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SUMMARY

In the current Navy environment of undersea weapons development, the engineering

aspect of design is decoupled from the development of the tactics with which the weapon

is employed. Tactics are developed by intelligence experts, warfighters, and wargamers,

while torpedo design is handled by engineers and contractors. This dissertation examines

methods by which the conceptual design process of undersea weapon systems, including

both torpedo systems and mine counter-measure systems, can be improved. It is shown

that by simultaneously designing the torpedo and the tactics with which undersea weapons

are used, a more effective overall weapon system can be created.

In addition to integrating torpedo tactics with design, the thesis also looks at design

methods to account for uncertainty. The uncertainty is attributable to multiple sources,

including: lack of detailed analysis tools early in the design process, incomplete knowledge of

the operational environments, and uncertainty in the performance of potential technologies.

A robust design process is introduced to account for this uncertainty in the analysis and

optimization of torpedo systems through the combination of Monte Carlo simulation with

response surface methodology and metamodeling techniques. Additionally, various other

methods that are appropriate to uncertainty analysis are discussed and analyzed.

The thesis also advances a new approach towards examining robustness and risk: the

treatment of probability of success (POS) as an independent variable. Examining the cost

and performance tradeoffs between high and low probability of success designs, the decision-

maker can make better informed decisions as to what designs are most promising and

determine the optimal balance of risk, cost, and performance.

These robust design processes are demonstrated on a testbed example, a lightweight

torpedo example, a heavyweight torpedo example, and a mine counter-measure system.

The dissertation not only develops a framework for robust design, but also develops tools

xx



for the detailed analysis of torpedo systems, the analysis of minehunting systems, and a

visualization tool for improved decision-making in the presence of significant amounts of

probabilistic data.

Finally, the thesis examines the use of non-dimensionalization of parameters for torpedo

design. The thesis shows that the use of non-dimensional torpedo parameters leads to

increased knowledge about the scaleability of torpedo systems and increased performance

of Designs of Experiments.

The integration of these ideas concerning tactics, robust design with uncertainty, and

non-dimensionalization of torpedo parameters has lead to the development of a general,

powerful technique by which torpedo and other undersea weapon systems can be fully

optimized, thereby increasing performance and decreasing the total cost of future weapon

systems.
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CHAPTER I

MOTIVATION AND OBJECTIVES

1.1 Need for Advanced Design Methods

Early phases of decision-making in conceptual design are characterized by a high degree

of uncertainty in the system. This uncertainty arises from multiple sources, including:

lack of detailed analysis tools early in the design process, incomplete knowledge of the

operational environment or requirements, and uncertainty in the performance of potential

technologies. Yet, in the midst of this uncertainty, decision-makers are often required to

make commitments that permanently lock-in final system cost and performance. Figure 1

illustrates how, in today’s design process, most of the system cost is committed early in the

design process when knowledge of the system is most limited. Today’s system engineering

world is aspiring to bring more knowledge forward in the design process so that better

decisions can be made before a design’s final cost is locked-in. Unfortunately, bringing

design knowledge forward inherently brings more uncertainty about the system forward,

thus creating a need for more advanced design techniques that can handle this uncertainty

[213].

1.2 Need for Better Torpedoes

The Navy in general, and the torpedo community in particular, have had their real-dollar

budgets decrease significantly. Ship-building, a key indicator of the U.S. Navy budget, is

currently at its lowest point since 1950 and the Fleet combat inventory has been cut in half

from only 1989 levels [167]. These budget decreases have been occurring since the end of

the cold war. Without the direct threat of the Soviet Union, some people perceived that the

threat from foreign submarines, and hence the need for advanced undersea weapons, has

decreased. However, with the demise of the Soviet Union and the increasingly fractional

nature of regional politics, a large export market has been created for relatively inexpensive,
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Figure 1: Design Knowledge vs. Cost Committed [53]

yet highly capable, diesel-electric submarines. Germany is advertising its highly advanced

type 212 and 214 submarines [91] [92], while Russia is still manufacturing new diesel-electric

submarines for export to countries such as the People’s Republic of China [192]. A study by

the Naval Studies Board of the National Research Council has stated that current undersea

weapons will have to be replaced by weapons with “significantly advanced capabilities” in

the next 10 to 20 years [174]. These capabilities will need to increase weapon performance,

decrease cost, and decrease size so that the payload effectiveness of submarines can be

increased.

In addition to increasing submarine threats from foreign navies, ongoing development

of unmanned undersea vehicles (UUV’s) has opened up new design freedom for torpedoes.

Traditionally, US torpedoes have been fixed at two diameters, 12.75 inches and 21 inches, in

order to match existing launcher systems. However, with the US military moving towards

unmanned systems, the expanding role of combat UUV systems is opening a new range

of potential torpedo diameters, from super-small diameter torpedoes to large-diameter,

slow-moving UUV systems. This newfound design freedom and associated distancing from
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Table 1: Undersea Weapon Design and Optimization Objectives[179]

Program Objectives:

• Develop capabilities for design analyses
and evaluation

• Implement and integrate computational
& design tools

• Develop distributed design & virtual en-
vironment for prototyping

• Optimize design & design process

• Reduce Total Ownership Cost

historical designs, along with the expected revolutionary impact of these UUV systems [57],

increases the need for advanced design techniques for torpedo systems.

A change in conceptual design techniques is a vital need in the undersea weapons com-

munity. With limited defense budgets and changing national priorities, affordable, cost-

effective designs are paramount for next generation torpedo systems. Not only will all

future torpedo designs be held to stringent cost goals, but many of the future undersea

weapon concepts, such as the super-cavitating torpedo [131], have no evolutionary legacy

from which to draw upon. As such, these concepts have the potential for even more risk,

so adequate analysis of the system uncertainty from the start is crucial.

The Navy has repeatedly expressed its desires in expanding methods for conceptual

design techniques relating to future undersea weapon systems. In fact, the Office of Naval

Research has a four-year, six-and-a-half million dollar program to examine nothing other

than Undersea Weapon Design and Optimization with the specified task to “Design infras-

tructure and tools that support affordable undersea weapons” [179]. The stated objectives

of this multi-million dollar program are listed in Table 1.

1.3 Need for Tactics in Design

In the current Navy environment of undersea weapons development, the engineering as-

pect of design is decoupled from the development of the tactics with which the weapon is
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employed. The current approach utilizes a group of intelligence experts and warfighters,

drawing from knowledge that includes experience with previous weapons systems, wargam-

ing scenarios, and threat assessments, who generate a preliminary set of ‘desired’ torpedo

attributes. Warfare analysis groups then use complex engagement programs and tactical

considerations to refine these preliminary attributes into point performance requirements

for a future torpedo system, i.e., they specify a required maximum velocity, range, and turn

rate. In addition, the requirements often include a desire to minimize vehicle traits such

as radiated noise, with constraints placed on maximum allowable noise. Torpedo designers

then use engineering analysis tools to translate these requirements into feasible torpedo

designs that meet the specified criteria. The modern-day process is detailed in Figure 2.

Warfighter
(Tactics)

Warfare Analysis
(Complex  Computer
Engagement Models)

Specific Requirements
for Torpedo System

Torpedo
Designers

Engineering Analysis 
& Design Tools

New Weapon

ITERATE

ITERATE

Prototype Torpedo

Contractor
(Design Refinement)

Intelligence
(Threats)

Weapons’
Capabilities

Cost Estimate

Figure 2: Existing Torpedo Design Paradigm (Adapted from [81])

Unfortunately, from the total systems perspective, this design paradigm may not pro-

duce optimal designs. For one, it leads to a situation in which the tactics with which a

weapon is employed are developed independently from the weapon itself. The tactics are
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generally derived not from design knowledge of potential systems, but from experience with

current operational systems, in conjunction with threat assessments, to develop required

torpedo performance attributes to best defeat future threats. These performance attributes

are set as requirements and passed down to torpedo designers, who then use their engineer-

ing models and available technologies to create a torpedo system that meets the analysts’

specifications. Once this newer and more capable torpedo is introduced into service, the

Fleet will often create a new set of tactics that best utilizes the capabilities of the new

system. The tactics are therefore continuously developed and refined using a torpedo with

static performance. This system of tactics development, then torpedo design, then tactics

re-development creates a never-ending cycle in which the weapon system is never truly

optimized for the tactics with which it is employed. This lack of interaction between the

warfare analyst and the weapon designer prevents the weapon system from reaching its

greatest potential effectiveness.

Another drawback of this system is that weapon requirements are given to torpedo

designers as a point condition, i.e., a specific speed and range are defined. These point

conditions limit the torpedo designer to developing a torpedo that fits into a tightly con-

strained design space, curtailing design freedom and excluding potentially feasible designs

that may better fulfill the mission via a different set of performance parameters.

Therefore, to truly optimize a weapon system, the tactical employment of the weapon

and engagement models must be considered concurrently with the engineering analysis of

the weapon. This concept introduces a new paradigm, in which mission analysis and weapon

design are considered simultaneously. The inclusion of mission analysis, and the exploration

of different combinations of tactics and performance, allows for the creation of an optimal

weapon system. In addition, instead of designing to a rigid set of point requirements,

the designer now has the flexibility to adjust either torpedo performance attributes or the

tactical employment to reach the required level of mission effectiveness, greatly expanding

the design space and generating more freedom for the design process.

One of the goals of this research is to illustrate an environment in which the effects of

change in both engineering parameters and tactical parameters are analyzed simultaneously
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Figure 3: Proposed Torpedo Design Paradigm (Adapted from [81])

to determine their impact on overall torpedo effectiveness. Thus, the linkages between

design variables, weapon performance, and tactics can be more thoroughly understood,

and a vehicle with the greatest overall effectiveness can be created. This new paradigm is

illustrated in Figure 3.

Though it might be expected that the military has already embraced the simultaneous

design of torpedoes and tactics analysis, this is not the case. Two separate groups of

researchers, using two distinct set of analysis tools, work on these problems. Unfortunately,

the linkages between these two groups only occur at high levels in the force/management

structure, and the “link is not as tight as it should be [132]”. As another torpedo researcher

stated, there is “nothing of note on the simultaneous development of tactics and design in

subs and torpedoes” and that “it is an open research question in general [244]”. Clearly the

military has not yet embraced the simultaneous development of design and tactics analysis.

In addition to studying the effect of tactics integration with the design of torpedoes, the

use of tactics coupled with design will be studied for another undersea weapon application:
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mine counter-measure systems. These mine counter-measures are not only a driving need

in the Navy today, but readily lend themselves to studies that involve tactics integration.

1.4 Need for Mine Counter-Measures

Mine counter-measure (MCM) systems are an absolutely critical need for the Navy. “The

use of mines and countermeasures to mines has figured significantly in every major armed

conflict and nearly every regional conflict in which the United States has been involved since

the Revolutionary War [228].” In fact, since World War II, the United States has lost more

ships to enemy mines than to all other sources combined. Figure 4 shows the mechanism

of attack against all US ships damaged or sunk between 1950 and 1999; the devastating

impact that mines have had on U.S forces is readily apparent. Naval mines have also been

employed with significant effect by the United States. At the end of World War II, the

United States began an intensive mining campaign against Japanese harbors. As a result

of this campaign, during the last five months of Word War II, the Japanese lost 6701 ships

to mines, including almost every vessel left in the Japanese inventory, and almost equal to

U.S. losses to German submarines during the entire war2 [70].

Currently, mines are fielded by more than 50 countries, with over 300 distinct types of

mines in service [66]. Mines are cheap and affordable, yet can create massive amounts of

damage, both in wrecked equipment and human lives. In the case of the USS Samuel B.

Roberts, a single mine that cost an estimated $1,500 to build and deploy was able to inflict

nearly $100 million of damage to the U.S. warship [32] and seriously injuring 10 sailors

[173]. In fact, many were amazed that the warship was not sunk, with a corresponding

catastrophic loss of life. A photograph of the damage to the warship is shown in Figure

5. Similar cases abound, where mines purchased for thousands of dollars have done tens of

millions of dollars in damage to US ships.

The need for effective minehunting capabilities has been stated at the highest levels of

1Some sources place this number closer to 300 ships, due to discrepancies concerning whether very small
Japanese junkers should be counted as ships [136]

2Note that this number refers to only U.S. losses to German submarines, not total Allied losses to German
submarines.
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Figure 4: Casualties for US Ships from 1950-1999 [14]

the Navy. In 1999, the Navy Strategic Planning Guidance Manual said, “Naval forces must

remain capable of operating regardless of a future adversary’s area denial strategy3 [1].” As

bluntly spoken by Admiral Johnson, Chief of Naval Operations, “mine warfare is a unique

Navy core capability that must become a prime warfighting area we all treat as important

as strike [117].”

In order to better handle these mine threats, the Navy is looking at many advanced

systems. Many of these systems are autonomous, unmanned undersea vehicles (UUVs).

UUVs are particularly well-suited for mine-hunting scenarios [85], as the environment is

not only exceptionally dangerous (the Germans lost 282 ships while minesweeping in World

War II [136]), but also requires long loiter times. In many cases, these UUVs will be

physically replacing human swimmers in the minehunting and neutralization role [140]. The

3Area denial strategy refers to mining large areas of ocean, in order to deny an enemy the ability to safely
use the area

8



Figure 5: Mine Damage to the USS Samuel B. Roberts [29]

Navy is examining many such UUV systems, including the Long-Term Mine Reconnaissance

System (LRMS), to conduct reconnaissance of mine-fields [67]. While developing these mine

counter-measure systems, it has been found that the tactics, or search patterns, with which

these systems are being used is highly influential on their design [83] [98].

Since minehunting search patterns greatly influence the vehicle design, mine counter-

measure systems represent a field where it is critical that design and tactics be developed

simultaneously. This field of developing optimized searching techniques and unmanned

vehicles applies not only to mine counter-measure systems, but as Gage discusses [84],

there are many other military applications for which minehunting design methods and

tactics are directly applicable: “intelligent land mine deployment [143], ... reconnaissance,

sentry duty, communications relay [124], maintenance inspection, carrier deck FOD (foreign

object) disposal [82], and ship hull cleaning [75].”

Future plans for Navy mine counter-measure systems are very aggressive. Currently,

there are 17 MCM detachments tasked with dedicated MCM missions [32]. Unfortunately,

during wartime operations, it is often impossible to assign a dedicated MCM asset to every

group of U.S. ships. As a result, the U.S. is attempting to develop an “organic” mine
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counter-measure capability. This process entails the inclusion of mine counter-measure

capabilities into generic warfighting vessels, so that dedicated MCM platforms would not

be required [32] [66]. With such a system, whenever a U.S. task force encounters a situation

where mine counter-measure systems are needed, the vessels would have inherent, “organic”

MCM capabilities, without the need to wait for dedicated MCM assets to arrive.

Unfortunately, deploying these organic MCM systems requires that new, advanced MCM

systems must be developed. Because the systems will be deployed on vessels already full

of combat systems, the new MCM equipment will not have much space available to it.

In addition, there will be much less of a willingness on the part of a commander to put

a warship in harm’s way for MCM activities. These facts mean that new types of mine

counter-measure systems need to be developed so that the military may implement this

“organic” capability. Therefore, design techniques must be developed to address the future

of these new mine counter-measure systems, and these techniques must account for both

the tactics with which the systems are used, and the uncertainty that inherently surround

minehunting.

1.5 Need for Accounting of Uncertainty

Uncertainty exists in nearly every facet of engineering, from manufacturing, to design, to

reliability and human interactions; the list encompasses nearly every element of engineering.

The study of methods to deal with uncertainty in the physical world has been a fundamental

problem for engineers and has interested scientists for several centuries. LaPlace in his

1820 work, “A Philosophical Essay on Probabilities”, wrote about how uncertainty and the

mathematics used to predict it, probability, pervade all areas of science.

I present here without the aid of analysis the principles and general results of

this theory, applying them to the most important questions of life, which are

indeed for the most part only problems of probability. Strictly speaking, it

may even be said that nearly all our knowledge is problematical; and in the

small number of things which we are able to know with certainty, even in the

mathematical sciences themselves, the principal means of ascertaining truth —
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induction, and analogy — are based on probabilities; so that the entire system

of human knowledge is connected with the theory set forth in this essay [137].
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Figure 6: Uncertainty Classification [111]

At the system-level, uncertainty can generally be divided into two levels, each with its

own developing field, reliability analysis and robust analysis. Reliability analysis generally

deals with preventing catastrophic failings (Figure 6) while robustness deals with main-

taining good system performance at off-design conditions. Additionally, reliability analysis

concentrates on extreme events, or the so-called ‘tails’ of uncertainty distributions, while

robust design focuses on the behavior near the mean. This concept is illustrated in Figure

7. While reliability analysis has been around for many years, robust design is a rapidly

growing field, being first popularized in Japan by Taguchi and then transitioning to the

United States starting in 1980 [76].

Using advanced design methods to characterize and analyze this uncertainty early in

the design process is one method that helps bring system knowledge forward in the design

process, as shown in Figure 1. By estimating the uncertainty, the decision-maker gains

better knowledge of the risks and rewards of various system configurations, thereby leading

to better-informed decisions.

A recent NASA study determined that uncertainty based design is a critical need in

the aerospace industry, yet still has many barriers to overcome before it is fully adopted

[246]. These barriers are both cultural and technical in nature; the authors propose that
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Figure 7: Reliability versus Robustness on Probability Density Functions [246]

uncertainty-based design methods are not sufficiently developed to be fully adopted by

industry. However, once these barriers are overcome, the authors listed several benefits of

uncertainty-based design [246]:

1. Confidence in analysis tools will increase

2. Design cycle time, cost, and risk will be reduced

3. System performance will increase while ensuring that reliability requirements are met

4. Designs will be more robust

5. The methodology can assess systems at off-nominal conditions

This need to account for uncertainty is not specific to the aerospace industry, and

also applies to undersea vehicles. Yukish, in his paper on undersea vehicle conceptual

design, states that for key attributes of conceptual design of complex systems in general,

and undersea vehicles in particular, “the uncertainty of design parameters is often many

percentage points of their absolute value [243]”. Thus, uncertainty must be taken into

account when dealing with optimal design of undersea weapon systems.

1.6 System-of-Systems Ramifications

The inclusion of tactics as an integrated part of the design process is essentially taking a

system-of-systems approach to the problem. In this manner, the system in question (in
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Table 2: System of System Analogies
Component System Larger System

Torpedo Design Submarine Engagements

Commercial Aircraft Design National Airspace System [87]

Fighter Aircraft Design Air Campaign Analysis [213]

Missile Design Aircraft Engagements

Armored Fighting Vehicle Future Combat System [23] [208]

Coast Guard Cutter Integrated Deepwater System [225]

Communication Satellite Constellation of Communications Satellites

Personal Air Vehicle Future Transportation System [52] [54]

this case the torpedo or minehunter) is not being designed to meet an arbitrary set of

requirements, but instead, is being designed concurrently with the larger system in which it

is being used; the larger system in this case being the submarine warfighting environment.

This type of design process, in which the larger system is being modeled, analyzed, and

optimized concurrently with the component system, is being increasingly studied in the

world of design. In fact, the techniques used for this study, integrating torpedo design and

tactics, can be used as a basis for techniques for any number of system-of-system problems.

A list of examples where system-of-systems level analyses would be beneficial is given in

Table 2.

1.7 Overall Research Objectives

The primary goal of this dissertation is to formulate a means to better design torpedo

systems. The development of such a mechanism requires the examination of many factors,

including the effects of tactics on the performance of torpedoes and the many uncertainties

involved in the torpedo design process itself. Additionally, the use of normalized and non-

dimensional parameters will be examined for potential benefit in the torpedo conceptual

design process. By taking these new factors into account in the early phases of torpedo

design, a method for a more effective, more robust design of torpedoes can be created.

Unfortunately, due to the lack of engagement models available for torpedo research, the

means was not available to fully couple the torpedo tactics with torpedo design. As a result,

only the impact of tactics on torpedo design was demonstrated, and a second application,
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focusing on the mine counter-measure design problem, was added. The mine counter-

measure problem proved to have very tractable tactics, making it easier to demonstrate the

linkage between tactics and design optimization for an undersea weapon system.

1.8 Research Questions and Hypothesis

The research questions stand as follows:

1. When determining total weapon effectiveness, how significant is the tactical environ-

ment with which a system is used compared to torpedo design decisions?

2. If tactics account for a significant portion of total weapon effectiveness, can conceptual

design decisions still be made that have more than marginal improvements on total

weapon effectiveness? Can the optimization of tactics and conceptual design be syner-

gistically combined to create an even more effective weapon system? Can this synergy

be demonstrated on a mine counter-measure system?

3. When dealing with uncertainty, can probability of success be treated as an independent

variable in conceptual design? If so, can it be used to select the torpedo design that

has the best tradeoff between cost and risk?

4. What are the best combinations of metamodeling and uncertainty-analysis measures

of merit to use when in the initial stages of robust conceptual torpedo design?

5. What normalization schemes for torpedo design parameters can be used to simplify

the conceptual design process?

The hypothesis for the research is as follows:

A new, more effective design process can be created for conceptual torpedo design. This

process, by accounting for the effects from both uncertainty and the tactical environment

in which the torpedo is employed, will significantly improve on current design processes for

torpedoes.
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Table 3: Dissertation Outline

Background
Ch. 1
Ch. 3
Ch. 2

Motivation
Uncertainty and Metamodeling
Torpedo Design and Tactics, Mine Counter-Measures

Formulation
Ch. 4
Ch. 5

Proposed Methods (Traveller Example)
Research Tools Development

Implementation
and Results

Ch. 6
Ch. 7
Ch. 8

Torpedo Design Application
Tactics Integration (Torpedo & Minehunter Example)
Non-Dimensionalization in Torpedo Design

Ch. 9 Conclusions

1.9 Dissertation Outline

This dissertation can loosely be divided into three sections: background, formulation, and

results. These sections are split among 9 Chapters, as shown in Table 3. The background

section consists of the first three chapters. Chapter 1 introduces the motivation for this

work along with the research objectives, questions, and hypothesis. Chapter 2 provides

a background in torpedo design, with a general overview of torpedo systems, submarine

tactics, and mine counter-measure systems. Chapter 3 gives a background in probabilistics,

response surface methodology, Monte Carlo methods, and multi-objective decision-making.

Chapter 4 lays out the formulation of the proposed approach and gives some preliminary

results. Chapter 5 then discusses the development of analysis tools required for the research.

These tools include the Torpedo, Optimization, Analysis, and Design (TOAD) program for

the design of torpedo systems and a torpedo design visualization environment developed in

Matlab.

The remaining chapters contain results and example implementations of the work. Chap-

ter 6 shows how the proposed research approach can be used in the design of torpedo sys-

tems. Chapter 7 looks at the inclusion of tactics into the design process, both for torpedo

systems and mine counter-measures. Chapter 8 examines the creation of non-dimensional

parameters for facilitating the sizing and optimization of torpedo systems. Finally, Chapter

9 summarizes the progress to date and suggests future research plans.
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CHAPTER II

INTRODUCTION TO UNDERSEA WEAPONS AND

TACTICS

2.1 Background in Torpedo Design

Throughout history, the United States Navy has remained at the forefront of torpedo de-

sign. The first wartime use of a torpedo occurred in the United States, when the one-man

submarine, called the Turtle, failed to sink the British ship HMS Eagle in 1776 [88]. The

United States was also the location of the first successful submarine attack when, in 1864,

the Confederate submarine Hunley sank the USS Housatonic during the U.S. Civil War. In

that war, 22 Union ships and 6 Confederate ships were sunk1 by torpedoes [88]. Though at

the beginning of the Second World War US torpedo designs were not the most advanced in

the world, the United States still used their submarines and torpedoes effectively, sinking

5,631,117 tons of Japanese vessels, accounting for 55% of the total Japanese vessels sunk

during the war. The US submarine force accomplished this feat while employing only 1.6%

of the Navy’s total personnel [200]. Even though the United States submarine history was

impressive throughout World War II, it was still dwarfed by the performance of the German

submarine fleet. The German forces sank almost 11 million tons of allied vessels; though at

the cost of losing 785 submarines [136]. The German submarines were effective all across

the Atlantic, as is evident from Figure 8.

Today, the United States retains the lead in torpedo design, with torpedo systems

currently in service that can be launched from submarines, surface ships, helicopters, fixed-

wing aircraft, and rockets [2]. Unfortunately, even though the United States maintains the

most advanced fleet of nuclear submarines, the front-line torpedo used by those submarines,

1The number of Union ships sunk is debated, some authors place the number at 29, but they include
very small vessels like ships’ launches; likewise some authors put the number of Confederate ships sunk at
only one (the ironclad Albemarle) with five damaged [168]
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Figure 8: Dots Represent Shipping Losses in the Atlantic from Jan. 1942 - May 1943 [103]

the Mark-48 Mod 7 ADCAP, is a highly evolutionary design with origins dating back to

1963 [88]. Current Navy plans predict that this torpedo will be in use through the year

2026 [227], amounting to a total lifespan of over 60 years! New torpedo designs that focus

on non-evolutionary designs will be necessary to retain the United States’ technical lead

throughout the 21st century.

Some photographs of various U.S. torpedo systems have been included. Figure 9 shows

the devastating firepower of a Mk-48 heavyweight torpedo. Figure 10 shows a Mk-46

lightweight torpedo being launched off the side of a ship. Figure 11 shows the loading

of a Mk-48 heavyweight torpedo onto a submarine. The figure gives a good idea of the size
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of these torpedoes compared to humans.

Figure 9: Live-Fire Test of a Mk-48 Heavyweight Torpedo [56]

2.1.1 Common Torpedo Design Requirements

Torpedoes must fit many requirements to be useable by the Navy. They have performance

requirements, generally in the area of range, maximum velocity, radiated noise, and sonar

performance. Secondly, there are strenuous safety requirements, and, finally, there are phys-

ical compatibility requirements. Any new torpedo must retain compatibility with existing

torpedo handling and launch systems. This compatibility requirement sets a maximum

requirement on torpedo length and weight. In addition, it firmly fixes the diameter of the

torpedo. Practically every US torpedo in the inventory is one of two diameters, either
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Figure 10: Ship Launch of a Mk-46 Lightweight Torpedo [177]

Figure 11: Loading of Mk-48 Heavyweight Torpedo [68]

21 inches for a ‘heavyweight class’ or 12.75 inches for a ‘lightweight’ class torpedo. Heavy-

weight class torpedoes are used exclusively in nuclear attack and ballistic missile submarines

to launch at standoff distances against potential threats, both surface and submerged. The

lightweight weapon is used by aircraft and helicopters, who generally ‘drop’ their weapon
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Table 4: Table of Modern Torpedo Characteristics [2][4][5][56][68]

Torpedo Mk-48 Speafish Tigerfish Tp62 Mk-46 Mk-50 Mk-60

Fleet US Navy
Royal 
Navy

Royal
Navy

Swedish 
Navy

US Navy US Navy US Navy

Mission
Submarine 
Launched

Submarine 
Launched

Submarine 
Launched

Submarine 
Launched

Air & 
Surface 

Launched

Air & 
Surface 

Launched

Submarine 
Launched 

Mine
Diameter (in) 21 21 21 21 12.75 12.75 21

Length (in) 240 276 254 236 102.36 114.1 132
Weight (lbm) 4000 4075 3414 2897 517.65 800.42 2056
Velocity (kts) 55 70 35 50 45 55 ---
Range (nmi) 20.5 12.5 7 21.5 6 8 ---

Power (hp) --- 1000 --- 400 --- 201.2 ---

Warhead (lbm) 650 660 750 440 98 100
Launches 

Mk-46

Propulsion
Piston 
Engine

Gas 
Turbine

Electrical
Piston 
Engine

Piston 
Engine

SCEPS ---

Fuel Otto-II
Otto-II + 

HAP

Chloride Silver-
Zinc Oxide 
Batteries

H2O2 Otto-II SF6 ---

closer to the target, or by surface ship launchers, which use either tube launchers or launch

the torpedo via a rocket booster. The lightweight systems have significantly less range

than the heavyweights, but are used as close-in weapons by surface ships against enemy

submarines, or, for long range encounter, are dropped by anti-submarine warfare aircraft

in the immediate vicinity of the enemy. A table showing examples of modern torpedo char-

acteristics is given in Table 4. Note that only two torpedo diameters, 21 inches and 12.75

inches, are listed in the table. This listing reflects the fact that these are the only two

operational diameters in use. Figure 12 gives a side-by-side comparison of torpedo sizes.

Figure 12: Comparison of Sizes for U.S. Torpedoes [68]
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In addition to physical size, most torpedoes have several characteristics in common.

Nearly all torpedoes have a propulsion system (undersea mines are an example of a “tor-

pedo” system that does not), which includes an engine or motor, a propeller, and a linkage

between the two, often including a gearbox. The motor setup is generally at the back end

of the torpedo, providing power both for propulsion and auxiliary systems (called hotel

power). In front of the propulsion components is the energy section, containing either fuel

for an engine or batteries for an electric motor. In front of this section lies the detonator

and the warhead. Finally, the very front of the torpedo houses the sonar and the guidance,

navigation, and control electronics, or the ‘brains’ of the torpedo. These systems are pur-

posely located at the front of the torpedo so that the sonar can point forward and to isolate

it as much as possible from the noisy engine machinery. A diagram of a typical torpedo is

given in Figure 13.

Figure 13: Inner Components of a Torpedo [133]

Figure 14 shows the key sonar parameters in the torpedo system. These parameters

include the directivity index, or how strong the sonar is, the beam-resolution, or how small

an area can be examined, and the beam-width, which describes how large a search-field is

present for the torpedo. An entire sonar system can be approximated by these parameters.

One distinct advantage of torpedo design is that a torpedo system can be easily broken

into individual sections based upon their function. In addition, since these functionally di-

vided torpedo components operate sufficiently independently, that they can be individually
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Table 5: Sizing Rules for Torpedo Sections

Name Description / Sizing Rules Inputs Outputs Ref

Outer
Shell

Sized based upon outer diameter,
with extra width allocated for the
torpedo shell structure and noise de-
coupling layer

Depth
Outer diameter
Decoupling layer

thickness

Inner
diameter

Shell weight
[27]

Sonar
Sized to fit an array aperture of
sufficient size to generate needed
beamwidth and directivity index

Directivity index
Beamwidth

Beam resolution

Hotel power
Length
Weight

[35][120]
[161][162]

Guidance
Navigation

and
Control

Sized to fit all of the electronic
boards needed for sonar DSP and
vehicle control

Directivity index
Board spacing

Board
thickness

Hotel power
Length
Weight

[161] [162]

Buoyancy

Mostly empty section that provides
buoyancy to the vehicle, may con-
tain inflatable balloons, or telemetry
systems for test rounds

Length Weight —

Warhead

Sized to fit a warhead of a given
size, calculates the explosive effec-
tiveness of either conventional or
shaped charges, calculates probabil-
ity of warhead destroying target

Charge weight
Conventional or

Shaped

Pdestroy

Equivalent
explosive wt.

Length
Weight

[25]
[26][27]

Fuel
Section

Determines amount of fuel (and
therefore energy) available to the
motor

Length
Fuel type

Available
energy
Weight

[90]

Battery
Section

Determines how many batteries can
fit into system and the amount of
energy available

Battery type
Available
energy
Weight

[63]
[90][144]

Motor
Converts battery power to shaft
horsepower, sized to meet a horse-
power requirement

Shaft-
horsepower

ηmotor

Length
Weight

[196]

Engine
Burns fuel to create shaft horse-
power, may be a piston, turbine, or
other power-extraction process

Shaft-
horsepower
Motor type

ηmotor

Length
Weight

[71][90]

Afterbody
Fairs the torpedo diameter near the
rear, contains control surfaces, actu-
ators, may contain gear-box

—
Length
Weight

[90]

Control
Fins

Stabilizes the torpedo and banks the
torpedo in a skid-to-turn fashion

# fins
Aspect ratio
Surface area

Turn rate
Weight

—

Propulsor
(Pumpjet)

Ducted propulsor that provides
thrust

RPM
Cavitation depth

ηprop

Length
Weight

[80]
[90][158]

Integrated
Motor-

Propulsor
(IMP)

An integrated motor and propulsor

RPM
Shaft-

horsepower
Cavitation depth

ηmotor

ηprop

Length
Weight

[80][90]
[158][196]
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Figure 14: Key Torpedo Parameters [134]

sized [28]. Thus, a torpedo can be generated by sizing each torpedo section independently,

then stacking the entire system together. Table 5 describes each individual component (or

section) of the torpedo. For each component, the table gives the general sizing philosophy

of the section, along with general inputs and outputs.

Compared to other weapon systems, another unusual characteristic of torpedoes is that

they are regularly used in test-firings (without warheads) for realistic combat training. The

torpedoes are then retrieved from the ocean, refurbished, refueled, and returned to service.

Thus, the life-cycle cost of the torpedo is in many ways driven as much by the refurbishment

cost as much as the acquisition cost.

2.1.2 Torpedo System Alternatives

Besides simply choosing the diameter, there are other characteristics that dictate torpedo

design. The biggest single decision in torpedo design is the selection of the propulsion sys-

tem. Many propulsion systems are available. Very early torpedoes used either no propulsion

(pre-Civil War), stored compressed gas, or flywheels [88]. WWII torpedoes were primarily

of two varieties, one using external combustion to create steam for a turbine and the other

using electric power [168] [169] [170].

Modern torpedo systems have a wide range of propulsion system options available.

Traditional systems burn a liquid monopropellant called Otto fuel, but other other modern

systems also burn Hydroxyl Ammonium Perchlorate (HAP) fuel in addition to Otto [90]

[186]. Another alternative is the advanced stored-chemical propulsion systems (SCEPS)
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used in the Mk-50. This propulsion system creates energy through the chemical reaction

of sulfur hexa-flouride (SF6) and water (H2O) [90]. The layout of the SCEPS system for a

Mk-50 Advanced Lightweight Torpedo is shown in Figure 16. In addition to fuel type, these

fuel burning systems may use either a reciprocating engine or a turbine engine for power

extraction.

Super-cavitating torpedoes represent a radical departure from traditional torpedo de-

sign. Super-cavitating torpedoes are high-speed torpedoes, which can travel hundreds of

miles per hour. They work by generating a travelling through a “bubble” of gaseous wa-

ter vapor, thus reducing the overall drag [13]. A schematic of a super-cavitating system

is shown in Figure 15. These new super-cavitating systems represent a dramatic need for

advanced design techniques for the torpedo community, as there is no historical precedent

and multiple revolutionary technologies are required to create an operational system.

