

CONTINUOUS EVALUATION OF CORRUGATING MEDIUM

(Data for March and April, 1972)
Project 2694-2
Report Thirty-One
A Progress Report
to
FOURDRINIER KRAFT BOARD INSTITUTE, INC.
This material is intended only for the internal use of authorized persons within Fourdrinier Kraft Board Institute member companies

May 24, 1972

THE INSTITUTE OF PAPER CHEMISTRY
 Appleton, Wisconsin

CONTINUOUS EVALUATION OF CORRUGATING MEDIUM (Data for March and April, 1972)

Project 2694-2

Report Thirty-One
A Progress Report
to
FOURDRINIER KRAFT BOARD INSTITUTE, INC.

This material is intended only for the internal use of authorized persons within Fourdrinier Kraft Board Institute member companies

May 24, 1972
Page
SUMMARY 1
INTRODUCTION 4
SUMMARY OF CURRENT MACHINE AVERAGES 6
SUMMARY OF TEST RESULTS FOR INDIVIDUAL MACHINES 8
DISCUSSION OF RESULTS 24

CONTINUOUS EVALUATION OF CORRUGATING MEDIUM (DATA FOR MARCH AND APRIL, 1972)

SUMMARY

PART I. GENERAL
A. Participation Data:

PART II. QUALITY DATA
A. Summary of Physical Test Data

Test	Report	Machine Averages		F.K.I. Averages	
		Max.	Min.	Current	Cumulative
Basis weight,	Cur.	28.4	24.8	26.4	26.6
1b./1000 ft. ${ }^{2}$	Prev.	28.6	25.2	26.5	26.6
Caliper, pt.	Cur.	10.7	9.0	10.1	10.1
	Prev.	11.4	9.3 .	10.2	10.1
Concora flat	Cur.	46.7	34.3	40.6	41.7
crush, p.s.i:	Prev.	48.9	34.4	40.8	41.8
Single-face flat	Cur.	33.2	25.9	29.5	31.2
crush, p.s.i.	Prev.	37.1	26.5	29.8	$\because 31.3$

B. Summary of Runnability Data

Rünnability		Previous Period			Current Period		
Speed,	Tension,	No.	\% of	Cum.,	No.	\% of:	Cum.,
f.p.m.	lb./in.	of Rolls	Total	\%	of Rolls	Total	\%
<600	Min.	9	7.3	100.0	6	5.8	100.0
600	Min.	28	22.6	92.7	13.	12.6	94.2
600	$\therefore 1 / 2$	25	20.2	70.1	19	18.4	81.6
600	1	19	15.3	49.9	20	19.4	63.2
600	$\therefore 1-1 / 2$	43	34.7	34.7	45	43.7	43.7

C. Trends in Quality Data in Current Report with Reference to Data from Previous" Report

Physical Tests:
Basis weight: Decreased from 26.5 to $26.4 \mathrm{lb} . / \mathrm{M} \mathrm{ft}.{ }^{2}$
Caliper: Decreased from 10.2 to 10.1 pt.
Concora flat crush: Decreased from 40.8 to 40.6 p.s.i.
Single-face flat crush: Decreased from 29.8 to 29.5 p.s.i.
Runnability:

Comments: The current runnability shows an improvement over that of the previous period.

PART III. CONCORA CALIBRATION DATA

A. Summary of Data (Number and Percentage of Machines Included Within the Indicated Ranges).

$\begin{gathered} \text { Range, } \\ \% \end{gathered}$	Previous Period		Current Period	
	No: of	\% of	No. of	\% of
	Machines	Total	Machines	Total
± 1.0	8	22.9	8	30.8
± 2.5	14	40.0	15	57.7
± 5.0	23	65.7	20	76.9
± 10.0	31	88.6	26	$100.0^{\text {b }}$
± 15.0	35	$100.0^{\text {a }}$		

B. Significance of Calibration Data

The current level of agreement between Institute and mill Concora flat crush data shows an improvement over that of the previous period.

