, instead a linear function of the tracking error is presented as training input ( ). This 
information is not directly presented because the accurate model of the system is not normally available, 
hence it may not be possible to accurately calculate Δ online. Conceptually, NN trained in this way could be 
thought to provide advanced integrator control like action which cancels only the local steady state tracking 
error. 

- Use of only instantaneous data: The sequential method of training is susceptible to local adaptation 
because weight updates occur only based on the instantaneous data.  

- The rank-1 condition1,2,12,7: The rank of the NN weight dynamic is always at most one when only current 
data is used for NN training. This is especially true for most modern NN update laws that are based on 
backpropagation, which essentially approximates the underlying instantaneous error space as a gradient 
hyperplane. Conceptually, the rank one condition indicates that the NN law is constrained to searching NN 
weights only along one direction in the underlying vector space at that instant. The resulting adaptation has a 
non trivial null space to which important information may have been lost.    

 
 Few methods have been proposed in the past that address the issue of local adaptation. The most commonly used 
approach is the use of a momentum term26,20,21 in the backpropagation based  adaptive law. The momentum term 
scales the most recent weight update in the direction of the last weight update. This speeds up the convergence of the 
weight update when it is in the vicinity of local minima, and slows the divergence. This modification is 
heuristic26,21,21, and results only in a modest improvement. Furthermore, it does not address the issue of susceptibility 
to local training due to high reliance on instantaneous data.  Another common approach is the use of a forgetting 
factor31 which can be tuned to indicate how fast the relevance of the past data needs to be decreased. This approach 
suffers from the drawback that a small value of the forgetting factor indicates high reliance on only the recent data, 
which leads to local parameterization. While a small value indicates higher reliance on the past data, which leads to 
sluggish adaptation performance. The sluggishness is a result of slow response to instantaneous data. Patiño29 et al 
suggested the use of a bank of NN trained around different operating conditions which are used as a basis for the 
space of all operating conditions. The required model error is then calculated by using a linear combination of the 
outputs of these different NN. In order to overcome the shortcomings of online training algorithms, Patiño et al also 
suggested that the bank of NN be adapted off-line using recorded data. The reliance on off-line training makes this 
approach undesirable for adaptive flight applications. Volyanskii35 et al have proposed a method that augments the 
training of the NN with an integral of the tracking error within a finite time window of the current data. They name 
this method as Q-modification. Q-modification allows for faster convergence of NN weights by taking the integral 
of the tracking error term into account, however, this integral is evaluated over a finite time interval, hence 
accounting only for tracking error within a relatively small time window of the instantaneous data. Furthermore, Q-
modification does not allow the direct use of stored input – output data pairs in the adaptation. Hence, to the best of 
the author’s knowledge, no current method exists that can incorporate long term learning by using arbitrary stored 
data along with sequential instantaneous data in order to account for the local learning phenomena exhibited by 
current adaptive control algorithms.  
 
 The goal of our work can now be stated: 
 
This work is aimed towards developing a robust, long term learning, adaptive flight control architecture that 
guarantees  uniform ultimate boundedness of all system signals.  
 
The long term learning would be characterized by improved performance when the aircraft performs a maneuver 
that it has performed before. In order to achieve this goal we have developed a unique method for online training of 
Neural Networks that exhibits the properties of semi-global adaptation and long term learning. We term this method 
as Concurrent Learning. Concurrent Learning incorporates long term learning in the learning law by simulating 
memory. The memory of the learning law consists of carefully selected and stored input output data pairs that can be 
further processed in the background and can be used for NN training. Our method ensures that the adaptation based 
on stored data in the memory does not sacrifice the instantaneous adaptability of the NN by exploiting the 
separability of the underlying subspaces. In reference 1 we showed that uniform ultimate boundedness of all system 
signals can be guaranteed when this approach is used in the framework of MRAC with a SHL NN as the adaptive 
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element. Simulation results and preliminary flight test results affirming the practical stability and indicating 
improved performance were also presented1,2.  
 
The purpose of this paper is to present further flight test results where the Concurrent learning adaptive law is used 
for flight control. To that effect, we present several flight test results for a rotary wing UAV. We begin by presenting 
a brief overview of Approximate Model Inversion NN based Adaptive Control in Section II. In section III we 
discuss the structure of the Concurrent learning law and provide notes on its implementation. Section IV, V, and VI 
are dedicated to the discussion of results which outline the benefits of using the combined online and Concurrent 
learning approach.  
 

II. Neural Network Based Adaptive Control 
To facilitate further discussion, a brief overview of a baseline approximate dynamic inversion based adaptive 

control system is given here. The reader is referred to [ref: 5-11] for further details.  

