
SMART PARALLEL WAVELET TRANSFORMATIONS FOR EDGE AND FOG
DETECTION OF BEARING DEFECTS

A Dissertation
Presented to

The Academic Faculty

By

Pierrick Rauby

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Georgia Institute of Technology

Georgia Institute of Technology

December 2021

Copyright © Pierrick Rauby 2021

SMART PARALLEL WAVELET TRANSFORMATIONS FOR EDGE AND FOG
DETECTION OF BEARING DEFECTS

Approved by:

Dr. Thomas Kurfess, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Christopher Saldana
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Katherine Fu
Departement of Mechanical Engi-
neering
University of Winsconsin-Madison

Dr. Vincent Paquit
Manufacturing Demonstration
Facility
Oak Ridge Nationnal Laboratory

Dr. Ducan McFarlane
Institute for manufacturing
University of Cambridge

Date Approved: November 12,
2021

In a world of change, the learners shall inherit the earth, while the learned shall find

themselves perfectly suited for a world that no longer exists.

Eric Hoffer

To my parents, Annie and Alain, for instilling in me the love of learning.

ACKNOWLEDGEMENTS

I would like to thank Professor Thomas Kurfess for his guidance during this work. He

consistently helped me with the research and provided advice that allowed me to take a

step back when I was going in the wrong direction.

I would also like to thank the other committee members, Dr. Fu, Dr. McFarlane,

Dr. Paquit, and especially Dr. Saldana, for his understanding in his supervision of other

research projects when the work on my dissertation took most of my time.

My thanks also go to the administrative staff of the Office of International Education

and the School of Mechanical Engineering, especially Mrs. Glenda Johnson. Her expla-

nation tremendously helped me with the paperwork for the different degrees I received

from GeorgiaTech.

Finally, I must express my gratitude to Claire, her parents, and my family and friends

for their support during this pandemic, which made my work in this unusual time easier.

Thank you!

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xv

Summary . xx

Chapter 1: Introduction and Motivation . 1

1.1 Outline . 2

1.2 Rolling Element Bearing . 2

1.2.1 Bearing introduction . 3

1.2.2 Types of rolling element bearings 4

1.3 Rolling Element Bearing Maintenance 4

1.3.1 Maintenance strategies . 6

1.4 Internet of Things and Industry 4.0 . 8

1.4.1 Internet of Things for Manufacturing 9

1.4.2 Internet of Things platforms . 13

1.5 Machine Learning for defect detection 19

1.5.1 Supervised and unsupervised machine learning 21

vi

1.5.2 Supervised algorithms . 22

1.6 Motivation . 30

Chapter 2: Background and Literature Review 32

2.1 Current bearing defect detection methods 32

2.2 Time domain analysis . 33

2.3 Frequency domain analysis . 36

2.3.1 Fourier Transforms of a Signal 38

2.3.2 Identification of defect frequencies 39

2.4 Cepstrum Analysis . 40

2.5 Envelope analysis . 41

2.6 Time-frequency analysis . 42

2.6.1 Time-Frequency domain . 42

2.6.2 Short Time Fourier Transform (Gábor Transform) 43

2.6.3 Wavelet Transforms . 43

2.7 Wavelet Transform for bearing defect detection 50

2.8 Federated Learning . 54

2.8.1 Concept behind federated learning 54

2.8.2 Advantages of Federated Learning 54

2.8.3 Theory . 56

2.8.4 Application of Federated Learning 57

2.9 Federated Learning in Manufacturing . 58

Chapter 3: Problem Formulation . 60

vii

3.1 Summary and Limitation of the current approaches 60

3.1.1 Time domain limitations . 60

3.1.2 Frequency domain limitations 60

3.1.3 Time-frequency possible improvements 61

3.2 Research questions . 61

Chapter 4: Federated Edge Identification of Bearing Defects 65

4.1 BeagleBone AI presentation . 65

4.1.1 Texas Instrument Sitara AM5729 chip presentation 65

4.1.2 BeagleBone System on Chip . 67

4.2 PRU-ICSS subsystem . 69

4.2.1 Presentation of the PRU-ICSS 69

4.2.2 PRU-ICSS memory . 70

4.2.3 Interfacing the ARM and the PRU-ICSS 72

4.2.4 Communication between the Host ARM and the PRU-ICSS sub-
system . 73

4.2.5 Running a code on the PRU . 74

4.3 Deterministic data acquisition implementation 75

4.3.1 Development of an I2C driver 75

4.3.2 Driver’s validation . 80

4.3.3 Deterministic Data Acquisition 82

4.4 Data processing . 87

4.5 Edge inference of bearing status . 88

4.5.1 Introduction to Texas Instrument Deep Learning Library 88

viii

4.5.2 Limitation of the library . 89

4.6 Implementation on TensorFlow . 90

4.6.1 Introduction to TensorFlow . 90

4.6.2 Artificial Neural Network . 91

4.7 Federated Learning . 91

4.8 Reviewed architecture . 95

Chapter 5: Validation of the proposed architecture 97

5.1 Machine Fault Simulator data acquisition 97

5.1.1 Presentation of the Machine Fault Simulator 97

5.1.2 First data acquisition on the Machine Fault Simulator 98

5.1.3 Final data acquisition on the Machine Fault Simulator 102

5.1.4 Performance in the centralized learning context 103

5.1.5 Performance in the federated learning context 105

5.1.6 Performance of the peak finding approach 112

5.2 NASA data-set . 113

5.2.1 Introduction of the Dataset . 113

5.2.2 A first analysis of the dataset and preprocessing 114

5.2.3 Selection of the data in the dataset 118

5.2.4 Down sampling . 121

5.2.5 Performance in the centralized learning context 122

5.2.6 Performance in the federated learning context 126

5.2.7 Performance of the peak finding approach 131

ix

5.2.8 Trend analysis approach . 132

5.3 Comparison of bearing defect detection methods 134

5.3.1 Performance metrics . 134

5.3.2 Centralized Learning and Trend analysis 136

5.3.3 Centralized Learning and Peak analysis 137

5.3.4 Centralized Learning and Federated Learning 138

5.3.5 Federated Learning and Trend analysis 139

5.3.6 Federated Learning and Peak analysis 140

5.3.7 Summary of the results across methods 141

Chapter 6: Contributions and limitations . 143

6.1 Contributions . 143

6.1.1 Technical contributions . 143

6.1.2 Interest of the developed method 145

6.1.3 Potential field of application . 145

6.1.4 Novelty of the approach . 146

6.2 Limitations . 146

6.2.1 Data-rate limitations . 146

6.2.2 Defect identification limitation 147

6.3 Answer to the Research question . 148

6.3.1 Answer to the first research question 148

6.3.2 Answer to the second research question 150

6.3.3 Answer to the third research question 151

x

6.3.4 Answer to the main research question 153

6.4 Future Work . 154

Chapter 7: Conclusion . 155

Appendix A: Derivation of the Bearing Defect Frequencies 157

A.1 Derivation . 157

A.2 Summary of the bearing defect frequencies 159

Appendix B: Machine Fault Simulator . 161

B.1 Imbalance loader installed . 161

B.2 Components of the Machine Fault Simulator 162

Appendix C: Centralized learning on Machine Fault Simulator Dataset 163

C.1 Model 0 . 163

C.2 Model 1 . 164

C.3 Model 2 . 165

C.4 Model 3 . 166

C.5 Model 4 . 167

C.6 Model 5 . 168

Appendix D: Federated Learning on Machine Fault Simulator Dataset 170

D.1 Influence of the total number of client 170

D.2 Influence of the number of retrained client per round 171

Appendix E: Kurtosis evolution over bearing life for NASA Dataset 173

xi

E.1 Kurtosis evolution over time for the 3 bearing run to failure test of [38] . . 174

E.2 Kurtosis evolution over time for the 3 bearing run to failure test of [38] . . 175

E.3 Kurtosis evolution over time for the 3 bearing run to failure test of [38] . . 176

Appendix F: Centralized learning on NASA Dataset 177

F.1 Model 0 . 177

F.2 Model 1 . 178

F.3 Model 2 . 179

F.4 Model 3 . 180

F.5 Model 4 . 181

F.6 Model 5 . 182

References . 193

xii

LIST OF TABLES

1.1 Relative performance for different types of rolling elements bearings for
radial and thrust loads[4]. 5

1.2 Different maintenance strategies . 8

1.3 Comparison between different microcontrollers 15

1.4 Comparison between different microprocessors[21] 19

4.1 Results from ring oscillator test from [95] 70

4.2 PRU-ICSS local memory map from [97]. 71

4.3 Remote Processor of the AM5729 . 74

4.4 Selection of I2C accelerometers. 85

4.5 Model 0 Layers, Shapes and parameters 91

4.6 Model 1 Layers, Shapes and parameters 92

4.7 Model 2 Layers, Shapes and parameters 92

4.8 Model 3 Layers, Shapes and parameters 92

4.9 Model 4 Layers, Shapes and parameters 92

4.10 Model 5 Layers, Shapes and parameters 93

5.1 Data Acquisition conditions for the MFS 103

5.2 Accuracy across models and wavelet in a centralized learning context for
the Machine Fault Simulator Dataset . 104

xiii

5.3 Confusion Matrix for the Peak Finding approach for the MFS Dataset . . 112

5.4 Summary of the defect observed on the dataset 116

5.5 Healthy and defective region for test 2 and 3 121

5.6 Accuracy across models and wavelet in a centralized learning context for
the NASA Dataset . 125

5.7 Confusion Matrix for the Peak Finding approach for the NASA Dataset . 132

5.8 Precision, Recall and Accuracy for 8 different Nelson Rules 133

5.9 Confusion Matrix for the Trend approach for the NASA Dataset 133

5.10 Comparison of precision, recall and accuracy between the Centralized
Learning Approach and the Trend Analysis 137

5.11 Comparison of precision, recall and accuracy between the Centralized
Learning Approach and the Peak Analysis 137

5.12 Comparison of precision, recall and accuracy between the Centralized
Learning Approach and the Federated Learning Approach 138

5.13 Comparison of precision, recall and accuracy between the Federated Learn-
ing Approach and the Trend Analysis . 139

5.14 Comparison of precision, recall, and accuracy between the Federated Learn-
ing Approach and the Peak Analysis . 140

C.1 Accuracy of Model 0 in centralized learning for different wavelet transforms164

C.2 Accuracy of Model 1 in centralized learning for different wavelet transforms165

C.3 Accuracy of Model 2 in centralized learning for different wavelet transforms166

C.4 Accuracy of Model 3 in centralized learning for different wavelet transforms167

C.5 Accuracy of Model 4 in centralized learning for different wavelet transforms168

C.6 Accuracy of Model 5 in centralized learning for different wavelet transforms169

E.1 Summary of the defect observed on the dataset 173

xiv

LIST OF FIGURES

1.1 First drawing of a Rolling Element Bearing [2] 3

1.2 Components of rolling elements bearings[4] 5

1.3 Race defects [5]. 6

1.4 Spectral signatures of an Outer Race Defect (1.4a) and an Inner Race
Defect (1.4b) . 7

1.5 A Typical accelerometer design from Brüel & Kjær [12] 10

1.6 An example of MTConnect Data . 11

1.7 Particle Photon and Teensy 4.1 [20][19]. 15

1.8 Architecture of a microcontroller. 16

1.9 Architecture of a microprocessor. 16

1.10 Four different microprocessors from [21][22][23]. 17

1.11 Classical programs and Machine Learning programs. 20

1.12 Linearly separable points (left), non-linearly separable data point (right).
[29] . 25

1.13 Data set where no linear boundary can be found. [29] 26

1.14 Mapping Φ from the data space X and the feature spaceH [30] 27

1.15 Data set where no linear boundary can be found. [31] 28

1.16 Multi-layer Perceptron structure. [32] 29

xv

2.1 Value of Skewness, Kurtosis, and Root Mean Square (RMS) for test 2
bearing 1 of the NASA Bearing Dataset 34

2.2 Waveform (2.2a) and Spectrum (2.2b) of a bearing with an Outer Race
defect. 37

2.3 Time frequency resolution of the Short Time Fourier Transform (left) and
the Wavelet Transform (right). 44

2.4 Schematic of a filter bank (H, low-pass and G, Hight-pass) 45

2.5 The Haar wavelet . 46

2.6 Solution to 2.29 . 49

2.7 The Continuous Multiple Q-factor Gabor Wavelet Transform approach . . 52

2.8 The Federated Learning Process. 55

3.1 Research Questions . 64

4.1 AM5729 block diagram from [91]. 66

4.2 The Fan Cape from [90]. 69

4.3 The PRU-ICSS subsystem and the Interconnect [96]. 70

4.4 The VRINGS and the mailboxes used by remoteproc and RPMsg. [98]. . 73

4.5 I2C transaction schematics[97]. 76

4.6 I2C Bus wiring[100]. 78

4.7 Single Byte transmission. 81

4.8 Single Byte reception. 82

4.9 Single transmission followed by single receive. 83

4.10 Multiple bytes’ transmission followed by multiple read transmission. . . . 84

4.11 KX132 I2C accelerometer selected for this work. 85

xvi

4.12 Process to train and execute a model with TIDL[102]. 89

5.1 Front view of the Machine Fault Simulator 98

5.2 Shaft, bearing and bearing loader . 99

5.3 Perturbation in the I2C line from the MFS 100

5.4 Final acquisition setup . 102

5.5 Validation of the position of the 1X peak on an imbalance signal 103

5.6 Evolution of the accuracy 5.6a and the loss 5.6b for 5, 40 and 80 clients
and three consecutive training rounds. 107

5.7 Influence of the number of training round for eighty clients 109

5.8 Evolution of the accuracy 5.8a and the loss 5.8b for 5, 40 and 80 clients
and three consecutive training rounds. 111

5.9 Evolution of the average accuracy for the different numbers of retrained
client per round . 111

5.10 Bearing test rig and sensor placement for NASA Dataset from [38]. 114

5.11 Evolution of the Kurtosis over time for the second test of the NASA
Dataset for bearing number 1. 116

5.12 Evolution of the Kurtosis over time for the third test of the NASA Dataset
for bearing number 3. 116

5.13 Evolution of the Kurtosis over time for the first test of the NASA Dataset.
E.1a channels 1 and 2, for bearing 1 where no defect appeared; E.1b chan-
nels 3 and 4, for bearing 2 where no defect appeared; E.1c channels 5 and
6, for bearing 3 where an inner race defect appeared; E.1d channels 3 and
8, for bearing 4 where an outer race defect appeared. 117

5.14 The initial selection of the defect zone for bearing 1 of test 2 119

5.15 Spectrum for test 2 bearing 1 at the end of the healthy zone (5.15a) and
beginning of the defective zone (5.15b) 119

5.16 Spectrum for test 2 bearing 1 at the end of the healthy zone (5.16a) and
beginning of the defective zone (5.16b) 120

xvii

5.17 The final selection of the defect zone for bearing 1 of test 2 120

5.18 The initial selection of the defect zone for bearing 3 of test 3 121

5.19 Spectrum for test 3 bearing 3 at the end of the healthy zone (5.19a) and
beginning of the defective zone (5.19b) 122

5.20 Spectrum for test 3 bearing 3 at the end of the healthy zone (5.20a) and
beginning of the defective zone (5.20b) 123

5.21 The final selection of the defect zone for bearing 3 of test 3 123

5.22 Low pass filter frequency response . 124

5.23 Spectrum of Bearing 1 test 2 in the defective region before filtering (5.23a)
and after filtering (5.23b) . 124

5.24 Evolution of the accuracy 5.6a and the loss 5.6b for 10, 20, 30 and 40
clients and fourteen consecutive training rounds. 128

5.25 NASA Influence of the number of training round for forty clients 129

5.26 Evolution of the accuracy 5.8a and the loss 5.8b for 5, 15, 25, and 35
clients and fourteen consecutive training rounds. 130

A.1 Components of rolling elements bearings[108] 157

B.1 The MFS with the imbalance loader installed 161

B.2 The MFS with the imbalance loader installed 162

D.1 Evolution of the accuracy D.3a and the loss D.3b for 3 training rounds . . 170

D.2 Evolution of the accuracy D.2a and the loss D.2b for 3 training rounds . . 171

D.3 Evolution of the accuracy D.3a and the loss D.3b for 3 training rounds . . 172

D.4 Evolution of the accuracy D.4a and the loss D.4b for 3 training rounds . . 172

xviii

E.1 Evolution of the Kurtosis over time for the first test of the NASA Dataset.
E.1a bearing 1, no defect appeared, E.1b bearing 2, no defect appeared,
E.1c bearing 3, an inner race appeared, E.1d bearing 4, a rolling element
defect appeared. 174

E.2 Evolution of the Kurtosis over time for the second test of the NASA
Dataset. E.2a bearing 1, an outer defect appeared, E.2b bearing 2, no
defect appeared, E.2c bearing 3, no defect appeared, E.2d bearing 4, no
defect appeared. 175

E.3 Evolution of the Kurtosis over time for the second test of the NASA
Dataset. (E.2a) bearing 1, no defect appeared, (E.2b) bearing 2, no defect
appeared, (E.2c) bearing 3, an outer race defect appeared, (E.2d) bearing
4, no defect appeared. 176

xix

SUMMARY

Rolling Element Bearings (REB) are critical components of a wide range of rotating

machines. Identifying and preventing their faults is critical for safe and efficient equip-

ment operation. A variety of condition monitoring techniques have been developed that

gather large amounts of data using acoustic or vibration transducers. Further information

about the health of an REB can be extracted via time domain trend analysis, and am-

plitude modulation technics. The frequency domain-specific peaks corresponding to the

defects can also be identified directly from the spectrum.

Such approaches either provide little insight into the type of defect, are sensitive to

noise, and require substantial post-processing. Complicating current fault diagnostic ap-

proaches are the ever-increasing size of datasets from different types of sensors that yield

non-homogeneous databases and more challenging to execute prognostics for large-scale

condition-based maintenance. These difficulties are addressable via approaches that lever-

age recent developments on microprocessors and system on chip (SoC) enabling more

processing power at the sensor level, unloading the cloud from non-used or low informa-

tion density data.

The proposed research addresses these limitations by presenting a new approach for

bearing defect detection using a SoC network to perform a wavelet transform calculation.