Figure 15: Schematic of a Super-Cavitating Torpedo System [13]

A less dramatic, though equally revolutionary change in the torpedo community has been

a move towards developing all electric torpedo systems. In these cases, no fuel is present

in the torpedo, instead, large banks of batteries or fuel cells are used to power an electric

motor, either linked via a crankshaft to a propulsor or directly sharing components with the

propeller, called an integrated motor propulsor system (IMP) [166]. Electric systems have

advantages over thermo-chemical systems in that they are safer (no combustible fuels), tend

to be quieter, and are faster and cheaper to refurbish after torpedo trial runs. In particular,
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the IMP systems enjoy these advantages and have the potential to further reduce both

weight and noise by decreasing the amount of motor machinery while still taking advantage

of performance-increasing pumpjet effects [233]. A diagram of the rear of an IMP system

is shown in Figure 17. Even with these advantages of all-electric systems, traditional fuel-

based torpedo systems are still sometimes preferred because they currently supply the most

power and endurance. The choice of propulsion systems (and hence fuel type) is a big driver

on torpedo design. The various fuel systems for modern torpedoes are shown in Table 4.

Guidance and Control System

Exercise Subsystem/Warhead

Power Plant Controller

SF-6 Tank
Thermal Battery

Hot Well

Condenser

Feedwater
Reservoir

Turbine and
Gearbox

Alternator

Fin Actuator

SCEPS Propulsion System

Boiler

Injector

Connector
Breakaway

Start Lanyard Control Fins

Pumpjet Propulsor

Figure 16: Schematic of a SCEPS Propulsion System [226]

2.2 Tactics

2.2.1 Basic Submarine Tactics

When dealing with submarine engagements, the potential tactical situations and possible

responses are nearly limitless. However, the myriad of tactical decisions and alternatives

can be broken down to a single goal: to detect and either avoid or attack a threat without

the threat detecting you. The submarine is the original stealth vehicle, while submerged it is

completely invisible to any modern day radar or optical technology. The only effective way
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Figure 17: Integrated Motor-Propulsor System (IMP) [196]

to detect submerged submarines is through acoustic energy2, either actively transmitted

into the water or passively ‘listening’ for enemy submarines. Thus, the goal of modern

submarine warfare is to remain as quiet as possible and hence, undetectable [41].

Undersea warfare is characterized by a continuous lack of knowledge concerning the

exact location of enemy vessels. Thus, a large portion of undersea warfare is concerned

with the means and mechanisms of acquiring information about the position of the target.

To a large degree, undersea warfare deals almost exclusively with triangulation tactics,

sonar capabilities, and acoustics. In fact, submarine maneuvering is largely driven by this

need to take acoustic readings from several positions in order to better localize the target.

However, regardless of the tactics taking place, in a submarine-on-submarine encounter,

two parameters can be used to define the system-of-systems effectiveness. The first param-

eter, Pkill, is the probability that the friendly submarine successfully launches a torpedo

against the threat submarine, the torpedo successfully hits the submarine, and the warhead

2Aircraft may also detect submerged submarines through the use of Magnetic Anomaly Sensors (MAD).
However, these sensors only work at very close ranges and cannot be used by undersea vehicles
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causes enough damage to defeat the enemy submarine. The Pkill parameter, often repre-

sented by Pk, is a number between zero and one, representing this probability of destroying

the threat submarine. A Pk of one is desired.

The second key parameter, Pcounterkill, is essentially the reverse of Pkill. Pcounterkill

refers to the ability of the target, or threat submarine, to detect the friendly submarine,

launch a torpedo against it, and destroy it. Pcounterkill, or simply Pck, also varies between

zero and one, with zero representing the optimum, or greatest survivability.

For this analysis work, instead of working with Pkill, a separate parameter will be used,

Phit. This parameter indicates the probability of successfully hitting the enemy submarine

with a torpedo (Phit). The new term is different from the Pkill term because it excludes

the probability that a torpedo hit will succeed in destroying a submarine. Such lethality

analysis is generally very rigorous, requiring large, time-consuming, classified models, and

will not be included in this work.

• Phit (Ph): The fraction of starting geometries from which the threat submarine is hit.

This criterion is an indicator of how successful the friendly submarine is at striking the

target. A Ph of 1.0 represents a 100% mission success rate. Phit is directly analogous

to Pkill.

2.2.2 Tactics Analysis Programs

The defense department has modeling programs of all types and sizes. These computer pro-

grams run the gamut from analyzing a single vehicle component, such as a sizing tool for

electric motors [196], to a model that determines the final outcome of military campaigns,

such as the Integrated Theater Engagement Model (ITEM) [204]. Soban succinctly illus-

trates the complete scope of military modeling levels and their inherent tradeoffs in Figure

18. Soban discusses the three primary levels of military models: engineering models that

examine a single platform or sub-system, mission models that examine how the platforms

perform in an encounter, and campaign models that address the overall performance of all

the assets in a theater.
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Figure 18: Various Levels of Military Modeling [213]

The defense department has computer tools that provide analysis at each of these lev-

els. However, as discussed by Soban [213], Hines [105], and Kurtz [132], there is insufficient

linking of these computer programs between model levels. Because these linkages are lack-

ing, it is difficult to propagate changes at the platform or sub-system level up through the

mission level to the campaign levels. Therefore, there is much work to be done on appro-

priate mechanisms to link these computer models together, on determining the best way to

propagate information between them, and to examine how these models can work together

to provide better solutions.

There are many mission-level torpedo and mine warfare analysis tools that have been

developed by the defense department. These programs include the Multi-Warfare Systems

Evaluator (MWSE) [30], the Autonomous Littoral Warfare Systems Evaluator (ALSWE)
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[30] [62], the Technology Requirements Model at the Applied Research Laboratory at Penn

State [30] [242], and the Object-oriented, Rule-Based Interactive System (ORBIS) developed

at the Applied Physics Lab at Johns Hopkins University [104]. All of these models have a

high degree of complexity and have been in development for years. In addition, they have

several characteristics in common which are required for an undersea engagement model:

• They all require parametric vehicle characteristics

• They all have some level of acoustics modeling

• They all have some type of parameterized tactics

• They all use Monte Carlo simulations to account for the inherent randomness of

battlefield encounters

Unfortunately, though these models exist, they were not available to the researchers

at the Georgia Institute of Technology. As a result, simplified tactics models had to be

developed to illustrate the linkages between tactics and design. However, these models were

developed with the same key characteristics as the military counter-parts.

2.3 Mine Counter-Measures Strategy and Design

Mine counter-measures are divided into two types of techniques, minehunting and minesweep-

ing. Minehunting involves “employment of sensor and neutralization systems, whether air,

surface, or subsurface, to locate and dispose of individual mines [7]”. Minehunting is gen-

erally time-intensive and requires that each mine be individually detected, identified, and

neutralized. Minesweeping, on the other hand, deals with “the technique of clearing mines

using either mechanical, explosive, or influence sweep equipment [7]”. Minesweeping is noth-

ing more than attempting to blindly destroy all of the mines in the region. This destruction

can be conducted by deploying large assault breaching systems (as in Figure 19), dropping

bombs from aircraft, or using a magnetic pulse or fake acoustic signature to ‘trick’ the

mines into prematurely detonating. Minehunting is generally preferred to minesweeping; as

stated by Rear Admiral Jose Betancourt, “hunt when you can, sweep when you must [22].”
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The mine counter-measure analysis in this work will focus exclusively upon minehunting

problems. These minehunting systems involved towed sensors, unmanned undersea vehicles

(Figure 20), and aircraft based sensors and weapons (Figure 21). In minehunting, the search

platform, or combination of cooperative platforms, must be able to detect a target, identify

the target as a mine, and neutralize the threat. However, the research work presented here

focuses on the use of a single unmanned undersea vehicle. The UUV design problem was

chosen because it is very similar to a torpedo design problem, allowing similar approaches

to be used for both systems.

Figure 19: Assault Breaching Systems for Mine Sweeping [22]

Figure 20: Mine-Hunting UUV [176]
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Figure 21: Mine-Hunting Helicopter System [232]

The goal of mine counter-measures is to clear a path so that ships may travel a ‘safe’

corridor through an enemy mine-field. This path is often called a Q-route, is generally 1,000

yards wide, and is usually intentionally placed where minehunting conditions are optimal

[228]. Figure 22 shows an example Q-route. The necessary width of this corridor is a

function of the number of ships that much pass through, the size of these ships, and their

navigational error. Building an inter-connecting sequence of these Q-routes will allow ship-

ping to transit from port to port and port to deep-water. Mine counter-measures strategies

focus on the creation of this corridor, even to the extent that a Defense Department oper-

ations manual says that if MCM assets are not available, then a corridor should be created

by driving all friendly vessels in a straight line through a minefield [228]! This approach,

which the military defines as “channelization”, is a potentially expensive method for clear-

ing mines, but illustrative of the sometimes desperate nature of the needs involved. Later in
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a campaign, mine counter-measure forces may focus on clearing the entire minefield, both

for humanitarian purposes and so that the entire region may be opened to unrestricted

shipping.

Figure 22: Diagram of Q-Route for Safe Passage Through Minefields [228]

2.3.1 Minehunting Process

Prosecuting a single mine requires that several distinct tasks be completed. Each of these

tasks has a probability of occurring, a probability of a false alarm, and a time associated with

it. The process for minehunting is laid down in Figure 23, with the individual steps defined

in Table 6. As the mine hunter sweeps the mine field, it is attempting to ‘detect’ a target

amidst the clutter. Detection is defined as identifying anything that is not background, for

example a rock, etc. There is a single probability, Pd (probability of detection), that an

object is detected from the background. Once an object has been detected, the mine hunter

then checks to see if the object is similar to a mine: is the object a mine-like contact or

not? A mine-like contact is an object that is not a natural feature of the background and is

potentially a mine, for instance, a discarded refrigerator, piece of junk, or decoy would be

considered a mine-like contact. This attempt to determine if the contact is mine-like is called
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a classification attempt. The classification attempt has associated with it a probability of

identifying a mine as mine-like (Pcmm), probability of falsely identifying a non-mine-like

contact as mine-like (Pcnm), and a time associated with the physical classification process

(Tc) [193] [212]. An object that is not classified as mine-like is removed as a false target.

False Targets

False Targets

Detection

Non-MILEC

Classification

Non-MILCO

Identification

MILEC
A MILEC (minelike echo) is a sonar echo determined to
be minelike by an operator or computer aided detectio n.

MILCO
A MILCO (minelike contact) is a 
MILEC classified as minelike by
an operator or computer aided 
classification.

MINENon-Mine
( NOMBO)

A NOMBO is a 
“non-mine minelike bottom object.”

Clutter Clutter is all echoes above the set 
threshold of the detection sonar. Minehunting

Phases

Figure 23: Minehunting Process [175]

Once the contact has been classified as being a mine-like object, the next step is to fully

identify the mine. Identifying the mine entails verifying that the object is in fact a mine,

and, in addition, attempting to identify what type of mine is present. This identification

process generally requires a second, higher fidelity sensor to accomplish, which explains

why it is divided into a separate task. This sensor can either be on the same platform that

detected the mine-like contact, or could be on a separate platform that is brought to bear

on the contact. For instance, a UUV may be used to locate and classify the mine, then a

helicopter with an advanced LIDAR unit may be tasked with the job of classifying the mine
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and neutralizing it with a super-cavitating projectile (see Figure 21). The identification

step has the same parameters as the classification step, with a probability of correctly

identifying a mine as a mine (Pimm), a probability of incorrectly identifying a non-mine as

a mine (Pinm), and a time required to identify the mine (Ti) [193] [212].

The final step in the minehunting process is the neutralization of the mine. Neutraliza-

tion involves detonating the mine, rupturing the mine, or damaging the internal components

of the mine [193]. Again, mine neutralization has two parameters associated with it, the

probability of neutralizing the mine (Pn) and the time required to neutralize the mine (Tn)

[193] [212]. These probabilistic and temporal parameters that are used for detection, classi-

fication, identification, and neutralization of mines can be used to completely characterize

a minehunting system as well as build computer models to estimate minehunting effective-

ness. Note that each of these parameters is, to some extent, a function of not only the

minehunter, but also of the background conditions and the type of mine being prosecuted

(some mines are more difficult to detect, take longer, etc.) [193]. As a result uncertainty

is inherently involved with any calculations when dealing with minehunting problems. A

summary of these minehunting parameters is given in Table 6.

Table 6: Parameters Defining Minehunting Process
Abbr. Subset Definition

Pd Probability of detecting an object

Pc Probability of classifying an object

Pcmm Probability of classifying a mine as mine-like

Pcnm Probability of classifying a non-mine as mine-like

Tc Time to classify object

Pi Probability of identifying a mine-like object

Pimm Probability of correctly identifying a mine

Pinm Probability of incorrectly identifying a non-mine

Ti Time to identify object

Pn Probability of neutralizing object

Tn Time to neutralize object
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2.3.2 Minehunting Sensors

Probability of detection (Pd) is a function of the distance between the target and the sensor.

The correlation between the probability of detection and distance to the target is generally

described using a lateral range curve. The lateral range curve is defined as “the probability

that the target will be detected if its track relative to the searcher is a straight line infinitely

long in both directions with [a] closest point of approach [236].” Lateral range to the target

is defined as the closest point of approach to the target and is easiest to visualize in the

case of a straight sensor track, as illustrated in Part A of Figure 24. The lateral range curve

then defines the probability of detecting the target as the seeker passes by at the distance

given. The curve represents the cumulative chance of finding the target as the searcher

closes and then withdraws from the target. An example lateral range curve is shown in

Part B of Figure 24. These lateral range curves are not necessarily fixed for a given sensor;

they are also a function of the object being detected and operating conditions. Figure 25

illustrates how the lateral range curve for a single sensor can varying depending upon the

search conditions.

Figure 24: Lateral Range Curves for Sensors [84]

Two simplifications of lateral range curves are often made in mine counter-measure

analysis. One simplification is that the sensor is ‘perfect’, meaning it will always detect an
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Figure 25: Changing Lateral Range Curve for a U-Boat Sensor [37]

object that is inside of its sensor radius. This type of sensor can be quantized via a single

value (sensor radius), with a lateral range curve looking like the example in Part C of Figure

24. Anything inside this sensor radius will automatically be detected by the sensor.

Another lateral range curve simplication is to assume an ‘imperfect’ sensor. This sensor

assumes that there is a fixed, yet finite probability of detecting an object that comes inside

of the seeker radius. With this type of sensor model there is no advantage to coming closer

to the object. The sensor is, however, not considered to be perfect because there is only a

finite chance of target detection. This type of sensor is characterized by two parameters, a

sensor radius and a detection probability. An example lateral range chart for this sensor is

shown in Part D of Figure 24. This imperfect model is more accurate that the ‘perfect’ or

‘cookie-cutter’ sensor model, but significantly less complex than having a full lateral range

curve. For the mine counter-measure analysis in this work, an ‘imperfect’ sensor model is

assumed. For a real-world sensor, an ‘equivalent sensor radius’ for constructing an imperfect

sensor model can be estimated by calculating the sensor sweep radius at which the number

of missed detections inside of the radius equals the number of valid detections outside of

the sweep radius [44]. An example of this definition is shown in Figure 26.

2.3.3 Minehunting Search Strategies

The field of search theory first developed in World War II when it was desired to make opti-

mal use of the large amounts of resources being dedicated to search for enemy submarines.
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Figure 26: Definition of Sweep Radius for an Imperfect Sensor – When the Number of
Missed Detections Inside the Radius Equals the Number of Detections Outside the Sweep
Radius [44]

The two definitive sources on search strategies are considered to be Koopman [130] and

Stone [215] [216]. However, although extensive theoretical work is being undertaken in the

field of search theory, the subject can be simplified into a few basic techniques.

There are two styles of minehunting search strategies available. The first is an unstruc-

tured, or random search pattern. In this situation, a “search perimeter” is defined and the

minehunter travels in a randomly selected straight line until it either reaches the search

perimeter, detects an object, or travels a set distance. At this point, the minehunter then

randomly selects a new path and begins travelling anew [98] [109]. This type of search strat-

egy is useful because it requires very little programming. In addition, it is beneficial when

there are multiple searchers, because coordination between searchers is unnecessary, and in

these situations the system will be in inherently robust to the loss of a single searcher. The

disadvantage of the random search is that the overall search rate is lower, the middle of the

search zone is often ‘over-searched’, and it is sometimes difficult for the vehicle to determine

when the search perimeter has been reached. These random searches can be parameterized

by designating the search step length and then selecting whether a new direction will be

taken each time an object is discovered or only when a fixed distance is travelled.

A second type of search pattern is a patterned, or “complete” search [109]. In this type
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of search, a pre-programmed route is followed by the searching vehicle. This path is often a

raster-scan, or parallel-path search, such as shown in Figure 27. This type of a raster-scan

search pattern is convenient because it is easy to program and can easily be parameterized

based on the distance between individual sweeps. However, other patterns exist, such as

a spiral pattern (Figure 28). The advantage of a structured search pattern is that the

search area is never covered twice and the highest overall search rate can be achieved [236].

Another advantage is that an accurate estimate of search-rate can be estimated using a

structured search pattern.

Figure 27: Raster Search Pattern [236]

Figure 28: Spiral Search Pattern [36]

Unfortunately, there are many problems associated with a structured pattern. For one,

it requires the searching vehicle to be more complex: the vehicle must always know where
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it is and where it is going, and, in the case of a coordinated search between multiple

vehicles, all the vehicles must communicate with each other. In addition, navigational error

can play a significant role in the effectiveness of a structured search pattern. In fact, many

structured search patterns are designed with overlap in the search tracks in order to account

for navigational errors [102].

Another decision when selecting the search pattern is whether to use a “Single Classifica-

tion Tactic (SCT)” or a “Multiple Classification Tactic (MCT)” [193]. A single classification

tactic occurs when a single classification attempt is made for each target. Thus, if an ob-

ject is detected and then classified as a non-mine, the object will be ‘stored’ in memory

as a non-mine and will not be re-examined in future encounters. The advantage of this

technique is that the searcher does not waste time re-examining objects that have already

been classified as non-mines. The disadvantage of this technique occurs when a mine is

incorrectly classified as a non-mine, because the system will never re-examine its work.

A multiple classification tactic implies the opposite. Each time an object is detected,

the system will attempt to re-classify it as a mine or a non-mine. The advantage of this

system is that it is simpler (the searcher does not have to remember previously classified

targets) and it is more robust, because if the searcher runs into a mine that was incorrectly

classified as a non-mine, it will attempt to re-classify the mine, allowing for the opportunity

to correctly classify the mine. The disadvantage of this technique is that it is slower, as a

significant amount of time can be spent continually classifying non-mines.

Monte Carlo analysis is the most common analysis used for minehunting problems.

This style of analysis is needed because of the random number and placement of mines,

the randomness of the search pattern and navigational error, and the inherent uncertainty

associated with detection probabilities. Most theoretical minehunting research today is con-

ducted via the use of these Monte Carlo techniques as the primary form of analysis. Current

research into mine counter-measure systems focuses on elements such as how to optimize

the search pattern [109], how to link multiple searchers together [102], and how to develop

better UUV designs [238] or better sensors [141] [194]. These research thrusts are summa-

rized in an article discussing the Navy’s vision for UUV development [73]. Unfortunately,
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even though much research is being done and great strides have been made developing these

elements of the mine counter-measure system, there has yet to be much research coupling

the design elements with the search optimization process.

2.3.4 Measures of Effectiveness

The two key measures of effectiveness for mine counter-measure systems are time and risk

[193]. The goal is to minimize the amount of time that it takes to neutralize an enemy

minefield. Minimization of this time allows task forces to conduct operations in the mined

area more quickly, as well as freeing mine counter-measure assets for additional missions.

This measure of effectiveness is generally quoted as the amount of time it takes to reach

a specified level of neutralization of the minefield. The other key measure of effectiveness

is the risk to ships that will be traversing the channel. The overall goal of mine counter-

measures is to reduce the likelihood of ships suffering damage from mines. This goal is

generally represented as the percent clearance, or percent neutralization, of the minefield.

However, since the number of mines in an area is never exactly known (barring a situation in

which perfect intelligence exists), the exact value of percent clearance will never be known

in an operational setting, it therefore must be represented as a probabilistic value.
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CHAPTER III

LITERATURE REVIEW OF UNCERTAINTY AND

METAMODELING

3.1 Definition of Uncertainty

The seemingly simple act of defining uncertainty can become quite daunting. There are

many definitions of uncertainty in the literature, with many authors attempting to bring

their personal or disciplinary perspective into the picture. Some of the over-arching defi-

nitions include: Hazelrigg, “Any time that we conduct an experiment for which we cannot

predict the outcome, that is, when the sample space contains more than one element with

nonzero probability, we say that there is uncertainty [101]”, Bandte, “Uncertainty ... is

defined as the error between a mathematical model and reality, arising mainly as a result of

a lack of knowledge available for constructing the model [149]”, and Haldar “The occurrence

of multiple outcomes without any pattern is described by terms such as uncertainty [99]”.

In many cases, the simple dictionary definition of uncertainty is adequate, “the quality or

state of being ... indefinite or indeterminate [165]”.

It is common in the literature not to attempt a single, over-arching definition of un-

certainty, but instead to break uncertainty down into several sources, defining each source

individually. These definitions have the benefit of adding more specificity to the under-

standing of uncertainty. Some of these definitions are given in Table 7.
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Table 7: Uncertainty Definitions [45][59][97][181][182][201]

Author Name Definition
Input Parameter Uncertainty Variability of input values
Model Parameter Uncertainty Uncertainty due to limited information in estimating characteristics of model

      parameters
Parameter Uncertainty Input parameter uncertainty + model parameter uncertainty
Model Structure Uncertainty Uncertainty in the model structure itself, including validity of built-in assumptions

      in the model
Approximation Error Error in how to model physics
Algorithm Error Error in use or implementation of model 
Bias Error Approximation error + algorithm error
Precision Error Manufacturing error in design variables
Unstructured Uncertainty Inability to precisely specify the model
Structured Uncertainty Inability to specify the value of the parameters for a model
Uncertainty from External Parameters External system parameters with which the user doesn’t have sufficient info
Uncertainty from Internal Parameters Internal to the system parameters which may vary
Uncertainty from System Model Difference between the modeling technique and reality
Observational Uncertainty Measurement error
Aleatory Uncertainty Inherent variation associated with the physical system or the environment under

      consideration
Epistemic Uncertainty Lack of knowledge or information in any phase or activity of the modeling

      process fundamentally caused by incomplete information or incomplete
      knowledge of some characteristic of the system or its environment

Error Recognizable deficiency in any phase or activity of modeling and simulation
      that is not due to lack of knowledge

Oberkampf

Du

Gu

Crespo

Robinson
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Of these definitions, Oberkampf gives the most complete for the purposes of the work

in this thesis. Oberkampf divides uncertainty into three categories. The first is aleatory

uncertainty, which he also calls variability. It is defined as “inherent variation associated

with the physical system or the environment under consideration [182].” It represents sources

such as manufacturing error and typically has a known range and can be defined using a

probability distribution.

The second type of uncertainty is epistemic uncertainty, resulting from “lack of knowl-

edge or information in any phase or activity of the modeling process [182].” This uncertainty

is a result of incomplete information or knowledge about the system or its environment. It

can occur when the actual physics of a behavior is unknown and there is insufficient experi-

mental evidence to model it, or when the physical environment is unknown (such as landing

the first spacecraft on Mars). Oberkampf suggests that it is difficult to adequately capture

epistemic uncertainty through probability distributions, because the exact distributions will

rarely be known. He suggests the use of either “subjective probability distributions”, which

are probability distributions that, to some extent, are based on expert experience, or more

advanced techniques, such as interval analysis, fuzzy logic, and possibility theory.

The third type of uncertainty as stated by Oberkampf is called error, which is a “rec-

ognizable deficiency in any phase or activity of modeling and simulation that is not due to

lack of knowledge [181].” Oberkampf subcategorizes error into two types, acknowledged and

unacknowledged. Acknowledged errors results from creating a math model that includes

simplifications or approximations or discretization of problems. The magnitude of these

errors is generally known by the user, thus they can be reasonably estimated. Unacknowl-

edged errors are blunders or bugs introduced into the problem. Unacknowledged errors are

practically impossible to estimate, and should be removed through redundant procedures

and good programming protocols. A summary of Oberkampf’s definitions is given in Table

8.

Note also that the nature of uncertainty will change with time for a project. As progres-

sion is made through the various engineering phases, conceptual, preliminary, and detailed,

new data and new test techniques are used, thus reducing and reshaping the uncertainty
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Table 8: Oberkampf’s Uncertainty Definitions [181][182]

Error Definition Example Treatment
Aleatory 
Uncertainty

Inherent variation associated with the physical system or 
the environment under consideration

Manufacturing 
Flaws

Probability 
Distributions

Epistemic 
Uncertainty

Lack of knowledge or information in any phase or activity 
of the modeling process fundamentally caused by 
incomplete information or incomplete knowledge of the 
system or its environment

Unknown Physics, 
Unknown 
Environment

Subjective Probability 
Distributions, Other 
Methods

Acknowledged 
Error

Recognizable deficiency in any phase or activity of 
modeling and simulation that is not due to lack of 
knowledge

Simplification of 
Physics, 
Discretization

Probability 
Distributions

Unacknowledged 
Error

Mistakes or blunders Bugs
Eliminate as Much as 
Possible

about the system. An example by Mavris, in Figure 29, shows how uncertainty varies

throughout the life of an aircraft project. When including uncertainty in an analysis, it is

important to use an uncertainty model that is applicable to both the engineering system

and the current phase of the engineering project.

Figure 29: Fidelity Evolution for Aircraft Drag Prediction [153]

3.2 Probabilistics Background

The most common mathematical techniques used to handle uncertainty comes from the

field of probability. One of the cornerstones of probabilistics is the use of continuous ran-

dom variables. These variables, as the name implies, vary continuously within a range of

values. The likelihood of the variable being a particular value is characterized through the

probability density function, f(x). The probability that a number lies between a and b can
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be found by integrating the probability density function (abbreviated PDF), as in Equation

1.

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx (1)

An example probability density function is in Figure 30. Note that the area under the

curve represents the probability of the number occurring. The area of the shaded region in

Figure 30 is the probability of a single occurrence of a number between a and b. Since the

total probability of a number existing is always 1, the total area of a probability density

function must always equal 1.

Figure 30: Probability Density Function [100]

The cumulative distribution function (CDF) shows the probability that a random num-

ber is less than or equal to a specified value. It is found by integrating the corresponding

probability density function, as in Equation 2.

F (x) = P (X ≤ x) =

∫ x

−∞

f(y)dy (2)

The cumulative distribution function is similar to the probability density function as it

completely defines a probability distribution, the results are simply shown in a different for-

mat. A probability density function can always be obtained from a cumulative distribution

function, and vice-versa.

Several probability density functions have been defined by statisticians; the most impor-

tant of which is undoubtedly the Gaussian, or normal distribution. It is defined as Equation
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Figure 31: Example Probability Density Function and Corresponding Cumulative Distri-
bution Function [99]

3 and shown in Figure 32.

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3)

Figure 32: Normal Probability Distribution[100]

Two parameters are used to control the shape of the normal distribution, µ, which

is the mean of the distribution, and σ, which is defined as the standard deviation of the
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distribution. The calculation of the mean of a sampled set of data is given in Equation 4,

where n is the total number of values present and yi is a single data point. The standard

deviation, also defined as the square root of the variance, of a sampled set of data can always

be estimated through the formula in Equation 5. Thus, if a set of data is available, and the

user either knows that the set fits a normal distribution or that it can be approximated as

a normal distribution, Equation 4 and Equation 5 can be used to calculate the parameters

of the distribution.

µ = ȳ =

∑n
i=1 yi

n
(4)

σ =

√

∑n
i=1(yi − ȳ)2

n − 1
(5)

The reason for the importance of the normal distribution is the central limit theorem,

“which states that the sum of many small random effects is normally distributed [218].”

Thus, when a large enough number of quasi-independent random distributions (of any

form) are added together, the resulting distribution will tend towards a normal distribution.

Because of the behavior predicted by the central limit theorem, there is a tendency to use

normal distributions even though the exact distribution of a parameter may not be known,

on the assumption that, if a summation of a large number of smaller random events is

driving the larger random event, then the uncertain parameter will tend towards a normal

distribution. Other probability distributions are also defined and can be used in probabilistic

analysis. They are particularly useful when sufficient data about an uncertain parameter

is known so that an appropriately fitting distribution can be used. These other probability

distributions include the uniform distribution, log-normal, triangular, and Weibull, etc.

[100].

3.3 Methods to Characterize Uncertainty

Historically, probability distributions have been used to characterize uncertainty. But, as

pointed out by Oberkampf, for some types of uncertainty simple probability distributions are

not adequate to capture the uncertainty. As Oberkampf states in one paper, if there is not

47



sufficient data to reliably estimate the form and parameters of the probability distribution,

simply choosing a probability distribution function and ranges associated with the function

may be wildly inadequate [182]. This behavior is particularly true when dealing with

epistemic uncertainty (uncertainty due to lack of knowledge). Fortunately, there have been

many developments in alternative methods by which uncertainty can be handled. These

methods, which are not based upon probability, are often called ‘possibilistic’, and were

designed for situations in which statistical data about parameters is not available [246].

One such method is interval analysis. For interval analysis, potential ranges are defined

for the unknown parameters. No assumptions are made about the distribution of the

parameter within the chosen range. Then, when the system is being analyzed, interval

arithmetic is used to perform mathematical operations with the interval numbers. In its

most basic form, a combinatorial approach is utilized which analyzes the endpoints of the

intervals. However, by employing such a method, the results will show the worst case,

or overly conservative, results. In many ways, interval analysis is used to determine the

worst-case propagation of uncertainty [246].

Fuzzy set analysis has been examined as early as 1965 [245]. Fuzzy logic was developed

for use when the knowledge concerning uncertainty distributions is incomplete or inaccurate.

“The central concept of fuzzy logic is the membership function, which represents the degree

of membership of the fuzzy variable within a fuzzy set [246]”. A set of mathematical rules

is created around these fuzzy sets. These methods are also called possibilistic methods,

because ‘possibility functions’ are used instead of probability functions. Figure 33 shows

a graphical comparison of the membership functions for interval analysis, fuzzy logic, and

probabilistic analysis.

Chen completed a study comparing fuzzy logic and possibility-based analysis against

traditional probabilistic approaches for designing to avoid failure. Chen showed that when

accurate uncertainty distributions are known, probabilistic methods are clearly preferable,

however, “when limited information is available for the uncertainty. . . the probabilistic

method might produce unsafe designs. In these cases, a possibility-based method is better

[38]”. Even though these possibility methods may be beneficial when appropriate statistical
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Figure 33: Various Uncertainty Descriptions [246]

data is not available, they still have drawbacks. According to Langley, “Existing algorithms

for possibilistic methods tend to be computationally intensive [135]”, so they may not pro-

vide any benefit in terms of analysis time.

In addition, when distribution information is not available, some researchers will simply

apply a uniform distribution across all the known parameters. Using a uniform distribution,

there is an equal likelihood of all events occurring, thus preference is not given to any

particular outcome. This type of approach has been used in design space exploration,

before firm decisions about the vehicle have been made and the entirety of the design space

needs to be explored [122].

3.4 Metamodeling (Surrogate Modeling)

When dealing with probabilistic analysis, particularly when using schemes such as Monte

Carlo simulation, large numbers of analysis runs may be required, often reaching tens and

even hundreds of thousands of runs. Unfortunately, even in an age of increasing computer

processing speeds, many computational models simply cannot run quickly enough to be

reasonable for a Monte Carlo approach. Fortunately, a process exists by which a complex

analysis tool (a computer simulation, or actual experimental results) can be simplified and

represented in a computationally efficient manner. This approximation process requires the

construction of a metamodel of the system.

Essentially, metamodeling is a process by which a physical experiment or complex com-

puter model is represented by a simpler function. Metamodels, also called surrogate models,
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are used so that slow experimental or computationally intensive processes can be replaced

by fast, easy-to-use approximations. Accuracy of the original process is thereby traded for

computational speed.

Metamodels are often combined with other statistical sampling processes, such as De-

signs of Experiments, in order to generate as much information about a process or computer

program with as few trials as possible. Designs of Experiments are similar to the original

work of Taguchi [219], who used pre-specified trials, or experiments, to identify the main

effects of design variables and to analyze interactions between design variables. Taguchi

focused on running experiments based upon predefined arrays of runs, now called Taguchi

arrays. These types of pre-specified trials were also developed in the field of statistics, cul-

minating in a suite of tools called Design of Experiments that supplement Taguchi methods.

Designs of Experiments (DoE) consist of a predetermined set of orthogonal experiments, or

runs, from which the complete behavior of a system can be determined. The goal of a DoE

is to generate the greatest amount of knowledge about the design space with the fewest

number of runs. As Montgomery defines them, Designs of Experiments are a “test or series

of tests in which purposeful changes are made to the input variables of a process or system

so that we may observe and identify the reasons for change in the output response [171].”

Thus, the Design of Experiments is an intelligent selection of analysis runs that is made,

so that the general behavior of a computer model can be approximated without the need

for extensive repetitions of runs.

Several types of Designs of Experiments exist, the simplest such DoE is a full-factorial

experiment. In this type of DoE, each variable in the design space is divided into a number

of distinct levels, generally 2 or 3. The design space is then sampled at each combination of

the levels for all the design variables. While this type of DoE is the easiest to implement,

it requires the largest number of runs, particularly troublesome when a large number of

design variables are involved. Less computationally expensive Design of Experiments have

been developed, such as the Box-Behnken and the Central Composite Design. These DoEs

use the statistical principal of orthogonality to separate the effects of design variables and

variable interactions, thereby producing a similar amount of knowledge about the design

50



Table 9: Potential Designs of Experiments (Adapted from [122] [172])
Design of Experiment Number of Runs Number of Runs

(N-Variables) for 7 Vars

2-Level Full Factorial 2N 128

3-Level Full Factorial 3N 2,187

Central Composite Design 2N + 2N + 1 143

Box-Behnken — 57

D-Optimal Design (N + 1)(N + 2)/2 36

Taguchi∗ — 27

∗ Main effects and some interactions only [17]

space to full factorial experiments, but at a fraction of the number of runs. Software exists,

such as JMP [116] and Design-Expert [214], that not only have these common, predefined

sets of experiments, but also have algorithms that can be used to create custom DoEs.

Table 9 shows some DoEs and the number of associated runs with each. Figure 34 shows a

graphic representation of a Designs of Experiments in three dimensions.

