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SUMMARY

This dissertation focuses on the development of efficient first-order methods for func-

tion constrained convex optimization and their applications in a few different areas, includ-

ing healthcare, finance and machine learning. The thesis consists of three major studies.

The first part of the thesis considers the problem of minimizing an expectation function

over a closed convex set, coupled with a functional or expectation constraint on either de-

cision variables or problem parameters. We first present a new stochastic approximation

(SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the con-

straint on devision variables. We show that this algorithm exhibits the optimalO(1/ε2) rate

of convergence, in terms of both optimality gap and constraint violation, when the objec-

tive and constraint functions are generally convex, where ε denotes the optimality gap and

infeasibility. Moreover, we show that this rate of convergence can be improved to O(1/ε)

if the objective and constraint functions are strongly convex. We then present a variant

of CSA, namely the cooperative stochastic parameter approximation (CSPA) algorithm, to

deal with the situation when the constraint is defined over problem parameters and show

that it exhibits similar optimal rate of convergence to CSA. It is worth noting that CSA

and CSPA are primal methods which do not require the iterations on the dual space and/or

the estimation on the size of the dual variables. To the best of our knowledge, this is the

first time that such optimal SA methods for solving functional or expectation constrained

stochastic optimization are presented in the literature. In addition, we apply the CSA and

CSPA methods to an asset allocation problem, and a combined classification and metric

learning problem, respectively.

The second part of the thesis is devoted to conditional gradient methods which have

attracted much attention in both machine learning and optimization communities recently.

These simple methods can guarantee the generation of sparse solutions. In addition, with-

out the computation of full gradients, they can handle huge-scale problems sometimes even

x



with an exponentially increasing number of decision variables. This study aims to signif-

icantly expand the application areas of these methods by presenting new conditional gra-

dient methods for solving convex optimization problems with general affine and nonlinear

constraints. More specifically, we first present a new constraint extrapolated condition gra-

dient (CoexCG) method that can achieve an O(1/ε2) iteration complexity for both smooth

and structured nonsmooth function constrained convex optimization. We further develop

novel variants of CoexCG, namely constraint extrapolated and dual regularized conditional

gradient (CoexDurCG) methods, that can achieve similar iteration complexity to CoexCG

but allow adaptive selection for algorithmic parameters. We illustrate the effectiveness of

these methods for solving an important class of radiation therapy treatment planning prob-

lems arising from healthcare industry.

In the third part of the thesis, we extend the convex function constrained optimization to

the multi-stage setting, i.e., multi-stage stochastic optimization problems with convex ob-

jectives and conic constraints at each stage. We present a new stochastic first-order method,

namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of

stochastic optimization problems. We show that DSA can achieve an optimal O(1/ε4) rate

of convergence in terms of the total number of required scenarios when applied to a three-

stage stochastic optimization problem. We further show that this rate of convergence can be

improved to O(1/ε2) when the objective function is strongly convex. We also discuss vari-

ants of DSA for solving more general multi-stage stochastic optimization problems with

the number of stages T > 3. The developed DSA algorithms only need to go through the

scenario tree once in order to compute an ε-solution of the multi-stage stochastic optimiza-

tion problem. As a result, the memory required by DSA only grows linearly with respect

to the number of stages. To the best of our knowledge, this is the first time that stochastic

approximation type methods are generalized for multi-stage stochastic optimization with

T ≥ 3. We apply the DSA method for solving a class of multi-stage asset allocation prob-

lem and demonstrate its potential advantages over existing methods, especially when the

xi



planning horizon T is relatively short but the number of assets is large.
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CHAPTER 1

INTRODUCTION

Much recent research effort have been devoted to the applications of the first-order methods

to problems in many areas such as operations research, finance, data analysis and machine

learning, etc. This dissertation aims to develop efficient first-order methods for function

constrained convex optimization and their applications in a few different areas.

The dissertation is driven by and concentrated on the following three different types of

problems.

1.1 Stochastic optimization with function or expectation constraints

For this type of problem, we study two related classes of stochastic programming with

function or expectation constraints.The first one is a classical SP problem with the function

constraint over the decision variables, formally defined as

min f(x) := E[F (x, ξ)]

s.t. g(x) ≤ 0,

x ∈ X,

(1.1)

where X ⊆ Rn is a convex compact set, ξ are random vectors supported on P ⊆ Rp,

F (x, ξ) : X × P 7→ R and g(x) : X 7→ R are closed convex functions w.r.t. x for a.e.

ξ ∈ P . Moreover, we assume that ξ are independent of x. Under these assumptions, (1.1)

is a convex optimization problem.

In particular, the constraint function g(x) in problem (1.1) can be given in the form of

expectation as

g(x) := Eξ[G(x, ξ)], (1.2)

1



where G(x, ξ) : X × P 7→ R are closed convex functions w.r.t. x for a.e. ξ ∈ P .

Such problems have many applications in operations research, finance and data analysis.

One motivating example is SP with the conditional value at risk (CVaR) constraint. In an

important work [1], Rockafellar and Uryasev shows that a class of asset allocation problem

can be modeled as
minx,τ −µTx

s.t. τ + 1
β
E{[−ξTx− τ ]+} ≤ 0,∑n

i=1 xi = 1, x ≥ 0,

(1.3)

where ξ denotes the random return with mean µ = E[ξ]. Expectation constraints also play

an important role in providing tight convex approximation to chance constrained problems

(e.g., Nemirovksi and Shapiro [2]). Some other important applications of (1.1) can be

found in semi-supervised learning (see, e.g., [3]). For example, one can use the objective

function to define the fidelity of the model for the labelled data, while using the constraint

to enforce some other properties of the model for the unlabelled data (e.g., proximity for

data with similar features).

While problem (1.1) covers a wide class of problems with constraints over the decision

variables, in practice we often encounter the situation where the constraint is defined over

the problem parameters. Under these circumstances our goal is to find a pair of parameters

x∗ and decision variables y∗(x∗) such that

y∗(x∗) ∈ Argminy∈Y {φ(x∗, y) := E[Φ(x∗, y, ζ)]} , (1.4)

x∗ ∈ {x ∈ X|g(x) := E[G(x, ξ)] ≤ 0} . (1.5)

Here Φ(x, y, ζ) is convex w.r.t. y for a.e. ζ ∈ Q ⊆ Rq but possibly nonconvex w.r.t.

(x, y) jointly, and g(·) is convex w.r.t. x. Moreover, we assume that ζ is independent

of x and y, while ζ is not necessarily independent of x∗. Note that (1.4)-(1.5) defines a

pair of optimization and feasibility problems coupled through the following ways: a) the

2



solution to (1.5) defines an admissible parameter of (1.4); b) ξ can be a random variable

with probability distribution parameterized by x∗.

Problem (1.4)-(1.5) also has many applications, especially in data analysis. One such

example is to learn a classifier w with a certain metric Ā using the support vector machine

model:

min
w

E[l(w; (Ā
1
2u, v))] + λ

2
‖w‖2, (1.6)

Ā ∈
{
A � 0|E[|Tr(A(ui − vj)(ui − vj)T )− bij|] ≤ 0,Tr(A) ≤ C

}
, (1.7)

where l(w; (θ, y)) = max{0, 1 − y〈w, θ〉} denotes the hinge loss function, u, ui, uj ∈ Rn,

v, vi, vj ∈ {+1,−1}, and bij ∈ R are the random variables satisfying certain probability

distributions, and λ,C > 0 are certain given parameters. In this problem, (1.6) is used to

learn the classifer w by using the metric Ā satisfying certain requirements in (1.7), includ-

ing the low rank (or nuclear norm) assumption. Problem (1.4)-(1.5) can also be used in

some data-driven applications, where one can use (1.5) to specify the parameters for the

probabilistic models associated with the random variable ξ, as well as some other applica-

tions for multi-objective stochastic optimization.

In spite of its wide applicability, the study on efficient solution methods for expectation

constrained optimization is still limited. For the sake of simplicity, suppose for now that ξ

is given as a deterministic vector and hence that the objective functions f and φ in (1.1) and

(1.4) are easily computable. One popular method to solve stochastic optimization problems

is called the sample average approximation (SAA) approach ([4, 5, 6]). To apply SAA for

(1.1) and (1.5), we first generate a random sample ξi, i = 1, . . . , N , for some N ≥ 1 and

then approximate g by g̃(x) = 1
N

∑N
i=1G(x, ξi). The main issues associated with the SAA

for solving (1.1) include: i) the deterministic SAA problem might not be feasible; ii) the

resulting deterministic SAA problem is often difficult to solve especially when N is large,

requiring going through the whole sample {ξ1, . . . , ξN} at each iteration; and ii) it is not

3



applicable to the on-line setting where one needs to update the decision variable whenever

a new piece of sample ξi, i = 1, . . . N , is collected.

A different approach to solve stochastic optimization problems is called stochastic

approximation (SA), which was initially proposed in a seminal paper by Robbins and

Monro[7] in 1951 for solving strongly convex SP problems. This algorithm mimics the

gradient descent method by using the stochastic gradient F ′(x, ξi) rather than the original

gradient f ′(x) for minimizing f(x) in (1.1) over a simple convex set X (see also [8, 9,

10, 11, 12, 13]). An important improvement of this algorithm was developed by Polyak

and Juditsky([14],[15]) through using longer steps and then averaging the obtained iter-

ates. Their method was shown to be more robust with respect to the choice of stepsize than

classic SA method for solving strongly convex SP problems. More recently, Nemirovski

et al. [16] presented a modified SA method, namely, the mirror descent SA method, and

demonstrated its superior numerical performance for solving a general class of nonsmooth

convex SP problems. The SA algorithms have been intensively studied over the past few

years (see, e.g., [17, 18, 19, 20, 21, 22, 23, 24]). It should be noted, however, that none of

these SA algorithms are applicable to expectation constrained problems, since each itera-

tion of these algorithms requires the projection over the feasible set {x ∈ X|g(x) ≤ 0},

which is computationally prohibitive as g is given in the form of expectation.

1.2 Huge-scale convex optimization with function constraints

For this type of problem, we focus on the development of conditional gradient type methods

for solving the convex optimization problem in following form:

min f(x)

s.t. g(x) := Ax− b = 0,

hi(x) ≤ 0, i = 1, . . . , d,

x ∈ X.

(1.8)

4



Here X ⊆ Rn is a compact convex set, f : X → R and hi : X → R, i = 1, . . . , d, are

proper lower semicontinuous convex functions, A : Rn → Rm denotes a linear mapping,

and b is a given vector in Rm. We assume that X is relatively simple in the sense that one

can minimize a linear function over X easily. Throughout this chapter we assume that an

optimal solution x∗ of problem (1.8) exists. For notational convenience, we often denote

h(x) ≡ (h1(x); . . . , hd(x)).

The conditional gradient method, initially developed by Frank and Wolfe in 1956 [25],

is one of the earliest first-order methods for convex optimization. It has been widely

used for solving problems with relatively simple convex sets, i.e., when the constraints

g(x) = 0 and hi(x) ≤ 0 do not appear in problem (1.8). Each iteration of this method

computes the gradient of f at the current search point xk, and then solves the subprob-

lem minx∈X〈∇f(xk), x〉 to update the solution. In comparison with most other first-order

methods, it does not require the projection over X , which in many cases could be compu-

tationally more expensive than to minimize a linear function over X (e.g.. when X is a

spectrahedron given by X := {X � 0 : Tr(X) = 1}). These simple methods can also

guarantee the generation of sparse solutions, e.g., when X is a simplex or spectrahedron.

In addition, without the computation of full gradients, they can handle huge-scale problems

sometimes even with an exponentially increasing number of decision variables.

Much recent research effort has been devoted to the complexity analysis of conditional

gradient methods over simple convex set X . It is well-known that if f is a smooth convex

function, then this algorithm can find an ε-solution (i.e., a point x̄ ∈ X s.t. f(x̄)− f ∗ ≤ ε)

in at most O(1/ε) iterations (see [26, 27, 28, 29, 30]). In fact, such a complexity result has

been established for the conditional gradient method under a stronger termination criterion

called Wolfe Gap, based on the first-order optimality condition [26, 27, 28, 29, 30]. As

shown in [26, 28, 31], this O(1/ε) iteration complexity bound is tight for smooth convex

optimization. In addition, if f is a nonsmooth function with a saddle point structure, one

can not achieve an iteration complexity better than O(1/ε2) [28], in terms of the number

5



of times to solve the linear optimization subproblem. One possible way to improve the

complexity bounds is to use the conditional gradient sliding methods developed in [32] to

reduce the number of gradient evaluations. Many other variants of conditional gradient

methods have also been proposed in the literature (see, e.g.,[33, 34, 35, 36, 29, 37, 30, 26,

27, 38, 39, 40, 41, 42, 43]) and Chapter 7 of [44] for an overview of these methods).

It should be noted, however, that none of existing conditional gradient methods can be

used to efficiently solve the more general function constrained convex optimization prob-

lem in (1.8). With these function constraints (g(x) = 0 and hi(x) ≤ 0), linear optimization

over the feasible region of problem (1.8) could become much more difficult. As an exam-

ple, if X is the aforementioned spectrahedron and h does not exist, the linear optimization

problem over the feasible region {x � 0 : g(x) = 0,Tr(X) = 1} becomes a general

semidefinite programming problem. Adding nonlinear function constraints hi(x) ≤ 0 usu-

ally makes the subproblem even harder. In fact, our study has been directly motivated by

a convex optimization problem with nonlinear function constraints arising from radiation

therapy treatment planing (see [45, 46, 47, 48, 49, 50, 51] and Section 4.5 for more details).

The objective function of this problem, representing the quality of the treatment plan, is

smooth and convex. Besides a simplex constraint, it consists of two types of nonlinear

function constraints, namely the group sparsity constraint to reduce radiation exposure for

the patients, and the risk averse constraints to avoid overdose (resp., underdose) to healthy

(resp., tumor) structures. This problem is highly challenging because the dimension of the

decision variables can increase exponentially with respect to the size of data, which pre-

vents the computation of full gradients as required by most existing optimization methods

dealing with function constraints.

1.3 Multi-stage stochastic optimization problem

Multi-stage stochastic optimization aims at optimal decision-making over multiple periods

of time, where the decision in the current period has to take into account what will happen

6



in the future. This type of decision-making is very important to a few applications areas,

including finance, logistics, robotics and clinic trials etc. In this chapter, we are interested

in solving a class of multi-stage stochastic optimization problems given by

minh1(x1, c1) + E|ξ1

[
minh2(x2, c2) + E|ξ[2]

[
. . .+ E|ξ[T−1]

[
min hT (xT , cT )

]]]
s.t. A1x1 − b1 ∈ K1 s.t. A2x2 − b2 −B2x1 ∈ K2, s.t. ATxT − bT −BTxT−1 ∈ KT ,

x1 ∈ X1, x2 ∈ X2, xT ∈ XT .

(1.9)

Here T denotes the number of stages, ht(·, ct) are relatively simple convex functions, Kt

are closed convex cones, X t ⊆ Rnt are compact convex sets for some nt > 0, ht : X t → R

are relatively simple convex functions, and At denote the linear mappings from Rnt to

Rmt for some mt > 0. Moreover, ξ1 := (A1, b1, c1) is a given deterministic vector, ξt :=

(At, bt, Bt, ct), t = 2, . . . , T , are the random vectors supported on Ξt at stage t. Throughout

this chapter, we use ξ[t] := (ξ1, . . . , ξt) to denote the stochastic process up to time period

t, and E|ξ[t](·) ≡ E[·|ξ[t]] denote the expectation conditional on ξ[t]. It is worth noting that

ξ[1] = ξ1 and that E|ξ1 [·] ≡ E|ξ[1] [·] = E[·] since ξ1 is deterministic. By defining value

functions, we can write problem (1.9) equivalently as

min h1(x1, c1) + v2(x1, ξ[1])

s.t. A1x1 − b1 ∈ K1,

x1 ∈ X1,

(1.10)

where the value factions vt are recursively defined by

vt(xt−1, ξ[t−1]) := E[V t(xt−1, ξ[t])|ξ[t−1]], t = 2, . . . , T − 1,

V t(xt−1, ξ[t]) := min ht(xt, ct) + vt+1(xt, ξ[t])

s.t. Atxt − bt −Btxt−1 ∈ Kt,

xt ∈ X t,

(1.11)
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and
vT (xT−1, ξ[T−1]) := E[V T (xT−1, ξ[T ])|ξ[T−1]],

V T (xT−1, ξ[T ]) := min hT (xT , cT )

s.t. ATxT − bT −BTxT−1 ∈ KT ,

xT ∈ XT .

(1.12)

In particular, if ht are affine, Kt = {0} and X t are polyhedral, then problem (1.9)

reduces to the well-known multi-stage stochastic linear programming problem (see, e.g.,

[52, 53]). The incorporation of the nonlinear (but convex) objective function ht(xt, ct) and

conic constraints Atxt − bt − Btxt−1 ∈ Kt allows us to model a much wider class of

problems. Moreover, if T = 2, then problem (1.9) is often referred to as a two-stage (or

static) stochastic programming problem.

In spite of its wide applicability, multi-stage stochastic optimization remains highly

challenging to solve. Many existing methods for multi-stage stochastic optimization are

based on sample average approximation (see Nemirovski and Shapiro [54] and Shapiro [55]).

In this approach, one first generates a deterministic counterpart of (1.9) by replacing the ex-

pectations with (conditional) sample averages. In particular, if the number of stages T = 3,

the total number of samples (a.k.a. scenarios) cannot be smaller than O(1/ε4) in gen-

eral. Once after a deterministic approximation of (1.9) is generated, one can then develop

decomposition methods to solve it to certain accuracy. The most popular decomposition

methods consist of stage-based and scenario-based decomposition method. One widely-

used stage-based method is the stochastic dual dynamic programming (SDDP) algorithm,

which is essentially an approximate cutting plane method, first presented by Pereira and

Pinto [56] and later studied by Shapiro [57], Philpott et. al. [58], Donohue and Birge [59],

Hindsberger [60], and Kozmı́k and Morton [61] etc. This method has been shown to be

effective for solving multi-stage stochastic optimization problems with a large number of

stages, but a small number of decision variables. The progressive hedging algorithm by

Rockafellar and Wets [62] is a well-known scenario-based decomposition method, which
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basically applies an augmented Lagrangian method to penalize the violation of the non-

anticipativity constraints. Other interesting bundle type decomposition methods have also

been developed (see, e.g., [63]). These methods assume that the scenario tree has been

generated and will go through the scenario tree many times. Usually there are no perfor-

mance guarantees provided regarding their rate of convergence, i.e., the number of times

one needs to go through the scenario tree. In SDDP, one also needs to assume that random

vectors are stage-wise independent.

Recently, a different approach called stochastic approximation (SA) has attracted much

attention for solving static stochastic optimization problems given in the form of

min
x∈X
{f(x) := Eξ[F (x, ξ)]} , (1.13)

where X is a closed convex set, ξ denotes the random vecctor and F (·, ξ) is a closed con-

vex function. Observe that when T = 2, problem (1.9) can be cast in the form of (1.13)

and hence one can apply the aforementioned SA methods to solve these two-stage stochas-

tic optimization problems (see [64, 65]). The basic SA algorithm, initially proposed by

Robbins and Monro [7], mimics the simple projected gradient descent method by replacing

exact gradient with its unbiased estimator. Important improvements for the SA methods

have been made by Nemirovski and Yudin [66] and later by Polayk and Juditsky [14, 15].

During the past few years, significant progress has been made in SA methods (e.g., [64,

17, 18, 19, 67, 68, 69, 70, 71, 72]). In particular, Nemirovski et. al. [64] presented a

properly modified SA approach, namely, mirror descent SA for solving general nonsmooth

convex SP problems. Lan [17] introduced an accelerated SA method, based on Nesterov’s

accelerated gradient method [73], for solving smooth, nonsmooth and stochastic optimiza-

tion in a uniform manner. Novel nonconvex SA methods and their accelerated versions

have been studied in [67, 69, 74, 71]. Some interesting progresses have also been made

in [70, 72] for solving more complicated compositional stochastic optimization problems.
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All these SA algorithms only need to access one single ξk at each iteration, and hence do

not require much memory. It has been shown in [64, 65] that SA methods can significantly

outperform the SAA approach for solving static (or two-stage) stochastic programming

problems. However, it remains unclear whether these SA methods can be generalized for

multi-stage stochastic optimization problems with T ≥ 3.
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CHAPTER 2

ALGORITHMS FOR STOCHASTIC OPTIMIZATION WITH FUNCTION OR

EXPECTATION CONSTRAINTS

2.1 Introduction

In this chapter, we intend to develop efficient solution methods for solving expectation con-

strained problems by properly addressing the aforementioned issues associated with exist-

ing SA methods. Our contribution mainly exists in the following several aspects. Firstly,

inspired by Polayk’s subgradient method for constrained optimization [75] and Nesterov’s

note [76], we present a new SA algorithm, namely the cooperative SA (CSA) method

for solving the SP problem with expectation constraint in (1.1) with constraint (1.2). At

the k-th iteration, CSA performs a projected subgradient step along either F ′(xk, ξk) or

G′(xk, ξk) over the set X , depending on whether an unbiased estimator Ĝk of g(xk) satis-

fies Ĝk ≤ ηk or not. Observe that the aforementioned estimator Ĝk can be easily computed

in many cases by using the structure of the problem, e.g., the linear dependence ξTx in

(1.3) (see Section 4.1 in [65] and Section 2.1 for more details). We introduce an index set

B := {1 ≤ k ≤ N : Ĝk ≤ ηk} in order to compute the output solution as a weighted

average of the iterates in B. By carefully bounding |B|, we show that the number of itera-

tions performed by the CSA algorithm to find an ε-solution of (1.1), i.e., a point x̄ ∈ X s.t.

E[f(x̄) − f ∗] ≤ ε and E[g(x̄)] ≤ ε, can be bounded by O(1/ε2). Moreover, when both f

and g are strongly convex, by using a different set of algorithmic parameters we show that

the complexity of the CSA method can be significantly improved to O(1/ε). It it is worth

mentioning that this result is new even for solving deterministic strongly convex problems

with function constraints. We also established the large-deviation properties for the CSA

method under certain light-tail assumptions.
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Secondly, we develop a variant of CSA, namely the cooperative stochastic parameter

approximation (CSPA) method for solving the SP problem with expectation constraints on

problem parameters in (1.4)-(1.5). In CSPA, we update parameter x by running the mirror

descend SA iterates whenever a certain easily verifiable condition is violated. Otherwise,

we update the decision variable y while keeping x intact. We show that the number of

iterations performed by the CSPA algorithm to find an ε-solution of (1.4)-(1.5), i.e., a pair

of solution (x̄, ȳ) s.t. E[g(x̄)] ≤ ε and E[φ(x̄, ȳ) − φ(x̄, y∗(x̄)] ≤ ε, can be bounded by

O(1/ε2). Moreover, this bound can be significantly improved to O(1/ε) if G and Φ are

strongly convex w.r.t. x and y, respectively.

To the best of our knowledge, all the aforementioned algorithmic developments are

new in the stochastic optimization literature. It is also worth mentioning a few alternative

or related methods to solve (1.1) and (1.4)-(1.5). First, without efficient methods to directly

solve (1.1), current practice resorts to reformulate it as minx∈X λf(x) + (1 − λ)g(x) for

some λ ∈ (0, 1). However, one then has to face the difficulty of properly specifying λ, since

an optimal selection would depend on the unknown dual multiplier. As a consequence, we

cannot assess the quality of the solutions obtained by solving this reformulated problem.

Second, one alternative approach to solve (1.1) is the penalty-based or primal-dual ap-

proach. However these methods would require either the estimation of the optimal dual

variables or iterations performed on the dual space (see [77], [16] and [78]). Moreover, the

rate of convergence of these methods for function constrained problems has not been well-

understood other than conic constraints even for the deterministic setting. Third, in [79]

(and see references therein), Jiang and Shanbhag developed a coupled SA method to solve

a stochastic optimization problem with parameters given by another optimization problem,

and hence is not applicable to problem (1.4)-(1.5). Moreover, each iteration of their method

requires two stochastic subgradient projection steps and hence is more expensive than that

of CSPA.

The remaining part of this paper is organized as follows. In Section 2, we present the
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CSA algorithm and establish its convergence properties under general convexity and strong

convexity assumptions. Then in Section 3, we develop a variant of the CSA algorithm,

namely the CSPA for solving SP problems with the expectation constraint over problem

parameters and discuss its convergence properties. We then present some numerical results

for these new SA methods in section 4. Finally some concluding remarks are added in

Section 5.

2.2 function or expectation constraints over decision variables

In this section we present the cooperative SA (CSA) algorithm for solving convex stochas-

tic optimization problems with the constraint over decision variables. More specifically, we

first briefly review the distance generating function and prox-mapping in Subsection 2.2.1.

We then describe the CSA algorithm in Subsection 2.2.2 and discuss its convergence prop-

erties in terms of expectation and large deviation for solving general convex problems in

Subsection 2.2.3. Then we show how to apply the CSA algorithm to problem (1.1) with ex-

pectation constraint and discuss its large deviation properties in Subsection 2.2.4. Finally,

we show how to improve the convergence of this algorithm by imposing strong convexity

assumptions to problem (1.1) in Subsection 2.2.5.

2.2.1 Preliminary: prox-mapping

Recall that a function ωX : X 7→ R is a distance generating function with parameter α,

if ωX is continuously differentiable and strongly convex with parameter α with respect to

‖ · ‖. Without loss of generality, we assume throughout this paper that α = 1, because we

can always rescale ωX(x) to ω̄X(x) = ωX(x)/α. Therefore, we have

〈x− z,∇ωX(x)−∇ωX(z)〉 ≥ ‖x− z‖2,∀x, z ∈ X.
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The prox-function associated with ω is given by

VX(z, x) = ωX(x)− ωX(z)− 〈∇ωX(z), x− z〉.

VX(·, ·) is also called the Bregman’s distance, which was initially studied by Bregman [80]

and later by many others (see [81],[82] and [83]). In this paper we assume the prox-function

VX(x, z) is chosen such that, for a given x ∈ X , the prox-mapping Px,X : Rn 7→ Rn defined

as

Px,X(·) := argminz∈X{〈·, z〉+ VX(x, z)} (2.1)

is easily computed.

It can be seen from the strong convexity of ω(·, ·) that

VX(x, z) ≥ 1
2
‖x− z‖2,∀x, z ∈ X. (2.2)

Whenever the set X is bounded, the distance generating function ωX also gives rise to the

diameter of X that will be used frequently in our convergence analysis:

DX ≡ DX,ωX :=
√

max
x,z∈X

VX(x, z). (2.3)

The following lemma follows from the optimality condition of (2.1) and the definition

of the prox-function (see the proof in [16]).

Lemma 1 For every u, x ∈ X , and y ∈ Rn, we have

VX(Px,X(y), u) ≤ VX(x, u) + yT (u− x) + 1
2
‖y‖2

∗,

where the ‖ · ‖∗ denotes the conjugate of ‖ · ‖, i.e., ‖y‖∗ = max{〈x, y〉|‖x‖ ≤ 1}.
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2.2.2 The CSA method

In this section, we present a generic algorithmic framework for solving the constrained

optimization problem in (1.1). We assume the expectation function f(x) and constraint

g(x), in addition to being well-defined and finite-valued for every x ∈ X , are continuous

and convex on X .

The CSA method can be viewed as a stochastic counterpart of Polayk’s subgradient

method, which was originally designed for solving deterministic nonsmooth convex opti-

mization problems (see [75] and a more recent generalization in [84]). At each iterate xk,

k ≥ 0, depending on whether g(xk) ≤ ηk for some tolerance ηk > 0, it moves either along

the subgradient direction f ′(xk) or g′(xk), with an appropriately chosen stepsize γk which

also depends on ‖f ′(xk)‖∗ and ‖g′(xk)‖∗. However, Polayk’s subgradient method cannot

be applied to solve (1.1) because we do not have access to exact information about f ′, g′

and g. The CSA method differs from Polyak’s subgradient method in the following three

aspects. Firstly, the search direction hk is defined in a stochastic manner: we first check if

the solution xk we computed at iteration k violates the condition Ĝk ≤ ηk for some ηk ≥ 0.

If so, we set the hk = G′(xk, ξk) for a random realization ξk of ξ (Note that for deterministic

constraint in (1.1), hk = g′(xk)) in order to control the violation of expectation constraint.

Otherwise, we set hk = F ′(xk, ξk). Secondly, for some 1 ≤ s ≤ N , we partition the indices

I = {s, ..., N} into two subsets: B = {s ≤ k ≤ N |Ĝk ≤ ηk} and N = I \ B, and define

the output x̄N,s as an ergodic mean of xk over B. This differs from the Polyak’s subgradient

method that defines the output solution as the best xk, k ∈ B, with the smallest objective

value. Thirdly, while the original Polayk’s subgradient method were developed only for

general nonsmooth problems, we show that the CSA method also exhibits an optimal rate

of convergence for solving strongly convex problems by properly choosing {γk} and {ηk}.

Notice that every iteration of CSA requires an unbiased estimator of g(xk). Suppose

there is no uncertainty associated with the constraint in (1.1), we can evaluate g(xk) exactly.
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Algorithm 1 The cooperative SA algorithm
Input: initial point x1 ∈ X , stepsizes {γk} and tolerances {ηk}.
for k = 1, 2, . . . , N
Let Ĝk be an unbiased estimator of g(xk). Set

hk =

{
F ′(xk, ξk), if Ĝk ≤ ηk;
G′(xk, ξk), otherwise.

(2.4)

xk+1 =Pxk,X(γkhk). (2.5)

end for
Output: Set B = {s ≤ k ≤ N |Ĝk ≤ ηk} for some 1 ≤ s ≤ N , and define the output

x̄N,s = (
∑

k∈B γk)
−1(
∑

k∈B γkxk), (2.6)

If g is given in the form of expectation, one natural way is to generate a J-sized i.i.d. random

sample of ξ and then evaluate the constraint function value by Ĝk = 1
J

∑J
j=1G(xk, ξj).

However, this basic scheme can be much improved by using some structural information for

constraint evaluation. For instance, one ubiquitous structure existing in machine learning

and portfolio optimization applications is the linear combination of ξTx. For a given x ∈

X , we can define a new random variable ξ̄ = ξTx and generate samples of ξ̄ instead of

ξ. ξ̄ is only of dimension one and it is computationally much cheaper to simulate. Given

the distribution of ξ, below we provide a few examples where the distribution of ξ̄ can be

explicitly computed or approximated. For instance, if x ∈ Rd, ξi are independent normal

N(µi, σi), then ξ̄ follows N(
∑d

i=1 µi, [
∑d

i=1 x
2
iσ

2
i ]

1/2). If ξi follows independent exp(λi),

then the probability density function of ξ̄ is

fξ̄(y) = (
d∏
i=1

λ̂i)
∑d

j=1
e−λ̂j y∏d

k 6=j,k=1(λ̂kλ̂j)
,

where λ̂i = λi/xi. If ξi follows independent Uniform(a, b), then the cumulative distribution
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function of ξ̄ is

Fξ̄(y) = 1

d!
∏d
i=1 xi
{(y−a

∑d
i=1 xi

b−a

+

)d +
∑d

v=1(−1)v
∑d

j1=1

∑d
j2=j1+1 . . .∑d

jv=jv−1+1{[
y−a
∑d

i=1 xi
b−a − (xj1 + xj2 + . . .+ xjv)]

+}}.

If the ξi are dependent normal random variables with mean µ and covarianceC (by Cholesky

decomposition, C = LL′), we can estimate
∑

i=1 ξixi by
∑d

i=1 µixi + r̄[
∑d

i=1(LTx)2
i ]

1/2,

where r̄ followsN(0, 1). In fact, when the dimension d is large enough, by central limit the-

orem, we can use a normal distribution to approximate the new random variable ξ̄. These

are a few examples showing that to simulate ξ̄ can be much faster than to simulate the

original random variables for constraint evaluation.

2.2.3 Convergence of CSA for SP with function constraints

In this subsection, we consider the case when the constraint function g is deterministic

(i.e., Ĝk = g′(xk)). Our goal is to establish the rate of convergence associated with CSA,

in terms of both the distance to the optimal value and the violation of constraints. It should

also be noted that Algorithm 1 is conceptional only as we have not specified a few algo-

rithmic parameters (e.g. {γk} and {ηk}). We will come back to this issue after establishing

some general properties about this method. Throughout this subsection, we make the fol-

lowing assumptions.

Assumption 1 For any x ∈ X , a.e. ξ ∈ P ,

E[‖F ′(x, ξ)‖2
∗] ≤M2

F and ‖g′(x)‖2
∗ ≤M2

G,

where F ′(x, ξ) ∈ ∂xF (x, ξ) and g′(x) ∈ ∂xg(x).

The following result establishes a simple but important recursion about the CSA method
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for problem (1.1).

Proposition 2 For any 1 ≤ s ≤ N , we have

∑
k∈N γk(ηk − g(x)) +

∑
k∈B γk〈F ′(xk, ξk), xk − x〉

≤ V (xs, x) + 1
2

∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗ + 1
2

∑
k∈N γ

2
k‖g′(xk)‖2

∗,

(2.7)

for all x ∈ X .

Proof. For any s ≤ k ≤ N , using Lemma 1, we have

V (xk+1, x) ≤ V (xk, x) + γk〈hk, x− xk〉+ 1
2
γ2
k‖hk‖2

∗. (2.8)

Observe that if k ∈ B, we have hk = F ′(xk, ξk), and

〈hk, xk − x〉 = 〈F ′(xk, ξk), xk − x〉.

Moreover, if k ∈ N , we have hk = g′(xk) and

〈hk, xk − x〉 = 〈g′(xk), xk − x〉 ≥ g(xk)− g(x) ≥ ηk − g(x).

Summing up the inequalities in (2.8) from k = s to N and using the previous two observa-

tions, we obtain

V (xk+1, x) ≤ V (xs, x)−
∑N

k=s γk〈hk, xk − x〉+ 1
2

∑N
k=s γ

2
k‖hk‖2

∗

≤ V (xs, x)−
[∑

k∈N γk〈g′(xk), xk − x〉+
∑

k∈B γk〈F ′(xk, ξk), xk − x〉
]

+ 1
2

∑N
k=s γ

2
k‖hk‖2

∗

≤ V (xs, x)−
[∑

k∈N γk(ηk − g(x)) +
∑

k∈B γk〈F ′(xk, ξk), xk − x〉
]

+ 1
2

∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗ + 1
2

∑
k∈N γ

2
k‖g′(xk)‖2

∗.

(2.9)
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Rearranging the terms in above inequality, we obtain (2.7)

Using Proposition 2, we present below a sufficient condition under which the output

solution x̄N,s is well-defined.

Lemma 3 Let x∗ be an optimal solution of (1.1). If

N−s+1
2

min
k∈N

γkηk > D2
X + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G, (2.10)

then B 6= ∅, i.e., x̄N,s is well-defined. Moreover, we have one of the following two state-

ments holds,

a) |B| ≥ (N − s+ 1)/2,

b)
∑

k∈B γk〈f ′(xk), xk − x∗〉 ≤ 0.

Proof. Taking expectation w.r.t. ξk on both sides of (2.7) and fixing x = x∗, we have

∑
k∈N γk[ηk − g(x∗)] +

∑
k∈B γk〈f ′(xk), xk − x∗〉

≤ V (xs, x
∗) + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G

≤ D2
X + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G.

(2.11)

Suppose for contradiction that B = ∅. We then conclude from the above relation and the

fact g(x∗) ≤ 0 that

N min
k∈N

γkηk ≤
∑

k∈N γk[ηk − g(x∗)] ≤ D2
X + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G,

which contradicts with (2.10). Hence, we must have B 6= ∅.

Now if
∑

k∈B γk〈f ′(xk), xk−x∗〉 ≤ 0, part b) holds. Otherwise, if
∑

k∈B γk〈f ′(xk), xk−

x∗〉 ≥ 0, we have

∑
k∈N γk[ηk − g(x∗)] ≤ V (xs, x

∗) + 1
2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G,
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which, in view of g(x∗) ≤ 0, implies that

∑
k∈N γkηk ≤ V (xs, x

∗) + 1
2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G. (2.12)

Suppose that |B| < (N − s+ 1)/2, i.e., |N | ≥ (N − s+ 1)/2. Then,

∑
k∈N γkηk ≥

N−s+1
2

mink∈N γkηk > V (xs, x
∗) + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G,

which contradicts with (2.12). Hence, part a) holds.

Now we are ready to establish the main convergence properties of the CSA method.

Theorem 4 Suppose that {γk} and {ηk} in the CSA algorithm are chosen such that (2.10)

holds. Then for any 1 ≤ s ≤ N , we have

E[f(x̄N,s)− f(x∗)] ≤
2D2

X+M2
∑

s≤k≤N γ
2
k

(N−s+1) mins≤k≤N γk
, (2.13)

g(x̄N,s) ≤ (
∑

k∈B γk)
−1(
∑

k∈B γkηk), (2.14)

where M := max{MF ,MG}.