The wavelet transforms enable an improved time- frequency representation and is less

sensitive to noise than other classical methods; however, its analysis requires more com-

plex processing techniques that must be executed at the edge (sensor) to limit the need for

cloud computing of the results and large-scale data transmission to the cloud. To enable

near real-time processing of the data, the BeagleBone AI SoC is employed , the wavelet

transforms, and the defect classification are achieved at the edge.

The contributions of this work are as follows: first, the real-time data acquisition

driver for the SoC is developed. Second, the machine learning algorithm for improv-

xx

ing the wavelet transform and the defect identification is implemented. Third federated

learning in a network of SoC is formulated and implemented. Finally, the new approach

is benchmarked to current approaches in terms of detection accuracy, and sensitivity to

defect and was proven to obtain between 80 and 90 percent accuracy depending on the

dataset.

xxi

CHAPTER 1

INTRODUCTION AND MOTIVATION

Rotating machines are present in the vast majority of industries and transportation; most

of the time, they include Rolling Element Bearings (REB), which constitute a critical part

of the machine. A defect in those bearings can, at best, generate vibrations that affect the

machine functioning, at worst create a failure of the engine and result in more significant

safety and economic issues.

Thus, as economic constraints and technical challenges increase, the maintenance

strategies of these machines have evolved. Predictive maintenance is replacing periodic

preventive maintenance, which replaced the run-to- failure approach. This evolution in

maintenance strategies has been accelerated by Industry 4.0 and the Internet Of Things

(IoT). It is now less expensive to mount sensors and microprocessors on a machine to

perform condition monitoring.

However, even if it is cheaper and easier to gather data, it also requires more digital

discipline to store the data efficiently and organized. Moreover, these data are often time

never exploited and analyzed to extract information [1]. The economic loss is even more

critical when the data takes a vast space in the Cloud, such as vibration data generally

used for bearing defect identification. Current condition monitoring technics developed

to identify faults in rolling element bearing rely on vibration to extract status information

using time or frequency domain analytics. Besides requiring a large amount of data to

be transmitted to the Cloud, those technics provide either little insight into the type and

severity of the defect or require essential knowledge of the process parameters (such as

rotation speed). These difficulties are addressable via approaches that leverage the recent

development on microprocessors and system on chip (SoC) that enable more processing

power at the sensor level. The proposed research uses SoC’s network for processing

1

wavelet transform to accomplish bearing defect detection. In the rest of this chapter the

outline of this dissertation is presented. Thereafter, the different types of rolling element

bearing and their maintenance is presented. Finally, a high-level overview of the concept

of Industry 4.0, and the machine learning theory are presented.

1.1 Outline

The rest of this work is organized as follows: Chapter 1 will present the different types

of rolling element bearings and the current methods used to detect their defects. Then the

new developments in System-on-chip and their application to industry 4.0 are detailed and

general theory about machine learning is presented. Once the motivation of this work is

introduced, Chapter 2 presents the Background and literature review for this work which

opens to the identification of the research questions presented in Chapter 3. Chapter 4

introduced the hardware used for deterministic data acquisition. The edge wavelet imple-

mentation is described with the processing of the data and the federated learning between

multiple devices. The validation and performances of the proposed architecture and com-

parison with current methods are discussed in chapter 5. Finally, chapter 6 develops the

contributions and limitations, and chapter 7 concludes the work.

1.2 Rolling Element Bearing

Rolling element bearing constitutes a critical component of machines; their role is to

reduce the friction forces between two mechanical parts that are moving one to another:

introducing a rotating element between the two surfaces of the parts enables to transform

the friction between the surface into a motion of rotation. The use of such a concept

can be traced back to Ancient Egypt around 2500 B.C., during the building of the Gizeh

Pyramids. Later, Leonard De Vinci formalized a rolling element bearing (Figure 1.1).

In this section, a brief introduction to rolling element bearing is given, then the dif-

ferent maintenance strategies are presented as well as the state- of-the-art bearing defect

2

detection methods. An introduction to the recent development of the Internet of Things

and the platforms used for industrial applications are presented.

1.2.1 Bearing introduction

The bearing market is constantly increasing in size as the manufacturing and transporta-

tion sector grow. It is forecasted to reach US$213 billion by 2026, according to an Acu-

men market report. Bearings are in every single rotating machine, from cars containing

up to 60 bearings to airplanes, trains, or manufacturing machines such as lathe or paper

machines. As the need for bearings increases, it becomes essential to monitor bearing

health as they constitute a critical source of failure: 50% of motors failures are due to

bearing failures [3].

There exist multiple types of Bearings. Even if the most common is the rolling ele-

ment bearing, it is worth mentioning fluid film element bearing and magnetic bearing.

Fluid film element bearings take advantage of the hydrodynamic effects in order to

reduce the friction between the rotation parts. The film of lubricant such as oil separates

the two parts, the motion of the two parts, one relative to the other, creates a pressure in

the film, pressure that prevents the contact between the two parts. The application of such

bearings is for high load, and high-speed application

Magnetic bearings use magnetic levitation to avoid friction between parts. They are

typically reserved for an application that requires very high speed with low vibration

Figure 1.1: First drawing of a Rolling Element Bearing [2]

3

because of their cost. Contrary to other kinds of bearings, they are usually not passive

pieces of equipment and require energy to maintain the levitation.

1.2.2 Types of rolling element bearings

Rolling Elements Bearings (Figure A.1) are typically comprised of 3 parts:

The races or rings: inner and outer races are respectively fixed to the two parts that ro-

tate one to another. The races generally present a groove that keeps the rolling

elements in place and transmits the mechanical load between the rotating parts and

the rolling elements.

The rolling elements: are located between the races and are transmitting the load be-

tween them. They can be of various forms and shapes: balls, spherical rollers,

tapered rollers, cylindrical rollers. The type of rolling element is related to the

direction of the load applied to it. Table 1.1 from [4] presents the relative perfor-

mances of rolling element bearings submitted to radial and thrust loads.

The cage or separator: when present, this part holds the rolling elements to reduce the

friction between them.

These different components can be made from a wide range of materials, from poly-

mers for small loads applications to stainless steel or complex alloys for higher loads or

dimension-sensitive applications. Besides, an essential element that influences the bear-

ing life and performance is its lubrication; indeed, without lubrication, the bearing may

deteriorate more rapidly, and defect appears earlier.

1.3 Rolling Element Bearing Maintenance

With time, all bearing element wears and ultimately develop defects. The different defects

are generally: inner-race fault, outer-race fault, rolling element fault, or cage fault. Figure

4

(a) Ball bearing (b) Straight rollers bearing

Figure 1.2: Components of rolling elements bearings[4]

Table 1.1: Relative performance for different types of rolling elements bearings for radial
and thrust loads[4].

Bearing type Radial load Thrust load
Ball bearing Good Fair

Cylindrical roller bearing Excellent 0
Tapered roller bearing Excellent Good

Spherical roller bearing Good/Excellent Good
Needle Bearing Good 0
Thrust bearings Excellent 0

1.3 presents the most frequent defects: inner-race and outer-race faults. Those faults

generate high-frequency vibrations that can be used to monitor the bearing health (see

section 2.3). Many parameters influence the bearing’s life, such as lubrication, mounting

quality (alignment with the axis of rotation), loading intensity, or manufacturing quality.

Figure 1.4 show the difference in the spectral signature between an outer race 1.4a

and an inner race defect 1.4b, on the outer race defect the defect frequencies are clearly

visible whereas for the inner race defect the defect is harder to identify with a large peak

with side bands.

5

(a) Inner-race fault (b) Outer-race fault

Figure 1.3: Race defects [5].

1.3.1 Maintenance strategies

As bearings often constitute critical components of machines, their maintenance has been

extensively studied over the years. After the second world war, the maintenance strate-

gies evolved from run-to-failure maintenance, in which operators replace the part when it

breaks, to a preventive maintenance strategy, in which the parts are periodically changed

before they crack. This new approach limits the risk of failure during the process and the

resulting economic loss. However, it also requires sufficient knowledge of the parts’ life

and can become more expensive than the run-to-failure approach if expensive parts are

changed too frequently [6]. Multiples bearing life models have been developed to predict

the best interval to change a bearing, such as the SKF Generalized Bearing Life Model

(GBML) [7]. More recently, with the development of processors and networks, another

type of maintenance is possible, predictive maintenance. It aims to change the part just

before the defect becomes critical. Usually, sensors are used to track the defect’s devel-

opment, and action is taken only when needed. It requires a complex understanding of

defect evolution. Table 1.2 presents the different maintenance strategies, their limitations,

and advantages.

The evolution of the maintenance strategies is closely related to the recent rise of

low-cost systems on chip (SoC), communication protocols, and datacenters. They enable

6

(a)

(b)

Figure 1.4: Spectral signatures of an Outer Race Defect (1.4a) and an Inner Race Defect
(1.4b)

7

Table 1.2: Different maintenance strategies

Maintenance Run-to-Failure Preventive Predictive
strategy Maintenance Maintenance

Maintenance interval Fail & fix Scheduled Condition based
Cost Labor Cost depends Cost

effectiveness intensive on schedule effective
Technical complexity Low Medium High

real-time prognostics on a wide range of manufacturing processes. The following section

presents the influence of the internet of things (IoT) and its influence over maintenance

strategies.

1.4 Internet of Things and Industry 4.0

The Internet of things is simply defined by [1] as : “sensors and actuators connected by

networks to computing systems”. In manufacturing, the application of the internet of

things is often referred to as the 4th industrial revolution; it was named this way by Ger-

many when, in 2011, the government invested 400 million euros in order to maintain the

country competitivity in these new technologies. This 4th industrial revolution follows,

introduction of the steam engine (1st revolution), the beginnings of mass production (2nd

revolution) and the automation processes and the introduction of robots (3rd revolution).

Currently, machines are being connected to Cyber-Physical Systems (CPS), which will

create networks of billions of interconnected objects [8]. Even if some technologies exist

to analyze heterogeneous datasets, they are not particularly suitable for CPS [9]. More-

over, recent developments of System on Chip have opened new possibilities for data pro-

cessing. In the following, the application of these new technologies to manufacturing is

presented.

8

1.4.1 Internet of Things for Manufacturing

Cost efficiency is a major factor of competition in today’s industry. The application of the

Internet of Things to manufacturing is of great interest for manufacturing as it enables to

control of the production process. Many initiatives such as Digital Twins [10], where a

digital representation clowns a physical system; geo-localization solutions like the ones

developed by Zozio[11] that track parts and production tools with a tracking device; or

even to monitor asset health to prevent expensive failure or non-conform parts have been

developed. All these applications of the Internet of Things to manufacturing rely on a

common architecture that can be decomposed in :

• Data acquisition with some sensor.

• Data transmission from the sensor to a processing unit.

• Data processing to extract information.

The extracted information is then used to decide if action needs to be taken (e.g., change

an element of the machine about the break) or improve the overall manufacturing process.

Data acquisition

With the ever-decreasing cost of sensors and Systems on Chip, acquiring large amounts

of data is becoming very cost-effective. A low-cost acquisition system is generally com-

posed of:

• A transducer that converts a physical quantity such as noise, vibration, light, tem-

perature; into an analog or digital signal. They can be microphones, accelerometers,

proximity probes, photodetector and rely on simple physical effect such as Piezo-

electric, light dependent resistance or electromagnetic induction.

• A microcontroller or microprocessor manages the data acquisition and aggregates

the data to transmit it. Recent years have seen the variety and power of micro-

9

Figure 1.5: A Typical accelerometer design from Brüel & Kjær [12]

processors increase exponentially with SoC such as the BeagleBone or Raspberry

board. The recent releases of those boards have seen the emergence of multi-cores

Central Processing Units (CPU) and board Graphical Processing Units (GPU) with

BeagleBone AI and the Raspberry Pi 4. These enable more processing at the edge

see Section1.4.2.

• Finally, a communication port used to transmit the data can rely on technology such

as USB, Ethernet, Bluetooth, Wi-Fi, LoRa, or others.

Transmission Protocols

The data transmission needs to follow an organized structure to ensure efficient com-

munication between the sender and the receiver. Over the years, many communication

protocols have been developed. Some of them were specially designed for IoT applica-

tions such as MQTT [13], which used a publish and subscribe messaging transport: a

message broker is used to redirect the message from the publisher to subscribers to the

message’s topic. Others, like MTConnect, were designed especially for manufacturing

data transmission [14], it uses the HyperText Transfer Protocol (HTTP) and XML format

file to transfer machine-specific data as presented in Figure refMTConnect example[14].

10

Those different protocols ensure the efficient transmission of the data between the sender

Figure 1.6: An example of MTConnect Data

and the receiver. However, the data needs to be processed in order to extract value from

it. Depending on the chosen architecture, the data can be processed at different locations.

Data Processing

This processing can either occur remotely in a data center, which constitutes Cloud Com-

puting or at the sensor’s level, referred to as Edge Computing. Both architectures have

advantages and limitations.

Cloud Computing on the one hand, generally provides more processing power as the

computing resources can be up-scaled to balance the load between multiple cores

and processors. However, to process large amounts of data in the Cloud, the net-

work connection needs to provide enough bandwidth to avoid a bottleneck at the

sensor level. In the last years major actor have emerged in the Cloud Computing

Market, Amazon Web Services (AWS), Azure and Google Cloud Platform (GCP).

11

AWS, is the dominant cloud infrastructure with 37% of market share. The offer a

wide range of Virtual Machine and on demand services such as IoT Hub. The main

disadvantage of AWS is the cost of its solution as well as the lack of clarity of its

billing system.

Microsoft Azure comes second with 23% of the market share. Azure was the first

could player to recognize the trend towards hybrid Cloud and release a Cloud-in-

Your-Datacenter offer: Azure Stack. The main advantage of Azure is the integra-

tion between the cloud services with the rest of the Microsoft products such as Of-

fice. However, the support and documentation are the big shortcoming of Microsoft

Azure.

The last major actor Google Cloud Platform, has 9% of the shares. Compared

to the 2 previous one GCP offers the least number of virtual machines, but it has

the benefit of being extremely user-friendly with tutorials for almost every service.

Currently, its being chosen by customers whose business compete with Amazon

and where there is little interest in staying inside the Microsoft Environment.

Edge Computing, on the other hand, has limited resources, which cannot be adapted

without a physical intervention; but, it does not require a wide network bandwidth

as only the information extracted from the data need to be transmitted. Finally, the

security of the architecture is also increased by limiting the risk of data leaks.

Finally, some researchers have introduced an in-between cloud and edge computing

known as fog computing. The data is processed at some level between the machine and

the Cloud. A proposed architecture from Wu et al. [15] is using a local server to store the

data and export it to the Cloud; predictive models are then trained at the cloud level and

exported back to the local server where inference is made on the data. This use of fog

computing takes advantage of lower bandwidth requirements for the data without losing

too much computing power compare to an edge implementation.

12

Once the data is processed, users can retrieve valuable maintenance information that

should be used to prevent some machine failures and enable better control of the man-

ufacturing processes [12]. The new development of SoC and networks enable not only

to process data sequentially on the onboard CPU but also to take advantage of the other

onboard process units such as the Digital Signal Processor (DSP) or Graphical Process

Unit (GPU). The following section presents different types of internet of things platforms.

1.4.2 Internet of Things platforms

In order to accomplish data acquisition and, if needed, the data processing, some Internet

Of Things platform have been developed. They fall under 2 main categories:

• Microcontrollers (MCU)

• Microprocessors (MPU)

Microcontrollers

They are limited to one single program execution. Indeed, microcontrollers do not have

any operating system which does not enable multiple processes to run simultaneously.

Even if this limits the applications, it also permits a deterministic program’s execution.

Moreover, the clock frequency of microcontrollers is generally limited to hundreds of

MHz; as the power consumption of a chip changes linearly with its clock frequency,

it enables a low power consumption. The deterministic execution and the low power

consumption make microcontrollers very suitable for data acquisition. Microcontrollers

are generally composed of (Figure 1.8 from [16]):

• In/Out interfaces

• timer

• RAM memory for data storage (volatile)

13

• ROM memory to store the programs

• Central Process Unit (CPU)

• Analogue to Digital Convert (ADC) is also present on most of the microcontrollers

The Arduino Company originated in Italy at the Irrea Interaction Design Institute [17].

It aims at making available a large variety of products for easy prototyping. The company

offers multiple ranges of boards from beginning and education boards like the (Arduino

Uno, Leonardo, micro) and more advanced features for IoT applications requiring BLE,

SIM cards, GSM, or more PINS and processing powers.

Espressif is a Shangai-based company that commercializes the ESP32 family of micro-

controller. The four microcontrollers of the family are the C3, C6, S2, and S3, with CPU

frequencies at 160MHz or 240MHz [18]. The S series has around 40 pins, while the C

series only have about 20 pins. The ESP32-C3, S3, and S6 have Bluetooth 5 and BLE

that the S2 does not have. These boards are less user-friendly than the Arduino boards,

but their price makes them a good option for advanced users.

Particle is a more recent company started in 2013 in the US [19]. The company pro-

vides a more integrated solution focused on IoT application and connectivity; the ecosys-

tem is oriented toward providing a complete solution to clients’ problems and is more

closed than for other competitors such as Arduino.

Teensy are produced by pjrc; a small company based in Oregon (USA) and mostly run

by Paul J Stoffregen and Robin Coon [20]. The last Teensy (Teensy 4.1) is based on an

ARM Cortex-M7 at 600MHz, 42 I/O pins with I2C, SPI, and Ethernet capabilities.

Table 1.3 from [16] presents the characteristics of 4 common microcontrollers:

14

(a) Particle Photon

(b) Teensy 4.1

Figure 1.7: Particle Photon and Teensy 4.1 [20][19].

Table 1.3: Comparison between different microcontrollers

Characteristic Arduino Uno Tensy 3.2 Particle Photon ESP32
Processor ATmega328P ARM Cortex-M4 ARM Cortex-M3 Tensilica Xtensa
Frequency 16MHz 72MHz 120MHz 240MHz

GPIOs 14 34 18 34
ADCs 6 21 8 18

SPI/I2C yes yes yes yes
Wi-Fi/Bluetooth on shield No yes/no yes

RAM 2KB 64KB 128KB 520KB
EEPROM 1KB 2KB 16KB or 64 KB 448KB

Flash Memory 32KB 256KB 1MB 2MB or 4MB
Dimensions(mm) 68.6 by 53.4 35 by 18 36.6 by 20.3 55 by 28mm

Weight(g) 25 15 5 10
Price 35 20 20 15

15

Figure 1.8: Architecture of a microcontroller.