[^0]
INTRODUCTION

As requested by the Technical Division of the Fourdrinier Kraft Board Institute, Inc., the reports pertinent to the continuous evaluation of corrugating medium have been prepared by The Institute of Paper Chemistry on a bimonthly instead of monthly basis since August, 1961. The current report summarizes the data obtained during March and April, 1972, on 103 rolls of corrugating medium submitted for evaluation from thirty-one machines.

Each roll was evaluated at the Institute for basis weight, caliper, Concora flat crush (tested immediately after fluting), H. and.D. flat crush on single-faced board, and runnability. Runnability was evaluated by corrugating each roll under standardized conditions on the Insti.tute's single-facer into A-flute board at 600 feet per minute with minimum tension and recording the draw factor at this speed and tension if the roll ran satisfactorily. If unsatisfactory runnability occurred at this speed and tension, the single-facer was slowed down in increments of 25 f.p.m. using minimum tension until satisfactory runnability was obtained, i.e., :until there was no visual evidence of fractured flutes. In this latter case the draw factor was recorded for the highest speed below 600 f.p.m. (with minimum tension) at which the roll ran satisfactorily. On the other hand, if initial fabrication of the roll was satisfactory at $600 \mathrm{f} . \mathrm{p} . \mathrm{m}$. with minimum tension, further runs were made at 600 f.p.m. using higher tension to determine the maximum tension at 600 f.p.m. which the medium could sustain without visual evidence of fracturing. The higher tensions used at 600 f.p.m. were $0.5,1.0$, and 1.5 lb ./inch. For each roll, flat crush was determined on the single-faced board obtained at a speed of 600 f.p.m. With minimum tension, or if the roll could not be corrugated satisfactorily at 600 f.p.m. with minimum tension, flat crush was determined on the single-faced board obtained at
the highest speed below 600 f.p.m. at which the medium could be corrugated with minimum tension. The flat crush results on the single-faced board, in addition to supplying information about quality, also provide data which may be useful to each participant as a means of evaluating the nature of the quantitative relationship between Concora flat crush and combined board flat crush for his medium.

For each participating machine, test data for the current period are shown in Table I. A tabulation of the number of rolls and type of medium evaluated is also given in Table I for each machine. The current machine test averages given in Table I are the means for each test property of the averages obtained on all rolls of corrugating medium evaluated from a given machine during the current pèriod: In addition to the current machine test averages, Table I also presents current F.K.I. averages, cumulative F.K.I. averages, and F.K.I. indexes. The current F.K.I. average for each test property is the mean of the current machine averages for the same property for all machines participating in the study during a given period. The cumulative F.K.I. average for a given test property is the mean of the current F.K.I. averages for the same property for the previous twelve-month period excluding the average for the current period. The F.K.I. index for each test property is obtained as follows:

$$
\frac{\text { current } F \cdot K . I . ~ a v e r a g e ~}{\text { cumulative F.K.I. average }} \times 100=\text { F.K.I. index }(\%) \text {. }
$$

The F.K.I. index for each test property provides a convenient means of comparing current average quality with. corresponding average quality for the previous six periods. An index greater than 100% indicates, of course, that current average quality is higher than the corresponding average quality for the previous six periods; similarly an index below 100% indicates that current average quality is lower than the corresponding average quality for the previous six periods.