Figure 34: 3-D Pictorial Representation of a Central Composite Design (left) and Box-
Behnken Design [211]

The results of the Designs of Experiments can then be used to generate the approximate

models, or metamodels.The process by which Designs of Experiments are used to generate

metamodels is shown in Figure 35. The process often begins with the use of a screening

test. A screening test is used when there is a cumbersome number of design variables. The

screening test is a scaled down, lower order DoE (with fewer runs), specifically designed to

capture only first-order effects, excluding higher order effects and interactions. The results

of the screening test DoE can be used to determine which design variables do not contribute

much to the variability of the results. These design variables can then be discarded so that
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there is a more manageable number. Next, a larger Design of Experiments is used and a

predictive model, or metamodel, is created for the design space. This metamodel can then

be used to explore the entire design space. When the specific metamodels being used are

response surface equations, this process is referred to as Response Surface Methodology

(RSM), which is becoming a common practice in aerospace conceptual design [122] [154].

General Approach to Response Surface Modeling

Large # of 
Factors?

Run Screening
Experiment

Reduce #
Factors

Run Modeling
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Model (y)

Noise
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�
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Figure 35: Design of Experiments and Metamodeling Approach [128]

One of the biggest drawbacks of coupling Designs of Experiments with metamodels is

the difficulty excluding infeasible regions of the design space. Since Designs of Experiments

often select the ‘corners’ of the design space, it is quite common to have DoE points that do

not converge to valid solutions. There are few alternatives available to address this problem

of analysis cases failing while developing the metamodel. One alternative is to simply

ignore the failed cases, particularly if there are only a small number present [123]. Another

possibility is to shrink the ranges of the design space variables until all of the analysis runs

are feasible [123]. Unfortunately, shrinking the design space can unnecessarily discard valid
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regions from the metamodel, resulting in the unnecessary exclusion of valid potential designs

[78]. But, simply discarding failed cases may inappropriately include infeasible design space

in the metamodel. Non-dimensionalization of DoE variables represents a potential technique

that could be used to address this problem. Potential non-dimensionalization schemes

for torpedo design variables and their ramifications are discussed at length in Chapter 8.

Regardless of the metamodel used, care should be taken to insure that the final results from

the metamodel are feasible.

3.4.1 Potential Metamodels

There are many different types of metamodels available. The most commonly used is a

polynomial regression. A polynomial regression is a simple least-squares linear regression

of the analysis data [178]. Polynomial regressions can take many forms including: first-

order, second-order, or third-order forms. A common form of polynomial regressions are

second-order equations that include cross-terms which account for interactions between

input variables. These second order polynomial regressions, as shown in Equation 6, are

known as response surface equations and are the most common form of metamodels. An

example two-variable response surface equation is given in Equation 7. Once this response

surface equation is generated, the equation can be used to replace the analysis tool. Thus,

a time-consuming analysis tool can be replaced with an approximate, simple equation.

y = b0 +
n
∑

i=1

bixi +
n
∑

i=1

biix
2
i +

n−1
∑

i=1

n
∑

j=i+1

bijxixj + ε (6)

y is the approximated response

xi are the design variables

b0 is the intercept

bi are regression coefficients for main effects

bii are coefficients for quadratic effects

bij are coefficients for interactions

ε is the approximation error

y = b0 + b1x1 + b2x2 + b11x
2
1 + b22x

2
2 + b12x1x2 (7)
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Response surface equations are very common metamodeling tools and have been used

in a variety of research, from power systems [180], to aircraft [155] [184], helicopters [15],

missiles [64] [77], propulsion systems [203], and larger system of systems studies such as

the US Air Transportation System [86] [87]. They have also been used in previous research

directly relating to torpedo design [20] [71].

One of the greatest difficulties in metamodeling is the fitting of non-linear behavior.

Second order response surface equations inherently fit only second order behavior. Some-

times, this level of fit is not sufficient to capture the behavior of the actual model. In

these cases, a better approximation can often be made by increasing the order of the un-

derlying polynomial regression being used. Alternatively, McDonald showed that the act

of transforming the variable being modeled before creating the regression (as by taking the

natural log or the square root) can often lead to significantly better model fits. In this

case the transformation works by removing non-linear effects that cause problems for the

linear regressions. Using an appropriate variable transformation can be highly beneficial in

improving the performance of a polynomial regression [164].

A second common type of metamodel that is good at handling non-linear effects is

Kriging. Kriging models were originally developed for the field of geostatistics and were

introduced to engineering applications by Matheron [145]. A Kriging model contains both a

polynomial representation of a system and an error term. It is of the form shown in Equation

8, where y(x) is the response of interest, f(x) is the polynomial approximation, and Z(x) is

an estimated error term. Thus, the Kriging model builds off of the polynomial regression

by estimating an error term. However, in actual use it is often easier to simply represent

the underlying f(x) function of the Kriging model as a constant. For many problems, the

error term alone is sufficient to accurately model the system [211]. The error term is found

through a complex process that entails examining the correlation between all the sampled

data points, the expected correlation of the point to be estimated, and the use of a predefined

correlation function. Specific methods to implement Kriging metamodels are discussed in

References [46], [211], and [230]
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y(x) = f(x) + Z(x) (8)

Kriging has some advantages over polynomial regressions. For one, it does not assume

a polynomial fit, such as quadratic, so it does not assume the order of the system behavior

and is therefore good at fitting non-linear behavior. Secondly, Kriging can be used to either

fit the data points exactly, interpolate between them, or smooth the data and not perfectly

fit the data points. This behavior, either interpolation or data smoothing, is a function of

the form of the error function used in Equation 8 [46]. The primary disadvantage of Kriging

is its increased complexity over polynomial regressions.

A third metamodeling approach calls for the use of Radial Basis Functions. Radial Basis

Functions are another interpolative scheme, providing a metamodel estimate based upon a

selected basis function and the radial distance to all the data points in the system. The

equation for radial basis functions is given as

f(x) =
M
∑

i=1

βφ(||x − xi||)

summed over all the available data points where β is chosen such that f(xi) = F (Xi),

meaning that the data points are fit exactly, and φ is one of several potential classes of

radial basis functions such as cubic φ(r, c) = (r + c)3 or Gaussian φ(r, c) = r2 ln(cr) as

described in [163] and [190].

As these three metamodeling approaches become more and more common in the en-

gineering world, work has been done comparing these metamodels. Volovoi showed that

Kriging models performed significantly better than response surface equations [230] [231].

Work by Jin and Simpson in Reference [114] and [115] showed that Kriging models worked

especially well for non-linear problems. Jin and Simpson noted that radial basis functions

tend to over-fit the problem, adding artifical non-linear effects. However, they did note that

for relatively linear problems, polynomial regressions achieved very reasonable fits with a

very minimal amount of effort. Thus, Jin and Simpson’s final recommendation was to

quickly fit any problem to a polynomial regression, then, only if the fit of the polynomial

did not look good, move to the more complex Kriging method.
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Other metamodeling methods also exist, but will not be addressed in this thesis. These

methods include the use of neural networks [206] [207] and the use of Gaussian Processes

[47] [48]. Radial basis functions have also been used in conjunction with neural networks

[12] [185]. In addition, work has been done recently in the use of adaptive polynomial

regressions [114]. A good survey of various metamodeling techniques was done by Simpson,

et. al., in Reference [210]

3.4.2 Measures of Goodness

When developing a metamodel, it is imperative that the user determine the quality of the

model fit before using it to replace a complex analysis tool. There are many criteria to

judge the goodness of the response surface equation; one such criterion is the coefficient of

determination, or R2, which measures the proportion of the variability in the data accounted

for by the polynomial model [99]. R2 varies between 0 and 1, but since metamodels generally

represent deterministic (and therefore completely repeatable) computer experiments, the

user should expect large R2 values, on the order of 0.99 or better. The formula for R2 is

given in Equation 9. Other measures of model goodness include actual versus predicted plots

and residual plots, or scatter plots (Figure 36). Actual versus predicted plots chart the value

predicted by the response surface equation versus the ‘real’ value generated by the analysis

codes. The plots show how well each of the data points was predicted; a perfectly predicting

metamodel will result in a straight line at a 45 degree angle on the plot. Scatter plots are

used to show the distribution of the error for the metamodel. The amount of error between

the predicted value and the actual value is shown as a function of the predicted value, thus

illustrating trends between the error and the response. Scatter plots are given their name

because in an ideal situation, there should be no discernable trends to the distribution, it

should appear as random points on the plot. Discernable trends in the scatter plots indicate

that the polynomial model is not capturing all the system behavior; there may be additional

higher order effects present, etc. Kirby and Barros provide an excellent set of methods by

which the goodness of response surface equations can be measured [18] [122].

56



50

70

90

110

130

150

Le
n

gt
h

 A
ct

ua
l

50 60 70 80 90 100 120 140

Length Predicted P<.0001
RSq=1.00 RMSE=1.6616

-3

-2

-1

0

1

2

3

Le
n

gt
h

 R
es

id
u

al

50 60 70 80 90 100 120 140

Length Predicted

Figure 36: Actual versus Predicted for a Response Surface Equation (left) and Residual
Plot (right)

R2 =

∑n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

where, (9)

yi is the ith true value,

ŷ is the predicted value,

and ȳ is the mean value

Unfortunately, the above measures of merit can only be used on metamodels that do

not perfectly fit the data, such as polynomial regressions. Models that are based upon

interpolation, such as Kriging models or radial basis functions, cannot use these measures

of merit. The reason is that these measures of merit look at how closely the actual data

points are fitted. But, since Kriging and Radial Basis Functions are interpolative models,

they always include the original data points in the model, therefore, even if the model is

a poor fit, it will still have an R2 equal to one and no residual! The best way to examine

the goodness of these models is to check the accuracy of the metamodel with additional

randomly selected analysis runs. When checking against random points, it is common to

look at the average error, sum-square error, and maximum error (see Equation 10). Such

comparisons against random points are the best metric by which any metamodel should

be validated before it is used. It is the metric used by Simpson and Volovoi when they

compared multiple metamodels [114] [230].
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Average Absolute Error:
1

n

n
∑

i=1

|yti − ymi
|

yti

(10)

Sum Square Error:
1

n

n
∑

i=1

(yti − ymi
)2

Maximum Error: max

{ |yti − ymi
|

yti

}

for i = 1, 2, . . . , n

where: ym = metamodel approximation

and yt = true result from analysis

The user must validate the metamodel for each of the system responses, such as overall

length, velocity, etc. Even if the metamodel does a good job of capturing some of the

responses, this does not imply that the metamodel will be effective for other responses;

each response must be individually verified. However, if the metamodels are unsatisfactory,

there are methods to improve their performance. The user may always choose to add more

modeling and simulation runs to the metamodel. Another mechanism is to reduce the

ranges of the design variables being modeled. If using a polynomial regression, another

technique is to add higher order terms to the regression, fitting a 3rd order equation instead

of a 2nd order equation or adding more cross terms. For Kriging, a new error form may

be helpful, and for radial basis functions, a new basis function (φ(r)) may be beneficial.

Finally, the user may always attempt to circumvent the problem by performing a variable

transformation on the results [164] or attempting to non-dimensionalize the variables.

3.4.3 Pareto Plots and Prediction Profiles

The information from Designs of Experiments and metamodels can be used for a variety

of additional purposes. For one, the information from the Design of Experiments can be

used to generate Pareto charts, which are charts that show the relative effect that each

design variable has on the output variables. An example Pareto chart is shown for a single

torpedo response in Figure 37. The chart lists each design variable in descending order of

contribution, uses bar charts to show the relative contribution of each design variable to

the variability of the response, and also graphs the cumulative effect on the variability.
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Figure 37: Example Pareto Chart

The prediction profile is another tool that uses the information contained in metamodels

to show how the design variables affect the overall system responses. Prediction profiles

are created through the SAS Institute’s JMP statistical software package and are useful

in summarizing the behavior of a complex system. An example prediction profile is given

in Figure 38. In the prediction profile, the center values along the x-axis indicate the

current settings of the design variables, around these current settings are the minimum

and maximum ranges of the design variables. In the JMP software package, these settings

can be dynamically altered through the GUI. The center values on the y-axis show the

system performance or system metrics resulting from the current design variable settings.

Another beauty of this tool is that it shows the partial derivatives, or trendlines, of each of

the design variables. These trendlines make the interactions between each design variable

and performance characteristics clear. For instance, it is apparent from Figure 38 that

by increasing the motor horsepower, the maximum velocity significantly increases, but at

the cost of also increasing the weapon length. Another interesting point provided by the

prediction profile is that increasing the diameter will decrease the length, but there is an

optimal diameter for highest velocity. One key advantage of the JMP software is that the

prediction profiler is an interactive system, so changing the value of an input variable will

immediately result in the user seeing the effects on the system response and on the individual

trendlines, allowing the user to quickly make tradeoffs between the various system design

variables and responses.
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Figure 38: Example Prediction Profile

These prediction profiles can be used in two ways. First, they provide insight into the

behavior of the system. The user can examine the trendlines to determine if the system

behaves as predicted, e.g., one would expect that a torpedo with a smaller horsepower engine

would have a lower velocity. This expected trend can be verified by observing whether the

trendlines in the prediction profile indicate this effect. Though this means the prediction

profile can be used as a diagnostic tool to ensure that the appropriate trends are being

captured in the analysis program and the metamodel.

A second use of the prediction profile is for optimization. Since the prediction profile

is set in a dynamical GUI environment, the user can use the computer mouse to alter the

variable settings until an optimum is reached. In addition, the JMP software allows for the

automated optimization of the torpedo design variables for any set of optimization criteria.

Thus, a response surface equation can be quickly optimized using only the prediction profile.

3.4.4 k-Factors to Model Technology and Uncertainty

It is often necessary to model new technologies in the modeling and simulation tool. Unfor-

tunately, the physics of the new technology may be overly complex or may not have been

fully developed. However, Kirby developed a means to model ambiguous technologies in

an analysis tool without necessarily modeling the complete physics. She suggested using
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Figure 39: Example “k-Factors” Representing Technologies [121]

multipliers, or “k-factors”, on disciplinary metrics to model the effects of technology [121]

[122] [150]. Taken together, a set of “k-factors” can be used to model the impact, both

positive and negative, of a new technology. Figure 39 has an example where technologies

(T1, T2, and T3) are represented through a series of “k-factors” (K1, K2, K3, and K4).

Note that these “k-factors” are multipliers on internal disciplinary metrics, and represent

both the advantages and disadvantages of using a tool.

Another use of “k-factors” is in the modeling of uncertainty in the analysis tool. Un-

certainty analysis capability can be directly built into a simulation tool through these “k-

factors”. These “k-factors” can be used to account for uncertainty by randomly adding

either benefits or degradations to the system components. In addition, “k-factors” can be

built into metamodels, such as response surface equations, so that uncertainty analysis can

be conducted independent of running the analysis program.

3.5 Use of Uncertainty in Analysis Methods

Many uncertainty analysis methods originated from the realm of structures and reliability.

Many of these methods have gravitated into the robust design world. The most basic uncer-

tainty analysis method is Monte Carlo Simulation. Monte Carlo simulation was developed

by Stanislaw Ulam, a Polish physicist working on building hydrogen bomb for the United

States. It was named after the gambling casinos of Monte Carlo in Monaco [108] [218].

Essentially, Monte Carlo simulation consists of direct, random sampling involving large

numbers of trials. Monte Carlo simulation came into its own as a legitimate analysis method
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Simple Random Descriptive

Figure 40: Monte Carlo Descriptive Sampling [125]

once computer speeds were fast enough to allow large numbers of trials. Given an infinite

number of trials, Monte Carlo techniques theoretically provide the actual answer. In reality,

Monte Carlo solutions are still approximate, as only a finite number of runs are made, but

they are often treated as providing the ‘exact’ results (provided sufficient runs are made) by

authors when dealing with probability problems [221]. The precision of Monte Carlo results

is inversely proportional to the square root of the number of runs made, 1√
nsample

, therefore

to improve the estimate by a factor of 2, four times as many runs need to be generated

[209].

One of the great advantages of Monte Carlo techniques is that they are not subject to

the ‘curse of dimensionality’. As the number of uncertain variables increases, many schemes

have an exponential increase in the required number of analysis runs required to achieve a

solution. Monte Carlo techniques do not have this problem [108]. The great disadvantage

of Monte Carlo, however, is that it is very intensive computationally. Tens of thousands,

often hundreds of thousands of runs may be required to achieve a good solution.

A great deal of research has been done throughout the past several decades to decrease

the amount of analysis runs required for Monte Carlo simulations. One such technique is

descriptive sampling, which uses smarter selections of random points to decrease the number

of Monte Carlo runs [125] [205]. A representative sketch of descriptive sampling is given in

Figure 40.

Another set of uncertainty analysis methods developed from the world of structural reli-

ability. These methods include advanced mean value methods (AMV), first-order reliability
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methods (FORM), and second-order reliability methods (SORM) [16] [19] [99] [221]. These

methods generally work by first assuming that each input parameter exists at its mean

value. Then, first or second-order Taylor approximations are made for the model using

subsequent analysis runs or data known from the distributions of the input parameters.

These approximations are then used to estimate the most probable point, which, taken

from the reliability definitions, means the point at which failure is most likely to occur [99].

Similar to these methods are also sensitivity-based approaches, in which “rather than sam-

pling across known distributions or ranges for uncertain design parameters, gradients for

performance parameters are taken with respect to the uncertain design parameters [125]”.

Many researchers have used these methods to further develop robust design tools, including

Green [96], Langley [135], Du [58] [60] [61], and Gu [97].

Another common means of decreasing the amount of computation time required to run

Monte Carlo simulations is through the use of metamodels. Instead of expensive function

calls, response surface methodology can be used to generate response surface equations or

other metamodels that approximate the complex analysis tool. The Monte Carlo simula-

tion can then use these approximate metamodels in lieu of the full analysis tool. Since the

metamodels run at a fraction of the time of the analysis tool, computationally expensive

Monte Carlo runs can be reduced to reasonable runtimes. This technique has been success-

fully used for the probabilistic design of complex systems by many researchers, including

Mavris [149] [150], Koch [127], and Qu [195]. One interesting use of metamodeling for prob-

abilistic design was completed by DeLaurentis. Instead of replacing the analysis module

with a metamodel, the analysis was sampled at points throughout the design space using

full Monte Carlo simulation in conjunction with a high-fidelity analysis tool. The resulting

CDFs from this analysis were then discretized and response surface equations created from

these discretized CDFs. Thus, instead of approximating the design space for the use of

Monte Carlo simulation, DeLaurentis instead approximated the results of the Monte Carlo

simulation [53] [55].

Applications for these methods have been very diverse, extending far from the field

of structural reliability analysis. Current applications run the gamut from Mars missions
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[51] to engine sizing [156] [203] to aircraft design problems [152]. These techniques have

been used for single discipline analysis such as aerodynamics [187] [217] and have also been

extended to larger system-of-system studies [54] [213].

3.6 Multi-Objective Criteria with Uncertainty

Design with uncertainty inherently requires the use of multi-objective methods. This is

due to the fact that even when only a single objective metric is present, treating this met-

ric with uncertainty inherently generates two objectives, one based upon the ‘goodness’ of

the metric, generally estimated by the mean, µ, and the other based upon the ‘variability’

of the metric, often treated as a standard deviation or variance. As described by Chen,

when dealing with robust design, a single objective is generalized into two aspects, “op-

timizing the mean of performance” and “minimizing the variation of performance” [39].

Thus, even what originally is a single-objective decision problem becomes, at a minimum,

a bi-objective problem in the presence of uncertainty. Therefore, multi-objective decision

making techniques are a necessity when dealing with uncertainty in robust design problems.

Several methods exist to aid in the solution of multiple objective problems. These

methods include utility functions that collapse multiple objectives into single values, such

as weighted sums and signal-to-noise ratios, as well as methods that look at comparisons of

multiple solutions, such as TOPSIS or efficiency frontiers.

3.6.1 Signal-to-Noise Ratios

Signal-to-noise (S/N) ratios were originally implemented in robust design problems by

Taguchi as a method to account for both the mean and the variance of an attribute as a

single value [219, 220]. Essentially, signal-to-noise ratios consist of a comparison of the mean

of a response to its standard deviation. Taguchi states that the “S/N ratio is a measure of

robustness; the higher the ratio, the less harm variations cause to the system [220].” In the

case of a maximization problem, if the standard deviation is small compared to the mean,

then the problem has a large signal-to-noise ratio. Conversely, if the standard deviation is

large compared to the mean, then the problem has a poor signal-to-noise ratio. Separate
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signal-to-noise ratios have been created for use in three separate types of problems, maxi-

mization problems (S/NLarge), traditional minimization problems (S/NSmall), and problems

where the goal of the optimization problem is to reach an objective value (S/NTarget), often

called a ‘target optimization’ or ‘nominal the best’ problem. The formulas for the three

signal-to-noise ratios are given in Equation 11 through Equation 13.

S/NL = − 10 log10

[

1

n

n
∑

i=1

(

1

yi

)2
]

(11)

S/NS = − 10 log10
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n

n
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y2
i

]
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S/NT = 10 log10

(
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(yi − ȳ)2
)

Signal-to-noise ratios are a useful technique because they reduce bi-objective robust de-

sign problems into single-objective problems, however, they come with several drawbacks.

One drawback is that Taguchi has devised over 70 distinct signal-to-noise ratios, each useful

in various applications [17] [188]. Thus, choosing the most appropriate signal-to-noise ratio

may be a cumbersome task and often involves a trial-and-error approach [188]. In many

cases using the wrong signal-to-noise ratio may result in less than optimal results. For

example, according to Box and Leon, S/NT is only appropriate to use when the standard

deviation is proportional to the mean, otherwise a different signal-to-noise ratio transfor-

mation needs to be used [24] [138]. Taguchi himself states that “It is very important to

choose appropriate S/N ratios to solve various quality engineering problems [220].” Thus,

it may be difficult to decide what the appropriate signal-to-noise ratio is for every problem.

An additional problem with signal-to-noise ratios is the inability to distinguish between

an improvement in signal (mean) versus an improvement in variability (noise). For example,

an improved signal-to-noise ratio may have either a more optimal mean or smaller variability,

but this difference is indistinguishable to the user. Taguchi also mentions that the lack of
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knowing the total variation indicated by the S/N ratio is a drawback of the metric [220].

3.6.2 Weighted Sums

Weighted sums are the simplest, most common form of utility functions. Weighted sums

consist of a simple summation of the independent objective parameters, along with a user-

specified ‘weighting’ value assigned to each term. The weighting values typically are con-

strained such that all the weighting values add to one. The general form of a weighted sum

is given in Equation 14.

minimize:

k
∑

i=1

(wi fi(x)) (14)

where fi(x) represents the ith objective

and wi represents the ith weighting value

Oftentimes, instead of simply summing the objective values, a ‘baseline’ alternative will

be chosen. The weighted sums are then compared against this ‘baseline’ alternative, as in

Equation 15. This formulation is also called an overall evaluation criterion (OEC), and be-

comes a criterion that includes all the appropriate disciplinary and overall vehicle metrics

[151]. An advantage of overall evaluation criteria is that both minimization and maxi-

mization objectives can be included in the same minimization function. Overall evaluation

criterion formulations have been used in many applications, including missile systems [89],

military aircraft [151], and commercial aircraft [150].

minimize: OEC = w1

( Min Metric 1

MetricBaseline 1

)

+w2

( Min Metric 2

MetricBaseline 2

)

+w3

(MetricBaseline 3

Max Metric 3

)

+. . .

(15)

Weighted sums easily fit into a bi-objective robust design problem, which originally starts

as a minimization of a single parameter, f(x). In these problems, the robust objective can

be expressed as a weighted sum with the goal of minimizing both the mean (µf ) of the

response and the standard deviation (σf ) of the response (Equation 16). Weighting factors

can be applied to stress either the minimization of the mean or the variance.
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minimize: w1 µf + w2 σf (16)

Hwang mentions that utility functions will ensure non-dominated solutions and will

achieve satisfactory solutions when the weighting parameters are correctly assessed. Non-

dominated solutions are important because they represent solutions in which there is not

an obviously preferable alternative. As described by Hwang, “a non-dominated solution is

one in which no one objective function can be improved without a simultaneous detriment

to at least one of the other objectives [112].” Unfortunately, when it comes to weighted

sums, Hwang mentions that it is difficult to generate the best weighting factors before

the analysis is done, and also mentions that in many cases the objective function is not

additively separable [112].

3.6.3 Efficiency Frontiers

Efficiency frontiers deal with the creation of a Pareto-front of non-dominated solutions.

The efficiency frontier graphically shows the set of these optimal, non-dominated solutions.

An example Pareto front, or efficiency frontier, is given in Figure 41, which shows the

non-dominated solutions for a finance problem, dealing with capital asset pricing. The

frontier is defined by the set of alternatives that represent the most return for a given

risk. Efficiency frontiers have the advantage over weighted sums in that the entire range of

potential solutions is visible to the decision-maker, thus the decision-maker can make the

decision about the best alternative after the analysis data has been gathered. As in Figure

41, the decision-maker can quickly use the efficiency frontier to determine the amount of

risk he or she is willing to accept in exchange for a specific return on investment.

Efficiency frontier methods work exceptionally well on bi-objective decision-making

problems, which, as stated earlier, result whenever single-objective problems are changed

into robust design problems. However, even though these methods are best visualized for

bi-objective problems, they can be expanded for larger numbers of objectives. Efficiency

Frontier techniques deal with the creation of the set of non-dominated solutions of the prob-

lem. Once this frontier is created, the user may select any solution that he or she desires,
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Figure 41: Example Pareto Front for Capital Asset Pricing [69]

each solution representing an ‘optimal’ candidate for a given trade-off between the two ob-

jective parameters. Another method to select the ‘best’ solution from the pareto front is

to look at the ‘utopia’ solution, which is the hypothetical solution that would occur if the

decision-maker could have the best of both worlds, which in the robust world means having

the design with the optimal mean and the minimum variability. The decision-maker may

choose to pick the real alternative that has the smallest Euclidean distance to this utopia

solution.

Points on the efficiency frontier can be calculated in a number of ways. The simplest

manner is the use of a weighted sum. For the bi-objective robust design problem, the

corresponding weighted sum would be that shown in Equation 16. Any optimal solution

to this weighted sum will create a point on the efficiency frontier. Additional points on

the frontier can be generated by selecting a range of weighted values. Unfortunately, using

weighted sums to create efficiency frontiers has many drawbacks. For one, as proven by

Das and Dennis, every point on the efficiency frontier can be calculated by a weighted sum

only if the frontier is convex in shape. If the efficiency frontier is not convex in shape,

weighted sums cannot be used to find points in the non-convex regions of the efficiency
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frontier [49]. An example of the geometric argument provided by Das and Dennis for a

non-convex frontier is given in Figure 42. In order for a point to be found through the use

of a weighted sum, the point must have a unique tangent drawn through it. Thus, in Figure

42, the convex points R, M, and Q may be found via a weighted sum, but point P may not.

Figure 42: Geometric Argument Illustrating How Weighted Sums can only Find Convex
Points in Efficiency Frontiers [49]

The second drawback to using weighted sums to calculate efficiency frontiers is the fact

that, even when the efficiency frontier is convex in nature, an even distribution of weighted

sums will not create an even distribution of pareto points [49]. Thus, the use of weighted

sums may generate pareto fronts with large gaps of missing information. Figure 43 provides

such an example.

Chen and Zhang, along with other researchers, have developed an alternate method for

finding the optimal points on the efficiency frontier [40] [248]. These authors suggest using a

compromise programming approach. The compromise programming approach first requires

running an optimization to determine the ‘utopia’ point for each parameter. For example,

if the mean and standard deviation were to be simultaneously minimized, the user would

first find the solution with the minimum mean without regard to standard deviation, and

then vice-versa. These points correspond to the end-points of the efficiency frontier; the

hypothetical ‘utopia’ point is created as a combination of these two points. These ‘utopia’

points, for the function f(x), are defined as [µ∗
f , σ∗

f ].
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Next, the authors redefine the traditional bi-objective robust design optimization prob-

lem, finding x such that f(x) minimizes [µf , σf ], to a problem that minimizes the closeness

to the utopia point, as shown in Equation 17.

minimize: β (17)

subject to: w1

(µf

µ∗
f

− 1.0 + ∆1

)

≤ β

and w2

(sf

s∗f
− 1.0 + ∆2

)

≤ β

The authors then show that using this compromise programming approach instead of a

weighted sum approach leads to an even spacing of Pareto points and can handle non-convex

regions [40]. Figure 43 shows the difference between a standard weighted-sum approach

and a compromise programming approach in finding the efficiency front. Note that for the

compromise programming approach,, the Pareto points are evenly distributed throughout

the frontier and the non-convex regions in the center are fully captured.

Weighted Sum Approach Compromise Programming Approach

Optimal

O
pt

im
al

Figure 43: Comparison of Pareto Frontier from Weighted Sum and Compromise Program-
ming Methods [40]

The authors, along with work by Tind and Wiecek, also show that a quadratic approx-

imation of the efficiency frontier can be made at any Pareto point. Thus, the frontier in

the neighborhood of any Pareto point can be examined without the need for additional
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optimization runs [223] [247].

Other methods are also being developed to generate an even distribution of points on

the Pareto front. One promising example is the Normal Boundary Intersection method

being developed by Das and Dennis [50].

In addition to these techniques for reducing the computational requirements in the

creation of efficiency frontiers, metamodels may also been used. Wilson, et. al., showed

that they could create Pareto frontiers through the use of metamodels [239]. The authors

first constructed Kriging and response surface equation metamodels of the design space.

Then, since the existence of metamodels made subsequent function calls computationally

inexpensive, an exhaustive grid-search was conducted to find the location of the Pareto, or

efficiency, frontier. The location of the frontier was then refined through the use of actual

analysis runs at the Pareto points. By this means the authors were able to quickly generate

efficiency frontiers for convex, non-convex, and discontinuous spaces.

Roth, et. al., combined a metamodel with a genetic algorithm to efficiently search

out the Pareto frontier in an engine technology problem [202]. Brown and Thomas also

suggested the use of genetic algorithms to find the efficiency frontier for complex naval

architecture problems [31] [222].

In addition to grid-search or genetic algorithms that use metamodels to locate the ef-

ficiency frontier, metamodels could also be used with existing compromise programming

approaches to generate the efficiency frontier even faster, a potentially useful application

when dealing with dimensionally expansive systems.

3.6.4 TOPSIS

TOPSIS stands for Technique for Ordered Preference by Similarity to the Ideal Solution.

It is another method for selecting the best choice from a selection of alternatives. As such,

in order to use this method, a set of alternatives must already be generated. This set may

come from minimizing various weighted sums or overall-evaluation criteria, the creation of an

efficiency frontier, or even the random creation of designs. TOPSIS then works by choosing

the hypothetical optimal design (called the positive ideal solution) and the hypothetical
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worst design (called the negative ideal solution). The positive ideal solution is identical to

the ‘utopia’ solution defined for efficiency frontiers. TOPSIS then chooses the design that

has the smallest Euclidean distance to the positive ideal solution and the largest Euclidean

distance to the negative ideal solution. A geometric representation of the TOPSIS method

is shown in Figure 44. In this figure, A∗ represents the positive ideal solution, A− represents

the negative ideal solution, and, though A1 is closest to the ideal solution, A2 is the preferred

solution because it is significantly further from the negative ideal solution. The TOPSIS

preference system is very close to that of efficiency frontiers, however it includes the concept

of a negative ideal solution as well as a positive ideal solution.

Figure 44: Geometric Representation of TOPSIS Approach[113]

3.6.5 Probability of Success

Though not a multi-attribute decision making technique in of itself, probability of success

can be used as an important part of the multi-attribute decision-making process. Probability

of success (POS) is defined by Bandte as “the envelope objective function or overall evalua-

tion criterion ... measuring the probability of satisfying all criteria [16].” It is the chance of

a probabilistically designed vehicle simultaneously meeting all design requirements, whether

they be given by physical constraints such as weight and length, performance constraints

such as velocity and range, or systems effectiveness constraints such as probability of hit

and probability of evade. The equation for probability of success, assuming N number of

trials and M number of constraints, is given in Equation 18. A POS of one indicates that
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the design is guaranteed to meet all the stated requirements (assuming that the uncer-

tainty was adequately captured), while a POS of zero indicates that the system will never

simultaneously meet all of the design requirements.

Probability of success is useful when dealing with uncertainty analysis because it shows

the likelihood that a given design will meet all of the design constraints. The probability of

success metric has another key advantage because it collapses a multiple objective function

into a single value. “This new objective function, called probability of success, allows for

the use of any standard single-objective optimization technique available [16],” thus, the

probability of success metric allows for the large number of single-objective optimization

schemes to be used to solve multi-objective robust design problems. Conceptually, the

probability of success metric is not difficult to comprehend, and can be stated quite simply

as in Equation 19. However, even though the metric is seemingly straightforward, its

usefulness is quite profound.

POS =
1

N

N
∑

i=1

M
∏

j=1

{

1 for zjmin
≤ zj ≤ zjmax

0 otherwise

}

(18)

POS =
Number of ‘Successful’ Trials

Total Number of Trials
(19)

3.7 Joint-Probability Analysis and Decision-Making

Joint probability analysis is based upon multi-variate probability theory. Instead of con-

structing univariate probability distributions for each parameter, the analysis instead fo-

cuses on developing a probability model that accounts for multiple probabilistic parameters

simultaneously. This multi-variate probability model can better handle interactions between

variables than single-variable probability models.

For example, the standard normal distribution is given in Equation 3. From this equa-

tion, an analysis could be conducted that estimates the behavior of the distribution based

upon two figures: the mean, µ, and the standard deviation, σ. However, if the effect of

two random variables were taken together, the effect is not the same. One might assume

that the output of two random variables could be estimated using four parameters: the two
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means (µx and µy) and the two standard deviations (σx and σy). The resulting probability

model is then shown as Equation 20.

p(x, y) =
1

2πσxσy
e
− 1

2

(

(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

)

(20)

Unfortunately, Equation 20 makes a very large assumption, namely, that the two normal

probability distributions are independent of each other. However, Wallace observed that

for many engineering systems an assumption of independence is made, but this assumption

is often not correct. Wallace showed that for some engineering problems, inappropriate

assumptions about model independence can cause errors of greater than 50% [235]. There-

fore, an approach must be taken that accounts for the dependencies, or correlations, between

probability distributions. A better approximation for the normal distribution is to use the

bi-variate normal distribution, shown in Equation 21 [110].

p(x, y) =
1

2π(1 − ρ2)1/2σxσy
e

[

−1
2(1−ρ2)

(

(x−µx)2

2σ2
x

−2ρ(x−µx
σx

)(
y−µy

σy
)+

(y−µy)2

2σ2
y

)]

(21)

This bi-variate normal distribution now accounts for not only the independent properties

of each univariate distribution, but also accounts for the coupling, or correlation, between

the two probabilistic parameters, via the correlation coefficient ρ. An illustration of the

bi-variate normal distribution and the impact of its design parameters is shown in Figure

45 and Figure 46.