Proof. We first show (2.13). By Lemma 2, if Lemma 2 part (b) holds, dividing both

sides by
∑

k∈B γk and taking expectation, we have

E[f(x̄N,s)− f(x∗)] ≤ 0. (2.15)

If |B| ≥ (N − s+ 1)/2, we have
∑

k∈B γk ≥ |B|mink∈B γk ≥ N−s+1
2

mink∈B γk. It follows

from the definition of x̄N,s in (2.6), the convexity of f(·) and (2.11) that

∑
k∈N γkηk +

∑
k∈B γkE[f(x̄N,s)− f(x∗)] ≤

∑
k∈N γkηk +

∑
k∈B E[γk(f(xk)− f(x∗))]

≤ D2
X + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G,
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which implies that

|N |min
k∈N

γkηk +
(∑

k∈B γk
)
E[f(x̄N,s)− f(x∗)] ≤ D2

X + 1
2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G.

(2.16)

Using this bound and the fact γkηk ≥ 0 in (2.16), we have

E[f(x̄N,s)− f(x∗)] ≤ 2D2
X+
∑

k∈B γ
2
kM

2
F +

∑
k∈N γ

2
kM

2
G

(N−s+1) mink∈I γk
≤

2D2
X+M2

∑
s≤k≤N γ

2
k

(N−s+1) mink∈B γk
.

(2.17)

Combining these two inequalities (2.15) and (2.17), we have (2.13). Now we show that

(2.14) holds. For any k ∈ B, we have g(xk) ≤ ηk. Then, in view of the definition of x̄N,s

in (2.6) and the convexity of g(·), then implies that

g(x̄N,s) ≤
∑

k∈B γkg(xk)∑
k∈B γk

≤
∑

k∈B γkηk∑
k∈B γk

. (2.18)

Below we provide a few specific selections of {γk}, {ηk} and s that lead to the optimal

rate of convergence for the CSA method. In particular, we will present a constant and

variable stepsize policy, respectively, in Corollaries 5 and 6.

Corollary 5 If s=1,γk = DX√
N(MF+MG)

and ηk = 4(MF+MG)DX√
N

, k = 1, ...N , then

E[f(x̄N,s)− f(x∗)] ≤ 4DX(MF+MG)√
N

,

g(x̄N,s) ≤ 4DX(MF+MG)√
N

.
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Proof. First, observe that condition (2.10) holds by using the facts that

N−s+1
2

min
k∈N

γkηk = N
2

4D2
X

N
= 2D2

X ,

D2
X + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G

≤ D2
X + 1

2

∑
k∈B

D2
XM

2
F

N(MF+MG)2 + 1
2

∑
k∈N

D2
XM

2
G

N(MF+MG)2

≤ D2
X + 1

2

∑N
k=1

D2
X

N
≤ 2D2

X .

It then follows from Lemma 2 and Theorem 4 that

E[f(x̄N,s)− f(x∗)] ≤
2DX(MF+MG)+

∑
k∈B

DXM
2
F

N(MF+MG)
+
∑

k∈N
DXM

2
G

N(MF+MG)√
N

≤ 4DX(MF+MG)√
N

,

g(x̄N,s) ≤ max
s≤k≤N

ηk = 4DX(MF+MG)√
N

.

Corollary 6 If s = N
2

, γk = DX√
k(MF+MG)

and ηk = 4DX(MF+MG)√
k

, k = 1, 2, ..., N , then

E[f(x̄N,s)− f(x∗)] ≤ 4DX(1+
1
2

log 2)(MF+MG)
√
N

,

g(x̄N,s) ≤ 4
√

2DX(MF+MG)√
N

.

Proof. The proof is similar to that of corollary 4 and hence the details are skipped.

In view of Corollaries 5 and 6, the CSA algorithm achieves an O(1/
√
N) rate of con-

vergence for solving problem (1.1). This convergence rate seems to be unimprovable as it

matches the optimal rate of convergence for deterministic convex optimization problems

with function constraints [76]. However, to the best of our knowledge, no such complex-

ity bounds have been obtained before for solving stochastic optimization problems with

function constraints.

In the Corollary 5 and 6, we established the expected convergence properties over many

runs of the CSA algorithm. In the remaining part of this subsection, we are interested in
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the large deviation properties for a single run of this method.

First note that by Corollary 6 and the Markov’s inequality, we have

Prob
(
f(x̄N,s)− f(x∗) > λ1

4DX(1+
1
2

log 2)(MF+MG)
√
N

)
< 1

λ1
,∀λ1 ≥ 0.

It then follows that in order to find a solution x̄N,s ∈ X such that

Prob (f(x̄N,s)− f(x∗) ≤ ε) > 1− Λ,

the number of iteration performed by the CSA method can be bounded by

O
{

1
ε2Λ2

}
. (2.19)

We will show that this result can be significantly improved if Assumption A1 is augmented

by the following “light-tail” assumption, which is satisfied by a wide class of distributions

(e.g., Gaussian and t-distribution).

Assumption 2 For and x ∈ X ,

E[exp{‖F ′(x, ξ)‖2
∗/M

2
F}] ≤ exp{1}.

We first present the following Bernstein inequality that will be used to establish the

large-deviation properties of the CSA method (e.g. see [16]). Note that in the sequel, we

denote ξ[k] := {ξ1, . . . , ξk}.

Lemma 7 Let ξ1, ξ2, ... be a sequence of i.i.d. random variables, and ξt = ξ(ξ[t]) be deter-

ministic Borel functions of ξ[t] such that E[ξt] = 0 a.s. and E[exp{ξ2
t /σ

2
t }] ≤ exp{1} a.s.,

where σt > 0 are deterministic. Then

∀λ ≥ 0 : Prob
{∑N

t=1 ξt > λ
√∑N

t=1 σ
2
t

}
≤ exp{−λ2/3}.
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Now we are ready to establish the large deviation properties of the CSA algorithm.

Theorem 8 Under Assumption 2, ∀λ ≥ 0,

Prob{f(x̄N,s)− f(x∗) ≥ K0 + λK1} ≤ exp{−λ}+ exp{−λ2

3
}, (2.20)

where K0 =
1
2
D2
X+M2

F

∑
k∈B γ

2
k +M2

G

∑
k∈N γ

2
k∑

k∈B γk
and

K1 =
M2
F

∑
k∈B γ

2
k +M2

G

∑
k∈N γ

2
k + σ

√∑
k∈N γ

2
k +MFDX

√∑
k∈B γ

2
k∑

k∈B γk
.

Proof. Let F ′(xk, ξk) = f ′(xk) + ∆k. It follows from the inequality (2.7) (with x = x∗)

and the fact g(x∗) ≤ 0 that

∑
k∈N γkηk + (

∑
k∈B γk)(f(x̄N,s)− f(x∗)) ≤ D2

X +
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗

+
∑

k∈N γ
2
k‖g′(xk)‖2

∗ −
∑

k∈B γk〈∆k, xk − x∗〉. (2.21)

Now we provide probabilistic bounds for
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗ and
∑

k∈B γk〈∆k, xk−x∗〉.

First, setting θk = γ2
k/
∑

k∈B γ
2
k , using the fact that E[exp{‖F ′(xk, ξk)‖2

∗/M
2
F}] ≤ exp{1}

and Jensens inequality, we have

exp{
∑

k∈B θk(‖F ′(xk, ξk)‖2
∗/M

2
F )} ≤

∑
k∈B θk exp{‖F ′(xk, ξk)‖2

∗/M
2
F},

and hence that

E[exp{
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗/M
2
F

∑
k∈B γ

2
k}] ≤ exp{1}.
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It then follows from Markov’s inequality that ∀λ ≥ 0,

Prob(
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗ > (1 + λ)M2
F

∑
k∈B γ

2
k)

= Prob
(

exp

{∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗
M2
F

∑
k∈B γ

2
k

}
> exp(1 + λ)

)
≤ exp{1}

exp{1+λ} ≤ exp{−λ}.

(2.22)

Then, let us consider
∑

k∈B γk〈∆k, xk − x∗〉. Setting βk = γk〈∆k, xk − x∗〉 and noting

that E[‖∆k‖2
∗] ≤ (2MF )2, we have

E[exp{β2
k/(2MFγkDX)2}] ≤ exp{1},

which, in view of Lemma 7, implies that

Prob
{∑

k∈B βk > 2λMFDX

√∑
k∈B γ

2
k

}
≤ exp{−λ2/3}. (2.23)

Combining (2.22) and (2.23), and rearranging the terms we get (2.20).

Applying the stepsize strategy in Corollary 5 to Theorem 8, then it follows that the number

of iterations performed by the CSA method can be bounded by

O
{

1
ε2

(log 1
Λ

)2
}
.

We can see that the above result significantly improves the one in (2.19).

2.2.4 Convergence of CSA for SP with expectation constraints

In this subsection, we focus on the SP problem (1.1)-(1.2) with the expectation constraint.

We assume the expectation functions f(x) and g(x), in addition to being well-defined and

finite-valued for every x ∈ X , are continuous and convex on X . Throughout this section,

we assume the Assumption 2 holds. Moreover, with a little abuse of notation, we make the
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following assumption.

Assumption 3 for and x ∈ X ,

E[exp{‖G′(x, ξ)‖2
∗/M

2
G}] ≤ exp{1}, (2.24)

E[exp{(G(x, ξ)− g(x))2/σ2}] ≤ exp{1}. (2.25)

We will use (2.24) and (2.25) to bound the error associated with stochastic subgradient

and function value for the constraint g, respectively. As discussed in subsection 2.2, there

may exist different ways to simulate the random variable ξ for constraint evaluation, e.g.,

by generating a J-sized i.i.d. random sample of ξ or its linear transformation ξ̄ = ξTx.

However, regardless of the way to simulate the random variable ξ, the light-tail assumption

(2.25) holds for the constraint value G(x, ξ). Our goal in this subsection is to show how the

sample size (or iteration count)N to compute stochastic subgradients, as well as the sample

size J to evaluate the constraint value, will affect the quality of the solutions generated by

CSA.

The following result establishes a simple but important recursion about the CSA method

for stochastic optimization with expectation constraints.

Proposition 9 For any 1 ≤ s ≤ N , we have

∑
k∈N γk(G(xk, ξk)−G(x, ξk)) +

∑
k∈B γk〈F ′(xk, ξk), xk − x〉

≤ V (xs, x) + 1
2

∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗ + 1
2

∑
k∈N γ

2
k‖G′(xk, ξk)‖2

∗, ∀x ∈ X.
(2.26)

Proof. For any s ≤ k ≤ N , using Lemma 1, we have

V (xk+1, x) ≤ V (xk, x) + γk〈hk, x− xk〉+ 1
2
γ2
k‖hk‖2

∗. (2.27)
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Observe that if k ∈ B, we have hk = F ′(xk, ξk), and

〈hk, xk − x〉 = 〈F ′(xk, ξk), xk − x〉.

Moreover, if k ∈ N , we have hk = G′(xk, ξk) and

〈hk, xk − x〉 = 〈G′(xk, ξk), xk − x〉 ≥ G(xk, ξk)−G(x, ξk).

Summing up the inequalities in (2.27) from k = s to N and using the previous two obser-

vations, we obtain

V (xk+1, x) ≤ V (xs, x)−
∑N

k=s γk〈hk, xk − x〉+ 1
2

∑N
k=s γ

2
k‖hk‖2

∗

≤ V (xs, x)−
[∑

k∈N γk〈G′(xk, ξk), xk − x〉+
∑

k∈B γk〈F ′(xk, ξk), xk − x〉
]

+ 1
2

∑N
k=s γ

2
k‖hk‖2

∗

= V (xs, x)−
[∑

k∈N γk(G(xk, ξk)−G(x, ξk)) +
∑

k∈B γk〈F ′(xk, ξk), xk − x〉
]

+ 1
2

∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗ + 1
2

∑
k∈N γ

2
k‖G′(xk, ξk)‖2

∗.

(2.28)

Rearranging the terms in above inequality, we obtain (2.26).

Using Proposition 9, we present below a sufficient condition under which the output

solution x̄N,s is well-defined.

Lemma 10 Let x∗ be an optimal solution of (1.1)-(1.2). Under Assumption 3, for any

given λ > 0, if

N−s+1
2

min
k∈N

γkηk > V (xs, x
∗) + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G + λσ√

J

∑
k∈N γk, (2.29)

where J is the number of random samples to estimate g(xk) in each iteration, then B 6= ∅,

i.e., x̄N,s is well-defined. Moreover, we have one of the following two statements holds,

a) Prob{|B| ≥ (N − s+ 1)/2} ≥ 1− |N | exp{−λ2

3
},
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b)
∑

k∈B γk〈f ′(xk), xk − x∗〉 ≤ 0.

Proof. Taking expectation w.r.t. ξk on both sides of (2.26), fixing x = x∗ and noting

that Assumption 3 implies that E[‖G′(x, ξ)‖2
∗] ≤M2

G, we have

∑
k∈N γk[g(xk)− g(x∗)] +

∑
k∈B γk〈f ′(xk), xk − x∗〉

≤ V (xs, x
∗) + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G.

(2.30)

If
∑

k∈B γk〈f ′(xk), xk − x∗〉 ≤ 0, part b) holds. If
∑

k∈B γk〈f ′(xk), xk − x∗〉 ≥ 0, we have

∑
k∈N γk[g(xk)− g(x∗)] ≤ V (xs, x

∗) + 1
2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G,

which, in view of g(x∗) ≤ 0, implies that

∑
k∈N γkg(xk) ≤ V (xs, x

∗) + 1
2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G. (2.31)

It follows from (2.4), Assumption 3 and Lemma 7 that, for k ∈ N , we have Ĝk > ηk

and Prob{Ĝk ≥ g(xk) + λσ/
√
J} ≤ exp{−λ2/3}, which implies, Prob{g(xk) ≤ ηk −

λσ/
√
J} ≤ exp{−λ2/3}. Therefore,

Prob{
∑

k∈N γkg(xk) ≤
∑

k∈N γkηk −
λσ√
J

∑
k∈N γk}

≤ Prob{∃k ∈ N , γkg(xk) ≤ ηk − λσ√
J
} ≤ 1− (1− exp{−λ2

3
})|N | ≤ |N | exp{−λ2

3
}.

(2.32)

Combining (2.31) and (2.32), we have

Prob{
∑

k∈N γkηk < V (xs, x
∗) + 1

2

∑
k∈B γ

2
kM

2
F + 1

2

∑
k∈N γ

2
kM

2
G + λσ√

J

∑
k∈N γk}

≥ 1− |N | exp{−λ2

3
}.

* Suppose that |B| < (N − s + 1)/2, i.e., |N | ≥ (N − s + 1)/2. Then, the condition in
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(2.29) implies that

∑
k∈N γkηk ≥

N−s+1
2

mink∈N γkηk > V (xs, x
∗)+1

2

∑
k∈B γ

2
kM

2
F+1

2

∑
k∈N γ

2
kM

2
G+ λσ√

J

∑
k∈N γk.

It then follows from the previous two observations that Prob{|B| ≥ (N − s + 1)/2} ≥

1− |N | exp{−λ2

3
}.

Now we are ready to establish the large deviation properties of the CSA algorithm.

Theorem 11 Suppose that Assumptions 2 and 3 hold.

a) For any given partition B and N of I = {s, . . . , N}, we have, ∀λ ≥ 0,

Prob{f(x̄N,s)− f(x∗) ≥ K0 + λK1} ≤ 2 exp{−λ}+ (|N |+ 2) exp{−λ2

3
},

(2.33)

Prob
{
g(x̄N,s) ≥

(∑
k∈B γk

)−1 (∑
k∈B γkηk

)
+ λσ√

J

}
≤ |B| exp{−λ2/3}, (2.34)

where K0 =
(∑

k∈B γk
)−1
(
D2
X +

M2
F

2

∑
k∈B γ

2
k +

M2
G

2

∑
k∈N γ

2
k

)
and

K1 =
(∑

k∈B γk
)−1

(
M2
F

2

∑
k∈B γ

2
k +

M2
G

2

∑
k∈N γ

2
k + 2σ

√∑
k∈N γ

2
k

+ 2MFDX

√∑
k∈B γ

2
k + σ√

J

∑
k∈N γk).

b) For any Λ ∈ (0, 1), if we choose λ such that N exp{−λ2/3} ≤ Λ and set

s = 1, γk = DX√
NM

, ηk = 4MDX√
N

+ 2λσ√
J
,

N = max{2C
ε2

(log 4
Λ

)2, 6C
ε2

log
18D2

XM
2

ε2Λ
,

64M2D2
X

ϑ2 },

J = max{8σ2

ε2
(log 4

Λ
)2, 24σ2

ε2
log

18D2
XM

2

ε2Λ
, 36σ2

ϑ2 log 1
Λ3 ,

36σ2

ϑ2 log
18D2

XM
2

ε2Λ
},

(2.35)

where M = max{MF ,MG} and C = max{9D2
XM

2, 4σ2}, then we have

Prob{g(x̄N,s) ≤ ϑ} ≥ 1− Λ and Prob{f(x̄N,s)− f(x∗) ≤ ε} ≥ (1− Λ)2. (2.36)

Proof. Let us first show part a) holds. Observe that the constraint evaluation and hence
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the partition of B and N is independent of the trajectory. Let G(x, ξk) = g(x) + δk and

F ′(xk, ξk) = f ′(xk) + ∆k. It follows from the inequality (2.26) (with x = x∗) and the fact

g(x∗) ≤ 0 that

∑
k∈N γkg(xk) + (

∑
k∈B γk)(f(x̄N,s)− f(x∗)) ≤ V (xs, x

∗) + 1
2

∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗

+ 1
2

∑
k∈N γ

2
k‖G′(xk, ξk)‖2

∗ + 2
∑

k∈N γkδk −
∑

k∈B γk〈∆k, xk − x∗〉. (2.37)

Now we provide probabilistic bounds for
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗,
∑

k∈N γ
2
k‖G′(xk, ξk)‖2

∗,∑
k∈N γkδk and

∑
k∈B γk〈∆k, xk−x∗〉. First, setting θk = γ2

k/
∑

k∈B γ
2
k , using the fact that

E[exp{‖F ′(xk, ξk)‖2
∗/M

2
F}] ≤ exp{1} and Jensens inequality, we have

exp{
∑

k∈B θk(‖F ′(xk, ξk)‖2
∗/M

2
F )} ≤

∑
k∈B θk exp{‖F ′(xk, ξk)‖2

∗/M
2
F}, and hence that

E[exp{
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗/M
2
F

∑
k∈B γ

2
k}] ≤ exp{1}. It then follows from Markov’s

inequality that ∀λ ≥ 0,

Prob(
∑

k∈B γ
2
k‖F ′(xk, ξk)‖2

∗ > (1 + λ)M2
F

∑
k∈B γ

2
k)

= Prob
(

exp

{∑
k∈B γ

2
k‖F ′(xk, ξk)‖2

∗
M2
F

∑
k∈B γ

2
k

}
> exp(1 + λ)

)
≤ exp{1}

exp{1+λ} ≤ exp{−λ}.

(2.38)

Similarly, we have

Prob
(∑

k∈N γ
2
k‖G′(xk, ξk)‖2

∗ > (1 + λ)M2
G

∑
k∈N γ

2
k

)
≤ exp{−λ}. (2.39)

Second, for
∑

k∈N γkδk, setting ιk = γk/
∑

k∈B γk, and noting that E[δk] = 0 and

E[exp{δ2
k/σ

2}] ≤ exp{1}, we obtain E[ιkδk] = 0, E[exp{ι2kδ2
k/ξ

2
kσ

2}] ≤ exp{1}. By

lemma 7, we have

Prob
{∑

k∈N γkδk > λσ
√∑

k∈N γ
2
k

}
≤ exp{−λ2/3}. (2.40)

Lastly, let us consider
∑

k∈B γk〈∆k, xk − x∗〉. Setting βk = γk〈∆k, xk − x∗〉 and noting
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that E[‖∆k‖2
∗] ≤ (2MF )2, we have E[exp{β2

k/(2MFγkDX)2}] ≤ exp{1}, which, in view

of Lemma 7, implies that

Prob
{∑

k∈B βk > 2λMFDX

√∑
k∈B γ

2
k

}
≤ exp{−λ2/3}. (2.41)

Combining (2.38),(2.39), (2.40), (2.41) and (2.32), and rearranging the terms we get (2.33).

Let us show that (2.34) holds. Clearly, by the convexity of g(·) and definition of x̄N,s, we

have

g(x̄N,s) = g(
∑

k∈B ιkxk) ≤
(∑

k∈B γk
)−1∑

k∈B γkg(xk).

Using this observation and an argument similar to the proof of (2.32), we obtain (2.34).

Then, let us show part b) holds. First, easily observe that condition (2.29) holds by using

the selection of s, {γk} and {ηk}. From Lemma 10, we have either one of the following

two statements holds,

a) Prob{|B| ≥ (N − s+ 1)/2} ≥ 1− |N | exp{−λ2

3
} ≥ 1− Λ,

b)
∑

k∈B γk〈f ′(xk), xk−x∗〉 ≤ 0, which, in view of the convexity of f , implies, f(x̄N,s)−

f(x∗) ≤ 0.

Also, from (2.34) and (2.35), we have

Prob
{
g(x̄N,s) ≥ 4MDX√

N
+ 3λσ√

J

}
≤ |B| exp{−λ2/3}

Prob {g(x̄N,s) ≥ ϑ} ≤ Λ.

Moreover, conditional on that |B| ≥ N/2, it then follows Theorem 11 and (2.35) that

Prob
{
f(x̄N,s)− f(x∗) ≥ 3DXM√

N
+ λ(3

√
2MDX√
N

+ 2
√

2σ√
N

+
√

2σ√
J

)
}

≤ 2 exp{−λ}+ (|N |+ 2) exp{−λ2

3
},

By implementing the selection of N and J , we have (2.36).
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In view of Theorem 11, the complexity in terms of the number of iterations N of the

CSA algorithm can be bounded by O(max{ 1
ε2

(log 1
Λ

)2, 1
ϑ2}), and the sample size J for

estimating constraint in every iteration of the CSA algorithm can be bounded by

O(max{ 1
ε2

(log 1
Λ

)2, 1
ϑ2 log 1

Λ3}) for solving problem (1.1)-(1.2).

2.2.5 Strongly convex objective and strongly convex constraints

In this subsection, we are interested in establishing the convergence of the CSA algorithm

applied to strongly convex problems. More specifically, we assume that the objective func-

tion F and constraint function g in problem (1.1), where g is given in the form of function

constraint, are both strongly convex w.r.t. x, i.e., ∃µF > 0 and µG > 0 s.t.

F (x1, ξ) ≥ F (x2, ξ) + 〈F ′(x2, ξ), x1 − x2〉+ µF
2
‖x1 − x2‖2,∀x1, x2 ∈ X,

g(x1) ≥ g(x2) + 〈g′(x2), x1 − x2〉+ µG
2
‖x1 − x2‖2,∀x1, x2 ∈ X.

For the sake of simplicity, we focus on the case when the constraint function g can be

evaluated exactly (i.e., Ĝk = g′(xk)). However, expectation constraints can be dealt with

using similar techniques discussed in Section 2.2.4.

In order to estimate the convergent rate of the CSA algorithm for solving strongly con-

vex problems, we need to assume that the prox-function VX(·, ·) and VY (·, ·) satisfies a

quadratic growth condition

VX(z, x) ≤ Q
2
‖z − x‖2, ∀z, x ∈ X and VY (z, y) ≤ Q

2
‖z − y‖2,∀z, y ∈ Y. (2.42)

Moreover, letting γk be the stepsizes used in the CSA method, and denoting

ak =


µF γk
Q
, k ∈ B,

µGγk
Q
, k ∈ N ,

Ak =

 1, k = 1,

(1− ak)Ak−1, k ≥ 2,
and ρk = γk

Ak
,
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we define

x̄N,s =

∑
k∈B ρkxk∑
k∈B ρk

(2.43)

as the output of Algorithm 1.

The following simple result will be used in the convergence analysis of the CSA method.

Lemma 12 If ak ∈ (0, 1], k = 0,1,2,..., Ak > 0,∀k ≥ 1, and {∆k} satisfies

∆k+1 ≤ (1− ak)∆k +Bk, ∀k ≥ 1,

then we have

∆k+1

Ak
≤ (1− a1)∆1 +

∑k
i=1

Bi
Ai
.

Below we provide an important recursion about CSA applied to strongly convex prob-

lems. This result differs from Proposition 2 for the general convex case in that we use

different weight ρk rather than γk.

Proposition 13 For any 1 ≤ s ≤ N , we have

∑
k∈N ρk(ηk −G(x, ξk)) +

∑
k∈B ρk[F (xk, ξk)− F (x, ξk)] ≤ (1− as)D2

X

+ 1
2

∑
k∈B ρkγk‖F ′(xk, ξk)‖2

∗ + 1
2

∑
k∈N ρkγk‖g′(xk)‖2

∗. (2.44)

Proof. Consider the iteration k, ∀s ≤ k ≤ N . If k ∈ B, by Lemma 1 and the strong

convexity of F (x, ξ), we have

V (xk+1, x) ≤ V (xk, x)− γk〈hk, xk − x〉+ 1
2
γ2
k‖F ′(xk, ξk)‖2

∗

= V (xk, x)− γk〈F ′(xk, ξk), xk − x〉+ 1
2
γ2
k‖F ′(xk, ξk)‖2

∗

≤ V (xk, x)− γk
[
F (xk, ξk)− F (x, ξk) + µF

2
‖xk − x‖2

]
+ 1

2
γ2
k‖F ′(xk, ξk)‖2

∗

≤
(

1− µF γk
Q

)
V (xk, x)− γk[F (xk, ξk)− F (x, ξk)] + 1

2
γ2
k‖F ′(xk, ξk)‖2

∗.
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Similarly for k ∈ N , using Lemma 1 and the strong convexity of g(x), we have

V (xk+1, x) ≤ V (xk, x)− γk〈hk, xk − x〉+ 1
2
γ2
k‖g′(xk)‖2

∗

= V (xk, x)− γk〈g′(xk), xk − x〉+ 1
2
γ2
k‖g′(xk)‖2

∗

≤ V (xk, x)− γk
[
(g(xk)− g(x)) + µG

2
‖xk − x‖2

]
+ 1

2
γ2
k‖g′(xk)‖2

∗

≤
(

1− µGγk
Q

)
V (xk, x)− γk(ηk − g(x)) + 1

2
γ2
k‖g′(xk)‖2

∗.

Summing up these inequalities for s ≤ k ≤ N and using Lemma 12, we have

V (xN+1,x)

AN
≤ (1− as)V (xs, x)−

[∑
k∈N

γk
Ak

(ηk − g(x)) +
∑

k∈B
γk
Ak

[F (xk, ξk)− F (x, ξk)]
]

+ 1
2

∑
k∈N

γ2
k

Ak
‖g′(xk)‖2

∗ + 1
2

∑
k∈B

γ2
k

Ak
‖F ′(xk, ξk)‖2

∗,

Using the fact V (xN+1, x)/AN ≥ 0 and the definition of ρk, and rearranging the terms in

the above inequality, we obtain (2.44).

Lemma 14 below provides a sufficient condition which guarantees x̄N,s to be well-

defined.

Lemma 14 Let x∗ be the optimal solution of (1.1). If

N−s+1
2

min
k∈N

ρkηk > (1− as)D2
X + 1

2

∑
k∈N ρkγkM

2
G + 1

2

∑
k∈B ρkγkM

2
F , (2.45)

then B 6= ∅ and hence x̄N,s is well-defined. Moreover, we have one of the following two

statements holds,

a) |B| ≥ (N − s+ 1)/2,

b)
∑

k∈B ρk[f(xk)− f(x∗)] ≤ 0.

Proof. The proof of this result is similar to that of Lemma 2 and hence the details are

skipped.

With the help of Proposition 13, we are ready to establish the main convergence prop-
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erties of the CSA method for solving strongly convex problems.

Theorem 15 Suppose that {γk} and {ηk} in the CSA algorithm are chosen such that (2.45)

holds. Then for any 1 ≤ s ≤ N , we have

E[f(x̄N,s)− f(x∗)] ≤((N − s+ 1) min
s≤k≤N

ρk)
−1

(
2(1− as)D2

X +
∑

k∈B ρkγkM
2
F +

∑
k∈N ρkγkM

2
G

)
, (2.46)

g(x̄N,s) ≤(
∑

k∈B ρk)
−1(
∑

k∈B ρkηk). (2.47)

Proof. Taking expectation w.r.t. ξi, 1 ≤ i ≤ k, on both sides of (2.44) (with x = x∗)

and using Assumption 1, we have

∑
k∈N ρk(ηk − g(x∗)) +

∑
k∈B ρkE[f(xk)− f(x∗)]

≤ (1− as)D2
X + 1

2

∑
k∈B ρkγkM

2
F + 1

2

∑
k∈N ρkγkM

2
G.

(2.46) then immediately follows from the above inequality, (2.43), the convexity of f

and the fact that g(x∗) ≤ 0. Moreover, (2.47) follows similarly to (2.18).

Below we provide a stepsize policy of s, γk and ηk in order to achieve the optimal rate

of convergence for solving strongly convex problems.

Corollary 16 Let s = N
2

, γk =


2Q

µF (k+1)
, if k ∈ B;

2Q
µG(k+1)

, if k ∈ N ,
, ηk = 2µGQ

k

(
2D2

X

k
+ max

{
M2
F

µ2
F
,
M2
G

µ2
G

})
,

then we have

E[f(x̄N,s)− f(x∗)] ≤ 8µFD
2
X

N2Q
+ 4µFQ

N
max{M

2
F

µ2
F
,
M2
G

µ2
G
},

g(x̄N,s) ≤
16µGQD

2
X

N2 + 4µGQ
N

max
{
M2
F

µ2
F
,
M2
G

µ2
G

}
.

Proof. Based on our selection of s, γk, ηk and the definition of ak, Ak and ρk, we have

ak = 2
k+1

, Ak =
k∏
i=2

(1− ai) = 2
k(k+1)

, ρk =


kQ
µF
, if k ∈ B;

kQ
µG
, if k ∈ N ,
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For ∀s ≤ k ≤ N , by the definition of s, γk and ηk, we have

(1− as)V (xs, x) + 1
2

∑
k∈N ρkγkM

2
G + 1

2

∑
k∈B ρkγkM

2
F

≤ D2
X + 1

2

∑
k∈B

γ2
k

Ak
M2

F + 1
2

∑
k∈N

γ2
k

Ak
M2

G

≤ D2
X +Q2(|B|M

2
F

µ2
F

+ |N |M
2
G

µ2
G

) ≤ D2
X + Q2N

2
max

{
M2
F

µ2
F
,
M2
G

µ2
G

}
,

N−s+1
2

min
k∈N

ρkηk = N
4

min
k∈N

kQ
µG

2µGQ
k

(
2D2

X

k
+ max

{
M2
F

µ2
F
,
M2
G

µ2
G

})
≥ D2

X+Q2N
2

max
{
M2
F

µ2
F
,
M2
G

µ2
G

}
.

Combining the above two inequalities, we can easily see that condition (2.45) holds. It then

follows from Theorem 15 that

E[f(x̄N,s)− f(x∗)]

≤ ((N − s+ 1) min
s≤k≤N

ρk)
−1
(
2(1− as)D2

X +
∑

k∈B ρkγkM
2
F +

∑
k∈N ρkγkM

2
G

)
≤ 8µFD

2
X

N2Q
+ 4µFQ

N
max{M

2
F

µ2
F
,
M2
G

µ2
G
},

g(x̄N,s) ≤ (
∑

k∈B ρk)
−1(
∑

k∈B ρkηk) ≤
16µGQD

2
X

N2 + 4µGQ
N

max
{
M2
F

µ2
F
,
M2
G

µ2
G

}
.

In view of Corollary 16, the CSA algorithm can achieve the optimal rate of conver-

gence for strongly convex optimization with strongly convex constraints. To the best of our

knowledge, this is the first time such a complexity result is obtained in the literature and

this result is new also for the deterministic setting.

2.3 Expectation constraints over problem parameters

In this section, we are interested in solving a class of parameterized stochastic optimization

problems whose parameters are defined by expectation constraints as described in (1.4)-

(1.5), under the assumption that such a pair of solutions satisfying (1.4)-(1.5) exists.

Our goal in this section is to present a variant of the CSA algorithm to approximately
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solve problem (1.4)-(1.5) and establish its convergence properties. More specifically, we

discuss this variant of the CSA algorithm when applied to the parameterized stochastic

optimization problem in (1.4)-(1.5) and then consider a modified problem by imposing

certain strong convexity assumptions to the function Φ(x, y, ζ) w.r.t. y and G(x, ξ) w.r.t. x

in Subsections 4.1 and 4.2, respectively. In Subsection 4.3, we discuss some large deviation

properties for the variant of the CSA method for the problem defined by (1.4)-(1.5).

2.3.1 Stochastic optimization with parameter feasibility constraints

Given tolerance η > 0 and target accuracy ε > 0, we will present a variant of the CSA

algorithm, namely cooperative stochastic parameter approximation (CSPA), to find a pair

of approximate solutions (x̄, ȳ) ∈ X × Y s.t. E[g(x̄)] ≤ η and E[φ(x̄, ȳ) − φ(x̄, y)] ≤

ε, ∀y ∈ Y, in this subsection. Before we describe the CSPA method, we need slightly

modify Assumption 1.

Assumption 4 For any x ∈ X and y ∈ Y ,

E[‖Φ′(x, y, ζ)‖2
∗] ≤M2

Φ and E[‖G′(x, ξ)‖2
∗] ≤M2

G,

where Φ′(x, y, ζ) ∈ ∂yΦ(x, y, ζ) and G′(x, ξ) ∈ ∂xG(x, ξ).

We will also discuss the convergent properties under the light-tail assumptions as follows.

Assumption 5

E[exp{‖Φ′(x, y, ζ)‖2
∗/M

2
Φ}] ≤ exp{1},

E[exp{(Φ(x, y, ζ)− φ(x, y))2/σ2}] ≤ exp{1},

E[exp{(G(x, ξ)− g(x))2/σ2}] ≤ exp{1}.

We assume that the distance generating functions ωX : X 7→ R and ωY : Y 7→ R are

strongly convex with modulus 1 w.r.t. given norms in Rn and Rm, respectively, and that
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their associated prox-mappings Px,X and Py,Y (see (2.1)) are easily computable.

We make the following modifications to the CSA method in Section 2.1 in order to ap-

ply it to solve problem (1.4)-(1.5). Firstly, we still check the solution (xk, yk) to see whether

xk violates the condition
∑k

i=1 γiG(xi, ξi)/
∑k

i=1 γi ≤ ηk. If so, we set the search direction

as G′(xk, ξk) to update xk, while keeping yk intact. Otherwise, we only update yk along the

direction Φ′(x̄k, yk, ζk). Secondly, we define the output as a randomly selected (x̄k, yk) ac-

cording to a certain probability distribution instead of the ergodic mean of {(x̄k, yk)}, where

x̄k denotes the average of {xk} (see (2.1)). Since we are solving a coupled optimization and

feasibility problem, each iteration of our algorithm only updates either yk or xk and requires

the computation of either Φ′ or G′ depending on whether
∑k

i=1 γiG(xi, ξi)/
∑k

i=1 γi ≤ ηk.

This differs from the SA method used in Jiang and Shanbhag [79] that requires two pro-

jection steps and the computation of two subgradients at each iteration to solve a different

parameterized stochastic optimization problem.

Algorithm 2 The cooperative stochastic parameter approximation method
Input: initial point (x1, y1), stepsize {γk}, tolerance {ηk}, number of iterations N ,

τ(1) = 1.
for k=1,2,...,N

if
∑τ(k)

i=1 γiG(xi, ξi)/
∑τ(k)

i=1 γi ≤ ηk

yk+1 = Pyk,Y (γkΦ
′(x̄k, yk, ζk)), τ(k+1) = τ(k), where x̄k =

∑τ(k)
i=1 γixi/

∑τ(k)
i=1 γi;

(2.1)
else

l = τ(k), xl+1 = Pxl,X(γlG
′(xl, ξl)), yk+1 = yk, τ(k + 1) = τ(k) + 1. (2.2)

end if
end for
Output: Set B := {s ≤ k ≤ N |

∑τ(k)
i=1 γiG(xi, ξi)/

∑τ(k)
i=1 γi ≤ ηk} for some 1 ≤ s ≤

N , and define the output (x̄R, yR), where R is randomly chosen according to

Prob{R = k} = γk∑
k∈B γk

, k ∈ B. (2.3)

With a little abuse of notation, we still use B to represent the set

{s ≤ k ≤ N |
∑τ(k)

i=1 γiG(xi, ξi)/
∑τ(k)

i=1 γi ≤ ηk}, I = {s, . . . , N}, and N = I \ B. The
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following result mimics Proposition 2.

Proposition 17 For any 1 ≤ s ≤ N , we have

∑
k∈B γk〈Φ′(x̄k, yk, ζk), yk − y〉 ≤ D2

Y + 1
2

∑
k∈B γ

2
k‖Φ′(x̄k, yk, ζk)‖2

∗, ∀y ∈ Y, (2.4)∑τ(N)
i=τ(s) γi[G(xi, ξi)−G(x, ξi)] ≤ D2

X + 1
2

∑τ(N)
i=τ(s) γ

2
i ‖G′(xi, ξi)‖2

∗, ∀x ∈ X, (2.5)

where DX ≡ DX,wx and DY ≡ DY,wy are defined as in (2.3).

Proof. By Lemma 1, if k ∈ B,

V (yk+1, y) ≤ V (yk, y) + γk〈Φ′(x̄k, yk, ζk), y − yk〉+ 1
2
γ2
k‖Φ′(x̄k, yk, ζk)‖2

∗.