Page 6
Report "Thirty-One
Fourdrinier Kraft Board Institute, Inc.
Project 2694-2

MARCH AND APRIL, 1972											
MILL CODE	NO. OF ROLLS	TYPE OF MEDIUM	$\begin{gathered} \text { BASIS } \\ \text { WEIGHT. } \\ \hdashline \text { LB. } \end{gathered}$	CALIPER, POINTS			CONCORA F CRUSH, P.		$\begin{aligned} & \text { FLAI } \\ & \text { SS.I. } \end{aligned}$	SINGLE-FACE FLAT CRUSH. P.S.I.	
						;					
	.					\because	.				
A	4	- SEMICHEMICAL	. 26.6		9.9		. 40	40.8	\because		28.8
8	3	SEMICHEMICAL	25.4		10.2	\cdots		36.9			27.1
C	1	SEMICHEMICAL	26.5		10.3			38.3			27.8
0	2	SEMICHEMICAL	27.0		9.0			45.4			32.5
E	4	SEMICHEMICAL	26.2		10.2			44.6			31.8
F	4	SEMICHEMICAL	26.9		10.0			44.2			30.9.
G	4	SEMICHEMICAL	25.7		10.6			43.2	\%		27.8
H	4	SEMICHEMICAL	26.3		10.4			43.3			31.8
I	2	Bogus	26.7		9.8			38.4	\because		27.9
j	2	SEMICHEMICAL	25.0		10.7			41.2			30.7
k	4	SEMICHEMICAL	26.5		10.7			39.2			27.7
1	4	SEMICHEMICAL	26.4		10.1	\because		39.0			28.3
$\therefore \mathrm{M}$	4	SEMICHEMICAL	26.2		10.6			42.7			32.5
N	4	SEMICHEMICAL	25.5	.	10.2			42.0			30.4
0	4	SEMICHEMICAL	26.5	,	10.7			39.9			28.9
P	6	SEMICHEMICAL	26.2		10.5			39.7			28.4
Q	3	SEMICHEMICAL	25.6		10.2			34.3			25.9
R	$\because 4$	SEMICHEMICAL	28.4		10.6			41.2	,		31.9
S	5	SEMICHEMICAL	26.6		10.3			38.2			27.1
T	4	SEMICHEMICAL	24.8		9.5			40.2			27.4
U	4	SEMICHEMICAL	25.9	,	10.5			41.3			29.4
v	2	SEMICHEMICAL	28.0	;	9.2			46.7			33.2
W	4	SEMICHEMICAL	26.0		9.2			41.4			28.8
x	2	BEGUS	27.0		10.4			35:8			26.3
r	4	SEMICHEMICAL	26.4		10.0			43.1			31.2
2	4	SEMICHEMICAL	26.2		10.2			38.1			29.0
AA	2	- SEMICHEMICAL	25.7		10.3			44.4			32.4
B 8	2	- SEMICHEMICAL	28.3		9.4			39.0			30.8
CC	5	SEMICHEMICAL	25.6		10.2			43.5			31.8
OD	1	SEMICHEMICAL	27.6	\because	9.4			35.0			27.1
EE	1	SEMICHEMICAL	26:8		10.1			37.4			28.3
-		\therefore)	.		\because						
total	103		- \vdots		;						
		$\because \because$	\because	\because			-	\because			
			$\cdots \cdots$	S		\because		\because	\%		
CURREN	F.K.I.	verage	$\cdots 26.4$	\because	$\therefore 10.1$	\because		40.6			29.5
Cumul	IVE F.K	- average	$\bigcirc \quad 26.6$		10.1			41.7			31.2
F.K.I	INDEX,	RCENT	99.2	\cdots	-100.0			97.4			94.6

The test results obtained on the rolls submitted from the production of individual machines during the current period are shown in Tables II through XXXII for Machines A through Z and Machines $A A, B B, C C, D D$, and EE, respectively. For each machine, the maximum, minimum, and average results obtained on each roll are shown for all test properties except basis weight for which only the average is shown; in addition, the overall average result for all rolls submitted from a given machine is shown for each test property. The latter overall averages are reported as "current machine averages." A cumulative machine average for each test property is also shown and represents the mean of the current machine averages for the same property for the previous six periods (excluding the current period). Also shown for each machine and for each test property in Tables II to XXXII are a machine factor and machine index which are defined as follows:

$$
\begin{aligned}
& \frac{\text { current machine average }}{\text { cumulative machine average }} \times 100=\text { machine factor }:(\%) \\
& \frac{\text { current machine average }}{\text { cumulative F.K.I. average }} \times 100=\text { machine index }(\%)
\end{aligned}
$$

The machine factor and machine index provide a convenient means for comparing the current machine average for each test property with either the previous results obtained on the same machine for the same test property or with the cumulative result for all machines - i.e., the cumulative F.K.I. average for the same test property.