Microprocessors

Contrary to microcontroller they are not limited single loop execution, and could be con-

sidered more like microcomputer. They usually have more processing power and memory

than microcontrollers, as well as more peripheral such as multimedia port. This enables

more complexes operations at the edge than with microcontrollers.

Figure 1.9: Architecture of a microprocessor.

Raspberry the Raspberry Pi foundation releases single-board microcomputers. They

have eight different models of boards. Some are simple low power systems such as the

Raspberry Pi Zero, costing as low as $10. Because the Raspberry Pi Zero has a 1GHz

16

(a) Raspberry Pi Zero W. (b) Raspberry Pi 4.

(c) The Nvidia Jetson Nano

(d) The BeagleBone AI

Figure 1.10: Four different microprocessors from [21][22][23].

CPU, 512MB of random access memory, Bluetooth, Wi-Fi, and 40 header pins, it is

well suited for IoT projects with low computing power requirements. However, it is

not powerful enough to carry out intensive computation at the edge. Models such as the

Raspberry Pi 4 ($35) will be preferred as they present a Quad-Core 1.5GHz processor with

up to 8GB of RAM and 4 USB ports. Nevertheless, Raspberry’s more advanced boards

are more oriented to be low-cost computers with good multimedia capabilities than IoT

platformed targeting data acquisition and processing at the edge. Similarly to the Arduino

boards, the main advantage of Raspberry’s boards is the size of the community and open

source project based on these microcomputers.

17

Nvidia Jetson The Jetson Familly is produced by the Nvidia corporation, the world

leader in the production of Graphical Processing Units. The Jetson’s are much more

expensive than the Raspberry with a price range from $100 to $780, but they embed

GPUs, bringing parallel computing capabilities to the edge. The Jetson nano ($99) has

a 128 core Nvidia Maxwell GPU, a quad-core CPU at 1.43GHz, and a 2GB memory.

The 40 header pins enable the use of multiple GPIOs, I2C, SPI, and UART sensors.

However, the absence of an onboard ADC limits the applications to digital sensors. As

Nvidia makes the GPU, the CUDA programming platform can be used. It makes parallel

programming more accessible than using CUDA’s open-source counterpart, OpenCL. It

constitutes the main advantage for the Jetson boards over other edge GPU boards.

BeagleBone AI The BeagleBone foundation has released the BeagleBone AI to take

advantage of the most recent Texas Instrument chips. The AI is based on the Ti-AM5729

chip and includes a Dual ARM Cortex A15 at 1.5GHz, 2 C66x floating-point digital Sig-

nal Processors, 4 Embedded Vision Engines, two dual Cores Programming Real Times

Unites, and a PowerVR GPU. There are more In and Out Interfaces on the BeagleBone

AI than on any other boards of its category, with two 46 header pins with GPIO, I2C, SPI,

UART, and Analog capabilities. The BeagleBone organization is also releasing Open

Source designs, so the board can be used in production or as an Evaluation Module where

the board is used for prototyping, and a specific PCB is then designed to use in the pro-

duction phase. The extensive In/Out capabilities of the BeagleBone AI and the different

specialized processing units make it a very well-suited board for application in IoT for

manufacturing.

Comparison

Above were presented the two main types of IoT Platforms. The microcontrollers do

not have an operating system but benefit from a deterministic execution of the instruc-

18

Table 1.4: Comparison between different microprocessors[21]

Characteristic Raspberry Pi Zero Raspberry Pi 4 Nvidia Jetson Nano BeagleBone AI
Processor Single Core Quad-Core ARM A72 Quad-Core ARM A57 Dual-Core ARM A15
Frequency 1GHz 1.5GHz 1.43GHz 1.5MHz

GPIOs headers 40 40 52 2x46
ADCs No No No 7 Chan

SPI/I2C yes yes yes yes
Wi-Fi/Bluetooth yes/yes yes/yes yes/yes yes/yes

RAM 512MB 2Go 2Go 1GB + 16Go eMMC
Dimensions(mm) 66mmx30mm 85mmx56mm 100mmx80mm 94mmx55mm

Weight(g) 9 50 250 48
Price 10 35 59 120

tions and a generally cheaper cost than the microprocessors, which are more powerful

non-deterministic single board computers. The recent developments of that single-board

computer have seen the apparition of processors dedicated to intensive computation such

as embedded Graphical Processing Units or Digital Signal Processors. Those processors

enable expensive computation such as machine learning models to extract valuable infor-

mation at the edge without requiring data transmission to the cloud. In the next section we

present a high-level overview of the machine learning theory and some of its application

in prognostics for manufacturing.

1.5 Machine Learning for defect detection

Industry 4.0 transforms the way we are producing parts. Machine Learning, as a subfield

of artificial intelligence plays a very important role in this transformation. As machines

are increasingly connected to sensors and the cloud, a very important amount of data is

generated, it can be used to train machine learning algorithms. Those “learning” tech-

niques are useful, when:

• humans expertise does not exist

• humans are not able to explain their expertise

• prediction problems involve a high level of complexity

19

Figure 1.11: Classical programs and Machine Learning programs.

Figure 1.11 presents the difference between classical programs and machine learning

problems. In the first ones, data and rules are provided as an entry, and the program

gives an answer to the problem. In contrast, for machine learning programs, the entries

consist in Data and already known answers; then the program establishes rules over this

training set of data. Numerous studies have been conducted on the use of machine learn-

ing techniques for manufacturing prognostics.

M. Elangovan et al. [24] have discussed the effect of the Support Vector Machine

(SVM) errors functions on the classification of vibration signals for single point cutting

tools. The condition of a carbide tipped tool is predicted using a Kernel Support Vector

Machine for two different error functions C-SVC and ν-SVC. The efficiency of these

functions is then compared to other classifiers such as Decision-Trees, Naı̈ve Bayes and

Bayes net. It was found that, either for C or ν errors functions, the RBF Kernel gives

higher classification efficiency. Finally, the linear Kernel can be interesting when it comes

to have very fast classification. In comparison with other classification algorithms, the

Kernel Support Vector Machine (KSVM) with ν-SVC has better efficiency. Then M.

Elangovan et al. have shown that KSVM are promising for the prediction of the condition

of a single point cutting tool.

C. Drouillet et al. [25] have used the neural network technique to predict tool life by

monitoring the spindle power. End milling operations were performed on a steel work,

and different MATLAB ™ learning functions were used to train a Neural Networks (NN).

This method has demonstrated a good correlation between true and computed Remaining

Useful Life (RUL); also it was very fast and could be used for Realtime RUL prediction.

Y. Fu et al. [26] have implemented Convolutional Neural Networks (CNN) for pro-

20

cessing images representations of vibration signals. The vibration states have been con-

sidered to be a very promising way to real-time monitor machine states. Feeding the

algorithm with an image of the signal without any preprocessing avoids possible bias

introduced by the feature selection. Finally, the trained CNN showed very good results.

P. O’Donovan et al. [27] have introduced a fog computing industrial cyber-physical

system for embedded low-latency machine learning application. Their research highlights

that fog computing can be employed for real-time monitoring; this architecture enables

a more distributed and scalable network while enhancing the privacy and the security of

data.

Different machine learning algorithms have been implemented over the above-

mentioned studies. A review of the different available techniques must be conducted in

the following. First the difference between supervised and unsupervised machine learning

is introduced, then the most well-known supervised ML methods are presented.

1.5.1 Supervised and unsupervised machine learning

As explained above, to be trained, machine learning algorithms usually expect Data and

the “answer” of the problem. However, sometimes the output is not known, and this is

where the unsupervised machine learning is promising. The goal of these algorithms is

to highlight the structure or the distribution of the data, thus it aims to learn a new data’s

representation. The 2 major techniques of unsupervised machine learning are:

dimensional reduction: a data set of high dimension is reduced to lower dimension

while keeping the “important” characteristics. Thus, the redundancies are removed,

the storage space and the computational power required to manage the dataset are

reduced, finally data visualization and interpretation is improved.

clustering: the general characteristics of the data are understood, then the different ob-

ject of the data set can be grouped based on those characteristics. Again, the data

interpretability is improved.

21

However, most of the time the answers of the problems for the training sets are known;

then it is called supervised learning. The aim is to make predictions rather than to enhance

the data interpretability. The predictions can either be in the form of a decision function

or of a classifier, that can be binary or multi-class. The mains techniques of supervised

machine learning are:

• Decision Trees

• Naı̈ve Bayes classifiers

• Logistic Regression

• Support Vector Machine

• Kernel Support Vector Machine

• Neural Networks

1.5.2 Supervised algorithms

Decision trees

Decision Trees can be used in other fields, but when it comes to machine learning, they

are applied to predict the value or the class of an output based on given inputs; to that end

these algorithms repetitively divide the working area into subs-sets, which are divided

again and again: “A decision tree is a recursive partition of the training set into smaller

and smaller subsets” [28]. For data to be used in a Decision Tree model it needs to be

discreet and without any ordering (e.g. classify fruit from color, shape, texture, size).

Given a split variable j and a splitting point s, two regions (left and right) can be defined

with:

Rl = x : xj ≤ s and Rr = x : xj > s

For regression problems, j and s have to be chosen in order to minimize:

22

minj,s

(∑
i:xi∈Rl(j,s)

(yi − cl)2 +
∑

i:xi∈Rr(j,s)
(yi − cr)2

)
For classification problems, j and s have to be set such that the impurity is minimized:

minj,s

(
|Rl(j,s)|

n
· Imp (Rl(j, s)) + |Rr(j,s)|

n
· Imp (Rr(j, s))

)
The impurity Imp() can be either:

Classification error: the minimum probability that a point is misclassified at the node

(j, s) of the Tree:

Imp(Rm) = 1−maxk p̂mk

with p̂mk the portion of well-classified points.

Shannon’s Entropy: from information theory

Imp (Rm) = −
∑

k p̂mk log2 p̂mk

Gini impurity: with still p̂mk the portion of well-classified points.

Imp (Rm) =
∑K

k=1 p̂mk (1− p̂mk)

Decision Trees present many advantages; they are easy to understand and to interpret, as

they are a mirror to human decision-making; however their predictive accuracy is not very

good.

Naı̈ve Bayes classifiers

This classifier uses the posterior probabilities also called Bayes Theorem 1.1 to make

predictions.

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)

23

For a binary classification problem, the aim is to express the probability distribution in a

parametrized form. The probability of a single data point can be written as :

pθ(x, y) = pθ(y, x1, ..., xD) (1.2)

Thanks to the Bayes Theorem 1.1 and the Naı̈ves Bayes assumption, which states that

p(xd|y, xd′) = p(xd|y) ∀ d′ 6= d, the equality 1.2 simplifies:

pθ(x, y) = pθ(y)
∏
D

pθ(xd|y) (1.3)

Then, depending on data type: binary, continuous... the model of p(y|xd) can be rewritten

using respectively Bernoulli distribution and Gaussian distribution. Finally, the classifi-

cation is the output is the class that is the more likely to be true.

Regression algorithms

Regression algorithms use the training data to fit curves and find a predictive function

that maps the inputs to a continuous output y = f(x1, ..., xn), depending on the number

of features and the complexity of the relationship, different models can be used: the linear

regression adjusts the coefficient bi on the following equation y =
∑

i bi ·xi in the case of

n features; for more complex problems a polynomial regression can be used y =
∑

i bix
i.

Finally, for some problems the logistic regression can be employed (here with the sigmoid

function) log
(

p
1−p

)
= b0 + b1 · x

Support Vector Machine

Those algorithms are used to classify linear separable data points; as presented in Figure

1.12 (left). However, different margins can be found for the same data set, and they do

not split the dataset equally. Support Vector Machine (SVM) tends to find the best linear

boundary between different classes by using a constrained optimization problem, which

24

reads as:

min
w,b

1

γ (w, b)
+ C ·

∑
n

ξn (1.4)

with respect to : yn(w · xn + b) ≥ 1− ξn and ξn ≥ 0. In formula 1.4, γ (w, b) is the value

of the margin γ which depends on the weight vector w and the bias b, ξn is the “cost” of

having a data point, which is not classified correctly as presented in Figure 1.12 (right).

The distance between two points x+ and x− at 1 unit from the margin read, as:

Figure 1.12: Linearly separable points (left), non-linearly separable data point (right).
[29]

d+ =
1

‖w‖
· w · x+ + b− 1

d− =
1

‖w‖
· w · x− − b+ 1

(1.5)

So the margin γ can be expressed this way:

γ = ‖d+ − d−‖ =
2

‖w‖
(1.6)

25

and the constrained optimization problem is now to minimize the norm of the weight

vector w:

min
w,b

‖w‖
2

+ C ·
∑
n

ξn (1.7)

with respect to: yn(w · xn + b) ≥ 1 − ξn and ξn ≥ 0. As ξn must be positive but also

minimum, it can be written that: ξn = 1 − yn(w · xn + b) (value of the classification

error) if the point is not classified correctly and ξn = 0 if the point is classified correctly.

Introducing l(hin) the hinge loss function as :

l(hin)(a, b) = max(0, 1− a · b)

the term
∑

n ξn =
∑

n l
(hin)(yn, (w) · xn + b

and equation 1.7 becomes:

min
w,b

‖w‖
2

+ C ·
∑
n

l(hin)
(
yn, (w) · xn + b

)
(1.8)

Finding the minimum of the equation above gives information about the position of the

optimum boundary. Although, this kind of algorithm is efficient for linearly separable or

non-linearly separable data points with only few problematic points, sometimes, a linear

boundary cannot be found between the categories (Figure 1.13) In these non-linear spaces,

Figure 1.13: Data set where no linear boundary can be found. [29]

the use of a Kernel function is needed.

26

Kernel Support Vector Machine

Kernel functions can be used with a mapping Φ that projects the data points from the

object space to a feature space where linear methods can be used, as in Figure1.14 A

Figure 1.14: Mapping Φ from the data space X and the feature spaceH [30]

function K(x, x′) defined on a set X is called a Kernel function if and only if there exists

a Hilbert space H and a mapping Φ : X → H such that for any x, x′ in X : K(x, x′) =

〈Φ(x) ·Φ(x′)〉. This enables us to use linear techniques but, more importantly the explicit

computation of Φ(x) can be avoided, andK(x, x′) is computed instead. A Kernel Support

Vector Machine (KSVM) is useful to classify data points where the data cannot be linearly

separated in the data space and more importantly, in most cases Kernel methods reduce

the computational power need. Thus, they are suitable for classification problems.

Finally, the most famous algorithms for machine learning are Neural Networks, sec-

tion 1.5.2 presents different type of Neural Networks: Multi-Layer Perceptron (MLP),

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

Neural Networks

These algorithms try to replicate the way neurons work. The neuron is modeled with a

perceptron, as in Figure 1.15 and its output is given by f(x) = s
(
w0 +

∑P
j=1wj · xj

)
=

27

s
(
wTx

)
where s() is the threshold function. Other functions such as the sigmoid σ =

1
1+exp(−u) can be used.

Figure 1.15: Data set where no linear boundary can be found. [31]

For binary classification (using the sigmoid function), the perceptron can be trained

by adjusting all components of the weight vector w over the data set. For classification

problems the cross-entropy error is generally used (η denotes the learning rate):

H
(
f(xi), yi

)
= −yi · log(f(xi))− (1− yi) · log(1− f(xi)) (1.9)

Then the weight update for every iteration reads as:

∆wj = −η∂H (f(xi), yi)

∂wj

∆wj = η
(
yi − f(xi)

)
xj

(1.10)

However, in the case of multiclass classification, the softmax function, equation 1.11,

is used to find which class is more probable than the other. If class k is more probable

28

than the other than σk(x) ≈ 1 else σk(x) ≈ 0.

σk(x) =
exp(wk

T · x)∑K
l=1 exp(wlT · x)

(1.11)

Then, the weight update reads as ∆wkj = η (yi − fk(xi))xij . Finally, for each training

instance: wt+1
j = wtj + ∆wtj .

Adding several layers of Perceptrons as presented in Figure 1.16

Figure 1.16: Multi-layer Perceptron structure. [32]

It is composed of 3 or more layers of Perceptrons, each layer feeding the following

one. This algorithm is efficient for non-linear data classification.

Convolutional Neural Networks, on the contrary add more layers, the first operation

transforms the input into feature maps that compose the convolution layer; then after one

or multiple convolution maps a rectification layer is applied with functions such as ReLU,

sigmoid... At the end, the last layers consist of a common Multi-layer perceptron. Convo-

lutional neural networks are mostly used for image processing, however, Y. Fu et al. [26]

have used them for Machining vibration states monitoring based on image representation.

The advantage of this technique is that they were able to reduce the bias introduced by

29

feature selection that must be performed for other machine learning methods such that

Kernel Support Vector Machine.

Finally, Recursive Neural Networks (RNN) add more connections between the hidden

layers of a Convolutional Neural Networks. The nodes are fed information from the

previous layer but also information from their own last state. This enables them to learn

from the past.

Those different machine learning algorithms can be used to classify images or prepro-

cessed signals from sensors. The choice of the algorithm and its parameters can be made

thanks to the programmer’s knowledge, and different setups maybe tested to find the most

suitable one.

1.6 Motivation

In this chapter the different types of rolling element bearing have been introduced as well

as some bearing defect detection methods. The criticality of rolling element bearing in

rotating equipments raises the interest to further investigates the different bearing defect

identification methods by conducted a more thorough by conducting and in depth litera-

ture review to answer the following motivating question:

Motivating Question 1

What is the current State-of-Art of bearing defect detection technics?

In addition, the recent development of System on Chip have brought more computing

power at the edge than ever, theses new capabilities may be more adequate than the current

Cloud Based Bearing defect detection technics. Consequently, it is pertinent to explore

the advantages of the edge approaches compared to the Cloud based ones in order to find

30

Motivating Question 2

What is the advantage of using edge machine learning over cloud based approaches

for bearing defect detection? To what extent the latest development of systems on

chip enable edge defect detection?

The next chapter will present the Background for bearing defect detection as well their

current limitations.