A. Approximate Model Inversion based Adaptive Control 
Consider a system of the form: 

1                                                                             ),,( δxxfx =     (1) 

Where  nxx ℜ∈δ,, . We introduce a pseudo control input  ν  which represents a desired  x  and is expected to 
be approximately achieved by the actuating signal δ , in the following manner: 

2  ν=x     (2) 

Where, 
3            ),,( δν xxf=  (3) 

In a model inversion scheme the actual control input δ  is found by inverting Eq.(3). However since the function  
),,( δxxf  is usually not exactly known or hard to invert, an approximation is introduced as: 

4           ),,(ˆ δν xxf= . (4) 

Based on the approximation above the actuator command is determined by an approximate dynamic inversion of 
the form 

5           ),,(ˆ 1 νδ xxfcmd
−= . (5) 

This results in a modeling error in the system dynamics, 
6     ),,( δν xxx Δ+=  (6) 

Where, 

7    ),,(ˆ),,(),,( δδδ xxfxxfxx −=Δ   (7) 

The approximation, f̂ is chosen such that an inverse with respect to δ  exists. Figure 1 depicts a more specific 
form of an approximate dynamic inversion-based Neural Network adaptive controller including actuator and PCH 
compensation. 

 
Based on approximation in Eq.(4), the actuator command is determined by an approximate dynamic inversion of the 
form 

8   ),,(ˆ 1 δδ xxfcmd
−=  (8) 
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Where ν  is termed the ‘pseudo-control’, and represents a desired x  that is expected to be approximately 
achieved by δ cmd. This dynamic inversion assumes perfect actuator dynamics and hence does not take into account 
effects such as actuator saturation, or rate limitation. As a result the actual command may not equal the achieved 
command due to the characteristics of the actuator (which may further vary with time). Incorporating the actuator 
dynamics in the actual nonlinear inversion presents other difficulties arising due to various discontinuous actuator 
characteristics, such as actuator saturation, discrete (quantized) control, rate limitation, time delays, and unmodelled 
dynamics. The Neural Network element will attempt to adapt to these characteristics even when it might not be 
desirable to do so. Pseudo Control Hedging (PCH)7,8 is one method that can handle this problem. This method 
prevents the adaptive elements of the adaptive control system from trying to adapt to a class of unwanted plant input 
characteristics. 

 
Figure 1 Neural Network Adaptive Control using Approximate Model Inversion and PCH compensation 
 

   
The pseudo-control hedge signal (νh ) is defined as the difference between the commanded pseudo-control input 

and the actually achieved pseudo-control input. This difference is computed by using an estimated actuator position 
based on a model or measurement. This estimate is then used to get the pseudo-control hedge as the difference 
between commanded pseudo-control and the estimated actual pseudo-control. 

9    ννδδν ˆ)ˆ,,(ˆ),,(ˆ −=−= xxfxxf cmdh   (9) 

Figure 1 illustrates the manner in which pseudo control hedging can be achieved for a position and rate limited 
actuator. The PCH signal is introduced as an addition input into the reference model, forcing it to ‘move back’. 
Hence the reference model dynamics with PCH become: 

10  hccrmrmcrmrm xxxxx νν −= ),,,(    (10) 

rmrm xx ,

Reference Model 1ˆ −f
Nonlinear  
Actuator 
Dynamics 

f  

 
Adaptation Law 

 
PD compensator 

f̂  

δ

pdν  

adν−  
Neural Network 

rme  xx,δcmdδ  crmν ν

hν  
δδ =ˆ

+
cx
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Where cc xx ,   represent external commands. The instantaneous pseudo-control output of the reference model in 

the feed-forward path is not changed by the use of PCH and is  crmν . 

11   ),,,( ccrmrmrmcrm xxxxf=ν   (11) 

In the PCH framework, the reference model can be thought of as a command filter. Specifically, the reference 
model ensures that all acceleration commands are sufficiently smooth so that the NN does not adapt to undesirable 
dynamics.  