Page 8

Fourdrinier Kraft Board Institute, Inc.
Project 2694-2
table II

BASIS WT..
LB./M.
$\overline{A_{\text {Maxdmum tension at }} 600 \text { 1.p.m. }}$
$B_{600 \text { f.p.m. minimum tension. }}$

TABLE IV

0
ARY OF TEST RESULTS for machine
MARCH AND APRIL, 1972
type of medium- semichemical

RUNNABILIty	
	DRAW
LB.IIN.*A	FACTOR*
1.5	1.570
1.5	1.579

 CONCORA FLAT CRUSH, MAX. MIN. AV.

0%
$0 \circ$
00
$0 \circ$
$0 \circ$
NO
ÖO

CALIPER, PI.
MAX. MIN. AV.
n
n
n
i
$\stackrel{n}{\sim}$

$$
\begin{aligned}
& \sigma^{\circ} \sigma^{\circ} \\
& \text { N N } \\
& \sigma^{\circ}{ }^{\circ}
\end{aligned}
$$

$$
\therefore
$$

$$
\begin{gathered}
\cdot \text { - } 189 \\
\cdot-1 月 \text { SIS }
\end{gathered}
$$

71114
0-1
2-29-72
$0-2$
$3-8-72$

CURRENT MACHINE AVERAGE
CUMULATIVE MACHINE AVERAGE
MACHINE FACTOR, PERCENT
MACHINE INDEX, PERCENT
See Table II for Footnotes A and B.
table vi
summary of test results for machine e

table vil

UMmary of test results for machine
march and aprit， 1972

RUNNABILITY	
DRAW	
LB．IIN．＊A	FACTOR＊B

$\stackrel{N}{N}$
を品

9 OOQ

北莅

Page 12
TABLE x
GRY OF TEST RESULTS fOR MACHINE
MARCH AND APRIL， 1972

$\underset{\sim}{n}$

4
0
N
N
N
N
N type of medium－bogus \vdots. CALIPER，PTACORA FLAT CRUSH，
MAX．MIN．AV．MAX．MIN．AV．

BASIS WT．，
LB．
SB．
27.4
26.0

26.7
27.3
97.8
100.4

TABLE XI

SUmmary of test results for machine J

$$
\text { MARCH AND APRIL, } 1972
$$

MARCH AND APRIL， 1972

0
0
-
吾交
CURRENT MACHINE AVERAGE
CUMULATIVE MACHINE AVERAGE
MACHINE FACTOR，PERCENT
MACHINE INDEX．PERCENT
TYPE OF MEDIUM- SEMICHEMICAL

和吉。

CODE MATE
$J-1$
$J-2$
See Table II for Footnotes A and B．
$\mathrm{C}_{\text {Maximum speed at which this roll could be corrugated with minimum tension was } 475 . \mathrm{f} . \mathrm{p} . \mathrm{m} \text { ．}} \begin{aligned} & \text { when }\end{aligned}$ ．
table xit

SUMMARY OF TESt RESULTS for machineMARCH AND APRIL, 1972															
TYPE OF MEDIUM- SEMICHEMICAL															
	date	MILI ROLL	$\begin{gathered} \text { BASIS WT.. } \\ \text { LB./M. } \end{gathered}$	CALIPER, PT.			CONCORA	flat cruin, P.S.I.		SINGLE-FACE FLAT CRUSH. P.S.I.				runnability	
CODE	made.	NO.	SQ. FT.	max.	MIN.	AV.	max.	Min.	AV.		MAX.	MIN.	AV.	L8./IN.*A	FACTOR*B
K-1 2	2-22-72	2253	25.8	10.9	10.0	10.5	40.8	36.0	39.1		29.6	27.4	28.6	0.5	1.561
$\mathrm{K}-2 \quad 2$	2-23-72	2254	26.3	11.0	10.3	10.7	43.8	30.0	39.1		29.6	27.8	28.6	0.5	1.567
$\mathrm{k}-3$	3-18-72	2261	27.4	11.6	11.0	11.2	41.4	36.0	38.4		27.2	25.6	26.2	MIN.	1.558
K-4 3	3-27-72	2262	26.6	10.9	10.1	10.5	42.6	39.0	40.4		28.2	27.0	27.5	0.5	1.563
CURRENT	MaChine	AVERAGE	26.5			10.7			39.2				27.7		1.562
cumulat	IVE MACH	NE average	E 27.1			10.6			42.0				30.7		
MACHINE	FACIOR,	PERCENT	97.8			100.9			93.3				90.2	.	
machine	INDEX. P	ERCENT	99.6			105.9			94.0				88.8		