31

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter we conduct a literature review of the current bearing defect detection

method, we structure the review by starting by the time domain methods, then the fre-

quency domain approaches and finally the time frequency domain with the wavelet trans-

forms. Finally, some studies using the recent concept of federated learning are presented.

2.1 Current bearing defect detection methods

Bearing condition monitoring methods fall under three main categories. First, vibration-

based methods in which a mechanical transducer like an accelerometer or a microphone

is used to acquire the data; secondly, Thermographic methods in which hot spots due

to abnormal friction in the bearing are identified. A limitation is the expensive thermal

sensors cost which prevents a large-scale deployment. Lastly, lubricant analysis methods,

as the bearing wears out, the lubricant carries information outside the system in the form

of metal particles, and chips [12]. The wear particles from the bearing can be identified

using analysis techniques such as ferrography or spectrometry. This last method is also

classified as an indirect method as the bearing is not directly analyzed. W. Hoffmann has

compared ferrography and spectrometry and their application to condition monitoring of

an aircraft engine. It was found that the ferrography permits the detection of debris that

are too big to be detected by spectrometry on the oil [33]. However, the complexity of the

sensors used and the absence of an onboard system for real- time automated monitoring

constitute a substantial limitation to lubricant analysis methods[34]. Moreover, in com-

plex machines, the lubricant circuits can go through multiple bearings, making it harder

to identify the faulty element [35] and in very straightforward machines, there is simply

no access to the lubricants. Finally, oil analysis methods are more efficient in providing

32

information on the wear rate for gears, but less for bearings [36]. Nonetheless, it ap-

pears that vibration methods are much cheaper and enable earlier detection of the bearing

defect [36]. Thus, they will be the main focus of this work. Currently, vibration analy-

sis techniques can be divided into four different approaches, depending on the analysis’s

domain.

• Time-domain methods where the waveform of the signal is directly used as an input.

• Frequency domain methods in which a Fourier Transform of the signal is processed

before identifying defect frequencies.

• Hilbert transform and demodulation technics.

• Time-frequency domain methods, such as the short-time Fourier Transform (SFT)

or Discrete (DWT) and Continuous Wavelet Transforms (CWT).

These methods are presented in the following.

2.2 Time domain analysis

These methods directly analyze the waveform of the vibration or acoustic signal gener-

ated by the bearing. As the bearing wears out, there is an increase of energy in acoustic

emissions (A.E.) and vibration [37]. The most straightforward approach is to use sta-

tistical features on the waveform and track the increase of energy in the signal over the

bearing’s life. Typical features are Root Mean Square (RMS), Skewness (S), and Kurtosis

(K), Figure 2.1 presents the evolutions of these three features along the life of a bearing

from the NASA Dataset [38]. The Kurtosis evolution of the other test of the Dataset are

presented in appendix E. It shows that the Skewness, the Kurtosis, and the Root Means

Square signal’s values significantly increase at the end of the bearing’s life.

33

RMS =

√
1

T2 − T1
·
∫ T2

T1

f(t)2dt,

S =

∫ +∞
−∞ (x− µ)3p(x)dx

σ3
,

K =

∫ +∞
−∞ (x− µ)4p(x)dx

σ4

200 400 600 800
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Bearing life (Sampling number)

K
ur

to
si

s

Kurtosis

(a) Kurtosis

200 400 600 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Bearing life (Sampling number)

R
M

S
an

d
Sk

ew
ne

ss

Skewness
RMS

(b) RMS and Skewness

Figure 2.1: Value of Skewness, Kurtosis, and Root Mean Square (RMS) for test 2 bearing
1 of the NASA Bearing Dataset

With:

x(t) : the sampling

µ : the mean of x(t)

σ : the standard deviation of x(t)

Even if these statistical techniques are efficient to monitor a bearing’s condition, they

require great digital discipline as any issue in data storing, or acquisition may lead to a de-

fect’s miss detection. Moreover, some changes in the bearing’s mechanical load can also

influence the waveform’s energy, thus influencing defect detection. Other than those three

classical statistical features, some studies have developed custom ones such as Zhang et

34

al. [39], who introduced a dimensionless waveform entropy indicator equation 2.1 derived

from the expression of the entropy of random vector.

WFEt =
1

M

M−1∑
t=0

Wt−i logWt−i (2.1)

Where:

WFEt : Waveform entropy at time t

Wt : Waveform at time t

M : Size of the sliding window

A Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) was then used

to classify the bearing condition. However, the approach assumed different degradation

states during the training, limiting the trained model’s final performance states. More

complex time domain-based methods were developed, such as the zero-crossing (Z.C.)

method [40]. Using the analogy between signal frequency and the number of crossing

between the signal and de x-axis, William and al. detected early defects with an Artificial

Neural Network (ANN). Their method was less computationally expensive than a clas-

sical FFT method as the computational cost of the FFT O (n log(2n)) was replaced by

O
(

Q
2(N−1)

)
where Q is the number of intervals in the sample.

Apart from applying machine learning techniques, another straightforward tool worth

mentioning is to find abnormalities in a time series, using, for example, Shewhart Controls

Chart. Shewhart Control Charts help display the evolution of the process over time and

the waveform abnormalities’ apparition. For the X̄ , the moving average over m samples

is computed. The graph displays the evolution of this moving average. Then, the upper

and lower bounds of the domain are defined using ±3σ; if the moving average exceeds

these limits, the process likely follows an abnormal evolution. Equation 2.2 details the

calculation of one point of the x̄ graph.

x̄ =

∑m
j=1 xi

m
(2.2)

35

The s̄ uses a similar approach with the moving standard deviation of the signal calculated

with the equation 2.3.

s̄ =

∑m
j=1 si

m
(2.3)

where:

si : standard deviation of the ith sample

Those charts can be analyzed in the light of multiple run-rules[41]:

Rule 1: a ±3σ control limit is exceeded

Rule 2: two out of three measurements are in the same [±3σ,±2σ] warning zone

Rule 3: six consecutive measurements are in increasing or decreasing order.

Rule 4: nine consecutive measurements are above or below the mean of the waveform.

These rules are not exclusive and are not backed by a theoretical explanation; one can

make other rules that also work like Page[42], who ruled that an abnormality could also

be two consecutive measurements in opposite warning zones. Finally, a general look at

the waveform can also provide valuable information about the observed signal’s general

type. However, for bearing defect identification, the analysis of the signal in the frequency

domain gives valuable information about the defect’s type and severity. For instance,

Time-domain methods are usually more straightforward to implement than other

methods. However, they do not provide insight into the type of defect growing in the

bearing, and they also do not provide information about the severity of the defect. In

order to identify the defect, other methods relying on the Frequency domain have been

developed.

2.3 Frequency domain analysis

These methods use the Fourier transform to analyze the spectrum of the signal.

36

(a)

(b)

Figure 2.2: Waveform (2.2a) and Spectrum (2.2b) of a bearing with an Outer Race defect.

37

2.3.1 Fourier Transforms of a Signal

The Fourier Transform of a T-periodic continuous signal aims to decompose the

signal in a basis of sinusoidal functions. It is presented in equation 2.4.

g(t) =
a0
2

+
∞∑
k=1

ak cos(kω0t) +
∞∑
k=1

bk sin(kω0t) (2.4)

Where:

ω0 : is the fundamental angular frequency ω0 = 2π
T

ak : obtained by correlation with g(t), ak = T
2

∫ T
2
−T
2

g(t) cos(kω0t)dt

bk : also obtained by correlation with g(t), bk = T
2

∫ T
2
−T
2

g(t) sin(kω0t)dt

However, the signals are usually not continuous and not T-periodic. Thus, the Fourier

transform is usually used in another form, the Discrete Fourier Transform.

Discrete Fourier Transform of a non-periodic signal and Fast Fourier Transforms:

Even if the signal is not periodic, the fact that the acquisition is finite makes it implicitly

periodic. As the signal is also discrete, the expression of the Fourier transform in equation

2.4 becomes for a sample g(n) with n ∈ [0, n− 1]:

G(N) =
1

N
+

N−1∑
n=0

g(n) exp(
−j2πkn

N
) (2.5)

Coley and Tukey [43] have developed an algorithm to compute the Discrete Fourier Trans-

form in O (N logN) instead of O (N2). Known as Fast Fourier Transform, it requires a

sampling length of 2n and is used most of the time instead of straight Discrete Fourier

Transform. This transform is used to obtain the spectrum and to detect peaks that corre-

spond to the defects.

38

2.3.2 Identification of defect frequencies

As the bearing rotates, the presence of a defect will generate impulses in the waveform

that will be present in the spectrum. The theoretical frequencies of these pulses are pre-

sented in equation 2.6 to 2.9, their derivation is presented in Appendix A:

Ballpass frequency, outer race (BPFO):

BPFO =
nfr
2

(
1− d

D
cos Φ

)
(2.6)

Ballpass frequency, inner race (BPFI):

BPFI =
nfr
2

(
1 +

d

D
cos Φ

)
(2.7)

Fundamental train frequency (FTF):

FTF =
fr
2

(
1− d

D
cos Φ

)
(2.8)

Ball spin frequency:

BSF =
D

2d

(
1−

(
d

D
cos Φ

)2
)

(2.9)

where:

fr : The rotational speed of the shaft

n : The number of rolling elements

D : The pitch diameter of the bearing

d : The ball diameter

Φ : The contact angle of the rolling element

However, because bearings generally have a cage, all the elements are forced to rotate

at the same speed, which will cause a slip. The presence of this slip will cause the low

39

harmonics of the defect to be masked by other components in the spectrum, making the

peak detection difficult without filtering [12].

Finally, the defect frequencies’ calculations are based on many parameters that can

change or be unknown, such as the rotational speed. For example, in paper machines,

a section usually contains multiple bearings and is driven by a single belt. Only the

speed of the driving wheel is known. Consequently, it becomes complicated to obtain

the defect frequencies of the other bearings. Prevost’s Master Thesis [44] tries to address

this problem by recursively identifying different combinations of peaks and harmonics in

the spectrum. This approach has given some results for BPFO but was less successful on

other defects, such as BPFI.

As most condition monitoring techniques rely on identifying impulsiveness in the

signal, direct peak identification techniques are generally avoided. Techniques that are

less sensitive to noise and slip are preferred.

2.4 Cepstrum Analysis

Introduced by Borgert et al. [45]. The cepstrum is obtained by taking the spectrum

of a spectrum; this is also equivalent to the inverse Fourier transform of the spectrum’s

logarithm.

C(τ) = J −1 [log(X(f))] (2.10)

where: X(f) is the Fourier Transform of x(t), X(f) = J [x(t)] = A(f) exp jΦ(f)

Generally, the power spectrum is used instead of the spectrum, this lets the result to be

real and to obtain the real cepstrum:

Cxx(τ) = J −1 [2 ln(A(f))] (2.11)

The cepstrum analysis is frequently used to detect a defect in gearbox [46], however

harmonics and sideband form bearing defect can be missed for advanced defects. Conse-

40

quently, for bearings, enveloped analysis is often time preferred [46],[47].

2.5 Envelope analysis

The techniques’ idea is to use demodulation techniques such as Hilbert transform to obtain

information about the signal by amplifying it using the structure’s resonance. Indeed, as

the vibration signal travels from its source to the sensor, it excites the structure. Thus, the

defect harmonic close to the structure characteristic frequencies are amplified [46].

Y (f) = H(f) ∗X(f) (2.12)

X(f) : the defect spectrum (excitation of the structure)

H(f) : the transfer spectrum representing the structure’s mechanical properties

Y (f) : the response spectrum arriving at the sensor

First, the best frequency range is selected in order to perform demodulation on it.

The selection can be made by analyzing the signal-to-noise ratio on the power spectrum

for different frequencies. However, Spectral Kurtosis (S.K.) has provided similar results

without requiring any reference signal [12]. Indeed, as the S.K. increases with the signal’s

impulsiveness, it will increase when the signal-to-noise ratio is the most important. That

is to say, where the region needs to be selected for demodulation [48]. In his Doctoral

Thesis, Sawalhi [49] developed an envelope analysis method that can be semi-automated;

the different steps are:

• Order tracking to reduce speed fluctuation.

• Remove the discreet frequencies by using Linear prediction.

• Identify frequency range for demodulation by taking the maximum Spectral Kurto-

sis.

• Demodulate the signal using the selected band-pass filter.

41

• User observation for peak identification.

Sawalhi and Randall successfully applied this approach to detect a BPFI on a helicopter

gearbox from a test rig at the Defense Science Technology Organization (DTSO) [12][49].

However, this method, even if it requires little user intervention during the first part

(no need to determine the demodulation bands manually) or historical data, still requires a

user to make the final call on the demodulated signal spectrum to identify the peak. Thus,

it is hard to automate this method fully.

Instead of using the time domain or the frequency domain, some approaches take

advantage of both domains.

2.6 Time-frequency analysis

The most common Time-Frequency techniques are:

• Short Time Fourier Transform, also known as the Gábor Transform

• Wavelet Transforms

First, an introduction to Time-Frequency domain is given, then, the two above-mentioned

techniques are presented.

2.6.1 Time-Frequency domain

Time-domain methods and Frequency domain methods have been discussed previously.

The first one enables a good time location of phenomena; however, it provides very lit-

tle information about the frequencies. The second one provides excellent information

about the frequency domain, but all information about the time domain is lost because

the Fourier Transform requires an integration over the entire time interval. This duality

is often called the Heisenberg uncertainty principle. Any increase in resolution in one

domain is a decrease of resolution in the other domain, an analogy with the uncertainty

42

principle between the momentum and the position of a particle in Quantum physics. In

order to overcome this, Gábor Dénes introduced the Gábor Transform.

2.6.2 Short Time Fourier Transform (Gábor Transform)

To obtain time resolution in the frequency domain, Gábor [50] introduced a windoww(t−

τ) in the Fourier Transform (Equation 2.13) so that the result is localized in time.

S(f, τ) =

∫ ∞
−∞

x(t)w(t− τ) exp−j2πft dt (2.13)

However, the introduction of this window also reduces the minimum frequency that

the transform can represent. Any part of the signal with a period exceeding the time

window will be considered constant over time and then lost. It constitutes a significant

limitation of the Short-Time Fourier Transform.

2.6.3 Wavelet Transforms

Another approach using wavelets’ family to decompose the signal can overcome the

short-time Fourier Transform frequency resolution limitation. The advantage of Wavelet

compared to other time-frequency transforms is that they are localized in both time and

frequency domains. As opposed to the Fourier transform, Wavelet transforms can more

easily represent abrupt changes in the signal, such as an impact from a rolling element on

a bearing defect. A wavelet is a rapidly decreasing oscillations with 0 means; they only

exist for a given time to be localized. Many functions satisfy the 0 means and localiza-

tion properties; the choice of such a function will depend on the application. Contrary to

the Fourier transform, in which the basis of decomposition is a sinusoidal function, the

Wavelet Transform uses multiple wavelets resulting from the translation and dilatation of

a mother wavelet: Ψa,b(t). By tuning the parameters a and b, the wavelets can be moved

in the time domain, and its frequency resolution can be adapted; Figure 2.3 from [51]

43

Figure 2.3: Time frequency resolution of the Short Time Fourier Transform (left) and the
Wavelet Transform (right).

presents the difference between the Short-Time Fourier Transform, and the wavelet trans-

forms in terms of time-frequency resolution. Each box represents one window of analysis:

contrary to the Short Time Fourier Transform, the Wavelet Transform frequency resolu-

tion can be adapted.

There are two types of wavelets, Continuous wavelets, and Discrete wavelets. The

main difference between the two is how the coefficients a and b are changed. The Dis-

crete Wavelet Transform only takes integer values contrary to the continuous form where

it can take non-integer values; this is often time preferred as the computational cost is

dramatically reduced.

Continuous Wavelets give a higher resolution in time and frequency, which captures

the oscillations of the signal with more accuracy than for Discrete Wavelet Transforms.

The discrete Wavelet Transform usually uses powers of 2 coefficients for shifting and

scaling; this enables an analogy with changes by octaves in the signal’s frequency. Mallat

[52] developed a fast pyramid algorithm comparable to a filter bank that can be use for fast

processing of wavelet transforms. The filter bank is composed of high-pass and low-pass

filters (as presented in Figure 2.4).

The high-pass sub-band (H in Figure 2.4) captures the high pass sub-band of the signal

(i.e., the details) and the low-pass sub-band (G in Figure 2.4), the low frequencies, i.e., the

signal’s trend. At each stage of the filter bank, the high pass filter extracts the details for

44

Figure 2.4: Schematic of a filter bank (H, low-pass and G, Hight-pass)

this level, and the low pass filter gets the trends that will be fed into the next level (another

set of high-pass and low pass filters) of decomposition with different filters parameters.

Wavelet Transforms: As mentioned previously, a wavelet derives from a mother

wavelet. This function only needs to satisfy one condition called admissibility condition

2.14. ∫ ∞
−∞

Ψa,b(t)dt = 0 (2.14)

As long as this condition is satisfied, we can define a wavelet transform 2.15, where a

and b are the dilations, and the translation factor is used to tweak the mother wavelet to

generate the rest of the basis.

W (a, b) =
1√
a

∫ ∞
−∞

x(t)Ψ∗
(
t− b
a

)
dt (2.15)

Shifting of a Wavelet: To shift a wavelet Φ(t), we can offset the time by a constant

factor b to obtain Φ(t− b) This will cause a translation of the Wavelet in the time domain.

Scaling of a Wavelet: The scaling of a Wavelet Ψ(t) can be expressed by adding a

factor 1
a

in the Wavelet definition in order to compress the time:

• Ψ(t
a
) with s > 1 will reduce the frequency of the wavelet causing a dilation of its

representation.

45

• Ψ(t
a
) with s < 1 will increase the frequency of the wavelet causing a shrinking of

its representation.

A shrunk Wavelet will be more localized and will consequently capture rapid change in

the signal, whereas a dilated wavelet will help express the signal’s slow evolution.

Common wavelet families Many mother wavelets can be defined, and the selection

of the wavelet is based on the application. The first wavelet introduced were the Haar

wavelets 2.5. Other famous wavelets such as the Daubechies or Morlet, are worth

mentioning. The former constitute an orthogonal basis and are very useful for analy-

sis/synthesis application (e.g.: image processing) and the later are not orthogonal but

enable some useful overlap for visual applications [12].