Figure 45: Joint Probability Distribution [11] [16]
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Figure 46: Multi-Variate Probability Terms [235]

The correlation coefficient, which can be estimated via Equation 22 [100], describes how

the two distributions trend together. The correlation coefficient has a value between −1

and 1. A value of −1 implies that the distributions are opposite each other, so when a

high value is generated for one distribution, a low value will be generated for the other

distribution. A value of zero means that no correlation exists between the distributions,

and a value of 1 implies that they trend together. Figure 47 illustrates how the correlation

coefficients affect a random sample.

ρ =
COV (X, Y )

σx σy
=

Σn
i=1(xi − x̄)(yi − ȳ)

√

Σn
i=1(xi − x̄)2

√

Σn
i=1(yi − ȳ)2

(22)

Figure 47: Correlation Coefficients (ρ = −.8, ρ = 0, and ρ = 0.8, respectively) (adapted
from [118])
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Bandte describes how the bi-variate normal distribution is useful for design applications,

because now, when a coupled, multi-variate probabilistic response needs to be modeled, a

smooth function can be fit to the data, allowing this new analytical probability model to

be used in later analysis [16]. For example, if multiple probabilistic responses are estimated

using this approach, then the probability of success can be calculated by simply integrating

this model. This method allows for multi-variate probability data to be modeled using only

a handful of parameters. In addition to using a smooth probability model, Bandte suggests

that an Empirical Distribution Function may also be used to calculate the probability of

success, which consists of a brute-force Monte Carlo estimation of the probability models

[16].

For cases where more than two variables exist, the bi-variate normal distribution can be

expanded to N-dimensions, as discussed by Bandte and Tong [16] [224]. Unfortunately, the

N-dimensional normal distribution is not always defined. When the correlation coefficient

is too negative, corresponding to the case that ρ < 1/(1−N), the multi-variate normal dis-

tribution is not defined [16], so it cannot be used for every problem. However, both Bandte

and Wallace propose that in these situations, and situations when the underlying probabil-

ity distributions are non-normal, alternative multi-variate probabilistic distributions could

be used instead [16] [234].

3.8 Numerical Optimization Techniques

At some point in the process of conceptual design numerical optimization techniques will

have to be employed to find the best solutions. There are many types of numerical opti-

mization techniques available for this task. Each of these numerical optimization techniques

has various advantages and disadvantages, making their appropriateness for individual op-

timization problems vary. Since there are too many optimization techniques to discuss

in detail, a few broad types of optimization processes will be discussed here, as they are

relevant for many of the optimization problems discussed later.

One of the basic classes of optimizers are path-building optimizers. These class of opti-

mizers includes a wide array of individual optimization techniques: Powell’s method [191],
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Fletcher Reeve’s method [74], and sequential quadratic programming [229]. These methods

solve the problems by various techniques, but have the common approach of generally de-

veloping numerical gradient information and then taking a path-building approach, where

the optimizer steps to the optimal solution. These traditional optimizers work very well

for smooth, continuous design problems. With a well-behaved problem, they tend to move

quickly towards a solution, with the fewest overall number of function calls.

Unfortunately, these gradient-based optimizers are not good at handling discontinuous

spaces. In addition, unless special adaptations are made, they are not able to handle discrete

variables. They also assume that the space is unimodal; they therefore will find only a local

optimum in a multimodal space. When handling multimodal problems, multiple starting

points might need to be used for these gradient-based methods to find the global solution,

a technique that significantly increases the runtime for the optimizer. And, finally, because

the optimizers are estimating gradients numerically, they are very sensitive to noise in the

analysis tool. Even if only a small amount of noise is present, the resulting gradients may be

dramatically off, destroying the effectiveness of the optimizer. When such noise is present

in the analysis there are precious few techniques to reduce the effects of this noise on the

optimizer. One approach is to increase the step-size for taking numerical derivatives. This

method will reduce the relative impact of the numerical noise on the calculated gradient.

However, if the step size is made too large, the gradient information will not be sufficiently

local in nature, causing additional problems for the optimizer.

A second set of optimizers are random searches. These optimizers are the most straight-

forward, with the quickest implementation time. These optimizers work through either a

grid-search or random search, testing a pre-selected number of points in the design space.

The advantage in these techniques, besides the short set-up time, is that discontinuous,

noisy, and discrete problems can be handled with little difficulty. In addition, random

searches will find the global optimum in the design space, not just the local optimum.

Random search also has the added benefit of being very amiable for distributed computing,

allowing for more resources to be quickly brought to bear to solve the optimization problem.

The disadvantage with the random search is that very large numbers of function calls are
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Table 10: Comparison of Optimization Techniques

Optimization Setup # of Requires Handles Multi- Handles
Technique Time Function Smooth Discrete Modal Noisy

Calls Functions Variables Problems

Gradient-Based Significant Few Yes No No No

Random Search Minimal Most No Yes Yes Yes

Genetic Algorithms Significant Many No Yes Yes Yes

required, not to mention that the method is decidedly inelegant.

Random searches belong to a larger set of optimization techniques known as stochastic

techniques. These techniques are based upon the concept that some random calculations

are used by the optimizer. Besides just random search, two other stochastic optimization

techniques are simulated annealing and genetic algorithms [183]. Genetic algorithms are the

most common, whereby the design variables are stored as a “chromosome”, then random

permutations of this chromosome are constructed and compared to each other [93]. Genetic

algorithms have advantages in that they are insensitive to noise, work very well with discrete

variables, and can find the global optimum. Unfortunately, they take a lot more function

calls than path-building or gradient-based approaches, though they tend to be more efficient

than random searches. They also have a longer set-up time than random searches. Genetic

algorithms have been used for design problems for a number of years [203] [222].

The field of numerical optimization is quite expansive, and a full treatment in this doc-

ument is impossible. However, several useful optimization techniques have been identified

and are summarized in Table 10.

3.9 Advanced Engineering Software

Advanced engineering software are computer programs that are designed to facilitate com-

plex engineering tasks. This genre of software works by linking together independent anal-

ysis programs so that the outputs from one program flow down to the inputs of other

programs. This linkage allows the user to run an entire engineering simulation, utilizing

multiple, distinct analysis modules, with the single click of a button. iSIGHT is an example
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of one such analysis program [65]. It couples the ability to link multiple analysis programs

together with several other features that facilitate engineering studies and optimization

once the engineering environment has been established. iSIGHT has built in utility for the

the running of Designs of Experiments and the creation of metamodels, both polynomial

regression models and Kriging models.

In addition, iSIGHT has built-in deterministic optimizers that utilize sequential-quadratic

programming to find optimum responses for constrained, non-linear optimization problems.

Finally, iSIGHT has built-in probabilistic design methods for robust design. These meth-

ods include the ability to select a probabilistic distribution for an input variable, the use

of Monte Carlo simulation to determine output distributions, and the use of optimization

schemes for probabilistic analysis [129]. Many researchers have successfully used iSIGHT

for various multidisciplinary design problems [8] [94] and probabilistic design problems with

uncertainty [125] [126].

iSIGHT is not the only available tool for this type of integration. In addition to iSIGHT,

a program called ModelCenter, developed by Phoenix integration, has nearly identical ca-

pabilities [189]. SAIC has also developed a similar software capability called ENVISION

[240] [241]. Finally, Buonano showed that many of the same capabilities present in Mod-

elCenter and iSIGHT can also be accomplished in a custom-built Matlab framework, with

faster overall execution times [33].

3.10 Non-Dimensionalization in Design

Non-dimensionalization is a common practice in engineering fields, particularly aerospace.

It is used to create automatically scaling parameters that can be used to represent a vehicle

design regardless of the actual size of the vehicle. Non-dimensionalization is a process that

can be conducted when the physics of the problem is not fully understood or is overly

complex. Essentially, by multiplying system variables together until groups of like units

are created, non-dimensional parameters are created. Furthermore, these non-dimensional

parameters tend to be system drivers. These drivers are crucial for proper scaling, a key

to accurate preliminary design. The method for non-dimensionalization is formalized with
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the Buckingham-Pi theorem, which states that any complete equation can be written such

that all the variables are dimensionless in form [9] [139]. Table 11 shows some examples

of non-dimensional items commonly used in aerospace engineering. Though these types of

non-dimensionalization are very common in the field of conceptual design of aircraft [147]

[199], they are less common in overall torpedo design.

Table 11: Examples of Non-Dimensionalization
Name Scaling Purpose Formula

Coefficient of Lift Lift CL = L
1/2ρv2S

Coefficient of Drag Drag CD = D
1/2ρv2S

Mach Number Compressibility Effects M = v
a

Reynolds Number Viscous Effects Re = ρvx
µ

Thrust-to-weight Aircraft Propulsion TSL

WTO

Wing Loading Aircraft Size and Wing Area WTO

S

These non-dimensional parameters are also useful in the running of Designs of Exper-

iments. When running DoEs, small ranges must often be chosen for the input variables,

because the DoE may often pick incompatible inputs, causing the analysis program to fail.

An aircraft example might be the DoE choosing a low value for absolute thrust and a high

value for payload. In such a case, the analysis program will return a bad result, such as zero

for flight range, because the aircraft physically lacks the engine thrust required to takeoff.

Thus, the ranges of the variables on DoEs must be kept small so that the smallest abso-

lute thrust is still sufficient to fly the heaviest vehicle. However, by running a DoE using

non-dimensional, or even normalized parameters, this problem can be partially alleviated.

For instance, by using thrust-to-weight ratio ( TSL

WTO
) instead of absolute thrust, the vehicle

thrust will automatically scale itself as a heavier vehicle is required. This scaling allows

for a larger range of input variables in the Design of Experiments, since the input variables

are scaling themselves to appropriate values, allowing the analysis program to run more

smoothly.
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CHAPTER IV

RESEARCH FORMULATION

4.1 Formulation of an Integrated, Robust Design Hierarchy

The research questions stated in Section 1.8 can be broken into three primary research

tasks. The first research task focuses on the inclusion of uncertainty in the design process

and the development of a robust design process that uses probability of success as a key

variable for decision-making. A visualization tool was also developed to assist with decision-

making during the design process. The second research task looks at the inclusion of tactics

in conceptual design. This research task examines the effects of tactics on the design

of undersea weapons. It first explores the relative impact of tactics on torpedo design.

The analysis then looks at the concurrent optimization of tactics and design parameters

for a mine counter-measure application. Finally, the third research task looks at the use

of non-dimensionalization or normalization of torpedo design parameters to improve the

performance of torpedo analysis when used in conjunction with Designs of Experiments or

other analysis tools.

4.1.1 Robust Design Metric

A robust design methodology is required in order to account for the uncertainty inher-

ent in any complex design process. The design methodology illustrated here is a robust,

over-arching framework for probabilistic analysis. This framework illustrates specific tasks

that need to be conducted for probabilistic analysis, however, the specific mechanisms for

accomplishing each task are left to the user. This plug-and-play style framework allows

the user to select the most appropriate tool to be used for each step, depending upon the

specific nature of the problem at hand. The framework includes discussions as to which

individual tools are useful at each step and lists the reasons why some tools are preferred

over others. The specific tools that are applicable for each step are covered in more detail
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in the background chapter (Chapter 3).

The key step in creating this robust design process is the development of a good metric

that accounts for all of the probabilistic information. Adding probabilistics to a process

inherently makes responses more difficult to characterize. For instance, Figure 48 shows an

example torpedo problem from an historical design perspective. On the left-hand side of the

figure is a design space with a single design point illustrated. This design point represents a

single physical torpedo design. On the right-hand side of this figure is the response space or

performance of the system. With historical, deterministic design techniques a single vehicle

design maps to a single response. In this type of a deterministic environment, the response

can be definitively characterized as either meeting the design constraints or failing to meet

the constraints.
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Figure 48: All Constraints are Satisfied All of the Time

However, as discussed earlier, designs are never fully deterministic. There is always some

uncertainty or probabilistic response to a design. Thus, a more accurate interpretation of

the design process is given in Figure 49. This figure shows the same design point from Figure

48, but now, this single design point maps to a probabilistically represented response space.

It is now impossible to definitively characterize this design point as either meeting or failing

to meet the design requirements

Therefore, a metric of merit is needed that can be used to identify which portion of

the valid, or ‘successful’ response space is met by the design (Figure 50). A very powerful
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metric to use is the concept of probability of success, as introduced in Section 3.6.5. The

probability of success is graphically shown in Figure 51. The probability of success is a

single metric that succinctly captures all the information about the region of the response

space that meets the design requirements. The probability of success value collapses all of

this probabilistic data into a single value, thus making the multi-dimensional response easier

to use for interpretation, visualization, and optimization. In many ways, the probability of

success concept is directly analogous to the quantity of risk inherent in the system. A high

probability of success indicates that the system can be considered low risk: in all probability,

it will meet all of the design requirements. A low probability of success indicates a risky

system: the chances of it fully satisfying all of the mission goals is low.

The new design goal is now to develop the system with probability of success in mind.

In this environment, the designer is attempting not to meet specific design requirements,

but instead is looking at the probability of meeting the design requirements. The goal of the

designer is therefore to select the design variables that give the desired probability of success

with the lowest cost. The new design environment is more like the environment illustrated

in Figure 52, where the design point is optimized to provide an improved probability of

success.

A key goal of this research is to develop risk vs. reward curves for torpedo systems

which will show the relations between performance, cost, and the probability of meeting
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design requirements (now considered probability of success), all in an environment that

is accounting for uncertainty. These risk vs. reward charts will be used to provide the

decision-maker more insight into the tradeoffs between probability of success, performance,

and cost.

Figure 53 shows a hypothetical cost versus probability of success curve. Each design

point on the design chart (left-hand side of Figure 53) corresponds to a single optimum

solution for a given probability of success. By finding optimal solutions for multiple POS

values, the Pareto Frontier for cost versus POS can be established. The probability of
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success chart (right-hand side of Figure 53) shows the optimum, or lowest cost solution for

each probability of success. By collecting this data, a POS-cost frontier can be created

before making a decision, allowing the decision-maker to make a better informed tradeoff

as to what probability of success, or associated system risk, he or she is willing to accept,

since the implications on cost are immediately known.
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Figure 53: Translation of Design Space to Cost versus Probability of Success

This type of information will also be useful when comparing two potential design alter-

natives. As Figure 54 shows, the relative cost versus probability of success can be shown

simultaneously for two alternatives. With this information, the decision-maker can quickly

determine which alternative is the best to pursue, depending upon the amount of risk that
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he or she is willing to accept.

Figure 54: Hypothetical Cost versus POS for Multiple Alternatives

4.1.2 Robust Design Process

The full framework for the robust design process is provided in Figure 55. Again, each

step in the framework is somewhat generic in nature, with specific methods able to be

‘dropped’ into the framework as the problem warrants, meaning that the framework can be

custom-tailored to the problem at hand. The first step in this framework is the requirements

definition.

4.1.2.1 Step 1: Define Requirements

Before any research can be conducted, the goals of the analysis and potential problems need

to be identified. Furthermore, specific system requirements or constraints should be laid

out, if they are known. For example, a torpedo may be given a maximum length constraint,

or a minimum range constraint.

During this phase of the design process, the metrics of merit should also be identified.

The metrics of merit are used to indicate the key goals that differentiate various concepts.

For instance, these goals might mean designing a vehicle that weighs the least or has the

lowest cost. Or, for a torpedo example, it might be the development of a torpedo system

that has the highest overall probability of kill. Multiple goals, or measures of merit, may

be chosen. Multiple measures of merit can easily be combined together using the multiple

objective decision methods described in Section 3.6, such as weighted sums or TOPSIS.
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Figure 55: Robust Design Process

These measures of merit may also be probabilistic in nature. For instance, the cost value

might be calculated as a probability distribution instead of a point value. In these cases, the

probabilistic response must be reduced to a single numerical value, so that it can later be

optimized. Therefore, the measure of merit might be defined as the mean of the probabilistic

cost value. Or, the measure of merit might be a weighted sum of probabilistic values, such

as the mean of the response plus the standard deviation. Finally, the probabilistic measure

of merit might be represented as a signal-to-noise ratio. These techniques are discussed in

Section 3.6.1 and 3.6.2.

4.1.2.2 Step 2: Select Concept / Technology Set

The next step is to define or select which concepts will be examined, or, which sets of

technologies will be placed in the system. Several distinct systems may be examined in order

to compare them against each other. It may also be advantageous to define a “baseline”

system, which uses common technologies. This baseline system may then be used as a basis

of comparison for other concepts. For a torpedo example, different concepts might be a
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piston-driven torpedo, an all-electric torpedo, or a super-cavitating torpedo.

4.1.2.3 Step 3: Build Model

In order for an analysis to be conducted, a computer model must be developed. This

model must be automated, with as little human interaction as possible (preferably involving

no human interaction). Automation is a requirement because the model will be called a

multitude of times. This automation should include the ability for the model to be given

a set of analysis runs, then have the model conduct the runs and automatically return the

results. This level of integration is necessary for later design steps. Advanced engineering

environments, as described in Section 3.9, can be used to integrate and automate existing

computer tools together.

It is also possible to replace an analysis tool with a metamodel. The advantages to this

technique are that metamodels are inherently automated (being little more than a series of

equations) and can execute quickly. Extensive techniques for metamodel development and

validation are provided in Section 3.4.

In addition, the computer model should incorporate as many facets of the vehicle and

its environment as appropriate for the problem. A full system-of-systems model, in which

the complete tactical environment with which the vehicle operates is included, provides the

most relevant mechanisms for selecting robust solutions.

4.1.2.4 Step 4: Define and Include Uncertainty

The next step in the design process is to define the uncertainty and include it in the

analysis tool. Uncertainty is most commonly defined via a probability distribution, but, as

discussed in Section 3.3, there are many other methods to characterize this uncertainty. The

uncertainty definition that is most appropriate for the problem should be selected. Note

that, if multiple concepts are being analyzed, it may be necessary that the uncertainty be

individually defined for each concept, depending upon the differences between concepts and

the amount of information available.

The second task is the inclusion of this uncertainty into the analysis tool. The analysis

tool may already include the capability of analyzing uncertainty, the capability may need to

88



be added, or the uncertainty could be modeled as “k-factors” as discussed in Section 3.4.4.

4.1.2.5 Step 5: Run Deterministic Analysis

The next step is to generate a baseline point from which to start the analysis. The analysis

code (or metamodel) should be run without uncertainty to generate a single, deterministic

response. From this response, the performance of the analysis model can be determined as

well as validated. In addition, extra deterministic runs may be conducted so that Pareto

plots and prediction profiles may be generated. The process for the generation of this plots

is described in Section 3.4.3. These tools can then be used to gain an understanding of the

design space before large-scale probabilistic analysis is undertaken.

4.1.2.6 Step 6: Set Target Probability of Success

The simplest of all the steps, step 6 requires the selection of a target probability of success.

This target probability of success will serve as an initial point for the probabilistic analysis,

and later will be the starting point in the determination of the Pareto front.

4.1.2.7 Step 7: Run Probabilistic Analysis

Step 7 is computationally expensive and may require significant amounts of time to set

up. It requires the ability to run a probabilistic analysis at the current design point. This

analysis must account for all the mechanisms by which uncertainty was included into the

problem in Step 4. Potential methods include all of the techniques discussed in Section 3.5,

including Monte Carlo techniques, descriptive sampling, and advanced mean value methods.

The appropriate probabilistic technique to use is a function of the problem, the analysis run-

time, the required fidelity of the results, and the computational power available. Again, an

appropriate technique should be selected that best fits the particular problem being solved,

there is no one-step solution.

4.1.2.8 Step 8: Determine Probability of Success

The probability of success for the previous probabilistic analysis must now be calculated.

There are two primary mechanisms for the calculation of the probability of success. One

may use brute-force techniques to simply count the number of individually successful designs
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divided by the total number of designs. Or, it may also be possible to estimate the means,

standard deviations, and correlation coefficients of the responses in step 7 and use these

values to estimate the probability of success. Advanced mean value methods, such as first-

order reliability methods, will return a probability of failure value, which can quickly be

converted into a probability of success value. These processes are discussed in detail in

Section 3.7.

4.1.2.9 Step 9: Optimize to Meet Probability of Success

The next step in the robust design process is to use an optimizer to find the best design

that meets the probability of success target defined in Step 6. The best design is defined

as the design with the best measure of merit value (as defined in Step 1) that meets the

minimum required probability of success. As discussed in Section 3.8, there are many valid

choices of optimizers to use. These optimizer choices include gradient-based optimizers,

genetic algorithms, or random search. Gradient-based optimizers generally require the

fewest number of runs, however, they are very sensitive to noise. When these optimizers are

used, it will be necessary to have very accurate estimates of the probability of success at

each design point; if Monte Carlo techniques are being used, this entails very large numbers

of runs. Also, the probabilistic space is likely to be multi-modal, so multiple starting points

will be required to use a gradient-based optimizer.

Genetic algorithms and random searches have advantages because they are significantly

less sensitive to noise. Looking back at Figure 7, robust design is only focused on the

center region of the probability distribution; the tails are inconsequential. Thus, if Monte

Carlo techniques are being used in conjunction with a random search, these optimizers may

require significantly less function calls at each design point than a gradient-based optimizer,

and may even require fewer function calls overall. Again, the tails of the distributions are

only important to the gradient-based optimizer because all of the noise from the system

must be removed for the optimizer to perform adequately. A completely random search has

the added advantage in that it could be used to simultaneously identify the entire Pareto

front for the system, it does not have to be repeated for multiple probability of success
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values.

4.1.2.10 Step 10: Choose New Probability of Success

Once the best design for the selected probability of success has been identified, a new

probability of success is selected, and steps 6 through 10 are repeated. This process is

repeated until the optimum solutions for an entire range of probability of success values

have been identified. Note, however, that if a technique such as a random search is used

for Step 9, it may not be necessary to repeat the process for multiple probability of success

values, as the results of a single random search, with sufficient runs, can be used to identify

the entire Pareto front.

In addition, instead of simply selecting an evenly distributed range of probability of

success values to capture the Pareto front, the efficiency frontier techniques in Section 3.6.3

could be used to more smartly select the best POS points to analyze. In addition, these

techniques include methods to approximate the Pareto front, so that fewer probability of

success optimizations may need to be made.

4.1.2.11 Step 11: Select Most Appropriate Design

The final step in the design process is the creation of the Pareto front. This Pareto front

would then include every design that represented a distinct, optimum system for the given

probability of success. In essence, this process leads to the creation of a product similar

to Figure 54. Using this figure, the decision-maker can then intelligently examine the

probabilistic results of the analysis. Using this knowledge that details the linkage between

cost (or other applicable measure of merit) and probability of success, or risk, the decision-

maker can decide what level of risk that he or she is willing to pay for. In addition,

the decision-maker can make informed tradeoffs between competing technology sets. This

concept of selecting a risk value is similar to the defense department’s push, starting in

1995, to make cost an independent variable [119]. As stated by DoD Directive 5000.1: “All

participants in the acquisition system . . . shall view cost as an independent variable [3]”.

The new goal will no longer be to make cost an independent variable, but instead make

probability of success an independent variable. This technique is superior to simply designing
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for a single weighted sum, signal-to-noise ratio, or loss function, because the decision-maker

is able to visualize the tradeoffs in value and risk before the final decision is made.

Again, the framework presented here allows for the plug-and-play type of inclusion of

the appropriate tool at each point in the process. Table 12 shows a summary of the steps

in the framework, as well as appropriate tools for each step. The table should be used as

the primary guide for using this design process.

4.1.3 Robust Design Examples

Several example applications have been analyzed via this robust design process. These

examples explore different types of problems, with relevant solutions provided for each.

Through these examples the design process will be illustrated, validated, and have its use-

fulness demonstrated.

4.1.3.1 Traveller Problem

The first example is demonstrated in Section 4.2.1. This is a 2-dimensional example which

explores the ability of a traveller to most efficiently cross over a mountain range. This

example is purely hypothetical and is intended as a demonstration of the design process.

Even though the problem has only two dimensions, it still illustrates the effectiveness of the

method in characterizing the results of a multi-modal problem with both uncertainty and

multiple alternatives present.

4.1.3.2 Torpedo Analysis using Metamodels

The next example of the robust design environment is shown in Section 6.1. This application

looks at using the robust design environment to examine a heavyweight torpedo system.

In order to conduct the analysis, a metamodel is developed using a torpedo analysis tool.

The example compares the results for two technology sets: a piston-driven torpedo and an

all-electric torpedo. Two different optimization techniques are also compared.

4.1.3.3 Torpedo Analysis with Direct Simulation

The third example of the robust design environment is given in Section 6.2. This example is

similar to the previous example where a torpedo design is analyzed. However, the example
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Table 12: Overview of Robust Design Framework
Process Description Relevant Techniques

Step 1:
Define Requirements

Define system requirements and
measures of merit

Multi-Objective Methods,
Probabilistic

Measures of Merit (Sec 3.6)
Step 2:

Select Concept/
Technology Set

Select concepts, or groups of tech-
nologies, that will be examined

Develop “Baseline” System

Step 3:
Build Model

Develop an automated, physics-
based computational analysis
model

Metamodeling Techniques
(Sec 3.4)

Advanced Engineering
Environments (Sec 3.9)

Step 4:
Define and

Include Uncertainty

Mathematically characterize the
uncertainty and include it in the
analysis model

Probability Distributions,
Fuzzy Logic, Interval Bounds

(Sec 3.1, 3.3)
“k-factors” (Sec 3.4.4)

Step 5:
Run Deterministic

Analysis

Analyze a single deterministic
point, analyze validity of model-
ing tool, develop Pareto charts,
etc., to understand the design
space

Pareto Charts
Prediction Profiles

(Sec 3.4.3)

Step 6:
Set Target

POS

Set a target probability of success
value for initial optimization

—

Step 7:
Run Probabilistic

Analysis

Execute probabilistic analysis
around the design point to
retrieve statistical data

Monte Carlo Methods
Descriptive Slamping
Mean Value Methods

(Sec 3.5)

Step 8:
Determine POS

Determine the probability of suc-
cess value for the point based
upon the statistical results in
Step 7 and the requirements from
Step 1

Estimate Empirical
Density Function
JPDM Methods

(Sec 3.7)

Step 9:
Optimize to

Meet Target POS

Using an optimizer, repeat the
probabilistic analysis from Step 7
and Step 8 until the ‘best’ sys-
tem is found that meets the tar-
get probability of success

Graident-Based
Optimizer

Genetic Algorithm
Random Search

(Sec 3.8)

Step 10:
Select New POS

Select a new probability of suc-
cess target, then repeat steps 7-9,
in order to create a range of ‘op-
timum’ solutions

Efficiency Frontier
Approximations

(Sec 3.6.3)

Step 11:
Select Most

Appropriate Design

Create the Pareto front of opti-
mal solutions from Step 10, al-
low the decision-maker to use
this pareto front to determine the
most appropriate design or design
alternative

—
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differs because a metamodel is no longer used, instead, the analysis is conducted using direct

simulation of the torpedo analysis tool. The study is conducted both for a heavyweight

torpedo system and a lightweight torpedo system.

4.1.4 Integration of Tactics with Design

4.1.4.1 Effect of Tactics on Torpedo Design

The original goal of this work was to analyze the implementation of a torpedo design tool in

conjunction with a modeling and simulation tool that accounted for submarine maneuvers,

submarine tactics, the acoustic environment, and various methods for the tactical employ-

ment of torpedoes. Unfortunately, such analysis tools, in order to be accurate enough to be

useful, are exceptionally complex and tend to be proprietary or classified in nature. As such,

it was impossible to obtain the use of appropriate analysis tools for this paper. Instead, an

engagement analysis tool was developed that examined the likelihood of a torpedo system

being able to locate and prosecute a target (called Phit), without regards to the actual

tactics used by the submarine. Because of the limited modeling capabilities developed, a

full system-of-systems optimization, linking submarine tactics to torpedo design, could not

be performed. Instead, an examination of the impact of the tactical situation at torpedo

launch on the design of the torpedo and on the likelihood that it will hit the target. The

results of this analysis are shown in Section 7.1.

4.1.4.2 Optimization of Mine Counter-Measure Tactics and Design

A second tactics integration and optimization example was performed by examining the

effects of combining tactics and design parameters for mine counter-measure, or minehunt-

ing missions. This analysis problem was chosen because the tactics of minehunting and

minehunter design could be easily characterized. This easy characterization allows for a

real illustration of the advantages that can be gained by exploring the simultaneous opti-

mization of the vehicle design and the tactics, something that could not be illustrated for

the torpedo design problem (as mentioned in the previous section). In order to conduct

the minehunting optimization, a minehunting analysis tool was developed for which the

percent clearance of a minefield could be calculated as a function of time. Uncertainty,
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in the form of an unknown number of mines, errors in the track of the minehunter, and

uncertainty in the probability of detection, were added to the problem. An example mine

counter-measure system was then optimized, both from the standpoint of examining tac-

tics and design parameters individually, and then by examining them simultaneously. This

example is discussed in detail in Section 7.2.

4.1.5 Creation of Non-Dimensional Parameters for Torpedo Design

Finally, a study was conducted that looked at ways to improve the method by which torpe-

does are characterized in the early phases of design. This improvement focuses on replacing

the traditional dimensional design parameters with non-dimensional parameters. By chang-

ing the design variables, torpedo characterizations can be created that are more robust, and,

equally importantly, work better in the modeling and simulation framework required for the

robust design process. The analysis, given in Chapter 8, discusses a method to determine

which parameters are effective for torpedo design and shows which parameter combinations

are useful.

Figure 56 provides an illustration of the example problems, including how they relate

to both each other and the major thrusts of the dissertation.

Robust Design Methodology Tactics in Design

Traveller
Example

Torpedo 
Example 
w/RSEs
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Example
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Example 
w/RSEs

Torpedo 
Example 
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Mine Counter-
Measure 
Example
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Analysis

NonDimensionalization

Lightweight 
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Figure 56: Guide to Methodology Demonstrations
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4.2 Illustration of Robust Design Methodology

4.2.1 Problem Setup

The design methodology proposed in Section 4.1.2 is illustrated with a 2-dimensional ex-

ample. The goal of this example is to create a curve the demonstrates the variation of

probability of success as a function of the performance of the system, similar to the hy-

pothetical curves shown in Figure 54. This problem was designed to execute quickly to

allow for Monte Carlo analysis, remain in two dimensions for easy visualization, and be as

intuitive as possible, so that the design process might be transparent.

The example problem consists of a hypothetical traveller desiring to cross the region

between two mountains. The topography of the scenario, with an optimal path illustrated

by a dashed line, is shown in Figure 57. The goal of the traveller is to move from the

lower-left corner (0,0) location to the upper-right corner (1,1) location, spending the least

amount of energy (or time) possible. The traveller is penalized both for increasing height

and for walking extra horizontal distance. An objective function for the problem is shown in

Equation 23. By changing the relative weightings of α and β in this function, the traveller

can be driven towards preferring a longer, less hilly path (low α) or a shorter, more hilly

path (low β). In this case, the objective function is analagous to a travel time, with extra

time being required to both travel vertical distances and to travel in a round-about manner.

The weightings on the objective function would then relate to how quickly a traveller can

travel vertically (β) versus how quickly a person could travel horizontally (α). The final

addition to the problem is the inclusion of a maximum-height constraint, prohibiting a path

from entering a region greater than a specific height.

objective = min(α · ∆Distance + β · ∆Height) (23)

The design variables for this problem were, for ease of implementation, limited to two.

In order to fully define a path using only two variables, it was decided that the path would

consist of two line segments, one beginning at the start location, one ending at the end

location, and both meeting at a ‘kink’ location in the middle. The x- and y-location of this
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kink point is defined by the two design variables. Figure 57 shows the optimal path for

traversing the mountains, with a ‘kink’ location located at x = 0.61, y = 0.28. Using this

approach, two design variables, each ranging from zero to one, can capture a large field of

potential paths through the mountains.

This design problem was chosen as a testbed for these techniques because of many

promising features. For one, since the problem is two-dimensional, it is easily visualizable.

Secondly, and just as importantly, the presence of two mountains in the topography makes

the problem inherently multi-modal. Figure 58 shows contours of constant objective func-

tion, where the objective function has both α and β set to one. As can be seen, there is

a minimum in the ‘ridge’ formed between the two mountains, along with minimums in the

corners of the design space. The minimums in the corners of the space correspond to a

traveler moving around the mountains.

The design process for this example can be laid out as in Figure 59. Note that the

requirements have now been stated, that the traveller find the shortest route under a spec-

ified height constraint, and a Matlab model constructed. The next step is the definition of
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Figure 58: Contours of Objective Function for Kink Locations

uncertainty in the problem, which will be added as probabilistic distributions around the

mountain heights. The final solutions will be generated via a metamodel generated from a

grid search, and the selection of the designs will come from a gradient-based optimizer.

4.2.2 Addition of Uncertainty

Once the deterministic problem was defined and subsequently solved, uncertainty was added

to the problem. In this case, uncertainty was added to the heights of the mountains. This

uncertainty would be characteristic of a scenario in which the traveller was not fully aware of

the mountain heights before beginning travel. Each mountain height was varied randomly

based upon a normal distribution, centered around the original height (0.6 for the wider

mountain and 1.0 for the larger mountain). The normal distribution was given a standard

deviation of 0.125.

Figure 60 shows the distributions of the mountain height centered around the mean.

The distribution results are shown for a 25,000 case Monte Carlo run. The figure also

shows what happens to the objective function results when the deterministically determined

optimal path is calculated through the Monte Carlo analysis. Note that now, instead of the
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Figure 59: Design Process as Applied to Traveller Example

objective function returning a single objective value for the path, it returns a distribution of

objective values, based upon the distribution of the mountains. The effect on the objective

function is significant, in many cases, the performance is 50% worse or 50% better than

the expected deterministic value, clearly indicating a wide range in performance. Also note

that the maximum height that the traveller takes is no longer constant. According to the

data in Figure 60, in over 15% of the runs the traveller followed paths that violated that 0.4

maximum height constraint. Since this maximum height constraint is the only constraint

in the problem, the probability of success, or the probability of simultaneously meeting all

constraints, is 0.85 or 85%.

In order to speed future analysis, a metamodel was created of the design space. Since

the design space consists of only two dimensions, a simple 36 × 36 point grid-search was

used. Monte Carlo runs were made for each of these points to generate a grid of mean

objective function, signal-to-noise-ratio, and probability of success for each sampled design

point. Plots of these results are shown in Figure 61. The metamodel then consisted of a

cubic spline interpolation of the 1296 points in the 36 × 36 grid.
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Figure 60: Input Probability Density Functions for the Mountain Heights and Output
Distributions for Maximum Path Height and Objective Function

4.2.3 Problem Results

The built-in Matlab optimizer, called ‘fmincon’ [146], which is a traditional, constraint-

based, sequential quadratic programming optimizer, was used to perform optimizations on

the metamodel of the probabilistic design space. The goal of the optimizer was to find the

location of the path with the smallest mean objective function while remaining within a

specified probability of success. For instance, for a required probability of success 0.8, the

analysis program would return a mean objective function of 0.43. Thus, if the designer

wishes to be 80% confident of reaching his or her goal without violating the maximum
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Figure 61: Example Probabilistic Contours for S/N Ratio, Mean Objective Function, and
Probability of Success

height constraint, the best value for the mean of objective function that can be obtained is

0.43. Table 13 shows example results for varying probability of successes. Note that as the

probability of success decreases, or relaxes, the objective function improves.