Also note that V (yk+1, y) = V (yk, y) for k ∈ N . Summing up these relations for k ∈ B∪N

and using the fact that V (ys, y) ≤ D2
Y , we have

V (yN+1, y) ≤ V (ys, y) + 1
2

∑
k∈B γ

2
k‖Φ′(x̄k, yk, ζk)‖2

∗ −
∑

k∈B γk〈Φ′(x̄k, yk, ζk), yk − y〉

≤ D2
Y + 1

2

∑
k∈B γ

2
k‖Φ′(x̄k, yk, ζk)‖2

∗ −
∑

k∈B γk〈Φ′(x̄k, yk, ζk), yk − y〉.
(2.6)

Similarly for τ(s) ≤ i ≤ τ(N), we have

V (xi+1, x) ≤ V (xi, x) + γi〈G′(xi, ξi), x− xi〉+ 1
2
γ2
i ‖G′(xi, ξi)‖2

∗.

Summing up these relations for τ(s) ≤ i ≤ τ(N) and using the fact that V (xτ(s), x) ≤ D2
X ,

we obtain

V (xτ(N)+1, x) ≤ D2
X +

∑τ(N)
i=τ(s) γ

2
i ‖G′(xi, ξi)‖2

∗ −
∑τ(N)

i=τ(s)(G(xi, ξi)−G(x, ξi)). (2.7)

Using the facts V (yN+1, y) ≥ 0 and V (xτ(N)+1, x) ≥ 0, and rearranging the terms in (2.6)
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and (2.7), we then obtain (2.4) and (2.5), respectively.

The following result provides a sufficient condition under which (x̄R, yR) is well-defined.

Lemma 18 The following statements holds.

a) Under Assumption 4, if for any λ > 0, we have

N−s+1
2

min
k∈N

γkηk > D2
X + λ

M2
G

2

∑τ(N)
k=τ(s) γ

2
k, (2.8)

then Prob{|B| ≥ N−s+1
2
} ≥ 1− 1/λ.

b) Under Assumption 5, if for any λ > 0, we have

N−s+1
2

min
k∈N

γkηk > D2
X + (1 + λ)

M2
G

2

∑τ(N)
k=τ(s) γ

2
k + λσ

√∑τ(N)
k=τ(s) γ

2
k, (2.9)

then Prob{|B| ≥ N−s+1
2
} ≥ 1− 2 exp{−λ2

3
}.

Proof. First let us show part a), set δk = G(x∗, ξk) − g(x∗), it follows from (2.5) and

fixing x = x∗ that

∑τ(N)
i=τ(s) γiG(xi, ξi)−

∑τ(N)
i=τ(s) γig(x∗) ≤ D2

X + 1
2

∑τ(N)
i=τ(s) γ

2
i ‖G′(xi, ξi)‖2

∗ +
∑τ(N)

i=τ(s) γiδi.

For contradiction, suppose that |B| < N−s+1
2

, i.e., τ(N) − τ(s) = |N | ≥ N−s+1
2

. The

above relation, in view of g(x∗) ≤ 0 and the fact
∑τ(N)

i=τ(s) γiG(xi, ξi) ≥ ητ(N)

∑τ(N)
i=τ(s) γi,

implies that

N−s+1
2

min
k∈N

γkηk ≤ ητ(N)

∑τ(N)
k=τ(s) ηk ≤ D2

X + 1
2

∑τ(N)
k=τ(s) γ

2
k‖G′(xk, ξk)‖2

∗ +
∑τ(N)

k=τ(s) γkδk.

Under Assumption 4, for any λ > 0, taking expectation on both sides and using Markov’s
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inequality, we have

Prob{N−s+1
2

min
k∈N

γkηk ≤ D2
X + λ

M2
G

2

∑τ(N)
k=τ(s) γ

2
k} ≥ 1− 1/λ.

Hence, part a) holds. Similarly we can show part b), and the details are skipped.

Theorem 19 summarizes the main convergence properties of Algorithm 2 applied to

problem (1.4)-(1.5).

Theorem 19 The following statements holds for the CSPA algorithm.

a) Under Assumption 4, we have, ∀λ > 0,

E[φ(x̄R, yR)− φ(x̄R, y
∗(x̄R))] ≤ 2D2

Y +M2
Φ

∑
k∈B γ

2
k

2
∑

k∈B γk
, (2.10)

Prob
{
φ(x̄R, yR)− φ(x̄R, y

∗(x̄R)) ≥ λ(
2D2

Y +M2
Φ

∑
k∈B γ

2
k

2
∑

k∈B γk
)

}
≤ 1

λ
, (2.11)

Prob

g(x̄R) ≥ ηR + λσ

√∑τ(N)
k=τ(s) γ

2
k∑τ(N)

k=τ(s) γk

 ≤ 1
λ2 . (2.12)

b) Under Assumption 5, we have, ∀λ > 0,

E[φ(x̄R, yR)− φ(x̄R, y
∗(x̄R))] ≤ 2D2

Y +M2
Φ

∑
k∈B γ

2
k

2
∑

k∈B γk
, (2.13)

Prob {φ(x̄R, yR)− φ(x̄R, y
∗(x̄R)) ≥ K0 + λK1} ≤ exp{−λ}+ exp{−λ2/3},

(2.14)

Prob

g(x̄R) ≥ ηR + λσ

√∑τ(N)
k=τ(s) γ

2
k∑τ(N)

k=τ(s) γk

 ≤ exp{−λ2/3}, (2.15)

where K0 =
2D2

Y +M2
Φ

∑
k∈B γ

2
k

2
∑

k∈B γk
and K1 =

M2
Φ

∑
k∈B γ

2
k + 4MΦDY

√∑
k∈B γ

2
k

2
∑

k∈B γk
.

where the expectation is taken w.r.t. R and ζ1, . . . , ζN .
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Proof. Let us prove part a) first. Set ∆k = Φ(x̄k, yk, ζk) − φ(x̄k, yk), it follows from

(2.4) (fix y = y∗) that

∑
k∈B γk [φ(xk, yk)− φ(xk, y

∗(xk))] ≤ D2
Y +1

2

∑
k∈B γ

2
k‖Φ′(x̄k, yk, ζk)‖2

∗+
∑

k∈B γk∆k(y−yk).

(2.16)

Since conditional on ζ[k−1], the expectation of ∆k equals to zero, then taking expectation

on both sides of (2.16), and dividing both sides by
∑

k∈B γk, we have (2.10). Hence, using

the Markov inquality, we have (2.11). Denote δk = G(xk, ξk)−g(xk). It then follows from

the convexity of g(·) and the definition of the set B that

g(x̄k) ≤
∑τ(N)

k=τ(s) γkg(xk)∑τ(N)
k=τ(s) γk

≤ ηk −
∑τ(N)

k=τ(s) γkδk∑τ(N)
k=τ(s) γk

. (2.17)

Using the fact that E[δk|ξ[k−1]] = 0 and E[|δk|2] ≤ σ2, we have

E

∣∣∣∣∣
∑τ(N)

k=τ(s) γkδk∑τ(N)
k=τ(s) γk

∣∣∣∣∣
2
 ≤ ∑τ(N)

k=τ(s) γ
2
kσ

2

(
∑τ(N)

k=τ(s) γk)
2
.

From the Markov inequality, we have (2.12). Hence the part a) holds.

Under Assumption 5, (2.13) still holds. Using the fact that E[exp{‖Φ′(x̄k, yk, ζk)‖2
∗/M

2
Φ}] ≤

exp{1} and Jensens inequality, we have E[exp{
∑

k∈B γ
2
k‖Φ′(x̄k, yk, ζk)‖2

∗/M
2
Φ

∑
k∈B γ

2
k}] ≤

exp{1}. It then follows from Markov’s inequality that ∀λ ≥ 0,

Prob(
∑

k∈B γ
2
k‖Φ′(x̄k, yk, ζk)‖2

∗ > (1 + λ)M2
Φ

∑
k∈B γ

2
k) ≤

exp{1}
exp{1+λ} ≤ exp{−λ}.

(2.18)

Also,

Prob{
∑

k∈B γk∆k(y − yk) > 2λMΦDY

√∑
k∈B γ

2
k} ≤ exp{−λ2/3} (2.19)
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Combining (2.16), (2.18) and (2.19), we have (2.14). Similarly, we have

Prob{
∑τ(N)

k=τ(s) γkδk ≥ λσ
√∑τ(N)

k=τ(s) γ
2
k} ≤ exp{−λ2/3} (2.20)

Combining (2.17) and (2.20), we have (2.15).

Below we provide a special selection of s, {γk} and {ηk}.

Corollary 20 Let s = N
2

+ 1, γk = DX
MG

√
k

and ηk = 4MGDX√
k

for k = 1, . . . , N . Then we

have

E[φ(xR, yR)− φ(xR, y
∗(xR))] ≤ 8MΦDY√

N
max{ν, 1

ν
},

where ν := (MGDY )/(MΦDX). Moreover, the following statements hold.

a) Under Assumption 4,

Prob
{
φ(x̄R, yR)− φ(x̄R, y

∗(x̄R)) ≤ λ8MΦDY√
N

max{ν, 1
ν
}
}
≥ (1− 1

λ
)2, (2.21)

Prob
{
g(x̄R) ≤ λ

√
2DX

MG

√
N

}
≥ (1− 1

λ
)2. (2.22)

b) Under Assumption 5,

Prob {φ(x̄R, yR)− φ(x̄R, y
∗(x̄R)) ≤ K0 + λK1}

≥ (1− 2 exp{−λ2/3})(1− exp{−λ} − exp{−λ2/3}),

Prob
{
g(x̄R) ≤

√
2DX

MG

√
N

+ λ 5σ√
N

}
≥ (1− 2 exp{−λ2/3})(1− exp{−λ2/3}),

where K0 = 8MΦDY√
N

max{ν, 1
ν
} and K1 = 1√

N

(
4M2

ΦDX
MG

+ 10MΦDY

)
.

Proof. Similarly to Corollary 5, we can show that (2.8) holds. It then follows from
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Lemma 18 and Theorem 19.a) that

∑
k∈B γk =

∑
k∈B

DX
MG

√
k
≥ DX

MG

N
4

1√
N

= DX
√
N

4MG
.

E[φ(xR, yR)− φ(xR, y
∗)] ≤ 2MG

DX
√
N

[
2D2

Y +
∑

k∈B
D2
XM

2
Φ

M2
Gk

]
≤ 2MG

DX
√
N

[
2D2

Y +
∑N

k=N/2
D2
XM

2
Φ

M2
Gk

]
≤ 2MG

DX
√
N

[2D2
Y + log 2D2

X
M2

Φ

M2
G

] ≤ 8MΦDY√
N

max{ν, 1
ν
}.

Similarly, part b) follows from Theorem 19.b).

By Corollary (20), the CSPA method applied to (1.4)-(1.5) can achieve an O(1/
√
N)

rate of convergence.

2.3.2 CSPA with strong convexity assumptions

In this subsection, we modify problem (1.4)-(1.5) by imposing certain strong convexity

assumptions to Φ and G with respect to y and x, respectively, i.e., ∃µΦ, µG > 0, s.t.

Φ(x, y1, ζ) ≥ Φ(x, y2, ζ) + 〈Φ′(x, y2, ζ), y1 − y2〉+ µΦ

2
‖y1 − y2‖2, ∀y1, y2 ∈ Y. (2.23)

G(x1, ξ) ≥ G(x2, ξ) + 〈G′(x2, ξ), x1 − x2〉+ µG
2
‖x1 − x2‖2, ∀x1, x2 ∈ X. (2.24)

We also assume that the pair of solutions (x∗, y∗) exists for problem (1.4)-(1.5). Our main

goal in this subsection is to estimate the convergence properties of the CSPA algorithm

under these new assumptions.

We need to modify the probability distribution (2.3) used in the CSPA algorithm as

follows. Given the stepsize γk, modulus µG and µΦ, and growth parameter Q (see (2.42)),

let us define

ak := (µΦγk)/Q and Ak :=

 1, k = 1;∏
i≤k, i∈B(1− ai), k > 1,

(2.25)
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and denote

bk := (µGγk)/Q and Bk :=

 1, k = 1;∏k
i=1(1− bi), k > 1.

(2.26)

Also the probability distribution of R is modified to

Prob{R = k} = γk/Ak∑
i∈B γi/Ai

, k ∈ B. (2.27)

The following result shows some simple but important properties for the modified CSPA

method applied to problem (1.4)-(1.5).

Proposition 21 For any s ≤ k ≤ m, we have

∑
k∈B

γk
Ak

[Φ(xk, yk, ζk)− Φ(xk, y, ζk)] ≤(1− µΦγs
Q

)VY (ys, y)

+ 1
2

∑
k∈B

γ2
k

Ak
‖Φ′(xk, yk, ζk)‖2

∗, ∀y ∈ Y (2.28)∑τ(N)
k=τ(s)

γk
Bk

[ηk −G(x, ξk)] ≤
(

1− µGγs
Q

)
VX(xs, x)

+ 1
2

∑τ(N)
k=τ(s)

γ2
k

Bk
‖G′(xk, ξk)‖2

∗, ∀x ∈ X. (2.29)

Proof. Using Lemma 1 and the strong convexity of Φ w.r.t. y, for k ∈ B, we have

VY (yk+1, y) ≤ VY (yk, y)− γk〈Φ′(xk, yk, ζk), yk − y〉+ 1
2
γ2
k‖Φ′(xk, yk, ζk)‖2

∗

≤ VY (yk, y)− γk
[
Φ(xk, yk, ζk)− Φ(xk, y, ζk) + µΦ

2
‖yk − y‖2

]
+ 1

2
γ2
k‖Φ′(xk, yk, ζk)‖2

∗

≤
(

1− µΦγk
Q

)
VY (yk, y)− γk[Φ(xk, yk, ζk)− Φ(xk, y, ζk)] + 1

2
γ2
k‖Φ′(xk, yk, ζk)‖2

∗.

Also note that VY (yk+1, y) = VY (yk, y) for all k ∈ N . Summing up these relations for all

k ∈ B ∪ N and using Lemma 12, we obtain

VY (yN ,y)
AN+1

≤
(

1− µΦγs
Q

)
VY (ys, y)−

∑
k∈B

γk
Ak

[Φ(xk, yk, ζk)− Φ(xk, y, ζk)]

+ 1
2

∑
k∈B

γ2
k

Ak
‖Φ′(xk, yk, ζk)‖2

∗.

(2.30)
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Similarly for τ(s) ≤ k ≤ τ(N), we have

VX(xk+1, x) ≤ VX(xk, x)− γk〈G′(xk, ξk), xk − x〉+ 1
2
γ2
k‖G′(xk, ξk)‖2

∗

≤ VX(xk, x)− γk
[
G(xk, ξk)−G(x, ξk) + µG

2
‖xk − x‖2

]
+ 1

2
γ2
k‖G′(xk, ξk)‖2

∗

≤
(

1− µGγk
Q

)
VX(xk, x)− γk[G(xk, ξk)−G(x, ξk)] + 1

2
γ2
k‖G′(xk, ξk)‖2

∗,

Summing up these relations for τ(s) ≤ k ≤ τ(N) and using Lemma 12, we have

VX(xN+1,x)

AN
≤
(

1− µGγs
Q

)
VX(xs, x)−

∑τ(N)
k=τ(s)

γk
Ak

[ηk−G(x, ξk)]+
1
2

∑τ(N)
k=τ(s)

γ2
k

Ak
‖G′(xk, ξk)‖2

∗.

(2.31)

Using the facts that VY (yN+1, y)/AN ≥ 0 and VX(xN+1, x)/AN ≥ 0, and rearranging the

terms in (2.30) and (2.31), we obtain (2.28) and (2.29), respectively.

Lemma 22 below provides a sufficient condition which guarantees that the output solu-

tion (x̄R, yR) is well-defined.

Lemma 22 The following statements hold.

a) Under Assumption 4, if for any λ > 0, we have

N−s+1
2

min
k∈N

γkηk
Bk

>
(

1− µGγs
Q

)
D2
X + λ

M2
G

2

∑τ(N)
k=τ(s)

γ2
k

Bk
, (2.32)

then Prob{|B| ≥ N−s+1
2
} ≥ 1− 1/λ.

b) Under Assumption 5, if for any λ > 0, we have

N−s+1
2

min
k∈N

γkηk
Bk

>
(

1− µGγs
Q

)
D2
X + (1 + λ)

M2
G

2

∑τ(N)
k=τ(s)

γ2
k

Bk
+ λσ

√∑τ(N)
k=τ(s)

γ2
k

B2
k
,

(2.33)

then Prob{|B| ≥ N−s+1
2
} ≥ 1− 2 exp{−λ2/3}.

Proof. The proof is similar to the one of Lemma 18 and hence the details are skipped.
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Now let us establish the rate of convergence of the modified CSPA method for problem

(1.4)-(1.5).

Theorem 23 Suppose that {γk} and {ηk} are chosen according to Lemma 22. Then

E[φ(x̄R, yR)− φ(x̄R, y
∗(x̄R))] ≤

(∑
k∈B

γk
Ak

)−1 (
(1− µΦγs

Q
)D2

Y +
M2

Φ

2

∑
k∈B

γ2
k

Ak

)
.

(2.34)

Moreover, under Assumption 4, we have for any λ > 0,

Prob
{
φ(x̄R, yR)− φ(x̄R, y

∗(x̄R)) ≥ λ
(∑

k∈B
γk
Ak

)−1 [
(1− µΦγs

Q
)D2

Y +
M2

Φ

2

∑
k∈B

γ2
k

Ak

]}
≤ 1

λ
,

(2.35)

Prob

g(x̄R) ≥ ηR + λσ

√∑τ(N)
k=τ(s) γ

2
k/B

2
k∑τ(N)

k=τ(s) γk/Bk

 ≤ 1
λ2 . (2.36)

In addition, under Assumption 5, we have for any λ > 0,

Prob {φ(x̄R, yR)− φ(x̄R, y
∗(x̄R)) ≥ K0 + λK1} ≤ exp{−λ}+ exp{−λ2/3}, (2.37)

Prob

g(x̄R) ≥ ηR + λσ

√∑τ(N)
k=τ(s) γ

2
k/B

2
k∑τ(N)

k=τ(s) γk/Bk

 ≤ exp{−λ2/3}, (2.38)

where K0 =
(∑

k∈B
γk
Ak

)−1 [
(1− µΦγs

Q
)D2

Y +
M2

Φ

2

∑
k∈B

γ2
k

Ak

]
and K1 =

(∑
k∈B

γk
Ak

)−1 [
M2

Φ

∑
k∈B

γ2
k

Ak
+ 4MΦDY

√∑
k∈B

γ2
k

A2
k

]
.

Proof. The proof is similar to the proof of Theorem 19, and hence the details are

skipped.

Now we provide a specific selection of {γk} and {ηk} that satisfies the condition of
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Lemma 22. While the selection of ηk only depends on iteration index k, i.e.,

ηk =
8QM2

G

kµG
, (2.39)

the selection of γk depends on the particular position of iteration index k in set B or N .

More specifically, let τB(k) and τ(k) be the position of index k in set B and set N , respec-

tively (for example, B = {1, 3, 5, 9, 10} and N = {2, 4, 6, 7, 8}. If k = 9, then τB(k) = 4).

We define γk as

γk =


2Q

µΦ(τB(k)+1)
, k ∈ B;

2Q
µG(τ(k)+1)

, k ∈ N .
(2.40)

Such a selection of γk can be conveniently implemented by using two separate counters in

each iteration to represent τB(k) and τ(k).

Corollary 24 Let s = 1, ηk and γk be given in (2.39) and (2.40), respectively. Then we

have

E[φ(x̄R, yR)− φ(x̄R, y
∗(x̄R))] ≤ 8QM2

Φ

(N+2)µΦ
.

Moreover, under Assumption 4, we have for any λ > 0,

Prob
{
φ(x̄R, yR)− φ(x̄R, y

∗(x̄R)) ≤ λ
8QM2

Φ

(N+2)µΦ

}
≥ (1− 1

λ
)2,

Prob
{
g(x̄R) ≤ λ

16QM2
G

NµG

}
≥ (1− 1

λ
)2.

In addition, under Assumption 5, we have for any λ > 0,

Prob {φ(x̄R, yR)− φ(x̄R, y
∗(x̄R)) ≤ K0 + λK1}

≥ (1− 2 exp{−λ2/3})(1− exp{−λ} − exp{−λ2/3}),

Prob
{
g(x̄R) ≤ 16QM2

G

NµG
+ λ 2σ√

N

}
≥ (1− 2 exp{−λ2/3})(1− exp{−λ2/3}),

where K0 = 8QM2
Φ/[(N + 2)µΦ] and K1 = 8QM2

Φ/[(N + 2)µΦ] + 64MΦDY /
√
N .
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Proof. The proof is similar to the proof of Corollary 20 and hence the details are

skipped.

Note that Corollary 24.a) implies anO(1/N) rate of convergence, while Corollary 24.b)

show an O(1/
√
N) rate of convergence with much improved dependence on λ. One pos-

sible approach to improve the result in part b) is to shrink the feasible set Y from time to

time in order to obtain an O(1/N) rate of convergence (see [19]).

2.4 Numerical Experiment

In this section, we present some numerical results of our computational experiments for

solving two problems: an asset allocation problem with conditional value at risk (CVaR)

constraint and a parameterized classification problem. More specifically, we report the

numerical results obtained from the CSA and CSPA method applied to these two problems

in Subsection 4.1 and 4.2, respectively.

2.4.1 Asset allocation problem

Our goal of this subsection is to examine the performance of the CSA method applied to

the CVaR constrained problem in (1.3).

Apparently, there is one problem associated with applying the CSA algorithm to this

model – the feasible region X is unbounded. Lan, Nemirovski and Shapiro (see [65]

Section 4.2) show that τ can be restricted to
[
µ+

√
β

1−βσ, µ̄+
√

1−β
β
σ
]
, where µ :=

miny∈Y {−ξ̄Ty} and µ̄ := maxy∈Y {−ξ̄Ty}.

In this experiment, we consider four instances. The first three instances are randomly

generated according to the factor model in Goldfarb and Iyengar (see Section 7 of [85] )

with different number of stocks ( d = 500, 1000 and 2000), while the last instance consists

of the 95 stocks from S&P100 (excluding SBC, ATI, GS, LU and VIA-B) obtained from

[6], the mean ξ̄ and covariance Σ are estimated by the historical monthly data from 1996

to 2002. The reliability level β = 0.05, the number of samples to estimate g(x) is J = 100
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and the number of samples used to evaluate the solution is n = 50, 000. It is worth noting

that, by utilizing the linear structure of ξTx (where x ∈ Rd) in constraint function, in k-th

iteration we generate J-sized i.i.d. samples of ξ̄ := ξTxk (with dimension 1) to estimate

ξTx in constraint function, instead of J-sized i.i.d. samples of ξ (with dimension d). For

SAA algorithm, the deterministic SAA problem to (1.3) is defined by

minx,τ −µTx

s.t. τ + 1
βN

∑N
i=1[−ξTi x− τ ]+ ≤ 0,∑n

i=1 xi = 1, x ≥ 0,

(2.1)

We implemented the SAA approach by using Polyak’s subgradient method for solving con-

vex programming problems with function constraints (see [75]). The main reasons why we

did not use the linear programming (LP) method to (2.1) include: 1) problem (2.1) might

be infeasible for some instances; and 2) we tried the LP method with CVX toolbox for

an instance with 500 stocks and the CPU time is thousands times larger than that of the

CSA method. In our experiment, we adjust the stepsize strategy by multiplying γk and ηk

with some scaling parameters cg and ce, respectively. These parameters are chosen as a re-

sult of pilot runs of our algorithm (see [65] for more details). We have found that the “best

parameters” in Table 2.1 slightly outperforms other parameter settings we have considered.

Table 2.1: The stepsize factor

best cg best ce
Number 500 0.5 0.005
of stocks 1000 0.5 0.05

2000 0.5 0.05

Notations in Tables 2.2-2.5.

N: the sample size( the number of steps in SA, and the size of the sample used to SAA

approximation).
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Obj.: the objective function value of our solution, i.e. the loss of the portfolio.

Cons.: the constraint function value of our solution.

CPU: the processing time in seconds for each method.

Table 2.2: Random Sample with 500 Assets

N=500 N=1000 N=2000 N=5000
Obj. -4.883 -4.870 -4.953 -4.984

CSA Cons. 5.330 4.096 5.167 2.859
CPU 1.671e-01 3.383e-01 6.271e-01 1.470e+00
Obj. -4.978 -4.981 -4.977 -4.977

SAA Cons. 4.372 3.071 2.330 2.249
CPU 2.031e+00 9.926e+00 4.132e+01 2.591e+02

Table 2.3: Random Sample with 1000 Assets
N=500 N=1000 N=2000 N=5000

Obj. -4.532 -4.704 -4.838 -4.949
CSA Cons. 27.660 24.901 23.825 20.785

CPU 4.193e-01 8.578e-01 1.659e+00 4.001e+00
Obj. -4.965 -4.981 -4.981 -4.977

SAA Cons. 60.421 47.745 33.940 20.357
CPU 1.513e+01 5.954e+01 2.774e+02 1.524e+03

Table 2.4: Random Sample with 2000 Assets
N=500 N=1000 N=2000 N=5000

Obj. -4.299 -4.077 -4.355 -4.859
CSA Cons. 144.92 112.54 89.74 82.65

CPU 1.374e+00 2.810e+00 5.538e+00 2.716e+01
Obj. -4.752 -4.699 -4.721 -4.727

SAA Cons. 279.43 218.96 147.93 94.46
CPU 1.968e+01 6.571e+01 2.940e+02 3.697e+03

The following conclusions can be made from the numerical results. First, as far as the

quality of solutions is concerned, the CSA method is at least as good as SAA method and

it may outperform SAA for some instances especially as N increases. Second, the CSA

method can significantly reduce the processing time than SAA method for all the instances.
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Table 2.5: Comparing the CSA and SAA for the CVaR model

N=500 N=1000 N=2000 N=5000 N=10000
Obj. -3.531 -3.537 -3.542 -3.548 -3.560

CSA Cons. 3.382e+00 2.188e-01 1.106e-01 2.724e-01 -7.102e-01
CPU 8.315e-02 1.422e-01 2.778e-01 7.251e-01 1.415e+00
Obj. -3.530 -3.541 -3.541 -3.544 -3.559

SAA Cons. 3.385e+00 7.163e-01 6.989e-01 6.988e-01 7.061e-01
CPU 3.155e+00 1.221e+01 4.834e+01 3.799e+02 1.462e+03

2.4.2 Classification and metric learning problem

In this subsection, our goal is to examine the efficiency of the CSPA algorithm applied to

a classification problem with the metric as parameter. In this experiment, we use the ex-

pectation of hinge loss function, described in [86], as objective function, and formulate the

constraint with the loss function of metric learning problem in [87], see formal definition

in (1.6)-(1.7). For each i, j, we are given samples ui, uj ∈ Rd and a measure bij ≥ 0 of

the similarity between the samples ui and uj (bij = 0 means ui and uj are the same). The

goal is to learn a metric A such that 〈(ui − uj), A(ui − uj)〉 ≈ bij , and to do classification

among all the samples u projected by the learned metric A.

For solving this class of problems in machine learning, one widely accepted approach

is to learn the metric in the first step and then solve the classification problem with the

obtained optimal metric. However, this approach is not applicable to the online setting

since once the dataset is updated with new samples, this approach has to go through all the

samples to update A and ω. On the other hand, the CSPA algorithm optimizes the metric A

and classifier ω simultaneously, and only needs to take one new sample in each iteration.

In this experiment, our goal is to test the solution quality of the CSPA algorithm with

respect to the number of iterations. More specifically, we consider 2 instances of this

problem with different dimension (d = 100 and 200, respectively). Since we are dealing

with the online setting, our sample size for training A and ω is increasing with the number

of iterations. The size for the sample used to estimate the parameters and the one used to

evaluate the quality of solution (or testing sample) are set to 100 and 10, 000, respectively.
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Within each trial, we test the objective and constraint value of the output solution over

training sample and testing sample, respectively. Since R is randomly picked up from all

the series {x̄k, yk}, we generate 5 candidate R, instead of one, in order to increase the

probability of getting a better solution. Intuitively, the latter solutions in the series should

be better than the earlier ones, hence, we also put the last pair of the solution (x̄N , yN) into

the candidate list. In each trial, we compare these 6 candidate solutions. First, we choose

three pairs with smallest constraint function values, then, choose the one with the smallest

objective function value from these three selected solutions as our output solution.

Table 2.6 and Table 2.7 shows the CSPA method decreases the objective value and

constraint value as the sample size (number of iterations N ) increases. These experiments

demonstrate that we can improve both the metric and the classifier simultaneously by using

the CSPA method as more and more data are collected.

Notations in Table 2.6 and 2.7.

Obj. Train: The objective function value using training sample at the output solution.

Cons. Train: The constraint function value using training sample at the output solution.

Obj. Test: The objective function value using testing sample at the output solution.

Cons. Test: The constraint function value using testing sample at the output solution.

Table 2.6: d = 100

N Obj. Train Cons. Train Obj. Test Cons. Test
100 3.175 3.056 1.042 3.068
200 2.737 3.058 0.811 3.006
600 0.654 3.077 0.157 3.104
800 0.529 3.087 0.126 3.102

1000 0.398 3.057 0.102 3.082

Table 2.7: d = 200
N Obj. Train Cons. Train Obj. Test Cons. Test

100 0.716 1.137 0.699 1.132
200 0.374 1.061 0.371 1.030

1000 0.360 1.020 0.364 1.031
2000 0.351 1.016 0.355 1.030
5000 0.291 0.951 0.135 0.989
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2.5 Conclusions

In this chapter, we present a new stochastic approximation type method, the CSA method,

for solving the stochastic convex optimization problems with function or expectation con-

straints. Moreover, we show that a variant of CSA method, the CSPA method, is applicable

to a class of parameterized stochastic problem in (1.4)-(1.5). We show that these meth-

ods exhibit theoretically optimal rate of convergence for solving a few different classes

of function or expectation constrained stochastic optimization problems and demonstrated

their effectiveness through some preliminary numerical experiments.
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CHAPTER 3

CONDITIONAL GRADIENT METHODS FOR CONVEX OPTIMIZATION WITH

FUNCTION CONSTRAINTS

3.1 Introduction

This chapter aims to fill in the aforementioned gap in the literature by presenting a new

class of conditional gradient methods for solving problem (1.8). Our main contributions

are briefly summarized as follows. Firstly, inspired by the constraint-extrapolation (ConEx)

method for function constrained convex optimization in [88], we develop a novel constraint-

extrapolated conditional gradient (CoexCG) method for solving problem (1.8). While both

methods are single-loop primal-dual type methods for solving convex optimization prob-

lems with function constraints, CoexCG only requires us to minimize a linear function,

rather than to perform projection, over X . In the basic setting when both f and hi are

smooth convex functions with Lipschitz continuous gradients, we show that the total num-

ber of iterations performed by CoexCG before finding a ε-solution of problem (1.8), i.e.,

a point x̄ ∈ X s.t. f(x̄) − f(x∗) ≤ ε and ‖g(x̄)‖2 + ‖[h(x̄)]+‖2 ≤ ε, can be bounded by

O(1/ε2). Here [·]+ := max{·, 0}.

Secondly, we consider more general function constrained optimization problems where

either the objective function f or some constraint functions hi are possibly nondifferen-

tiable, but contains certain saddle point structure. We extend the CoexCG method for solv-

ing these problems in combination with the well-known Nesterov’s smoothing scheme [89].

In general, even equipped with such smoothing technique, nonsmooth optimization is more

difficult than smooth optimization, and its associated iteration complexity is worse than

that for smooth ones by orders of magnitude. However, we show that a similar O(1/ε2)

complexity bound can be achieved by CoexCG for solving these nonsmooth function con-
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strained optimization problems. This seemly surprising result can be attributed to an inher-

ent acceleration scheme in CoexCG that can reduce the impact of the Lipschitz constants

induced by the smoothing scheme.

Thirdly, one possible shortcoming of CoexCG exists in that it requires the total number

of iterations N fixed a priori before we run the algorithm in order to achieve the best rate

of convergence. Therefore it is inconvenient to implement this algorithm when such an

iteration limit is not available. In order to address this issue, we propose a constraint-

extrapolated and dual-regularized conditional gradient (CoexDurCG) method by adding a

diminishing regularization term for the dual updates. This modification allows us to design

a novel adaptive stepsize policy which does not require N given in advance. Moreover,

we show that the complexity of CoexDurCG is still in the same order of magnitude as

CoexCG with a slightly larger constant factor. We also extend CoexDurCG for solving the

aforementioned structured nonsmooth problems, and demonstrate that it is not necessary

to explicitly define the smooth approximation problem. We note that this technique of

adding a diminishing regularization term can be applied for solving problems with either

unbounded primal feasible region (e.g., stochastic subgradient descent [64] and stochastic

accelerated gradient descent [17]), or unbounded dual feasible region (e.g., ConEx [88]),

for which one often requires the number of iterations fixed in advance.

Finally, we apply the developed algorithms for solving the radiation therapy treatment

planning problem on both randomly generated instances and a real data set. We show that

CoexDurCG performs comparably to CoexCG in terms of solution quality and computation

time. We demonstrate that the incorporation of function constraints helps us not only to find

feasible treatment plans satisfying clinical criteria, but also generate alternative treatment

plans that can possibly reduce radiation exposure time for the patients.

To the best of our knowledge, all the algorithmic schemes as well as their complexity

results are new in the area of projection-free methods for convex optimization.

This chapter is organized as follows. Section 3.2 is devoted to the CoexCG method.
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We first present the CoexCG method for smooth function constrained convex optimization

in Subsection 3.2.1 and extend it for solving structured nonsmooth function constrained

convex optimization in Subsection 3.2.2. We then discuss the CoexDurCG method in Sec-

tion 3.3, including its basic version for smooth function constrained convex optimization in

Subsection 3.3.1 and its extended version for directly solving structured nonsmooth func-

tion constrained convex optimization problems in Subsection 3.3.2. We apply these meth-

ods for radiation therapy treatment planning in Section 4.5, and conclude the chapter with

a brief summary in Section 3.5.

3.2 Constraint-extrapolated conditional gradient method

In this section, we present a basic version of the constraint-extrapolated conditional gra-

dient method for solving convex optimization problem (1.8). Subsection 3.2.1 focuses on

the case when f and hi are smooth convex functions, while subsection 3.2.2 extends our

discussion to the situation where f and hi are not necessarily differentiable.

3.2.1 Smooth functions

Throughout this subsection, we assume that f and hi are differential and their gradients are

Lipschitz continuous s.t.

‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖, ∀x1, x2 ∈ X, (3.1)

‖∇hi(x1)−∇hi(x2)‖∗ ≤ Lh,i‖x1 − x2‖, ∀x1, x2 ∈ X, i = 1, . . . , d. (3.2)

Here ‖ · ‖ denotes an arbitrary norm which is not necessarily associated with the inner

product 〈·, ·〉 (‖ · ‖∗ is the conjugate norm of ‖ · ‖). For notational convenience, we denote

Lh = (Lh,1; . . . ;Lh,d) and L̄h = ‖Lh‖2.
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We need to use the Lipschitz continuity of the constraint function hi when developing

conditional gradient methods for function constrained problems. Clearly, under the bound-

edness assumption of X , the constraint functions hi are Lipschitz continuous with constant

Mh,i, i.e.,

‖∇hi(x)‖∗ ≤Mh,i, ∀x ∈ X. (3.3)

In particular, letting x∗ be an optimal solution of problem (1.8), we have Mh,i ≤ ∇f(x∗) +

Lh,iDX , where DX denotes the diameter of X given by

DX := max
x1,x2∈X

‖x1 − x2‖. (3.4)

Note that a different way to bound on Mh,i will be discussed for certain structured non-

smooth problems in Subsection 3.2.2. For the sake of notational convenience, we also

denote

M̄h =
√∑d

i=1M
2
h,i. (3.5)

Since we can only perform linear optimization over the feasible region X , one natural

way to solve problem (1.8) is to consider its saddle point reformulation

min
x∈X

max
y∈Rm,z∈Rd+

f(x) + 〈g(x), y〉+ 〈h(x), z〉. (3.6)

Throughout the chapter, we assume that the standard Slater condition holds for problem

(1.8) so that a pair of optimal dual solutions (y∗, z∗) of problem (3.6) exists.

In [28] (see also Chapter 7 of [44]), Lan presented a smoothing conditional gradient

method for solving problems in the form of (3.6). This method applies the conditional gra-

dient algorithm for a properly smoothed version of the objective function of (3.6). How-

ever, this scheme is not applicable for our setting due to the following reasons. Firstly,

the smoothing conditional gradient method only solves bilinear saddle point problems with

linear coupling terms given by 〈g(x), y〉 and cannot deal with the nonlinear coupling term
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〈h(x), z〉. Secondly, even for the bilinear saddle point problems, the smoothing conditional

gradient method in [44, 28] requires the feasible set of y to be bounded, which does not

hold for problem (3.6).