Figure 2.5: The Haar wavelet

From Wavelet to filter banks: an introduction As afford mentioned, a wavelet family

can be used to decompose a function f(t) in the form:

f(t) =
∑
j,k

bj,kwj,k(t) (2.16)

This decomposition is easier when the wavelet families are orthogonal; that is, they

satisfy 2.17

〈wi,j, wk,l〉 =

∫ ∞
−∞

wi,j(t)wk,l(t)dt = δi,kδj,l (2.17)

The members of the family are described by two different indices as they depend on

46

the time location of the wavelet: Shifting, first index. As well as, the shrinking (Scaling)

of the wavelet, represented by the second index.

For instance, w0,k(t) will be the kth shift of the wavelet w0,0(t) = w(t), the mother

wavelet; and wi,0(t) will start at 0 but have a different scale than w(t).

An easy way to represent a wavelet from the mother wavelet is to write as follows:

wi,j(t) = w(2i · t− j) (2.18)

The equation 2.18 shows that the increase of iwill 2i ·t for a given t. Consequently, for

each increment of t→ t + dt we would obtain 2i(t+dt) thus an increase of i compresses

the wavelet. Similarly, an increase in j would translate the argument (2i · t − j) in the

expression of equation 2.18, which achieves the shifting of the wavelet.

A key idea behind wavelet decomposition in relation with filter bank is multiresolu-

tion: If we consider an orchestra playing (or a bearing vibrating), there will be high and

low frequency components played at different times in the song. The idea is to approxi-

mate the signal as a sum of:

Signal = Signal levels⊕ Signal details (2.19)

This can also be seen as a sum of:

Signal = Local averages⊕ Local differences (2.20)

For instance, considering the impulse signal x = (....0 0 1 0 0....) and the two simple

high-pass and low-pass filters:

Hp : y(n) =
1

2
[x(n)− x(n+ 1)] (2.21a)

Lp : y(n) =
1

2
[x(n) + x(n+ 1)] (2.21b)

47

Note: The Hp and Lp filter uses indices x(n) and x(n− 1) because at discrete time n, the

value of x(n+ 1) is unknown as it has not happened yet.

Applying our filter to the above considered impulse signal provides the impulse re-

sponse of the filters. For the Low-pass filter:

YLp = (... 0 0
1

2

1

2
0...) (2.22)

And for the Hight-pass filter:

YHp = (...0 0
1

2

−1

2
0...) (2.23)

The two previous response highlight the fact that we can reconstruct the initial signal

using the response of the Hp and Lp filers:

x = yHp + yLp (2.24)

yLp giving the moving average of the signal and yHp giving the moving difference, i.e.

the details. In order to improve the two filter it is usually to normalize their response by

adding a factor
√

2, this will change the Finite Impulse Response (FIR) of the filter to be:

YLp = (... 0 0
1√
2

1√
2

0...) (2.25a)

YHp = (... 0 0
1√
2

−1√
2

0...) (2.25b)

In the following, the coefficients of the Lp and Hp filter will be denoted as c(n) and d(n)

48

respectively, such that:

c(0) = c(1) =
1√
2

(2.26a)

d(0) = −d(1) =
1√
2

(2.26b)

Now in the continuous time we have generic expression for the scalling function that

include the Hp filter:

Φ(t) =
√

(2)
N∑
k=0

c(k)Φ(2t− k) (2.27)

If we express this using the c(n) we obtain:

Φ(t) =
√

(2)

(
1√
2

Φ(2t) +
1√
2

Φ(2t− 1)

)
(2.28)

Equation 2.28 can be further simplified to obtain the dilatation equation, for our is simple

case :

Φ(t) = Φ(2t) + Phi(2t− 1) (2.29)

Figure 2.6 from [53], presents the solution to the dilation equation for the considered

filters.

Figure 2.6: Solution to 2.29

49

Similarly, the generic wavelet equation is given by:

w(t) = 2
N∑
k=0

d(k)Φ(2t− k) (2.30)

and, injecting the d(k) it simplifies into:

w(t) = Φ(2t)− Φ(2t− 1) (2.31)

The two simple Hp and Lp filters are actually very specific as they helped construct the

Haar Wavelet presented in Figure 2.5.

The idea of decomposing a signal into its difference and its average can be applied

more than once so that we can decompose the average again to obtain more details, by

applying the Low-pass and High-pass filter in the manner described in Figure 2.4, we find

a more refined description of our signal.

2.7 Wavelet Transform for bearing defect detection

Wavelet analysis is among the best time-frequency techniques. Due to their use in image

and signal processing, wavelet transform algorithm and their implementation were heav-

ily studied and are very efficient[54]. They are also very appropriate for signals dominated

by impulse responses at different frequencies [49], Sawalhi introduced Morlet wavelets

to estimate the most important spectral Kurtosis to select a demodulation frequency band

(see section 2.5). Garzon et al. [55] followed the same process by using the Kurtosis and

the RMS to select the frequency band.

In using Discrete Wavelet transform, Kumar et al. [56] identified the Symlet 5th or-

der to detect minimal outrace defect. However, they have only applied this technique to

visually identified defects in the signal, which does not provide a solution for automated

classification of the bearing condition. Some work has been carried out by Holm-Hansen

50

[57] to derive a customized filter bank adapted to bearing defects. The identified wavelet

was compared with the Daubechies 4th for different loads on the bearing shaft. Kankar

et al. [58] have used wavelet transform to identify features fed into three different ma-

chine learning algorithms: Support Vector Machine, learning vector quantization, and

self-organizing maps. The two first ones being supervised learning techniques, and the

last one being unsupervised. In order to select a wavelet transform, they have compared

the Shanon Entropy of the wavelet coefficient and chose the Complex Morlet family.

Kumar et al. [56] have used Continuous Wavelet transform associated with Deep

Convolutional Neural Networks to achieve a 100% accuracy on multiple types of bearing

defects. However, this study only considered artificially created defects. Paya et al. [59]

used the Daubechies 4 and an Artificial Neural Network to detect bearings and gears

defects in various conditions. They achieved 96% average classification rates. As in [56]

the default was only simulated. Jose et al. [60] used the Daubechies 5th in 3 types of

Neural Networks: A Multi-Layer Perceptron, a Radial Basis Function Neural Networks,

and a Probabilistic Neural Network. The 3 Networks were evaluated on different faults

and claimed to give state-of-the-art results with 70% accuracy.

For filtering purposes, wavelet techniques were also used on the result of an Ensem-

ble Empirical Mode Decomposition by applying to the maximum kurtosis Intrinsic Mode

Function a Tunable Q-factor Discrete wavelet was able to denoise the signal and to di-

agnose an outer-race defect earlier than with classical methods[61]. Wang et al. [62]

applied two discrete wavelet transforms in parallel with different filters; introduced this

dual-tree approach [63] and clarified by [64]. The technique successfully identified a

defect in both the inner and outer race of a bearing and is said to be suitable for online

parallel implementation. Zang et al. [65] used a similar approach with the introduction of

a Q-Factor Gabor Wavelet Transform applied to the signal to identify the presence of the

defect frequencies; their methodology is presented in figure 2.7[65].

Work has been done on adaptive natural Morlet Wavelet 2.32 to detect gearbox de-

51

Figure 2.7: The Continuous Multiple Q-factor Gabor Wavelet Transform approach

fects. The Morlet Wavelet is adapted by tweaking the parameter β; the wavelet transform

is applied for different values of β, the one with the maximum Kurtosis is then selected.

This method detected early cracks in a gearbox’s teeth but has not yet been applied to

bearings.

Ψa,b(t) = exp

[
−β

2(t− b)2

2a2

]
cos

[
π(t− b)

a

]
(2.32)

Some have also applied wavelet combined with machine learning techniques rather

than a filter to detect theoretical defect frequencies. Zhang et al. [66] trained a convolu-

tional neural network on images generate by Short-Time Fourier Transform of bearings

defect compared their method with classical deep learning method and obtained better

results; moreover, the training time was reduced as their approach enables the use of a

small image. Wavelets were also used in image processing of bearing defect by Islam et

al. [67] who processed the acoustic emission of a defective bearing with wavelet pack-

ets to training a convolutional neural network. For this, they made use of an NVIDIA

GeForce 580 GPU that would be very expensive to deploy at the edge. He et al. [68]

also used the wavelet to represent the signal in the time-frequency domain; the bearing

defect frequency was directly extracted from this representation. Haidong et al. [69] used

52

Gaussian wavelet in an autoencoder to avoid the feature selection and reduce the induced

bias that this step introduces in the model. Compared to an auto-encoder and a support

vector machine model trained with feature selection, the wavelet auto-encoder enabled

better detection of electric locomotive bearings. Gelman et al. [70] also used wavelet

as a new representation of bearing’s condition and used wavelet bi-coherence feature to

characterize if the bearing is defective. This approach suffers from the arbitrary choice

of the parameters in the features. Liu et al. used the Mexican hat wavelet as the kernel

function of a support vector machine algorithm [71].

Wavelets were introduced at the edge by Borova et al. [72] to compress measurements

ofCO2 and Temperature. The compressed data were then sent to a front-end device where

they were to be decompressed. The study focused on multiple families of wavelets such

as Haar, Meyer, Simlet, and bi-orthogonal.

To summarize, the use of wavelets for condition monitoring could be classified in 3

categories that serve:

• To identify the maximum spectral Kurtosis for envelope analysis [49, 12].

• As filter to denoise the signal and then apply classical frequency domain techniques

[62, 61, 65].

• To generate new representation of the data (images, 3 dimensions spaces...)[70, 67,

71], which is the same idea as [66, 12].

However, in these two first cases, the results are denoised spectra, so human intervention

is required to evaluate the bearing’s status, making it challenging to automatize.

Moreover, when wavelets are used to generate a new image representation and to

apply machine learning, they are generally processed in the Cloud, which results in a

high volume of data sent transmitted. Recently a new form of Machine Learning called

Federated Learning was introduced by Google. By using the idling processing power this

53

approach try to reduce the amount of data transmitter to the cloud, it is presented more

into detail in the next section.

2.8 Federated Learning

The increased performance of Edge devices has enabled the execution of machine learn-

ing models along with their training at the edge. For instance, a fleet of edge devices

using the same machine learning model, can retrain the model with the data from those

devices. Federated learning refers to the process of locally retrain the model on the edge

devices and merging the new model parameters before propagating into the entire fleet of

devices.

2.8.1 Concept behind federated learning

The main idea of federated learning is to use the idling processing power at the edge.

From an edge device perspective, it can create its own local dataset. For example, a

next word prediction local training set can be created on a smartphone using the user’s

actual next word to validate if the prediction was correct. The smartphone can then use

this local dataset to retrain its model and obtain more optimized parameters. From the

perspective of the global performance of the entire fleet, the centralized server requests

a representative subset of the device to retrain their models when they are idling and

send back the new parameters. The set of new parameters can be merged using federated

averaging (Cf.: section 2.8.3) and sent back to all the edge devices to improve the global

performance of the fleet. The process can be repeated with another subject of devices.

2.8.2 Advantages of Federated Learning

Google introduced federated learning to solve data privacy concerns according to a White

House’s report on minimization of data collection [73]. Indeed, retraining a federated

learning model does not require sharing the data with a central server. For smartphone

54

Figure 2.8: The Federated Learning Process.

users, it becomes essential that the data stays on their devices. Even the centralized server

controls the training, it never accesses the data which significantly reduces the risk of data

breach as the device will never share the data.

Moreover, smartphone chips (and other microprocessors’ chips) have become ex-

tremely powerful and, contrary to centralized servers, they are available when the owner

is not using his phone (e.g., at night when charging and connected to WI-FI). Leverag-

ing this computing power permits reducing the load on a centralized server and presents

significant advantages from an ecological perspective. Centralized servers produce much

heat that lessens the server’s performance and necessitates a cooling system.

Some projects have put the server’s room heat to used like water heating for energy

production or other ways to recover the heat energy like the one discussed in [74]. Al-

ternatively, the cooling of the server could be accomplished by submerging the servers in

the Coastal area near a big city like Microsoft’s Natick project [75].

Nevertheless, federated learning to reduce the load on the server is a simple and ef-

ficient solution that can also be combined with the ideas mentioned earlier to reduce the

environmental impact of data center and Industry 4.0 solutions.

55

2.8.3 Theory

A typical machine learning problem can be summarized into the minimization of the error

f . To do so, we associate a cost, the “loss” to the model performance. Consider a dataset

D , {(x1, y1)...(xN , yN)}, where xi is a vector of features and yi is the corresponding

label. We can denote the loss for the sample i ∈ [[1, N]] as l(xi; yi;w) a function that

depends on the samples and w ∈ Rd the current model parameters.

In centralized learning, the objective is to minimize the overall cost for all the samples

of the dataset with respect to the dataset parameters, that is:

min
w∈Rd

(
1

N

N∑
k=1

l(xk; yk;w) = min
w∈Rd

)
(2.33)

In federated learning, the approach is different. The central server does not have access

to the dataset of each client.

Each client, has its own non-iid dataset which will be denoted
(
xki , y

k
i

)
for client k

with k ∈ [[1, K]]. The optimization problem can then be rewritten by considering the loss

for each client as in [76]:

Fk(w) =
1

nk

nk∑
i=1

l(xi; yi;w) (2.34)

where nk is the size of the dataset of the kth client. Then, the loss across clients is defined

as:

f(w) =
K∑
k=1

nk
n
Fk(w) (2.35)

a weighted average of the loss for each client.

In [76], the federated learning algorithm is presented, this algorithm is at the basis of

federated learning as it enable a good global learning while maintaining low communica-

tion cost.

As opposed to centralized training, where high communication speed is achieved be-

tween the different processing units; federated learning communication cost are very im-

56

portant as the communication is often achieved over lower bandwidth networks.

The federated learning algorithm from [76] is presented in algorithm 1.

Algorithm 1 FedereatedAveraging from [76]
Server executes:

initialize w0

for each round t=1,2,... do
m← max (C ·K, 1)
St ← ((random set of m clients))
for each client k ∈ St do . In parallel across clients

wkt+1 ← ClientUpdates(k, wt)
end for
wkt+1 ←

∑K
k=1

nk

n
wkt+1

end for

Clients Updates (k,w): . Run on client k
B ← (Split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − ν∇l(w; b)

end for
end for
return to server

2.8.4 Application of Federated Learning

In the applications of federated learning, two categories and two different setup of feder-

ated learning should be introduced:

Federated learning setups

The federated learning setup refers to the scale at which the “federation” occurs. Google

describes it either as cross-silo or cross-devices federated learning as presented in 2.8.1.

In the former, the data is kept local to the devices, for example, a fleet of smartphones

in which each device has its own dataset illustrates such an application. This idea as been

used in [77] to defect an out-of-Vocabulary Words. In cross-silo, the data needs to be

kept inside an organization, but it can be shared across different devices. For example,

57

manufacturing plants in which there is no need to share the data across the facility and a

local cloud can be used to retrain the model based on each facility’s dataset. As a practical

example, [78] where multiple hospitals joined an effort to develop a model for breast

density classification without sharing their data. Other sectors such as the Agriculture

and food sector also have an interest in cross-silo federated learning. Durrant et al. [79]

used federated learning as a way to leverage the limited amount of data collected per silo

while maintaining data privacy.

2.9 Federated Learning in Manufacturing

The field of applications for federated learning to manufacturing is vast, especially in

the 4th industrial revolution and the Internet Of Things development. More than ever,

machines are connected to the internet and generate large amounts of data.

Federated Learning for Manufacturing enables more data privacy, and uses of lower

data bandwidth which are the main challenges for the Internet of Things for Manufactur-

ing [80].

Nandury et al. [81] have applied cross-silo federated learning for automated speech

recognition (ASR). They have introduced a new Federated Learning Averaging algorithm

(FedAvg-DS) that gives better results in ASR and its application to a personal assistant

such as Amazon Alexa.

Kanagavelu et al. [82] have developed a platform for horizontal, cross-silo federated

learning integrated into the Industrial Internet of Things for manufacturing. They com-

pared the computation times for two settings: a Two-phase Multip-Party computation and

a Peer-to-Peer setting. Hiessl et al. [83] have identified that contrary to other fields of

application, federated learning for manufacturing is limited by the large variety of assets.

As opposed to the example of a fleet of smartphones, there is a large variety of machine

types and industrial operations in manufacturing. Youyang et al. [84] have proposed a

higher integration of federated learning with blockchain to increase the framework’s re-

58

sistance to poisoning attacks in an IIoT setup. Ge et al. [85] have investigated the use

of vertical federated learning versus centralized learning on a Bosh dataset. In particular,

they have tested two types of machine learning algorithms: random forest and support

vector machine. It was shown that Vertical Federated Learning could achieve an accu-

racy similar to centralized learning. Savazzi et al. [86] have demonstrated that Federated

Learning for automation enables low communication times in a domain of application

where Ultra-Low Latency is required. The addition of federated learning in this context

is shown to be promising for application in collaborative automation. Dhada et al. have

shown in [87] the use of federated learning for Remaining Useful Life (RUL) prediction

on a turbofan fleet. The use of Federated Learning in this context enables overcoming

the highly distributed nature of the data. The federated trained Recurrent Neural Net-

work (RNN) showed “pictorially” [87] that it predicts a similar trend to the actual values.

However, the Centralize learning model gives much better results in the study. Zhang et

al.[88] have tested Deep Neural Network in a horizontal federated learning layout. Two

different organizations of data have been tested, an IID and a non-IID. In the case of the

non-IID data, the Federated Learning method has a significant gap with the centralized

techniques.

The previous studies emphasize that Federated Learning applied to manufacture pri-

marily in asset condition monitoring shows promising results. However, no studies ob-

tained satisfying results for federated learning for bearing defect detection.

The following chapter will present a summary of the limitations of the current ap-

proaches to developing research questions.

59

CHAPTER 3

PROBLEM FORMULATION

In this chapter we present the limitation of the current bearing defect detection ap-

proaches, then the research questions and research hypothesis are introduced.

3.1 Summary and Limitation of the current approaches

3.1.1 Time domain limitations

As mentioned above, time domain analyses are applied to track the trend of the vibration

signal from a statistical viewpoint, which does not provide a good insight about the type

of defect nor its severity.