B. Model Tracking Error Dynamics 
The total pseudo-control signal for the system is now constructed by the three components: 

12   adpdcrm νννν −+=   (12) 

Where crmν is the pseudo-control signal generated by the reference model in Eq. (11), pdν  is the output of a 

linear compensator, and adν  is the Neural Network adaptation signal. The linear compensator ( pdν ) can be 
designed using standard linear control design techniques which render the closed loop system stable, these include 
P-D(Proportional-Derivative) compensation or LQR (Linear Quadratic Regulator) compensation. For the second 
order system PD compensation is expressed by 

13    eKK dppd ][=ν   (13) 

Where the reference model tracking error is defined as: 

14   ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
xx
xx

e
rm

rm
    (14) 

The model tracking error dynamics are found by differentiating e: 

15    [ ]),,(ˆ),,(),,( δδδν xxfxxfxxBAee ad +−+=    (15) 

Where, 

16   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

=
I

B
KK
I

A
dp

0
,

0
    (16) 

Where both Kp and Kd are real positive matrices.  With the above form, A is Hurwitz. When one assumes that the 
plant inputs δ  are exactly known then the error dynamics can be represented as: 

17   

[ ]

),,(ˆ),,(),,(

,
),,(),,(

δδδ

δδν

xxfxxfxx

where
xxxxBAee ad

−=Δ

Δ−+=
  (17) 

Is regarded as the model error to be approximated and cancelled by adν , the output of the Neural Network. We 
define the signal r as: 

18   13×ℜ∈= nT PBer     (18) 

Where  nnP 22 ×ℜ∈  is the positive definite solution to the Lyapunov equation: 

19   0=++ QPAPAT     (19) 
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C. Neural Network Based Adaptation 
Single Hidden Layer (SHL) Perceptron NNs are universal approximators20. They can approximate any smooth 

nonlinear function to within arbitrary accuracy given sufficient number of hidden layer neurons and input 
information (Universal Approximation Theorem)4,10. The input output map of the SHL NN can be expressed in 
compact matrix form as: 

20   13)(),,( ×ℜ∈= nTT
ad xVWxVW σν   (20) 

Where the following definitions are used: 
 

21   1)1(2

1

1

.
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22    2
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23   ( ) 21 1
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24    ( )

3
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W
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⎢ ⎥
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…
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Where,  x   is the input vector,  σ is the Sigmoidal activation function vector, V is an input layer to hidden layer 
weight matrix, W is a hidden layer to output layer weight matrix, and adν  is the NN output.  0≥vb  and 0≥wb   

are input biases that allow the thresholds Vθ  and Wθ   to be included in the weight matrix V and W. n1,  n2, and n3 
represent the number of input, hidden, and output layer nodes respectively. 

Input to hidden layer neuron is: 
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25    1

2

1

2×ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

== n

n

T

z

z

xVz    (25) 

The sigmoidal activation function used is: 

26   
jj zajj e

z −+
=

1
1)(σ     (26) 

Details on Neural Network theory can be found in reference [2,10,11,20,26]. 
 

III. Description of the Concurrent Learning Training Law 
SHL Neural Networks are considered to be excellent function approximators20,21, that is, they can approximate 

any smooth nonlinear function within a compact set to arbitrary accuracy given enough number of hidden layer 
neurons and proper inputs. In the presented control setting a recursive adaptive law based NN function as the 
adaptive element. That is, the model uncertainties are parameterized using the NN and an adaptive law is designed 
which uses the available information in order to adapt to the unknown model dynamics. This allows the controller to 
compensate for the model uncertainties resulting in better performance. Various authors, including Johnson7, 
Kannan22, Kim23 have analyzed the stability properties of using SHL NN for model error parameterization in 
approximate model inversion based adaptive flight control scheme as presented in section II. Notably, it has been 
shown that by choosing the appropriate values for the NN training rate parameters, the model tracking error and the 
NN weights (W,V) are uniformly ultimately bounded1,5,6,7,9,22,23. 

 
A SHL NN has the simple form given by equation 20. The reason for the choice of SHL NN follows from the 

desirable Universal Approximation Property of these NN. The Universal Approximation Property10,20,21 of SHL NN 
ensures that given an 0ε > , then for all x D∈ , where D is a compact set, there exist an 2n  and an ideal set of 
weights (W*,V*) that brings the output of the NN to within an ε  neighborhood of the function approximation error. 
With the largest such ε  given by, 

27  * *sup ( ) ( )
T T

x D
W V x xε σ

∈
= − Δ  (27) 

The weights (W*,V*) may be viewed as the ideal or optimal values for (W,V), in the sense that they minimize ε on 
D. The universal approximation property does not guarantee the uniqueness of these values, nor does it indicate a 
method by which these values could be attained, it merely states that if the NN input x  is chosen to represent the 
functional dependencies of the model error (.)Δ ,  then  by choosing n2, ε  may be made arbitrarily small. 