Our development has been inspired the constraint extrapolation (ConEx) method re-

cently introduced by Boob, Deng and Lan [88] for solving problem (3.6). ConEx is an

accelerated primal-dual type method which updates both the primal variable x and dual

variables (y, z) in the each iteration. In comparison with some previously developed ac-

celerated primal-dual methods for solving saddle point problems with nonlinear coupling

terms [90, 91], one distinctive feature of ConEx is that it defines the acceleration (or mo-

mentum) step by extrapolating the linear approximation of the nonlinear function h. As a

consequence, it can deal with unbounded feasible regions for the dual variable z (or y) and

thus solve the function (or affine) constrained convex optimization problems. However,

each iteration of the ConEx method requires the projection onto the feasible region X , and

hence is not applicable to our problem setting.

In order to address the above issues for solving problem (1.8) (or (3.6)), we present a

novel constraint-extrapolated conditional gradient (CoexCG) method, which incorporates

some basic ideas of the ConEx method into the conditional gradient method. As shown

in Algorithm 3, the CoexCG method first performs in (3.9) an extrapolation step for the

affine constraint g. Then in (3.10) it performs an extrapolation step based on the linear

approximation of the constraint function h given by

lhi(x̄, x) := hi(x̄) + 〈∇hi(x̄), x− x̄〉, (3.7)

lh(x̄, x) := (lh1(x̄, x); . . . , lhd(x̄, x)). (3.8)

Utilizing the extrapolated constraint values g̃k and h̃k, it then updates the dual variables

qk and rk associated with the affine constraint g(x) = 0 and the nonlinear constraints

h(x) ≤ 0 in (3.11) and (3.12), respectively. With these updated dual variables and linear
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approximation lf (xk−1, x) and lh(xk−1, x), it solves a linear optimization problem over X

to update the primal variable pk ∈ X in (3.13). Finally, the output solution xk is computed

as a convex combination of xk−1 and pk in (3.14).

Algorithm 3 Constraint-extrapolated Conditional Gradient (CoexCG)

Let the initial points p0 = p−1 ∈ X , x0 = x−1 = x−2 ∈ X , q0 ∈ Rm and r0 ∈ Rd
+ be

given. Also let the stepsize parameters λk ≥ 0, τk ≥ 0 and αk ∈ [0, 1] be given.

for k = 1 to N do

g̃k = g(pk−1) + λk[g(pk−1)− g(pk−2)], (3.9)

h̃k = lh(xk−2, pk−1) + λk[lh(xk−2, pk−1)− lh(xk−3, pk−2)], (3.10)

qk = argminy∈Rm{〈−g̃k, y〉+ τk
2
‖y − qk−1‖2

2}, (3.11)

rk = argminz∈Rd+{〈−h̃k, z〉+ τk
2
‖z − rk−1‖2

2}, (3.12)

pk = argminx∈X{lf (xk−1, x) + 〈g(x), qk〉+ 〈lh(xk−1, x), rk〉}, (3.13)

xk = (1− αk)xk−1 + αkpk. (3.14)

end for

It is interesting to build some connections between the CoexCG method and the ConEx

method in [88]. In particular, by replacing the relations in (3.13) and (3.14) with

pk = argminx∈X{lf (pk−1, x) + 〈g(x), qk〉+ 〈lh(pk−1, x), rk〉+ ηk
2
‖x− pk−1‖2

2},

then we essentially obtain the ConEx method. Comparing these relations, we observe that

the CoexCG method differs from the ConEx method in the following few aspects. Firstly,

pt in CoexCG is computed by solving a linear optimization problem, while the one in the

ConEx method is computed by using a projection. The use of linear optimization enables

the CoexCG method to generate sparse solutions in feasible sets X with a huge large num-

ber of extreme points (see Section 4.5). Secondly, the linear approximation models lf and
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lh in the ConEx method is built on the search point pk−1, while the one in the CoexCG

method is built on xk−1, or equivalently, the convex combination of all previous search

points pi, i = 1, . . . , k − 1.

We need to add a few more remarks about the CoexCG method. Firstly, by (3.11) and

(3.12), we can define qk and rk equivalently as

qk = qk−1 + 1
τk
g̃k,

rk = max{rk−1 + 1
τk
h̃k, 0}.

It is also worth noting that we can generalize the CoexCG method to deal with conic in-

equality constraint h(x) ∈ K, by simply replacing the constraint z ∈ Rd
+ in (3.12) with

z ∈ −K∗. Here K ⊂ Rl is a given closed convex cone and K∗ denotes its the dual cone.

Secondly, in addition to the primal output solution xk in (3.14), we can also define the

dual output solutions yk and zk as

yk = (1− αk)yk−1 + αkqk, (3.15)

zk = (1− αk)zk−1 + αkrk. (3.16)

Different from xk, these dual variables yk and zk do not participate in the updating of any

other search points. However, both of them will be used intensively in the convergence

analysis of the CoexCG method.

Thirdly, even though we do not need to select the parameter ηk when defining pk as

in the ConEx method, we do need to specify the stepsize parameter τk to update the dual

variables qk and rk. We also need to determine the parameters λk and αk, respectively, to

define the extrapolation steps and the output solution xk. We will discuss the selection of

these algorithmic parameters after establishing some general convergence properties of the

61



CoexCG method.

Our goal in the remaining part of this subsection is to establish the convergence of the

CoexCG method. Let xk, yk, and zk be defined in (3.14), (3.15), and (3.16). Throughout

this section, we denote wk ≡ (xk, yk, zk) and w ≡ (x, y, z), and define the gap function

Q(wk, w) as

Q(wk, w) := f(xk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉+ 〈h(xk), z〉 − 〈h(x), zk〉. (3.17)

We start by stating some well-known technical results that have been used in the conver-

gence analysis of many first-order methods. The first result, often referred to “three-point

lemma” (see, e.g., Lemma 3.1 of [44]), characterizes the optimality conditions of (3.11)

and (3.12).

Lemma 1 Let qk and rk be defined in (3.11) and (3.12), respectively. Then,

〈−g̃k, qk − y〉+ τk
2
‖qk − qk−1‖2

2 ≤ τk
2
‖y − qk−1‖2

2 − τk
2
‖y − qk‖2

2,∀y ∈ Rm, (3.18)

〈−h̃k, rk − z〉+ τk
2
‖rk − rk−1‖2

2 ≤ τk
2
‖z − rk−1‖2

2 − τk
2
‖z − rk‖2

2,∀z ∈ Rd
+. (3.19)

The following result helps us to take telescoping sums (see Lemma 3.17 of [44]).

Lemma 2 Let αk ∈ (0, 1], k = 0, 1, 2, . . ., be given and denote

Γk =

 1, if k = 1;

(1− αk)Γk−1, if k > 1.
(3.20)

If {∆k} satisfies

∆k+1 ≤ (1− αk)∆k +Bk,∀k ≥ 1,

then we have

∆k+1

Γk
≤ (1− α1)∆1 +

∑k
i=1

Bi
Γi
.
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We now establish an important recursion of the CoexCG method.

Proposition 3 For any k > 1, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τk

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+ αk[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+ αkτk
2

[‖y − qk−1‖2
2 − ‖y − qk‖2

2 + ‖z − rk−1‖2
2 − ‖z − rk‖2

2], ∀w ∈ X × Rm × Rd
+,

where DX is defined in (3.4).

Proof. It follows from the smoothness of f and h (e.g., Lemma 3.2 of [44]) and the

definition of xk in (3.14) that

f(xk) ≤ lf (xk−1, xk) +
Lf
2
‖xk − xk−1‖2

= (1− αk)lf (xk−1, xk−1) + αklf (xk−1, pk) +
Lfα

2
k

2
‖pk − xk−1‖2

= (1− αk)f(xk−1) + αklf (xk−1, pk) +
Lfα

2
k

2
‖pk − xk−1‖2.

hi(xk) ≤ (1− αk)hi(xk−1) + αklhi(xk−1, pk) +
Lh,iα

2
k

2
‖pk − xk−1‖2.

Using the above two relations in the definition of Q(wk, w) in (3.17), we have for any
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w ≡ (x, y, z) ∈ X × Rm × Rd
+,

Q(wk, w) = f(xk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉+ 〈h(xk), z〉 − 〈h(x), zk〉

≤ (1− αk)f(xk−1) + αklf (xk−1, pk)− f(x) + 〈g(xk), y〉 − 〈g(x), yk〉

+ 〈(1− αk)h(xk−1) + αklh(xk−1, pk)), z〉 − 〈h(x), zk〉

+
(Lf+zTLh)α2

k

2
‖pk − xk−1‖2

= (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

k

2
‖pk − xk−1‖2

+ αk[lf (xk−1, pk)− f(x) + 〈g(pk), y〉 − 〈g(x), qk〉+ 〈lh(xk−1, pk), z〉 − 〈h(x), rk〉].

Moreover, by the definition of xk in (3.14) and the convexity of f and hi, we have

lf (xk−1, pk) + 〈g(pk), qk〉+ 〈lh(xk−1, pk), rk〉

≤ lf (xk−1, x) + 〈g(x), qk〉+ 〈lh(xk−1, x), rk〉

≤ f(x) + 〈g(x), qk〉+ 〈h(x), rk〉, ∀x ∈ X.

Combining the above two relations, we obtain

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

k

2
‖pk − xk−1‖2

+ αk[〈g(pk), y − qk〉+ 〈lh(xk−1, pk), z − rk〉]

≤ 1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk[〈g(pk), y − qk〉+ 〈lh(xk−1, pk), z − rk〉], ∀w ∈ X × Rm × Rd
+.

(3.21)

Multiplying both sides of (3.18) and (3.19) by αk and summing them up with the above
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inequality, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2

[‖y − qk−1‖2
2 − ‖y − qk‖2

2 − ‖qk − qk−1‖2
2]

+ αkτk
2

[‖z − rk−1‖2
2 − ‖z − rk‖2

2 − ‖rk − rk−1‖2
2], ∀w ∈ X × Rm × Rd

+.

(3.22)

Now observe that by the definition of g̃k in (3.9) and the fact that g(x) = Ax− b, we have

〈g(pk)− g̃k), y − qk〉 − τk
2
‖qk − qk−1‖2

2

= 〈A[(pk − pk−1)− λk(pk−1 − pk−2)], y − qk〉 − τk
2
‖qk − qk−1‖2

2

= 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉

+ λk〈A(pk−1 − pk−2), qk − qk−1〉 − τk
2
‖qk − qk−1‖2

2

≤ 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉

+
λ2
k

2τk
‖A‖2‖pk − pk−1‖2

2

≤ 〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉+
λ2
k

2τk
‖A‖2D2

X , (3.23)

where the first inequality follows from Young’s inequality and the last one follows from the

definition of DX in (3.4). In addition, by the definition of h̃k in (3.10), we have

〈lh(xk−1, pk)− h̃k, z − rk〉 − τk
2
‖rk − rk−1‖2

2

≤ 〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉 − λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉

+ λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), rk − rk−1〉 − τk
2
‖rk − rk−1‖2

2

≤ 〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉+
9λ2
kM̄

2
hD

2
X

2τk
, (3.24)
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where the last inequality follows from

λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), rk − rk−1〉 − τk
2
‖rk − rk−1‖2

2

≤ λ2
k

2τk

∑d
i=1[lhi(xk−2, pk−1)− lhi(xk−3, pk−2)]2

=
λ2
k

2τk

∑d
i=1[hi(xk−2)− hi(xk−3) + 〈∇hi(xk−2), pk−1 − xk−2〉+ 〈∇hi(xk−3), pk−2 − xk−3〉]2

≤ 9λ2
kD

2
X

2τk

∑d
i=1M

2
h,i =

9λ2
kM̄

2
hD

2
X

2τk
. (3.25)

The result then follows by plugging relations (3.23) and (3.24) into (3.22).

We are now ready to establish the main convergence properties for the CoexCG method.

Theorem 4 Let Γk be defined in (3.20) and assume that the algorithmic parameters αk, τk

and λk in the CoexCG method satisfy

α1 = 1, λkαk
Γk

= αk−1

Γk−1
and αkτk

Γk
≤ αk−1τk−1

Γk−1
,∀k ≥ 2. (3.26)

Then we have

Q(wN , w) ≤ ΓN
∑N

k=1

[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2
‖y − q0‖2

2 + τ1ΓN
2
‖z − r0‖2

2, ∀w ∈ X × Rm × Rd
+,

(3.27)

where DX is defined in (3.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N

k=1

[
Lfα

2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2
(‖q0‖2

2 + ‖r0‖2
2) (3.28)
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and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ ΓN
∑N

k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN [(‖y∗‖2 + 1)2 + ‖q0‖2

2 + (‖z∗‖2 + 1)2 + ‖r0‖2
2], (3.29)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (3.6).

Proof. It follows from Lemma 2 and Proposition 3 that

Q(wN ,w)
ΓN

≤(1− α1)Q(w0, w) +
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+
∑N

k=1
αk
Γk

[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+
∑N

k=1
αk
Γk

[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+
∑N

k=1
αkτk
2Γk

[‖y − qk−1‖2
2 − ‖y − qk‖2

2 + ‖z − rk−1‖2
2 − ‖z − rk‖2

2],

which, in view of (3.26), then implies that

Q(wN , w) ≤ ΓN
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN〈A(pN − pN−1), y − qN〉 − αN τN
2
‖y − qN‖2

2

+ αN〈lh(xN−1, pN)− lh(xN−2, pN−1), z − rN〉 − αN τN
2
‖z − rN‖2

2

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2]

≤ ΓN
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN
2τN
‖A‖2‖pN − pN−1‖2

2 +
9M̄2

hαND
2
X

2τN

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2],

where the last relation follows from Young’s inequality and a result similar to (3.25). The

result in (3.27) then immediately follows from the above inequality.
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Note that by the definition of Q(wk, w) in (3.17), and the facts that g(x∗) = 0 and

h(x∗) ≤ 0, we have f(xN)− f(x∗) ≤ Q(wN , (x
∗, 0, 0)). Using this observation and fixing

x = x∗, y = 0, z = 0 in (3.27), we obtain (3.28). Now let us denote

ŷN := (‖y∗‖2 + 1) g(xN )
‖g(xN )‖2 , (3.30)

ẑN := (‖z∗‖2 + 1) [h(xN )]+
‖[h(xN )]+‖2 , (3.31)

ŵ∗N := (x∗, ŷN , ẑN). (3.32)

Note that by the optimality condition of (3.6), we have

0 ≤ Q(wN , w
∗) = f(xN)− f(x∗) + 〈g(xN), y∗〉+ 〈h(xN), z∗〉

≤ f(xN)− f(x∗) + ‖g(xN)‖2 · ‖y∗‖2 + ‖[h(xN)]+‖2 · ‖z∗‖2.

In addition, using the fact that g(x∗) = 0 and 〈h(x∗), ẑN〉 ≤ 0, we have

Q(wN , ŵ
∗
N) ≥ f(xN)− f(x∗) + 〈g(xN), ŷN〉+ 〈h(xN), ẑN〉

= f(xN)− f(x∗) + ‖g(xN)‖2(‖y∗‖2 + 1) + ‖[h(xN)]+‖2(‖z∗‖2 + 1).

Combining the previous two observations, we conclude that

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ Q(wN , ŵ
∗
N). (3.33)

The previous conclusion, together with (3.27) and the facts that

‖ŷN − q0‖2
2 ≤ 2[‖ŷN‖2

2 + ‖q0‖2
2] = 2[(‖y∗‖2 + 1)2 + ‖q0‖2

2], (3.34)

‖ẑN − r0‖2
2 ≤ 2[ẑN‖2

2 + ‖r0‖2
2] = 2[(‖z∗‖2 + 1)2 + ‖r0‖2

2], (3.35)

ẑTNLh ≤ ‖ẑTN‖2‖Lh‖2 = (‖z∗‖2 + 1)L̄h, (3.36)
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then imply that

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ ΓN
∑N

k=1

[
(Lf+ẑTNLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN

2
‖ŷN − q0‖2

2 + τ1ΓN
2
‖ẑN − r0‖2

2

≤ ΓN
∑N

k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2τN
+ τ1ΓN [(‖y∗‖2 + 1)2 + ‖q0‖2

2 + (‖z∗‖2 + 1)2 + ‖r0‖2
2].

Below we provide a specific selection of the algorithmic parameters αk, λk and τk and

establish the associated rate of convergence for the CoexCG method.

Corollary 4.1 If the number of iterations N is fixed a priori, and

αk = 2
k+1

, λk = k−1
k
, τk = N3/2

k
DX

√
9‖Mh‖2 + ‖A‖2, k = 1, . . . , N, (3.37)

then we have

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

(
‖y − q0‖2

2 + ‖z − r0‖2
2 + 1

)
,

∀w ∈ X × Rm × Rd
+, (3.38)

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

(‖(q0; r0)‖2
2 + 1), (3.39)

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤
2[Lf+(‖z∗‖2+1)L̄h]D2

X

N+1

+
2DX
√

9M̄2
h+‖A‖2

√
N

[2‖(y∗; z∗)‖2
2 + ‖(q0; r0)‖2

2 + 5]. (3.40)

Proof. By (3.20) and the definition of αk in (3.37), we have Γk = 2/[k(k + 1)] and

αk/Γk = k. We can easily see from these identities and (3.37) that the conditions in (3.26)
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hold. It is also easy to verify that

∑N
k=1

α2
k

Γk
= 2

∑N
k=1

k
k+1
≤ 2N,∑N

k=1

αkλ
2
k

τkΓk
=

∑N
k=1(k − 1)2

2N3/2DX
√

9‖Mh‖2+‖A‖2
≤ N3/2

6DX
√

9‖Mh‖2+‖A‖2
.

Using these relations in (3.27), (3.28) and (3.29), we conclude that

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1
+
√
NDX
√

9M̄2
h+‖A‖2

6(N+1)

+
DX
√

9M̄2
h+‖A‖2

(N+1)
√
N

+
√
NDX
√

9M̄2
h+‖A‖2

N+1
(‖y − q0‖2

2 + ‖z − r0‖2
2)

=
2(Lf+zTLh)D2

X

N+1
+ [

√
N

6(N+1)
+ 1

(N+1)
√
N

+
√
N

N+1
(‖y − q0‖2

2

+ ‖z − r0‖2
2)]DX

√
9M̄2

h + ‖A‖2

≤ 2(Lf+zTLh)D2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

(
‖y − q0‖2

2 + ‖z − r0‖2
2 + 1

)
,

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

(‖q0‖2
2 + ‖r0‖2

2 + 1),

and

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1
+
√
NDX
√

9M̄2
h+‖A‖2

6(N+1)
+

DX
√

9M̄2
h+‖A‖2

(N+1)
√
N

+
2
√
NDX
√

9M̄2
h+‖A‖2

N+1
[(‖y∗‖2 + 1)2 + ‖q0‖2

2 + (‖z∗‖2 + 1)2 + ‖r0‖2
2]

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

[1 + 2(‖y∗‖2 + 1)2 + 2‖q0‖2
2

+ 2(‖z∗‖2 + 1)2 + 2‖r0‖2
2]

≤ 2[Lf+(‖z∗‖2+1)L̄h]D2
X

N+1
+

2DX
√

9M̄2
h+‖A‖2

√
N

[2(‖y∗‖2
2 + ‖z∗‖2

2) + ‖q0‖2
2 + ‖r0‖2

2 + 5].

A few remarks about the results obtained in Theorem 4 and Corollary 4.1 are in place.

Firstly, in view of (3.38), the gap functionQ(wN , w) converges to 0 with the rate of conver-

gence given by O(1/
√
N). This bound has been shown to be not improvable in [28] (see
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also Chapter 7 of [44]). Secondly, in view of (3.39) and (3.40), the number of iterations

required by the CoexCG method to find a ε-solution of problem (1.8), i.e., a point x̄ ∈ X

s.t. f(x̄)− f(x∗) ≤ ε and ‖g(x̄)‖2 + ‖[h(x̄)]+‖2 ≤ ε, is bounded by O(1/ε2). Thirdly, it is

interesting to observe that in both (3.39) and (3.40), the Lipschitz constants Lf and L̄h do

not impact too much the rate of convergence of the CoexCG method, since both of them

appear only in the non-dominant terms. We will explore further this property of the Co-

exCG method in order to solve problems with certain nonsmooth objective and constraint

functions. Finally, it is worth noting that in the parameter setting (3.37), we need to fix the

total number of iterations N in advance. This is not desirable for the implementation of

the CoexCG method, especially for the situation when one has finished the scheduled N

iterations, but then realizes that a more accurate solution is needed. In this case, one has to

completely restart the CoexCG method with a different parameter setting that depends on

the modified iteration limit. We will discuss how to address this issue in Section 3.3.

3.2.2 Structured nonsmooth functions

In this subsection, we still consider problem (1.8), but the objective function f and con-

straint functions hi are not necessarily differentiable. More specifically, we assume that

f(·) and hi(·) are given in the following form:

f(x) = max
q∈Q
{〈Bx, q〉 − f̂(q)},

hi(x) = max
s∈Si
{〈Cix, s〉 − ĥi(s)}, i = 1, . . . , d,

(3.41)

where Q ⊆ Rm0 and S ⊆ Rmi are closed convex sets, and f̂ and ĥi are simple convex

functions. Many nonsmooth functions can be represented in this form (see [89]). In this

chapter, we assume that f̂ and ĥi are possibly strongly convex w.r.t. the given norms in the
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respective spaces, i.e..

f̂(q1)− f̂(q2)− 〈f̂ ′(q2), q1 − q2〉 ≥ µ0

2
‖q1 − q2‖2,∀q1, q2 ∈ Q (3.42)

ĥi(s1)− ĥi(s2)− 〈ĥ′i(s2), s1 − s2〉 ≥ µi
2
‖s1 − s2‖2,∀s1, s2 ∈ Si, i = 1, . . . , d, (3.43)

for some µi ≥ 0. If µ0 > 0 (resp., µi > 0), then f (resp., hi) must be differentiable with

Lipschitz continuous gradients. Therefore, our nonsmooth formulation in (3.41) allows

either the objective and/or some constraint functions to be smooth.

Our goal in this subsection is to generalize the CoexCG method to solve these struc-

tured nonsmooth convex optimization problems. In fact, we show that that the number of

CoexCG iterations required to solve these problems is in the same order of magnitude as if

f and hi’s are smooth convex functions.

Since f and hi are possibly not differentiable, we cannot directly apply the CoexCG

algorithm to solve problem (1.8). However, as pointed out by Nesterov [89], these nons-

mooth functions can be closely approximated by smooth convex ones. Let us first consider

the objective function f . Assume that u : Q→ R is a given strongly convex function with

modulus 1 w.r.t. a given norm ‖ · ‖ in Rm0 , i.e.,

u(q1) ≥ u(q2) + 〈u′(q2), q1 − q2〉+ 1
2
‖q1 − q2‖2,∀q1, q2 ∈ Q.

Let us denote cu := argminq∈Qu(y), U(q) := u(q)− u(cu)− 〈∇u(cu), q − cu〉 and

DU := [max
q∈Q

U(y)]1/2, (3.44)

and define

fη0(x) := max
q∈Q
{〈Bx, q〉 − f̂(q)− η0U(q)]} (3.45)

for some η0 ≥ 0. Then, we can show that fη0 is differentiable and its gradients satisfy (see
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[89])

‖∇fη0(x1)−∇fη0(x2)‖∗ ≤ Lf,η‖x1 − x2‖, ∀x1, x2 ∈ X with Lf,η := ‖B‖2
µ0+η0

. (3.46)

In addition, we have

fη0(x) ≤ f(x) ≤ fη0(x) + η0D
2
U , ∀x ∈ X. (3.47)

In our algorithmic scheme, we will set η0 = 0 whenever f̂ is strongly convex, i.e., µ0 > 0.

Similarly, let us assume that vi : Si → R are strongly convex with modulus 1 w.r.t.

a given norm ‖ · ‖ in Rmi , i = 1, . . . , d. Also let us denote cvi := argmins∈Sivi(s),

Vi(s) := vi(s)− vi(cvi)− 〈∇vi(cvi), s− cvi〉 and

DVi := [max
s∈Si

Vi(s)]
1/2, (3.48)

and define

hi,ηi(x) = max
s∈Si
{〈Cix, s〉 − ĥi(s)− ηiVi(s)} (3.49)

for some ηi ≥ 0. We can show that for all i = 1, . . . , d,

‖∇hi,ηi(x1)−∇hi,ηi(x2)‖∗ ≤ ‖Ci‖2
µi+ηi
‖x1 − x2‖, ∀x1, x2 ∈ X, (3.50)

hi,ηi(x) ≤ hi(x) ≤ hi,ηi(x) + ηiD
2
Vi
, ∀x ∈ X. (3.51)

In our algorithmic scheme, we will set ηi = 0 whenever ĥi is strongly convex, i.e., µi > 0.

For notational convenience, we denote

hη(x) := (h1,η1(x); . . . ;hd,ηd(x)), Lh,η := ( ‖C1‖2
µĥ1

+η1
; . . . ; ‖Cd‖

2

µĥd
+ηd

) and L̄h,η := ‖Lh,η‖2.

(3.52)

Different from the objective function, we need to show that the gradient of the hi,ηi is
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bounded. Note that the boundedness of the gradients for smooth constraint functions (with

µi > 0 and hence ηi = 0) follows from the boundedness ofX (see Section 3.2.1). For those

nonsmooth constraint functions hi (with µi = 0), we need to assume that Si’s are compact.

For a given x ∈ X , let s∗(x) be the optimal solution of (3.49). Then

‖∇hi,ηi(x)‖∗ = ‖CT
i · s∗(x)‖∗ ≤ ‖Ci‖‖s∗(x)‖

≤ ‖Ci‖(‖cvi‖+ ‖s∗(x)− cvi‖)

≤ ‖Ci‖(‖cvi‖+
√

2DVi) =: MCi,Vi , i = 1, . . . , d. (3.53)

For notational convenience, we also denote

M̄C,V :=
√∑d

i=1M
2
Ci,Vi

. (3.54)

Observe that the Lipschitz constants MCi,Vi defined in (3.53) do not depend on the smooth-

ing parameters ηi, i = 1, . . . , d. This fact will be important for us to derive the complexity

bound of the CoexCG method for solving convex optimization problems with nonsmooth

function constraints.

Instead of solving the original problem (1.8), we suggest to apply the CoexCG method

to the smooth approximation problem

min fη0(x)

s.t. g(x) = 0,

hi,ηi(x) ≤ 0,∀i = 1, . . . , d,

x ∈ X.

(3.55)

More specifically, we replace the linear approximation functions lh and lf used in (3.10)

and (3.13) by lhi,ηi and lfηo , respectively. However, we will establish the convergence of

this method in terms of the solution of the original problem in (1.8) rather than the approx-
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imation problem in (3.55). Our convergence analysis below exploits the smoothness of fη0

(resp., hi,ηi), the closeness between f and fη0 (resp., hi and hi,ηi), and also importantly, the

fact that hi,ηi(x) underestimates hi(x) for all x ∈ X .

Theorem 5 Consider the CoexCG method applied to the smooth approximation prob-

lem (3.55). Assume that the number of iterations N is fixed a priori, and that the pa-

rameters {αk}, {τk} and {λk} are set to (3.37) with M̄h replaced by M̄C,V in (3.54). Then

we have

f(xN)− f(x∗) ≤ 2Lf,ηD
2
X

N+1
+

DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖2

2 + ‖r0‖2
2 + 1

)
+ η0D

2
U , (3.56)

‖[h(xN)]+‖+ ‖AxN‖ ≤
2[Lf,η+(‖z∗‖2+1)L̄h,η ])D2

X

N+1
+

2DX
√

9M̄2
C,V +‖A‖2
√
N

(2‖(y∗; z∗)‖2
2

+ ‖(q0; r0)‖2
2 + 5) + η0D

2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηiD

2
Vi

)2)1/2, (3.57)

where (x∗, y∗, z∗) is a triple of optimal solutions for problem (3.6), Lf,η and L̄h,η are defined

in (3.46) and (3.52), respectively, and DX , DU and DVi are defined in (3.4), (3.44) and

(3.48), respectively.

Proof. DenoteQη(wN , w) := fη0(xN)−fη0(x)+〈g(xN), y〉−〈g(x), yN〉+〈hη(xN), z〉−

〈hη(x), zN〉. In view of Corollary 4.1, we have

Qη(wN , w) ≤ (Lf,η+zTLh,η)D2
X

N+1
+

DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖y − q0‖2

2 + ‖z − r0‖2
2 + 1

)
(3.58)

for any w ∈ X × Rm × Rd
+. Using the relations in (3.47) and (3.51), and the fact that

z, zN ∈ Rd
+, we can see that

Q(wN , w) ≤ Qη(wN , w) + η0D
2
U +

∑d
i=1(ηiziD

2
Vi

)

≤ Qη(wN , w) + η0D
2
U + ‖z‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2, ∀w ∈ X × Rm × Rd
+.

(3.59)
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By letting x = x∗, y = 0 and z = 0, we have

f(xN)− f(x∗) ≤ Q(wN , z) ≤ Qη(zN , z) + η0D
2
U ,

which, in view of (3.58), then implies (3.56). Now let ŵ∗N be defined in (3.32). By (3.33),

(3.58) and (3.59), we have

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ Q(wN , ŵ
∗
N)

≤ Qη(wN , ŵ
∗
N) + η0D

2
U + ‖ẑN‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2

≤ (Lf,η+ẑTNLh,η)D2
X

N+1
+

DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖ŷN − q0‖2

2 + ‖ẑN − r0‖2
2 + 1

)
+ η0D

2
U + ‖ẑN‖2(

∑d
i=1(ηiD

2
Vi

)2)1/2

≤ [Lf,η+(‖z∗‖2+1)L̄h,η ])D2
X

N+1
+

2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖2

2 + ‖(q0; r0)‖2
2 + 5

)
+ η0D

2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηiD

2
Vi

)2)1/2,

where the last inequality follows from the bounds in (3.34) and (3.35), and the facts that

‖ẑN‖2 ≤ ‖z∗‖2 + 1 and ẑTNLh,η ≤ ‖ẑTN‖2‖Lh,η‖2 = (‖z∗‖2 + 1)L̄h,η.

We now specify the selection of the smoothing parameters ηi, i = 0, . . . , d. We con-

sider only the most challenging case when the objective and all constraint functions are

nonsmooth and establish the rate of convergence of the aforementioned CoexCG method

for nonsmooth convex optimization.

Corollary 5.1 Suppose that the smoothing parameters in problem (3.55) are set to

η0 = ‖B‖DX
DU
√
N

and ηi = ‖Ci‖DX
DVi

√
N
, i = 1, . . . , d. (3.60)
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Then under the same premise of Theorem 5, we have

f(xN)− f(x∗) ≤ 3DXDU‖B‖√
N

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖2

2 + ‖r0‖2
2 + 1

)
, (3.61)

‖[h(xN)]+‖+ ‖AxN‖ ≤ 3DXDU‖B‖√
N

+
2(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖2

2 + ‖(q0; r0)‖2
2 + 5

)
. (3.62)

Proof. It follows from (3.46), (3.52) and (3.60) that

Lf,η = ‖B‖2
η0

= DU‖B‖
√
N

DX
,

L̄h,η =

√∑d
i=1

(
‖Ci‖2
ηi

)2

=

√∑d
i=1

(
DVi‖Ci‖

√
N

DX

)2

=

√
N

√∑d
i=1(DVi‖Ci‖)2

DX
.

Also notice that

η0D
2
U = DXDU‖B‖√

N

(
∑d

i=1(ηiD
2
Vi

)2)1/2 =

(∑d
i=1

‖Ci‖2D2
XD

2
Vi

N

)1/2

=
DX

√∑d
i=1(DVi‖Ci‖)2

√
N

.

Using these identities and the assumptions in (3.56) and (3.57), we have

f(xN)− f(x∗) ≤ 2DXDU‖B‖√
N+1

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖2

2 + ‖r0‖2
2 + 1

)
+ DXDU‖B‖√

N

≤ 3DXDU‖B‖√
N

+
DX
√

9M̄2
C,V +‖A‖2
√
N

(
‖q0‖2

2 + ‖r0‖2
2 + 1

)
,

‖[h(xN)]+‖+ ‖AxN‖ ≤ 2DXDU‖B‖√
N+1

+
(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N+1

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖2

2 + ‖(q0; r0)‖2
2 + 5

)
+ DXDU‖B‖√

N
+

(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

≤ 3DXDU‖B‖√
N

+
2(‖z∗‖2+1)DX

√∑d
i=1(DVi‖Ci‖)2

√
N

+
2DX
√

9M̄2
C,V +‖A‖2
√
N

(
2‖(y∗; z∗)‖2

2 + ‖(q0; r0)‖2
2 + 5

)
.
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We add a few remarks about the results obtained in Theorem 5 and Corollary 5.1.

Firstly, in view of Corollary 5.1, even if f and hi are nonsmooth functions, the number

of CoexCG iterations required to find an ε-solution of problem (1.8) is still bounded by

O(1/ε2). Therefore, by utilizing the structural information of f and hi, the CoexCG can

solve this type of nonsmooth problem efficiently as if they are smooth functions. Sec-

ondly, if either the objective function or some constraint functions are smooth, we can set

the corresponding smoothing parameter to be zero and obtain slightly improved complex-

ity bounds than those in Corollary 5.1. Thirdly, similar to the CoexCG method applied

for solving problem (1.8) with smooth objective and constraint functions, we need to fix

the number of iterations N in advance when specifying the algorithmic parameters and

smoothing parameters. We will address this issue in next section.

3.3 Constraint-extrapolated and dual-regularized conditional gradient method

One critical shortcoming associated with the basic version of the CoexCG method is that

we need to fix the number of iterations N a priori. Our goal in this section is to develop

a variant of CoexCG which does not have this requirement. We consider the case when f

and hi are smooth and structured nonsmooth functions, respectively, in Subsections 3.3.1

and 3.3.2.

3.3.1 Smooth functions

In order to remove the assumption of fixing N a priori, we suggest to modify the dual

projection steps (3.11) and (3.12) in the CoexCG method. More specifically, we add an

additional regularization term with diminishing weights into these steps. This variant of

CoexCG is formally described in Algorithm 4.
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Algorithm 4 Constraint-extrapolated and Dual-regularized Conditional Gradient (Coex-
DurCG)

The algorithm is the same as CoexCG except that (3.11) and (3.12) are replaced by

qk = argminy∈Rm{〈−g̃k, y〉+ τk
2
‖y − qk−1‖2

2 + γk
2
‖y − q0‖2

2}, (3.63)

rk = argminz∈Rd+{〈−h̃k, z〉+ τk
2
‖z − rk−1‖2

2 + γk
2
‖z − r0‖2

2}, (3.64)

for some γk ≥ 0.

Clearly, we can write qk and rk in (3.63) and (3.64) equivalently as

qk = 1
τk+γk

(τkqk−1 + γkq0 + g̃k),

rk = max
{

1
τk+γk

(τkrk−1 + γkr0 + h̃k), 0
}

Similar to the CoexCG method, it is also possible to generalize CoexDurCG for solving

problems with conic inequality constraints. The following result, whose proof can be found

in Lemma 3.5 of [44], characterizes the optimality conditions for (3.63) and (3.64).

Lemma 6 Let qk and rk be defined in (3.63) and (3.64), respectively. Then,

〈−g̃k, qk − y〉+ τk
2
‖qk − qk−1‖2

2 + γk
2
‖qk − q0‖2

2

≤ τk
2
‖y − qk−1‖2

2 −
τk+γk

2
‖y − qk‖2

2 + γk
2
‖y − q0‖2

2, ∀y ∈ Rm, (3.65)

〈−h̃k, rk − z〉+ τk
2
‖rk − rk−1‖2

2 + γk
2
‖rk − r0‖2

2

≤ τk
2
‖z − rk−1‖2

2 −
τk+γk

2
‖z − rk‖2

2 + γk
2
‖y − r0‖2

2, ∀z ∈ Rd
+. (3.66)

We now establish an important recursion about the CoexDurCG method, which can be

viewed as a counterpart of Proposition 3 for the CoexCG method.
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Proposition 7 For any k > 1, we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τk

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+ αk[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+ αkτk
2

(‖y − qk−1‖2
2 + ‖z − rk−1‖2

2)− αk(τk+γk)
2

(‖y − qk‖2
2 + ‖z − rk‖2

2)

+ αkγk
2

[‖y − q0‖2
2 + ‖z − r0‖2

2], ∀w ∈ X × Rm × Rd
+,

where DX is defined in (3.4).

Proof. Multiplying both sides of (3.65) and (3.66) by αk and summing them up with

the inequality in (3.21), we have

Q(wk, w) ≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2

[‖y − qk−1‖2
2 − ‖qk − qk−1‖2

2]− αk(τk+γk)
2
‖y − qk‖2

2

+ αkτk
2

[‖z − rk−1‖2
2 − ‖rk − rk−1‖2

2]− αk(τk+γk)
2
‖z − rk‖2

2

+ αkγk
2

[‖y − q0‖2 − ‖qk − q0‖2] + αkγk
2

[‖z − r0‖2 − ‖zk − r0‖2]

≤ (1− αk)Q(wk−1, w) +
(Lf+zTLh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lh(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2

[‖y − qk−1‖2
2 − ‖qk − qk−1‖2

2]− αk(τk+γk)
2
‖y − qk‖2

2

+ αkτk
2

[‖z − rk−1‖2
2 − ‖rk − rk−1‖2

2]− αk(τk+γk)
2
‖z − rk‖2

2

+ αkγk
2

[‖y − q0‖2
2 + ‖z − r0‖2

2], ∀w ∈ X × Rm × Rd
+. (3.67)

The result then follows by plugging relations (3.23) and (3.24) into (3.67).