These results can be shown graphically, as in Figure 62. Remember that for these figures

a lower mean travel time is better and a higher probability of success is less risky. Thus, the

perfect solution would be a travel time of zero with a 100% probability of success, which

corresponds to a point in the lower right corner of the graph.

In many respects, the curve in Figure 62 behaves as expected. Decreasing the probability

of success results in decreasing the mean of the objective function. This is tantamount to

saying that increasing the risk that is acceptable allows for an increase in the performance

of the system, a very intuitive result and typical of hypothetical risk versus reward curves,

as shown in an example investment-risk curve of Figure 63. The trends between the two
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Table 13: Optimum Mean of Objective Function vs. Probability of Success
Probability of Success Opt. Mean Obj. Function

0.20 0.29
0.40 0.29
0.60 0.39
0.80 0.43
0.90 0.48
0.99 0.80

figures are the same: as the risk increases, the reward increases.
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Figure 62: Optimum Mean of Objective Function versus Probability of Success

Some unexpected behavior happens in the left side of the objective function versus prob-

ability of success curve (see also Figure 64). In this region, the performance of the system

actually increases as the risk is increased, as indicated by the dashed line. This behavior

most likely occurs due to the use of an equality constraint on meeting the probability of

success. At some point, these equality constraints may ‘over-constrain’ the solution, driv-

ing the solution to a non-optimal answer. Two lines are used in Figure 62 and Figure 64,

the dotted line represents the sometimes non-optimal equality constraint values, while solid

lines represent the ‘best’ solution for a given minimum probability of success. These solu-

tions are found when inequality constraints are used, they represent the non-dominated set
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Figure 63: Example Risk vs. Reward Curve with Efficiency Frontier [197]

of solutions.

The second oddity in the figure is the discontinuous ‘jump’ that occurs at a probability of

success equal to 0.6. Each point on the figure represents an optimized solution. Therefore, it

would be expected that as the probability of success increases slightly, the optimum would

also change slightly, resulting in only a small change in the performance of the system.

This continuous change occurs throughout most of the figure which results in the smooth

curvature. However, since the example problem is multi-modal in nature, the jump in the

figure corresponds to the solution discontinuously changing from one region of the design

space to a completely different region. The reason for the discontinuous behavior is because

the best solution meets a constraint boundary where it can no longer increase in probability

of success. Thus, when a higher probability of success is called for, a feasible solution in

this region of the design space is not available, so the solution must be found in a different

region of the design space, with less optimal characteristics. In many respects, it can be

thought of as a completely different ‘family’ of solutions in the design space.

If each optimized result were required to be only a small step from the previous result,

then the results would be continuous throughout the entire range of risks. Results with

this new constraint are shown in the graph in Figure 65. The line of optimal results now
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Figure 64: Optimum Objective Function versus Probability of Success Explained

extends continuously down to a POS near zero. The lower (or better performing) solution

still ends abruptly at a probability of success of 0.6. This abrupt ending is due to the fact

that the solution has hit a constraint ‘wall’ in this region, with no additional solutions in the

same neighborhood that have an acceptable POS. The lesser performing family of solutions

(upper line) is completely dominated by the lower line until the point is reached at which

the lower set of solutions are no longer feasible.

Figure 66 is a path-inset figure. It shows the same set of optimal solutions as the

previous figures, but also contains insets showing the values for the optimal traveller path

for each probability of success. Note that there is not much variation between the first

two insets. The optimal solution stays in the same general area, which explains why the

curve is smooth between these points. However, in the third inset, the optimal solution has

jumped from the valley between the two mountains to a path moving around the mountains.

This jump, resulting from the multi-modal nature of the design space, is what leads to the

discontinuous region in the curve. The next inset shows that the design point moves a little

further, but is in the same neighborhood, again illustrating the fact that when the solution

remains in the same neighborhood, there is a smooth curve for POS versus travel time. The

last inset indicates yet another jump in the design space, which explains the strong kink
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Figure 65: Optimum Objective Function versus Probability of Success w/ Equality Con-
straints

at the end of the function. This kink at the right-hand side of the figure might better be

represented by another discontinuous break, representing the jump in the optimal solution.

Essentially what Figure 66 tells the user is this: the fastest route across the terrain

is to travel in the region between the two mountain peaks. But, since the traveller isn’t

certain about the true mountain heights, this is the riskiest path to take. A safer path (with

corresponding higher probability of success) is to go around the larger mountain, but it is

likely that this path will be slower than through the valley. Finally, if the traveller wishes to

be certain that the trip is successful, going completely around both mountains will ensure

a successful trip, but will take the longest time.

4.2.4 Multiple Alternatives

To further examine options for the decision-maker, the mountain topography was again

optimized with a second set of parameters used for the objective function. Having a different

objective function is akin to using a completely alternative concept for solving the problem.

The objective function parameters (α and β) for the initial results had α heavily penalizing

the traveler for going long distances and only lightly penalizing the traveler for going uphill.

The second concept has the majority of the penalty for going uphill, with small penalties
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Figure 66: Optimum Objective Function versus Probability of Success w/ Path Insets

for extra horizontal distance. The first concept has a preference for climbing, while the

second has a preference for flat land. The new values for the objective function are given

in Table 14.

The probability of success versus optimal solution for the two different concepts is shown

in Figure 67. As is evident in the figure, the solution for the flat-land preference alternative

consists of a straight line. This straight line is due to the fact that the alternative’s optimal

travel time occurs when it travels completely around the mountains, which also corresponds

to the best probability of success. The dashed line for the alternative was generated by

constraining the alternative to travel a path with a probability of success exactly equal to

the value specified, i.e., an equality constraint was used for POS instead of an inequality

constraint. Again, the equality constraint can force the traveller to travel a sub-optimal

path. The mean travel time of Alternative Two over these paths greatly increases, as the

traveller is forced to travel over the mountain, as opposed to the optimal route, around the

mountain. The straight line therefore represents the set of non-dominated solutions.
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Figure 67: Optimum Objective Function versus Probability of Success for Two Alternatives

Table 14: Objective Function Weightings for Alternatives

α β

Alternative Preference Unwillingness to Travel Unwillingness to Maximum Height
Extra Distance Travel Vertically Constraint

One Climbing 1.2 0.6 0.4

Two Flat Land 0.6 1.4 0.4

Three Baseline 1.0 1.0 0.4

Figure 67 is very useful to a decision-maker, outlining the relative advantages of two

distinct concepts. Clearly, if the decision-maker is willing to accept some measure of risk, or

a probability of success less than 1.0, Alternative One is the most beneficial, since it has a

lower travel time for points where the POS is less than 1.0. However, if the decision-maker

is not willing to accept any risk, then Alternative Two is the most beneficial concept, since

it has the lowest travel time at a probability of success of 1.0.

As a further example, a third concept was added, with an evenly weighted objective

function. Since this path corresponds to having neither a preference for going over the

mountains or around the mountains, the concept is a compromise between the climbing

preference and the flat-land preference. The three alternatives are summarized in Table 14.

107



Figure 68 shows the optimized paths when the third alternative is added. Note that this

concept always performs worse than Alternative One and Alternative Two. Again, valuable

information is provided to the decision-maker, who now realizes that there is no benefit in

looking at the compromise alternative, as both the other alternatives are better performers

over the entire range of possible risk.
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Figure 68: Optimum Objective Function versus Probability of Success for Three Alterna-
tives

The same analysis was repeated for a second mountain topography (created by adjusting

the locations of the two mountains). The results are shown in Figure 69. Again, similar

behavior is visible as in the earlier example. The compromise alternative’s optimal path

is always dominated and thus would not be a wise selection. Similarly, Alternative One

outperforms Alternative Two at lower probability of successes. However, if a probability of

success near 1.0 is desired, then Alternative Two is the preferable concept.
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Figure 69: Optimum Objective Function versus Probability of Success for Three Alterna-
tives with Alternate Mountain Positions
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CHAPTER V

ANALYSIS TOOL DEVELOPMENT

5.1 Torpedo Optimization, Analysis, and Design Program

(TOAD)

In order to conduct an analysis and optimization of torpedo systems, an unclassified analysis

tool had to be created. This tool, designated TOAD, was developed specifically to conduct

this research in torpedo design. The Torpedo Optimization, Analysis, and Design Program

was a joint analysis program developed co-operatively between the Aerospace Systems De-

sign Laboratory and the Naval Undersea Warfare Center. Initial development work begin in

the 2001 fiscal year [159]. The TOAD program was developed as an object-oriented, para-

metric sizing and synthesis analysis program for torpedoes. TOAD was structured with

a highly modular, object-oriented architecture, which has facilitated the development of a

simplified torpedo design tool that can be easily upgraded in order to add higher degrees

of sophistication and fidelity to the analysis.

The TOAD program takes advantage of the fact that torpedo sections can be sized

independently [28] by employing separate sizing and analysis modules for each of the inter-

nal components and then accounting for the total performance of the vehicle based upon

the calculated characteristics of the internal components. The TOAD program currently

has analysis modules for several motor types, including a SCEPS engine, an electric and

integrated motor propulsor (IMP), and fuel-burning piston and turbine engines. TOAD

also contains a warhead module from the Naval Surface Warfare Center (NSWC), along

with a custom-made propulsor performance code from the Naval Undersea Warfare Center

(NUWC) and a guidance, navigation, and control (GNC) electronics sizing package from

Penn State’s Applied Research Lab. The TOAD program is currently used by multiple

research organizations and has been used to size torpedo systems of different architectures.
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A comprehensive User’s Manual has been written for TOAD and provides all of the infor-

mation necessary to use and understand the program [158]. Included in the manual are

complete descriptions of the inputs and outputs for TOAD, the algorithms used in the

program and several examples for reference. Figure 70 shows the development history for

TOAD from 2001 to the present. Figure 71 shows the current analysis capabilities in TOAD

and the collaborating laboratory for each.

2001 TOAD
• C++ code

• Predominantly hierarchical 
structure

• Modules to size:
– Electric motor

– IMP motor

– Batteries

– Bulk explosive warhead

– Pumpjet propulsor

• Input / output designed to 
easily facilitate batch jobs

2002 TOAD
• New object-oriented design

• Powerful I/O manager

• More robust / more efficient 
sizing framework

• Additional capabilities:
– Thermal engine capability 

(SCEPS)

– Noise prediction

– Sensor sizing

– Shaped-charge warhead

2003 TOAD
• Improved noise model

• Simple maneuvering model

• Sensor and G&C sizing

• Improved hydrodynamic 
modeling

– Including fin drag

• Improved propulsion modeling
– Using blade element theory

• Additional engines
– Piston

– Turbine

– Wankel

• Variable speed capability

• Linking of TOAD with ACEM 
engagement modeling

Portions of TOAD were adapted from TECAP, ARL,
NUWC-Newport, and NSWC-IH.

TOAD Release 1.1 + User’s Manual Available

Figure 70: Evolution of the Torpedo Optimization, Analysis, and Design Program (TOAD)
[237]

TOAD uses input or design variables such as the type of torpedo propulsion system,

outer diameter, operating depth, energy section length, power density, and motor horse-

power. It then calculates the overall torpedo length and weights, which are often constraints

for launcher compatibility, and torpedo performance metrics, such as maximum velocity,

range, and radiated noise. Table 5 in Section 2.1 has a very good breakdown of all the

individual sub-systems modeled in TOAD, along with the inputs, outputs, and sizing rules.

Key inputs and outputs for TOAD are summarized in Figure 72.

To the greatest extent possible, results from TOAD have been compared against several

existing torpedoes in order to provide some preliminary validation of its results. Torpedoes
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Figure 71: Components of the Torpedo Optimization, Analysis, and Design Program
(TOAD)
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Figure 72: Inputs and Outputs of TOAD

were designed in TOAD that attempted to match the physical characteristics and perfor-

mance of the Mk-46 -48 and -50. A summary of the matching cases is shown in Table 15.

The results match very nicely, particularly considering that some input values were not

publicly available and were estimated, such as sensor and electronics information. TOAD

has been used to perform simple deterministic design space explorations for several different

types of torpedo systems and now has the sophistication to produce meaningful results [71].

5.1.1 Iteration Process

The torpedo system is iteratively sized. The iterative sizing process is shown in Figure

73. To begin the iteration process, the front end of the torpedo, which includes the sonar,
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Table 15: TOAD Validation Results [158] with Historical Data from [2] and [68]

Historical TOAD Error Historical TOAD Error Historical TOAD Error
Diameter (in) 12.75 12.75 0.0% 21 21 0.0% 12.77 12.77 0.0%

Length (in) 102.36 100.0 2.3% 240 251.4 4.7% 114.1 121.3 6.3%
W eight (lbm) 517.65 566.9 9.5% 4000 4085.8 2.1% 800.42 756.3 5.5%

Velocity (kts) 45 44.8 0.4% 55 53.2 3.3% 55 58.0 5.4%
Range (nmi) 6 6 0.0% 20.5 20.5 0.0% 8 8 0.0%

Power (hp) --- 90 --- --- 375 --- 201.2 201.2 0.0%
W arhead (lbm) 98 98 0.0% 650 650 0.0% 100 100 0.0%

Mk-50
SCEPS Lightweight

Mk-46 Mk-48
Piston Lightweight Piston Heavyweight

electronics, warhead, and fuel tank, is fixed at a specific size. This size is defined by the

diameter of the torpedo and the individual section length inputs. The front-end of the tor-

pedo is sized only once and remains constant for the entirety of the iteration process. Next,

the motor is sized based upon the input diameter, horsepower, and RPM. The propulsor is

sized last, based upon the global diameter input, along with the RPM and the horsepower

delivered by the motor. For this analysis work it is assumed that there is a direct drive

shaft connecting the propulsor and the motor; no gear-box is present, thus requiring both

the motor and propulsor sub-systems to have identical RPM values. The propulsor uses

this data to calculate the power delivered, or the power transmitted into the water to propel

the vehicle. These calculations are made using traditional blade element/momentum theory

for a two-element, ducted propulsor configuration [42]. Drag produced by the interactions

between the propulsor and the torpedo, called the wake fraction and thrust deduction [198],

are modeled with data from Mautner and Burcher and Rydill [34][148].

Once the vehicle is initially sized, the vehicle drag coefficient is estimated. This estima-

tion is based upon drag data found in references [95], [106], and [107]. The final velocity

of the vehicle is determined by conducting a force and power balance. The forces in the

vertical direction: weight, buoyancy, and dynamic lift, must balance each other, as well as

the forces in the horizontal direction: thrust, form drag, and induced drag. This force bal-

ance is displayed in Figure 74. Since the propulsor size is a function of the vehicle velocity,

once the new vehicle velocity is determined, the propulsor must be sized again, following

the iteration loop laid out in Figure 73. A detailed description of the TOAD vehicle-level
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Figure 73: Iteration Procedure of TOAD

analyses for drag, velocity, range, and noise is given in Appendix B.
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Figure 74: Force Balance in TOAD Sizing

5.1.2 TOAD Failure Modes

A key element of this research is looking at regions of the design space for which valid

torpedo designs cannot be created, known as the infeasible region of the design space.

There are many mechanisms that drive torpedo designs to become infeasible. In the case

of the TOAD torpedo design tool, most of the reasons for failure are found in the propulsor

component of the torpedo. One such failure mechanism is when the torpedo propulsor

cannot meet a CLmax constraint. The propulsor is little more than an airfoil rotating in

the flow. The airfoil shape being used is a NACA 66-mod(TMB) blade section, whose

performance data can be found in Reference [6] and [43]. The power (or thrust) delivered
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by the propulsor blade is proportional to the CL of the airfoil and the square of its velocity

relative to the flow. If a design situation occurs in which the CL required to generate the

required power is greater than the CLmax of the airfoil section, the propulsor is unable

to deliver the required performance, and hits a CLmax constraint. A second failure mode

occurs when the torpedo begins to cavitate. Cavitation occurs when the decrease in the

fluid pressure over various blade surfaces drops below the vapor pressure of the fluid. In this

situation, pockets of gaseous water vapor develop, significantly lowering propulsor efficiency,

creating large amounts of noise, and potentially damaging the propulsor. A third failure

occurs when the analysis program is unable to converge to a solution. This error often

occurs when the force balance (Figure 74) cannot be resolved. Such a problem may occur

when the torpedo does not have sufficient velocity and thus needs a larger engine, or if

other propulsor modeling errors are driving the propulsor efficiency so low that the system

cannot generate sufficient power. A final failure mode develops from the historically-based

thrust deduction model that is being used [34][148]. If the propulsor parameters of the

torpedo lie outside of the validity of the model data, an error is reported. However, this

error is not a function of the physics, but simply indicates that there is insufficient data in

the drag model. If necessary, the thrust deduction could be extrapolated into this region.

For this work, the data was extrapolated so that this region of the design space was still

considered to be ‘feasible’. Table 16 provides a summary of the common modes of failure

for the TOAD analysis program.

Table 16: TOAD Failure Modes

Failure Mode
Relevant 
Torpedo 
Section

Reason Solution

CLMax Constraint 
Violation

Propulsor Propulsor airfoil is unable to meet the required CL

Decrease blade loading by decreasing 
power requirements, or increasing diameter 

or RPM

Cavitation Constraint 
Violation

Propulsor
Propulsor airfoil has too large of a pressure 

difference, dropping the static pressure below the 
fluid's vapor pressure

Increase Diameter

Unable to Converge
Propulsor /  

Torpedo

Propulsor is unable to provide enough power to 
resolve the torpedo force-balance

May also be caused by other constraint violations

Increase motor power
Prevent other constaint violations

Thrust Deduction Model 
Outside of Bounds

Propulsor
Propulsor is operating in a regime outside of the 

available database
Limit propulsor designs to within previous 

data, or extrapolate available data
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5.2 Torpedo Design Results

Several design studies have been made using the TOAD program as a stand-alone tool.

In these studies, various designs of experiments were run and response surface equations

constructed for metamodels. From these analysis runs and metamodels, useful results were

obtained from the program. Examples of these results will be shown here. The first such

result is an example Pareto chart in Figure 75, the energy section length and the outer

diameter dominate the response of torpedo range, while the motor horsepower and diameter

are the biggest drivers for the response of torpedo velocity. These charts show that intelligent

selection of the outer diameter of a torpedo is paramount for a well-performing design.

HP
Dia
Energy Len
Buoy Len
Warhead
War * Dia
HP * Dia
Sen Len
En Len * Dia
HP * En Len

Energy Len
Dia
En. Len * Dia
Energy Eff.
HP
En Eff * En Len
HP * En Len
En Eff * Dia
HP * Dia
HP * En Eff

Figure 75: Pareto Plot for Range (left-hand side) and Velocity [160]

A large prediction profile was generated from the design results and is shown in Figure

76. Note that the system behaves as expected, for example, increases in outer diameter

decrease the length of the torpedo, but also increase the weight. Increasing the motor

horsepower increases both the velocity and radiated noise of the torpedo while decreasing

the range. All are behaviors that should be expected in the torpedo system.

Another product of torpedo studies is the contour plot, Figure 78. This plot is also

created in JMP using data from the metamodels created from TOAD. The contour plot

in Figure 78 shows two input parameters for the electric torpedo, the length of the energy

section (containing the batteries) on the x-axis, and the motor horsepower on the y-axis.

Constraints were then placed on the plot, indicating a maximum noise criteria, maximum

length and weight, and minimum speed and velocity constraints. These constraints very

visibly define the feasible design space available to the torpedo designer. These examples
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Figure 76: Prediction Profile for an Electric Torpedo [160]

serve to show how easily TOAD can be used in conjunction with the functionality of JMP

and ASDL’s advanced design environment [122].

5.2.1 Uncertainty Analysis using TOAD

In order to handle uncertainty, “k-factors” were added to the TOAD analysis tool. “K-

factors” are often used to model the use of future technologies or uncertainty [122]. The

factors work as multipliers to interim values in the code, such as estimated drag and system
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Figure 77: Contour Plot for an Electric Torpedo [160]

efficiencies. The factors thus affect the predicted performance of the system by changing

internal values. In this form, the “k-factors” represent the inability of the individual anal-

ysis tools to predict the final results, i.e., the inability of the motor module to accurate

predict the motor efficiency. This uncertainty would be defined as “acknowledged error”

and “aleatory uncertainty” as defined by Oberkampf (Section 3.1), as it represents approx-

imation and inaccuracies in the design program and variations in the construction of the

torpedo program. These “k-factors” thus can model the uncertainty between the proposed

design and the actual torpedo system. A list of the “k-factors” used in TOAD is given as

Table 17.

Table 17: Uncertainty “k-factors” Built into TOAD
Uncertainty
“k-factors”

Estimated Drag
Battery Efficiency
Motor Efficiency

Propulsor Efficiency
Radiated Noise

Figure 78 is a Prediction Profile that shows the relative effects of design variables and
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uncertainty “k-factors” in TOAD. Note that, in many cases, such as velocity, a change in

the value of the uncertainty multiplier in TOAD has a greater effect on the outcome than

changes to the design variable. The prediction profile therefore shows that the effects of

uncertainty is definitely of the same magnitude as the design variables. The Pareto charts

in Figure 79 and Figure 80 show the Pareto charts for the torpedo range and velocity. These

charts indicate the relative contribution of each input variable to the response. Note how

the uncertainty “k-factors” contribute a large amount of the response for these two critical

torpedo measures of merit. Therefore, any torpedo analysis that does not account for this

uncertainty will potentially contain significant error.

Figure 78: Contour Plot for an Electric Torpedo with “k-factors” [157]

Diameter

Energy Len

Delta Batt Eff

HP

Delta Motor Eff

Decoupler Thickness

Delta Cd

Delta Prop Eff

RPM

Damper Thickness
Delta Noise

Term

  2.617488

  2.361515

  2.218265

 -1.923475

 -1.300918

 -0.833795

 -0.763186

  0.689098

 -0.087608

 -0.037771
 -0.025053

Orthog Estimate
Range

Figure 79: Pareto Chart for Torpedo Range, Including Uncertainty
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Figure 80: Pareto Chart for Torpedo Velocity, Including Uncertainty

5.3 Visualization Tool Development

Bringing a lot of probabilistic elements into the design process brings more challenges to the

decision-maker. With more data available to assist the decision-maker in selecting the best

design, it becomes a challenge to present the data in a concise, easy-to-understand manner.

A torpedo visualization tool was developed at ASDL that can help present the probabilistic

data to the designer [79] [157]. This tool was developed in Matlab and addresses many

of the visualization needs required when dealing with large amounts of probabilistic data.

Figure 81 is a snapshot of the visualization tool.

The visualization tool allows the designer to look at the available points in the design

space and graphs these points as a function of probability of success versus any metric of

merit such as weight, cost, or length. The tool automatically identifies the Pareto points

for the currently selected metric and allows the user to select any design point for a more

detailed investigation. Selecting a design point brings up a scaled, rotatable image of the

specified torpedo design, along with the relevant design parameters and responses. The

image of the torpedo is color-coded to show the multiple sections of the torpedo system.

From back to front they are: sensors, warhead, fuel/energy section, motor and afterbody,

and the propulsor. The visualization tool thus provides a mechanism by which the decision-

maker can quickly see the relative size of makeup of torpedo systems.

In addition, as shown in Figure 82, the visualization tool can be used to simultaneously

compare two torpedoes. The tool also allows the graphing of two distinct sets of data, which
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Figure 81: Snapshot of Torpedo Design Visualization Tool

allows for the comparison of two torpedo alternatives (such as electric vs. piston), or allows

for the comparison of various technologies. An example of this is shown in Figure 83, with

an electric torpedo shown by blue points and a piston torpedo shown by red points.

The visualization tool was developed to allow for the examination and tradeoffs between

large numbers of potential torpedo designs. By quickly identifying (and reducing) the tor-

pedo points to a Pareto set, regardless of which metric the designer chooses, the visualization

tool allows for the quick examination of large numbers of runs – a particularly useful feature

when genetic algorithms or random searches are used to generate large numbers of feasible

designs. The tool is dynamic in nature, using pre-generated analysis sets, allowing for the

decision-maker and disciplinary experts to interactively make decisions. Figure 84 shows an

example where the visualization tool is used to define and examine the best designs from

a large torpedo data set. The visualization tool is used extensively in the visualization of

torpedo design results throughout this work, where its capabilities are further illustrated.
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Figure 82: Visualization Tool Comparing Two Concepts

Currently, the ASDL torpedo visualization tool has the following capabilities:

• Graphically shows the relative merit of multiple design points

• Shows these design points as a function of probability of success versus any metric

• Generates an appropriately scaled rendering of any individual design point

• Color-codes the torpedo subsystems in the rendering

• Allows the user to rotate the torpedo rendering

• Displays the specific design variables and responses for the selected design point

• Displays multiple torpedoes simultaneously, allowing for direct comparisons

• Automatically identifies and highlights the Pareto points for the current metric

• Allows the interchanging of multiple data sets

• Graphs multiple data sets simultaneously so that different alternatives or technologies

can be compared
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Figure 83: Visualization Tool Comparing Two Technology Sets

Figure 84: Visualization Tool Being Used to Identify Points from a Random Search
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CHAPTER VI

IMPLEMENTATION OF ROBUST DESIGN PROCESS

WITH TORPEDO SYSTEMS

The uncertainty analysis on torpedoes will use the framework for robust design discussed

in Section 4.1. Uncertainty multipliers integrated into the TOAD program (Section 5.2.1)

will be used for the analysis. These uncertainty multipliers are listed again in Table 18.

The terms represent uncertainty that is defined as both acknowledged error and aleatory

uncertainty by Oberkampf [182], which represent the designer’s lack of knowledge about the

final torpedo design resulting from the use of simplified analysis tools, along with variations

in the manufacture of the torpedoes. Oberkampf suggests that probability distributions

can be used to adequate capture this uncertainty, therefore, for this problem, probabilistic

uncertainty distributions will be used in conjunction with the uncertainty parameters.

Table 18: Uncertainty Multipliers for Torpedo Design
Uncertainty Mean Standard
Multipliers Deviation

Estimated Drag 1.0 0.1
Battery Efficiency 1.0 0.1
Motor Efficiency 1.0 0.1

Propulsor Efficiency 1.0 0.1
Radiated Noise 1.0 0.1

Due to the absence of unclassified data and real numbers available in this area, hy-

pothetically derived normal distributions will be placed upon the uncertainty parameters

defined in TOAD. In an actual analysis, historical data would be used to generate better

estimates of the appropriate uncertainty distributions to use. The means and the standard

deviations for the uncertainty parameters are given in Table 18.
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Table 19: Design Variables for Heavyweight Torpedo Example
Design Variables Min Max Units

Torpedo Diameter 19 25 in
Fuel Section Length 125 200 in
Motor Horsepower 300 500 hp

Decoupling Layer Thickness 0.0 1.0 in
Damping Layer Thickness 0.0 1.0 in
Motor/Propulsor RPM 2000 4000 rev/min

6.1 Methodology Applied to Torpedo Design Problem

The example design problem is for an all-electric, heavyweight torpedo. This problem has

six design variables, or control variables, as listed in Table 19. The problem also has five

noise variables, which correspond to the “k-factors” as shown in Table 18. Normal dis-

tributions were added to each of these noise variables. The goal of the design problem

is to design a large diameter torpedo system, carrying a 650-lbm warhead that meets the

minimum performance characteristics listed in Table 20. The design constants for the heavy-

weight problem are given in Table 21. An individual torpedo design corresponds to a single

deterministic setting of the design variables, with a probabilistic distribution associated for

each response. A torpedo will thus have fixed, or deterministic, design variables such as

diameter, horsepower, etc., but will have a probabilistic response for velocity, range and

noise. Other responses, those that are not affected by the uncertainty distributions, are

given as deterministic values, such as total length and weight. Table 22 lists the responses

for the example problem.

Table 20: Design Requirements for Torpedo Example
Performance Requirements

Max. Velocity at least 45 kts
Max. Range at least 15 nmi

Noise at most 45 dB

A normal distribution, with parameters shown in Table 18, was assigned to each of the

uncertainty variables, or “k-factors”. The resulting response is illustrated in Figure 85. To

summarize the problem: each individual torpedo design consists of a deterministic setting
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Table 21: Design Constants for Heavyweight Torpedo Example
Parameter Value Units

Sensor Length 10 in

Sensor Weight 40 lbf

Sensor Power 150 watts

Warhead Charge 650 lbm

Batt Heat Value 56 watt-hr/lbm

Batt Energy Den 2.5 watt-Hr/in3

Motor Voltage 200 V

Table 22: Design Responses for Torpedo Example
Response Type Target Units

Velocity Probabilistic 45 kts

Range Probabilistic 15 nmi

Noise Probabilistic 45 dB

Length Deterministic minimize in

Weight Deterministic minimize lbm

of the six design variables, along with a random value of each of the five noise variables,

which corresponds to the distribution shown in Figure 85. The probability of success for

each torpedo system is the probability of simultaneously meeting all of the performance

characteristics listed in Table 20. The overall metric of merit for the system will be the

minimization of torpedo weight. Weight was chosen because it is a first-order estimator of

the manufacturing cost of a system.

In order to speed the analysis, a Design of Experiments, coupled with a response surface

equation, was used around the design space. The ensuing metamodel, or response surface

equation, takes as inputs both the design variables (Table 19) and noise variables (Table

18), and quickly generates a response. With this technique, the TOAD analysis program is

replaced by a series of simple polynomial expressions allowing for large Monte Carlo analyses

to be run quickly. Third order response surface equations were used for the metamodel, as

these were shown to best capture the behavior of the system. Since Monte Carlo analysis is

being used, the probability of success value is found at each design point by simply counting

the number of “successful” designs versus the total number of designs. This method matches

the empirical distribution function as described by Bandte [16]. These definitions complete
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Figure 85: Uncertainty Distributions Applied to “k-factors” in TOAD

steps 1-9 of the robust design framework, as shown in Figure 86.

The next step in the design process is to identify the “optimum” design points for a

range of probability of success values, thus identifying the Pareto frontier. Two separate

algorithms were used to find this Pareto frontier. The first algorithm is the same gradient-

based ‘fmincon’ optimizer in Matlab that was used for the traveller example. The gradient-

based optimizer was used in conjunction with the response surface equations and Monte

Carlo techniques, employing a very large number of runs per case. The large numbers of

Monte Carlo runs were required in order to get accurate gradient information, which is very

sensitive to noise. In addition to using a gradient-based optimizer, a random search was

also employed, with a smaller number of Monte Carlo runs being used for each test case.

Random search requires significantly more function calls in order to get a good solution,

but, since highly precise Monte Carlo results are not required, does not need as many

total runs. In terms of actual run-times, the gradient-based optimizer required a couple of

days to construct the entire Pareto front. The random search could generate enough data

to construct the Pareto front in only a few hours (5-6). A summary of the optimization

techniques is shown in Table 23, showing the relative numbers of function calls and of Monte
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Carlo trials. The complete process by which the design methodology was implemented is

shown in Figure 86.

Table 23: Summary of Optimization Techniques
Uncertainty # of Total

Optimizer Model Analysis Function Run
Technique Calls Time

Gradient-Based Response 50,000
Approach 1 SQP Optimizer Surface Monte Carlo Dozens 1-2 Days

Equation Trials per Call

Random Response 1,000
Approach 2 Search Surface Monte Carlo Thousands 5-6 Hours

Equation Trials per Call

1) Define Requirements

Heavyweight
Torpedo Mission

2) Select Concept / Technology Set

3) Build Model

4) Define and Include Uncertainty

5) Run Deterministic Analysis

6) Set Target POS

7) Run Probabilistic Analysis

8) Determine POS

9) Find “Best” Design that 
meets Probability of Success

10) Choose New POS

11) Select Most Appropriate Design

Torpedo Optimization,
Analysis and Design Program

(TOAD)

Probability Distributions

TOAD was Modified
to Handle “k-factors”

RSE/Monte 
Carlo Techniques

Path-Building Optimizer

Random Search

POS vs. 
Performance Curves

All-Electric
Torpedo

Figure 86: Design Process Implementation for Heavyweight Torpedo Analysis

6.1.1 Results

The results of the random search and the gradient-based optimization are shown in Figure

87. The figure shows that, individually, the gradient-based optimizer and the random search

only partially captured the Pareto front. The gradient-based approach found the Pareto

solutions that occurred at smaller probabilities of success, while the random search found
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the Pareto solutions at higher probabilities of success. The complete Pareto front could

only be generated by combining the results of the optimizer and the random search.
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Figure 87: Comparison of Optimized Points vs. Random Points in Probability of Success
Curve

The individual performances of the optimizers may be improved by a number of means.

For the gradient-based optimizer, more starting points could be used to help locate the

global optimum. In addition, increasing the number of Monte Carlo trials, to say, 500,000

trials or more per function call, will also decrease the noise, thereby helping the optimizer

reach a good solution. For the random search, simply adding more points would better

define the Pareto front. Finally, a different optimization technique altogether, such as

a genetic algorithm, could be used to improve the ability of locating the Pareto Front.

Genetic algorithms might be very powerful for these types of problems, as they combine

the advantages of both gradient-based and random searches.

The complete Pareto front of non-dominated points, formed from the aggregate of the

two approaches, is shown in Figure 88. The results in this chart behaved similarly to

the results in the traveller problem, with increasing probability of success (or decreasing

risk) leading to heavier, more costly solutions. The curve illustrates the basic catch-22 for
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decision-makers: the higher the probability of success for the system, the higher the weight

(and cost) of the system. Note that in these figures there are no discontinuities in the design

space like those seen in the traveller example (Section 4.2.1). One reason for this lack of

discontinuities is because of the use of response surface equations for the torpedo problem.

