
ANALYSIS OF THE ERRORS CAUSED BY THE

FRAGMENTATION OF THE ANDROID ECOSYSTEM:

AN EMPIRICAL STUDY

A Thesis

Presented to

The Academic Faculty

by

Martin A. Prammer

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science in the

School of Computer Science

Georgia Institute of Technology

May 2019

ANALYSIS OF THE ERRORS CAUSED BY THE

FRAGMENTATION OF THE ANDROID ECOSYSTEM:

AN EMPIRICAL STUDY

Approved by:

Dr. Alessandro Orso, Advisor

School of Computer Science

Georgia Institute of Technology

Dr. Qirun Zhang

School of Computer Science

Georgia Institute of Technology

Date Approved: May 1, 2019

iii

ACKNOWLEDGEMENTS

 I wish to thank Professor Alessandro Orso. who oversaw all my undergraduate

research and without whom none of which would have been possible.

 I also wish to thank my graduate student advisor Mattia Fazzini (PhD candidate),

whom I worked under and with throughout my two years of undergraduate research.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS viii

CHAPTER

1 Abstract 1

2 Introduction 2

3 Motivating Example 4

4 Study 5

4.1 Test Executor 6

4.2 Results Parser 7

5 Study Results 9

6 Discussion 13

6.1 Results Analysis 13

6.2 Threats to Validity 14

7 Related Work 15

8 Conclusion 16

REFERENCES 17

 v

LIST OF TABLES

Page

Table I: Number of tests per CTS ViewTests version 9

Table II: Number of test failures per device 10

Table III: Number of failures per failing test 12

 vi

LIST OF FIGURES

Page

Figure 1: Workflow of the study 5

 vii

LIST OF SYMBOLS AND ABBREVIATIONS

ADB Android Debug Bridge

API Application Programming Interface

APK Android Package

AWS Amazon Web Services

CTS Compatibility Test Suite

1

CHAPTER 1

ABSTRACT

 Software testing and debugging has always been a pervasive problem for software

developers. Mobile applications are highly important to our lives and ensuring their

correctness is challenging problem. Android is a popular platform for both developers

and users as there are many kinds of devices that can run the operating system. However,

because of the highly fragmented nature of the Android ecosystem, it is a complex task to

verify that apps behave as expected. To provide more insight into this problem, we

performed a study to learn quantitative information about the problems caused by

fragmentation. We conducted our study by leveraging cloud-based testing services with

existing and suitably developed test suites. We implemented this study by utilizing the

Amazon Web Services Device Farm and Android Compatibility Test Suite to execute

these tests on a large scale. As a preliminary study, we have focused on a subset of the

Compatibility Test Suite test packages and have classified the discovered test failures.

We present the results of our study and the fragmentation issues discovered, which we

release to assist developers and device vendors in accounting for fragmentation

inconsistencies. In future work, we see this study acting as a foundation for continued

quantitative analysis on the fragmentation within the Android ecosystem.

 2

CHAPTER 2

INTRODUCTION

 We use mobile applications (or simply apps) for a variety of daily activities,

including tasks such as online shopping or news consumption. However, while

individuals may be using the same apps, they may be using different hardware or

operating system versions. These individual components may cause inconsistent behavior

through compatibility issues. These compatibility issues exist on a massive scale within

the Android platform. However, because of this scale, manually testing for these issues is

prohibitive [1].

 The Android Compatibility Test Suite (CTS) tests a wide variety of common

platform1 features by testing the Android API [2]. This is accomplished by evaluating the

behavior of the Android API implemented on a phone and verifying that it is compatible

with the API specification. Common software tests may verify that an Android API

method behaves correctly, such as properly throwing an error when given an invalid

input. Likewise, hardware tests may explore possible differences between claimed and

demonstrated phone features, like testing camera resolution. As a whole, the test suite

provides a quantitative analysis of how correct a device’s Android API implementation

is. Ensuring that the Android API behaves correctly on a device helps developers ensure

that their apps behave correctly.

 By running tests from the Android CTS, we can characterize inconsistencies on

an Android platform. To address the prohibitive nature of manually testing for these

issues, we leverage a cloud-based testing service to access each individual Android

platform. We utilized the Amazon Web Services (AWS) Device Farm, which has become

1 A platform is the combination of hardware and operating system used to run an app.

 3

a useful tool for developers interested in testing their applications on physical devices [3].

The usage of the AWS Device Farm allows for the execution of tests on real devices

without purchasing a physical device by renting temporary device access.