SUmmary of test results for machine L
table xilit
MARCH AND APRIL, 1972
type of medium- semichemical

Page 14
Report Thirty-One

Fourdrinier Kraft Board Institute, Inc.
Project 2694-2
TABLE XIV .
MMARY OF TEST RESULTS fOR MACHINE M
MARCH AND APRIL, 1972
TYPE OF MEDIUM- SEMICHEMICAL. \because

SINGLE-FACE
CRUSH, P.
MAX. MIN.
min
응́ㅇ․
table xili
SUmmary of test results for machine P

1.568

TABLE XVIII
SUMARY OF TEST RESULTS FOR MACHINE MARCH AND APRIL. 1972

TYPE Of MEDIUM- SEMICHEMICAL

 BASIS WT.
LB./M.

R
summary of test results for machine MARCH AND APRIL. 1972
table XiX
$\begin{array}{cc}\text { RUNNABILITY } \\ \text { LB. IIN.*A } & \text { DRAW } \\ \text { FACTOR*B }\end{array}$

table $x x$
Sungary of test resulis fer machine S

caliper, pr.			CONCORA FLAT CRUSH,P.S.I.			Single-face flat CRUSH, P.S.I.			runnability	
max.	Min.	Av.	max.	Min.	AV.	max.	MIN.	AV.	Lる. $1 \mathrm{Im.*}$ A	FACTGR*B
10.5	10.0	10.1	37.8	34.8	36.5	26.4	24.6	25.3	0.5	1.570
10.1	9.5	9.9	40.2	32.4	36.1	29.0	27.0	27.8	0.3	1.571
11.1	10.9	11.0	42.0	38.4	39.8	29.2	27.8	28.5	1.0	1.567
10.7	10.0	10.4	40.8	34.8	37.8	27.0	25.0	26.3	1.0	1.570
10.0	9.9	10.0	43.8	39.6	40.7	28.2	27.4	27.8	1.0	1.569
		10.3			38.2			27.1		1.570
		10.4			37.6			28.8		
		99.0			101.6			94.1		
		102.0	.		91.6			86.8		

TABLE XXI
SUMMARY OF TEST RESULTS FOR MACHINE T
MARCH AND APRIL, 1972

		MILL	BASIS WI.
COLE	CATE	ROLL.	LB./M.
	MADE	NO.	SQ. FT.

MARCH AND APRIL, 1972
type of medium- semichemical

RUNNABILITY	
	DRAW
LB./IN.*A	FACTOR*B

in

気 $\quad \vec{\sim}$

*See Table II for Footnotes A and B.

Page 18
Report Thirty-One

Fourdrinier Kraft Board Institute; Inc.

 Project 2694-2

table xxy
ARY OF TEST RESULTS FOR MACHINE X
MARCH AND APRIL, 1972
type of medium- bogus

See Table II for Footnotes A and B.

Fourdrinier Kraf't Board Institute, Inc: Project 2694-2

CALIPER, Pt.			CONCORA	FLAT P.S.	CRUSH,
MAX.	Min.	AV.	max.	Min.	AV.
10.0	9.8	9.9	43.2	31.8	38.3
10.2	9.8	10.0	40.2	36.6	38.2
10.1	9.9	10.0	40.8	35.4	37.8
11.2	10.7	11.0	41.4	35.4	38.2
		10.2			38.1
		9.9			38.3
		103.0			99.5
		101.0		.	91.4