We are now ready to establish the main convergence properties of the CoexDurCG
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method.

Theorem 8 Let Γk be defined in (3.20) and assume that the algorithmic parameters αk, τk

and λk in the CoexDurCG method satisfy

α1 = 1, λkαk
Γk

= αk−1

Γk−1
and αkτk

Γk
≤ αk−1(τk−1+γk−1)

Γk−1
∀k ≥ 2. (3.68)

Then we have

Q(wN , w) ≤ ΓN
∑N

k=1

[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN )

+ ΓN

(
τ1
2

+
∑N

k=1
αkγk
2Γk

)
(‖y − q0‖2

2 + ‖z − r0‖2
2), ∀w ∈ X × Rm × Rd

+,

(3.69)

where DX is defined in (3.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N

k=1

[
Lfα

2
kD

2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN )

+ ΓN

(
τ1
2

+
∑N

k=1
αkγk
2Γk

)
(‖q0‖2

2 + ‖r0‖2
2), (3.70)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤ ΓN
∑N

k=1

[
[Lf+(‖z∗‖2+1)L̄h]α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk

]
+

αN (9M̄2
h+‖A‖2)D2

X

2(τN+γN )
+ ΓN

(
τ1
2

+
∑N

k=1
αkγk
2Γk

)
[(‖y∗‖2 + 1)2 + ‖q0‖2

2

+ (‖z∗‖2 + 1)2 + ‖r0‖2
2], (3.71)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (3.6).
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Proof. It follows from Lemma 2 and Proposition 7 that

Q(wN ,w)
ΓN

≤(1− α1)Q(w0, w) +
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+
∑N

k=1
αk
Γk

[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+
∑N

k=1
αk
Γk

[〈lh(xk−1, pk)− lh(xk−2, pk−1), z − rk〉

− λk〈lh(xk−2, pk−1)− lh(xk−3, pk−2), z − rk−1〉]

+
∑N

k=1

[
αkτk
2Γk

(‖y − qk−1‖2
2 + ‖z − rk−1‖2

2)− αk(τk+γk)
2Γk

(‖y − qk‖2
2 + ‖z − rk‖2

2)
]

+
∑N

k=1
αkγk
2Γk

[‖y − q0‖2
2 + ‖z − r0‖2

2],

which, in view of (3.68), then implies that

Q(wN , w) ≤ ΓN
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN〈A(pN − pN−1), y − qN〉 − αN (τN+γN )
2

‖y − qN‖2
2

+ αN〈lh(xN−1, pN)− lh(xN−2, pN−1), z − rN〉 − αN (τN+γN )
2

‖z − rN‖2
2

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2]

+ ΓN
∑N

k=1
αkγk
2Γk

[‖y − q0‖2 + ‖z − r0‖2]

≤ ΓN
∑N

k=1[
(Lf+zTLh)α2

kD
2
X

2Γk
+

αkλ
2
k(9M̄2

h+‖A‖2)D2
X

2τkΓk
]

+ αN
2(τN+γN )

‖A‖2‖pN − pN−1‖2
2 +

9M̄2
hαND

2
X

2(τN+γN )

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2]

+ ΓN
∑N

k=1
αkγk
2Γk

[‖y − q0‖2
2 + ‖z − r0‖2

2],

where the last relation follows from Young’s inequality and a result similar to (3.25). The

result in (3.27) then immediately follows from the above inequality. We can show (3.70)

and (3.71) similarly to (3.28) and (3.29), and hence the details are skipped.

Corollary 8.1 below shows how to specify the algorithmic parameters, including the

regularization weight γk, for the CoexDurCG method. In particular, the selection of τk was
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inspired by the one used in (3.37), and γk was chosen so that the last relation in (3.68) is

satisfied.

Corollary 8.1 If the algorithmic parameters αk, λk, τk and γk of the CoexDurCG method

are set to

αk = 2
k+1

, λk = k−1
k
, τk = β

√
k, and γk = β

k
[(k + 1)

√
k + 1− k

√
k], (3.72)

with β = DX

√
9M̄2

h + ‖A‖2 for k ≥ 1, then we have, ∀w ∈ X × Rm × Rd
+,

Q(zk, z) ≤
2(Lf+zTLh)D2

X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖y − q0‖2

2 + ‖z − r0‖2
2) + 1

]
. (3.73)

In addition, we have

f(xN)− f(x∗) ≤ 2LfD
2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖q0‖2

2 + ‖r0‖2
2) + 1

]
(3.74)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤
2(Lf+(‖z∗‖2+1)L̄h)D2

X

N+1

+
DX
√

9M̄2
h+‖A‖2

√
N

[
3[(‖y∗‖2 + 1)2 + (‖z∗‖2 + 1)2 + ‖q0‖2

2 + ‖r0‖2
2] + 1

]
, (3.75)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (3.6).

Proof. From the definition of αk in (3.72), we have Γk = 2/[k(k + 1)] and αk/Γk = k.

Hence the first two conditions in (3.68) hold. In addition, it follows from these identities

and (3.72) that αkτk
Γk

= βk
√
k and

αk−1(τk−1+γk−1)

Γk−1
= (k − 1)

[
β
√
k − 1 + β

k−1
[k
√
k − (k − 1)

√
k − 1]

]
= βk

√
k,
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and hence that the last relation in (3.68) also holds. Observe that by (3.72),

∑N
k=1

α2
k

Γk
= 2

∑N
k=1

k
k+1
≤ 2N, (3.76)∑N

k=1
αkγk
Γk

= β
∑N

k=1[(k + 1)
√
k + 1− k

√
k] = β[(N + 1)

√
N + 1− 1], (3.77)∑N

k=1

αkλ
2
k

τkΓk
=
∑N

k=1
(k−1)2

βk
√
k
≤ 1

β

∑N
k=1

√
k − 1 ≤ 1

β

∫ N
0

√
tdt = 2

3β
N3/2. (3.78)

Using these relations in (3.69), we have

Q(wN , w) ≤ 2(Lf+zTLh)D2
X

N+1
+

2
√
N(9M̄2

h+‖A‖2)D2
X

3β(N+1)
+

N(9M̄2
h+‖A‖2)D2

X

β(N+1)2
√
N+1

+ 2β
√
N+1
N

(‖y − q0‖2
2 + ‖z − r0‖2

2)

=
2(Lf+zTLh)D2

X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

[
2
3

+ N
(N+1)2 + 2

√
N+1√
N

(‖y − q0‖2
2 + ‖z − r0‖2

2)
]

≤ 2(Lf+zTLh)D2
X

N+1
+

DX
√

9M̄2
h+‖A‖2

√
N

[
3(‖y − q0‖2

2 + ‖z − r0‖2
2) + 1

]
.

The bounds in (3.74) and (3.75) can be shown similarly and the details are skipped.

In view of the results obtained in Corollary 8.1, the rate of convergence of CoexDurCG

matches that of CoexCG. Moreover, the cost of each iteration of the CoexDurCG is the

same as that of CoexCG.

3.3.2 Structured Nonsmooth Functions

In this subsection, we consider problem (1.8) with structured nonsmooth functions f and

hi given in (3.41). One possible way to solve this nonsmooth problem is to apply the Co-

exDurCG method for the smooth approximation problem (3.55). However, this approach

still requires us to fix the number of iterations N when choosing smoothing parameters ηi,

i = 0, . . . , d.

Our goal in this subsection is to generalize the CoexDurCG method to solve this struc-

tured nonsmooth problem directly. Rather than applying this algorithm to problem (3.55),

we modify the smoothing parameters ηi, i = 0, . . . , d, at each iteration. More specifically,
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we assume that

η1
i ≥ η2

i ≥ . . . ≥ ηki , ∀i = 0, . . . , d, (3.79)

and define a sequence of smoothing functions fηk0 (x) and hi,ηki (x), i = 1, . . . , d, according

to (3.45) and (3.49), respectively. For simplicity, we denote

fk(x) ≡ fηk0 (x), hki (x) ≡ hi,ηki (x) and hk(x) ≡ (hk1(x); . . . ;hkd(x)).

Also let us define the Lipschitz constants

Lkf ≡
‖B‖2
µ0+ηk0

, Lkh ≡ ( ‖C1‖2
µ1+ηk1

; . . . ; ‖Cd‖
2

µd+ηkd
), and L̄kh ≡ ‖Lkh‖2.

It can be seen from (3.79) that

fk−1(x) ≤ fk(x) ≤ fk−1(x) + (ηk−1
0 − ηk0)D2

U , ∀x ∈ X. (3.80)

Indeed, it suffices to show the second relation in (3.80). By definition, we have

fk(x) = max
q∈Q
{〈Bx, q〉 − f̂(q)− ηk0U(q)}

= max
q∈Q
{〈Bx, q〉 − f̂(q)− ηk−1

0 U(q) + (ηk−1
0 − ηk0)U(q)}

≤ max
q∈Q
{〈Bx, q〉 − f̂(q)− ηk−1

0 U(q) + (ηk−1
0 − ηk0)D2

U}

= fk−1(x) + (ηk−1
0 − ηk0)D2

U ,

where the inequality follows from the definition ofDU in (3.44) and the assumption ηk−1
0 ≥

ηk0 in (3.79). Similarly, we have

hk−1
i (x) ≤ hki (x) ≤ hk−1

i (x) + (ηk−1
i − ηki )D2

Vi
, ∀xX, i = 1, . . . , d. (3.81)

Note that in our algorithmic scheme, we can set ηki = 0, i = 0, 1, . . . , d, if the correspond-
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ing objective or constraint functions are smooth (i.e., µi = 0).

We now describe the more general CoexDurCG method for solving structured nons-

mooth problems.

Algorithm 5 CoexDurCG for Structured Nonsmooth Problems
The algorithm is the same as Algorithm 4 except that the extrapolation step (3.10) is

replaced by

h̃k = lhk−1(xk−2, pk−1) + λk[lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2)], (3.82)

and the linear optimization step is replaced by

pk = argminx∈X{lfk(xk−1, x) + 〈g(x), qk〉+ 〈lhk(xk−1, x), rk〉}. (3.83)

In Algorithm 5 we do not explicitly use the smooth approximation problem (3.55).

Instead, we incorporate in (3.82) and (3.83) the adaptive linear approximation functions

lhk and lfk for the objective and constraints, respectively. The convergence analysis of this

algorithm relies on the adaptive primal-dual gap function:

Qk(w̄, w) ≡ Qηk(w̄, w) := fk(x̄)−fk(x)+〈g(x̄), y〉−〈g(x), ȳ〉+〈hk(x̄), z〉−〈hk(x), z̄〉,

(3.84)

as demonstrated in the following result.
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Proposition 9 For any k > 1, we have

Qk(wk, w) ≤ (1− αk)Qk−1(wk−1, w) +
(Lkf+zTLkh)α2

kD
2
X

2

+ (1− αk)[(ηk−1
0 − ηk0)D2

U +
∑d

i=1(ηk−1
i − ηki )ziD

2
Vi

]

+
αkλ

2
k(12M̄2

C,V +‖A‖2)D2
X

2τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi

+ αk[〈A(pk − pk−1), y − qk〉 − λk〈A(pk−1 − pk−2), y − qk−1〉]

+ αk[〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉

− λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉]

+ αkτk
2

(‖y − qk−1‖2
2 + ‖z − rk−1‖2

2)− αk(τk+γk)
2

(‖y − qk‖2
2

+ ‖z − rk‖2
2) + αkγk

2
[‖y − q0‖2

2 + ‖z − r0‖2
2], ∀w ∈ X × Rm × Rd

+,

where DX is defined in (3.4).

Proof. Similar to (3.67), we can show that

Qk(wk, w) ≤ (1− αk)Qk(wk−1, w) +
(Lkf+zTLkh)α2

kD
2
X

2

+ αk〈g(pk)− g̃k), y − qk〉+ αk〈lhk(xk−1, pk)− h̃k, z − rk〉

+ αkτk
2

[‖y − qk−1‖2
2 − ‖qk − qk−1‖2

2]− αk(τk+γk)
2
‖y − qk‖2

2

+ αkτk
2

[‖z − rk−1‖2
2 − ‖rk − rk−1‖2

2]− αk(τk+γk)
2
‖z − rk‖2

2

+ αkγk
2

[‖y − q0‖2
2 + ‖z − r0‖2

2], ∀w ∈ X × Rm × Rd
+. (3.85)
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Moreover, by the definition of h̃k in (3.82), we have

〈lhk(xk−1, pk)− h̃k, z − rk〉 − τk
2
‖rk − rk−1‖2

2

= 〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉 (3.86)

− λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉

+ λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), rk − rk−1〉 − τk
2
‖rk − rk−1‖2

2

≤ 〈lhk(xk−1, pk)− lhk−1(xk−2, pk−1), z − rk〉

− λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), z − rk−1〉

+
6λ2
kD

2
XM̄

2
C,V

τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi
, (3.87)

where the last inequality follows from

λk〈lhk−1(xk−2, pk−1)− lhk−2(xk−3, pk−2), rk − rk−1〉 − τk
2
‖rk − rk−1‖2

2

≤ λ2
k

2τk

∑d
i=1[lhk−1

i
(xk−2, pk−1)− lhk−2

i
(xk−3, pk−2)]2

=
λ2
k

2τk

∑d
i=1[hk−1

i (xk−2)− hk−2
i (xk−3) (3.88)

+ 〈∇hk−1
i (xk−2), pk−1 − xk−2〉+ 〈∇hk−2

i (xk−3), pk−2 − xk−3〉]2

≤ 3λ2
k

2τk

∑d
i=1

[
(hk−1

i (xk−2)− hk−2
i (xk−3))2 + 2M2

Ci,Vi
D2
X〉
]

≤ 3λ2
k

2τk

∑d
i=1

[
2(hk−2

i (xk−2)− hk−2
i (xk−3))2 + 2(ηk−2

i − ηk−1
i )2D4

Vi
+ 2M2

Ci,Vi
D2
X〉
]

≤ 6λ2
kD

2
X

τk

∑d
i=1M

2
Ci,Vi

+
3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi

=
6λ2
kD

2
XM̄

2
C,V

τk
+

3λ2
k

τk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi
. (3.89)

Here, the first inequality follows from Young’s inequality, the second inequality follows

from the cauchy-schwarz inequality, the definition of DX in (3.4) and the bound of∇hki in

(3.53), the third inequality follows by the relation between hk−1
i and hk−2

i in (3.81) and the

simple fact that (a + b)2 ≤ 2a2 + 2b2, and the last inequality follows from the Lipschitz

continuity of hk−2
i and the bound in (3.53). In addition, it follows from (3.80) and (3.81)
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that for any w ∈ X × Rm × Rd
+,

Qk(wk−1, w) ≤ Qk−1(wk−1, w) + (ηk−1
0 − ηk0)D2

U +
∑d

i=1(ηk−1
i − ηki )ziD

2
Vi
. (3.90)

The result follows by combining (3.85), (3.87), (3.90) and the bound in (3.23).

Theorem 10 Let Γk be defined in (3.20) and assume that the algorithmic parameters αk, τk

and λk in the CoexDurCG method in Algorithm 5 satisfy (3.68). Then we have, ∀w ∈

X × Rm × Rd
+,

Q(wN , w) ≤ ΓN
∑N

k=1

[
(Lkf+zTLkh)α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

) +
αN (12M̄2

C,V +‖A‖2)D2
X

2(τN+γN )
+

6αN

∑d
i=1(ηN−1

i − ηNi )2D4
Vi

2(τN+γN )

+ ΓN

(
τ1
2

+
∑N

k=1
αkγk
2Γk

)
(‖y − q0‖2

2 + ‖z − r0‖2
2) + ηN0 D

2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2,

(3.91)

where DX is defined in (3.4). As a consequence, we have

f(xN)− f(x∗) ≤ ΓN
∑N

k=1

[
Lkfα

2
kD

2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk
ηk0D

2
U +

αN (12M̄2
C,V +‖A‖2)D2

X

2(τN+γN )
+

6αN

∑d
i=1(ηN−1

i − ηNi )2D4
Vi

2(τN+γN )

+ ΓN

(
τ1
2

+
∑N

k=1
αkγk
2Γk

)
(‖q0‖2

2 + ‖r0‖2
2) + ηN0 D

2
U (3.92)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2

≤ ΓN
∑N

k=1

[
[Lkf+(‖z∗‖2+1)L̄kh]α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk
+

3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi

]
+ ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ẑiD

2
Vi

) +
αN (12M̄2

C,V +‖A‖2)D2
X

2(τN+γN )
+

6αN

∑d
i=1(ηN−1

i − ηNi )2D4
Vi

2(τN+γN )

+ ΓN

(
τ1 +

∑N
k=1

αkγk
2Γk

)
[(‖y∗‖2 + 1)2 + ‖q0‖2

2 + (‖z∗‖2 + 1)2 + ‖r0‖2
2]

+ ηN0 D
2
U + (‖z∗‖2 + 1)(

∑d
i=1(ηNi D

2
Vi

)2)1/2, (3.93)
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where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (3.6).

Proof. It follows from Lemma 2, Proposition 9 and (3.68) that

QN(wN , w) ≤ ΓN
∑N

k=1[
(Lkf+zTLkh)α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk

+
3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi
] + ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

)

+ αN〈A(pN − pN−1), y − qN〉 − αN (τN+γN )
2

‖y − qN‖2
2

+ αN〈lhN (xN−1, pN)− lhN−1(xN−2, pN−1), z − rN〉 − αN (τN+γN )
2

‖z − rN‖2
2

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2] + ΓN
∑N

k=1
αkγk
2Γk

[‖y − q0‖2 + ‖z − r0‖2]

≤ ΓN
∑N

k=1[
(Lkf+zTLkh)α2

kD
2
X

2Γk
+

αkλ
2
k(12M̄2

C,V +‖A‖2)D2
X

2τkΓk

+
3λ2
k

τkΓk

∑d
i=1(ηk−2

i − ηk−1
i )2D4

Vi
] + ΓN

∑N
k=1

αk
Γk

(ηk0D
2
U +

∑d
i=1 η

k
i ziD

2
Vi

)

+ αN
2(τN+γN )

‖A‖2‖pN − pN−1‖2
2 +

12M̄2
C,V αND

2
X

2(τN+γN )
+

6αN

∑d
i=1(ηN−1

i − ηNi )2D4
Vi

2(τN+γN )

+ α1τ1ΓN
2

[‖y − q0‖2
2 + ‖z − r0‖2

2]

+ ΓN
∑N

k=1
αkγk
2Γk

[‖y − q0‖2
2 + ‖z − r0‖2

2],

where the last relation follows from Young’s inequality and a result similar to (3.89). The

result in (3.91) then immediately follows from the above inequality and the observation

that Q(wN , w) ≤ QN(wN , w) + ηN0 D
2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2 due to (3.59). We can

show (3.92) and (3.93) similarly to (3.56) and (3.57), and hence the details are skipped.

Corollary 10.1 below shows how to specify the smoothing parameter {ηki } in (3.79)

and other parameters for the CoexDurCG method in Algorithm 5. We focus on the most

challenging case when the objective function f and all the constraint functions are nons-

mooth (i.e., µi = 0, i = 1, . . . , n). Slightly improved rate of convergence can be obtained

by setting ηki = 0 for those component functions with µi > 0.

Corollary 10.1 Suppose that the parameters αk, λk, τk and γk in Algorithm 5 are set to

(3.72) with β = DX

√
12M̄2

C,V + ‖A‖2 for k ≥ 1. If the smoothing parameters ηki are set
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to

ηk0 = ‖B‖DX√
kDU

, ηki = ‖Ci‖DX√
kDVi

, ∀i = 1, . . . , d, (3.94)

then we have, ∀w ∈ X × Rm × Rd
+,

Q(wk, w) ≤ 8(‖B‖DU+
∑d

i=1 zi‖Ci‖DVi)DX

3
√
N

+

√
12M̄2

C,V +‖A‖2DX√
N

[2(‖y − q0‖2

+ ‖z − r0‖2) + 2] +
12
∑d

i=1 ‖Ci‖2DXD
2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

+ DX√
N

(‖B‖DU + ‖z‖
√∑d

i=1 ‖Ci‖2D2
Vi

).

(3.95)

In addition, we have

f(xN)− f(x∗) ≤ 11‖B‖DUDX
3
√
N

+

√
12M̄2

C,V +‖A‖2DX√
N

[2(‖q0‖2 + ‖r0‖2) + 2]

+
12
∑d

i=1 ‖Ci‖2DXD
2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

(3.96)

and

‖g(xN)‖2 + ‖[h(xN)]+‖2 ≤
7(‖B‖DU+(‖z∗‖+1)

√∑d
i=1 ‖Ci‖2D2

Vi
)DX

3
√
N

+
12
∑d

i=1 ‖Ci‖2DXD
2
Vi√

12M̄2
C,V +‖A‖2(N+1)

√
N

+
2
√

12M̄2
C,V +‖A‖2DX√
N

[4[(‖y∗‖2 + 1)2 + (‖z∗‖2 + 1)2 + ‖q0‖2
2 + ‖r0‖2

2] + 2], (3.97)

where (x∗, y∗, z∗) denotes a triple of optimal solutions for problem (3.6).

Proof. From the definition of αk in (3.72), we have Γk = 2/[k(k + 1)] and αk/Γk = k.

Similarly to Corollary 8.1, we can check that condition (3.68), and the bounds in (3.76)-

(3.78) hold. In addition, it follows from the definition of ηki in (3.94) that

(ηk−2
i − ηk−1

i )2 =
‖Ci‖2D2

X

D2
Vi

( 1
k−1

+ 1
k−2
− 2√

k−1
√
k−2

) ≤ ‖Ci‖2D2
X

(k−1)(k−2)D2
Vi

,

Lkf = ‖B‖DU
√
k

DX
, and Lkh,i =

‖Ci‖DVi
√
k

DX
, ∀i = 1, . . . , d.

91



Using these relations in (3.91), we have

Q(wN , w) ≤ 2(‖B‖DU+
∑d

i=1 zi‖Ci‖DVi)DX
N(N+1)

∑N
k=1

k
√
k

k+1
+

2
√

12M̄2
C,V +‖A‖2DX
3
√
N

+ 3
βN(N+1)

∑N
k=1(
√
k(k + 1)

∑d
i=1

‖Ci‖2D2
XD

2
Vi

(k−1)(k−2)
)

+
2(‖B‖DU+

∑d
i=1 zi‖Ci‖DVi)DX
N(N+1)

∑N
k=1

√
k +

√
12M̄2

C,V +‖A‖2DX
(N+1)

√
N+1

+
3
∑d

i=1 ‖Ci‖2D2
XD

2
Vi

(N+1)
√
N+1(N−1)(N−2)

+ β
N(N+1)

[(N + 1)
√
N + 1][‖y − q0‖2 + ‖z − r0‖2]

+ ηN0 D
2
U + ‖z‖(

∑d
i=1(ηNi D

2
Vi

)2)1/2,

which implies (3.95) after simplification. (3.96) and (3.97) can be shown similarly and the

details are skipped.

Comparing the results in Corollary 10.1 with those in Corollary 5.1, we can see that the

rate of convergence of CoexDurCG is about the same as that of CoexCG for nonsmooth

optimization. However, it is more convenient to implement CoexDurCG since it does not

require us to fix the number of iterations a priori.

3.4 Numerical Experiments

In this section, we apply the proposed algorithms to the intensity modulated radiation ther-

apy (IMRT) problem briefly discussed in Section 1.

3.4.1 Problem Formulation

In IMRT, the patient will be irradiated by a linear accelerator (linac) from several angles

and in each angle the device uses different apertures. In traditional IMRT, we select and

fix 5-9 angles and then design and optimize the apertures and their corresponding inten-

sity. Following [47], we would like to integrate the angle selection into direct aperture

optimization in order to use a small number of angles and apertures in the final treatment

plan.
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To model the IMRT treatment planning, we discretize each structure s of the patient into

small cubic volume elements called voxels, V . There are a finite number of angles, denoted

by A, around the patient. A beam in each angle, ba, is decomposed into a rectangular grid

of beamlets. A beamlet (i, j) is effective if it is not blocked by either the left, li, and right,

ri, leaves. An aperture is then defined as the collection of effective beamlets. The relative

motion of the leaves controls the set of effective beamlets and thus the shape of the aperture.

The estimated dose received by voxel v from beamlet (i, j) at unit intensity is denoted by

D(i,j)v in Gy. The dose absorbed by a given voxel is the summation of the dose from each

individual beamlet.

Let Pa be the set of allowed apertures determined by the position of the left and right

leaves in beam angle a. Suppose that the rectangular grid in each angle has m rows and n

columns, and the leaves move along each row independently. Then the number of possible

apertures in each angle amounts to (n(n−1)
2

)m. We use xa,t, comprised of binary decision

variables xa,t(i,j), to describe the shape of aperture t ∈ Pa. In particular, xa,t(i,j) = 1 if beamlet

(i, j) is effective, i.e., falling within the left and right leaves of row i, otherwise xa,t(i,j) =

0. In addition to selecting angles and apertures, we also need to determine the influence

rate ya,t for aperture t ∈ Pa, which will be used to determine the dose intensity and the

amount of radiation time from aperture t. The dose absorbed by voxel v is computed by

zv =
∑

a∈A
∑

t∈Pa
∑m

i=1

∑n
j=1RD(i,j)v x

a,t
ij y

a,t, based on the dose-influence matrix D, the

aperture shape xk, and the aperture influence rate yk. We measure the treatment quality by

f(z) :=
∑

v∈V wv [T v − zv]2+ +wv [zv − T v]2+ via voxel-based quadratic penalty, where [·]+

denotes max{0, ·}, and T v and T v are pre-specified lower and upper dose thresholds for

voxel v.

We also need to consider a few important function constraints. Firstly, in order to

obtain a sparse solution with a small number of angles, we add the following group sparsity

constraint
∑

a∈Amaxt∈Pa y
a,t ≤ Φ for some properly chosen Φ > 0. Intuitively, this

constraint will encourage the selection of apertures in those angles Pa that have already
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contained some nonzero elements of ya,t, t ∈ Pa. Secondly, we need to meet a few critical

clinical criteria to avoid underdose (resp., overdose) for tumor (resp., healthy) structures.

These criteria are usually specified as value at risk (VaR) constraints. For example, in

the prostate benchmark dataset, the clinical criterion of “PTV56:V56≥ 95%” means that

the percentage of voxels in structure PTV56 that receive at least 56 Gy dose should be at

least 95%. Similarly, the criterion of “PTV68: V74.8≤ 10%” implies that the percentage of

voxels in structure PTV68 that receive more than 74.8 Gy dose should be at most 10%. One

possible way to satisfy these criterions is to tune the weights ((wv, wv)) in f(z). However, it

would be time consuming to tune these weights to satisfy all the prescribed clinical criteria.

Therefore, we suggest to incorporate a few critical criteria as problem constraints explicitly.

Instead of using VaR, we will use its convex approximation, commonly referred to as

Conditional Value at Risk (CVaR) in the constraints [1]. Recall the following definitions of

VaR and CVaR

Upper tail: VaRα(X) = inf
τ
{τ : P (X ≤ τ) ≥ α},CVaRα(X) = inf

τ
τ + 1

1−αE[X − τ ]+.

Lower tail: VaRα(X) = sup
τ
{τ : P (X ≥ τ) ≥ α},CVaRα(X) = sup

τ
τ − 1

1−αE[τ −X]+.

The upper (resp., lower) tail CVaR will be used to enforce the underdose (resp., overdose)

clinical criteria. For example, letting S1 and S2 denote structures PTV68 and PTV 56, and

N1 and N2 be the number of voxels in these structures, we can approximately formulate

the criterion of “PTV68: V74.8≤ 10%” as infτ τ1 + 1
(1−0.9)N1

∑
v∈S1

[zv − τ1]+ ≤ b for

some b ≥ 74.8. Separately, the criterion of “PTV56:V56≥ 95%” will be approximated by

supτ τ − 1
(1−0.95)N2

∑
v∈S2

[τ − zv]+ ≥ b, or equivalently infτ −τ + 1
(1−0.95)N2

∑
v∈S2

[τ −

zv]+ ≤ −b for some b ≤ 56. Putting the above discussions together and denoting D̂a,t
v :=
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∑m
i=1

∑n
j=1 D(i,j)v x

a,t
ij , we obtain the following problem formulation.

min f(z) := 1
Nv

∑
v∈V wv [T v − zv]2+ + wv [zv − T v]2+ (3.98a)

s.t. zv =
∑
a∈A

∑
t∈Pa

RD̂a,t
v y

a,t, (3.98b)

− τi + 1
piNi

∑
v∈Si [τi − zv]+ ≤ −bi,∀i ∈ UD, (3.98c)

τi + 1
piNi

∑
v∈Si [zv − τi]+ ≤ bi,∀i ∈ OD, (3.98d)∑

a∈Amaxt∈Pa y
a,t ≤ Φ, (3.98e)∑

a∈A
∑

t∈Pa y
a,t ≤ 1, (3.98f)

ya,t ≥ 0, (3.98g)

τi ∈ [τ i, τ̄i],∀i ∈ UD & OD, (3.98h)

where OD and UD denote the set of overdose and underdose clinical criteria, respectively.

Clearly, the objective function f is convex and smooth. Constraints in (3.98c), (3.98d)

and (3.98e) are structured nonsmooth function constraints, while (3.98f)-(3.98g) define the

simplex constraint. The bounds τ and τ̄ in constraints (3.98h) can be obtained from the

corresponding clinical criteria. For example, the criterion of “PTV68:V68≥ 95%” implies

that value at risk ≥ 68. By the definition of CVaR, the optimal τ equals to the value at risk,

hence we set τ = 68. In a similar way, we set τ̄ = 74.8 in view of the criterion of “PTV68:

V74.8≤ 10%”.

We can apply the CoexCG and CoexDurCG methods described in Subsections 3.2.2

and 3.3.2, respectively, to solve problem (3.98a)-(3.98h). Since the number of the potential

apertures (i.e., the dimension of ya,t) increases exponentially w.r.t. m, we cannot compute

the full gradient of the objective and constraint functions w.r.t. ya,t. Instead, we will per-

form gradient computation and linear optimization simultaneously. Let us focus on the Co-

exCG method for illustration. Denote the constraints (3.98c)-(3.98e) as hi, i ∈ OD ∪ UD,

and let the corresponding smooth approximation hi,ηi be defined by (3.49) (using entropy
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distances for smoothing). For a given search point xk−1 := ({ya,tk−1}, {τi,k−1}) and dual

variable {ri,k−1}, let us denote πfk−1 = ∂f(xk−1)/∂z and πhik−1 = ∂hi,ηi(xk−1)/∂z. Clearly,

in view of (3.13), ya,tk−1 will be updated to a properly chosen extreme point of the simplex

constraint in (3.98f)-(3.98g). In order to determine this extreme point, we need to find the

aperture with the smallest coefficient in the linear objective of (3.13) given by:

ψa,t :=πfk−1
∂z
∂ya,t

+
∑

i ri,k−1π
hi
k−1

∂z
∂ya,t

=R
∑m

i=1

∑n
j=1(

∑
vD(i,j)v(π

f
v,k−1 +

∑
i ri,k−1π

hi
v,k−1))xij, xij ∈ {0, 1}.

This can be achieved by using the following constructive approach. For any row i of the

rectangular grid in angle a, we find the column indices c1 and c2, respectively, for the

left and right leaves, that give the most negative value of
∑

c1<j<c2

∑
vD(i,j)v(π

f
v,k−1 +∑

i ri,kπ
hi
v,k−1). Repeating this process row by row, we construct the aperture with the

smallest value of ψa,t in angle a. We construct one aperture similar to this for each angle,

and then choose the one with the most negative value of ψa,t among all the angles.

3.4.2 Comparison of CoexCG and CoexDurCG on randomly generated instances

Due to the privacy issue, publicly available IMRT datasets for real patients are very lim-

ited. To test the performance of our proposed algorithms we first randomly generate some

problem instances as follows. Let V = [−l, l]3 ⊆ R3 be a cube with length l. Viewing V as

the human body, we then arbitrarily choose two (or more) cuboids as healthy organs, and

randomly choose 2 cubes inside V as the target tumor tissues. For a given accuracy δ > 0,

we discretize all these structures into small cubes with length δ to define a voxel. Around

the cube V , we generate a circle with radius 2l on the plane {x = 0}, and define every

two degrees as one angle for radiation therapy. In each angle, we consider the aperture

as a square in [−l, l]2, and also discretize it with small squares with length δ, resulting in

a grid with size 2l
δ
× 2l

δ
. After that, we randomly generate Na beamlets with coordinate
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Table 3.1: Data Instances with Φ = 0.2

Index # of voxels # of apertures bi & pi

Ins. 1 4096 46080 [30,40,200] & [0.05,0.05,0.05]
Ins. 2 4096 46080 [40,50,100] & [0.01,0.01,0.05]
Ins. 3 4096 46080 [50,60,80] & [0.01,0.01,0.01]
Ins. 4 262144 737280 [40,50,100] & [0.01,0.01,0.05]
Ins. 5 262144 737280 [50,60,80] & [0.01,0.01,0.01]

(x′, y′) ∈ [−l, l]2 for each angle a. As for the matrix D (recording the dose received by

voxel v from each beamlet), we first check if the voxel is radiated by the beamlet since

each beamlet is a line perpendicular to the aperture plane. If so, the dose received by the

voxel from this beamlet will be set to 2/d, where d is the distance between the voxel and

the aperture plane; otherwise, the dose is 0. By choosing different accuracy δ, we can cre-

ate instances with different sizes in terms of the number of voxels and potential apertures.

Table 3.1 shows five different test instances generated with l = 8. We set δ = 1 and 0.25

for the first three instances (Ins. 1, Ins. 2 and Ins. 3), and the last two instances (Ins. 4

and Ins. 5), respectively. Note that we consider 2 underdose and 1 overdose constraints

and their corresponding r.h.s. b and p are shown in the last column of Table 3.1. We set the

T v = T̄v = 56 for tumor tissue and T v = T̄v = 0 for healthy organ in (3.98a). In addition,

we set Φ = 0.2 for the group sparsity constraint in (3.98e).

We implement in Matlab the CoexCG and CoexDurCG algorithms for structured non-

smooth problems, and report the computational results in Table 3.2. Here we use xN :=

(yN , τN), f(xN) and ‖h(xN)‖, respectively, to denote the output solution, the objective

value and constraint violations. The CPU times are in seconds on a Macbook Pro with 2.6

GHz 6-Core Intel Core i7 processor. As shown in Table 3.2, both CoexCG and CoexDurCG

exhibit comparable performance in terms of objective value, constraint violation and CPU

time for different iteration limit N . However, unlike the CoexDurCG algorithm, we need

to rerun CoexCG for all the experiments whenever N changes.
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Table 3.2: Results for different Instances

Index N CoexCG CoexDurCG
f(xN ) ‖h(xN )‖ CPU(s) f(xN ) ‖h(xN )‖ CPU(s)

Ins. 1
1 46.8723 1.7237e+03
100 0.0683 0.4234 34 0.0616 0.3705 33
1000 0.0197 0.0319 323 0.0210 0.0219 327

Ins. 2
1 46.8723 1.7237e+03
100 0.0568 0.4424 33 0.0583 0.5002 34
1000 0.0224 0.0426 327 0.0232 0.0334 339

Ins. 3
1 46.8723 1.7237e+03
100 0.0625 13.7567 33 0.0604 7.3929 33
1000 0.0227 0.0514 332 0.0226 0.0193 332

Ins. 4
1 47.7099 8.7850e+03
100 0.4643 163.3043 1645 0.4643 163.3043 1645
1000 0.0398 12.1765 17254 0.0398 12.1765 17356

Ins. 5
1 47.7099 8.7850e+03
100 0.4866 253.9389 1644 0.4581 206.9143 1637
1000 0.0406 39.2051 17146 0.0417 38.6486 17607

3.4.3 Results for real dataset

In this subsection, we apply CoexDurCG to the real dataset for a patient with prostate

cancer (https://github.com/cerr/CERR/wiki), and evaluate the generated so-

lution from the clinical point of view. Dose volume histogram (DVH), a histogram relat-

ing radiation dose to tissue volume in radiation therapy planning, is commonly used as

a plan evaluation tool to compare doses received by different structures under different

plans [45, 46]. In this prostate dataset, there are totally 10 DVH criteria as follows, PTV56:

V56≥ 95%; PTV68: V68≥ 95%, V74.8≤ 10%; Rectum: V30≤ 80%, V50≤ 50%,

V65≤ 25%; Bladder: V40≤ 70%, V65≤ 30%; Left femoral head: V50≤ 1%; Right

femoral head: V50≤ 1%. For this dataset, we have 3, 047, 040 voxels, 180 angles and over

2× 1030 potential apertures in each angle.

Since a smaller number of angles results in shorter treatment duration, we study the

quality of the treatment plan generated when enforcing the group sparsity requirement with

different Φ in (3.98e). In order to balance the scale of the constraint violation, we normal-

ized all the constraints (3.98c)-(3.98e) by dividing both sides of the inequalities by the right

hand side bi or Φ. The total number of apertures in a typical treatment plan for this dataset
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Table 3.3: Group Sparsity

Φ # of apertures # of angles Obj. Val. Con. Vio.
1 96 39 0.0902 0
0.1 96 39 0.0902 0
0.005 96 8 0.1027 0.098
0.0005 97 3 0.1357 0.0589

would not be greater than 100. Thus, we set the iteration limit to 100 since the CoexDurCG

algorithm generates at most one new aperture in each iteration.