 We utilize the AWS Device Farm and the Android CTS to conduct our study,

enabling us to collect CTS results from a large set of Android platforms.

This thesis makes the following contributions:

1. We contribute our study and produced results, from running an Android CTS test

package on the AWS Device Farm.

2. We make our infrastructure to replicate the study publicly available.

 4

CHAPTER 3

MOTIVATING EXAMPLE

 In this chapter, we identify the motivating example for our study.

 A bug reported to a developer might not be caused by a mobile application, but

instead an issue within the Android platform a specific user operates. For example, there

may be a bug in the operating system of a user device [4]. When Samsung provided an

update for their Android 4.2.2 phones, the “appcompat” library was not properly

upgraded. This caused the affected devices to produce errors and crash apps when these

apps utilized the affected part of the support library. Included in the affected components

was the support Action Bar, a widely used GUI element. This caused large amounts of

confusion for developers, as their apps were now crashing due to errors in their

dependencies. This error was fixed when the device vendors applied the next appcompat

library update. However, affected devices still exist, as not all users will update their

phones. Due to the nature of this bug, it is near impossible for developers to test their

devices for this crash without either already knowing about this crash or being able to

leverage large scale testing platforms with multiple firmware revisions of selected

devices.

 With this motivation, our technique uses the Android CTS to test for possible

fragmentation errors between each tested device and the Android API.

 5

CHAPTER 4

STUDY

 In this chapter, we describe the design and implementation of our study.

 To examine issues of fragmentation, we conducted a study using the AWS Device

Farm to run Android CTS tests. The outputs from every run are aggregated to produce

our results. We examine these results to identify fragment inconsistencies for each

device. We used the CTS “ViewTests” package, because of the previously discussed

appcompat issue in mind. We find using this test package compelling as the functionality

to display content to the screen is a widespread feature of mobile applications.

Figure 1. Workflow of the study

 To facilitate our study, we implemented two individual modules: The Test

Executor and The Results Parser. The Test Executor prepares the required materials to

run an Android CTS test on the AWS Device Farm, schedules the test to be run, and then

 6

downloads the results as they are completed. The Results Parser uses these results to

build the generated test report.

4.1 Test Executor

 The Test Executor prepares the test environment for the Device Farm. This

includes a “stub application” and “test application”, which together act as a mobile app

that can run tests. The stub application is like a standard mobile application. The test

application contains a set of Instrumented JUnit 4 test cases, which are run on the stub

application [5], [6]. The stub and test application APK(s) are uploaded using the AWS

Command Line Interface tool as part of the environment setup process. In addition, we

provide a “custom environment” with each of the scheduled tests, that facilitates the

following purposes:

1. Our custom environment collects the device and AWS Device Farm profile

information, including a “fingerprint” that contains hardware and operating

system version and revision information. We collect this information to identify

the state of the specific fragments on the device.

2. Our custom environment ensures the proper installation of the stub and test

applications. We do this to verify that all permissions requested by the tests are

explicitly granted.

3. The environment configures the device to match CTS requirements, such as

setting the system clock to 12-hour representation.

4. The environment specifies additional logging outputs, including saving a copy of

the Android Instrumentation file for later parsing.

 The environment specifies the behavior of the machine hosting the tests, where

the test host executes the required commands using the ADB. The uploaded resources are

installed onto candidate devices by scheduling each test run, which instructs the test host

to begin the tests. Once the tests are completed, the results are downloaded when signaled

 7

and made available by the Device Farm. All raw artifacts produced by both the tests and

environments are downloaded once the tests are reported as completed by the Device

Farm.

 Each scheduled test run is repeated three times to ensure the validity of the

results.

4.2 Results Parser

 The Results Parser takes in the artifacts generated by the Test Executor and builds

a general test report from the test executor’s run. One of the files produced as part of the

results is the Instrumentation file, which details the results of every test. Using these

results, we classify each test with the following labels:

• “Passed”: A test successfully ran to completion.

• “Failed”: A test did not successfully run to completion due to a deliberately

thrown exception in the test, such as a variable having an incorrect value.

• “Errored”: A test did not successfully run to completion due to an unexpected

exception in the test, such as not being able to connect to a service that is assumed

to be working. This immediately halts the test instrumentation, causing all

successive tests to be “Skipped.”

• “Skipped”: A test was not run as a previously run test “Errored.”