Moreover, apart from the semi-automated method proposed by Sawalhi in his PhD

Thesis[49], time domain method relies on a user decision-making. Consequently, it is

difficult to imagine deploying them on a large scale.

3.1.2 Frequency domain limitations

Defect frequency identification methods are among the most developed; they rely on mul-

tiple denoising techniques that aim to increase the impulsiveness of the signal to identify

theoretical defect frequencies. However, this requires knowledge of the rotation speed of

the bearing which is unknown for some system. In paper machines for instance, multi-

ple rollers are driven by a belt, but only the driving roller is equipped with a tachometer;

thus, any slip between the belt and the wheels will affect the actual defect frequency. The

difference between the theoretical and actual defect frequency will make any automation

attempt very difficult [44].

Other frequency methods like Cepstrum analysis or envelope analysis also rely on

60

peak identification, which requires an action from an operator to make the classification.

3.1.3 Time-frequency possible improvements

These methods try to acquire information in both time and frequency domain. The

Wavelet transform is often time preferred to the Short Time Fourier Transform as it is

suffering less from the Heisenberg uncertainty principle. Their applications have mostly

been for denoising or as a tool in envelope analysis. Some studies have shown promising

results by combination of wavelets and machine learning techniques, which was carried

out in the cloud.

As mentioned earlier, even though this is interesting from an automation viewpoint, it

raises a new issue: the transmission of this data to the cloud is not efficient as it is likely

to be stored and never processed.

3.2 Research questions

Regarding the above discussion, 2 major gaps can be identified:

1. Current bearing defect detection methods are not adapted to large scale automated

implementation as they require user intervention.

2. Techniques using a Cloud based machine learning approach result in a high volume

of data transmitted, and low information density data stored in the Cloud.

Thus, the proposed work aims to fill two gaps by answering the following Research Ques-

tion (RQ):

Research Question

How can a new approach for automated bearing defect detection be decoupled from

Cloud computing?

This main question could be divided into three main steps:

61

Research Question 1

How can bearing defect detection be automated without previous knowledge of

their configuration?

To answer this question we can formulate the following hypothesis.

Hypothesis 1

Wavelet transforms, associated with machine learning, enable automated bearing

defect detection with same performance as classical methods without previous

knowledge of the bearing configuration.

Hypothesis 2

The wavelet transform step can be merged into the learning approach in order to

significantly improve the process. This can be achieved not only at the device

level by merging the algorithms, but also at the network level by implementing a

federated learning approach between multiple devices.

Then, in light of the cloud limitation expressed above, we can formulate the following

question:

Research Question 2

How can this approach be decoupled from cloud computing while maintaining ad-

equate sampling rate and sensitivity for predictive maintenance applications?

The above question can be addressed with the following hypothesis:

Hypothesis 3

By leveraging the recent developments on microprocessor and System on Chip, a

parallel implementation of the above-mentioned techniques can be developed at the

edge.

62

Hypothesis 4

The parallel wavelet implementation at the edge enables an early detection of the

bearing defect that is suitable for predictive maintenance planning.

Finally, the proposed method should be benchmarked against current techniques.

Research Question 3

What is the trade-off between cost and performance (speed, sampling rate and sen-

sitivity) comparing the edge implementation and the cloud implementation?

Hypothesis 5

The edge implementation will have comparable or better results than cloud com-

puting services at a lower cost.

In this chapter, the previous existing techniques for bearing defect detection and their

limitation were presented. A research question was identified and hypothesis made to

answer this question. The following chapter is going to present the approach that will be

followed to validate or reject them.

63

RQ
:H

ow
 c

an
 a

 n
ew

 a
pp

ro
ac

h
fo

r
au

to
m

at
ed

 b
ea

rin
g

de
fe

ct

de
te

ct
io

n
be

 d
ec

ou
pl

ed
 fo

rm

Cl
ou

d
co

m
pu

tin
g?

RQ
1:

Ho
w

 c
an

 b
ea

rin
g

de
fe

ct

de
te

ct
io

n
be

 a
ut

om
at

ed
 w

ith
ou

t
pr

ev
io

us
 k

no
w

le
dg

e
of

 th
ei

r
co

nf
ig

ur
at

io
n?

RQ
2:

Ho
w

 c
an

 th
is

ap
pr

oa
ch

 b
e

de
co

up
le

d
fro

m
 c

lo
ud

 c
om

pu
tin

g
w

hi
le

 m
ai

nt
ai

ni
ng

 a
de

qu
at

e
sa

m
pl

in
g

ra
te

 a
nd

 se
ns

iti
vi

ty
 fo

r
pr

ed
ic

tiv
e

m
ai

nt
en

an
ce

ap

pl
ic

at
io

ns
?

RQ
3:

W
ha

t i
s t

he
 tr

ad
e-

of
f

be
tw

ee
n

co
st

 a
nd

 p
er

fo
rm

an
ce

(s

pe
ed

, s
am

pl
in

g
ra

te
 a

nd

se
ns

iti
vi

ty
) c

om
pa

rin
g

th
e

ed
ge

im

pl
em

en
ta

tio
n

an
d

th
e

cl
ou

d
im

pl
em

en
ta

tio
n?

W
av

el
et

 tr
an

sf
or

m
s a

ss
oc

ia
te

d
w

ith
 m

ac
hi

ne
 le

ar
ni

ng
 e

na
bl

e
au

to
m

at
ed

be

ar
in

g
de

fe
ct

 d
et

ec
tio

n
w

ith
 sa

m
e

pe
rfo

rm
an

ce
 a

s c
la

ss
ic

al
 m

et
ho

ds
 w

ith
ou

t
pr

ev
io

us
 k

no
w

le
dg

e
of

 th
e

be
ar

in
g

co
nf

ig
ur

at
io

n.

Th
e

w
av

el
et

 tr
an

sf
or

m
 st

ep
 c

an
 b

e
m

er
ge

d
in

to
 th

e
le

ar
ni

ng
 a

pp
ro

ac
h

in
 o

rd
er

to

 si
gn

ifi
ca

nt
ly

 im
pr

ov
e

th
e

pr
oc

es
s.

 T
hi

s c
an

 b
e

ac
hi

ev
ed

 n
ot

 o
nl

y
at

 th
e

de
vi

ce
 le

ve
l b

y
m

er
gi

ng
 th

e
al

go
rit

hm
s,

 b
ut

 a
lso

 a
t t

he
 n

et
w

or
k

le
ve

l b
y

im
pl

em
en

tin
g

a
fe

de
ra

te
d

le
ar

ni
ng

 a
pp

ro
ac

h
be

tw
ee

n
m

ul
tip

le
 d

ev
ic

es
.

By
 le

ve
ra

gi
ng

 th
e

re
ce

nt
 d

ev
el

op
m

en
ts

 o
n

m
ic

ro
pr

oc
es

so
r a

nd
 S

ys
te

m
 o

n
Ch

ip
, a

 p
ar

al
le

l i
m

pl
em

en
ta

tio
n

of
 th

e
ab

ov
e-

m
en

tio
ne

d
te

ch
ni

qu
es

 c
an

 b
e

de
ve

lo
pe

d
at

 th
e

ed
ge

.

Th
e

pa
ra

lle
l w

av
el

et
 im

pl
em

en
ta

tio
n

at
 th

e
ed

ge
 e

na
bl

es
 a

n
ea

rly
 d

et
ec

tio
n

of

th
e

be
ar

in
g

de
fe

ct
 th

at
 is

 su
ita

bl
e

fo
r p

re
di

ct
iv

e
m

ai
nt

en
an

ce
 p

la
nn

in
g.

Th
e

ed
ge

 im
pl

em
en

ta
tio

n
w

ill
 h

av
e

co
m

pa
ra

bl
e

or
 b

et
te

r r
es

ul
ts

 th
an

 c
lo

ud

co
m

pu
tin

g
se

rv
ic

es
 a

t a
 lo

w
er

 c
os

t.

Figure 3.1: Research Questions

64

CHAPTER 4

FEDERATED EDGE IDENTIFICATION OF BEARING DEFECTS

In this chapter, the implementation of the Edge computing architecture is presented. First,

the System on Chip selected for this work is presented. Then we detail the development

of the data acquisition followed by the Wavelet Transform processing. Finally, we explain

the Edge inference of bearing status and federated learning in System On Chip’s (SoC)

network.

4.1 BeagleBone AI presentation

The BeagleBone AI is the latest board release by the BeagleBone Bone foundation. As

opposed to the popular Raspberry Pi [89], the BeagleBoard Foundation release Open

Source designs [90]. The board is based on the Texas Instrument Sitara AM5729 chip,

which provides enough computing power to places it between the small SoC and powerful

industrial computers.

4.1.1 Texas Instrument Sitara AM5729 chip presentation

Texas Instruments developed the AM572x family to offer powerful processing for em-

bedded applications. These ARM-based chips features, among others, a dual Cortex A15

RISC processor and two Digital Signal Processors (DSP). As presented in figure 4.1, the

ARM architecture’s main advantage is to enable access to the different port from all the

processing units.

Moreover, it permits the separation of computing tasks from the operating system

execution; this is a clear advantage over other boards like microcontrollers, which are

limited to a single instruction loop.

Texas Instruments integrated two Programmable Real-Time Unit Subsystems, and

65

Figure 4.1: AM5729 block diagram from [91].

Industrial Communication Subsystem (PRU-ICSS), which can be is used for deterministic

data acquisition separately from the other control functions.

The AM572x family is composed of three different chips: AM5726, AM5728, and

AM5728. The last one featuring two Embedded Vision Engines (EVE) that are not present

in the two others. Finally, all the AM572X chips have a GPU expect the AM5726. To

66

facilitate the use of this new onboard processing power, Texas Instrument released the

Texas Instrument Deep Learning (TIDL) library to show some test cases of online infer-

ences using the DSP and the EVE.

The Texas Instrument Chips are integrated into different development platforms, the

BeagleBone AI is the cheapest at $125 [92]. In the next section we will present the

BeagleBone AI development platform.

4.1.2 BeagleBone System on Chip

The BeagleBoard Foundation releases open-source SoC based on the Texas Instruments

chips. Their flagship board, the BeagleBone Black, sells for $82 [93]. In 2019, the

foundation released the BeagleBone AI. As mentioned earlier, it targets more computing-

intensive tasks. To expand the BeagleBone AI application, the board features a Touch

Screen controller with a 12bits 3.3V Analog to Digital Converter that can be accessed

from the PRU-ICSS via the I2C Bus. The BeagleBone AI has the same form-factor and

headers as the BeagleBone Black. The board’s low cost and robust capabilities make it a

competent development platform for IoT applications. In the next section, we present the

proposed solution’s architecture at the SoC level.

Proposed Architecture at SoC level.

In order to implement bearing defect identification at the edge, it is proposed:

• To use the PRU-ICSS for deterministic data acquisition. Using the I2C Bus, the

PRU-ICSS can access the ADC and retrieve measurements from an analog ac-

celerometer.

• The ARM Cortex will be used for communication with other boards in the network

and will process the Wavelet Transform of the vibration data acquired with the PRU

67

• The DSP and EVE engine will execute the Machine Learning model compiled with

the Texas Instrument Deep Learning library.

First test on the BeagleBone AI

Before selecting the BeagleBone AI as the board for this project, the different examples

proposed by the BeagleBoard foundation were tested to verify that this new board was

working as expected. The test examples present the use of the DSP and the TIDL library

for machine vision using a webcam plugged to the USB port of the BeagleBone AI. [94].

It will permit the check that the DSP is accessible from the ARM Cortex A15 and that the

heat sink placed on the chip diffuses enough energy to prevent the board from overheating.

Use of TIDL examples: A Logitech webcam was plugged into the BeagleBone AI,

and the board was powered. After a warm-up period, the example codes were compiled

and executed. During the experiment, CPU, GPU, and DSP temperatures were recorded

every two minutes. After 5 minutes of inference, the board stops due to overheating the

CPU, exceeding the maximum temperature accepted by the board (85C) before automatic

shutdown. As the board was just released, no commercial solution to this overheating

problem was available. The temporary solution was to cool down the board with a fan

plugged into the VDD 3.3V pin. The same test was carried out, and the solution was

found to be effective; soon after the foundation released a fan cape (Figure 4.2) for $6.99

which is a much cleaner solution to the problem.

In the following part we develop in more detail the PRU-ICSS subsystem before pre-

senting the use of the BeagleBone AI Process-Realtime-Units for deterministic data ac-

quisition.

68

Figure 4.2: The Fan Cape from [90].

4.2 PRU-ICSS subsystem

4.2.1 Presentation of the PRU-ICSS

The PRU-ICSS subsystems of the ti-am5xx chips are one of the main advantages on the

BeagleBone boards over other similar boards like the Raspberry-Pi. Indeed, it gives the

ability of executing some deterministic programs on the microprocessor. On the Beagle-

Bone Bone AI there are 2 dual-core PRU-ICSS. They are 32bit microcontroller that are

highly integrated with the rest of the system and can easily access the different port of the

BeagleBone. The main limitation of the use of the PRU with some IO ports comes from

some interference with the ARM-Cortex already using this ports (C.f. section 4.3.3).

The PRU is clocked at 200MHz which makes it among the fastest microcontroller in

the market. For instance, they rank third at 16.66MHz, behind the iCEBreaker v1.0e (at

60MHz) and the Teensy 4.1 (at 23.03MHz) on a software ring oscillator test from the MIT

center for Bits and Atom [95] (see Table 4.1).

The next section will present the PRU memory used to store the data sample before

transferring them to the ARM. Thereafter, the communication between ARM and the

69

Table 4.1: Results from ring oscillator test from [95]

Frequency Processor Description Date
60.00 MHz iCE40UP5K iCEBreaker V1.0e, 120 MHz, Verilog September 2021
23.08 MHz IMXRT1062 Teensy 4.1, 600 MHz, Fast, GPIO August 2021
16.66 MHz PocketBeagle C, PRU March 2019
4.616 MHz ATSAME54 C, SRAM (aligned) January 2021
4.00 MHz ATxmega8E5 C, VPORT October 2015

PRU-ICSS subsystems will be introduced, alongside with a how to run a code on the

subsystem.

4.2.2 PRU-ICSS memory

Each PRU-ICSS core has 8kiB of memory that can be accessed in a minimal number of

clock cycles as the data only needs to go through the PRU-ICSS interconnect (Figure 4.3).

Additionally, each microcontroller can access the 8 KiB memory of the other core and a

32 KiB random access memory shared between the two cores in the same clock cycle.

Figure 4.3: The PRU-ICSS subsystem and the Interconnect [96].

Assuming that each data point is stored as a float (or int), it will take 4 bytes; that

70

is, for 8 KiB of memory, 8·210
4

= 2048 data points can be stored. This storage could be

doubled by using the memory of the other core and increased up to 8192 data points by

using the 32 KiB shared memory. It should be noted that the two 8 KiB memories are

continuous; the 8 KiB of one core is directly addressed before the 8 KiB of the other core,

as presented in Table 4.2 from [97]. However, to access the 32 KiB of shared memory,

there is an offset of 0x0001.

Table 4.2: PRU-ICSS local memory map from [97].

Start Address PRUSS PRU0 PRUSS PRU1
0x0000 0000 Data 8KiB RAM0 Data 8KiB RAM1
0x0000 2000 Data 8KiB RAM1 Data 8KiB RAM0
0x0000 4000 Reserved Reserved
0x0001 0000 Data 32 KiB RAM2 Data 32 KiB RAM2

The most convenient solution is to have a default case where the data is placed in

32KiB the shared memory of the PRU-ICSS and if the combination of the sampling rate

and the acquisition duration requires more than 8192 data points to use the two 8KiB

of data RAM of each PRU-ICSS. This solution is limited to 2 · 2048 + 8192 = 12288

data points. The most extreme case where even more data points are required will not be

considered here, but a workaround would use the AM5729 memory as storage. However,

this solution would be limited because the data will have to go through the L3 main

interconnect with access speed almost ten times slower than the PRU-ICSS memories.

As mentioned earlier, the BeagleBone AI has an onboard ADC connected to I2C1

(Figure 4.6). However, the ADC’s direct sampling from the Linux host is not suitable

for vibration analysis. Indeed, Linux is not a real-time operating system and the sam-

pling rates could not be guaranteed. A Linux Kernel Module (LKM) has been introduced

to overcome this limitation. The Industrial In/Out driver enables the sample of the I/O

ports of a Linux-based SoC deterministically. However, it requires interrupting all other

tasks handled by the kernel during the sampling operations. In the context of SoC’s net-

71

work, this represents a severe limitation to using the IIO driver in SoC’s network as the

BeagleBone would appear offline while sampling their ADC.

Because the PRU-ICSS are microcontrollers separated from the Linux host and their

execution is deterministic; they are suitable for data acquisition. The next part presents

the communication between the Cortex A15 running Linux and the PRU-ICSS.

4.2.3 Interfacing the ARM and the PRU-ICSS

The AM5729 structure does not give direct access to the PRU-ICSS microcontrollers.

Instead, they are managed via the Linux ARM host, which, consequently, is responsible

for [98]:

• Loading the PRU-ICSS firmware into the instruction memory of the PRU-ICSS

cores

• Starting and Stopping the PRU-ICSS

• Establishing communication with the PRU-ICSS cores

• Since the PRU-ICSS is fully integrated into the chip, the ARM Linux also needs to

manage its ports and interfaces with the different buses and interconnects.

To transfer a message from the Linux host to the PRU, the Linux host starts by placing the

message in the VRING (allocated DDR memory used to transfer data by RPMsg), Figure

4.4 from [98]. Once the message is placed, the Linux host can notify the PRU-ICSS by

posting the index of the buffer into the mailbox. This step is referred to as kicking the

PRU-ICSS. The targeted PRU-ICSS will receive an interrupt and start to read the data

from the VRING buffer, labels it as free, and notify the Linux host that the transaction is

completed. The procedure is very similar to transmit a message from the PRU to the host

ARM; the PRU writes in a VRING kick the ARM, the ARM can read the data from the

buffer, frees it, and kicks back the PRU.

72

Figure 4.4: The VRINGS and the mailboxes used by remoteproc and RPMsg. [98].