Table 3.3 shows the number of apertures/angles, objective value and constraints vio-

lation for different solutions given different values of Φ. Figure 3.1 plots the DVH per-

formance of the generated treatment plans by presenting how the percentage of voxels in

each organs changes over different iterations. If Φ = 1, the constraint (3.98e) is redundant

and we obtain a solution with the smallest function value and zero constraints violation,

but with the largest number of angles as shown in Table 3.3. In addition, the plots in the

first column (i.e., parts (a), (d), (g), (j) and (m)) of Figure 3.1 show that the generated plan

satisfy all the DVH criteria. Comparing the first two rows in Table 3.3, we see that the

solutions remain the same when Φ ≥ 0.1. By keeping decreasing Φ, we can obtain solu-

tions with fewer angles. Plots in the second column of Figure 3.1 shows that most DVH

criteria are still satisfied even if the number of angles in the solution reduces from 39 to 8.

Moreover, the number of angles can be decreased to 3 if we are willing to sacrifice certain

DVH criteria as we can see from the plots in the third column of Figure 3.1.

3.5 Concluding Remarks

In this chapter, we propose new constraint-extrapolated conditional gradient (CoexCG)

methods for solving general convex optimization problems with function constraints. These

methods are simple and requires only linear optimization rather than projection over the

simple convex setX . We establish theO(1/ε2) iteration complexity of the CoexCG method

and show that the same complexity bound still holds even if the objective or constraint func-
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tions are nonsmooth with certain structures. We further present dual regularized algorithms

that does not require us to fix the number of iterations a priori and show that they can attain

similar complexity bounds to CoexCG. Effectiveness of these methods are demonstrated

for solving a class of challenging function constrained convex optimization problems aris-

ing from IMRT treatment planning.
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(a) PTV56 when Φ = 1 (b) PTV56 when Φ = 0.005 (c) PTV56 when Φ = 0.0005

(d) PTV68 when Φ = 1 (e) PTV68 when Φ = 0.005 (f) PTV68 when Φ = 0.0005

(g) Rectum when Φ = 1 (h) Rectum when Φ = 0.005 (i) Rectum when Φ = 0.0005

(j) Bladder when Φ = 1 (k) Bladder when Φ = 0.005 (l) Bladder when Φ = 0.0005

(m) Lt. & Rt. when Φ = 1 (n) Lt. & Rt. when Φ = 0.005 (o) Lt. & Rt. when Φ =
0.0005

Figure 3.1: Percentage of voxels in different organs
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CHAPTER 4

DYNAMIC STOCHASTIC APPROXIMATION FOR MULTI-STAGE

STOCHASTIC OPTIMIZATION

4.1 Introduction

In this chapter, we attempt to shed some light on this problem by presenting a dynamic

stochastic approximation (DSA) method for multi-stage stochastic optimization. The ba-

sic idea of the DSA method is to apply an inexact primal-dual SA method for solving the

t-th stage optimization problem to compute an approximate stochastic subgradient for its

associated value functions vt. In the pursuit of this idea, we manage to resolve the follow-

ing difficulties. First, the first-order information for the value function vt+1 used to solve

the t-stage subproblem is not only stochastic, but also biased. We need to control the bias

associated with such first-order information. In addition, we need to develop a relationship

between the primal-dual gap and the error associated with approximate stochastic subgradi-

ents. Second, in order to establish the convergence of stochastic optimization subroutines

for solving the t-stage problem, we need to guarantee that the variance of approximate

stochastic subgradients and hence the dual multipliers associated with the (t + 1)-stage

problem are bounded, while no such results exist in the current SA literature. Third, we

need to make sure that the errors associated with approximate stochastic subgradients do

not accumulate quickly as the number of stages T increases. By properly addressing these

issues, we were able to show that the DSA method can achieve an optimal O(1/ε4) rate

of convergence in terms of the number of random samples when applied to a three-stage

stochastic optimization problem. We further show that this rate of convergence can be

improved to O(1/ε2) when the objective function is strongly convex. To the best of our

knowledge, this is the first time that this improved O(1/ε2) complexity has been obtained
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for solving three-stage problems under the strong convexity setting. Even though the value

functions for these problems are still convex (rather than strongly convex), by exploiting the

structural information that the cost function ht at each stage is strongly convex, our algo-

rithm can compute the approximate stochastic subgradients more efficiently than the more

general situation where the cost function ht at each stage is convex. Moreover, we discuss

variants of the DSA method which exhibit optimal rate of convergence for solving more

general multi-stage stochastic optimization problems with T > 3. The developed DSA

algorithms only need to go through the scenario tree once in order to compute an ε-solution

of the multi-stage stochastic optimization problem. As a result, the required memory for

DSA increases only linearly with respect to T . To the best of our knowledge, this is the first

time that stochastic approximation type methods are generalized to and their complexities

are established for multi-stage stochastic optimization. It should be also mentioned that

although the main motivation and contribution of this chapter lie on the theoretical side of

stochastic optimization, the developed DSA algorithm provides an effective approach for

solving stochastic optimization problems with a large number of decision variables and a

relatively smaller number of stages such as for those arising from hierarchical operations

management and clinical trials.

This chapter is organized as follows. In Section 2, we introduce the basic scheme of

the DSA algorithm and establish its main convergence properties for solving three-stage

stochastic optimization problems. In Section 3, we show that the convergence rate of the

DSA algorithm can be significantly improved under the strongly convex assumption on

the objective function at each stage. and we then develop variants of the DSA method for

solving more general form of (1.9) with T > 3 in Section 4. Finally, some concluding

remarks are made in Section 4.6.

103



4.1.1 Notation and terminology

For a closed convex set X , a function ωX : X 7→ R is called a distance generating function

with parameter αX , if ωX is continuously differentiable and strongly convex with parameter

αX with respect to ‖ · ‖. Therefore, we have

〈y − x,∇ωX(y)−∇ωX(x)〉 ≥ αX‖y − x‖2,∀x, y ∈ X.

The prox-function associated with ωX is given by

PX(x, y) = ωX(y)− ωX(x)− 〈∇ωX(x), y − x〉,∀x, y ∈ X.

It can be easily seen that

PX(x, y) ≥ αX
2
‖y − x‖2, ∀x, y ∈ X. (4.1)

If X is bounded, we define the diameter of the set X as

Ω2
X := max

x,y∈X
PX(x, y). (4.2)

For a given closed convex cone K∗, we choose the distance generating function ωK∗(y) =

‖y‖2
2/2. For simplicity, we often skip the subscript of ‖ · ‖2 whenever we apply it to an

unbounded set (such as a cone).

For a given closed convex set X ⊆ Rn and a closed convex function V : X → R, g(x)

is called an ε-subgradient of V at x ∈ X if

V (y) ≥ V (x) + 〈g(x), y − x〉 − ε ∀y ∈ X. (4.3)

The collection of all such ε-subgradients of V at x is called the ε-subdeifferential of V at
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x, denoted by ∂εV (x).

Assume that V is Lipschitz continuous in an ε-neighborhood of X , i.e.,

|V (y)−V (x)| ≤M0‖y−x‖, ∀x, y ∈ Xε := {p ∈ Rn : p = r+x, x ∈ X, ‖r‖ ≤ ε}. (4.4)

We can show that

‖g(x)‖∗ ≤M0 + 1 ∀x ∈ X. (4.5)

Indeed, if ‖ · ‖ = ‖ · ‖2, the result follows immediately by setting d = εg(x)/‖g(x)‖2

and y = x + d in (4.3). Otherwise, we need to choose d properly s.t. ‖d‖ = ε and

〈g(x), d〉 = ε‖g(x)‖∗. It should be noted, however, that if V is Lipschitz continuous over

X (rather than Xε), then one cannot guarantee the boundedness of an ε-subgradient of V .

4.2 Three-stage problems with generally convex objectives

Our goal in this section is to introduce the basic scheme of the DSA algorithm and dis-

cuss its convergence properties. For the sake of simplicity, we will focus on three-stage

stochastic optimization problems with simple convex objective functions in this section.

Extensions to strongly convex cases and more general form of multi-stage stochastic opti-

mization problems will be studied in later sections.

4.2.1 Value functions and stochastic ε-subgradients

Consider the following three-stage stochastic programming problem:

minh1(x1, c1)+ E|ξ1 [min h2(x2, c2)+ E|ξ[2] [min h3(x3, c3)]]

s.t. A1x1 − b1 ∈ K1 s.t.A2x2 − b2 −B2x1 ∈ K2 s.t. A3x3 − b3 −B3x2 ∈ K3,

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3.

(4.6)
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As a particular example, if ht(xt, ct) = 〈ct, xt〉, Kt = {0} and X t are polyhedronal, then

problem (4.6) reduces to a well-known three-stage stochastic linear programming problem.

We can write problem (4.6) in a more compact form by using value functions as dis-

cussed in Section 4.1. More specifically, let V 3(x2, ξ3|ξ2) be the stochastic value function

at the third stage and v3(x2) be the corresponding expected value function conditionally on

ξ[2]:

V 3(x2, ξ[3]) := min h3(x3, c3)

s.t. A3x3 − b3 −B3x2 ∈ K3,

x3 ∈ X3.

v3(x2, ξ[2]) := E[V 3(x2, ξ[3])|ξ[2]].

(4.7)

We can then define the stochastic value function V 2(x1, ξ2) and its corresponding (ex-

pected) value function as

V 2(x1, ξ[2]) := min
{
h2(x2, c2) + v3(x2, ξ[2])

}
s.t. A2x2 − b2 −B2x1 ∈ K2,

x2 ∈ X2.

v2(x1, ξ1) := E[V 2(x1, ξ[2])|ξ1] = E[V 2(x1, ξ2)].

(4.8)

Problem (4.6) can then be formulated equivalently as

min {h1(x1, c1) + v2(x1, ξ1)}

s.t. A1x1 − b1 ∈ K1,

x1 ∈ X1.

(4.9)

Throughout this chapter, we assume that the expected value functions v2(x1, ξ1) and v3(x2, ξ[2]),

respectively, are well-defined and finite-valued for a given ξ1 and any x1 ∈ X1, and any

x2 ∈ X2, ξ2 ∈ Ξ2 almost surely. We observe that the assumption that the values func-

tions are well-defined holds under various regularity conditions (see Section 3.2 of [92]

for a more detailed discussion). It is also worth noting that in the above formulation, we
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assume that the value functions vt depend on the immediately preceding decisions xt−1,

rather than all earlier decisions x1, . . . , xt−1 for the sake of convenience. In the latter case,

one can reformulate the problems in the form of (4.8) by introducing the so-called model

state variables (Section 3.1.2 of [92]).

In order to solve problem (4.9), we need to understand how to compute first-order

information about the value functions v2 and v3. Since both v2 and v3 are given in the

form of (conditional) expectation, their exact first-order information is hard to compute.

We resort to the computation of a stochastic ε-subgradient of these value functions defined

as follows.

Definition 11 G(u, ξ[t]) is called a stochastic ε-subgradient of the value function vt(u, ξ[t−1]) =

E[V t(u, ξ[t])|ξ[t−1]] if G(u, ξ[t]) is an unbiased estimator of an ε-subgradient of vt(u, ξ[t−1])

with respect to u, i.e.,

E[G(u, ξ)|ξ[t−1]] = g(u, ξ[t−1]) and g(u, ξ[t−1]) ∈ ∂εvt(u, ξ[t−1]). (4.10)

To compute a stochastic ε-subgradient of v2 (resp., v3), we have to compute an ap-

proximate subgradient of the corresponding stochastic value function V 2(x1, ξ[2]) (resp.,

V 3(x2, ξ[3])). To this end, we further assume that strong Lagrange duality holds for the

optimization problems defined in (4.8) (resp.,(4.7)) almost surely. In other words, these

problems can be formulated as saddle point problems:

V 2(x1, ξ[2]) = max
y2∈K2

∗
min
x2∈X2

〈b2 +B2x1 − A2x2, y2〉+ h2(x2, c2) + v3(x2, ξ[2]), (4.11)

V 3(x2, ξ[3]) = max
y3∈K3

∗
min
x3∈X3

〈b3 +B3x2 − A3x3, y3〉+ h3(x3, c3), (4.12)

where K2
∗ and K3

∗ are corresponding dual cones to K2 and K3, respectively. One set of

sufficient conditions to guarantee the equivalence between (4.8) (resp.,(4.7)) and (4.11)

(resp., (4.12)) is that (4.8) (resp.,(4.7)) is solvable and the slater condition holds [93].
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Observe that in order to solve (4.11) and (4.12), we need to solve a more generic saddle

point problem:

V (u, ξ) ≡ V (u, (A, b,B,C)) := max
y∈K∗

min
x∈X
〈b+Bu− Ax, y〉+ h(x, c) + ṽ(x), (4.13)

where A : Rn → m and B : Rn0 → m denote the linear mappings. For example, (4.12) is

a special case of (4.13) with u = x2, y = y3, K∗ = K3
∗ , b = b3, B = B3, A = A3, h = h3

and ṽ = 0. It is worth noting that the first stage problem can also be viewed as a special

case of (4.13), since (4.9) is equivalent to

max
y∈K1

∗
min
x1∈X1

{
〈b1 − A1x1, y1〉+ h1(x1, c1) + v2(x1, ξ1)

}
. (4.14)

Let

(x∗, y∗) ∈ Z ≡ X ×K∗

be a pair of optimal solutions of the saddle point problem (4.11), i.e.,

V (u, ξ) = 〈y∗, b+Bu− Ax∗〉+ h(x∗, c) + ṽ(x∗) = h(x∗, c) + ṽ(x∗), (4.15)

where the second identity follows from the complementary slackness of Lagrange duality.

Below we provide a different characterization of an ε-subgradient of V other than the one

in (4.3).

Lemma 25 Let z̄ := (x̄, ȳ) ∈ Z and u ∈ Rn0 be given. If

Q(z̄;x, y∗) := 〈y∗, b+Bu− Ax̄〉+ h(x̄, c) + ṽ(x̄)

− 〈ȳ, b+Bu− Ax〉 − h(x, c)− ṽ(x) ≤ ε, ∀x ∈ X,
(4.16)

then BT ȳ is an ε-subgradient of V (u, ξ) at u.

Proof. For simplicity, let us denote V (u) ≡ V (u, ξ). For any u1 ∈ domV , we denote
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(x∗1, y
∗
1) as a pair of primal-dual solution of (4.13) (with u = u1). Hence,

V (u1) = 〈y∗1, b+Bu1 − Ax∗1〉+ h(x∗1, c) + ṽ(x∗1). (4.17)

It follows from the definition of V in (4.13) and (4.16) that

V (u) = 〈y∗, b+Bu− Ax∗〉+ h(x∗, c) + ṽ(x∗)

≤ 〈y∗, b+Bu− Ax̄〉+ h(x̄, c) + ṽ(x̄)

≤ 〈ȳ, b+Bu− Ax∗1〉+ h(x∗1, c) + ṽ(x∗1) + ε.

(4.18)

Observe that

〈ȳ, b+Bu− Ax∗1〉 = 〈ȳ, B(u− u1)〉+ 〈ȳ, b+Bu1 − Ax∗1〉

≤ 〈ȳ, B(u− u1)〉+ 〈y∗1, b+Bu1 − Ax∗1〉,

where the last inequality follows from the assumption that (x∗1, y
∗
1) is a pair of optimal

solution of (4.13) with u = u1. Combining these two observations and using (4.17), we

have

V (u) ≤ 〈BT ȳ, u− u1〉+ V (u1) + ε,

which, in view of (4.3), implies that BT ȳ is an ε-subgradient of V (u).

In view of Lemma 25, in order to compute a stochastic subgradient of vt(u, ξ[t−1]) =

E[V t(u, ξ[t])|ξ[t−1]] at a given point u, we can first generate a random realization ξt condi-

tionally on ξ[t−1] and then try to find a pair of solutions (x̄, ȳ) satisfying

〈yt∗, bt +Btu− Atx̄〉+ h(x̄, ct) + vt+1(x̄, ξ[t])

− 〈ȳ, bt +Btu− Atx〉 − h(x, ct)− vt+1(x, ξ[t]) ≤ ε, ∀x ∈ X,

where yt∗ ≡ yt∗(ξ
[t]) denotes the optimal solution for the t-th stage problem associated
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with the random realization ξ[t]. We will then use BT ȳ as a stochastic ε-subgradient of

vt(u, ξ[t−1]) at u. However, the difficulty associated with this approach exists in that the

function vt+1(x̄, ξ[t]) is also given in the form of expectation. We will explore this approach

and discuss how to address these issues in more details in the next subsection.

4.2.2 The DSA algorithm

Our goal in this subsection is to present the basic scheme of our dynamic stochastic ap-

proximation algorithm applied to problem (4.9).

Our algorithm relies on the following three key primal-dual steps, referred to as stochas-

tic primal-dual transformation (SPDT), applied to the generic saddle point problem in

(4.13) at every stage.

(p+, d+, d̃) = SPDT(p, d, d , ṽ′, u, ξ, h,X,K∗, θ, τ, η):

d̃ = θ(d− d ) + d. (4.19)

p+ = argminx∈X〈b+Bu− Ax, d̃〉+ h(x, c) + 〈ṽ′, x〉+ τPX(p, x). (4.20)

d+ = argminy∈K∗〈−b−Bu+ Ap+, y〉+ η
2
‖y − d‖2. (4.21)

In the above primal-dual tranformation, the input (p, d, d ) denotes the current primal

solution, dual solution, and the previous dual solution, respectively. Moreover, the input

ṽ′ denotes a stochastic ε-subgradient for ṽ at the current search point p. The parameters

(u, ξ, h,X,K∗) describes the problem in (4.13) and (θ, τ, η) are certain algorithmic param-

eters to be specified. Given these input parameters, the relation in (4.19) defines a dual

extrapolation (or prediction) step to estimate the dual variable d̃ for the next iterate. Based

on this estimate, (4.20) performs a primal prox-mapping to compute p+, and then (4.21)

updates in the dual space to compute d+ by using the updated p+. We assume that the above

SPDT operator can be performed very fast or even has explicit expressions. The primal-

dual transformation is closely related to the alternating direction method of multipliers and
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was first formally presented by Chambolle and Pork in [94] for solving saddle point prob-

lems. Its inherent relationship with Nesterov’s acceleration has also been recently studied

by Lan and Zhou [95].

Observe that by the optimality conditions of (4.20) and (4.21) (see, e.g., Lemma 1 of

[78]), the solution (p+, d+, d̃) obtained from SPDT satisfies

〈−A(p+ − x), d̃〉+ h(p+, c)− h(x, c) + 〈ṽ′, p+ − x〉

≤ τ [PX(p, x)− PX(p+, x)− PX(p, p+)],∀x ∈ X, (4.22)

〈−b−Bu+ Ap+, d+ − y〉 ≤ η
2
[‖d− y‖2 − ‖d+ − y‖2 − ‖d+ − d‖2],∀y ∈ K∗. (4.23)

In order to solve problem (4.9), we will combine the above primal-dual transformation

applied to all the three stages, the scenario generation for the random variables ξ2 and ξ3 in

the second and third stage, and certain averaging steps in both the primal and dual spaces.

We are now ready to describe the basic scheme of the DSA algorithm.
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Algorithm 6 The basic DSA algorithm for three-stage problems

Input: initial points (z1
0 , z

2
0 , z

3
0).

ξ1 = (A1, b1, c1).

for i = 1, 2, . . . , N1 do

Generate a random realization of ξ2
i = (A2

i , B
2
i , b

2
i , c

2
i ).

for j = 1, 2, . . . , N2 do

Generate a random realization of ξ3
j = (A3

j , B
3
j , b

3
j , c

3
j) (conditional on ξ2

i ).

for k = 1, 2, . . . , N3 do

(x3
k, y

3
k, ỹ

3
k) = SPDT(x3

k−1, y
3
k−1, y

3
k−2, 0, x

2
j−1, ξ

3
j , h

3, X3, K3
∗ , θ

3
k, τ

3
k , η

3
k).

end for

(x̄3
j , ȳ

3
j ) =

∑N3

k=1w
3
k(x

3
k, y

3
k)/
∑N3

k=1w
3
k.

(x2
j , y

2
j , ỹ

2
j ) = SPDT(x2

j−1, y
2
j−1, y

2
j−2, (B

3
j )
T ȳ3

j , x
1
i−1, ξ

2
i , h

2, X2, K2
∗ , θ

2
j , τ

2
j , η

2
j ).

end for

(x̄2
i , ȳ

2
i ) =

∑N2

j=1w
2
j (x

2
j , y

2
j )/
∑N2

j=1w
2
j .

(x1
i , y

1
i , ỹ

1
i ) = SPDT(x1

i−1, y
1
i−1, y

1
i−2, (B

2
i )
T ȳ2

i , 0, ξ
1, h1, X1, K1

∗ , θ
1
i , τ

1
i , η

1
i ).

end for

Output: (x̄1, ȳ1) =
∑N1

i=1 w
1
i (x

1
i , y

1
i )/
∑N1

i=1w
1
i .

This algorithm consists of three loops. The innermost (third) loop runs N3 steps of

SPDT in order to compute an approximate stochastic subgradient ((B3
j )
T ȳ3

j ) of the value

function v3 of the third stage. The second loop consists of N2 SPDTs applied to the saddle

point formulation of the second-stage problem, which requires the output from the third

loop. The outer loop applies N1 SPDTs to the saddle point formulation of the first-stage

optimization problem in (4.9), using the approximate stochastic subgradients ( (B2
i )
T ȳ2

i ) for

v2 computed by the second loop. In this algorithm, we need to generate N1 and N1 × N2

realizations for the random vectors ξ2 and ξ3, respectively. Observe that the DSA algorithm

described above is conceptual only since we have not specified any algorithmic parameters

yet. We will come back to this issue after establishing some general convergence properties
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about this method in the next two subsections.

4.2.3 Basic tools: inexact primal-dual stochastic approximation

In this subsection, we provide some basic tools for the convergence analysis of the DSA

method. In particular, we will develop an inexact primal-dual stochastic approximation

(I-PDSA) method (see Algorithm 2), which consists of iterative applications of the SPDTs

defined in (4.19), (4.20) and (4.21) to solve the generic stochastic saddle point problem in

(4.13).

The I-PDSA method evolves from the primal-dual method in [94], an efficient and sim-

ple method for solving saddle point problems. While the primal-dual method in [94] can be

viewed as a refined version of the primal-dual hybrid gradient method by Arrow et al. [96],

its design and analysis is more closely related to a few recent important works which estab-

lished theO(1/k) rate of convergence for solving bilinear saddle point problems (e.g., [89,

90, 97, 98]). In particular, it is equivalent to a linearized version of the alternative di-

rection method of multipliers. The first stochastic version of the primal-dual method was

studied by Chen, Lan and Ouyang [77] together with an acceleration scheme and an ex-

tension to non-Euclidean projection. Using a special non-Euclidean geometry, Lan and

Zhou [95] further established an inherent relationship between the primal-dual method and

Nesterov’s accelerated gradient method. However, to the best of our knowledge, none of

existing stochastic primal-dual methods can deal with biased stochastic subgradient infor-

mation for the value function ṽ. Moreover, in order to generate an approximate stochastic

subgradient of V (·, ξ) with bounded variance, we will show how to guarantee the bound-

edness of output dual solution, while none of existing stochastic optimization methods,

including stochastic primal-dual methods, can guarantee the boundedness of the generated

solutions.
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Algorithm 7 Inexact primal-dual stochastic approximation

ξ = (A,B, b, c).
for k = 1, 2, · · · , N do

Let Gk−1 be a stochastic, independent of xk−1, ε̄-subgradient of ṽ , i.e.,

g(xk−1) ≡ E[Gk−1] ∈ ∂ε̄ṽ(xk−1). (4.24)

(xk, yk, ỹk) = SPDT(xk−1, yk−1, yk−2, Gk−1, u, ξ, h,X,K∗, θk, τk, ηk).
end for
Output: z̄N ≡ (x̄N , ȳN) =

∑N
k=1 wk(xk, yk)/

∑N
k=1wk.

Throughout this subsection, we assume that there exists M > 0 such that

E[‖Gk‖2
∗] ≤M2 ∀k ≥ 1. (4.25)

This assumption, in view of (4.24) and Jensen’s inequality, then implies that ‖g(xk)‖∗ ≤

M. For notational convenience, we assume that the Lipschitz constant of the function ṽ

is also bounded by M . Indeed, by definition, any exact subgradient can be viewed as an

ε̄-subgradient. Hence, the size of subgradient (and the Lipschtiz constant of ṽ) can also

be bounded by M . Since the condition in (4.4) about the Lipschitz continuity of the value

function ṽ over a neighborhood of X is hard to verify in practice, we will discuss different

ways to ensure that the assumption in (4.25) holds later in this section (see Corollary 31).

Below we discuss some convergence properties for Algorithm 2. More specifically, we

will first establish in Proposition 26 the relation between (xk−1, yk−1) and (xk, yk) after

running one step of SPDT, and then discuss in Theorems 27 and 29 the convergence prop-

erties of Algorithm 2 applied to problem (4.13). A few consequences of these results will

be discussed in Corollary 30 and Corollary 31. Moreover, we will establish some technical

results regarding our termination criterion and the size of the dual multipliers in Lemma 32

and Lemma 33, respectively.

Proposition 26 Let Q be defined in (4.16). For any 1 ≤ k ≤ N and (x, y) ∈ X ×K∗, we
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have

Q(zk, z) + 〈A(xk − x), yk − yk−1〉 − θk〈A(xk−1 − x), yk−1 − yk−2〉

≤ τk[PX(xk−1, x)− PX(xk, x)] + ηk
2

(‖y − yk−1‖2 − ‖y − yk‖2)− αXτk
2
‖xk − xk−1‖2

− ηk
2
‖yk−1 − yk‖2 + 〈∆k−1, xk−1 − x〉+ (M + ‖Gk−1‖∗)‖xk − xk−1‖+ ε̄

+ θk〈A(xk − xk−1), yk−1 − yk−2〉,
(4.26)

where

∆k := g(xk)−Gk. (4.27)

Proof. Denote ξ = (A,B, b, c). By the Lipschitz continuity of ṽ and the definition of

an ε̄-subgradient, we have

ṽ(xk) ≤ ṽ(xk−1) +M‖xk − xk−1‖

≤ ṽ(x) + 〈g(xk−1), xk−1 − x〉+M‖xk − xk−1‖+ ε̄.

Moreover, by (4.27), we have

〈g(xk−1), xk−1 − x〉 = 〈Gk−1, xk−1 − x〉+ 〈∆k−1, xk−1 − x〉

= 〈Gk−1, xk − x〉+ 〈Gk−1, xk−1 − xk〉+ 〈∆k−1, xk−1 − x〉

≤ 〈Gk−1, xk − x〉+ ‖Gk−1‖∗‖xk − xk−1‖+ 〈∆k−1, xk−1 − x〉.

Combining the above two inequalities, we obtain

ṽ(xk)− ṽ(x) ≤ 〈Gk−1, xk − x〉+ 〈∆k−1, xk−1 − x〉+ (M + ‖Gk−1‖∗)‖xk − xk−1‖+ ε̄.

(4.28)

Moreover, by (4.22) and (4.23) (with input p = xk−1, d = yk−1, d = yk−2, ṽ
′ = Gk−1, u =

u, h = h,X = X,K∗ = K∗, θ = θk, τ = τk, η = ηk, output (p+, d+, d̃) = (xk, yk, ỹk), we
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have

〈−A(xk − x), ỹk〉+ h(xk, c)− h(x, c) + 〈Gk−1, xk − x〉

≤ τk[PX(xk−1, x)− PX(xk, x)− PX(xk−1, xk)],∀x ∈ X,

(4.29)

〈−b−Bu+ Axk, yk − y〉 ≤ ηk
2

[‖yk−1 − y‖2 − ‖yk − y‖2 − ‖yk−1 − yk‖2],∀y ∈ K∗.

(4.30)

Using the definition of Q in (4.16) and the relations (4.28), (4.29) and (4.30), we have

Q(zk, z) + 〈A(xk − x), yk − ỹk〉 ≤ τk[PX(xk−1, x)− PX(xk, x)] + ηk
2

[‖yk−1 − y‖2 − ‖yk − y‖2]

− τkPX(xk−1, xk)− ηk
2
‖yk−1 − yk‖2 + 〈∆k−1, xk−1 − x〉+ (M + ‖Gk−1‖∗)‖xk − xk−1‖+ ε̄.

Also note that by the definition of ỹk (i.e., d̃ in (4.19)), we have ỹk = θk(yk−1−yk−2)+yk−1

and hence

〈A(xk − x), yk − ỹk〉 = 〈A(xk − x), yk − yk−1〉 − θk〈A(xk − x), yk−1 − yk−2〉

= 〈A(xk − x), yk − yk−1〉 − θk〈A(xk−1 − x), yk−1 − yk−2〉

− θk〈A(xk − xk−1), yk−1 − yk−2〉.

Our result then immediately follows from the above two relations and the strong convexity

of PX (see (4.1)).

We are now ready to establish some important convergence properties for the iterative

applications of SPDTs stated in Algorithm 2.
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Theorem 27 If the parameters {θk}, {wk}, {τk} and {ηk} in Algorithm 2 satisfy

wkθk = wk−1, 1 ≤ k ≤ N, (a)

wkτk ≥ wk+1τk+1, 1 ≤ k ≤ N − 1, (b)

wkηk ≥ wk+1ηk+1, 1 ≤ k ≤ N − 1, (c)

wkτkηk−1αX ≥ 2wk−1‖A‖2, 1 ≤ k ≤ N − 1, (d)

τNηNαX ≥ 2‖A‖2, (e)

(4.31)

then we have

Q(z̄N , z) ≤ 1∑N
k=1wk

(
w1τ1PX(x0, x) + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2 +

∑N
k=1 Λk

)
(4.32)

for any z ∈ Z, where

Λk := wk
[
(M + ‖Gk−1‖∗)2/(αXτk) + 〈∆k, xk−1 − x〉+ ε̄

]
. (4.33)

Proof. Multiplying both sides of (4.26) by wk for each k ≥ 1, summing them up over

1 ≤ k ≤ N and using the relations in (4.31).a), (4.31).b) and (4.31).c), we have

∑N
k=1wkQ(zk, z)

≤w1τ1PX(x0, x) + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2 +

∑N
k=1wk ε̄

− wNτNPX(xN , x)− wN〈A(xN − x), yN − yN−1〉 − wNηN
2
‖yN − yN−1‖2

−
∑N

k=1[αXwkτk
4
‖xk − xk−1‖2 + wk−1ηk−1

2
‖yk−1 − yk−2‖2

+ wk−1〈A(xk − xk−1), yk−1 − yk−2〉]−
∑N

k=1
αXwkτk

4
‖xk − xk−1‖2

+
∑N

k=1wk(M + ‖Gk−1‖∗)‖xk − xk−1‖+
∑N

k=1wk〈∆k, xk−1 − x〉. (4.34)
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Now, by the Cauchy-Schwarz inequality and the strong convexity of PX and (4.31).e),

− τNPX(xN , x)− 〈A(xN − x), yN − yN−1〉 − ηN
2
‖yN − yN−1‖2

≤− αXτN
2
‖x− xN‖2 + ‖A‖‖xN − x‖‖yN − yN−1‖ − ηN

2
‖yN − yN−1‖2 ≤ 0.

Similarly, by the Cauchy-Schwarz inequality and (4.31).d), we have

−
∑N

k=1[αXwkτk
4
‖xk − xk−1‖2 + wk−1ηk−1

2
‖yk−1 − yk−2‖2

+ wk−1〈A(xk − xk−1), yk−1 − yk−2〉] ≤ 0.

Moreover, using the fact that −at2/2 + b ≤ b2/(2a), we can easily see that

−
∑N

k=1

[
αXτk

4
‖xk − xk−1‖2 + (M + ‖Gk−1‖∗)‖xk − xk−1‖

]
≤
∑N

k=1
(M+‖Gk−1‖∗)2

τkαX
.

Using the above three inequalities in (4.34), we have

∑N
k=1wkQ(zk, z) ≤ w1τ1PX(x0, x) + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2

+
∑N

k=1wk

(
(M+‖Gk−1‖∗)2

αXτk
+ 〈∆k, xk−1 − x〉+ ε̄

)
.

Dividing both sides of above inequality by
∑N

k=1wk, and using the convexity of Q and the

definition of z̄N , we obtain (4.32).

We also need the following technical result for the analysis of Algorithm 2.

Lemma 28 Let xv0 ≡ x0 and

xvk := argminx∈X{〈∆k−1, x〉+ τkPX(xvk−1, x)} (4.35)
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for any k ≥ 1. Then for any x ∈ X ,

∑N
k=1 wk〈∆k−1, x

v
k−1 − x〉 ≤

∑N
k=1 wkτk[PX(xk−1, x)− PX(xk, x)] +

∑N
k=1

wk‖∆k−1‖2∗
2αXτk

.

(4.36)

Proof. It follows from the definition of xvk in (4.35) and Lemma 2.1 of [64] that

τkPX(xvk, x) ≤ τkPX(xvk−1, x)− 〈∆k−1, x
v
k−1 − x〉+ ‖∆k−1‖2∗

2αXτk
,

for all k ≥ 1. Multiplying wk on both sides of the above inequality and summing them up

from k = 1 to N , we obtain (4.36).

Theorem 29 below provides certain bounds for the following two gap functions:

gap∗(z̄) ≡ gap∗(z̄, X) := max {Q(z̄;x, y∗) : x ∈ X} , (4.37)

gapδ(z̄) ≡ gapδ(z̄, X,K∗) := max {Q(z̄, x, y) + 〈δ, y〉 : (x, y) ∈ X ×K∗} . (4.38)

The gap function in (4.37) will be used to measure the error associated with an approxi-

mate subgradient, while the perturbed gap function in (4.38) will be used to measure both

functional optimality gap and infeasibility of the conic constraint. In particular, we will

apply the first gap function to the second and third stage, and the latter one to the first stage

when analyzing the DSA algorithm.

Theorem 29 Suppose the parameters {θk}, {wk}, {τk} and {ηk} in Algorithm 2 satisfy

(4.31).

a) For any N ≥ 1, we have

E[gap∗(z̄N)] ≤ (
∑N

k=1wk)
−1
[
2w1τ1Ω2

X + w1η1

2
‖y∗ − y0‖2 +

∑N
k=1

6wkM
2

αXτk

]
+ ε̄.

(4.39)

119



b) If, in addition, w1η1 = . . . = wNηN , then

E[gapδ(z̄N)] ≤ (
∑N

k=1wk)
−1
[
2w1τ1Ω2

X + w1η1

2
‖y0‖2 +

∑N
k=1

6wkM
2

αXτk

]
+ ε̄, (4.40)

E[‖δ‖] ≤ w1η1∑N
k=1wk

[
2‖y∗ − y0‖+ 2

√
τ1
η1

ΩX +

√
2

w1η1

∑N
k=1 wk

(
6M2

αXτk
+ ε̄
)]

,

(4.41)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + (
N∑
k=1

wk)
−1

N∑
k=1

2
ηk

[
2w1τ1Ω2

X +
k∑
i=1

wi(
6M2

τi
+ ε̄)

]
,

(4.42)

where δ := (
∑N

k=1wk)
−1[w1η1(y0 − yN)].

Proof. We first prove part (a). Letting y = y∗ in (4.32) and using the definition of ΩX

in (4.2), we have

Q(z̄N ;x, y∗) ≤ (
∑N

k=1wk)
−1
[
w1τ1Ω2

X + w1η1

2
‖y∗ − y0‖2 − wNηN

2
‖y∗ − yN‖2 +

∑N
k=1 Λk

]
.

(4.43)

Maximizing w.r.t. x ∈ X and then taking expectation on both sides of (4.44), we have

E[gap∗(z̄N)] ≤ (
∑N

k=1wk)
−1
[
w1τ1Ω2

X + w1η1

2
‖y∗ − y0‖2 + E[

∑N
k=1 Λk]

]
. (4.44)

Now it follows from (4.33) and (4.36) that

∑N
k=1 Λk =

∑N
k=1wk

(
(M+‖Gk−1‖∗)2

τkαX
+ ε̄+ 〈∆k−1, xk−1 − xvk−1〉+ 〈∆k−1, x

v
k−1 − x〉

)
≤
∑N

k=1wk

(
2M2+2‖Gk−1‖2∗

τkαX
+ ε̄+ 〈∆k−1, xk−1 − xvk−1〉

)
+ w1τ1Ω2

X +
∑N

k=1
wk‖∆k−1‖2∗

2αXτk
.

Note that the random noises ∆k are independent of xk−1 and E[∆k] = 0, hence E[〈∆k, xk−1−

xvk〉] = 0. Moreover, using the relations that E[‖Gk−1‖2
∗] ≤ M2, ‖g(xk−1)‖ ≤ M and the
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triangle inequality, we have

E[‖∆k−1‖2
∗] = E[‖Gk−1 − g(xk−1)‖2

∗] ≤ E[(‖Gk−1‖∗ + ‖g(xk−1)‖∗)2] ≤ 4M2. (4.45)

Therefore,

E[
∑N

k=1 Λk] ≤ w1τ1Ω2
X +

∑N
k=1wk

(
6M2

αXτk
+ ε̄
)
. (4.46)

The result (4.39) then follows by using the above relation in (4.44).