By using second-order equations, the design space may have been smoothed so that large

‘jumps’ in the probability of success versus weight curve do not exist. If this work were

repeated with direct function calls of the analysis program, then the more complex behavior

of the previous problem might become visible.
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Figure 88: Probability of Success vs. Weight for an All-Electric, Heavyweight Torpedo
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Figure 89: Design Process Implementation for Multiple Alternatives

To further illustrate the possibilities inherent in the robust design technique, two torpedo
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alternatives were compared. A piston-driven system was compared to the previous results

for an all-electric system. The design process in Figure 86 was repeated for the new piston

concept. Since two alternatives were being examined, the design methodology was modified

and is shown in Figure 89. The results of both design alternatives, the piston-engine system

and the all-electric system, were compared in Figure 90. The results indicate that the

two concepts are fairly similar in performance. However, if a lower probability of success

(higher risk) is acceptable, then the electric system is the preferred alternative. However, if

a very high probability of success is required, then the piston system is definitely the best

choice. At moderate POS values, both systems had similar performance. The figure very

succinctly describes when one system is preferable over another and when the two systems

are comparable. Thus, these figures allow the decision-maker the opportunity to assess the

relative merits of alternatives based upon his or her choice of the level of acceptable risk.
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Figure 90: Probability of Success vs. Weight for Multiple Alternatives

It is important to mention that, considering the closeness of the two systems in Figure 90,

the results may be inconclusive. More accurate Monte Carlo analysis should be conducted

before definitively stating that the two systems have different performance. Also, had this

example incorporated real uncertainty data, it is likely that more data would have been

available regarding the piston-engine propulsion system, since it is a legacy system. This

would imply that there would have been less uncertainty associated with the piston-engine

system than the electric torpedo. However, since historical estimates of uncertainty were
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not available for this research, differences in uncertainty between the piston and the electric

torpedo were not modeled.

Figure 92 shows another useful application of this design technique. In Figure 92, the

effect of changing requirements is shown for the electric torpedo system. The original design

process from Figure 86 was repeated three times, each with a set of design requirements more

stringent than the original. This new design process is illustrated in Figure 91. The various

design requirements, in descending order of difficulty, are shown in Table 24. The results

show that relaxing the performance requirements of the system increases the probability

of success, or, stated another way: if the requirements are relaxed, there is less risk that

a system of given weight will not meet the requirements. Figure 92 would be useful to a

decision-maker who wanted to look at the effect of changing requirements on the risk and

cost of the system.

Table 24: Changing Heavyweight Torpedo Design Requirements
Requirements Velocity Range Noise

(kts) (nmi) (dB)

Difficult 50 20 45

Moderate 50 15 45

Easy 45 15 45
(Baseline)
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Figure 91: Design Process Implementation for Multiple Requirements
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It is important to remember that each point on the Pareto front represents not a single

design, but instead a probabilistic response. Figure 93 and Figure 94 help illustrate the

large amount of information behind each single Pareto point in the space. Each design

point represents a single torpedo design, with corresponding fixed design variables and some

deterministic responses, such as length, and weight. These deterministic responses can be

used to visualize the shape of the torpedo, as shown by the torpedo renderings. However,

in addition to these deterministic values, probabilistic results also exist for each point. The

probabilistic results are represented by probability distributions for the responses for range

and velocity. In addition, these probabilistic results can be combined together into a single

joint-probability distribution. It is these probability distributions that are collapsed into the

single-valued, more elegant probability of success parameter that is reflected in the Pareto

frontiers. Thus, each single design on the Pareto chart reflects a summary of an entire

multi-dimensional probabilistic response.
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Figure 93: Expansion of Single Data Point to Show Background Data
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6.2 Methodology with Direct Simulation of Torpedo Anal-

ysis

The example design problem from Section 6.1 was repeated, with the exception that direct

simulation was used in the design process. Instead of sampling the torpedo design space and

substituting a metamodel (in the form of a response surface equation), all of the analysis was

conducted via direct calls of the TOAD analysis program. In order to enable the automated

calling of TOAD, the program was linked to the optimizer through the use of Matlab, similar

to the environment developed by Buonanno (Reference [33], Section 3.9). This change in

the design approach has two significant benefits. The first advantage occurs because using

the results as calculated by the TOAD analysis program will remove all metamodel error

(which is almost always present), thereby allowing for more accurate results.

The second advantage to this technique is that any failed or infeasible cases can be

counted against the probability of success. When generating response surface equations,

infeasible cases are often ‘discarded’ from the results, as mentioned in Section 3.4. The

RSE is then fit based upon the remaining data points. If the number of discarded cases

is not significant, these discarded cases do not greatly affect the RSE accuracy. However,

the failed cases may represent a region of the design space that is infeasible. By discarding

these cases, yet still fitting an RSE over those particular design points, the RSE might be

inappropriately including an ‘infeasible’ region in the design space. Unfortunately, there are

few ways to conveniently get around this fact when using RSEs. However, direct simulation

automatically accounts for this fact because it does not assume that the entire space is

feasible, thereby allowing infeasible cases to be identified and immediately removed on an

individual basis from the solution space.

Table 25 shows how the direct simulation differs from the previous two torpedo design

examples. The last example problem was repeated, with the only difference being the

direct simulation of the TOAD analysis instead of the use of a metamodel. The results of

the random search with direct simulation are similar to those from the RSEs, with a large

number of runs forming a well-defined Pareto front. Figure 95 shows the random points

and the resulting Pareto front with direct simulation.
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Table 25: Summary of Optimization Techniques
Uncertainty # of Total

Optimizer Model Analysis Function Run
Technique Calls Time

Gradient-Based Response 50,000
Approach 1 SQP Optimizer Surface Monte Carlo Dozens 1-2 Days

Equation Trials per Call

Random Response 1,000
Approach 2 Search Surface Monte Carlo Thousands 5-6 Hours

Equation Trials per Call

Random Direct 1,000
Approach 3 Search Simulation Monte Carlo Thousands 9-12 Hours

Trials per Call
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Figure 95: Pareto Points Determined from Random Runs using Direct Simulation of TOAD

Figure 96 gives a direct comparison between the results of the response surface analysis

and the direct simulation. Note that the Pareto fronts are very similar for the two systems,

implying that both techniques created the same results. Keep in mind that the results from

the direct simulation should be considered to be more accurate than the results from the

response surface equation analysis, though in this case the two systems perform similarly.

There is one region, near a probability of success between 0.6 and 0.8, where the direct

simulation performs slightly better than the RSE results. This improvement possibly comes

from the fact that the response surface will naturally ‘smooth’ out regions of the design
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Figure 96: Comparison of Pareto Points Determined from Direct Simulation and Response
Surface Equations

space, so a local minima might have been washed out by the RSE, but will still exist in direct

simulation. The only disadvantage of direct simulation, other than a longer setup time, is the

fact that the overall optimization took several hours longer than running response surface

equations.

It is informative to use the visualization tool to better examine some of the torpedo

designs. Figure 97 focuses on a torpedo that has a probability of success value of 0.455, an

almost 50% chance of meeting all of the design requirements. The visualization tool displays

a large amount of information about the torpedo: the key measure of merit (weight),

the probability of success, the design variables, and the lengths of the overall torpedo

and independent sub-sections. The figure also illustrates where the torpedo lies on the

probability of success frontier and shows the relative advantages of moving to a different

point on the frontier.

Even though the information shown is straightforward, it is important to recall that a

large amount of probabilistic data exists for this torpedo design. This probabilistic data
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Figure 97: Examination of an Optimum Torpedo

was used to calculate the probability of success. It is informative to examine this underlying

probabilistic data more closely. Figure 98 shows the probability density functions generated

for this torpedo design. The PDFs for the probabilistic responses of velocity, range, and

noise are given, along with the corresponding constraint values (marked by a red-dashed

line). The cumulative distribution functions for the responses are shown in Figure 99.

The CDFs show the probabilistic responses of the system and the cumulative likelihood of

meeting each individual constraint. From this figure, it is clear that the noise and velocity

constraints are easy to meet, while there is only around a 50% chance of meeting the range

constraint.

Another torpedo design on the Pareto front can now be chosen to be examined. The

next design chosen has a moderately high probability of success of 0.881 and is illustrated in

Figure 100. Note the differences between this torpedo and the previous torpedo: it is larger,

longer, and has a higher chance of meeting all of the constraints. The PDFs and CDFs for

this torpedo are shown in Figure 101 and Figure 102. For this example, the mean of each of

the response distributions is shifted to a higher value for the larger torpedo. This torpedo

design, having more capability, can more easily meet all of the performance constraints,
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Figure 98: Probability Density Function Results for an Optimum Torpedo
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Figure 99: Cumulative Distribution Function Results for an Optimum Torpedo
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thus leading to a higher probability of success, though at the cost of increasing weight.

Figure 100: Examination of an Optimum Torpedo
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Figure 101: Probability Density Function Results for an Optimum Torpedo

Yet a third example torpedo is shown in Figure 103. This torpedo has a probability of
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Figure 102: Cumulative Distribution Function Results for an Optimum Torpedo

success of 0.974, so it will reliably meet the requirements. However, this robustness comes

at great cost, as the torpedo has a gargantuan 23 inch diameter and is over 1,000 pounds

heavier than the previous systems. This torpedo illustrates the upper end of the tradeoff

between cost and risk: the less risk that the decision-maker wishes to accept, the larger

and more costly the system. PDFs and CDFs for this torpedo are shown in Figure 104 and

Figure 105, showing the relative ease with which each constraint is met.

The last three examples illustrated how the results of this analysis, coupled with the

visualization tool, can help understand the tradeoff between the probabilistic likelihood of

meeting the requirements and the total system cost. The examples also showed how the

torpedo designs varied along the probability of success curve. These three torpedoes are

summarized side-by-side in Table 26.
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Figure 103: Examination of an Optimum Torpedo
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Figure 104: Probability Density Function Results for an Optimum Torpedo
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Figure 105: Cumulative Distribution Function Results for an Optimum Torpedo

Table 26: Comparison of Some Optimal Heavyweight Torpedoes
Quantity Units Torpedo 1 Torpedo 2 Torpedo 3

POS --- 0.445 0.881 0.974
Weight lbm 2994 3650 4765

Diameter in 19.8 20.2 23
Energy Len in 127 162 173.5
Motor HP hp 325 344 433
Decoupler 
Thickness

in 0.08 0.08 0.03

Damper 
Thickness

in 0.10 0.29 0.49

Motor/Prop RPM rev/min 2584 2676 2311
Total Len in 223.6 258.0 268.2

Sensor Len in 10.0 10.0 10.0
Warhead Len in 38.0 36.6 28.3
Energy Len in 127.1 163.0 173.5
Motor Len in 5.9 6.0 6.5

Aftbody Len in 35.0 35.8 41.1
Prop Len in 7.5 7.7 8.7

Velocity Mean kts 47.5 49.7 51.3
Velocity St. Dev. kts 2.78 2.92 3.00

Range Mean nmi 15.1 18.0 20.2
Range St. Dev. nmi 2.41 2.33 2.64

Noise Mean dB 41.2 34.2 37.2
Noise St. Dev. dB 4.23 3.53 3.78

Vel-R Correlation --- -0.072 -0.004 -0.006
Vel-N Correlation --- 0.197 0.241 0.209
R-N Correlation --- -0.020 -0.025 0.003

Pareto 
Optimality

Design 
Variables

Deterministic 
Responses

Probabilistic 
Responses
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As the previous discussion showed, different styles of torpedoes are optimal at varying

probability of success values. Concerns may then arise as to how the design variables vary

along the Pareto front. Common questions might be whether the variables were constant,

how they changed, and whether there was a large jump in their values. An examination of

the design variables as they varied along the Pareto front was conducted. However, because

the Pareto fronts were generated using Monte Carlo analysis, with relatively low numbers of

trials (1, 000), there was some noise in the results, as seen in Figure 106. This noise caused

a decidedly unsmooth transition in the design variables. It was decided to reduce this noise

to get a clearer picture of the underlying variation in the design variables along the Pareto

front. This noise was removed by instituting a running average of the results. In Figure

106, the original results for motor horsepower for both the direct simulation case and the

response surface case are shown, along with the smoothed results. Note the jaggedness in

the variation of horsepower that results from the noise in the system. The smoothed lines

still show humps and trends, however, these trends are significantly more visible without

the noise.

Figures 107 through 112 show comparisons of all the design variables for both the re-

sponse surface results and the direct simulations. The results are somewhat similar between

the two analysis methods, but, surprisingly, the response surface results have a lot more

peaks. This difference suggests that there may be more differences between the RSE and

the direct simulation than initially discussed. However, the direct simulation results should

still be considered the more accurate of the two.

Looking closer at the design variables, as one might expect, as the probability of success

increases, so too do the torpedo size, motor horsepower, and fuel section length, indicating

again that the lower risk systems are the larger ones. However, note that there is very little

variation in the damping layer thickness (Figure 111), and there is wide variation in the

decoupling layer thickness (Figure 110) and the RPM (Figure 112). These results are most

likely attributed to the fact that RPM, decoupling layer, and damping layer are not large

drivers on the system, particularly since the noise constraints appeared to be the easiest

constraints to satisfy. These design variables seem to have remained within the noise of
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Figure 106: Variation of Motor Horsepower along the Pareto Front (smoothed and un-
smoothed)

the system. To generate more interesting results, several steps could be taken: spurious

design variables could be removed since they have little effect, the noise constraint could be

increased so these variables become more important, or a higher fidelity analysis could be

used.

In addition to looking at the variation of design variables along the Pareto frontier, it is

also interesting to look at the variation in the torpedo length, a deterministic response. The

variation of torpedo length is shown in Figure 113. This figure has the same behavior as the

others, with the direct simulation results being much more continuous than the response

surface results. Note that the length of the torpedo tends to increase as the probability of

success increases. Since the weight also increases with probability, it would be expected for

the length to increase as well, since the two are correlated. This fact continues to show that

the higher probability of success systems tend to be the larger, over-designed, systems.

Questions may also rise about the appropriateness of using only 1, 000 Monte Carlo trials

as opposed to a higher number. To answer those questions, the Pareto points from Figure
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Figure 107: Variation of Torpedo Diameter along the Pareto Front
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Figure 108: Variation of the Energy Section Length along the Pareto Front

95 were run again with a higher number of Monte Carlo trials (100, 000). The results of the

higher fidelity Monte Carlo trials are compared against to the original results in Figure 114.

The figure shows that the results are quite similar, there is not much variation between the

two levels of fidelity, with many points matching exactly. However, one interesting thing

to note in Figure 114 is that the higher fidelity Monte Carlo runs tend to be slightly more
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Figure 109: Variation of the Motor Horespower along the Pareto Front

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pareto Variation of Decoupling Layer

Probability of Success

D
ec

ou
pl

in
g 

La
ye

r 
(in

)

Direct Simulation
Response Surface

Figure 110: Variation of Decoupling Layer along the Pareto Front

conservative than the lower fidelity Monte Carlo runs. This fact should encourage the user

to use as many Monte Carlo trials as possible under the time constraints available.
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Figure 111: Variation of the Motor Damping Layer along the Pareto Front
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Figure 112: Variation of Motor/Propulsor RPM along the Pareto Front

6.3 Lightweight Analysis Results

The torpedo design problem was repeated for a lightweight torpedo system. Again, the

torpedo system had an all-electric propulsion system, however, both the minimum range

of the torpedo and the warhead size were dramatically reduced: from 15 nmi to 5 nmi

and from 650 lbm to 150 lbm. The new design requirements are given in Table 27, with
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Figure 113: Variation of Torpedo Length along the Pareto Front
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Figure 114: Comparison of Increased Monte Carlo Trials on the Pareto Front

the design constants listed in Table 28. Because the lightweight torpedoes are significantly

smaller than heavyweight systems, the design variable ranges for the study were reduced

to reflect a smaller system, as shown in Table 29. The previous ranges for the uncertainty

multipliers, or “k-factors”, were used in this study (Table 18).

The lightweight example was conducted via approach 3 from Table 25: direct simulation
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Table 27: Design Requirements for Torpedo Example
Performance Requirements

Max. Velocity at least 45 kts
Max. Range at least 5 nmi

Noise at most 45 dB

Table 28: Design Constants for Heavyweight Torpedo Example
Parameter Value Units

Sensor Length 10 in

Sensor Weight 40 lbf

Sensor Power 150 watts

Warhead Charge 150 lbm

Batt Heat Value 56 watt-hr/lbm

Batt Energy Den 2.5 watt-Hr/in3

Motor Voltage 200 V

of the TOAD computer model in conjunction with Monte Carlo techniques. A random

search was used for the optimization process. The implementation of the design process for

the lightweight torpedo example is shown in Figure 115.

1) Define Requirements

Lightweight
Torpedo Mission

2) Select Concept / Technology Set

3) Build Model

4) Define and Include Uncertainty

5) Run Deterministic Analysis

6) Set Target POS

7) Run Probabilistic Analysis

8) Determine POS

9) Find “Best” Design that 
meets Probability of Success

10) Choose New POS

11) Select Most Appropriate Design

Torpedo Optimization,
Analysis and Design Program

(TOAD)

Probability Distributions

TOAD was Modified
to Handle “k-factors”

Direct Simulation /
Monte Carlo Techniques

Random Search

POS vs. 
Performance Curves

All-Electric
Torpedo

Figure 115: Design Process Implementation for Lightweight Torpedo Analysis
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Table 29: Design Variables for Heavyweight Torpedo Example
Design Variables Min Max Units

Torpedo Diameter 9 16 in
Fuel Section Length 25 150 in
Motor Horsepower 50 250 hp

Decoupling Layer Thickness 0.0 0.75 in
Damping Layer Thickness 0.0 0.75 in
Motor/Propulsor RPM 2000 4000 rev/min

The results of the random search are given as Figure 116. The results show two large

congregations of responses, one with a probability of success near zero, and the other with a

probability of success near one. The accumulation of points near the probability of success

of zero indicates that there are a wide array of designs that fail to meet any design require-

ments. These designs may be completely infeasible. This point illustrates an advantage of

direct simulation over response surface equations. Where the response surface equations

tend to “smooth out” infeasible regions, direct simulation allows infeasible regions to be

dealt with directly so that they can summarily be discarded, as they were in this exam-

ple (as indicated by the large number of designs with zero POS). The large numbers of

random points near the probability of success of one means that a great number of the

designs can meet all of the design requirements. If the decision-maker desired to spread out

the design points near the higher POS value, more stringent design requirements could be

implemented.

A comparison between the lightweight results and the heavyweight results is given in

Figure 117. Note that, for both cases, the shape of the Pareto frontier is similar, although

there is less curvature for the lightweight system. This reduced curvature is due to the

relative ease with which the lightweight system is meeting its design requirements. If the

design requirements were increased, it is likely that more curvature would become visible.

The lightweight torpedo meets its requirements at a significantly lower weight (or cost)

than the heavyweight counterpart. Keep in mind, however, that this advantage for the

lightweight torpedo does not come from superior performance, but from the reduced design

requirements for the system (in the form of a smaller minimum range and warhead).
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Figure 116: Random Points and the Pareto Frontier for Lightweight Torpedo
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Figure 117: Comparison of Pareto Frontier for Lightweight and Heavyweight Torpedoes

The visualization tool can also be used to compare the heavyweight torpedo designs

to the lightweight torpedo designs. Figure 118 shows a snapshot of the visualization tool.
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In this image, a heavyweight torpedo (left-hand side) is being compared to a lightweight

torpedo (right-hand side). The physical differences between the two torpedoes are striking.

The heavyweight system is significantly larger than the lightweight. In addition, a majority

of the heavyweight torpedo length is dedicated to the fuel tank. For the lightweight torpedo,

which is thinner and has a higher fineness ratio, the warhead takes up an appreciably larger

portion of the torpedo. The visualization tool allows for this quick examination of tradeoffs

between distinct system concepts.

Figure 118: Visualization Tool Comparing Lightweight and Heavyweight Torpedoes

6.4 Summary

This section illustrated the use of the robust design method to analyze torpedo design

problems. Two separate approaches were applied, one using a response surface metamodel

and the other incorporating direct simulation of the TOAD analysis tool. Both methods
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Table 30: Relative Advantages in Design Process Techniques

Concept Technique Advantages Disadvantages

Path-Building
Works well for small 

dimensional problems

For large dimensions, can have 
difficulty finding the Pareto frontier (too 

multimodal and noisy)

Random 
Search

Determines the Pareto 
front all-at-once

Requires many runs, plus creates 
large amounts of data to track

Response 
Surface 
Equation

Smooths data, works 
well with gradient-based 

optimizers

Harder to capture infeasible regions, 
results appear to be more noisy

Direct 
Simulation

More accurate, less 
noise

Difficult to implement, requires more 
CPU time

Optimizers

Modeling 
and 

Simulation 
Tool

used Monte Carlo simulation as the primary mechanism for calculating the probability

of success values. Due to time constraints, genetic algorithms and most-probable-point

methods were not used, however, they could easily be incorporated into the analysis. The

results from this section section showed that it was possible to use this approach to develop

frontiers of probability of success versus weight for torpedo systems and that these frontiers

could be used in decision-making. The ability to develop optimum torpedo parameters as

a function of the probability of success was clearly demonstrated.

This section also illustrated a few cautionary measures concerning the robust design

method. For one, great care needs to be taken when using a path-building optimizer or

random search to ensure that the complete Pareto frontier has been located. In addition,

the use of random searches may lead to some level of ‘noise’ along the Pareto front. Finally,

direct simulation behaved better than the response surface equations – direct simulation

should be used whenever it feasible to do so. Some of the relative merits of each technique

are given in Table 30. Even though some techniques have disadvantages, the overall process

is still robust, and, as illustrated in this section, is a very powerful tool to examine the

complete design space of undersea weapon systems.
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CHAPTER VII

INTEGRATION OF TACTICS WITH DESIGN

7.1 Examination of Tactics on Torpedo Design

A study was done to understand the implications of torpedo tactics in relation to torpedo

design. This work focused on quantizing the effect that tactics have on design decisions.

This analysis required the linking of a torpedo analysis tool with a mission analysis tool,

commonly called an engagement model. Because no such engagement models were available

in the public domain, an engagement model had to be created. For simplicity, this model

focused upon the acoustically-based search abilities of the torpedo – submarine tactics

were not included. To facilitate the linking between the torpedo analysis and the new

engagement model, the TOAD program was not used. Instead, response surface equations

were generated from the TOAD analysis program to use in conjunction with the engagement

model. This framework allowed for a well-linked, fast-running, and computationally noise-

free analysis environment. This type of framework also allowed for the inclusion of some

aspects of torpedo design, such as system cost and a more robust sensor model, that are

not available in TOAD. Equations for these parameters could be inserted into the response

surface equations representing torpedo design.

Even within this relatively simple framework, the results shown here are extensible

to environments in which more complex tools are employed. The final results from this

analysis showed that a variation in the tactical situation had a tremendous impact on the

performance of the torpedo system.

7.1.1 Analysis Tools

In terms of operational environments, undersea warfare is almost completely characterized

by the lack of knowledge concerning the location of enemy vessels. Thus, a large part of un-

dersea warfare is concerned with the means and mechanisms of acquiring information about
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the target; essentially this is a combination of tactics and sonar capabilities. In addition to

the tactics and sonar capabilities, accurate undersea warfare analysis also requires detailed

performance data about the weapon system. In order to capture both the kinematics and

the sonar capabilities of the torpedo system, a simple torpedo design program was created,

using response surface equations generated from the more advanced TOAD torpedo design

and analysis program (see Section 5.1). The new program was specifically designed to ex-

amine the implications of sonar performance on the overall capabilities of a fixed-length

torpedo system. The analysis assumed a 240-inch long, 21-inch diameter torpedo, similar

to today’s heavyweight Mk-48 torpedo system. The torpedo is divided into several sections,

each sized independently, as described in Table 31. The length of the nose section is a

function of the directivity index (DI) and the beam-width (BW) of the sonar. In addition,

the power requirement, or “hotel load”, generated by the sonar is also a function of these

parameters. The variation of hotel load as a function of sonar parameters is shown in Figure

119. The warhead is fixed as a 35 inch, 1,000-lbm system. The motor provides power to the

system, both for the propulsor and for the hotel load of the sonar. The length of the motor

is a function of the shaft-horsepower required by the motor to provide sufficient thrust and

power generation. The length is generated from a response surface equation developed from

the more extensive TOAD analysis program. The back-end of the torpedo, including the

afterbody, control fins, and propulsor, is fixed at a 30-inch length. Finally, the fuel section

consumes the remaining length of the torpedo, sized so that the total length of the torpedo

is always 240 inches.

Table 31: Torpedo Section Definitions
Section Purpose Size

Nose Sonar and electronics Function of DI and BW

Warhead 1,000 lbm warhead 35 inches

Fuel Fuel for motor Remainder of 240 inch torpedo

Motor Provide power to propulsor and sonar Function of HP

Back-End Rear of torpedo and propulsor 30 inches

In addition to estimating the sizes of individual torpedo sections, the torpedo analysis

tool also calculates the detection range of the sonar, the total range of the torpedo, the search
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Figure 119: Variation of Directivity Index with Detection Range and Hotel Load

rate of the torpedo, and an estimate of the relative cost of the system. Two parameters are

used to define the sonar system. Directivity index, in decibels, essentially tells the ‘goodness’

of the sonar, or its ability to distinguish a target from background noise. Directivity index

directly relates to detection range, as indicated in Equation 24 [120]. The beam-width

defines the width of the sonar ‘beam’. This width parameter is used to define the effective

search area of the sonar. The hotel power drain of the sonar system is a function of both

the beam-width and the directivity index. A graph of detection range versus directivity

index is given in Figure 119, along with a plot of the power drain of the sonar.

20 · log10(range) + a · range = SL − NL + DI − DT (24)

a = Absoprtion Coefficient of Seawater (0.00006 dB/m) [120]

SL = Source Level (25 dB)

NL = Noise Level (15 dB)

DT = Detection Threshold (03 dB)

DI = Directivity Index (input dB)
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The range of the torpedo is calculated by first looking at the drag of the vehicle, using the

drag routines included in the TOAD analysis program. The power required to overcome

the drag and the hotel load is used, along with the effective heating value (accounting

for all of the auxiliary losses including unburned fuel, fuel tank structure, auxiliary system

volumes, and thermal engine efficiencies) for torpedo OTTO fuel used in the TOAD program

(1.15x107ft− lbf/ft3) to determine the endurance, and thus range, of the torpedo. Finally,

the relative cost of the system is estimated. It is assumed that from the baseline torpedo

there is an exponential price increase due to improving the sonar performance, plus a milder

price increase for increasing the motor horsepower. These costs are entirely notional and are

based upon the assumption that higher performance components, such as the engine and

sonar, will translate directly into greater costs. Figure 120 shows the relative performance

and cost of the system when changing the torpedo design variables.
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Figure 120: Hypothetical Range, Endurance, and Cost of Torpedo Systems
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The search rate of the torpedo is calculated via the geometry shown in Figure 121. The

search rate is calculated from the detection range (calculated from directivity index), the

beam-width of the sonar, and the velocity of the torpedo, as shown in Equation 25. The

search rate is essentially a calculation of how quickly the ‘search front’ is moved through

the water. The search rate assumes that the torpedo moves at a constant velocity and

can ‘detect’ anything that enters into the detection zone. In addition, the search rate

assumes that a ‘perfect’ search pattern is being executed (delineated in the formula by

setting ηsearch=1). This perfect search pattern assumes that no portion of the search area

is examined twice and that the threat submarine never doubles-back into a previously

searched area. A less efficient search, with the torpedo overlapping previously searched

areas, could be modeled by setting ηsearch to a value less than one. Although a constant

search rate may seem somewhat unrealistic, it is a surprisingly good reflection of the real

world. Washburn showed that in a situation in which a searcher was looking for an evading

target in a fixed area, the searcher’s likelihood of finding the target increased at a constant

rate with respect to time [236]. Washburn claimed that the magnitude of this constant

search rate is extremely difficult to calculate, but that the search rate is a function of the

searcher’s speed advantage and sensor range, which is analogous to the formula created in

Equation 25.

SearchRate = ηsearch · 2π · DetectionRange · (BWtorp

360
) · Vtorp (25)

Beam-
width

Detection Range

Torpedo Velocity

Detection 
Front

Figure 121: Calculation of Torpedo Search Rate

Two tactical parameters are defined for this problem and are illustrated in Figure 122.
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The focus of these tactical parameters is not on the tactics, strategies, and maneuvers of

the two submarines before firing, but instead focuses only on the tactical situation that the

torpedo ‘sees’ immediately after launch. Thus, the relevant torpedo information includes

the distance to the target, or the required transit distance, and the area of uncertainty

surrounding the target, which defines the size of the region within which the target is

randomly located. An additional parameter is the velocity of the threat submarine, or, the

rate at which the radius of uncertainty for the threat submarine is growing. The threat

submarine is assumed to maintain a slow velocity to facilitate its hiding from the searching

torpedo. Figure 123 demonstrates how an encounter develops over time.
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Figure 122: Torpedo Tactics Parameters Analyzed
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Figure 123: Timeline of Torpedo Engagement

Once launched, the torpedo transits the distance to the search area, with the required

search area increasing during transit (at a rate equal to the velocity of the threat submarine).

Once in the area of uncertainty, the torpedo begins its search pattern, searching at the
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constant rate defined in Equation 25. While the torpedo is searching for the target, the

area of uncertainty continues to increase around the threat submarine. Figure 124 shows

how the two relative areas change with time: the area that has successfully been searched

by the torpedo and the area of uncertainty of the submarine. The area of uncertainty

increases quadratically, while the torpedo search area is flat during the torpedo transit and

then increases linearly. If it is assumed that the threat submarine is randomly positioned

inside the area of uncertainty, then the ratio of these two areas defines the probability of

the torpedo detecting the enemy submarine. Thus, the ratio of the current aggregate search

area divided by the current area of uncertainty is defined as the probability of hit. Figure

124 also shows the time-varying probability of hit, which is calculated from the ratio of

the two areas. The overall, or final, probability of hit is the maximum probability of hit

attained during the encounter.
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Figure 124: Time Variation of Area of Uncertainty, Search Area, and Probability of Hit

The results from the torpedo analysis tool are linked with the inputs to the engagement

analysis tool. The linkages are shown in Figure 125. Using this linkage between the two

analysis tools, the torpedo inputs can be translated directly into a Phit value. Since the
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torpedo cost is also calculated, the capabilities and cost for various torpedo systems can

be compared under various operational scenarios. Table 32 summarizes the inputs and the

outputs for the analysis system.

Torpedo
Analysis

Tool

Torpedo Inputs:

Directivity Index
Beam-Width
Velocity

Torpedo Outputs:

Torpedo Range
Detection Range
Search Rate
Cost

Engagement
Analysis

Tool

Tactics Inputs:

Area of Uncertainty
Initial Separation
Submarine Velocity

Tactical Output:

PHIT

Figure 125: Layout of Tools for Torpedo Tactical Analysis Tools

Table 32: Input and Output Parameters for Tactics Problem
Parameter Units Description

Torpedo Input Parameters

Directivity Index dB Effectiveness of sonar beam

Beam-Width deg Width of sonar beam

Velocity kts Torpedo velocity

Torpedo Output Parameters

Torpedo Range nmi Range of Torpedo

Detection Range nmi Range when torpedo detects target

Search Rage nmi2/hr Rate at which torpedo searches area

Cost — Estimated cost of system

Tactics Input parameters

Area of Uncertainty nmi2 Initial area of uncertainty for threat

Initial Separation nmi Initial separation to area of uncertainty

Threat Sub Velocity kts Threat submarine velocity

Tactics Output Parameters

Phit — Probability of hitting target

Figure 126 summarizes the performance of various torpedo system designs. The figure

shows the relative range, endurance, search rate, cost, and probability of hit for a torpedo

system as a function of the physical attributes of the torpedo: directivity index, beam-

width, and velocity. The figures provide some insight into the tradeoffs between the various

torpedo attributes and overall performance. Figure 127 shows how varying the tactical
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situation changes the torpedo performance. The effects of changing standoff-distance, area

of uncertainty, and the threat submarine velocity are apparent on the probability of hit.

The figure also demonstrates the significant improvement in probability of hit with an

improvement in the sonar system. Note that the torpedo has the best Phit value when

used with a standoff distance of zero and an infinitesimally small area of uncertainty. This

situation corresponds to an ‘optimal’ firing position, where the torpedo is dropped right on

top of the enemy vessel and the torpedo knows the exact location of the enemy vessel.
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Figure 126: Overall Torpedo System Performance

7.1.2 Results

Once the analysis tools were created and linked together, they were used in conjunction with

the ‘fmincon’ optimizer in Matlab. The analysis tools, in conjunction with the optimizer,

could then be used to find the lowest cost torpedo for a fixed price, or conversely, find
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Figure 127: Variation in Torpedo Performance for Changing Tactical Environments

the best performing torpedo for a fixed price. The graph in Figure 128 shows an example

iteration history for a converged solution. The figure shows the convergence of a minimum

cost torpedo with a constrained Phit minimum of 0.8. In this example the optimizer behaves

as expected, first meeting the Phit constraint by driving up the cost, then working to reduce

the cost while maintaining the minimum allowed Phit value of 0.8.

Because the design space is multi-modal, multiple “starting locations” were used for

the optimizer to guarantee that a global minimum, not just a local minimum, was found.

Figure 129 shows the convergence history of a torpedo with a cost constraint of 0.5, where

the optimizer is trying to maximize the value of Phit. The convergence history for three

runs, each with a unique starting point, is shown in the figure.

Once the optimizer was successfully linked with the torpedo design programs, optimum

torpedo designs were found for a range of constrained probability of hit values. The optimal,
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Figure 128: Convergence History for Minimum Cost Torpedo

or lowest cost torpedo, was plotted for each probability of hit, and the results are shown in

Figure 130 for three sets of tactical conditions. The figure verifies that, as more performance

is required of the torpedo (in the form of a higher Phit value), the system will be more costly.

Note also that as the tactical environment worsens, as when the torpedo is launched further

from the target area and more uncertainty exists about the location of the target, a much

more expensive torpedo is required to meet the same level of probability of hit. Thus,

a tradeoff is demonstrated between the cost of the torpedo and the ability to launch the

torpedo closer to the target. If the torpedo can be launched closer to the target, then a

much lower-cost system will suffice.

Figure 131 gives more information about the optimal torpedoes for each probability of

hit. The physical characteristics of each optimized torpedo: directivity index, beam-width,

and velocity, are graphed, showing how the physical characteristics change for the optimal

designs. Note that as the probability of hit requirement increases, both the directivity

index and the beam-width increase, thus driving up the cost. Of interest is the fact that

the velocity of the torpedo decreases as the required probability of success increases. This
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Figure 129: Convergence History of Maximum Phit Torpedo with Multiple Start Points

decrease indicates that it is more important to go slower and search for the target for a

longer period of time than it is to cover an area quickly, but less effectively. Lastly, of note

is the fact that when the torpedo is launched close to the target (2 nmi), with a small radius

of uncertainty (2 nmi), a significantly faster torpedo with a smaller sonar is preferred. If

the torpedo is launched this close to the target, it is apparently best to close to the target

area quickly and forego the large, expensive sonar systems required of torpedoes that must

search larger areas. The charts in Figure 131 show that the best torpedo for a given mission

is a direct function of the tactical situation in which the torpedo is being operated, implying

that the tactics need to be developed simultaneously with the weapon so that a weapon is

always designed that best fits the tactical environment.