4.2.4 Communication between the Host ARM and the PRU-ICSS subsystem

There exists two main ways to communicate between the PRU-ICSS cores and the ARM

Cortex. The UIO driver used in libraries like Libpruio was used until 2018, but since

Texas Instrument as well as the BeagleBone foundation are switching to the use of the

Remote-Processor Messaging (RPMsg) driver. This new solution presents the advantage

to be also compatible with the other processing cores of the AM5729 chip like the DSP

and EVE. Finally, the two drivers are mutually exclusive and cannot be used simultane-

ously, and because this work aims to use both the PRU-ICSS subsystem and the DSP and

EVE cores, the RPMsg driver will be used for this work.

The RPMsg driver exposes a file in the Debian file system under

/sys/class/remoteproc/remoteprocN/state where N is the index of the remoteprocessor.

For the AM5729, there are 8 remote-processors presented in Table 4.3.

The Remote Processor driver is also used to start the code execution on the PRU.

However, RPMsg transaction are limited in size to 492 bytes. Thus, it will not be possible

to transfer the PRU data using the method. To overcome the above-mentioned limitation

73

Table 4.3: Remote Processor of the AM5729

Remote Processor index Device Name
Remoteproc0 IPU 1
Remoteproc1 IPU 2
Remoteproc2 DSP 1
Remoteproc3 DSP 2
Remoteproc4 PRU1 0
Remoteproc5 PRU1 1
Remoteproc6 PRU2 0
Remoteproc7 PRU2 1

the data will be placed in the PRU memory.

4.2.5 Running a code on the PRU

There are again two ways to run some codes on the BeagleBone AI PRUs, Texas In-

strument Software Development Kit (SDK) or directly compile and run the codes from a

Linux Debian distribution running on the BeagleBone. This second solution is preferred

to the cross compilation with the Texas Instrument Code Composer Studio software as it

the way the BeagleBone community is the most likely to adopt the results of this work.

Consequently, to run some PRU C code, it needs to be compiled into a PRU firmware,

this is achieved using the PRU C compiler directly on the BeagleBone AI. The Beagle-

Bone foundation has released a precious Makefile that one can use to compile on the

BeagleBone. This Makefile was adopted for the particular needs of this work. Once the

code is compiled it is placed under the /lib/firmware/am57xx-pruX Y-fw/ where X and Y

are the PRU core. The PRU can then be started by echoing start in the corresponding

remoteproc state file. Then the remoteproc driver will load the binary from the firmware

folder to the PRU instruction memory and prepares the resources that the PRU will need

during the execution of the code.

The linked repository presents basic examples of the use of PRU:

74

https://github.com/PierrickRauby/BeagleBone-AI-PRU

• LED blink: to blink and user LED at a given frequency from the PRU

• RPMsg Echo: a message sent from the ARM is send back to the PRU

In the following part, we present the implementation of a deterministic data acquisi-

tion process on the BeagleBone AI using the PRU-ICSS and the onboard Analog to digital

converter.

4.3 Deterministic data acquisition implementation

The PRU-ICSS subsystem of the BeagleBone AI will be connected to an I2C accelerom-

eter, however, there was no I2C driver at the time of this work.

Thus, a driver needs to be written for the PRU-ICSS to communicate with the I2C

controller. This driver can be written in ASSEMBLY using the PRU ASSEMBLY in-

struction set [99] or in C99 using the Texas Instrument PRU C Compiler. The following

section will present the development of the driver mentioned above.

4.3.1 Development of an I2C driver

Here, we present the driver’s implementation that enables the communication between

the PRU-ICSS and the Multi-master High Speed I2C Controllers of the Ti -Am5729 chip.

An I2C transaction

I2C stands for Inter-Integrated Circuit, it is a communication protocol developed by

Phillips in 1982. I2C allows multiple devices to communicate using two lines:

SCL line: provides clock pulses for the devices to have synchronized communication.

SDA line: to transmit the data, including the devices addresses, start and stop conditions

of the transfer.

75

(a) I2C Transaction (b) Start and Stop condition

Figure 4.5: I2C transaction schematics[97].

In its original version, devices on the bus use an 8 bits address (7 address bits and 1

Read/Write bit) allowing up to 112 devices to be connected on the same bus. However,

some devices currently support a 10 bit address.

A I2C transaction is carried out between a master and a slave device. The Master

initiates the communication by sending a start condition on the bus, followed by the 7 bits

address of the slave and the read/write bit. Once the targeted slave device has sent the

acknowledgment (ACK) bit, the master send another start condition and then either sends

or receives data. Finally, after the last ACK the master sends a stop condition on the bus.

In order to configure an I2C sensor on the bus, the I2C controller of the BeagleBone AI

needs to perform the following steps:

• Send the address of the device with a write bit.

• Send the address of the sensor’s internal register with a read or write bit depending

if it wants to read the value of the register or send data to it.

• Either wait to receive the data or write the data in the bus.

Presentation of the BeagleBone AI HSI2C module

The AM5729 chip has five I2C controllers compliant to the Phillips I2C standards; they

support a standard mode at 100kHz and a fast mode at 400kHz; some the controllers also

support a High speed mode at 3.4MHz.

76

The controller’s memory registers can be accessed via the L4 Interconnect of the chip,

and the Power Reset and Clock Management (PRCM) Module provides the clock for the

controller. The data can be transmitted to the host using interrupt or Direct Access Mem-

ory (DMA) transfers. In the host interrupt, the HSI2C Controller notifies the Local Host

(LH) that new Data is accessible in the data register by raising interrupt flags. Once the

flags are raised, the host can get the register’s data and place it in memory. On the con-

trary, Direct Access Memory (DMA) does not require the host to transfer it. The HSI2C

and the DMA controllers can transfer the data directly to memory. DMA’s advantage over

interrupt is that it frees the host from the data transfer task. However, in the proposed ar-

chitecture, the PRU-ICSS is in charge of the data acquisition and can handle the data

transfer when interrupts are raised. Consequently, the data will be read from the HSI2C

data registers using the PRU and interrupts.

The different steps are directly carried out by the controller and the PRU only needs

to configure its registers. To simplify the interaction between the PRU and the controller,

a I2C driver was implemented.

Implementation of the I2C driver

As presented in Figure 4.6, The BeagleBone AI on-board ADC is connected to the chip

on I2C1 and the PRU can control the I2C controller. However, this ADC is also required

by the Linux host and cannot be used as a dedicated ADC for data acquisition. Conse-

quently, an external I2C accelerometer was used with I2C4 in order to carry out the data

acquisition.

A PRU-I2C library was implemented in C for the BeagleBone AI. It exposes basis

function to setup the I2C controller using the PRU. The codes are available on the Github

linked. The library contains a user space and a PRU code. The user space is used to

communicate with the PRU using RPMsg and to tell the PRU to start the I2C controller

acquisition. The repository contains two folders a main with the codes to be executed on

77

https://github.com/PierrickRauby/BBAI-PRU-I2C
https://github.com/PierrickRauby/BBAI-PRU-I2C

(a) ADC (b) I2C controller

Figure 4.6: I2C Bus wiring[100].

the user space side (ARM Linux) and PRU directory. Under the PRU directory is located

the drivers codes that exposes the following function:

pru i2c driver init: initializes the I2C controller according to the Texas Instrument doc-

umentation. The CM L4 PER I2C1 CLKCTRL gate is close to provide clocks to

the I2C controller. Then the prescaler is initiated to obtain a 100kbps using Table

24-6 and 24-7 of the Technical Reference Manual SPRUHZ6L. Finally, the con-

troller is enabled and the address of the Slave device on the bus is provided.

pru i2c driver transmit byte: transmits a bite of data to a slave device by first specify-

ing the slave’s register to write the data to.

pru i2c driver transmit bytes: transmits multiple bites of data to a slave device by first

specifying the slave’s register to write the data to. This function can also be used

to send the configuration to a device by sending an array of bytes. The first byte

being the data for the specified register and then an alternation between the internal

address of the register in the slave and the data to send to this register.

pru i2c driver receive byte: receives a byte of data to a slave device by first specifying

the slave’s register to receive the data from.

pru i2c driver receive bytes: receives multiple bytes of data to a slave device by first

78

specifying the slave’s register to receive the data from. After sending the address

of the first register to receive data from; the I2C bus will wait for the slave device

to send the specified number of bytes. Most of I2C devices will directly auto-

increment the address of the register to send the data from. Consequently, to read

multiple consecutive register, one can call this function on the first register’s address

and specify the number of register to read after.

pru i2c driver software reset: performs a software reset according to section 24.1.4.3

of the Technical reference manual

In addition, the driver exposes some helper functions to poll the I2C controller internal

registers.

pru i2c poll I2C IRQSTATUS RAW XDR: Pool the I2C IRQSTATUS RAW register

on bit XDR and return 1 if transmit draining is active.

pru i2c poll I2C IRQSTATUS RAW RDR: Pool the I2C IRQSTATUS RAW register

on bit RDR and return 1 if a draining feature is active.

pru i2c poll I2C IRQSTATUS RAW BB: Pool the I2C IRQSTATUS RAW register

on bit BB and return 1 if the bus is busy.

pru i2c poll I2C IRQSTATUS RAW XRDY: Pool the I2C IRQSTATUS RAW regis-

ter on bit XDRY and return 1 if the controller is ready to transmit.

pru i2c poll I2C IRQSTATUS RAW RRDY: Pool the I2C IRQSTATUS RAW regis-

ter on bit RDRY and return 1 if the received data is ready to be read.

pru i2c poll I2C IRQSTATUS RAW ARDY: Pool the I2C IRQSTATUS RAW regis-

ter on bit ADRY and return 1 if the access to the register is ready.

pru i2c poll I2C IRQSTATUS RAW NACK: Pool the I2C IRQSTATUS RAW regis-

ter on bit NACK and return 1 if the not NACK (No Acknowledge) as been detected.

79

pru i2c poll I2C IRQSTATUS RAW AL : Pool the I2C IRQSTATUS RAW register

on bit AL and return 1 if an arbitration loss between two master on the same I2C

line as been detected.

pru i2c poll I2C IRQSTATUS RAW BF : Pool the I2C IRQSTATUS RAW register

on bit BF and return 1 if the bus is free.

Using these functions and the main program, one can easily configure the I2C con-

troller, read or place data in the I2C DATA register which is the FIFO end point for the

DATA transferred through the I2C bus.

4.3.2 Driver’s validation

The I2C transaction were validated using an LA1010 I2C Bus analyzer from Kingst Logic

Analyzer. An I2C sensor was connected to the I2C4 Bus of the BeagleBone. The read

and write register functions were tested, and the transaction are presented on figure 4.7

and 4.8. The bus was configured to communicate at 400kHz (Fast Mode) and that is also

verified on Figure 4.7 with a measured clock frequency of 398kHz. In the following we

present the validation of the major function of the I2C driver:

pru i2c driver transmit byte: Figure 4.7 presents a simple byte transmission between

the BeagleBone AI and a sensor’s register. First the I2C controller of the Beagle-

Bone AI specifies the address of the sensor on the I2C bus. After, Acknowledgment

of the selected sensor the controller send the address of the register it wants to write

to, and finally it can send the data byte for the sensor to write to these registers. The

transaction it finalized by the sensors acknowledging the reception of the data and

the bus is freed.

pru i2c driver receive byte: Figure 4.8 presents the reception of single byte between

the BeagleBone AI and a sensor’s register. This transaction starts by the controller

sending the address of the sensor’s register it wants to received data from. Then the

80

Figure 4.7: Single Byte transmission.

sensors waits to receive a read instruction from the controller. Once this instruction

is received and acknowledged, the sensor can send the data from its register.

pru i2c driver transmit byte and pru i2c driver receive byte: Figure 4.9 presents a

simple byte transmission between the BeagleBone AI and a sensor’s register fol-

lowed by a simple read from the sensor’s register. This is presented to validate that

the software reset perform between the transmission and the reception is working

correctly. Additionally, a minimum of 6000 PRU clock cycle was required to wait

for the reset to be performed correctly. Below this delay, the I2C controller would

not send the correct data in the bus.

pru i2c driver transmit bytes and pru i2c driver receive bytes: Figure 4.10

presents the transmission of multiple bytes followed, by the reception of

multiple bytes. This function is mainly used to send a configuration to a device

and to validate that this configuration was written correctly in the devices internal

81

Figure 4.8: Single Byte reception.

registers. It is also used during data acquisition to read multiple consecutive data

registers taking advantage of the auto-increment feature of the I2C slaves. This

presents the advantage of saving some communication time by not having to send

the address of all the register that one wants to read.

4.3.3 Deterministic Data Acquisition

Initial plan

The Data acquisition schema is based on the considerations of section 4.2.2. As, RPMsg

is limited to 492 bytes per transaction, it will not be used for data transfer and the PRU

will store the data in the 32KiB shared memory of the two microcontrollers.

In order to acquire data, the user space (Linux ARM) notifies via RPMsg the PRU that

it needs new data. The PRU configures the I2C controller for the I2C data transmission.

82

Figure 4.9: Single transmission followed by single receive.

The I2C controller obtains the data from the ADC and places it in its I2C DATA register

of the I2C bus. Then, PRU reads the I2C DATA registers and places the data to the shared

memory address provided by the ARM. Once the data is ready in the shared memory, the

PRU notifies the ARM that data can be accessed from the user space. The Linux ARM

can then transfer the data by reading the PRU shared memory via the /dev/mem/. The data

is then copied from the shared memory to the RAM of the Cortex A15 through the L3

main interconnect.

Limitations

The above-mentioned architecture has a major limitation that was not foreseen at the

beginning of the work. This limitation is that, to ensure that the reading of the ADC are

correct, we have to be sure that the I2C1 Controller is always available for the PRU to

use. Any interference from one of the other core of the BeagleBone AI will hinder the

deterministic data acquisition. However, the onboard ADC is used by one of the Linux

Kernel Driver of the BeagleBone AI essential tasks such as temperature reading.

83

Figure 4.10: Multiple bytes’ transmission followed by multiple read transmission.

Multiple attempts were made to unload the driver from the Kernel, but this was not

successful. Consequently, some revisions were made to the architecture to by-pass the

onboard ADC.

Final Implementation for Deterministic Data Acquisition

As aforementioned, the ADC of the BeagleBone AI is required by the Linux Kernel run-

ning on the ARM Cortex. Consequently, the deterministic data acquisition with this ADC

cannot be guaranteed. This solution also provides the advantage of a better resistance to

potential electromagnetic perturbations during the data acquisition. Indeed, using a dig-

ital signal instead of a voltage on the wire connecting the sensor to the BeagleBone AI

makes the system more robust.

To overcome this limitation, instead of using an analog sensor, a digital sensor with

I2C capabilities was used.

The considered sensors are presented in table 4.4.

84

Table 4.4: Selection of I2C accelerometers.

Name Price Accel Range Max Sampling Rate Resolution
ADXL345 $18.95 ±2g/4g/8g/16g 3.2kHz 10bits
ADXL313 $15.95 ±0.5g/1g/2g/4g 3.2kHz 13bits
KX134 $19.95 ±8g/16g/32g/64g 25.6kHz 16bits
KX132 $13.95 ±2g/4g/8g/16g 25.6kHz 16bits
LSM6DSO $11.95 ±2g/4g/8g/16g 6.6kHz 16bits

Based on the cost and characteristics of the sensors of table 4.4.

The KX134 (Figure 4.11 from [101]) was selected for this work. It enables a high

precision of 16 bits with a high maximum out put data rate of 25.6kHz while also being

low cost.

Figure 4.11: KX132 I2C accelerometer selected for this work.

This accelerometer will be connected via I2C to the BeagleBone AI I2C4 bus. The

driver is then used to send the configuration information to the sensors.

Configuration of the KX134: The maximum output data rate of the KX132 is of

25.6kHz, however, the data needs to be transferred through the I2C bus at least at the

same speed. Otherwise, even if the data points are sampled at a given data rate, the PRU

85

will not be able to receive the data from the sensor register’s values before the next sam-

ple.

Additionally, the data is sampled in 16 bits precision which decreases the maximum

output data-rate even more, as for each data sample, two consecutive 8 bits data registers

needs to be read.

Finally, other information needs to be communicated through the bus, such as the

value of the DATA READY KX132 INS2 register which indicates if a new sample is placed

in the data registers. This register needs to be pulled at least twice for each sample: this

ensures that the first time the data is not ready and the second time the data is ready, and

the PRU can request the data from the two data registers. The clock of the I2C bus being

set at 400kHz, the maximum output data rate (ODR), to ensure the strict validity of each

sample was found to be 1.6kHz. The other configuration parameters of the sensors are

High performance, High resolution mode, with a ±4g range and a pulling method for the

data transmission.

Data acquisition sequence: Algorithm 2 presents the sequence to acquire 1024 data

points at 1.6kHz

Algorithm 2 Data Acquisition from the PRU perspective
PRU request KX132 WHO AM I register’s value
if KX132 WHO AM I != WHO AM I then

return error sensors not detected
end if
PRU: 0x00→ KX132 CNTL1 . stop KX132 for reconfiguration
PRU: 0x0b→ KX132 ODCNTL . Set ODR to 1.6kHz
PRU: 0xe8→ KX132 CNTL1 . Set High perf., high-res., 4g range, pulling data and
wake-up sensor
for each sample N=0,...,1024 do

while KX132 INS2!= 0x10 do . Wait for new data to be ready
PRU: read KX132 INS2

end while . Data is ready
PRU: data[N]← KX132 XOUT L,KX132 XOUT H . Read 2 consecutive

registers for low and high byte
end for

86

Expected limitation of the proposed architecture

As mentioned above, the main limitation of this architecture does not come from the

sensor maximum output data rate (25.6kHz), but from the speed of the I2C bus limited by

the clock at 400kHz. It was found experimentally that: 1.6kHz is the maximum sampling

rate at which the KX132 INS2 is pulled at least once (in reality the register is pulled up

to 4 times before data is ready) before the data is ready, ensuring that no data point is

missed. At a sampling rate of 3.2kHz the DATA READY register is, almost every time,

pulled more than once, indicating that this sampling rate could be achieved too. However,

the most conservative choice is made and the data-rate is limited at 1.6kHz.

Actions to increase data-rate if needed

First, the 3.2kHz data-rate can be used by dropping the 16 bits precision to only read 8

bits, which should be enough to ensure that every reading is validated. Second, both the

KX132 sensors and the I2C4 controller of the BeagleBone AI are rated for high speed

I2C communication. Even if the driver configures the clock at 400kHz, it can be easily

adapted to enable a 3.2MHz clock. These two recommendations will increase the maxi-

mum possible Output Data rate to be very close to the maximum achievable by the sensor

(25.6kHz).