We now show part (b) holds. Adding 〈δ, y〉 to both sides of (4.32) and using the fact

that w1η1 = wNηN , we have

Q(z̄N , z) + 〈δ, y〉 ≤ (
∑N

k=1wk)
−1[w1τ1PX(x0, x) + w1η1(1

2
‖y0 − y‖2 − 1

2
‖yN − y‖2

+ 〈y0 − yN , y〉) +
∑N

k=1 Λk]

≤ (
∑N

k=1 wk)
−1[w1τ1PX(x0, x) + w1η1

2
‖y0‖2 +

∑N
k=1 Λk].

Maximizing both sides of the above inequality w.r.t. (x, y) ∈ X ×K∗, taking expectation

and using (4.38), we obtain

E[gapδ(z̄N)] ≤ (
∑N

k=1 wk)
−1
[
w1τ1Ω2

X + w1η1

2
‖y0‖2 + E[

∑N
k=1 Λk]

]
.

The result in (4.40) then follows from the above inequality and (4.46). Now fixing x = x∗

in (4.43) and using the fact Q(z̄N ;x∗, y∗) ≥ 0, we have

wNηN
2
‖y∗ − yN‖2 ≤ w1τ1Ω2

X + w1η1

2
‖y∗ − y0‖2 +

∑N
k=1 Λk.

Taking expectation on both sides of the above inequality and using (4.46), we conclude

wNηN
2

E[‖y∗ − yN‖2] ≤ 2w1τ1Ω2
X + w1η1

2
‖y∗ − y0‖2 +

∑N
k=1wk

(
6M2

αXτk
+ ε̄
)
, (4.47)
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which implies that

E[‖y∗ − yN‖] ≤ 2
√

τ1
η1

ΩX + ‖y∗ − y0‖+

√
2

w1η1

∑N
k=1wk

(
6M2

αXτk
+ ε̄
)
.

Using the above inequality and the fact that ‖δ‖ ≤ (
∑N

k=1wk)
−1[w1η1(‖y0 − y∗‖ + ‖y∗ −

yN‖), we obtain (4.41). Observe that (4.47) holds for any yk, k = 1, . . . , N , and hence that

wkηk
2

E[‖y∗ − yk‖2] ≤ 2w1τ1Ω2
X + w1η1

2
‖y∗ − y0‖2 +

∑k
i=1wi

(
6M2

αXτi
+ ε̄
)
.

Using the above inequality, the convexity of ‖·‖2 and the fact that ȳN =
∑N

k=1(wkyk)/
∑N

k=1wk,

we conclude that

E[‖y∗ − ȳN‖2] ≤ (
∑N

k=1 wk)
−1
∑N

k=1

[
4w1τ1Ω2

X

ηk
+ w1η1

ηk
‖y∗ − y0‖2 + 2

ηk

∑k
i=1 wi(

6M2

τi
+ ε̄)

]
= ‖y∗ − y0‖2 + (

∑N
k=1wk)

−1
∑N

k=1

[
4w1τ1Ω2

X

ηk
+ 2

ηk

∑k
i=1 wi(

6M2

τi
+ ε̄)

]
,

where the second identity follows from the fact that wkηk = w1η1.

Below we provide two different parameter settings for {wk}, {τk} and {ηk} satisfying

(4.31). While the first one in Corollary 30 leads to slightly better rate of convergence, the

second one in Corollary 31 can guarantee the boundedness of the dual solution in expecta-

tion. We will discuss how to use these results when analyzing the convergence of the DSA

algorithm.

Corollary 30 If

wk = w = 1, τk = τ = max{ M
√

3N
ΩX
√
αX
,
√

2‖A‖√
αX
} and ηk = η =

√
2‖A‖√
αX

,∀1 ≤ k ≤ N, (4.48)
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then

E[gap∗(z̄N)] ≤
√

2‖A‖(2Ω2
X+‖y∗−y0‖2)
√
αXN

+ 4
√

3MΩX√
αXN

+ ε̄, (4.49)

E[gapδ(z̄N)] ≤
√

2‖A‖(2Ω2
X+‖y0‖2)

√
αXN

+ 4
√

3MΩX√
αXN

+ ε̄, (4.50)

E[‖δ‖] ≤ 2
√

2αX‖A‖‖y∗−y0‖+4ΩX‖A‖
αXN

+ 2M(
√

6‖A‖+
√

3αX)

αX
√
N

+
√

3‖A‖ε̄
N
√
αX
, (4.51)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + 4Ω2
X + 2

√
6NMΩX
‖A‖ + 3αX(N+1)M2

‖A‖2 + (N+1)ε̄
2

. (4.52)

Proof. We can easily check that the parameter setting in (4.48) satisfies (4.31). It

follows from (4.39) and (4.48) that

E[gap∗(z̄N)] ≤ 1
N

[
2τΩ2

X + η
2
‖y∗ − y0‖2 + 6NM2

αXτ

]
+ ε̄ ≤

√
2‖A‖(2Ω2

X+‖y∗−y0‖2)
√
αXN

+ 4
√

3MΩX√
αXN

+ ε̄.

Moreover, we have w1η1 = wNηN . Hence, by (4.40) and (4.48),

E[gapδ(z̄N)] ≤ 1
N

[
2τΩ2

X + η
2
‖y0‖2 + 6NM2

αXτ

]
+ ε̄ ≤

√
2‖A‖(2Ω2

X+‖y0‖2)
√
αXN

+ 4
√

3MΩX√
αXN

+ ε̄.

Also by (4.41) and (4.48),

E[‖δ‖] ≤ η
N

[
2‖y∗ − y0‖+ 2

√
τ
η
ΩX +

√
2N
η

(
6M2

αXτ
+ ε̄
)]

≤ 2
√

2‖A‖‖y∗−y0‖
N
√
αX

+ 2ΩX
N

(
2‖A‖
αX

+
√

6N‖A‖M
ΩXαX

)
+ 2

√
M√

αXN
+
√

2ε̄√
N

√
√

2‖A‖√
αX

,

which implies (4.51). Finally, by (4.41) and (4.48),

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + 1
N

[∑N
k=1

4τk
ηk

Ω2
X +

∑N
k=1

2
ηk

∑k
i=1

(
6M2

τi
+ ε̄
)]

≤ ‖y∗ − y0‖2 + 4Ω2
X + 2

√
6NMΩX
‖A‖ + 3αX(N+1)M2

‖A‖2 + (N+1)ε̄
2

.
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In view of (4.52), if M > 0 or N is not properly chosen, we cannot guarantee that

E[‖y∗− ȳN‖2] is bounded. In the following corollary, we will modify the selection of τ and

η in (4.48) in order to guarantee the boundedness of E[‖y∗ − ȳN‖2] even when M > 0.

Corollary 31 If

wk = w = 1, τk = τ = max{ M
√

3N
ΩX
√
αX
,
√

2‖A‖√
αXN
} and ηk = η =

√
2N‖A‖√
αX

,∀1 ≤ k ≤ N,

(4.53)

then

E[gap∗(z̄N)] ≤ 2
√

2‖A‖Ω2
X

N
√
αXN

+ ‖A‖‖y∗−y0‖2+4
√

3MΩX√
αXN

+ ε̄, (4.54)

E[gapδ(z̄N)] ≤ 2
√

2‖A‖Ω2
X

N
√
αXN

+ ‖A‖‖y0‖2+4
√

3MΩX√
αXN

+ ε̄, (4.55)

E[‖δ‖] ≤ 2
√

2‖A‖‖y∗−y0‖+4
√
M‖A‖ΩX√

αXN
+ 2

√
6‖A‖M
αX

+
4Ω2

X‖A‖
2

NαX
+
√

3‖A‖ε̄√
αXN

, (4.56)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 +
2Ω2

X

N
+
√

6(1+αX)MΩX
‖A‖ +

√
αXNε̄√
2‖A‖ . (4.57)

Proof. The proofs of (4.54)-(4.57) are similar to Corollary 30 and hence the details are

skipped.

Note that by using the parameter setting (4.53), we still obtain the optimal rate of con-

vergence in terms of the dependence on N , with a slightly worse dependence on ‖A‖ and

‖y∗‖ than the one obtained by using the parameter setting in (4.48). However, using the

setting (4.53), we can bound E[‖ȳN − y∗‖2] as long as N = O(1/ε̄2), while this statement

does not necessarily hold for the parameter setting in (4.48).

We now state one technical result regarding the functional optimality gap and primal

infeasibility, which generalizes Proposition 2.1 of [99] to conic programming.
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Lemma 32 If there exist random vectors δ ∈ Rm and z̄ ≡ (x̄, ȳ) ∈ Z such that

E[gapδ(z̄)] ≤ εo, (4.58)

then
E[h(x̄, c) + ṽ(x̄)− (h(x∗, c) + ṽ(x∗))] ≤ ε0,

Ax̄−Bu− b− δ ∈ K a.s.,

where x∗ is an optimal solution of problem (4.13).

Proof. Letting x = x∗ and y = 0 in the definition of (4.38), we can easily see that

h(x̄, c) + ṽ(x̄)− (h(x∗, c) + ṽ(x∗)) ≤ gapδ(z̄).

Moreover, in view of (4.16) and (4.38), we must have Ax̄−Bu− b− δ ∈ K almost surely.

Otherwise, E[gapδ(z̄)] would be unbounded as y runs throughout K∗ in the definition of

gapδ(z̄).

In the next result, we will provide a bound on the optimal dual variable y∗. By doing

so, we show that the complexity of Algorithm 2 only depends on the parameters for the

primal problem along with the smallest nonzero eigenvalue of A and the initial point y0,

even though the algorithm is a primal-dual type method.

Lemma 33 Let (x∗, y∗) be an optimal solution to problem (4.13). If the subgradients of

the objective function vh(x) := h(x, c) + ṽ(·) are bounded, i.e., ‖v′h(x)‖2 ≤ Mh for any

x ∈ X , then there exists y∗ s.t.

‖y∗‖ ≤ Mh

σmin(A)
, (4.59)

where σmin(A) denotes the smallest nonzero singular value of A.

Proof. We consider two cases. Case 1: ATy∗ = 0, i.e., y∗ belongs to the null space of

A. Since for any λ ≥ 0, λy∗ is still an optimal dual solution to problem (4.13), we have
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(4.59) holds.

Case 2: ATy∗ 6= 0. By the definition of the saddle point, we have

〈b+Bu− Ax∗, y∗〉+ h(x∗, c) + ṽ(x∗) ≤ 〈b+Bu− Ax, y∗〉+ h(x, c) + ṽ(x), ∀x ∈ X,

which implies

h(x∗, c) + ṽ(x∗) + 〈ATy∗, x− x∗〉 ≤ h(x, c) + ṽ(x), ∀x ∈ X. (4.60)

Hence ATy∗ is a subgradient of vh at the point x∗. Without loss of generality, we assume

that y∗ belongs to the column space of AT (i.e., y∗ is perpendicular to the eigenspace

associated with eigenvalue 0). Otherwise we can show that the projection of y∗ onto the

column space of AT will also satisfy (4.60). Using this observation, we have

‖ATy∗‖2
2 = (y∗)TAATy∗ = (y∗)TUTΛUy∗ ≥ σmin(AAT )‖Uy∗‖2 = σ2

min(A)‖y∗‖2,

where U is an orthonormal matrix whose rows consist of the eigenvectors of AAT and Λ

is the diagonal matrix whose elements are the corresponding eigenvalues. Our result then

follows from the above inequality and the assumption that ‖ATy∗‖2 ≤Mh.

4.2.4 Convergence analysis for DSA

Our goal in this subsection is to establish the complexity of the DSA algorithm for solving

problem 4.9.

The basic idea is to apply the results we obtained in the previous section regarding the

I-PDSA algorithm to the three loops stated in the DSA algorithm. More specifically, we

will show how to generate stochastic ε-subgradients for the value functions v2 and v3 in the

middle and innermost loops, respectively, and how to compute a nearly optimal solution

for problem 4.9 in the outer loop of the DSA algorithm .
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In order to apply these results to the saddle-point reformulation for the second and

first stage problems (see (4.11) and (4.14)), we need to make sure that the condition in

(4.25) holds for the value functions, v3 and v2 respectively, associated with the optimization

problems in their subsequent stages. For this purpose, we assume that the less aggressive

algorithmic parameter setting in (4.53) is applied to solve the second stage saddle point

problems in (4.11), while a more aggressive parameter setting in (4.48) is used to solve the

first stage and last stage saddle point problems in (4.14) and (4.12), respectively. Moreover,

we need the boundedness of the operators B2 and B3:

‖B2‖ ≤ B2 and ‖B3‖ ≤ B3 (4.61)

in order to guarantee that the generated stochastic subgradients for the value functions v2

and v3 have bounded variance.

For notational convenience, we use Ωi ≡ ΩXi and αi ≡ αXi , i = 1, 2, 3, to denote

the diameter and strongly convex modulus associated with the distance generating function

for the feasible set X i (see (4.2)). Lemma 34 shows some convergence properties for the

innermost loop of the DSA algorithm.

Lemma 34 If the parameters {w3
k}, {τ 3

k} and {η3
k} are set to (4.48) (with M = 0 and

A = A3
j ) and

N3 ≡ N3,j :=
3
√

2‖A3
j‖[2(Ω3)2+‖y3

∗,j−y3
0‖2]

√
α3ε

, (4.62)

then B3
j ȳ

3
j is a stochastic (ε/3)-subgradient of the value function v3 at x2

j−1. Moreover,

given random variable ξ[2], there exists a constantM3 such that ‖v3(x1, ξ
[2])−v3(x2, ξ

[2])‖ ≤

M3‖x1 − x2‖,∀x1, x2 ∈ X2 and

E[‖B3
j ȳ

3
j‖2
∗|ξ[2]] ≤M2

3 . (4.63)
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In addition, there exists a vector δ ∈ Rm3
s.t.

E[h3(x̄3, c3)− V 3(x̄2, ξ[3])|ξ[2]] ≤ ε/3,

A3x̄3 −B3x̄2 − b3 − δ ∈ K3 a.s.,

E[‖δ‖|ξ[2]] ≤ ε/3.

(4.64)

Proof. The innermost loop of the DSA algorithm is equivalent to the application of

Algorithm 2 to the last stage saddle point problem in (4.12). Note that for this problem, we

do not have any subsequent stages and hence ṽ = 0. In other words, the subgradients of ṽ

are exact. In view of Corollary 30 (with M = 0 and ε̄ = 0), the definition of N3 in (4.62)

and conditional on ξ[2], we have

E[gap∗(z̄
3
j )|ξ[2]] ≤

√
2‖A3

j‖[2(Ω3)2+‖y3
∗−y3

0‖2]
√
α3N3

≤ ε
3
.

This observation, in view of Lemma 25, then implies that B3
j ȳ

3
j is a stochastic (ε/3)-

subgradient of v3 at x2
j−1. By the Lipschitz continuity of v3, the Lipschitz constant M3

should satisfy

M3 ≥ E[‖B3
j y

3
∗,j‖|ξ[2]], ∀y3

∗,j ∈ Y 3
∗ , (4.65)

where Y 3
∗ denotes the set of optimal dual solutions of problem (4.12). Moreover, it follows

from (4.52) (with M = 0 and ε̄ = 0) that

E[‖y3
∗,j − ȳ3

j‖2|ξ[2]] ≤ E[‖y3
∗,j − y3

0‖2|ξ[2]] + 4(Ω3)2,

E[‖ȳ3
j‖2|ξ[2]] ≤ 2E[‖y3

∗,j‖+ ‖y3
∗,j − y3

0‖2|ξ[2]] + 8Ω2
3.

This inequality, in view of (4.61), implies that

E[‖B3
j ȳ

3
j‖2
∗|ξ[2]] ≤ B2

3E[(2‖y3
∗,j‖+ 2‖y3

∗,j − y3
0‖2 + 8Ω2

3)|ξ[2]]. (4.66)

Hence, combining (4.63), (4.65) and (4.66), we can see that the latter part of our result

128



holds with

M3 = max

{
max
y∈Y 3

∗
E[‖B3

j y‖|ξ[2]],B3

√
E[(2‖y3

∗,j‖+ 2‖y3
∗,j − y3

0‖2 + 8Ω2
3)|ξ[2]]

}
.

The results in (4.64) directly follow from Lemma 32. In view of Corollary 30 (with M = 0

and ε̄ = 0) and the definition of N3 in (4.62), we conclude that there exist δ ∈ Rm1 s.t.

Eξ2 [‖δ‖] ≤ 2
√

2α3‖A3‖‖y3
∗−y3

0‖+4Ω3‖A3‖
α3N3

≤ ε/3,

which together with Lemma 32 then imply our result.

Lemma 35 describes some convergence properties for the middle loop of the DSA

algorithm.

Lemma 35 Assume that the parameters for the innermost loop are set according to Lemma 34.

If the parameters {w2
j}, {τ 2

j } and {η2
j} for the middle loop are set to (4.53) (with M = M3

and A = A2
i ) and

N2 ≡ N2,i :=
(

12
√

2‖A2
i ‖Ω2√

α2ε

) 2
3

+

[
6(‖A2

i ‖‖y2
∗,i−y2

0‖2+4
√

3M3Ω2)
√
α2ε

]2

, (4.67)

then B2
i ȳ

2
i is a stochastic (2ε/3)-subgradient of the value function v2 at x1

i−1. Moreover,

there exists a constant M2 such that ‖v2(x1)− v2(x2)‖ ≤M2‖x1− x2‖,∀x1, x2 ∈ X2 and

E[‖B2
i ȳ

2
i ‖2
∗|ξ[1]] ≤M2

2 , (4.68)

In addition, there exists a vector δ ∈ Rm2
s.t.

E[h2(x̄2, c2) + v3(x̄2|ξ2)− V 2(x̄1, ξ[2])] ≤ 2ε/3,

A2x̄2 −B2x̄1 − b2 − δ ∈ K2 a.s.,

E[‖δ‖|ξ[2]] ≤ 2ε/3.
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Proof. The middle loop of the DSA algorithm is equivalent to the application of Algo-

rithm 2 to the second stage saddle point problem in (4.11). Note that for this problem, we

have ṽ = v3. Moreover, by Lemma 34, the stochastic subgradients of v3 are computed by

the innermost loop with tolerance ε̄ = ε/3. In view of Corollary 31 (with M = M3 and

ε̄ = ε/3) and the definition of N2 in (4.67), we have

E[gap∗(z̄
2
i )|ξ[1]] ≤ 2

√
2‖A2

i ‖Ω2

N2
√
α2N2

+
‖A2

i ‖‖y2
∗,i−y2

0‖2+4
√

3M3Ω2√
α2N2

+ ε̄ ≤ 2ε
3
.

This observation, in view of Lemma 25, then implies that B2
i ȳ

2
i is a stochastic (2ε/3)-

subgradient v2 at x1
i−1. By the Lipschitz continuity of v2, the Lipschitz constant M2 should

satisfy

M2 ≥ E[‖B2
i y

2
∗,i‖|ξ[1]], ∀y2

∗,i ∈ Y 2
∗ , (4.69)

where Y 2
∗ denotes the set of optimal dual solutions of problem (4.11). Moreover, it follows

from (4.57) (with M = M3 and ε̄ = ε/3) that

E[‖y2
∗,i − ȳ2

i ‖2|ξ[1]] ≤ E[‖y2
∗,i − y2

0‖2 +
2Ω2

2

N2
+
√

6(1+α2)M3Ω2

‖A2
i ‖

+
√
α2N2ε

3
√

2‖A2
i ‖
|ξ[1]]],

E[‖ȳ2
i ‖2|ξ[1]] ≤ E[2‖y2

∗,i‖2 + 2‖y2
∗,i − y2

0‖2 +
4Ω2

2

N2
+ 2

√
6(1+α2)M3Ω2

‖A2
i ‖

+
√

2α2N2ε
3‖A2

i ‖
|ξ[1]].

This inequality, in view of (4.61), implies that

E[‖B2
i ȳ

2
i ‖2
∗|ξ[1]] ≤ B2

2E
[
2‖y2

∗,i‖2 + 2‖y2
∗,i − y2

0‖2 +
4Ω2

2

N2
+ 2

√
6(1+α2)M3Ω2

‖A2
i ‖

+
√

2α2N2ε
3‖A2

i ‖
|ξ[1]
]
,

(4.70)

where N2 is defined in (4.67). Hence, combining these observations, we can see that the

latter part of our results holds with M2 satisfying both (4.69) and

M2 ≥ B2

{
E
[
2‖y2

∗,i‖2 + 2‖y2
∗,i − y2

0‖2 +
4Ω2

2

N2
+ 2

√
6(1+α2)M3Ω2

‖A2
i ‖

+
√

2α2N2ε
3‖A2

i ‖
|ξ[1]
]} 1

2
.

In view of Corollary 30 (with M = M3 and ε̄ = ε/3) and the definition of N2 in (4.67), we
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conclude that there exist δ ∈ Rm1 s.t.

Eξ2 [‖δ‖] ≤ 2
√

2α2‖A2‖‖y2
∗−y2

0‖+4Ω2‖A2‖
α2N2

+ 2M2(
√

6‖A2‖+
√

3α2)

α2
√
N2

+
√

2‖A2‖ε
N2
√
α2
≤ 2ε/3,

which together with Lemma 32 then imply our result.

We are now ready to establish the main convergence properties of the DSA algorithm

applied to a three-stage stochastic optimization problem.

Theorem 36 Suppose that the parameters for the innermost and middle loop in the DSA

algorithm are set according to Lemma 34 and Lemma 35, respectively. If the parameters

{wi}, {τi} and {ηi} for the outer loop are set to (4.48) (with M = M2 and A = A1) and

N1 := max

{
6
√

2‖A1‖[2(Ω1)2+‖y1
0‖2]√

α1ε
+
(

24
√

3M2Ω1√
α1ε

)2

,

6‖A1‖(
√

2α1‖y1
∗−y1

0‖+2Ω1+3
√
α1)

α1ε
+
(

6
√

3M2(
√

2‖A1‖+√α1)

α1ε

)2
}
,

(4.71)

then we will find a solution x̄1 ∈ X1 and a vector δ ∈ Rm1
s.t.

E[h(x̄1, c) + v2(x̄1, ξ1)− (h(x∗, c) + v2(x∗, ξ1))] ≤ ε,

Ax̄1 − b− δ ∈ K1, a.s.,

E[‖δ‖] ≤ ε,

where x∗ denotes the optimal solution of problem 4.9.

Proof. The outer loop of the DSA algorithm is equivalent to the application of Algo-

rithm 2 to the first stage saddle point problem in (4.14). Note that for this problem, we

have ṽ = v2. Moreover, by Lemma 35, the stochastic subgradients of v2 are computed

by the middle loop with tolerance ε̄ = 2ε/3. In view of Corollary 30 (with M = M2 and
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ε̄ = 2ε/3) and the definition of N1 in (4.71), we conclude that there exist δ ∈ Rm1 s.t.

Eξ2 [gapδ(z̄
1
N)] ≤

√
2‖A1‖(2Ω2

1+‖y1
0‖2)√

α1N1
+ 4

√
3M2Ω1√
α1N1

+ 2ε
3
≤ ε,

Eξ2 [‖δ‖] ≤ 2
√

2α1‖A1‖‖y1
∗−y1

0‖+4Ω1‖A1‖
α1N1

+ 2M2(
√

6‖A1‖+
√

3α1)

α1
√
N1

+
√

2‖A1‖ε
N1
√
α1
≤ ε,

which together with Lemma 32 then imply our result.

We now add a few remarks about the convergence of the DSA algorithm. Firstly, in view

of (4.67) and (4.62), N2 and N3 are random variables since they depend on the random

variables ξ[2] and ξ[3], respectively. The selection of N2 and N3 allows us to remove the

boundedness assumptions for a few random variables such as A2
i and A3

j . Secondly, if the

random variables appearing in the definition of N2, i.e., A2
i and y∗,i, are bounded, we can

see from Lemma 35 and Theorem 36 that the number of random samples ξ2 and ξ3 are

given by

N1 = O(1/ε2) and N1 ×N2 = O(1/ε4), (4.72)

respectively. It is also possible to obtain an upper bound for N2 and N1×N2 in expectation

with respect to ξ2 without assuming the boundedness of A2
i and y∗,i. Thirdly, it appears

that the convergence of the DSA algorithm relies on y1
∗ , y

2
∗,i, and y3

∗,j . However, the size

of these dual variable can be estimated by using Lemma 33. and possibly some tools from

random matrix theory [100] to estimate the smallest singular values in case these quantities

are not easily computable.

It should be noted that our analysis of DSA focuses on the optimality of the first-stage

decisions, and the decisions we generated for the later stages are mainly used for computing

the approximate stochastic subgradients for the values functions at each stage. Except for

the first stage decision x̄1, the performance guarantees (e.g., feasibility and optimality) that

we can provide for later stages (see Lemma 34 and 35) are dependent on the sequences of

random variables (or scenarios) we generated. We do not generate history-dependent policy

or suggest a prefixed sequence of decisions for general multi-stage stochastic optimization

132



problems. However, in some cases such prefixed sequence can still be extracted from the

output of the algorithm. In particular, if one can separate the state and control variables,

then we can use the obtained solutions for the initial state variable and the ones for the

control variables in later stages as a prefixed control policy (see Section 4.5 for an example

in portfolio optimization). In general, one possible way to guarantee the feasibility and

optimality of the decisions in the later stages would be to re-run the DSA algorithm in each

stage. More specifically, at the beginning of each stage, we already know the realization

of the random variable at this stage and the decisions from the previous stage, we can run

the DSA algorithm now for a smaller multi-stage stochastic optimization problem, i.e.,

the number of stages will decrease by 1 every time we run the algorithm. One can see

that the computational cost for these subsequent runs of the DSA algorithm will decrease

exponentially with respect to the remaining number of stages. Therefore, the total amount

of computational cost over all these subsequent runs will be in the same order of magnitude

as that for the first run of the DSA method.

4.3 Three-stage problems with strongly convex objectives

In this section, we show that the complexity of the DSA algorithm can be significantly

improved if the objective functions hi, i = 1, 2, 3, are strongly convex. We will first refine

the convergence properties of Algorithm 2 under the strong convexity assumption about

h(x, c) and then use these results to improve the complexity results of the DSA algorithm.

4.3.1 Basic tools: inexact primal-dual stochastic approximation under strong convexity

Our goal in this subsection is to study the convergence properties of Algorithm 2 applied

to problem (4.13) under the assumption that h(x, c) is strongly convex, i.e., ∃µh > 0 s.t.

h(x1, c)− h(x2, c)− 〈h′(x2, c), x1 − x2〉 ≥ µhPX(x2, x1), ∀x1, x2 ∈ X. (4.73)
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Proposition 37 below shows the relation between (xk−1, yk−1) and (xk, yk) after running

one step of SPDT when the assumption about h in (4.73) is satisfied.

Proposition 37 Let Q and ∆k be defined in (4.16) and (4.27), respectively. For any 1 ≤

k ≤ N and (x, y) ∈ X ×K∗, we have

Q(zk, z) + 〈A(xk − x), yk − yk−1〉 − θk〈A(xk−1 − x), yk−1 − yk−2〉

≤ τkPX(xk−1, x)− (τk + µh)PX(xk, x) + ηk
2

[‖yk−1 − y‖2 − ‖yk − y‖2]

− αXτk
2
‖xk − xk−1‖2 − ηk

2
‖yk−1 − yk‖2 + ε̄+ (M + ‖Gk−1‖∗)‖xk − xk−1‖

+ θk〈A(xk − xk−1), yk−1 − yk−2〉+ 〈∆k−1, xk−1 − x〉,

(4.74)

Proof. Since h is strongly convex, we can rewrite (4.29) as

〈−Ak(xk − x), ỹk〉+ h(xk, ck)− h(x, ck) + 〈G(xk−1, ξk), xk − x〉

≤ τkPX(xk−1, x)− (τk + µh)PX(xk, x)− τkPX(xk−1, xk).

It then follows from (4.16), (4.28), (4.30) and the above inequality that

Q(zk, z) + 〈A(xk − x), yk − ỹk〉 ≤ τkPX(xk−1, x)− (τk + µh)PX(xk, x)

− τkPX(xk−1, xk) + ηk
2

[‖yk−1 − y‖2 − ‖yk − y‖2 − ‖yk−1 − yk‖2]

+ (M + ‖Gk−1‖∗)‖xk − xk−1‖+ 〈∆k−1, xk−1 − x〉+ ε̄.

Similarly to the proof of (26), using the above relation, the definition of ỹk in (4.19) and

the strong convexity of P in (4.1), we have (4.74).

With the help of Proposition 37, we can provide bounds of two gap functions gap∗(z̄N)

and gap∗δ(z̄N) under the strong convexity assumption of h.

Theorem 38 Suppose that the parameters {θk}, {wk}, {τk} and {ηk} satisfy (4.31) with
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(4.31).b) replaced by

wk(µh + τk) ≥ wk+1τk+1, k = 1, . . . , N − 1. (4.75)

a) For N ≥ 1, we have

E[gap∗(z̄N)] ≤(
∑N

k=1wk)
−1[2w1τ1Ω2

X + w1η1

2
‖y0 − y∗‖2 +

∑N
k=1

6M2wk
αXτk

] + ε̄.

(4.76)

b) If, in addition, w1η1 = . . . = wNηN , then

E[gapδ(z̄N)] ≤ (
∑N

k=1 wk)
−1[2w1τ1Ω2

X + w1η1

2
‖y0‖2 +

∑N
k=1

6M2wk
2αXτk

] + ε̄, (4.77)

E[‖δ‖] ≤ w1η1∑N
k=1 wk

[
2‖y∗ − y0‖+ 2

√
τ1
η1

ΩX +

√
2

w1η1

∑N
k=1wk

(
6M2

αXτk
+ ε̄
)]

,

(4.78)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + (
∑N

k=1wk)
−1
∑N

k=1
2
ηk

[
2w1τ1Ω2

X +
∑k

i=1wi(
6M2

τi
+ ε̄)

]
,

where δ = (
∑N

k=1wk)
−1[w1η1(y0 − yN)].

Proof. We first show part a) holds. Multiplying both sides of (4.74) by wk for every

k ≥ 1, summing up the resulting inequalities over 1 ≤ k ≤ N , and using the relations in
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(4.31) and (4.75), we have

∑N
k=1 wkQ(zk, z)

≤
∑N

k=1[wkτkPX(xk−1, x)− wk(τk + µh)PX(xk, x)]−
∑N

k=1
αXwkτk

2
‖xk − xk−1‖2

+
∑N

k=1[wkηk
2
‖yk−1 − y‖2 − wkηk

2
‖yk − y‖2]−

∑N
k=1

wkηk
2
‖yk−1 − yk‖2

+
∑N

k=1wk−1〈A(xk−1 − xk), yk−1 − yk−2〉+
∑N

k=1wk ε̄+ wN〈A(x− xN), yN − yN−1〉

+
∑N

k=1wk(M + ‖Gk−1‖∗)‖xk − xk−1‖+
∑N

k=1 wk〈∆k−1, xk−1 − x〉

≤ w1τ1PX(x0, x) + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2

+
∑N

k=1wk ε̄+
∑N

k=1
(M+‖Gk−1‖∗)2wk

αXτk
+
∑N

k=1wk〈∆k−1, xk−1 − x〉

− wN(τN + µh)PX(xN , x) + wN〈A(x− xN), yN − yN−1〉 − wNηN
2
‖yN − yN−1‖2

≤ w1τ1PX(x0, x) + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2

+
∑N

k=1wk ε̄+
∑N

k=1
(M+‖Gk−1‖∗)2wk

αXτk
+
∑N

k=1wk〈∆k−1, xk−1 − x〉,

where the last two inequalities follows from similar techniques in the proof of Theorem 27.

Dividing both sides of the above inequality, and using the convexity of Q and the definition

of z̄N , we have

max
z∈X×K∗

Q(z̄N , z) ≤ (
∑N

k=1wk)
−1[w1τ1Ω2

X + w1η1

2
‖y0 − y‖2 − wNηN

2
‖yN − y‖2

+
∑N

k=1wk ε̄+
∑N

k=1
(M+‖Gk−1‖∗)2wk

αXτk
+
∑N

k=1 wk〈∆k−1, xk−1 − x〉],
(4.79)

which, in view of (4.36) and (4.37), then implies

gap∗(z̄N) ≤ (
∑N

k=1wk)
−1[2w1τ1Ω2

X + w1η1

2
‖y0 − y∗‖2 − wNηN

2
‖yN − y∗‖2

+
∑N

k=1wkε+
∑N

k=1
[‖∆k‖2∗+2(M+‖Gk−1‖∗)2]wk

2αXτk
+
∑N

k=1wk〈∆k−1, xk−1 − xvk−1〉].

Taking expectation w.r.t. ξk on both sides of above inequality, and using (4.45) and the fact
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that xk−1 − xvk−1 is independent of ∆k−1, we have

E[gap∗(z̄N)] ≤ (
∑N

k=1 wk)
−1[2w1τ1Ω2

X + w1η1

2
‖y0 − y∗‖2 +

∑N
k=1

6M2wk
αXτk

] + ε̄.

The proof of part b) is similar to the one for Theorem 29.b) and hence the details are

skipped.

In the following two corollaries, we provide two different parameter settings for the

selection of {wk}, {τk} and {ηk}, both of which can guarantee the convergence of Algo-

rithm 2 in terms of the gap functions E[gap∗(z̄N)] and E[gapδ(z̄N)]. Moreover, the first

one in Corollary 39 shows that if M = 0 and N is properly chosen, then one can ensure

the boundedness of E[‖y∗ − ȳN‖2], while the other one in Corollary 40 can guarantee the

boundedness of E[‖y∗ − ȳN‖2] by properly choosing N , even under the assumption that

M > 0.

Corollary 39 If

wk = k, τk = k−1
2
µh and ηk = 4‖A‖2

kαXµh
, (4.80)

then for any N ≥ 1, we have

E[gap∗(z̄N)] ≤ 8‖A‖2‖y0−y∗‖2
αXµh(N+1)N

+ 24M2

αXµh(N+1)
+ ε̄, (4.81)

E[gapδ(z̄N)] ≤ 8‖A‖2‖y0‖2
αXµh(N+1)N

+ 24M2

αXµh(N+1)
+ ε̄, (4.82)

E[‖δ‖] ≤ 16‖A‖2‖y∗−y0‖
N(N+1)αXµh

+ 8
√

6‖A‖M
αXµhN3/2 + 4‖A‖

√
ε̄

(N+1)
√
αXµh

, (4.83)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + 12M2αXN
‖A‖2 + N(N+1)αXµh

2‖A‖2 ε̄. (4.84)

Proof. Clearly, the parameters wk, τk and ηk in (4.80) satisfy (4.31) with (4.31).b)
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replaced by (4.75). It then follows from Theorem 38 and (4.80) that

E[gap∗(z̄N)] ≤ 2
N(N+1)

[
4‖A‖2‖y∗−y0‖2

αXµh
+ 12M2N

αXµh

]
+ ε̄

≤ 8‖A‖2‖y0−y∗‖2
αXµh(N+1)N

+ 24M2

αXµh(N+1)
+ ε̄,

E[gapδ(z̄N)] ≤ 8‖A‖2‖y0‖2
αXµh(N+1)N

+ 24M2

αXµh(N+1)
+ ε̄,

E[‖δ‖] ≤ 8‖A‖2
αXµhN(N+1)

[
2‖y∗ − y0‖+

√
αXµh
2‖A‖2 (6M2

αX
2N + N(N+1)

2
ε̄)
]

≤ 16‖A‖2‖y∗−y0‖
N(N+1)αXµh

+ 8
√

6‖A‖M
αXµhN3/2 + 4‖A‖

√
ε̄

(N+1)
√
αXµh

,

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + 2
N(N+1)

∑N
k=1

kαXµh
2‖A‖2

(
2N 12M2

µh
+ N(N+1)

2
ε̄
)

= ‖y∗ − y0‖2 + 12M2αXN
‖A‖2 + N(N+1)αXµh

2‖A‖2 ε̄.

Corollary 40 If

wk = k, τk = k−1
2
µh and ηk = 4‖A‖2N

kαXµh
, (4.85)

then for any N ≥ 1, we have

E[gap∗(z̄N)] ≤ 8‖A‖2‖y0−y∗‖2+24M2

αXµh(N+1)
+ ε̄, (4.86)

E[gapδ(z̄N)] ≤ 8‖A‖2‖y0‖2+24M2

αXµh(N+1)
+ ε̄, (4.87)

E[‖δ‖] ≤ 16‖A‖2‖y∗−y0‖
(N+1)αXµh+16

√
3‖A‖M + 4‖A‖

√
ε̄√

(N+1)αXµh
, (4.88)

E[‖y∗ − ȳN‖2] ≤ ‖y∗ − y0‖2 + 24M2αX
‖A‖2 + (N+1)αXµh

2‖A‖2 ε̄. (4.89)

Proof. The proofs of (4.86)-(4.89) are similar to Corollary 39 and hence the details are

skipped.
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4.3.2 Convergence analysis for DSA under strong convexity

Our goal in this subsection is to establish the complexity of the DSA algorithm for solving

problem 4.9 under the strong convex assumption about hi, i = 1, 2, 3, i.e., ∃µi > 0 s.t.

hi(x1, c)− hi(x2, c)− 〈(hi)′(x2, c), x1 − x2〉 ≥ µiPXi(x2, x1), ∀x1, x2 ∈ X i. (4.90)

We describe some convergence properties for the innermost and middle loop of the

DSA algorithm under the strong convexity assumptions in (4.90) in Lemma 41 and 42,

respectively. The proofs for these results are similar to those for Lemma 34 and 35.