 The collected results showcase compatibilities between devices, test versions, and

API features, where tests that pass a specific CTS test are compliant with the Android

API specification for the tested feature. To accompany each test result, the profile

information is aggregated into both a device and test host profile, making execution

specific information such as device firmware revisions available as part of the test report.

All of this generated information is then aggregated into the singular test failures report,

providing a high-level view of the device and platform compatibility for the tested feature

sets between versions and any errors or inconsistencies present.

 8

 Each of the unified test results per device, test, and run are then aggregated to

form a final report. We use the following logic to classify our results:

• If a test has at least one “passed” result, it is classified as “passed.” This is

because some tests are not consistent in their results, where a passing test may fail

at times.

• A “skipped” result is interpreted as a “cannot determine” result, as we cannot

determine if the test would have failed for this run.

• If a test is either “errored” or “failed” on all test runs, it is classified as either

“errored” or “failed” respectively. A test cannot be classified as “errored” or

“failed” if it has at least one “passed” or “cannot determine” result.

• If a test has both “errored” and “failed” results, it is counted as “errored” to

preserve the validity of reported failures.

 9

CHAPTER 5

STUDY RESULTS

 In this chapter, we report the results for the Android CTS executions on the AWS

Device Farm from our study.

 The study was evaluated using the CTS “ViewTests” test package. We present

the number of individual tests in each version of this test package as Table I.

Table I. Number of tests per CTS ViewTests version

CTS ViewTests Version Test Count

4.1 626

4.2 633

4.3 631

4.4 635

5.0 636

5.1 642

6.0 681

7.0 728

7.1 744

8.0 901

9 969

 We ran the ViewTests test package on 123 Android devices. In total, we detected

224 failing tests across 72 unique devices. Of these failing tests, there were 26 unique

tests that failed. We present this data as Table I and Table II. For both tables, results with

a count of 0 are omitted.