 
Hence, the NN adaptive element should be able to form an arbitrarily accurate map relating the input space to the 

model error of equation 7, leading asymptotically reducing bounds on the error dynamics of equation 17. 
Furthermore, the Universal Approximation Property indicates that a single SHL NN should be sufficient to form an 
arbitrarily accurate parameterization of the complete input space to the output space given sufficient number of 
neurons. Where the complete input space should be considered as the feasible regions of the state space that the 
system may traverse, and the complete output space should be considered as the expected domain of the modeling 
error. In a practical sense, the Universal Approximation Property should thus lead to a global parameterization of the 
model error limited only by the input space that has been used for the training purpose. However, for reasons 
mentioned in the introduction, current NN training laws only achieve a local parameterization of the model error. 

 
In reference 1 we proposed a novel NN training law which allows long term learning and semi-global adaptation 

in the NN. We term Neural Networks equipped with this law as Concurrent learning NN. The unique contribution of 
the Concurrent learning law is its ability to use stored data and instantaneous data concurrently for NN adaptation. In 
this way, the Concurrent learning law overcomes the limitations of other NN training laws that are designed for 
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improving NN model error parameterization. Particularly, the Concurrent learning law is not susceptible to sluggish 
adaptation performance because of its reliance on past data as NN training laws equipped with a forgetting factor31 
are. This property of the Concurrent learning law is enforced by exploiting the separable nature of the underlying 
subspaces using orthogonal projection operators. Furthermore, as in reference 29, the Concurrent learning law does 
not require a pre-adapted bank of NN for improving global model error parameterization properties. Instead, it seeks 
to exploit the Universal Approximation Property by searching the parameter space for the ideal NN weights  , . 
Finally, the Concurrent learning law overcomes the rank-one limitation 1,2 which allows the learning law to search 
for the ideal NN weights in the complete parameter space. 

 
The underlying concept in the Concurrent learning law is to train the NN using stored data and current data 

concurrently by exploiting the seperablity24 of the underlying subspace in order to improve global learning behavior 
of the NN and guarantee long term adaptation. In the architecture implemented in this paper, this is achieved by 
using current data as well as a stored (background) ‘history stack’12 which simulates long term memory. Both data 
are used concurrently in the adaptation process. Suppose P data points are stored in the history stack, then it is 
proposed that the total Concurrent learning be found by simply summing the individual contributions of the stored 
(background) data point adaptation and then by projecting the total contribution into the nullspace of the current 
learning. Since the learning on stored (background) data takes place in the nullspace of the learning based on 
instantaneous data, it does not affect the weight update based on the instantaneous data. That is, the weight update 
based on background data is restricted to the subspace orthogonal to the linear combinations of the weight update 
based on instantaneous data (i.e. the nullspace). Furthermore, since the weight update based on the instantaneous 
data is always at most rank-11,2,7,12, Concurrent Learning can occur in an n-1 dimensional subspace, where n is the 
dimension of the appropriate weight matrix. In this way, the separability of the underlying subspace can be 
exploited. Particularly, stored data can be used for concurrent adaptation without sacrificing performance of the 
adaptive law to adapt to new data points. The complete Concurrent learning law is simply a linear combination of 
the background learning law and the current learning law. 

 

A. Choice of the Concurrent learning law 
 

In reference 1 we proved using Lyapunov Stability Analysis that Concurrent learning NN when used in a MRAC 
framework guarantee the uniform ultimate boundedenss of all system signals. The training law that was derived is 
given as follows: 

28  
1

( ) ( )
i

p
T T T T

w c i i i c w
i

W V x r W V x rσ σ σ σ
=

′ ′= − − Γ − − Γ∑  (28) 

29  
1

( ) ( )
i

p
T T T T T T

V c V i c i
i

V xr W V x V x r W V xσ σ
=

′ ′= −Γ − Γ∑  (29) 

 Where the background learning NN training signal is given by Δ x , δ  for every stored data point i, 

, , , ,T
W Vx rσ Γ Γ  are as defined in section II. The orthogonal projection matrices ,    are dependent on the 

form of the NN training law. For the training law given in equation 28 and 29, the following projection matrices1 
can be used: 
 

30  
T

c TW I σσ
σ σ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

, (30) 

31  
T

V V
c T

V V

xxV I
x x

⎛ ⎞Γ Γ
= −⎜ ⎟Γ Γ⎝ ⎠

. (31) 

B. General form of the Concurrent learning law 
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The Concurrent learning law can also be expressed in a more general form as follows: 
 

32  , ,   , ,   ∑ , , , ,    ,   (32) 

33   , , , ,   ∑ , , , ,    .   (33) 

 
Where  represents the learning parameters of the NN such as Γ , , Γ , while ,    are orthogonal 

projection operators24 defined as follows: 
 

34   , (34) 

35  . (35) 

 
 Where  the + sign indicates the Moore Penrose pseudo inverse and I denotes an identity matrix of the appropriate 
dimension. In its more general form of equation 32, and equation 33, the Concurrent learning methodology allows 
any form of NN training laws to be used concurrently for adaptation. The orthogonality of the subspaces spanned by 
the range of the current and the background learning law is guaranteed24,32 by the projection operators ,    of 
equation 34, and 35. This allows flexibility in choosing NN training algorithms that will be used to train on the 
background data. Since the choice of the projection matrices ensure that background learning does not affect the 
current learning, it is possible to use any proven NN training methods for training in the background. The 
augmentation of current adaptive law with proven offline NN training methods is currently an active area in our 
research. 