Finally, the off-design performance of the torpedoes were tested for various tactical

situations. First, a torpedo was optimized to provide the highest Phit possible for a fixed

cost of 0.5, in a tactical situation in which the radius of the area of uncertainty was 2.5 nmi
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Figure 130: Lowest Cost Torpedo for a Specified Phit Value

and the standoff distance was 5 nmi. Table 33 shows the optimized torpedo for this tactical

situation. At a cost value of 0.5, this torpedo was able to provide a probability of hit of

0.85 for the given tactical situation. The entire range of potential tactical situations was

then run for this torpedo, to see how the effectiveness of the torpedo changed in various

situations; the results are shown in Figure 132. Note that the torpedo performance degrades

as it moves towards a longer standoff range and a larger radius of uncertainty. Not only

does this represent a significantly degraded tactical environment, but since the plot is for

a fixed torpedo that is not optimized for these situations, its performance should also be

expected to decrease as the torpedo is being used in sub-optimal tactical situations. The

right hand side of Figure 132 shows what happens when the torpedo is locally optimized

for each set of tactical parameters. At each point the torpedo is still constrained to meet

the 0.5 cost requirement, however it is locally optimized for each tactical setting. Note that

the same-cost torpedo performs significantly better when it is optimized for each tactical

situation.

Figure 133 overlays the results of the fixed torpedo and the locally optimized torpedo.

The dashed lines represent the locally optimized torpedo. Note that, near the ‘optimized’

point, where the radius of uncertainty is 2.5 nmi and the standoff distance is 5 nmi, the

results for the fixed and locally optimized torpedoes are identical. This is expected, as
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Figure 131: Optimum Torpedo Attributes to meet a Specified Phit Value

both torpedoes are essentially optimized for this region. However, the further away from

this optimized region, or, the greater the change that occurs in the tactics, the greater the

performance difference that exists between the two torpedoes. After altering the tactics

only a small amount, the locally optimized torpedo begins to perform significantly better

than the fixed, or singularly optimized system. Thus, the results indicate that there are

significant advantages in optimizing the tactics simultaneously with the torpedo system,

because the tactics need to be fully defined at the time of designing and optimizing the
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Table 33: Optimized Torpedo System

Tactical Parameters Optimal Torpedo Parameters System Parameters

Radius of Uncertainty 2.5 nmi Directivity Index 66 dB Cost 0.5

Standoff Distance 5 nmi BeamWidth 55.4 deg Phit 0.85

Velocity 41.3 kts

Range 27.5 nmi

torpedo. Failing to have the tactics fully defined when constructing a torpedo system will

potentially lead to a sub-optimal torpedo design.

Figure 134 provides another example that is similar to the comparison of the fixed and

the locally optimized torpedo from Figure 133. However, in this case, the fixed torpedo is

optimized for a different tactical situation: a radius of uncertainty of 5 nmi and a standoff

distance of 15 nmi. The torpedo is again constrained to have a cost no greater than 0.5. The

results again show that the locally optimized torpedo behaves similarly to the fixed design

near the design point (marked with a +). But, again, there is significant improvement in

the effectiveness of a locally optimized torpedo in tactical situations for which the fixed

torpedo was not optimized.

Figure 135 shows a third example. This example is for a compromise torpedo design,

one that attempts to have good performance at both extremes of the tactical space: a close

launch with good target position data and a long-range launch with bad target position

data. Note that this compromise torpedo does perform moderately well throughout the

tactics space, but, the locally optimized torpedo outperforms the compromise torpedo at

every single point in the space. Table 34 shows a summary of the performance for the three

fixed torpedoes shown in Figures 133, 134, and 135, along with a locally optimized torpedo.

Note again that the locally optimized torpedo always outperforms the other torpedoes,

regardless of the mission. Again, in order to achieve the best performance from a torpedo

system, the tactics must be analyzed and created simultaneously with the design of the

torpedo system.
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Figure 132: Contours of Phit for Varying Tactics

7.1.3 Summary

The results of this analysis show that the starting tactical situation of the torpedo, or the

information available to the torpedo has when it is ‘launched’, has a significant impact on

the performance of the system. Furthermore, the torpedo can be optimized so that its

performance is maximized for any tactical scenario. However, if the torpedo is optimized

for any single tactical situation, its performance will then be sub-optimal for other tactical

situations. Thus, in order to get the most effective torpedo system, the tactics need to

be defined and refined during the design and optimization of the torpedo system. By

developing the submarine tactics simultaneous with the torpedo design, the torpedo design
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Figure 133: Overlay of Performance of Fixed Torpedo (solid line) and a Locally Optimized
Torpedo (dashed line)

Table 34: Relative Performance of Various Torpedoes
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DI 66.0 66.5 66.1 varies
BW 55.4 53.2 55.4 varies

Velocity 41.4 30.1 37.9 varies
Range 25.7 46.6 30.3 varies

Radius of Uncertainty 2.5 nmi
Standoff Distance 5 nmi

Radius of Uncertainty 5 nmi
Standoff Distance 15 nmi

Radius of Uncertainty 5 nmi
Standoff Distance 5 nmi

Radius of Uncertainty 2.5 nmi
Standoff Distance 15 nmi

Radius of Uncertainty 3.75 nmi
Standoff Distance 10 nmi

0.430
Scenario 5

(Avg Range, Avg Knowledge)
0.384 0.404 0.417

0.364

Scenario 4
(Long Range, Good Knowledge)

0.442 0.486 0.504 0.526

Scenario 3
(Close In, Bad Knowledge)

0.335 0.345 0.356

0.834 0.852

Scenario 2
(Long Range, Bad Knowledge)

0.174 0.262 0.215 0.262

Scenario 1
(Close In, Good Knowledge)

0.852 0.668

that best meets the tactical environments can be developed, thus ensuring the optimal,

most cost-effective system. Therefore, this paper points to the need to design torpedoes in

the context of the larger system (the submarine and tactical environment), thereby taking

the “system of systems” approach. Only by designing the torpedo at such a level can truly

optimal systems be created.
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Figure 134: Overlay of Performance of Fixed Torpedo (solid line) and a Locally Optimized
Torpedo (dashed line) for Different Requirements
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Figure 135: Overlay of Performance of Fixed Torpedo (solid line) and a Locally Optimized
Torpedo (dashed line) for a Compromise Torpedo
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7.2 Optimization of Mine Counter-Measure Tactics and

Design

7.2.1 Analysis Tool

Several modeling tools exist to analyze mine counter-measure systems. These tools include

the Surf Zone Mine Clearance Evaluator Tool, Total Mine Simulation System, and the Au-

tonomous Littoral Warfare Systems Evaluator. At least 15 separate government simulations

exist to serve these modeling needs [30]. Unfortunately, none of these models are publicly

available, thus they could not be used for this research.

As such, a minehunting simulation was developed in Matlab. This program had a time-

marching simulation of a minehunting vehicle as it moved through a minefield searching

for, classifying, identifying, and neutralizing both mines and non-mines. The program

calculates the percent of the total mines in the field that were cleared in a given time, as

well as the number of non-mines that were wrongly prosecuted. The program accounts for

all of the critical minehunting variables listed in Table 6, including detection probabilities,

classification probabilities, classification times, etc.

The program works by time-marching a minehunter through a minefield. The mine-

hunter is assumed to have an imperfect seeker (see Section 2.3.2). This seeker has a fixed

search radius and probability of detection associated with it. If an object (either mine or

non-mine) enters the radius, there is a random chance that the object is detected, based

upon the probability of detection. If the object is detected, then a classification attempt

is made, with the given probability of classification, which takes a time equal to the time-

to-classify (tc) value. In this manner the program follows the minehunting steps displayed

in Figure 23. After the allotted search time is complete, the program terminates, with the

percent clearance of the minefield returned as an output.

The minehunting analysis program has a visualization feature, whereby the user can

watch the minehunter sweep through the minefield. Though the visualization can be turned

off for large Monte Carlo runs, it is indispensable for debugging and validating the program.

A screenshot of the initial setup for a run is given in Figure 136. The minefield to be searched

is shown. Individual mines are represented by an ‘x’ and non-mines are represented by a
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‘·’. The mines and non-mines are randomly placed in the minefield at the start of the run.

The minehunter is represented by a ‘+’ symbol. A dotted line around the ‘+’ symbol

represents the range of the ‘imperfect’ seeker associated with the minehunter. Any object,

mine or non-mine, that enters into this radius, has a chance of being detected by the

minehunter.
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Figure 136: Initial Setup for Minehunting Analysis Tool – Mines are represented as an ‘x’
and non-mines by a ‘·’

As the minehunter moves through the minefield, it detects, classifies, identifies, and

neutralizes mines. These steps are indicated in the visualization system by a sequence of

colors. Red means an object has not been identified, green means it has been declared a false

target (whether this is true or not), and black means that the object has been neutralized

(whether a mine or not). Table 35 provides a legend for the visualization program.

Figure 137 shows an example of the situation partway through the minehunting process.

Note that the minehunter, which is moving in vertical tracks, is gradually making its way

towards the right-hand side of the minefield. In its wake, some mines (represented by ‘x’),

have not been detected (in red) or have been mistakenly marked as false target (in green),
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Table 35: Legend for Minehunting Tool
Symbols

+ Minehunter

- - - Seeker Radius

x Mine

· Non-Mine

blue line Minefield Border

Mine Colors

red Mine Still Active

green
Mine has been Detected
Incorrectly Classified as a False Target

black Mine has been Neutralized

Non-Mine Colors

red Non-Mine Has Not Been Detected

green
Non-Mine has been Detected
Correctly Classified as a False Target

black Non-Mine has been Unnecessarily Neutralized

two bad situations. However, a large number of mines have already been neutralized,

as represented by the large number of black x’s. Similarly, most non-mines have been

safely marked as false targets, though some have not been detected or were unnecessarily

neutralized (neutralization of non-mines, though not being harmful to the minehunter,

represents a waste of both time and resources).

Figure 138 shows an example of a minehunter after completing its mission. The mine-

hunter has finished several sweeps of the minefield, when most of the mines and non-mines

have been detected and have either classified as false targets or have been neutralized. A

perfect minehunter would have neutralized every mine and classified each non-mine as a

false target. Thus, for a perfect mission, every ‘x’ would be black, and every ‘·’ would

be green. This situation would represent a mine clearance percentage (number of mines

neutralized divided by total number of mines) of 100%. If some mines were not neutralized,

the neutralization percentage would be less than 100%.

The minehunter searches by traveling back and forth across the minefield. When the

minehunter reaches the end of the minefield, it moves laterally a distance equal to the

track spacing, which is another input, and begins searching in the opposite direction. If the

minehunter, which starts on the left-hand side of the minefield, moves the entire width of the
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Figure 137: Example of Minehunter Progress in Minehunting Analysis Tool

minefield, it begins its next sweep by returning to the left-hand side of the minefield. Thus,

the minehunter may search the entire minefield multiple times, depending on its velocity

and the amount of search time it is allotted. The minehunter continues this process until

it reaches the maximum allowed search time. In order to account for navigational error,

the minehunter does not travel directly across the minefield. Instead, a random heading

error in inserted into the minehunter’s path. This heading error, or navigation error, is

defined as a percentage and represents the percent error that will exist at the end of the

path. For example, a 2% navigation error would indicate that after traveling 2,000 yards,

the minehunter will be 40 yards from the location where it planned to be. Table 36 lists

all of the input parameters used by the minehunting analysis program. It also lists that

defaults that were used in the program. Some of these defaults were based upon data

available in public literature. For instance, a Johns Hopkins study on the Long-Term Mine

Reconnaissance System suggests a probability of detection of 0.9 and a vehicle speed of 7

knots [21] [142]. Unless stated otherwise in the analysis, the assumed values listed in Table

36 were used throughout the research.
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Figure 138: Example of Final Results in Minehunting Analysis Tool

7.2.2 Minehunting Results

The first step in any analysis process is to determine the relative impact of the various

design variables. As mentioned in Section 3.4.3, the relative impact of design variables can

be displayed in a Pareto chart. A Pareto chart for the minehunting problem is shown in

Figure 139. Note that the largest drivers on the system are the endurance, or search time,

seeker radius, and the velocity of the system. However, it is interesting to observe that most

of the attributes tested had at least some impact on the system performance; none of the

attributes could be readily be discarded as being unimportant.

Endurance
Seek_Rad
Velocity
Track Spacing
Pcmm
Pd

Term
 8.7639512
 4.8833476
 4.0061913
 2.8759026
 0.8541047
 0.7067703

t Ratio

Figure 139: Pareto Plot for Minehunting Results
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Table 36: Input Parameters and Assumed Values for the Minehunter Analysis Program
Parameter Definition Default Value

Length Length of minefield 5 nmi

Width Width of minefield 1000 yrd

Num mines Number of mines 50

Num nonmines Number of non-mines 50

Pd Probability of detecting an object 0.9

Pcmm Probability of classifying a mine as mine-like 0.9

Pcnm Probability of classifying a non-mine as mine-like 0.3

Tc Time to classify object 20 sec

Pimm Probability of correctly identifying a mine 0.9

Pinm Probability of incorrectly identifying a non-mine 0.1

Ti Time to identify object 240 sec

Pn Probability of neutralizing object 0.9

Tn Time to neutralize object 60 sec

Vel Minehunter velocity 7 kts

Seeker radius 75 yrd

Navigation error 2.5%

Track spacing 150 yrd

MCT/SCT Classification technique MCT

Search time 1 - 24 hrs

The second step of the analysis tool was to look at the tradeoff presented to the decision-

maker. This involves examining the success of the minehunter, in terms of percent clearance

of a minefield, versus the time required to sweep the minefield. Figure 140 shows how the

percent clearance of the minefield increases as more time is spent in the search of the

minefield.

As stated before, the minehunter problem is rife with uncertainty. This uncertainty is

present because the number of mines is not fully known, the navigational error of the vehicle

is random, and the sensor’s likelihood of detecting and classifying a mine is dependent upon

conditions. Thus, the results in Figure 140 were run with normal distributions added to the

uncertain variables. Monte Carlo techniques were used to capture the probabilistic nature

of the problem. The altered variables and the parameters of their normal distributions are

listed in Table 37.

Since some noise will always exist in Monte-Carlo style solutions, the resulting figures

were not perfectly smooth. In order to smooth out the data, a non-linear function was
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Figure 140: Minefield Clearance as a Function of Search Time

Table 37: Normal Distributions on Uncertainty Variables for Minehunting Analysis

Variable Function Mean Standard Dev.

Pd Probability of Detection 0.9 0.09

Pcmm Probability of Classifying a Mine as Mine-like 0.9 0.09

Ti Time to Identify Mine 240 sec 24 sec

Path Error Navigation Error 2.5% 0.25%

Num Mines Number of Mines 50 5

regressed against the minehunting data, with the smoothed function plotted. The non-

linear function is a quadratic with an exponential term added. The regression function is

given in Equation 26, which is a function of five regression coefficients. The smoothed data

is plotted against the original data in Figure 140.

Y = b0 + b1 · x + b2 · x2 + b3 · e b4/x (26)

The results from running the analysis with the uncertainty distributions from Table 37

show that the net effect is a normal distribution on the expected percent clearance. Figure

141 shows a histogram of the results at six separate hunt-times. The resulting normal

distribution can be seen for each search time. In addition, it is apparent that the mean of

the distribution shifts to the right, or increases, as the search-time increases. Thus, Figure

140 can be thought of as having a histogram wrapped around each point, with only the
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mean of the results being shown.
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Figure 141: Uncertainty Distributions for Minefield Clearance vs. Search Time

With this new uncertainty data, the percent clearance versus search time (originally

shown in Figure 140) could now be shown as a set of probabilistic lines. Figure 142 shows

contours of probabilistic data. The figure shows the probabilistic confidence of meeting

the percent clearance. For instance, the blue line shows the 90% confidence level. Thus,

the decision-maker can, with a 90% confidence, expect the actual percent clearance of the

minefield to be equal to or greater than this amount. Similarly, confidence intervals of 75%,

50%, 25%, and 10% are shown, as well as the mean value for the runs. With these charts,

more information is now available for the decision-maker, as the user no longer knows what

is the ‘likely’, or mean percent clearance, but can now address the actual confidence of

meeting a clearance level for a given search time. In this manner, a probability of success

value is being brought forward to the decision-maker.

Going back to the more familiar probability of success formulation, if a required clearance
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Figure 142: Probabilistic Results for Minefield Clearance vs. Search Time

level is specified, for instance, 80%, then the probability of successfully meeting that level

as a function of search time can easily be calculated with the data already present. These

results, comparing search time with the probability of achieving an 80% minefield clearance,

are shown in Figure 143. The more familiar form of this chart is shown as Figure 144, where

the smallest search time to meet a probability of success is given. These figures can be used

by a decision-maker, in the same manner as described in Chapter 6, to make design decisions

and design optimizations concerning the minehunter system.

7.2.3 Minehunting Tactics Results

With a means available for characterizing the effectiveness of a minehunter system, includ-

ing the effects of uncertainty, the impact of design variables and tactics on the vehicle’s

performance could now be investigated. The first step in this investigation was to study the

variation of individual parameters on the performance of the vehicle while in the presence of

uncertainty. The first design parameter to vary was the probability of detection, Pd. This
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Figure 143: Probabilistic Results Comparing Search Time to Probability of Success (for a
Required Mine Clearance of 80%)
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Figure 144: Probabilistic Results Probability of Success vs. Search Time (for a Required
Mine Clearance of 80%)

parameter was varied from 0.6 to 0.99. The effect of varying the probability of detection

on the mean performance of the vehicle is shown in Figure 145. As one would expect, an

increasing probability of detection increases the minefield clearance for a given time.
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Figure 145: Effective of Varying the Probability of Detection on Minehunting Effectiveness

The track spacing, which is the distance between legs of the search pattern (see section

2.3.3), was the primary tactical variable used in this study. The effect of this parameter

on the performance of the minehunter is shown in Figure 146. Note that, except at very

low values of the search pattern track spacing, there was not a large effect of changing this

parameter on the effectiveness of the minehunter.

Figure 146 was created using a search style known as multiple classification tactics

(MCT), as discussed in Section 2.3.3. These tactics imply that additional classification

attempts are made against objects every time that they are encountered, even if the object

was already declared a false target on previous examination. An additional choice for

tactical parameters is to use a single classification tactic (SCT), in which objects are only

classified once, and, if declared to be a false target, are summarily ignored are subsequent

passes. These same results, for varying track spacing, but using a single classification

strategy, are shown in Figure 147. Note that the SCT strategy is more effective at smaller
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Figure 146: Effects of Varying the Track Spacing on Minehunting Effectiveness for Multiple
Classification Tactics

search times, but is inferior to the multiple classification tactics at larger search times.

This difference is due to the fact that SCT saves more time in the search process by not

re-scanning objects, so the search proceeds at a faster rate. However, MCT techniques are

more robust, as miss-diagnosed mines will be rescanned and summarily destroyed. Thus,

the MCT techniques perform better at long search times. A direct comparison of the SCT

and MCT results is shown in Figure 148. The same trend is evident, with SCT tactics

performing better for small engagement times but MCT tactics outperforming at large

engagement times. These results illustrate yet again the critical effect that tactics have on

the performance of the minehunting system.

The final critical element of mine counter-measures is the minehunter search velocity.

This velocity can be thought of as both a design variable and a tactics variable. The

velocity is clearly a design variable, because the vehicle must be capable of sustaining the

designated velocity for the entirety of the search time. However, the velocity is also a

tactical parameter, because a velocity less than maximum may prove optimal for searching,
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Figure 147: Effects of Varying the Track Spacing on Minehunting Effectiveness for Single
Classification Tactics

especially since the probability of detection can generally be linked to the velocity of the

vehicle. This linkage generally has a negative correlation: the faster the vehicle travels, the

more difficult it is to detect an object. Figure 149 shows the variation of vehicle velocity on

performance. Note that vehicle velocity has a very significant effect on performance, and

must therefore be examined carefully in the design process.

7.2.4 Minehunter Optimization

The optimization results were undertaken for two design variables, velocity and probability

of detection, and one tactics variable, the track spacing. The variables and assumptions

are shown in Table 38. In order to include a tradeoff in the design space, the probability

of detection was linked to the search velocity of the vehicle. It was assumed that, as the

search velocity increased, the probability of detection would decrease. Three points were

then conceived to fit a trend. The first point is the low value for Pd (0.6), and the high

value for velocity (20 kts). The second point is the opposite, with a value of 0.95 for Pd
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Figure 148: Effects of Varying the Track Spacing on Minehunting Effectiveness Comparing
Classification Tactics

and a value of 2 kts for the velocity. Finally, an interior point was taken from Reference

[21], with a Pd value of 0.9 and a velocity of 7 kts. The trend is shown in Figure 150, which

represents Equation 27.

V el = −4.0847 + 56.4817 · Pd + 16.4429 · P 2
d − 72.749 · P 3

d (27)

In order to find the set of optimal, or Pareto solutions, a random search was run over

the design space. A 500 case random search was used for four distinct search times: 8

hours, 12 hours, 16 hours, and 24 hours. The random points that were selected are shown

in Figure 151. Note in the top portion of Figure 151 that a distinct line is formed between
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Figure 149: Effects of Varying the Vehicle Velocity on Minehunting Effectiveness

the probability of detection and the search velocity. This line occurs because the two design

variables were correlated as shown in Figure 150. The lower two graphs in Figure 151 show

the random nature of the selected design space.

Figure 152 shows the effectiveness, or percentage of mines neutralized, for each of the

random points. The graph compares the results at each of the four sweep times. Figure 153

zooms in on these graphs. From this figure, a very important point is evident. Since all the

Table 38: Listing of Optimization Variables and Assumptions
Parameter Definition State Value

Length Length of Search Field (nmi) Fixed 5

Width Width of Search Field (yrd) Fixed 1000

Pd Probability of Detection Var 0.6-0.95

Vel Searcher Velocity (kts) Var 2-20

Track Spacing Spacing Between Parallel Search Tracks (yrd) Var 5-500

Tactics Raster-Scan Search Pattern Fix —

MCT/SCT Classification Technique Fix MCT

Seeker Radius Radius of ‘Imperfect’ Seeker (yrd) Fix 75

Num Mines Number of Mines Fix 50
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Figure 150: Estimated Correlation between Probability of Detection and Velocity

graphs show an increasing trend, this implies that an improvement in the search effectiveness

at a search time of 8 hours also indicates an improvement in search effectiveness at 24 hours.

Therefore, any improvement in search effectiveness at any specific time improves the search

effectiveness at all times. This trend simplifies the analysis, as now a single search time can

be examined and extrapolated to other search times.

Figure 154 shows the effects of the three design variables on the minefield percent clear-

ance: probability of detection, search velocity, and track spacing. It is interesting to observe

that most of the points succinctly line up with the Pareto front. Figure 155 draws the front

of the best-valued points for each setting of the design variables, with the global optimum

highlighted. For probability of detection, a lower detection probability leads to a higher

minefield clearance. This fact is counter-intuitive, until one remembers the coupling be-

tween probability of detection and search velocity. Among other things, the results show

that the performance of the system is fairly robust to variations in track spacing, except at

low track spacing, which has very poor performance. In this region of the design space, it

could be conjectured that the minehunter is repeating its search area too often, and thus
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Figure 151: Randomly Selected Values of Design Variables

is performing a very inefficient search. The global optimum, shown for each variable as a

cross in Figure 155, is listed in Table 39. The results show that the minehunter will likely

remove 88.5% of all the mines in a minefield within a 12-hour period.

The optimum mine counter-measure system shown in Figure 155 and Table 39 was com-

pared against a traditional design process, in which the tactics and the design variables were

designed independently. Figure 156 shows the best results when an optimal minehunting

system is designed independent from the tactics with which it is used. The design variables

addressed are only probability of detection and search velocity. The results in Figure 156

compare the minehunter to the globally optimized system. Note that, at every possible set-

ting of Pd and velocity, the minehunting system that is dually optimized with both tactics

and design variables outperforms the system that is examined using only design variables.

The best system has a minefield clearance of only 82.3%, versus 88.5% for the globally
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Figure 152: Resulting Mine Neutralization Percentages for Search Times of 8, 12, 16, and
24 Hours

optimized vehicle.

Figure 157 shows the opposite side of the argument. In the situation, a fixed minehunter

system, i.e., a system with a fixed detection probability and velocity, is optimized to find the

most appropriate tactics. The optimization is run only on the track spacing for the search

process. The results indicate again that a singularly optimized system will not perform

as well as a system that has been optimized with both tactics and the system design in

mind. The fixed vehicle with optimized tactics will only neutralize 75.9% of the mines in

the minefield, significantly less than the globally neutralized system.

A final test was conducted to explore what would happen if the independently de-

signed vehicle was used with the independently optimized tactics. This type of situation is

analagous to the discussion in Section 1.3, in which the undersea weapon (torpedo or mine

counter-measure) designers are separated from the tacticians. In this case, the weapon
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Figure 153: Zoomed Mine Neutralization Percentages for Search Times of 8, 12, 16, and
24 Hours

designers develop the best weapon that they can, and deliver it to the warfighters, who

develop the best tactics possible with the weapon. For this example, the weapon designers

have optimized the minehunter as shown in Figure 156, and the warfighters have developed

the best tactics as shown in Figure 157. Using these ‘best’ tactics, coupled with the ‘best’

design results, in a situation in which the minehunter neutralizes 86.5% of the mines in

the minefield, still less than the 88.5% neutralization achieved by the global optimization

of design and tactics. Clearly, a system where the tactics and physical design are handled

concurrently is superior to one in which they are developed independently. These results

are summarized in Table 40.

A full probabilistic analysis was conducted for the optimum minehunter system described

in Table 39 and Table 40. The probability, or confidence, of meeting each minefield clearance

percentage is shown in Figure 158. This chart is analogous to the original probabilistic
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Figure 154: Mine Neutralization as a Function of Design Variables for Random Runs

Table 39: Global Optimum for Mine Counter-Measure Optimization for a 12-Hour Search
Time

Variable Value

Pd 0.698

Velocity (kts) 18.6

Track Spacing (yrd) 229

Mine Clearance Percentage 88.5%

minefield clearance in Figure 142. These figures are combined together so that the globally

optimized system can be compared to the original system. This comparison is made in

Figure 159. Note that in this figure, the globally optimized minehunter system always

performs better than the original system, regardless of the search-time involved or the

confidence level examined. In fact, the new system generally gives a 90% confidence to

the same performance that the baseline system had at only a 10% confidence level. A

probability of success curve for the optimized system is also compared in Figure 160, showing

the advantage in decreased search times provided by the optimization. Clearly the new
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Figure 155: Best Design Variable Values for Mine Neutralization, with the Optimal Point
Highlighted

minehunter system, with an optimized design and tactics, provides a dramatic performance

increase over the original system.

7.2.5 Summary

A minehunting analysis program was developed for the analysis of mine counter-measure

systems. This program was then used to show the type of probabilistic analysis that could

be conducted for minehunting systems, accounting for the uncertainty in the system and

the tactics employed. This type of analysis can be used to produce charts that illustrate the

confidence of reaching a mine clearance percentage, as well as performance vs. probability

of success charts.

In addition, the mine counter-measure analysis shows the advantages of optimizing a

system whereby the tactics are developed concurrently with the vehicle. This approach

generates an overall system that performs better and is more robust than a traditionally
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Figure 156: Comparison of Global Optimization versus Singular Optimization
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Figure 157: Comparison of Global Optimization versus Singular Optimization

developed system, where the tactics and hardware are designed independently. This type

of system-of-systems approach, where the tactics are optimized in conjunction with the

vehicle, is paramount in order to get as much functionality out of the vehicle as possible.
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Table 40: Comparison of Multiple Optimization Techniques for Minehunter
Optimization Pd Vel Track Mine %

Goal (kts) Spacing Clearance Increase
(yrd)

No Optimization 0.9 7.0 75 60.1% 0.0

Optimized Tactics 0.9 7.0 240.7 75.9% 26.3%

Optimized Vehicle 0.653 19.54 75 82.9% 37.9%

Independent Optimization 0.653 19.54 240.7 86.5% 43.9%

Simultaneous Optimization 0.698 18.60 229.0 88.5% 47.3%
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System
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CHAPTER VIII

NON-DIMENSIONAL PARAMETERS IN TORPEDO

DESIGN

8.1 Introduction

Several techniques have been developed which illustrate a mechanism by which torpedoes

can be designed in an intelligent, structured manner. This development is both robust to

uncertainty and includes tactical considerations. Unfortunately, this type of analysis can

be computationally intensive, particularly concerning the number of Monte Carlo runs that

may need to be made. As such, it is important to choose the ‘smartest’ design variables

faster, as these will speed the design process in general, and, in particular, will facilitate

the development and execution of Designs of Experiments. This chapter studies several

potential design variables for torpedoes, and provides an argument that non-dimensional

parameters are most suited for torpedo design.

8.2 Exploration of Non-Dimensional Parameters

The performance of the TOAD analysis program was examined for the running of a full-

factorial Design of Experiments. Particular attention was paid to regions of failure, or

non-convergence, from the TOAD analysis program (these regions of TOAD failure are

summarized in Table 16). Since most of the failures are related to the propulsor system,

the design study focused on torpedo parameters that were closely related to the design

of a propulsor system. Therefore, the following four design variables were chosen for the

study because of their impact on the propulsion system: outer diameter, torpedo length,

motor/propulsor RPM, and the motor horsepower. These inputs are summarized in Table

41.

Smart selection of potential Design of Experiments parameters is the first step in the

implementation of this process. Traditionally used torpedo conceptual DoE parameters are
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Table 41: Inputs for DoE Analysis
Relevant

Input Units Torpedo
Section

Front-End
Diameter (in) Motor

Propulsor

Length (in) Front-End

Motor/Prop (revs/min) Motor
RPM Propulsor

Motor HP (hp) Motor
Propulsor

often dimensional, non-normalized quantities, such as diameter, horsepower, propeller RPM,

and internal sectional lengths (i.e., length of the fuel tank). Dimensional analysis techniques

involve the creation of non-dimensional parameters from these quantities, through the com-

parison of units, as illustrated by the Buckingham-Pi theorem [9][139]. These techniques

can be employed to develop better non-dimensional design parameters for using Design of

Experiments in conjunction with torpedo design. When creating non-dimensional parame-

ters for this analysis, it was desired to keep all of the parameter values as functions of the

inputs into the TOAD analysis program, thus simplifying the execution of Designs of Ex-

periments. Therefore, in creating these parameters, true ‘non-dimensionality’ was sacrificed

in order to retain parameters that were a function of the TOAD analysis inputs: diameter,

RPM, and horsepower.

The first parameter to be explored is the relation between two large drivers on torpedo

system performance: diameter and horsepower. Dimensional analysis was used to determine

the relation between these two parameters. Using the following dimensions, time (T ), length

(L), force (F ), and mass (M), along with the fact that power is energy per unit time, the

relations in Equation 28 were constructed.

HP =
L · F

T
=

L ·
(

M ·L
T 2

)

T
=

M · L2

T 3
(28)

Thus, horsepower can be related to length squared. Diameter, with units of length,
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is obviously proportional to length; therefore, horsepower should be proportional to the

square of diameter, with units of mass over time cubed (Equation 29).

HP ∝ Diam2,
HP

Diam2
=

M

T 3
(29)

Therefore, horsepower divided by the diameter squared makes sense as a potential design

parameter, because it has decreased dimensionality. The parameter is clearly not non-

dimensional, because it still retains units of mass over time, however it was desired to keep

each parameter a function of only two variables, so that each parameter can be used to

define a unique torpedo configuration. For example, if the parameters outer diameter and

HP/Diam2 were specified, a unique combination of HP and diameter would be defined.

However, if the non-dimensional parameter were a function of three variables, say HP,

diameter, and shaftspeed, then the system would not be uniquely defined. Shaftspeed, or

propulsor RPM, is another driving parameter that is addressed in this study. Propellers are

often designed via the non-dimensional parameter called the advance coefficient [10]. The

definition of advance coefficient is shown in Equation 30.

J =
V∞

RPM
60 · DiamB

(30)

The propulsor advance ratio would be an excellent choice of design parameter; un-

fortunately, the design tool, TOAD, cannot be used with this advance ratio as an input

parameter. The reason TOAD cannot use advance ratio is because the freestream velocity,

V∞, is an output to the analysis program, not an input. Since the freestream velocity is not

known prior to running a case, it would be impossible to use the advance ratio to set a fixed

value of RPM unless an additional iteration loop was created around the analysis program

- something to be avoided if possible. For analysis tools with other input/output formats,

advance coefficient would likely be a strong candidate as a choice for a DoE parameter.

However, even though the advance coefficient is not workable as an input parameter for this

analysis tool, it does give insight into the relationship between RPM and diameter. Advance

ratio suggests that the formulation of the two parameters should be inversely proportional

to each other, leading to the relationship in Equation 31.
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RPM ∝ 1

Diam
, RPM · Diam =

L

T
(31)

This equation implies that RPM times diameter is an appropriate design parameter.

Again, this parameter is not non-dimensional in nature, but should better capture the design

trends than using RPM and diameter independently. Yet another parameter of merit is the

fineness ratio, defined as the length of the body divided by the width of the body, or the

diameter. Fineness ratio is used in some aerospace fields, such as missile design [72], and is

also associated with torpedo design. Two other common non-dimensional parameters used

in naval engineering are based upon the thrust coefficient (KT ) and the torque coefficient

(KQ)[198]. Thrust coefficient is a parameter that non-dimensionalizes thrust. By using the

relation that power is equal to thrust times velocity, the thrust coefficient can be written in

terms of a power and hence renamed KHP , as shown in Equation 32, where n is rotations per

second, DB is the body diameter, and T is the thrust. Unfortunately, the thrust coefficient

has the same drawback as advance ratio: it is a function of a response variable from the

analysis tool, V∞.

KT =
T

ρn2D4
B

, KHP =
550 · HP

V∞
· 1

ρn2D4
B

(32)

A form of the torque coefficient can be found by multiplying the thrust coefficient by

the advance ratio, as shown in Equation 33. This multiplication has the advantage that

it removes velocity from the formulation, making torque coefficient useful because it is

completely formulated from input parameters for the TOAD analysis program. Torque

coefficient is therefore a true non-dimensional parameter that is solely a function of TOAD

inputs. This fact gives the torque coefficient an advantage as a Design of Experiments

parameter because it can be calculated before any TOAD runs are completed. These non-

dimensional parameters have traditionally been used in naval architecture explicitly for

propulsor design, but in this work their use is being expanded to include the entire undersea

vehicle.
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KQ = KT · J =
T

ρn2D4
B

· V∞

nDB
=

HP

V∞
· 1

ρn2D4
B

· V∞

nDB
=

550 · HP

ρn3D5
B

(33)

In addition to using KHP or KQ directly, it may also be beneficial to simply look at

the relations that they imply between horsepower and diameter: using simply HP/D4 or

HP/D5 as design parameters. Table 42 summarizes the potential non-dimensional param-

eters that were identified.