CODE	CATE MADE	MILL ROLL NO.	$\begin{aligned} & \text { BASIS WT. } \\ & \text { LB./M. } \\ & \text { SQ. FT. } \end{aligned}$
2-1 2	2-16-12	400	25.3
2-2	2-29-72	401	26.2
2-3 3	3-19-72	402	26.0
2-4 4	4-12-72	403	27.3
current	MACHINE	àjerage	26.2
Cumulati	IVE MACHI	ine average	E 26.2
machine	FACTOR,	PERCENT	100.0
MACHINE	INDEX, P	Percent	98.5

TABLE XXVI
TABLE XXVII

$$
\begin{aligned}
& \text { SUMMARY GF TEST RESULIS FOR MACHINE } Z \\
& \text { MARCH ANO APRIL. I } 972
\end{aligned}
$$

summary of test results for machine bb
MARCH AND APRIL， 1972

table xxix

> TYPE OF MEDIUM- SEMICHEMICAL
concora flat crus
CONCORA FLAT CRUSH，
P．S．I．
MAX．MIN．AV．

$\begin{array}{ccc}\text { CALIPER，PT．} \\ \text { MAX．} & \text { MIN．} & \text { AV．} \\ & & \\ 10.0 & 8.7 & 9.3 \\ 9.9 & 9.0 & 9.4\end{array}$

BASIS WT．
LB．／M．
SQ．FT．
28.4
28.2
$\begin{array}{rr}28.3 & 9.4 \\ 27.7 & 9.5 \\ 102.2 & 98.9 \\ 106.4, & 93.1\end{array}$

	1Nヨコンヨ INヨวชヨd 39ロ४ヨムロ 3Ni アコロหヨィจ	© XGONI －801 כV」 HכVW ヨaI 3NIHJVW	
	2－8	2L－8i－z	2－88
	1－8	21－81－2	－898
S	－ ON	30\％w	3003
	צסרך	B1＊0	
－	171w		

＊See Table II for Footnotes A and B．
TABLE XXX
magr of test results for machine cC
march and april, 1972
type of medium- semich

$$
1.564
$$

Jmary of test results for machine oo
marcin and april, 1972
type of medium- semichemical

 $\stackrel{\circ}{\circ}$
37:
and

$$
\begin{gathered}
83.9 \\
\hdashline
\end{gathered}
$$

Summary of test results for machine ee					
MARCH ANO APRIL, 1972					
type of medium- Semichemical					
			concor	a flat	Crush.
CALIPER. PT. P.S.I.					
HAX.	MIN.		Max.	MIN.	AV.
10.2	10.0	10.1	38.4	36.6	37.4
		10.1			37.4
		10.4			39.8
		97.1			94.0
		100.0			89.7

CODE	$\begin{aligned} & \text { DATE } \\ & \text { MAD } \end{aligned}$	MILL ROLL NO.	BASIS WT., L8. M. SQ. FT.
			-
EE-1		5017	26.8
CURRENT	machine	average	26.8
CUMULAT	Ive Machi	ine average	27.6
MACHINE	factor,	PERCENT	97.1
MACHINE	INDEX, P	PERCENT	100.8

DISCUSSION OF RESULTS

Shown on page 2, Part II, Section "A" of the Summary are the maximum and minimum current machine averages obtained for each test property during the current period and the previous period. Also shown for each test property is the current F.K.I. average which represents the mean of the current machine averages and hence is indicative of the test level being maintained by the industry as a whole for each test property to the extent that the industry is represented by the participating machines. Also given for each test property is the cumulative F:K.I. average which represents the mean of the current F.K.I: averages for the previous six periods.

The runnability data for the 103 rolls evaluated during the current period and the 124 rolls evaluated during the previous period are summarized on page 2 , Part II, Section " B " of the Summary.

Supplementary to the runnability data, draw factors were determined for each roll of medium at 600 f.p.m. with minimum tension (or, for rolls, with poor runnability, at the maximum speed runnable with minimum tension) and are given in Tables II.through XXXII for Machines A through Z and Machines $A A, B B, C C, D D$, and EE, respectively.