C. Selection of data points for Concurrent learning 
Selection of NN inputs for Concurrent learning is not a trivial problem, since these inputs impact the global 

learning properties of the concurrent learning approach. Detailed discussion on some methods of selecting data 
points can be found in [12], we suffice here by mentioning that we select data points that satisfy the following 
criterion: 
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Here the subscript p denotes the index of the last data point stored. The above method ascertains that only those 
data points are selected that are sufficiently different from the last data point stored. Once the data points  are 
selected, the model error (Δ) of equation 7 needs to be estimated. The benefit of using Concurrent learning becomes 
clear in this context. Since Concurrent learning does not affect the performance of the primary learning law, it is 
possible to process the data point further to extract information about the model error dynamics. We achieve this 
by using an online implementation of optimal fixed point smoothing16. In the given framework of adaptive control 
the model error iΔ   for the ith data point is  

37   ),,(ˆ),,(),,( iiiiiiiiiii xxfxxfxx δδδ −=Δ     (37) 

Using equation 5, the above can be expressed as: 
38  iiiiii xxx νδ −=Δ ),,( .    (38) 

Once a point is selected for storing, the fixed point smoothing algorithm is initiated until a sufficiently accurate 
estimate of ix is obtained. Using this estimate and stored values of iν an estimate of the model error for the ith  data 
point is obtained. This estimate of the model error allows us to directly use the difference between the NN estimate 
of the model error for the ith data point and the actual estimate of the model error for background training. In this 
way, the limitation on Lack of Direct Training Information mentioned in the introduction can be alleviated for 
Concurrent training. The residual signal that is used in the Concurrent learning adaptation is: 
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Figure 3 The Georgia Tech GTMax, in landing auto approach 

 
The GTMax uses an approximate model inversion adaptive controller characterized equivalently to the 

description in section II, a detailed description can be found in reference 5  and reference 22.  
 
We command four successive forward step inputs with arbitrary delay between any two successive steps. This 

type of input is used to mimic control tasks which involve commands that are repeated after an arbitrary time 
interval. Through these maneuvers, the UAS is expected to transition through forward flight and hover domain 
repeatedly. The performance of the inner loop controller is characterized by the errors in the three body angular rates 
(namely roll rate p, pitch rate q and yaw rate r). As the rotorcraft accelerates and decelerates in forward step inputs 
the body roll rate q dominates. Figure 4 shows the performance of the inner loop controller with only instantaneous 
adaptation in the NN. It is clearly seen that there is no considerable improvement in the roll rate error as the 
controller follows successive step inputs. 
 

The forgetting nature of the controller is further characterized by the evolution of NN weights in the W and V 
matrices of equation 20. Figure 5 and Figure 6 clearly show that the NN weights do not converge to a constant 
value, in fact as the rotorcraft performs the successive step maneuvers the NN weights oscillate accordingly, clearly 
characterizing the instantaneous (forgetting) nature of the adaptation. 

 
On the other hand, when concurrent learning NN learning law of equations 28 and 29 is used a clear 

improvement in performance is seen characterized by the reduction in pitch rate error after the first two step inputs. 
Figure 7 shows the performance of the Concurrent learning augmented controller. The long term adaptation nature 
of the Concurrent learning augmented adaptive controller is further characterized by the convergence of NN weights 
in the W and V matrices of equation 20. Figure 8 and Figure 9 show that when Concurrent learning is used along 
with instantaneous learning the NN weights do not exhibit periodic behavior and tend to converge to constant 
values. This indicates that the NN learns faster and retains the learning even when there is a lack of persistent 
excitation. This indicates that the concurrent learning controller will be able to perform better when performing a 
maneuver that it has previously performed, a clear indication of long term memory and semi-global learning. 
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Figure 4 Evolution of inner loop errors for 

successive forward step inputs without 
Concurrent adaptation 

 

 
Figure 5 Evolution of NN weights, V matrix, 
without Concurrent adaptation 

 
Figure 6 Evolution of NN weights, W matrix, 
without Concurrent adaptation 

 
Figure 7 evolution of inner loop error with 

Concurrent adaptation 
 
 