 10

Table II. Number of test failures per device

Device (product: model) Device Version Test Failure Count

H8416: H8416 9 8

dreamqltesq: SM-G950U 7 5

elsa_att_us: LG-H910 7 5

elsa_tmo_us: LG-H918 7 5

athene: Moto G (4) 7 5

noblelteuc: SAMSUNG-SM-N920A 7 5

gtaxlwifixx: SM-T580 7 5

marlin: Pixel XL 7.1.2 5

ocnwhl_00617: HTC U11 7.1.1 5

TB-8504F: Lenovo TB-8504F 7.1.1 5

greatqlteue: SM-N950U1 7.1.1 5

zeroltexx: SM-G925F 7 4

sailfish: Pixel 7.1.2 4

dreamqlteue: SM-G950U1 8.0.0 4

H8266: H8266 8.0.0 4

walleye: Pixel 2 8.0.0 4

taimen: Pixel 2 XL 8.0.0 4

marlin: Pixel XL 8.0.0 4

starqlteue: SM-G960U1 8.0.0 4

gts3lwifixx: SM-T820 8.0.0 4

G8342: G8342 8.0.0 4

judyln_lao_com: LM-G710 8.0.0 4

j7toplteue: SM-J737U 8.0.0 4

star2qlteue: SM-G965U1 8.0.0 4

blueline: Pixel 3 9 4

crosshatch: Pixel 3 XL 9 4

beyond1qlteue: SM-G973U1 9 4

beyond0qlteue: SM-G970U1 9 4

cingular_us: HTC One_M8 4.4.2 4

Y2_Pro: Aqua Y2 Pro 4.4.2 4

dreamqlteue: SM-G950U1 7 3

elsa_vzw: VS995 7 3

dream2qltesq: SM-G955U 7 3

serranoltevzw: SCH-I435 4.4.2 3

klteattactive: SAMSUNG-SM-G870A 4.4.2 3

hlteuc: SAMSUNG-SM-N900A 4.4.2 3

klteuc: SAMSUNG-SM-G900A 4.4.2 3

 11

hammerhead: Nexus 5 4.4.2 3

d2vzw: SCH-I535 4.4.2 3

thor: KFTHWI 4.4.3 3

g3_att_us: LG-D850 4.4.2 3

t0ltevzw: SCH-I605 4.4.2 3

zerofltetmo: SM-G920T 7 2

e7lte_att_us: LG-V410 4.4.2 2

g3_vzw: VS985 4G 4.4.2 2

jfltevzw: SCH-I545 4.4.2 2

degaswifiue: SM-T230NU 4.4.2 2

wiko: RAINBOW 4G 4.4.2 2

razorg: Nexus 7 4.4.4 2

jflteuc: SAMSUNG-SGH-I337 4.4.2 2

g3_tmo_us: LG-D851 4.4.2 2

serranoltexx: GT-I9195 4.4.2 2

kltetmo: SM-G900T 4.4.2 2

occam: Nexus 4 4.4.4 2

w5_mpcs_us: LGMS323 4.4.2 2

jfltetmo: SGH-M919 4.4.4 2

obake_verizon: XT1080 4.4.4 2

peregrine_att: XT1045 4.4.4 2

e7ltezs: SM-E7000 4.4.4 2

fortuna3gxx: SM-G530H 4.4.4 2

vivalto5mve3gdd: SM-G316HU 4.4.4 2

kltevzw: SM-G900V 4.4.4 2

j1pop3gjv: SM-J110H 4.4.4 2

trlteuc: SAMSUNG-SM-N910A 4.4.4 2

trltevzw: SM-N910V 4.4.4 2

D6603: D6603 4.4.4 2

jflteuc: SAMSUNG-SGH-I337 5.0.1 1

jfltevzw: SCH-I545 5.0.1 1

hammerhead: Nexus 5 6 1

klteuc: SAMSUNG-SM-G900A 6.0.1 1

heroltexx: SM-G930F 6.0.1 1

d2vzw: SCH-I535 4.3 1

 Devices are identified by their “product”, “model”, and “version” strings, as

retrieved by the ADB as part of the “Device Properties” file. Device versions are reported

 12

separately from device product and model information for clarity. “Test Failure Count”

indicates the number of consistent, unique test failures across all test runs.

Table III. Number of failures per failing test

Failing Test Count

android.view.cts.ViewTest.testGetLocalVisibleRect 34

android.view.cts.ViewTest.testMeasure 34

android.view.cts.SurfaceViewSyncTests.testEmptySurfaceView 16

android.view.cts.SurfaceViewSyncTests.testSmallRect 16

android.view.cts.SurfaceViewSyncTest.testEmptySurfaceView 16

android.view.cts.SurfaceViewSyncTest.testSmallRect 16

android.view.cts.SurfaceViewSyncTest.testSurfaceViewBigScale 16

android.view.cts.SurfaceViewSyncTest.testSurfaceViewSmallScale 16

android.view.cts.SurfaceViewSyncTests.testSurfaceViewBigScale 12

android.view.cts.SurfaceViewSyncTests.testSurfaceViewSmallScale 10

android.view.cts.ViewTest.testFilterTouchesWhenObscured 10

android.view.cts.SurfaceViewSyncTests.testVideoSurfaceViewRotated 5

android.view.cts.DisplayRefreshRateTest.testRefreshRate 4

android.view.cts.SearchEventTest.testTest 4

android.view.cts.SurfaceViewSyncTests.testVideoSurfaceViewCornerCoverage 3

android.view.cts.SurfaceViewSyncTests.testVideoSurfaceViewTranslate 2

android.view.cts.MotionEventTest.testReadFromParcelWithInvalidSampleSize 1

android.view.cts.View_UsingViewsTest.testSetupListeners 1

android.view.cts.TextureViewTest.testFirstFrames 1

android.view.inputmethod.cts.InputMethodManagerTest.testInputMethodManager 1

android.view.cts.SurfaceViewSyncTest.testVideoSurfaceViewCornerCoverage 1

android.view.cts.SurfaceViewSyncTest.testVideoSurfaceViewTranslate 1

android.view.cts.SurfaceViewSyncTest.testVideoSurfaceViewRotated 1

android.view.cts.SurfaceViewSyncTest.testVideoSurfaceViewEdgeCoverage 1

android.view.inputmethod.cts.InputMethodInfoTest.testInputMethodSubtypesOfSystemImes 1

android.view.inputmethod.cts.InputConnectionWrapperTest.testInputConnectionWrapper 1

 “Count” indicates the occurrences of a specific test failing across all devices.

 13

CHAPTER 6

DISCUSSION

 In this chapter, we discuss the results of our study. We then evaluate possible

threats to the validity of our study and the results.

6.1 Results Analysis

 In this section, we discuss the results of our study, and emphasize the results we

found particularly important.

 The test results identified multiple possible fragmentation inconsistencies, which

warrant future manual inspection. We detail our generated report as we see this

information beneficial to both developers and platform vendors in accounting for and

acting on these inconsistencies. We emphasize two kinds of results:

1. If a test is only failed by a small number of devices, it presents a unique challenge

for developers to identify and debug the associated Android API component if a

fragmentation issue arises, as only a small number of users will present with this

issue.