Lemma 41 below describes the convergence properties for the innermost loop of the

DSA algorithm.

Lemma 41 If the parameters {w3
k}, {τ 3

k} and {η3
k} are set to (4.80) (with M = 0 and

A = A3
j ) and

N3 ≡ N3,j :=
2
√

6‖A3
j‖‖y3

∗,j−y3
0‖√

α3µ3ε
, (4.91)

then B3
j ȳ

3
j is a stochastic (ε/3)-subgradient of the value function v3 at x2

j−1. Moreover,

there exists a constantM3 ≥ 0 such that ‖v3(x1, ξ
[2])−v3(x2, ξ

[2])‖ ≤M3‖x1−x2‖,∀x1, x2 ∈

X3 and

E[‖B3
j ȳ

3
j‖2
∗|ξ[2]] ≤M3. (4.92)

In addition, there exists a vector δ ∈ Rm3
s.t.

E[h3(x̄3, c3)− V 2(x̄2, ξ[3])] ≤ ε/3,

A3x̄3 −B3x̄2 − b3 − δ ∈ K3 a.s.,

E[‖δ‖|ξ[2]] ≤ ε/3.

Proof. In view of Corollary 39 (with M = 0 and ε̄ = 0) and the definition of N3 in

(4.91), we have

E[gap∗(z̄
3
j )|ξ[2]] ≤ 8‖A3

j‖2‖y3
0−y3

∗‖2

α3µ3(N3+1)N3
≤ ε

3
.
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This observation, in view of Lemma 25, then implies that B3
j ȳ

3
j is a stochastic (ε/3)-

subgradient of v3 at x2
j−1. Moreover, it follows from (4.84) (with M = 0 and ε̄ = 0)

that E[‖y3
∗,j − ȳ3

j‖|ξ[2]] ≤ ‖y3
∗,j − y3

0‖. This inequality, in view of the selection of N3 in

(4.91), the assumption that y3
∗,j is well-defined, and (4.61), then implies the latter part of

our result. The techniques are similar to the proof of Lemma 34 and the details are skipped.

Lemma 41 below describes the convergence properties for the middle loop of the DSA

algorithm.

Lemma 42 Assume that the parameters for the innermost loop are set according to Lemma 41.

If the parameters {w2
j}, {τ 2

j } and {η2
j} for the middle loop are set to (4.85) (with M = M3

and A = A2
i ) and

N2 ≡ N2,i :=
24‖A2

i ‖2‖y2
0−y2

∗,i‖2+72M2
3

α2µ2ε
, (4.93)

then B2
i ȳ

2
i is a stochastic (2ε/3)-subgradient of the value function v2 at x1

i−1. More-

over, there exists a constant M2 ≥ 0 such that ‖v2(x1, ξ
[1]) − v2(x2, ξ

[1])‖ ≤ M2‖x1 −

x2‖,∀x1, x2 ∈ X2 and

E[‖B2
i ȳ

2
i ‖2
∗|ξ[1]] ≤M2. (4.94)

In addition, there exists a vector δ ∈ Rm2
s.t.

E[h2(x̄2, c2) + v3(x̄2|ξ2)− V 2(x̄1, ξ[2])|ξ[1]] ≤ 2ε/3,

A2x̄2 −B2x̄1 − b2 − δ ∈ K2 a.s.,

E[‖δ‖|ξ[1]] ≤ 2ε/3.

Proof. By Lemma 41, the stochastic subgradients of v3 are computed by the innermost

loop with tolerance ε̄ = ε/3. In view of Corollary 40 (with M = M3 and ε̄ = ε/3) and the

definition of N2 in (4.93), we have

E[gap∗(z̄
2
i )|ξ[1]] ≤ 8‖A2

i ‖2‖y2
0−y2

∗,i‖2+24M2
3

α2µ2(N2+1)
+ ε̄ ≤ 2ε

3
.
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This observation, in view of Lemma 25, then implies that B2
i ȳ

2
i is a stochastic (2ε/3)-

subgradient v2 at x1
i−1. Moreover, it follows from (4.89) (with M = M3 and ε̄ = ε/3)

that

E[‖y2
∗,i − ȳ2

i ‖2|ξ[1]] ≤ ‖y2
∗,i − y2

0‖2 +
24M2

3α2

‖A2
i ‖2

+ (N2+1)α2µ2

6‖A2
i ‖2

ε.

This inequality, in view of the selection of N2 in (4.93), the assumption that y2
∗,i is well-

defined, and (4.61), then implies the latter part of our result. The techniques are similar to

the proof of Lemma 35 and the details are skipped.

We are now ready to state the main convergence properties of the DSA algorithm for

solving strongly convex three-stage stochastic optimization problems.

Theorem 43 Suppose that the parameters for the innermost and middle loop in the DSA

algorithm are set according to Lemma 41 and Lemma 42, respectively. If the parameters

{wi}, {τi} and {ηi} for the outer loop are set to (4.80) (with M = M2 and A = A1) and

N1 := max
{

4
√

3‖A1‖‖y1
0‖√

α1µ1ε
+ 4(6M2)2

α1µ1ε
,

4
√

3‖A1‖(
√
‖y1
∗−y1

0‖+
√

2)
√
α1µ1ε

+
(

24
√

6‖A1‖M2

α1µ1ε

)2/3
}
,

(4.95)

then we will find a solution x̄1 ∈ X1 and a vector δ ∈ Rm1
s.t.

E[h(x̄1, c1) + v2(x̄1, ξ1)− (h(x∗, c1) + v2(x∗, ξ1))] ≤ ε,

Ax̄1 − b− δ ∈ K1, a.s.,

E[‖δ‖] ≤ ε,

where x∗ denotes the optimal solution of problem 4.9.

Proof. By Lemma 42, the stochastic subgradients of v2 are computed by the middle

loop with tolerance ε̄ = 2ε/3. In view of Corollary 39 (with M = M2 and ε̄ = 2ε/3) and
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the definition of N1 in (4.95), we conclude that there exist δ ∈ Rm1 s.t.

E[gapδ(z̄
1
N)] ≤ 8‖A1‖2‖y1

0‖2
α1µ1(N1+1)N1

+
24M2

2

α1µ1(N1+1)
+ 2ε

3
≤ ε,

E[‖δ‖] ≤ 16‖A1‖2‖y1
∗−y1

0‖
N1(N1+1)α1µ1

+ 8
√

6‖A1‖M2

α1µ1N
3/2
1

+ 4‖A1‖
√

2ε

(N1+1)
√

3α1µ1
≤ ε,

which together with Lemma 32 then imply our result.

In view of Lemma 42 and Theorem 43, the number of random samples ξ2 and ξ3 will be

bounded by N1 and N1×N2, i.e.,O(1/ε) andO(1/ε2), respectively, under the assumption

that the random variables appearing in the definition of N2 (i.e., A2
i and y2

∗,i) are bounded.

4.4 DSA for general multi-stage stochastic optimization

In this section, we consider a multi-stage stochastic optimization problem given by

min {h1(x1, c1) + v2(x1, ξ1)}

s.t. A1x1 − b1 ∈ K1,

x1 ∈ X1,

(4.96)

where the value factions vt, t = 2, . . . , T , are recursively defined by

vt(xt−1, ξ[t−1]) := F t−1(xt−1, pt−1) + E[V t(xt−1, ξ[t])|ξ[t−1]], t = 2, . . . , T − 1,

V t(xt−1, ξ[t]) := min {ht(xt, ct) + vt+1(xt)}

s.t. Atxt − bt −Btxt−1 ∈ Kt,

xt ∈ X t,

(4.97)
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and
vT (xT−1, ξ[T−1]) := EξT [V T (xT−1, ξ[T ])|ξ[T−1]],

V T (xT−1, ξ[T ]) := min hT (xT , cT )

s.t. ATxT − bT −BTxT−1 ∈ KT ,

xT ∈ XT .

(4.98)

Here ξt := (At, bt, Bt, ct, pt) are random variables, ht(·, ct) are relatively simple functions,

F t(·, pt) are general (not necessarily simple) Lipschitz continuous convex functions and

Kt are convex cones, ∀t = 1, . . . , T . We also assume that one can compute the subgradient

F ′(xt, pt) of function F t(xt, pt) at any point xt ∈ X t for a given parameter pt.

Problem (4.96) is more general than problem (4.6) (or equivalently problem (4.9)) in the

following sense. First, we are dealing with a more complicated multi-stage stochastic opti-

mization problem where the number of stages T (4.96) can be greater than three. Second,

the value function vt(xt−1, ξ[t−1]) in (4.97) is defined as the summation of F t−1(xt−1, pt−1)

and E[V t(xt−1, ξ[t])|ξ[t−1]], where F t−1 is not necessarily simple. We intend to generalize

the DSA algorithm in Sections 4.2 and 4.3 for solving problem (4.96). More specifically,

we show how to compute a stochastic ε-subgradient of vt+1 at xt, t = 1, . . . , T − 2, in a

recursive manner until we obtain the ε-subgradient of vT at xT−1.

We are now ready to formally state the DSA algorithm for solving the multi-stage

stochastic optimization problem in (4.96). Observe that the following notations will be

used in the algorithm:

• Nt is the number of iterations for stage t subproblem and kt is the corresponding

index, i.e., kt = 1, . . . , Nt.

• ξtkt−1
= (Atkt−1

, btkt−1
, Bt

kt−1
, ctkt−1

, ptkt−1
) is the kt−1 th random scenarios in stage t

subproblem, (xtkt , y
t
kt

) are the kt th iterates in stage t subproblem.

• For simplicity, we denote ξtkt−1
as ξtk, (xtkt , y

t
kt

) as (xtk, y
t
k).
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Algorithm 8 DSA for multi-stage stochastic programs

Input: initial points {xt0}, kt = 1,∀t, iteration number Nt and stepsize strategy {wk}.

Start with procedure DSA(1, 0).

procedure: DSA(t, u)

for kt = 1, . . . , Nt do

if t < T then

Generate random scenarios ξt+1
k .

(x̄t+1, ȳt+1) = DSA(t+ 1, xtk) and G(xtk−1, ξ
t+1
k ) = (Bt+1

k )T ȳt+1.

else

G(xTk−1, ξ
T+1
k ) = 0.

end if

(xtk, y
t
k) = SPDT(xtk−1, y

t
k−1, y

t
k−2, G(xtk−1, ξ

t+1
k ), u, ξtk−1, h

t, X t, Kt
∗, θ

t
k, τ

t
k, η

t
k).

end for

return: z̄t =
∑Nt

k=1wkz
t
k/
∑Nt

k=1wk.

In order to show the convergence of the above DSA algorithm, we need the following

assumption on the boundedness of the operators Bt:

‖Bt‖ ≤ Bt, ∀t = 2, · · · , T. (4.99)

Lemma 44 below establishes some convergence properties of the DSA algorithm for

solving the last stage problem.

Lemma 44 Suppose that the algorithmic parameters in the DSA algorithm applied to

problem 4.96 are chosen as follows.

a) For a general convex problem, {wTk }, {τTk } and {ηTk } are set to (4.48) (with M = 0 and

A = ATk ) and

NT ≡ NT,k :=
T
√

2‖ATk ‖[2(ΩT )2+‖yT∗,k−y
T
0 ‖2]

√
αT ε

. (4.100)
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b) Under the strongly convex assumption (4.90), {wTk }, {τTk } and {ηTk } are set to (4.80)

(with M = 0 and A = ATk ) and

NT ≡ NT,k :=
√

8T‖ATk ‖‖y
T
∗,k−y

T
0 ‖√

αTµT ε
. (4.101)

Then BT
k ȳ

T
k is a stochastic (ε/T )-subgradient of the value function vT at xT−1

k−1 . Moreover,

there exists a constant MT ≥ 0 such that ‖vT (x1, ξ
[T−1]) − vT (x2, ξ

[T−1])‖ ≤ MT‖x1 −

x2‖,∀x1, x2 ∈ XT and

EξT [‖BT
k ȳ

T
k ‖2
∗] ≤MT . (4.102)

Proof. The innermost loop of the DSA algorithm is equivalent to the application of

Algorithm 2 to the last stage saddle point problem in (4.12). Note that for this problem,

we do not have any subsequent stages and hence ṽ = 0. In other words, the subgradients

of ṽ are exact. To show part a), in view of Corollary 30 (with M = 0 and ε̄ = 0) and the

definition of NT in (4.100), we have

E[gap∗(z̄
T
k )|ξ[T−1]] ≤

√
2‖ATk ‖[2(ΩT )2+‖yT∗ −yT0 ‖2]

√
αTNT

≤ ε
T
.

This observation, in view of Lemma 25, then implies that BT
k ȳ

T
k is a stochastic (ε/T )-

subgradient of vT at xT−1
j−1 . Moreover, it follows from (4.52) (with M = 0 and ε̄ = 0)

that

E[‖yT∗,k − ȳTk ‖2|ξ[T−1]] ≤ ‖yT∗,k − yT0 ‖2 + 4(ΩT )2 + (NT+1)ε
2

.

This inequality, in view of the selection of NT in (4.100), the assumption that yT∗,k is well-

defined, and (4.99), then implies the latter part of our result. Similarly, the result in (4.101)

follows from Corollary 39 (with M = 0 and ε̄ = 0) and the definition of NT in (4.101).

We show in Lemma 45 some convergence properties of the middle loops of the DSA

algorithm.
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Lemma 45 Assume that the parameters for the innermost loop are set according to Lemma 44.

Moreover, suppose that the algorithmic parameters for the middle loops are chosen as fol-

lows.

a) For general convex problem, the parameters {wtk}, {τ tk} and {ηtk} for the middle loops

(t = 2, . . . , T − 1) are set to (4.53) (with M = Mt+1 and A = Atk) and

Nt ≡ Nt,k :=
(

4
√

2T‖Atk‖Ωt√
αtε

) 2
3

+

[
2T(‖Atk‖‖yt∗,k−yt0‖2+4

√
3Mt+1Ωt)

√
αtε

]2

. (4.103)

b) Under strongly convex assumption (4.90), the parameters {wtk}, {τ tk} and {ηtk} for the

middle loops (t = 2, . . . , T − 1) are set to (4.85) (with M = Mt+1 and A = Atk) and

Nt ≡ Nt,k :=
8T‖Atk‖

2‖yt0−yt∗,k‖
2+24TM2

t+1

αtµtε
. (4.104)

Then Bt
kȳ

t
k is a stochastic ((T + 1 − t)ε/T )-subgradient of the value function vt at xt−1

k−1.

Moreover, there exists a constant Mt ≥ 0 such that ‖vt(x1, ξ
[t−1]) − vt(x2, ξ

[t−1])‖ ≤

Mt‖x1 − x2‖,∀x1, x2 ∈ X t and

E[‖Bt
kȳ

t
k‖2
∗|ξ[t−1]] ≤Mt. (4.105)

Proof. The middle loops (t = 2, . . . , T −1) of the DSA algorithm applied to multistage

stochastic optimization is equivalent to the application of Algorithm 2 to the second stage

saddle point problem in (4.11). Note that for this problem, we have ṽ = vt+1. Moreover,

by Lemma 44, the stochastic subgradients of vT are computed by the innermost loop with

tolerance ε̄ = ε/T . To show part a), in view of Corollary 31 (with M = Mt+1 and ε̄ =

(T − t)ε/T ) and the definition of Nt in (4.103), we have

E[gap∗(z̄
t
k)|ξ[t−1]] ≤ 2

√
2‖Atk‖Ωt

Nt
√
αtNt

+
‖Atk‖‖y

t
∗,k−y

t
0‖2+4

√
3Mt+1Ωt√

αtNt
+ ε̄ ≤ (T+1−t)ε

T
.
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This observation, in view of Lemma 25, then implies that Bt
kȳ

t
k is a stochastic ((T + 1 −

t)ε/T )-subgradient vt at xt−1
k−1. Moreover, it follows from (4.57) (with M = Mt+1 and

ε̄ = (T − t)ε/T ) that

E[‖yt∗,k − ȳtk‖2|ξ[t−1]] ≤ ‖yt∗,k − yt0‖2 +
2Ω2

t

Nt
+
√

6(1+αt)Mt+1Ωt
‖Atk‖

+
√
αtNtε

3
√

2‖Atk‖
.

This inequality, in view of the selection of Nt in (4.103), the assumption that yt∗,k is well-

defined, and (4.99), then implies the latter part of our result. Similarly, in view of Corol-

lary 40, we have part b).

We are now ready to establish the main convergence properties of the DSA algorithm

for solving general multi-stage stochastic optimization problems with T ≥ 3.

Theorem 46 Suppose that the parameters for the inner loops in the DSA algorithm are set

according to Lemma 44 and Lemma 45. Moreover, assume that the algorithmic parameters

in the outer loop of the DSA algorithm are chosen as follows.

a) For general convex problem, the parameters {wk}, {τk} and {ηk} for the outer loop are

set to (4.48) (with M = M2 and A = A1) and

N1 := max

{
2
√

2T‖A1‖[2(Ω1)2+‖y1
0‖2]√

α1ε
+
(

8
√

3TM2Ω1√
α1ε

)2

,

6T‖A1‖(
√

2α1‖y1
∗−y1

0‖+2Ω1)+27(T−1)
√
α1‖A1‖

α1Tε
+
(

6
√

3M2(
√

2‖A1‖+√α1)

α1ε

)2
}
.

(4.106)

b) Under strongly convex assumption (4.90), the parameters {wk}, {τk} and {ηk} for the

outer loop are set to (4.80) (with M = M2 and A = A1) and

N1 := max
{

4
√
T‖A1‖‖y1

0‖√
α1µ1ε

+
24TM2

2

α1µ1ε
,

4
√

3‖A1‖
√
‖y1
∗−y1

0‖√
α1µ1ε

+
(

24
√

6‖A1‖M2

α1µ1ε

)2/3

+ 12‖A1‖
√
T−1√

α1µ1Tε

}
.

(4.107)
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Then we will find a solution x̄1 ∈ X1 and a vector δ ∈ Rm1
s.t.

E[h(x̄1, c) + v2(x̄1, ξ1)− (h(x∗, c) + v2(x∗, ξ1))] ≤ ε,

Ax̄1 − b− δ ∈ K1, a.s.,

E[‖δ‖] ≤ ε,

where x∗ denotes the optimal solution of problem 4.9.

Proof. The outer loop of the DSA algorithm is equivalent to the application of Algo-

rithm 2 to the first stage saddle point problem in (4.14). Note that for this problem, we have

ṽ = v2. Moreover, by Lemma 45, the stochastic subgradients of v2 are computed by the

middle loop with tolerance ε̄ = (T − 1)ε/T . To show part a), in view of Corollary 30 (with

M = M2 and ε̄ = (T − 1)ε/T ) and the definition of N1 in (4.106), we conclude that there

exist δ ∈ Rm1 s.t.

E[gapδ(z̄
1
N)] ≤

√
2‖A1‖(2Ω2

1+‖y1
0‖2)√

α1N1
+ 4

√
3M2Ω1√
α1N1

+ (T−1)ε
T
≤ ε,

E[‖δ‖] ≤ 2
√

2α1‖A1‖‖y1
∗−y1

0‖+4Ω1‖A1‖
α1N1

+ 2M2(
√

6‖A1‖+
√

3α1)

α1
√
N1

+
√

3‖A1‖(T−1)ε
N1T

√
α1
≤ ε,

which together with Lemma 32 then imply our result. Similarly, in view of Corollary 39,

we have part b).

In view of the results stated in Lemma 44, Lemma 45 and Theorem 46, the total num-

ber of scenarios required to find an ε-solution of (4.96) is given by N2 × N3 × . . . NT ,

and hence will grow exponentially with respect to T , no matter the objective functions are

strongly convex or not. These sampling complexity bounds match well with those in [54,

55], implying that multi-stage stochastic optimization problems are essentially intractable

for T ≥ 5 and a moderate target accuracy. Hence, it is reasonable to use the DSA algo-

rithm only for multi-stage stochastic optimization problems with T relatively small and ε

relatively large. However, it is interesting to point out that the DSA algorithm only needs

to go through the scenario tree once and hence its memory requirement increases only
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linearly with respect to T . Moreover, the development of the complexity bounds of multi-

stage stochastic optimization in terms of their dependence on various problem parameters

may help us to further explore the structure of the problems and to identify special classes

of problems possibly admitting faster solution methods.

It is also interesting to compare the DSA method with some other decomposition type

algorithms. As discussed in Section 1, in the sample average approximation approach, we

can apply a few different decomposition methods for solving the deterministic counterpart

of the multi-stage stochastic optimization problem. These methods need to go through

the whole scenario tree many times and hence it is necessary to store the scenario tree

first. One widely used decomposition method is the stochastic dual dynamic programming

(SDDP). Under the stage-wise independence assumption, SDDP iteratively builds cutting

plane models to approximate the value functions starting from the last stage T until the

first stage (backward iteration), and then generates feasible solutions starting from the first

stage to the last stage (forward iteration). On the other hand, as a common drawback for

cutting plane methods, SDDP converges slowly as the number of decision variables in each

stage increases [76]. Improvement of cutting plane methods, e.g., based on the bundle-level

method, however, can only be applied to two-stage problems only (see [101] and references

therein). Moreover, the rate of convergence of SDDP, i.e., how many number of forward

and backward iterations it will take to achieve a certain accurate solution, still remains

unknown for multi-stage problems with T ≥ 3, although its asymptotic convergence has

been established for multi-stage linear programming [57] .

4.5 Numerical experiment

Our goal in this section is to report the results from our preliminary numerical experiments

conducted to test the efficiency of the DSA method applied to a class of multi-stage asset

allocation problems.

We consider a classic multistage asset allocation problem due to Dantzig and Infanger
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[dantzig1993multi] given by

minx0,p1,q1 E
[
min−u(

∑n+1
i=1 x

1
i ) + . . .+ E

[
min−u(

∑n+1
i=1 x

T
i )
]]

s.t.0 ≤ p1
i ≤ p̄1, s.t. x1

i = R1
i (x

0
i − p1

i + q1
i ), s.t. xTi = RT

i (xT−1
i − pTi + qTi ), i = 1, . . . , n,

0 ≤ q1
i ≤ q̄1, x1

n+1 = x0
n+1 +

∑n
i=1(1− p̂i)p1

i xTn+1 = xT−1
n+1 +

∑n
i=1(1− p̂i)pTi ,

−
∑n

i=1(1 + q̂i)q
1
i , −

∑n
i=1(1 + q̂i)q

T
i .∑n+1

i=1 x
0
i = w0, 0 ≤ p2

i ≤ p̄2,

x0
i ≥ 0, 0 ≤ q2

i ≤ q̄2,

(4.108)

Here pti and qti , respectively, denote the amount of asset i that will be sold and purchased

in period t, p̂i and q̂i, respectively, denote the transaction costs for selling and purchasing

one unit of asset i, and Rt
i represent the factor of random return for asset i from time t

to time t + 1. Moreover, the utility function u(·) describes the investor’s risk preference.

In particular, a linear utility function u(·) describes risk neutrality while a concave utility

function models risk averseness. At the initial time period 0 the decision maker has a

total amount of wealth w0 in assets i = 1, . . . , n and in cash (indexed as asset n + 1 for

notational convenience). The dollar values of these initially available assets are denoted by

x0
i , i = 1, . . . , n+ 1. In each period of time, short-selling of assets and borrowing of cash

are allowed when xi < 0, but there exist upper bounds p̄ and q̄ on the selling and buying

amount, respectively. The goal of the decision maker is to maximize the expected utility

E[u(
∑n+1

i=1 x
T
i )] for the portfolio over T periods of time.

4.5.1 Stagewise dependent random return

Our goal in this subsection is to demonstrate that the DSA method does not require the

stage-wise independence assumption for the random returns. In this set of experiments, we

model the correlation between asset returns using a factor model

Rt = FV t, (4.109)
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which relates the asset returns Rt = (Rt
1, . . . , R

t
n)′ to factors V t = (vt1, . . . , v

t
h)
′ through

a factor matrix F ∈ Rn×h. This factor model will allow us to consider the stage-wise

dependence, e.g., given by

vti = vt−1
i + εti, i = 1, . . . , h, (4.110)

where εti denote the independent random variation of the factor vi in time t. We col-

lected the data of weekly returns for 1, 887 assets from Thomson Reuters Datastream

(http://financial.thomsonreuters.com/), and use these data to fit the ran-

dom return model. We assume that the investor is risk averse with the utility function u(·)

defined as the classic concave quadratic utility function [102], i.e., u(W ) = W −bW 2 with

W =
∑n+1

i=1 xi. The value of b = 1/(3W0) is chosen according to [102], where W0 is the

initial total wealth. We generate three instances (Inst 1, Inst 2 and Inst 3) which have a

fixed number of stages 3, but with different number of assets (5, 200 and 400).

When implementing the DSA algorithm, we consider every outer mostest loop as one

iteration and run the algorithm for 100 iterations. For the sake of convenience, we set

N1 = . . . = NT = 100. Note that in order to estimate the function values for an output

solution, we generate N realizations for the random vector {εt}, t = 1, . . . , T − 1, and

form a scenario tree consisting of NT−1 random returns Rj,t at level t ∀t = 1, . . . , T, j =

1, . . . , NT−1 according to (4.109) and (4.110). Then we will find a prefixed control policy

{x0, p̄t, q̄t}, t = 1, . . . , T − 1 based on the the output of the algorithm, and calculate other

state variables according to

xj,ti = Rj,t
i (xt−1

i − p̄ti + q̄ti),∀i = 1, . . . , n. (4.111)

In other words, at stage 1, we will get N feasible {xj,1},∀j = 1, . . . , N by (4.111), and at

stage 2, we will get total N2 feasible {xi,2|xj,1, Ri,2},∀i = 1, . . . , N2 by (4.111) and so on.
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Table 4.1: Problem parameters for stagewise dependent return

n h w0 p̄ = q̄ p̂ = q̂ T

Inst 1 5 3 3 0.1 0.05 3
Inst 2 200 70 500 1 0.05 3
Inst 3 400 240 1,000 1 0.05 3

Table 4.2: Numerical results for DSA with stagewise dependent return

#. of Iter. 0 10 20 60 100

Inst 1
FV -4.0812 -4.1047 -4.1186 -4.1704 -4.2352

Time(s) 0 1.96 4.02 12.37 21.00

Inst 2
FV -665.79 -665.99 -666.13 -672.38 -675.80

Time(s) 0 12.38 24.77 77.40 126.55

Inst 3
FV -1.3326*e+3 -1.3334*e+3 -1.3337*e+3 -1.3414*e+3 -1.3493*e+3

Time(s) 0 56.65 114.64 339.21 565.73

Then we estimate the function value by

FV = 1
N

∑N
j=1

[
−u(xj,1) + 1

N

∑Nj
i=N(j−1)+1[−u(xi,2) + . . .]

]
. (4.112)

It is worth noting that FV estimates an upper bound on the objective value at {x0}. Nev-

ertheless, our experimental results reported in Table 4.2 indicates that DSA does converge

for these problems with stagewise dependent return.

4.5.2 Stagewise independent return

Our goal in the second set of experiments is to compare DSA with SDDP for solving prob-

lem (4.108). Since SDDP cannot be directly applied for solving problems with stagewise

dependent return, in order to compare these two algorithms, we assume the random returns

are stagewise independent given by

Rt = µ+ εt,∀t = 1, . . . , T, (4.113)

where µ ∼ Uniform[0.8, 1.2], and εt ∼ Normal(0, σ2). Given starting point (x̄1, x̄2, . . . , x̄T )

and approximation of value function Qt for t = 1, . . . , T , each iteration of the SDDP algo-
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rithm consists of a forward step and a backward step to update the feasible solutions and the

approximate value functions, respectively. We implemented the standard SDDP algorithm

as described in [57]. In the forward step, for t = 1 to T , we randomly generate a sample

{Rtj}, j = 1 . . . ,M with size M = 20, and call the convex optimization solver CVX in

Matlab 2017b to solve the subproblem

min
xtj ,pt+1,j ,qt+1,j ,stj

− u(
∑n+1

i=1 x
tj
i ) + Qt+1(xtj, pt+1,j, qt+1,j, stj)

s.t. xtji = Rtj
i (x̄t−1

i − p̄ti + q̄ti), ∀i = 1, . . . , n,

xtjn+1 = x̄t−1
n+1 +

∑n
i=1(1− p̂i)p̄ti −

∑n
i=1(1 + q̂i)q̄

t
i ,

xtji − p
t+1,j
i + qt+1,j

i − stji = 0, ∀i = 1, . . . , n,

xtjn+1 +
∑n

i=1(1− p̂i)pt+1,j
i −

∑n
i=1(1 + q̂i)q

t+1,j
i − stjn+1 = 0,

xtj, pt+1,j, qt+1,j, stj ≥ 0,

where Qt+1 denotes the current approximation for the value function at the (t+1)-th stage.

Denoting ytj = (xtj, pt+1,j, qt+1,j, stj), we then compute the solution ȳt ≡ (x̄t, p̄t+1, q̄t+1, s̄t) =

1
M

∑M
j=1 y

tj . In the backward step, for t = T to 1, we call the CVX solver to solve the sub-

problem

min
xtj ,pt+1,j ,qt+1,j ,stj

− u(
∑n+1

i=1 x
tj
i ) + Qt+1(xtj, pt+1,j, qt+1,j, stj)

s.t. πx,t,ji : xtji = R̃tj
i (x̄t−1

i − p̄ti + q̄ti), ∀i = 1, . . . , n,

πx,t,jn+1 : xtjn+1 = x̄t−1
n+1 +

∑n
i=1(1− p̂i)p̄ti −

∑n
i=1(1 + q̂i)q̄

t
i ,

πs,t,ji : xtji − p
t+1,j
i + qt+1,j

i − stji = 0, ∀i = 1, . . . , n,

πs,t,jn+1 : xtjn+1 +
∑n

i=1(1− p̂i)pt+1,j
i −

∑n
i=1(1 + q̂i)q

t+1,j
i − stjn+1 = 0,

xtj, pt+1,j, qt+1,j, stj ≥ 0,
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Table 4.3: Problem parameters for stagewise independent data

n w0 p̄ = q̄ p̂ = q̂ T σ

Inst 4 5 3 0.1 0.05 3 0.05
Inst 5 200 500 1 0.05 3 0.1
Inst 6 400 1,000 1 0.05 3 0.2
Inst 7 5 3 0.1 0.05 4 0.1
Inst 8 5 3 0.1 0.05 5 0.1

for the fixed set of randomly generated scenarios R̃tj, j = 1, . . . , Nt, with Nt = 100,

and compute the optimal primal solution ŷtj ≡ (x̂tj, p̂t+1,j, q̂t+1,j, ŝtj) and dual solution

(π̂x,t,j, π̂s,t,j). We then update the cutting plane model Qt(·) = max{Qt(·), lt(·)}, where

lt(y
t−1) := Q̃t(ȳ

t−1) + g̃Tt (yt−1 − ȳt−1) with Q̃t(ȳ
t−1) = 1

Nt

∑Nt
j=1[−u(

∑n+1
i=1 x̂

tj
i ) +

Qt+1(x̂tj, p̂t+1,j, q̂t+1,j, ŝtj)] and

(g̃t)i =



1
Nt

∑Nt
j=1 R̃

tj
i π̂

x,t,j
i , 1 ≤ i ≤ n;

1
Nt

∑Nt
j=1 π̂

x,t,j
n+1 , i = n+ 1;

1
Nt

∑Nt
j=1−R

tj
i π̂

x,t,j
i + (1− p̂i)π̂x,t,jn+1 , n+ 2 ≤ i ≤ 2n+ 1;

1
Nt

∑Nt
j=1R

tj
i π̂

x,t,j
i − (1 + q̂i)π̂

x,t,j
n+1 , 2n+ 2 ≤ i ≤ 3n+ 1;

0, 3n+ 2 ≤ i ≤ 4n+ 2.

We apply both DSA and SDDP to solve a few different problem instances of (4.108)

with parameters given in Table 4.3. In particular, we consider two groups of instances.

The first group (Inst 4, Inst 5 and Inst 6) has a fixed number of stages 3, but with different

number of assets (5, 200 and 400), while the second group (Inst 4, Inst 7 and Inst 8) has

the same parameter setting except that the number of stages changes from 3 to 4 or 5. Our

hypothesis is that the DSA method can scale up with the dimension of the problem (i.e.,

the number of assets), while SDDP can handle problems with a larger number of stages.

We first report the estimated function values in Figure 4.1a, 4.2a and 4.3a for the first

group of instances. Note that in order to estimate the function values for a generated

solution, we generate N sequences of random variables {εt}, t = 1, . . . , T , and com-
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pute the random returns Rt
j ∈ Rn,∀t = 1, . . . , T, j = 1, . . . , N according to (4.113),

then we compute feasible solution by (4.111) and estimate the function value by FV =

1
N

∑N
j=1

∑T−1
t=1 −u(

∑n+1
i=1 x

j,t
i ) with N = 1000. We observe from Figures 4.1a, 4.2a and

4.3a that SDDP generates slightly better solution quality, and that DSA significantly out-

performs SDDP in terms of computation time for instances with a small number of stages

(e.g., T = 3) by comparing Figure 4.1b with 4.1c, and similarly Figure 4.2b with 4.2c, and

Figure 4.3b with 4.3c. Moreover, by comparing Figures 4.1b, 4.4b, and 4.5b, with 4.1c,

4.4c, and 4.5c, we can see that for problem instances with a small number of assets (i.e.,

Inst 4, Inst 7 and Inst 8), as the number of stages varies from 3, 4 to 5, the execution time

for DSA algorithm changes from 20, 2, 000 to 190, 000 seconds in 100 iterations, while the

one for SDDP only changes from 5, 000, 6, 000 to 7, 000 seconds. From these preliminary

numerical results, we indeed confirm that DSA can be used to handle multi-stage stochastic

optimization problems with a large number of decision (or state) variables, but a relatively

smaller number of stages. On the other hand, SDDP type algorithms can be used to solve

problems with a larger number of stages but smaller number of decision (or state) vari-

ables. These two types of algorithms seem to be complimentary to each other for solving

multi-stage stochastic optimization problems.

(a) Function value vs iter (b) Execution time for DSA (c) Execution time for SDDP

Figure 4.1: Comparison for Inst 4
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(a) Function value vs iter (b) Execution time for DSA (c) Execution time for SDDP

Figure 4.2: Comparison for Inst 5

(a) Function value vs iter (b) Execution time for DSA (c) Execution time for SDDP

Figure 4.3: Comparison for Inst 6

4.6 Conclusion

In this chapter, we present a new class of stochastic approximation algorithms, i.e., dynamic

stochastic approximation (DSA), for solving multi-stage stochastic optimization problems.

This algorithm is developed by reformulating the optimization problem in each stage as a

saddle point problem and then recursively applying an inexact primal-dual stochastic ap-

proximation algorithm to compute an approximate stochastic subgradient of the previous

stage. We establish the convergence of this algorithm by carefully bounding the bias and

variance associated with these approximation errors. For a three-stage stochastic optimiza-

tion problem, we show that the total number of required scenarios to find an ε-solution is

bounded by O(1/ε4) and O(1/ε2), respectively, for general convex and strongly convex

cases. These bounds are essentially not improvable in terms of their dependence on the

target accuracy. We also generalize DSA for solving multi-stage stochastic optimization

problems with the number of stages T > 3. To the best of our knowledge, this is the first
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(a) Function value vs iter (b) Execution time for DSA (c) Execution time for SDDP

Figure 4.4: Comparison for Inst 7

(a) Function value vs iter (b) Execution time for DSA (c) Execution time for SDDP

Figure 4.5: Comparison for Inst 8

time that stochastic approximation methods have been developed and their complexity is

established for multi-stage stochastic optimization.

From the preliminary numerical results, we can see the DSA method is efficient for

solving high dimensional problems with a relatively smaller number of stages. However,

as the number of stages increase, the computing time would increase exponentially even

though it can handle the case when random variable are stage-wise dependent. Further

improvement on the practical performance of this method should be pursed along the di-

rections of better estimating problem parameters especially those related to the size of

subgradients and dual multipliers. It would be interesting to study whether one can esti-

mate these parameters in an online fashion while running these methods, and whether one

can further improve the convergence of DSA in terms of its dependence on these problem

parameters, e.g., by using accelerated SA methods and some other algorithmic schemes.

It is worth noting that there exist a class of alternative approaches based on linear deci-

sion rule models for solving multi-stage stochastic optimization problems. In these meth-
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ods we assume that the decisions linearly depend on the decisions previously made and the

realization of random variables that have been observed so far. Using this approach, one

can reformulate a multi-stage stochastic optimization problem into a two-stage problem,

and hence can significantly reduce the computational cost. In comparison with the exact

methods we focus on in this chapter, using linear decision rule models can only gener-

ate suboptimal solutions for the original multi-stage stochastic optimization problems in

general.
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