 
Figure 8  Evolution of NN weights, V matrix, with 

Concurrent adaptation 

 
Figure 9 Evolution of NN weights, W matrix, with 

Concurrent adaptation 
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V. Implementation of Concurrent learning in flight for a Rotary Wing UAV 
 
In this section we present some flight test results that characterize the benefits of using concurrent learning 

adaptive control. The flight tests presented here were executed on the Georgia Tech GTMAX rotorcraft UAV 
(Figure 3). We begin by presenting flight test results for a series of forward steps. This series of maneuvers serves to 
demonstrate explicitly the effect of Concurrent learning by showing improved weight convergence and reduction in 
the tracking error. We then present results from more complicated and aggressive maneuvers where it is highly 
desirable to have long term learning in order to improve performance. For this purpose we choose an aggressive 
trajectory tracking maneuver, in which the rotorcraft UAV tracks an elliptical trajectory with aggressive velocity and 
acceleration profile. The final maneuver chosen is an aggressive reversal of direction maneuver which first 
exchanges the kinetic energy of the rotorcraft for potential energy by climbing up. From the apex of its trajectory the 
rotorcraft falls back and reverses its direction of flight by continually aligning the heading with the local velocity 
vector.    

 

A. Repeated Forward Step Maneuvers 
 
The repeated forward step maneuvers are chosen in order to create a relatively simple situation in which the 

controller performs a repeated task. By using concurrent learning NN we expect to see improved performance 
through repeated maneuvers and a faster convergence of weights. Figure 10 shows the body frame states from 
recorded flight data for a chain of forward step inputs. Figure 11 shows the evolution of inner and outer loop errors. 
These results assert the stability (in the ultimate boundedness sense) of the concurrent learning approach. 

 

 
Figure 10 Body frame states 
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Figure 11 Evolution of inner and outer loop errors 

 
Figure 13 and Figure 15 show the evolution of NN weights as the rotorcraft performs repeated step maneuvers 

and the NN is trained using concurrent learning method of Theorem 2. The NN V weights (Figure 13) appear to go 
to constant values when concurrent learning adaptation is used, this can be contrasted with Figure 12 which shows 
the V weight adaptation for a similar maneuver without Concurrent learning. NN W weights for both cases remain 
bounded, however it is seen that with Concurrent learning adaptation the NN W weights seem to separate, this 
indicates alleviation of the rank-1 condition. The flight test results indicate a modest but noticeable improvement in 
the error profile. In Figure 10 we see that the UAV tends not to have a smaller component of lateral velocity through 
each successive step. This is also seen in Figure 11  where we note that the error in v (body y axis velocity) reduces 
through successive steps.  These effects in combination indicate that the concurrent learning system is able to 
improve performance over the baseline controller through repeated maneuvers, indicating long term learning.  These 
results are of particular interest, since the maneuvers performed were conservative, and the baseline adaptive MRAC 
controller had already been extensively tuned.  

B. Aggressive Trajectory Tracking Maneuver 
 
Forward step maneuvers serve as a great test pattern due to their decoupled nature; however in the real world the 

UAV is expected to perform more complex maneuvers.  In order to demonstrate the benefits of using the concurrent 
learning NN we present flight test results for trajectory tracking maneuver in which the UAV repeatedly tracks an 
elliptical trajectory with aggressive velocity (50 ft/s) and acceleration (~20 ft/s2) profile. Since these maneuvers 
involve state commands in more than one system state it is harder to visually inspect the data and see whether an 
improvement in performance is seen. In this paper we address this issue by using the Euclidian norm of the error 
signal at each time step as a rudimentary metric. Further research needs to be undertaken in determining a suitable 
metric for this task.  

Figure 16 shows the recorded inner and outer loop states as the rotorcraft repeatedly tracks an oval trajectory 
pattern. In this flight, the first two ovals (until t = 5415 s) are tracked with a commanded acceleration of 30ft/sec2, 
while the rest of the ovals are tracked at 20ft/sec2. In the following we treat both these parts of the flight test 
separately. 
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Figure 12 Evolution NN weights V matrix without 
concurrent learning 

Figure 13 Evolution NN weights V matrix with 
concurrent learning 

Figure 14 Evolution of NN weights W matrix without 
concurrent learning 

Figure 15 Evolution NN weights W matrix with 
concurrent learning 

 
1. Part 1: Aggressive trajectory tracking with saturation in the collective channel 

 
Due to the aggressive acceleration profile of 30ft/s2 the rotorcraft collective channels were observed to saturate 

while performing high velocity turns. This leads to an interesting challenge for the adaptive controller. Figure 17 
shows the evolution of the tracking error. It can be clearly seen that the tracking error in the u channel reduces in the 
second pass through the ellipse indicating long term learning by the concurrent learning adaptive control system. 
This result is further characterized by the noticeable reduction in the norm of the tracking error at every time step as 
shown in Figure 18. 
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Figure 16 Recorded inner and outer loop states for repeated oval maneuvers 