In Table XXXIII, an effort has been made to compare. Institute and mill Concora flat crush test results for each machine for the current period. The following information is presented in this table: (I) Current machine average based on Institute data, (2) current machine average based on mill data, (3) the average difference - that is, the difference between the current machine average based on Institute data and the current machine average based on mill data, and (4) the average differences expressed as percentage differences, along with the percentage differences of the previous two-month period. In those cases where mill Concora flat crush data

TABLE XXXITI
A COMPARATIVE SUMMARY FOR EACH MACHINE OF THE CONCORA FLAT CRUSH AVERAGES BASED ON INSTITUTE DATA AND MILL DATA

Machine Code		MARCH AND APRIL, 1972			$\text { Av. Diff., } \%^{c}$	
	No. of Rolls	I.P.C.	Mill	Av. b		
	Compared	Av. ${ }^{\text {a }}$	Av. ${ }^{\text {a }}$	Diff. ${ }^{\text {b }}$	Current	Previous
A	4	40.8	42.2	+1.4	+3.4	+8.1
B	3	36.9	34.3d	-2.6.	-7.0	-9.7
C	0	38.3	-- ${ }^{\text {d }}$	--	-	-3.8
D	2	45.4	42.4	-3.0	-6.6	-1.1
E	4	44.6	41.9	-2.7	-6.1	-5.6
F	4	44.2	45.3	+1.1	+2.5	+2.1
G	4	43.2	42.6	-0.6	-1. 4	$+4.0$
H	4	43.3	39.3	-4.0	-9.2	-6.5
I	0	38.4	-- ${ }_{\text {d }}$	--	--	-6.6
J	0	41.2	-- ${ }^{\text {d }}$	--	--	--
K	4	39.2	40.3	$+1.1$	$+2.8$	+10.9
L	4	39.0	39.8	+0.8	+2.1	+3.6
M	4	42.7	43.0	+0.3	+0.7	+0.5
N	4	42.0	43.2	+1.2	+2.9	+0.3
0	4	39.9	38.4	-1.5	-3.8	-3.8
P : ${ }^{\text {a }}$	5	40.0	40.7	+0.7	+1.8	+0.9
Q	3	34.3	34.2	-0.1	-0.3	-1. 8
R	4	41.2	44.4	+3.2	+7.8	+10.5
S	5.	38.2	37.6	-0.6	-1.6	+7.1
T	4	40.2	40.6	+0.4	+1.0	$+4.4$
U	3	42.0	41.5	-0.5	-1.2	-1.6
v	2	46.7	42.7	-4.0	-8.6	-5.9
W	4	41.4	42.2 d	+0.8	+1.9	-0.9
X	0	35.8	-_ ${ }^{\text {d }}$	--	--	-10.5
Y	4	43.1	44.6	+1.5	+3.5	+0.5
Z	4	38.1	38.5	+0.4	+1.0	-0.6
AA	2	44.4	44.8	+0.4	+0.9	--
BB	2	39.0	38.8	-0.2	-0.5	0.0
CC	5	43.5	43.1	-0.4	-0.9	+4.0
DD	1	35.0	$35.0{ }_{\text {d }}$	0.0	0.0	+4.7
EE	0	37.4	--	--	--	-3.4

${ }^{a}$ Comparisons based on current machine average include only those rolls for which mill data were submitted.
$\mathrm{b}_{\text {Average }}$ difference is the difference between the current machine average based on Institute test results and that based on mill test results with the Institute test results used as the reference.
${ }^{c}$ Average difference (percent) is computed by dividing the average difference in p.s.i. by the Institute current machine average and multiplying by 100.
dNo mill data available.
are still obtained on specimens conditioned after fluting, no average differences between current machine averages based on Institute and mill data are shown. The inclusion of these comparisons is made possible by the fact that interested participants submit their Concora flat crush results to The Institute of Paper Chemistry (on data sheets obtainable from the Institute). This affords each participant an opportunity to review the level of agreement noted for his data with the levels noted for the other participants. Comparisons of this kind are a helpful adjunct to other calibration procedures.

RemKnm

R. C. McKee, Chairman Container Section

[^0]: ${ }^{\text {a Maximum }}$ perceritage difference was +10.9 .
 ${ }^{\mathrm{b}}$ Maximum percentage difference was $\mathbf{- 9 . 2}$.