2. If a device only fails a small number of tests, it presents an equally unique

challenge for developers, as an otherwise highly compliant device may only have

one or two unique fragment inconsistencies.

 Due to their nature, these results warrant more extensive manual investigation into

both the causes and impacts of these fragment inconsistencies.

 14

6.2 Threats to Validity

 In this section, we discuss the possible threats to the validity of our study, and the

decision making regarding each.

 Test errors are not counted as test failures. This behavior was deliberately chosen

as some test errors were due to the test environment and not the device itself.

Specifically, Android 9 devices had regular crashes due to being unable to connect to the

Camera Service. While some tests might have been real failures, if they caused the test

instrumentation to exit early and skip tests, the test is always classified as an error to

assist in preventing the overreporting of test failures.

 In each test run, many tests may be skipped due to the test instrumentation exiting

early. This occurs because of the test instrumentation crashing during the test and causing

the test package to exit early. Because individual test classes may not run in the same

order between test runs, the number of skipped tests in a single run will vary between test

runs. To prevent overclaiming test failures, we exclude tests that have at least one

skipped result. This behavior assists in preventing the overreporting of test failures.

 15

CHAPTER 7

RELATED WORK

 In this chapter, we identify related work to our study and identify where our

contribution is relevant.

 The fragmentation of the Android ecosystem has been a focus of study in

literature for several years [7], [4]. Han and colleagues [7] are among the first to study the

issues caused by fragmentation. They systematically analyze bug reports related to two

popular device vendors by utilizing the top bug reports over time and propose a method

for tracking fragmentation. Wei and colleagues [4] propose a technique to identify

compatibility issues. One of these issues was used as our motivating example.

 Previous studies on the fragmentation and its impact on developers have been

conducted as well [8], [9]. Joorabchi and colleagues [8] studied the challenges faced by

mobile developers and highlight areas of possible improvement. The lack of information

for developers regarding individual platforms is a challenging problem. Our work helps

developers by providing a concrete dataset of inconsistencies across many devices. Wu

and colleagues [9] studied the impact of vendor customization on Android device

security. We believe this line of research is complementary; while we used a test package

to validate Android API correctness, utilizing a test package that explores device security

would be a broader application of a continuation of our study.

 16

CHAPTER 8

CONCLUSION

 In this thesis, we conducted a study to explore fragmentation inconsistencies in

the Android ecosystem. We implemented a system to run tests from the Android

Compatibility Suite on devices made available on the Amazon Web Services Device

Farm. In running the tests, we discovered 26 unique test failures across 72 unique

devices. The work in this thesis is an initial step in quantifying the fragmentation of the

Android ecosystem. The thesis can be expanded by future work in ways such as:

1. The results could be used to generate a taxonomy, detailing the widespread

fragment inconsistencies across the Android ecosystem. This would be useful as a

tool to assist developers and users in platform specific debugging. This would

also be an effective means of communicating widespread fragmentation issues to

device vendors.

2. The results could also be used to assist both developers and researchers in

creating techniques to account for fragmentation issues.

 17

REFERENCES

1 OpenSignal. Android Fragmentation Visualized. 2015. Website -

https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-

08/2015_08_fragmentation_report.pdf

2 Android Open Source Project. Compatability Test Suite. Website -

https://source.android.com/compatibility/cts

3 Amazon Web Services Device Farm. Website - https://aws.amazon.com/device-farm/

4 L. Wei, Y. Liu, and S.-C. Cheung, “Taming Android fragmentation:Characterizing

and detecting compatibility issues for Android apps,” in 2016 IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2016.

5 Android Open Source Project. Test your app - Instrumented tests. Website -

https://developer.android.com/studio/test

6 JUnit. JUnit 4. Website - https://junit.org/junit4/

7 D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Understanding

Android Fragmentation with Topic Analysis of Vendor-Specific Bugs,” in Proceedings

of the 2012 Working Conference on Reverse Engineering, 2012.

8 M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real Challenges in Mobile app

Development,” in 2013 ACM/IEEE International Symposiumon Empirical Software

Engineering and Measurement (ESEM), 2013.

9 L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor customizations

on android security,” in Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, 2013.

https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://source.android.com/compatibility/cts
https://aws.amazon.com/device-farm/
https://developer.android.com/studio/test
https://junit.org/junit4/