 
Figure 17 Tracking error profile for aggressive trajectory tracking with saturation in the collective channel 

5250 5300 5350 5400 5450 5500 5550 5600
-1
0
1

Body frame states

p

5250 5300 5350 5400 5450 5500 5550 5600
-1
0
1

q

5250 5300 5350 5400 5450 5500 5550 5600
-1
0
1

r

5250 5300 5350 5400 5450 5500 5550 5600
-100

0
100

u

5250 5300 5350 5400 5450 5500 5550 5600
-20

0
20

v

5250 5300 5350 5400 5450 5500 5550 5600
-20

0
20

w

time

5280 5300 5320 5340 5360 5380 5400 5420 5440
-0.5

0

0.5
Evolution of inner loop and outer loop errors

E
rro

r i
n 

p 
ra

d/
s

5280 5300 5320 5340 5360 5380 5400 5420 5440
-0.5

0

0.5

E
rro

r i
n 

q 
ra

d/
s

5280 5300 5320 5340 5360 5380 5400 5420 5440
-0.5

0

0.5

E
rro

r i
n 

r r
ad

/s

5280 5300 5320 5340 5360 5380 5400 5420 5440

-20

0

20

E
rro

r i
n 

u 
ft/

s

5280 5300 5320 5340 5360 5380 5400 5420 5440

-20

0

20

E
rro

r i
n 

v 
ft/

s

5280 5300 5320 5340 5360 5380 5400 5420 5440

-20

0

20

E
rro

r i
n 

w
 ft

/s

Time seconds



 
American Institute of Aeronautics and Astronautics 

 

18

 
Figure 18 Plot of the norm of the error at each time step for aggressive trajectory tracking with collective 
saturation 

 
 
2. Part 2: Aggressive trajectory tracking maneuver 

 
In this part of the maneuver the acceleration profile was reduced to 20ft/sec2. At this acceleration profile, no 

saturation in the collective input was noted. Figure 19 shows the evolution of tracking error, and Figure 21 shows 
the plot of the norm of the tracking error at each time step. 

 
Figure 19 Evolution of tracking error for aggressive trajectory tracking maneuver 
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Figure 20 evolution of the norm of the tracking error 
vector without concurrent learning adaptation 

 

Figure 21 Evolution of the norm of the tracking 
error with concurrent learning 

 
 

 
3. Aggressive trajectory maneuvers with only online learning NN 

In order to illustrate the benefit of the concurrent learning adaptive controller we present flight test results as the 
rotorcraft tracks the same trajectory command as in Part 2: Aggressive trajectory tracking maneuver, but with only 
online learning in the NN. 

 
It is instructive to compare Figure 22, and Figure 24 which show the evolution of the NN weights with only 

online learning with Figure 23, and Figure 25 which show evolution of the NN weights with concurrent learning. 
Although absolute convergence of weights is not seen, it is interesting to see that when concurrent learning is used, 
the weights tend to be less oscillatory than when only online learning is on. Also, with concurrent learning, the 
weights do not tend to go to zero as the rotorcraft hovers between two successive tracking maneuver. Figure 20 
shows the plot of the tracking error norm as a function of time. Comparing this figure with Figure 21 it can be 
clearly seen that the norm of the error vector is much higher when only online learning is used. This indicates that 
the concurrent adaptive controller has improved trajectory tracking performance than. 

 

C. Aggressive Reversal of Direction Maneuver 
 
The final maneuver chosen is an aggressive reversal of direction maneuver which initially attempts to exchange 

kinetic energy of the rotorcraft for potential energy by climbing up. From the apex of its trajectory the rotorcraft 
falls back and reverses its direction of flight by continually aligning the heading with the local velocity vector. 
Figure 28 shows the recorded inner and outerloop states as the rotorcraft performs repeated aggressive reversal of 
direction maneuvers. The aggressiveness of this maneuver is clearly indicated by the large angular rates that the 
rotorcraft achieves. Figure 29 shows the evolution of the tracking error as the rotorcraft performs the aggressive 
direction reversal maneuver with concurrent learning adaptive controller. It can be seen that the concurrent control 
results in the ultimate boundedness of all error signals. Furthermore, when comparing Figure 27 and Figure 26 
which show the norm of the error vector as a function of time when the same maneuver is performed (twice in 
Figure 27), it can be seen that the peaks of the norm of the error when concurrent learning is used are smaller in 
magnitude than when only online learning is used. Also, in Figure 27 we can see that the profile of the metric 
marginally improves the second time the UAV performs the maneuver. 
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Figure 22 Evolution of NN V matrix weights without 
concurrent learning adaptation 