Table 42: Potential Non-Dimensional Torpedo Parameters

Non-Dimensional 
Parameter 

Definition Units 

Advance Ratio 
BDRPM

V
J

⋅
= ∞

60

 --- 

Thrust Coefficient 42

1*550

B
HP DnV

HP
K

ρ
⋅=  --- 

Torque Coefficient KQ = 
53

*550

BDn

HP

ρ
 --- 

Fineness Ratio BDL /  --- 

--- 
2/ BDHP  hp/in2 

--- 
4/ BDHP  hp/in4 

--- 
5/ BDHP  hp/in5 

--- BDRPM ⋅  in/min 

The example problem being explored is a lightweight torpedo system, which traditionally

has a diameter of 12 3/4 inches and a power of 200 HP or less (see Table 4). The inputs

and ranges that define the design space are given in Table 43. This example problem is

challenging because the range of diameters available is quite large, from the short six inch

torpedo to a medium-sized 14 inch torpedo. Additionally, the horsepower variation is also

significant, from a lightly powered five horsepower to large 200 horsepower systems. These

challenging ranges were used for a number of reasons. For one, the design space captures

a wide range of possible torpedo configurations: from low-powered UUV’s that could be

deployed from a submarine’s 6 1/2 inch counter-measure dispensers, to high-powered, large
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diameter lightweight torpedoes (i.e., a 200 hp, 14 inch torpedo). Secondly, the design

space is sufficiently large that regions of infeasibility will exist, thus giving the approach an

opportunity to show its merit.

Table 43: Non-Dimensionalization Design Variables and Ranges
Variable Minimum Maximum

Diameter (in) 6 14

HP 5 200

RPM 2000 5000

Before running advanced Designs of Experiments, a grid-search was used to explore

the data. The grid search was done so that the complete design space could be viewed,

clearly showing regions of constraint violations. A 32x32 fine grid was used in conjunction

with diameter and horsepower, while a coarse grid with four levels was run for varying

RPM. The final grid search therefore comprised 4,096 total points. Figure 161 shows the

2-dimensional results with RPM held constant at 2,000. Each point on the grid represents a

single run, with varying markers used to indicate the pass/fail code returned by the analysis

program. Black circles are used to indicate the feasible regions, with each failure mode

having its own symbol. Separate, continuous fields of failure are illuminated in the graph.

The border between these fields represents a constraint line for the given failure mode.

In examining this figure, the large diameter, large horsepower trials, common to today’s

lightweight torpedoes, execute without failure, as expected. The medium diameter, lower

horsepower runs are out of the range of the thrust deduction model. However, this failure is

not associated with any boundary of physics, it simply means that the program is outside

the range of validity for the analysis model. If it is assumed that model extrapolations are

valid (a reasonable assumption for this work), then this field of points can also be considered

feasible. There are then two regions of infeasibility: the small diameter large horsepower

systems are characterized by exceeding the CLmax required for the system, which eventually

keeps the program from converging. On the opposite side, the very low horsepower (5 hp),

large diameter systems fail to converge; this convergence failure is likely due to the analysis

program’s inability to complete a force balance for the torpedo.
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Figure 161: Grid Search Defining Constraints for Diameter and Horsepower, RPM = 2000

Figure 162 shows the three-dimensional results for all the trial runs in the grid search.

Variations in the constraints as a function of RPM can now be seen. At low values of

RPM, there is a large region of constraint violations for the small diameter systems. But,

at these low RPMs, the large diameter, low horsepower systems perform well. As the RPMs

increase, the large diameter torpedoes begin to fail, while small diameter torpedoes perform

progressively better.

The next step in the non-dimensionalization process is to begin examining the design

space in terms of potential non-dimensional parameters. To do so, the previous grid search

was transformed so that it was charted in terms of the potential non-dimensional parameters

listed in Table 42. For the transformed plots, if discrete jumps exist between feasible and

infeasible cases, then the parameter being plotted is a strong candidate for use in non-

dimensionalization for Designs of Experiments. In these cases, the parameter can be used

to determine whether a system is valid or invalid. If there is not a discrete jump between

feasible and infeasible cases for a design parameter, then that parameter is a poor candidate
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Figure 162: Grid Search Defining Constraints for Diameter, Horsepower, and RPM

for use in DoEs. Figure 163 shows some potential parameters: fineness ratio, diameter, and

thrust and torque coefficients. The left-hand side of this figure shows thrust coefficient

versus fineness ratio, or L/D. This figure shows a clean demarcation, or straight line,

between feasible and infeasible points, indicating that KHP and L/D could be used together

to define a feasible model region. The right hand side of Figure 164 shows diameter and

Torque Coefficient (KQ). This figure shows that the diameter and torque coefficient can be

used to clearly designate a line between feasible and infeasible design regions. Figure 164

shows how advance ratio is also useful as a DoE parameter.

System constraints in terms of these parameters are clearly visible as lines, illustrating
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Figure 164: Illustration of Additional Good Non-Dimensional Parameters

the potential for creating engineering design rules for torpedoes from this information. For

instance, from the thrust coefficient versus fineness ratio plot in Figure 163, the following

design rule could be created:

If 5 · KHP +
L

D
< 19, the system is feasible (34)

It could also be possible to use these design rules to create a custom Design of Exper-

iments, one specifically designed to remove infeasible or non-convergent regions from the

valid design space. Reference [78] illustrates a method by which such constraint lines can be

identified and custom DoEs created to exclude the non-convergent regions from the design
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space.

Figure 165 shows some plots that illustrate poor potential design parameters. The left

hand side shows diameter versus horsepower over diameter squared, while the right hand side

of this figure shows fineness ratio versus horsepower. The fineness ratio versus horsepower

chart has no clean demarcation between feasible and infeasible regions. Instead, there is

a large region of overlapping between feasible and infeasible cases. The diameter versus

diameter over horsepower squared has similar overlap between cases. These parameters

would therefore make poor choices for use in Designs of Experiments.
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Figure 165: Illustration of Poor Non-Dimensional Parameters

All 55 combinations of the potential Design of Experiments parameters that were iden-

tified were tried against each other. Appendix A contains a complete set of 55 charts,

each comparing potential DoE parameters. The results are summarized in Table 44, which

shows the parameters that worked well together and which sets performed poorly. Note

that the dimensional parameters tended to do poorly. Likewise the ’derived’ parameters, or

only partially non-dimensionalized parameters such as horsepower over diameter squared,

performed equally poorly, if not worse. It was the traditionally used, fully non-dimensional

parameters, such as advance ratio, fineness ratio, thrust, and torque coefficients that per-

formed exceptionally well. These parameters would be most effective to use in a Design of

Experiments for torpedo systems.
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Table 44: Summary of Goodness of Non-Dimensional Torpedo Parameters
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8.3 Results

The next step was to illustrate the use of these new design parameters in a Design of

Experiments. Unfortunately, most of the parameters that performed well, such as fineness

ratio, advance ratio, and thrust coefficient, are based upon responses from the TOAD

analysis tool. These parameters use the overall vehicle length and the velocity of the

vehicle in their calculations. Since TOAD treats these parameters as responses, they are

difficult to implement as inputs into the analysis program. As such, it was decided to use

the non-dimensional parameter for torque coefficient (KQ) in the Design of Experiment,

since this is the best-behaving parameter that is exclusively a function of the TOAD input

variables.
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Table 45: Comparison of Two Full-Factorial DoE’s for Diameter and HP

Diam eter HP P ass /Fail Diam eter HP K Q P ass /Fail
Trial 1 6 5 P 6 0.28 0.02 P
Trial 2 6 102.5 F 6 3.67 0.26 P
Trial 3 6 200 F 6 7.06 0.50 P
Trial 4 10 5 P 10 3.63 0.02 P
Trial 5 10 102.5 P 10 47.23 0.26 P
Trial 6 10 200 P 10 90.83 0.50 P
Trial 7 14 5 F 14 19.54 0.02 P
Trial 8 14 102.5 P 14 254.03 0.26 P
Trial 9 14 200 P 14 488.52 0.50 P

P a ss Ra te : 66% P a ss Ra te : 100%

Old P a ra m e te rs Ne w  P a ra m e te rs

It was decided to show the effects for a simple, two-dimensional Design of Experiments.

To generate a baseline case, the dimensional design variables for diameter and horsepower

were used from the example problem in Table 43. These parameters were used in a three-

level, full factorial experiment, for a total of 9 analysis runs. Of these 9 DoE runs, 3 of the

parameter combinations failed: a 33% failure rate. Figure 166 shows a graphic of the design

points and which cases failed in the analysis. A second full-factorial experiment was then

run. However, instead of using diameter and horsepower as the DoE variables, diameter

and torque coefficient were varied. The torque coefficient was varied from 0.02 to 0.5. This

variation in KQ resulted in a large range of horsepower, encompassing the entire range of

original DoE values. The horsepower varied from less than 1.0 horsepower to nearly 500

horsepower. The original and new DoE values are compared to each other in Table 45.

When running the nine cases of the new DoE, not a single failed case was reported. Thus,

by running the DoE using the non-dimensional parameter for torque coefficient resulted in

significantly better results than using the dimensional value of horsepower. This improve-

ment in the Design of Experiments was obtained while still maintaining the entire original

variable ranges; in fact, the variable ranges were increased for the non-dimensional case yet

maintained superior performance. An overlay of the two Designs of Experiments is shown in

Figure 166. The figure shows how the non-dimensional KQ parameter steers the DoE away

from the non-feasible portions of the design space while simultaneously retaining a large

amount of the feasible design space. Therefore, the non-dimensional parameter KQ can be
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used with good effect in removing infeasible design space from a Design of Experiments for

conceptual torpedo design.
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Figure 166: Comparison of Design of Experiments with Original Variables to Non-
Dimensionalized Variables, with Diameter and HP

A second example is shown in Figure 167. This example, also two-dimensional, is for

a design space of diameter versus RPM. The problem is solved with the motor horsepower

fixed at a value of 102.5 HP. Again, a DoE for diameter and torque coefficient is compared

to the original deisgn parameters of diameter and RPM. Table 46 summarizes the results.

Note again that the DoE behaves significantly better for the non-dimensional parameters

than the original parameters. In addition, Figure 167 shows that significantly more design

space is open to the user for a similarly-sized DoE. Though not all of the cases were valid

in the new DoE, the increase in design space and validity of the DoE is remarkable.

8.4 Summary

In transforming the results of the grid search to examine potential non-dimensional param-

eters, clear demarcations became visible that showed which sets of parameters could be

used to determine whether a design would be feasible or infeasible. These plots showed that
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Figure 167: Comparison of Design of Experiments with Original Variables to Non-
Dimensionalized Variables, with Diameter and RPM [80]

the best parameters for use in a Design of Experiments of torpedo systems are the fully

non-dimensional parameters, similar to those already used in engineering disciplines, such

as fineness ratio, advance ratio, thrust coefficient, and torque coefficient. When possible,

sizing and synthesis programs for torpedoes should be written so that the inputs can be

formulated so that they are in terms of these non-dimensional parameters.

In addition to illustrating strong non-dimensional parameters, the results show that

definite constraint equations can be written in terms of these non-dimensional parameters.

These equations could be used to create engineering rules of thumb for the system or could

be used in the creation of custom Design of Experiments that avoids infeasible regions of

the design space.

Finally, two examples employing a Design of Experiments showed that this smart selec-

tion of design parameters could significantly reduce or even eliminate the infeasible cases

from the Design of Experiments, all while maintaining an aggressive range for the design
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Table 46: Comparison of Two Full-Factorial DoE’s for Diameter and RPM [80]

Diameter RPM Pass/Fail Diameter RPM KQ Pass/Fail
Trial 1 6 2000 F 6 21396.46 0.02 F
Trial 2 6 3500 F 6 9099.71 0.26 P
Trial 3 6 5000 F 6 7317.48 0.5 P
Trial 4 10 2000 F 10 9132.59 0.02 P
Trial 5 10 3500 P 10 3884.00 0.26 P
Trial 6 10 5000 P 10 3123.30 0.5 P
Trial 7 14 2000 P 14 5212.51 0.02 P
Trial 8 14 3500 P 14 2216.83 0.26 P
Trial 9 14 5000 P 14 1782.65 0.5 P

56% 89%

Old Parameters New Parameters

Pass Rate: Pass Rate:

variables. Non-dimensionalization should be considered before any large Design of Exper-

iments study is conducted, and the parameters given in Table 44 should be used in future

torpedo studies.
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CHAPTER IX

CONCLUSIONS

9.1 Research Questions Answered

The following answers each of the research questions posed in Section 1.8, along with an-

swering the research hypothesis of the dissertation. The questions and answers stand as

follows:

1. When determining total weapon effectiveness, how significant is the tactical environ-

ment with which a system is used compared to torpedo design decisions?

The tactical environment is very significant to the torpedo system. In many situ-

ations, the launching conditions for the torpedo have significantly more impact on

torpedo performance than the actual design. However, even with the large impact

of submarine tactics on torpedo effectiveness, a torpedo that is specifically optimized

for its operational conditions will demonstrate a marked improvement over a torpedo

that is designed for a different operational condition.

2. If tactics account for a significant portion of total weapon effectiveness, can conceptual

design decisions still be made that have more than marginal improvements on total

weapon effectiveness? Can the optimization of tactics and conceptual design be syner-

gistically combined to create an even more effective weapon system? Can this synergy

be demonstrated on a mine counter-measure system?

Both the torpedo tactics example and the mine counter-measures problem demon-

strated that although the tactics greatly influence the system performance, design

decisions can still be made that improve weapon system performance. Both exam-

ples shows that the right combination of tactics and design variables produced the

best-performing vehicles. The mine counter-measure system showed that tactics and
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performance could be optimized simultaneously to generate the best-performing sys-

tem.

3. When dealing with uncertainty, can probability of success be treated as an independent

variable in conceptual design? If so, can it be used to select the torpedo design that

has the best tradeoff between cost and risk?

A method was developed by which probability of success could be used as an inde-

pendent variable, with the decision-maker able to choose what platform, and at what

cost, he or she is willing to accept based upon the probability of success, or risk, of

the system. Probability of success versus weight charts were generated for torpedo

design, demonstrating the trade-off between risk and cost, thereby allowing informed

decisions to be made.

4. What are the best combinations of metamodeling and uncertainty-analysis measures

of merit to use when in the initial stages of robust conceptual torpedo design?

These combinations can be very problem-dependent. When using stochastic tech-

niques (random searches or genetic algorithms), fast-executing metamodels like re-

sponse surface equations work well. When using gradient-based optimizers to find the

Pareto front, complex approximations such as most-probable-point methods (FORM

and SORM) should be used, or else large numbers of Monte Carlo runs are required

to find valid solutions. Joint-probability distribution functions can also be used to

approximate the multi-variate design space. Whenever possible, direct simulation

should be employed in lieu of a metamodel. Large numbers of Monte Carlo trials

were also shown to lead to more conservative results. The applicability of each of

these techniques is laid out in this dissertation.

5. What normalization schemes for torpedo design parameters can be used to simplify

the conceptual design process?

The results showed that the best normalization schemes to use involved fully non-

dimensionalized parameters such as fineness ratio, advance ratio, thrust coefficient,
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and torque coefficient. These non-dimensional parameters greatly increased the ro-

bustness of Designs of Experiments.

The answer to the research hypothesis is as follows:

A new, more effective design process can be created for conceptual torpedo design. This

process, by accounting for the effects from both uncertainty and the tactical environment

in which the torpedo is employed, will significantly improve on current design processes for

torpedoes.

This research developed a new process for the conceptual design of undersea weapon

systems. This process accounts for uncertainty in the design and decision process, as well

as the effects of tactics on the system. The new design process is a significant improvement

over current torpedo design processes.

9.2 Future Work

This research lays the foundation for a new design process for undersea weapon systems. The

following list poses new challenges for future research that can further improve the process

for undersea weapon design and optimization in particular and other complex systems-

engineering problems in general.

1. A robust integrated design framework was introduced for undersea weapon systems.

Theoretically, there is nothing limiting this process from being used on any complex

systems-engineering design question. The process should therefore be expanded and

demonstrated with additional complex systems. Good potential implementations for

this process include surface and submarine design, aircraft design, missile design,

and propulsion design. Examples from these fields need to be developed within this

framework to prove the extensibility of the framework, as well as dealing with any

minor compatibility issues that will inherently arise when the process is used with a

complex system.

2. Development of engagement modeling tools is a definite need. These tools must not

only be parametric in nature but also account for the myriad of tactical decisions
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possible without resorting to a man-in-the-loop style of analysis. Such a capability is

imperative for tactics to be fully integrated into the conceptual design and tradeoff

environment.

3. A framework for including tactical decisions in design was illustrated using mine

counter-measures, along with the need for such a capability in torpedo design. The

torpedo design methodology should be expanded to include not only a complex tor-

pedo analysis program, but also include a complex engagement analysis tool so that

the system can be designed with tactics fully in play. In this approach, torpedoes

can be designed to maximize the full probability of hit (Phit) of the system while also

maximizing the probability of evasion (Pevade) for the friendly submarine.

4. A full system-of-systems approach for undersea warfare should be implemented. This

approach would not only include torpedo design and tactics analysis, but would also

include submarine design. In this macroscopic, system-of-systems approach, subma-

rine design parameters, torpedo design parameters, and appropriate tactics could all

be traded-off in order to synergistically create the best performing overall system,

even in the presence of uncertainty. The framework of such an over-arching undersea

architecture has been laid out in this work.

5. A better accounting for the consequences of failure needs to be addressed. Does failure

imply that the system performs only slightly below a subjective requirement, or does

failure imply a catastrophic loss to the developer? An accounting for this type of

relative consequence of failure needs to be worked into the robust design process.

9.3 Final Thoughts

This work addressed many issues, yet the cornerstone question remained the same: how can

the process of conceptual design for torpedoes be improved? The solution is manyfold. For

one, design uncertainty must be incorporated into any legitimate design process, particularly

for undersea weapons. This work provided a mechanism to incorporate design uncertainty

and introduced a new approach to exploring the results. As an additional improvement
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to torpedo design, it was found that some torpedo design parameters are preferable to

others. Future work should use these better-behaving design parameters. And, finally, the

thesis showed that undersea weapon design cannot be done in a vacuum. Conceptual design

must be done in an environment that accounts for the tactics and the capabilities of the

submarines and Fleet systems that are involved. This work shows that all of these elements

are crucial, and it brings them all together into an integrated robust design and tactics

optimization process for undersea weapons.
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APPENDIX A

NON-DIMENSIONALIZATION RESULTS

This Appendix shows the charts comparing all 55 possible combination of non-dimensional

parameters that could potentially be used for torpedo design. Each combination of param-

eters is rated as a ‘good’ potential combination for design purposes or a ‘bad’ potential

combination. This rating is based on the degree of separation of valid versus failed cases

in the charts. A summary of the parameters is given in Table 47, with the complete list of

figures given as Figure 168 through Figure 222.

Table 47: Summary of Goodness of Non-Dimensional Torpedo Parameters
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Figure 168: Diameter versus Horsepower (poor parameters)
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Figure 169: Diameter versus RPM (poor parameters)
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Figure 170: Diameter versus HP/Dia2 (poor parameters)

218



6 7 8 9 10 11 12 13 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Diameter vs. Horsepower/Diam4

Diameter (in)
H

P
/D

ia
m

4  (
hp

/in
4 )

Feasible
Infeasible

Figure 171: Diameter versus HP/Dia4 (poor parameters)
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Figure 172: Diameter versus HP/Dia5 (poor parameters)
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Figure 173: Diameter versus RPM·Diam (poor parameters)
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Figure 174: Diameter versus Fineness Ratio (poor parameters)

6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Diameter vs. Advance Ratio

Diameter (in)

A
dv

an
ce

 R
at

io
 (

J)

Feasible
Infeasible

Figure 175: Diameter versus Advance Ratio (good parameters)
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Figure 176: Diameter versus Thrust Coefficient (good parameters)
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Figure 177: Diameter versus Torque Coefficient (good parameters)
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Figure 178: Horsepower versus RPM (poor parameters)
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Figure 179: Horsepower versus HP/Dia2 (poor parameters)
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Figure 180: Horsepower versus HP/Dia4 (poor parameters)
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Figure 181: Horsepower versus HP/Dia5 (poor parameters)
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Figure 182: Horsepower versus RPM·Diam (poor parameters)

222



0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200
Fineness Ratio vs. Horsepower

Fineness Ratio (Len/Diam)
H

or
se

po
w

er
 (

hp
)

Feasible
Infeasible

Figure 183: Fineness Ratio versus Horsepower (poor parameters)
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Figure 184: Advance Ratio versus Horsepower (poor parameters)
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Figure 185: Thrust Coefficient versus Horsepower (good parameters)

223



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

20

40

60

80

100

120

140

160

180

200
Torque Coefficient vs. Horsepower

Torque Coefficient (K
Q

)
H

or
se

po
w

er
 (

hp
)

Feasible
Infeasible

Figure 186: Torque Coefficient versus Horsepower (poor parameters)
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Figure 187: RPM versus HP/Dia2 (poor parameters)
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Figure 188: RPM versus HP/Dia4 (poor parameters)
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Figure 189: RPM versus HP/Dia5 (poor parameters)
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Figure 190: RPM versus RPM·Diam (poor parameters)
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Figure 191: Fineness Ratio versus RPM (poor parameters)
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Figure 192: Advance Ratio versus RPM (poor parameters)
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Figure 193: Thrust Coefficient versus RPM (good parameters)
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Figure 194: Torque Coefficient versus RPM (poor parameters)
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Figure 195: HP/Dia2 versus HP/Dia4 (poor parameters)
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Figure 196: HP/Dia2 versus HP/Dia5 (poor parameters)

0 1 2 3 4 5 6
1

2

3

4

5

6

7
x 10

4 Horsepower/Diam2 vs. RPM*Diam

HP/Diam2 (hp/in2)

R
P

M
*D

ia
m

 (
re

v−
in

/m
in

)

Feasible
Infeasible

Figure 197: HP/Dia2 versus RPM·Diam (poor parameters)
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Figure 198: Fineness Ratio versus HP/Dia2 (poor parameters)
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Figure 199: Advance Ratio versus HP/Dia2 (poor parameters)
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Figure 200: Thrust Coefficient versus HP/Dia2 (poor parameters)
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Figure 201: Torque Coefficient versus HP/Dia2 (poor parameters)
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Figure 202: HP/Dia4 versus HP/Dia5 (poor parameters)
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Figure 203: HP/Dia4 versus RPM·Diam (poor parameters)
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Figure 204: Fineness Ratio versus HP/Dia4 (poor parameters)
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Figure 205: Advance Ratio versus HP/Dia4 (poor parameters)
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Figure 206: Thrust Coefficient versus HP/Dia4 (poor parameters)
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Figure 207: Torque Coefficient versus HP/Dia4 (poor parameters)
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Figure 208: HP/Dia5 versus RPM·Diam (poor parameters)
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Figure 209: Fineness Ratio versus HP/Dia5 (poor parameters)
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Figure 210: Advance Ratio versus HP/Dia5 (poor parameters)
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Figure 211: Thrust Coefficient versus HP/Dia5 (poor parameters)
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Figure 212: Torque Coefficient versus HP/Dia5 (poor parameters)
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Figure 213: Fineness Ratio versus RPM·Diam (poor parameters)
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Figure 214: Advance Ratio versus RPM·Diam (poor parameters)
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Figure 215: Thrust Coefficient versus RPM·Diam (good parameters)
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Figure 216: Torque Coefficient versus RPM·Diam (poor parameters)
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Figure 217: Fineness Ratio versus Advance Ratio (good parameters)
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Figure 218: Fineness Ratio versus Thrust Coefficient (good parameters)
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Figure 219: Fineness Ratio versus Torque Coefficient (good parameters)
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Figure 220: Advance Ratio versus Thrust Coefficient (good parameters)
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Figure 221: Advance Ratio versus Torque Coefficient (good parameters)
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Figure 222: Thrust Coefficient versus Torque Coefficient (good parameters)
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APPENDIX B

TOAD CALCULATIONS

This appendix includes some select performance algorithms from the TOAD torpedo anal-

ysis program (descriptions were taken from Reference [158]). The algorithms included here

focus on the high-level “system” parameters – drag, velocity, range, and noise. Sub-system

algorithms, which make up the majority of the analysis, are excluded for brevity. A complete

description of analyses is available in the TOAD User’s Manual, Reference [158].

B.1 Drag Calculations

The first calculation needed for drag analysis is the wetted surface area, which is a primary

driver for total drag. The torpedo is modeled as a cylindrical body with a hemispherical

nose and a conical afterbody. The wetted area can then be calculated by Equation 35,

where f is the afterbody fraction, defined by default to be 0.10, and L and D refer to the

torpedo length and diameter, respectively.

Sw =
π

4
D2

(

4(1 − f)
L

D
+

√

1 + (2f
L

D
)2

)

(35)

Drag coefficients for the vehicle (form drag, appendage drag, induced drag, etc.) are

calculated based upon the definition of drag coefficient in Equation 36 for a drag component

i.

CDi
=

Di

1/2 ρ V 2
s Sw

(36)

The zero-lift drag is found by summing the appendage drag (from fins, etc.) and the

form drag, multiplied by a correction factor, Equation 37.

CD0 = Cf Fform + Capp (37)
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The frictional drag coefficient, Cf , is based upon empirical data from Reference [95] and

is shown in Equation 38, with the definition of Reynolds number in Equation 39.

Cf =
0.0776

log10(Re − 1.88)2
+

60

Re
(38)

Re =
VsL

ν
(39)

Re = Reynolds Number

Vs = Vehicle Speed

L = Vehicle Length

ν = Fluid Kinematic Viscosity

The form correction factor, fform was taken from Hoerner, Reference [107], and is shown

as Equation 40.

fform = 1 + a(1.5 + 7a) (40)

a =

(

min
(1

2
,
D

L

)

)3/2

The drag for each fin is calculated individually, based upon the fin shape and the length of

the fin that interferes with the torpedo body. The fin drag is then multiplied by the number

of fins and normalized by the reference area convention of Equation 36. The calculations

for appendage drag are based upon Hoerner [107] and are given in Equation 41.
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Figure 223: Close-up View of Spearfish Fin Geometry [186]

Dfin = Cf
1

2
ρV 2A · 2

(

1 + 1.2(t/c) + 100(t/c)4
)

(41)

Dint =
1

2
ρV 2t2

(

0.75(t/cint) − 0.0003(t/cint)
2
)

Cf = Friction Coefficient (Equation 38)

A = Planform (one-sided) Area

t = Fin Thickness

c = Fin Chord

cint = Fin Chord (with body interference)

The number and dimensions of fins are based upon the fin geometry of the British

Spearfish torpedo. A schematic of the fin geometry is shown in Figure 223. Three sets of

fins are listed: primary, secondary, and control surface fins. The size of each fin is given in

Table B.1. The fin sizes for specific torpedoes are ratioed based upon a spearfish baseline

diameter of 21 inches. For instance, if a torpedo has an 11.5 inch diameter, the fin sizes will

be decreased by half to maintain the same relative size.

An induced drag component is calculated for the torpedo system. The induced lift and

drag model is based upon a linear model in Reference [106]. The model is valid only at small

angles of attack (less than 12 degrees). The equations for this drag are given as Equation
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Table 48: Baseline Fin Sizes
Fin Number Baseline Thickness Baseline Interference Freestream

Type of Area (in) Chord Length Velocity
Fins (in2) (in) (in)

Primary 4 40.0 0.75 16.0 chord/2 1.0

Secondary 8 20.0 0.75 4.0 chord 1.0

Control 4 20.0 0.75 4.0 chord 1.1
Surfaces

42 and Equation 43.

CDα = α2(CLP
+ |α|CLP

) (42)

CLα = α(CLP
+ αCLP

)

CLP
= 2

Sb

Sw

CLV
= ηCDC

Sp

Sw

η = bo + fb(B1 + fbb2)

fb =

√

max
(

2, min
(

28,
L

D

))

Sb =
π

4
D2

Sp =
π

4
D2
(1

2
+
(

1 − 1

2
f
) 4L

πD

)
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CDα = Induced Drag (43)

CLα = Induced Lift

α = Angle of Attack (radians)

CLP
= Potential Flow Component of Body Lift

CLV
= Viscous Component of Body Lift

Sb = Transverse Cross-Sectional Area

Sp = Planform (longitudinal cross-sectional) Area

Sw = Wetted Area

f = Form Correction Factor

b0 = 0.378452

b1 = 0.129846

b2 = − 0.00997805

CDC
= 1.2

The total drag for the system can then be calculation via Equation 44.

CD = CD0 + CDi
(44)

B.2 Velocity Calculations

The velocity calculations in TOAD are developed around a power and force balance, assum-

ing that the torpedo is travelling at a constant depth and constant velocity. The first step

in the process is to calculate the power available by multiplying the shaftpower provided

from the motor times the propulsor efficiency. An angle of attack (α) is then assumed, and

a velocity is calculated, as shown in Equation 45.

V =

(

ηprop · Pshaft · cos α

1/2ρV 2 · Sref

)1/3

(45)
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Next, the forces in Figure 224 must be balanced. The estimated torpedo weight is

subtracted from the buoyancy. The remaining force is equal to the ‘lift’ required to maintain

neutral buoyancy. Note that, unlike aircraft calculations, this lift-force is not inherently

upwards. In cases in which the buoyancy is greater than the weight (a positively buoyant

vehicle), the lift will be in a downwards direction to maintain level travel. Positive buoyancy

is a fairly common situation in torpedo design, as ‘test-rounds’ are always designed with

positive buoyancy, so that they can easily be recovered after use.

Induced Drag
Alpha

Weight

Buoyancy

Lift

Form/Friction 
Drag

Thrust

Figure 224: Force Balance in TOAD Sizing

Once the required lift has been calculated, the coefficient of lift can be calculated via

Equation 46. Since the coefficient of lift is assumed to change linearly with angle of attack,

a new angle of attack can be calculated based upon the required coefficient of lift.

CL =
Buoyancy − Weight

1/2ρV 2 · Sref
− CD · tan(α) (46)

This new angle of attack can be used to calculate the new drag value (including induced

drag, see Section B.1, Equation 44) and the power required for the system, as shown in

Equation 47. The velocity analysis is then repeated, until a velocity and α value are chosen

so that the two power calculations are identical.

Pshaft =
CD · (1/2ρV 2 · Sref ) · V

cos(α)ηprop
(47)

With a new velocity calculated for the vehicle, the TOAD program iterates and resizes

the vehicle (see Figure 225), as both the propulsor sub-system and the CD0 are a function of

velocity. This process continues until the velocity converges and the vehicle size no longer
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changes.

FRONT END MOTOR Propulsor

Fixed Length RPM, HPmotor RPM, HPshaft

Diameter

Force Balance
Power Balance

CD

Velocity

ITERATION

Figure 225: Iteration Procedure of TOAD

B.3 Range Calculations

The range calculations are very straightforward for the TOAD program. The total power

drain of the torpedo is calculated, which accounts for the hotel power load of all the sub-

systems along with the power draw of the motor divided by the motor efficiency. The total

energy available, in the form of either fuel or battery charge, is divided by the power drain

in order to calculate the amount of time that the torpedo remains powered. This time

multiplied by the torpedo velocity will generate a value for range1. The equations are given

as Equation 48 and Equation 49.

Power Drain = Hotel Power +
PMotor

ηMotor
(48)

R = V · Efuel

Power Drain
(49)

B.4 Noise Calculations

Noise calculations are inherently complex, and, for Fleet systems, inherently classified. As

such, the noise calculations for TOAD are designed to provide a simple way to show noise

1This formulation assumes that the torpedo will be continuously operating at its maximum-velocity
condition: no accelerations or lower-speed ‘cruise conditions’ are present
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trends (i.e., faster vehicle makes more noise, a bigger engine makes more noise) even though

the magnitude of these trends may not match actual systems. In addition, the final ‘noise’

of the system is related through a single value of decibel level, which ignores the inherent

spectral nature of system noise. The decibel levels should be considered to be ‘in relation

to an abstract threshold’, and not an absolute amount.

The noise section calculates three distinct types of noise and then combines these three

noises as an exponential sum to estimate the total noise. The three noises are flow noise,

engine noise, and propulsor noise. Each noise is generated by comparing the torpedo values

to a baseline criteria. Two types of noise damping materials are included in the formu-

lation. A decoupling layer may be specified, which is an external layer attached to the

hull that decreases the flow noise. Secondly, an engine damping layer may be included

around the propulsion section, which decreases the engine noise. These layers do come

with penalties, as the decoupling layer adds weight and decreases the inner volume avail-

able for internal components. Similarly, the engine damping layer adds both weight and

length to the propulsion system. An engine damping layer may NOT be included with the

IMP (integrated motor-propulsor) type propulsion system, as the motor is external to the

torpedo.

The equations used to calculate the torpedo noise are shown as 50 through 53. The

variables and parameter values are defined in Table 49. Note that variables with a subscript

“0” indicate reference values. Otherwise the variables represent torpedo values. Figure 226

shows an example of how the noise components and the total noise vary as a function of

velocity. Note that engine noise dominates the system at low velocities, while flow and

propulsor noise dominate the system at high velocities.

System Noise = 10 log10

(

10FlowNoise/10 + 10EngineNoise/10 + 10PropNoise/10
)

(50)

FlowNoise = 60 log10

( V

V0

)

− 15dB − A · (DecouplerThickness) (51)
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Table 49: Torpedo Noise Variable Definitions and Reference Values

Variable Definition Reference Value

V Torpedo maximum velocity 10 kts

A Decoupler layer effectiveness 10 dB/in

HP Motor horsepower 10 hp

B Engine damper layer effectiveness 10 dB/in

Engine Type Noise Extra noise due to engine type
Electric = +0dB

Conventional = +10dB
SCEPS = +10dB

a Propellor radius 1.0 in

J Propellor advance ratio 1.5

Damper Thickness Thickness of engine-isolation layer —

Decoupler Thickness Thickness of body-insulation layer —

EngineNoise = 10 log10

( HP

HP0

)

+10dB −B · (DamperThickness)+EngineTypeNoise (52)

PropNoise = 30 log10

[

V

V0

( 1 +
(

aπ
J

)2

1 +
(

a0π
J0

)2

)1/2
]

− 15dB (53)
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Figure 226: Torpedo Noise Contributions as a Function of Velocity
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