Figure 23 Evolution of the NN V matrix weights as 
the UAV tracks aggressive trajectory with 

concurrent learning adaptation 

Figure 24 Evolution of NN W matrix weights without 
concurrent learning adaptation 

 

Figure 25 Evolution of the NN W matrix weights as 
the UAV tracks aggressive trajectory with 

concurrent learning adaptation. 

 
Figure 26 Evolution of the norm of the tracking 

error vector without concurrent learning 
 

 
Figure 27 Evolution of the norm of the tracking error 

vector with concurrent learning 
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Figure 28 Recorded inner and outer loop states for repeated aggressive reversal of direction maneuvers 

 
 

 
Figure 29 Inner and outerloop tracking error profile 

 
Figure 32 shows the evolution of the NN V matrix weights with concurrent learning adaptation for this maneuver, 
while Figure 31 shows the evolution of the NN V matrix weights without concurrent learning. It can be seen that 
with concurrent learning, the weights are less susceptible to evolve in groups. Figure 34 shows the evolution of the 
NN W matrix weights with concurrent learning, while Figure 33  shows the evolution of the NN matrix weights 
without concurrent learning. Apart from a slight tendency to not cluster, no visible improvement is seen. This is 
consistent with the modest improvement seen in the error profile.  
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Figure 31 Evolution of NN V matrix weights without 
Concurrent learning adaptation 

Figure 32 Evolution of NN V matrix weights with 
Concurrent learning adaptation 

Figure 33 Evolution of NN W matrix weights without 
Concurrent learning adaptation 

Figure 34 Evolution of NN W matrix weights with 
Concurrent learning adaptation 

 
Figure 35 NED velocity tracking error evolution with concurrent learning 
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VII. Conclusion 
In this paper we presented flight test results for a long term learning adaptive control algorithm implemented on 

a rotarcraft UAV. Flight test results for the implementation of the algorithm on a fixed wing UAV will be presented 
at the time of the conference. The learning law for the adaptive element (NN) that was used in these flight tests has 
desirable stability properties1. Furthermore, the learning law simulates long term memory by using a history stack of 
data for concurrent adaptation. The learning law is able to adapt to current as well as past data concurrently, 
furthermore, the learning law exploits the separability of the underlying subspaces to ensure that the updates based 
on the stored data do not affect the weight updates based on the current data. In this way, the law is able to 
incorporate long term learning into the adaptive system without sacrificing the responsiveness of the adaptive 
controller to instantaneous data.  

 
In the Introduction (section I) we mentioned some of the limitations of the current recursive NN training laws 

that hinder the adaptive laws from forming a global parameterization of the model error. Here we note how 
Concurrent Learning alleviates these limitations: 

 
- Concurrent Learning allows the use of direct training information: As mentioned in section C, it is 

possible to present the Concurrent learning NN training law with the direct training information (
Δ . The availability of the direct information can be used to improve the performance of the NN training 
algorithm. 

- Concurrent Learning allows the concurrent use of both past and recent data: The use of both past and 
recent data can be used to simulate long term memory in the NN. Furthermore, the form of Concurrent 
learning law as presented in equation 32, and 33 ensures that the use of past data does not affect the weight 
update based on recent data. The framework of Concurrent learning allows the use of past data for 
adaptation without sacrificing the responsiveness of the adaptation to current data. This ability can be 
exploited to use proven fixed point iteration schemes for adaptation in the Concurrent.  

- Concurrent Learning  alleviates the rank-1 condition1,2: By using orthogonal projection operators as 
defined in equation 34,35 the Concurrent learning NN increases the rank of the training law. In this way, the 
training law is able to search in more than one direction in the parameter space for the ideal weights.    

 
A significant contribution of this paper was to present flight test results with Long Term Learning Adaptive 

Controllers employing Concurrent Learning implemented on a rotorcraft UAV. To the author’s knowledge, this is 
the first time comprehensive flight test results have been presented when the adaptive control uses both the current 
and the past data concurrently for adaptation.  The flight test results adhere to the conclusion of theorem 2 of 
reference 1 that all states remain uniformly ultimately bounded when using Concurrent learning adaptation. 
Furthermore, expected improvement in tracking performance and weight convergence properties over an approach 
that only uses current data was noted. 
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