4.4 Data processing

Once the data is placed in the Cortex RAM, the data processing can start. As discussed

in introduced, in hypothesis 1, in section 3.2, this work will use time-frequency analysis

of the vibration signal to obtain information about the bearing defect. The proposed work

was suggesting to use the GPU of the AM5729 to process the wavelet transform.

However, the implementation revealed that the GPU of the chip is not OpenCL com-

patible, and it is only OpenGL compatible. OpenGL being a graphical framework, it is

87

not adapted to express operations such as Wavelet transforms. Thus, the implementation

of the wavelet transform would be much more complex than necessary if done on the

GPU. The EVE and DSP cores of the AM5729 are OpenCL compatible. However, they

will be used by the Machine Learning Algorithm converted via TIDL. So the choice is

made to process the wavelet transform using some library on the ARM CPU.

A Python main code runs on the ARM; when it receives the message via RPMsg

that the vibration data is written in memory, the CPU fetches this data and executes a

discrete wavelet transform. Using a discrete transform is motivated by the difference

in processing time between Continuous and Discrete Wavelet Transforms. The Python

library PyWavelet was used to estimate the complexity of the Algorithm for both Contin-

uous and Discrete Transforms. On a Macbook Pro 2019 with an Intel Core I7 at 2.8GHz,

the processing of a signal of 2048 data points takes around 7 seconds for a Continuous

Wavelet Transform with 150 scales and only 10 milliseconds for a discrete wavelet with

7 scales which motivates the choice to use Discrete Wavelet Transform over Continuous

Wavelet Transforms to process the vibration data at the edge with the much smaller CPU

of the AM5729. Then, the result of the wavelet transform will be transferred to the DSP

for inference with the TIDL Library.

4.5 Edge inference of bearing status

4.5.1 Introduction to Texas Instrument Deep Learning Library

On the AM5729, Texas Instrument released a Deep Learning Library to enable the use of

the Deep Learning Models on the EVE engines and the DSP cores of their edge devices.

This library helps to convert pretrained models into edge executable models. It supports

model trained in on the following frameworks: Caffe, Caffe-Jacinto, or Tensorflow. Once

the model is trained on an external device (PC or Cloud) it has to be converted into a

binary format using the Texas Instrument import tool provided in the SDK. The obtained

binary can then be loaded in the edge devices and run on the DSP or EVE cores from the

88

ARM. Figure 4.12 from [102] presents the flow to train, convert and execute a model with

the TIDL Library on an Edge device.

Figure 4.12: Process to train and execute a model with TIDL[102].

4.5.2 Limitation of the library

Even though this library enables this execution of powerful models on the edge device, it

comes with multiple limitation.

First, the import tools needs to run on a Windows machine or on a Linux Debian 18.x

which is not the OS supported by the BeagleBone and this prevents the retraining of the

models at the edge.

Second, the convert tool only support some Deep Learning models, and it is not pos-

sible to use personalized architectures as stated in [103].

Third, Texas Instrument provides some pretrained model on some classical dataset

such as MobileNetV2 trained on the MNIST dataset. Those models import correctly with

the import tool. However, the import fails on the same models once they are retrained in

TensorFlow. This makes the library impractical for applications different from what the

models have been trained for.

89

Finally, there is a significant lack of documentation for the ti-am5729 as most of the

focus from Texas Instrument seemed to have shifted to a next version chip, the TDA2Px.

Extensive work has been done to try using the TIDL library and multiple tickets

have been raised on Texas Instrument support forum. However, the numerous afford-

mentioned limitations, the fact that the models cannot be retrained at the edge, as well as

the lack of support for ti-am5729 makes it very hard to use the library on the BeagleBone

AI.

Consequently, the library will not be used in this work and TensorFlow models will

be used in the format .tflite for the proposed implementation.

Finally, the next version of the BeagleBone AI which should be released in 2022 will

be based on the TDA2Px chip and let user take advantage of the new Deep Learning

Framework from Texas Instrument Edge AI [104], which is supposed to support .tflite

model without the limitation of the current library.

4.6 Implementation on TensorFlow

4.6.1 Introduction to TensorFlow

TensorFlow [105] is an open source deep learning framework supported by Google. It is

with PyTorch (from Facebook), it is one of major the solution for deep learning. The main

advantage of TensorFlow over the other frameworks is its ease of use with many easily

accessible tutorials [106] that can be run on Google Colab notebooks. TensorFlow also

lets user export the models in the “lite” format .tflite that possible to use on edge devices

such as the BeagleBone AI. Finally, as mentioned in 2.8.2, the concept of Federated

Learning has been introduced by Google which give an edge to TensorFlow for Federated

Learning implementations.

The following will present the implementation of a Centralized Learning solution

for bearing defect detection that will be compared with the Federated Learning solution

presented in section 4.7

90

4.6.2 Artificial Neural Network

In section 4.5.2, the use of TensorFlow model on the BeagleBone AI was preferred. On

the current version of the BeagleBone AI, these models will have to be executed on the

CPU as they will not be compatible with the TIDL library. However, it should be possible

to execute them in the next version on the board running TDA2Px with EdgeAI. The

fact that the model will be run on the CPU and not on the specialized processor limits

the models to simple Artificial Neural Networks (ANN). Five different ANN have been

selected for the centralized learning, and they will be used in the Federated Learning

context too in order to have a fair comparison between the two different settings. Table

4.5 to 4.10 present those architectures. It should be noted that only minimal work has been

done on the optimization of the hyperparameters of those models as the possibilities are

endless. The different model were selected because they gave good results on at least one

of the dataset, but future work could look at the optimization of these models. Finally, as

a wavelet transforms is carried out on the waveform before classification with the ANN,

we will not add convolution layer in the architecture.

Table 4.5: Model 0 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 512) 20992
Dropout 1 (0.3) (None, 512) 0
Dense 2 (sigmoid) (None, 64) 32832
Dropout 2 (0.3) (None, 64) 0
Dense 3 (sigmoid) (None, 32) 2080
Dropout 3 (0.3) (None,32) 0
Dense 4 (sigmoid) (None, 16) 528
Dense 5 (None, 1) 17

4.7 Federated Learning

TensorFlow presents an Application Program Interface (API) for federated learning:

91

Table 4.6: Model 1 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 128) 5248
Dropout 1 (0.3) (None, 128) 0
Dense 2 (sigmoid) (None, 64) 8256
Dropout 2 (0.3) (None, 64) 0
Dense 3 (sigmoid) (None, 32) 2080
Dropout 3 (0.3) (None, 32) 0
Dense 4 (sigmoid) (None, 16) 528
Dense 5 (None, 1) 17

Table 4.7: Model 2 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 256) 10496
Dropout 1 (0.3) (None, 256) 0
Dense 2 (sigmoid) (None, 64) 16448
Dropout 2 (0.3) (None, 64) 0
Dense 3 (sigmoid) (None, 32) 2080
Dropout 3 (0.3) (None, 32) 0
Dense 4 (sigmoid) (None, 16) 528
Dense 5 (None, 1) 17

Table 4.8: Model 3 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 128) 5248
Dense 2 (sigmoid) (None, 64) 8256
Dense 3 (sigmoid) (None, 32) 2080
Dense 4 (sigmoid) (None, 16) 528
Dense 5 (None, 1) 17

Table 4.9: Model 4 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 256) 10496
Dense 2 (sigmoid) (None, 64) 16448
Dense 3 (sigmoid) (None, 32) 2080
Dense 4 (sigmoid) (None, 16) 528
Dense 5 (None, 1) 17

Tensor Flow Federated TFF. It enables the simulation of large fleets of de-

vices for federated learning with the training and evaluation on edge devices.

92

Table 4.10: Model 5 Layers, Shapes and parameters

Layer (activation) Output Shape Param #
Dense 1 (relu) (None, 128) 5248
Dropout 1 (0.3) (None, 128) 0
Dense 2 (sigmoid) (None, 64) 8256
Dropout 2 (0.3) (None, 64) 0
Dense 3 (sigmoid) (None, 32) 2080
Dropout 3 (0.3) (None, 32) 0
Dense 4 (sigmoid) (None, 32) 1056
Dense 5 (None, 1) 17

This permit the validation of the federated learning approach for bearing de-

fect detection on the proposed dataset. The API requires the use of a federated

dataset, which differs from a centralized dataset as it is split between differ-

ent clients. Moreover, contrary to a centralized setting, the federated learning

dataset needs to be non-IID as there is no reason for the dataset to be iid

across the different clients. However, this API is still in development, so it

will not be used in this work.

Consequently, a custom federated learning API was developed. It acts as a

wrapper around the TensorFlow framework, and creates a federated learning

server to manage clients. The server can require a given set of clients to

retrain their own model and to send back the weight, the server aggregates

the weight with respect to the Federated Averaging algorithm presented in 1.

The API uses an object-oriented paradigm, the federated server exposes the

following methods:

initiate federated learning process creates the required number of clients

for the federated learning process and build the TensorFlow model in

the server as a model cannot receive weight before being built.

propagate weights to all clients takes the weights of the server’s model

and send them to all the clients of the network.

93

federated averaging algo is called to fetch the weights from the retrained

clients and average them according to 1. The server local weight can

then be updated and the propagate weights to all clients function is

called

do one round takes advantages of the previous functions to do one iteration

of the federated learning process. The server requests the retraining

of the model of a number of randomly selected clients. Once clients

have retrained their models the federated averaging algo methods is

used which results in an updated version of the server’s weights. Af-

ter that, the server’s weights are propagated to all the clients (even the

one which were not retrained)

The clients have the following methods:

retrain model , when requested by the server, this function retrains the

client model with its current dataset.

update model weights is used to set the clients weights to the new weights

received by the server

get balance train data: obtain a balanced dataset for training where the

number of defective sample is the same as the number of healthy sam-

ple.

get balance test data: same as above but for a test set.

In order to use the library, first the federated learning server needs to be cre-

ated and initialized with the desired number of clients. Then the server can set

up round of federated learning on as many clients as required and propagates

the new weights obtained via the federated averaging algorithm.

94

4.8 Reviewed architecture

The initial proposed architecture had to be adapted, considering that:

1. The Analog to Digital Converter of the BeagleBone AI is used by the

Linux Host

2. The GPU is not OpenCL compatible, but only OpenGL compatible. It

was not possible to implement the wavelet transform on the GPU.

3. Texas Instrument Deep Learning is limited and there is a lack of docu-

mentation and support for this library on the AM5729.

4. The next version of the BeagleBone AI is supposed to directly support

TensorFlow models.

5. It takes longer to initiate the specialized cores than to carry out the dis-

crete wavelet transforms directly from the CPU.

The following modifications were introduced:

• An external accelerometer is used to acquire the data and to transmit

them to the PRU via the I2C4

• The Discrete Wavelet transforms as well as the inference of the machine

learning models will be carried out on the CPU

In this chapter, we have presented the implementation of the data acquisition

and the edge processing of the wavelet transforms. Even if some major limi-

tation were found, the final goal of having a system that sample deterministic

vibration data while performing wavelet transforms and inference of machine

learning models was achieved.

In the next chapter, we will test this data acquisition on the Machine Fault

Simulator for an Outer Race defect. Different types of wavelet transforms

95

will be tested, performance metrics will be introduced, and the results will

be compared with peak finding method. The use of this federated learning

algorithm is presented in chapter 5 where the performance of the proposed

architecture are compared in both a centralized context and a federated learn-

ing context.

96

CHAPTER 5

VALIDATION OF THE PROPOSED ARCHITECTURE

In this chapter, we will test the deterministic data acquisition architecture

proposed in chapter 4. We start by presenting the data acquisition on the Ma-

chine Fault Simulator. Then, we introduce another data set available online.

Thereafter, we explain the metrics used to compare different bearing defect

detection methods. Finally, we compare a peak finding method and a time

series method to the results obtained with the proposed architecture in the

context of a centralized learning and federated learning.

5.1 Machine Fault Simulator data acquisition

In this section, we present the acquisition procedure for the Machine Fault

Simulator used at GeorgiaTech.

5.1.1 Presentation of the Machine Fault Simulator

The Machine Fault Simulator is a vibration test bench distributed by Spectral

Quest Inc. [107]. It is power by a three phases, 1HP, asynchronous motor

that can drive the main shaft up to 6000rpm (100Hz). The motor rotational

speed is regulated with tachometer that displays the speed of the shaft on a

mounted LCD.

Figure 5.1 presents the Machine Fault Simulator. On the left of the picture are

located the tachometer and the motor that rotate the shaft through a metallic

coupling. Two bearings (black) are located on the mounting on the left and

97

Figure 5.1: Front view of the Machine Fault Simulator

the right of the picture. On the shaft some equipments can be added such

as an imbalance loader, where some weights can be added to imbalance the

rotating shaft. Instead of using an imbalance loader, one can use a simple 5Kg

loader to add some weights to the shaft. With the Machine Fault Simulator

are provided multiple sets of bearings in different condition: healthy, outer

race defects, inner race defects, and a combination of defects. Unfortunately,

those bearings are in close casing, so no visual inspection of these defects can

be provided. Figure 5.2 presents the shaft, the healthy and defective bearing,

the 5Kg bearing loader and other element of the acquisition setup.

5.1.2 First data acquisition on the Machine Fault Simulator

To validate that the signal acquisition works correctly, an imbalance signal

was recorded. An imbalance defect on rotating equipment occurs when the

center of rotation is not aligned with the center of mass; this is characterized

98

Figure 5.2: Shaft, bearing and bearing loader

by a large peak in the spectrum at the rotational speed of the equipment.

Therefore, by unbalancing the shaft of the MFS, we can validate that the

data acquisition architecture of chapter 4 works correctly by checking that

the largest peak in the spectrum appears at the same frequency as the reading

from the tachometer. Some weights were added to the imbalance loader.

The Machine Fault Simulator was started, and the rotational speed was set to

15Hz. Additionally, the LA1010 analyzer was connected to the I2C bus to

monitor the first transactions between the sensors and the BeagleBone AI.

99

Perturbation in the I2C Bus

Figure 5.3 shows the first attempt to obtain data. It is clear that there is an

error in the I2C transaction. After investigation, there were two reasons for

this error.

First, the Machine Fault Simulator Asynchronous Motor was generating

electromagnetic fields, which were creating interference along the long un-

shielded wire going from the KX132 accelerometer to the BeagleBone AI.

Secondly, the Machine Fault Simulator was also polluting the ground of the

laboratory and, because the BeagleBone AI only has a digital ground, that

was connected to the same ground as the machine fault simulator in the lab-

oratory.

Consequently, the clock line was randomly fluctuating between 0 and 1 which

prevents any meaning full communication to go through the BUS. So the

transaction in the I2C bus were not successful on first attempt.

Figure 5.3: Perturbation in the I2C line from the MFS

Improvement of the data acquisition hardware

After identification of the cause of the bug, the following action were taken:

• To reduce the electromagnetic interference in the bus, the wires going

100

from the accelerometer and the BeagleBone AI were shielded and con-

nected to the digital ground of the BeagleBone AI.

• To solve the issues of the polluted ground, the BeagleBone AI was pow-

ered with a battery.

Figure 5.4, presents the final acquisition setup, where the BeagleBone is pow-

ered with an external battery (MacBook Pro) and with the BNC cables con-

necting the BeagleBone to the sensor. It should be noted that the sensor axis

is not aligned with the radial direction of the bearing. However, experimen-

tal measurement showed that it had little impact on the vibration acquisition.

Additionally, this mounting point was more repeatable than the other avail-

able mounting points in the machine while limiting the self vibration of the

sensors mounting plate. Consequently, while not ideal, this solution is pre-

ferred as it both, does not hinder the vibration acquisition too much and also

reflects the fact that, in industrial application, the perfect placement of the

accelerometer is not always achievable.

It should be noted that, in industrial application, shielding the cable is very

frequent. Additionally, industrial machines are often powered on a different

electrical installation than other equipment, so it would not be required to

have the BeagleBone AI run on battery as the ground would not be polluted.

Thus, the two solutions proposed do not restrict the use of the system for

industrial application.

Validation of data acquisition on the Machine Fault Simulator

The above-mentioned solution solved the issue of data acquisition on the Ma-

chine Fault Simulator. Indeed, Figure 5.5 show the spectrum of the vibration

signal acquisition at a rotational speed of 15Hz with an imbalanced shaft. The

101

Figure 5.4: Final acquisition setup

predominance of the 15Hz frequency in the spectrum is clear, and it confirms

that the acquisition works correctly.

5.1.3 Final data acquisition on the Machine Fault Simulator

As explained in section 5.2.3, we will reduce the study to outer race defect.

Data from two different bearing will be acquired: one healthy bearing and

one defective bearing. Additionally, two test conditions will be introduced:

nothing on the shaft and the addition of a bearing loader on the shaft. Differ-

ent rotational speed will be tested for those conditions and are summarized

in Table 5.1 Additionally, after each change of bearing or installation of the

102

Figure 5.5: Validation of the position of the 1X peak on an imbalance signal

Table 5.1: Data Acquisition conditions for the MFS

RPM
Condition Healthy Outer Race Defect

10 Load/No Load Load/No Load
20 Load/No Load Load/No Load
30 Load/No Load Load/No Load
40 Load/No Load Load/No Load

loader in each case the baseline at 0Hz was recorded to validate that there

was no change in the new mounting of the sensors. For each of the 16 cases

of table 5.1, 500 samples were acquired, this constitutes the dataset for the

centralized and federated learning tests. In the following, we present the re-

sult in the two different context of learning on the Machine Fault Simulator

Dataset

5.1.4 Performance in the centralized learning context

Here, we discuss the result of the centralized learning in the Machine Fault

Simulator. To compare the different wavelet transform available, the 5 differ-

ent models presented in Table 4.5 to 4.10 are trained in a centralized manner

on the Machine Fault Simulator Data set. The 500 sample per bearing con-

dition and rotation are placed in the same dataset. Resulting in an initial size

of 8000 samples of 1024 data point each. The dataset is then split between

a train set and a test set, with a ratio of 30% for the test set and 70% for the

103

Table 5.2: Accuracy across models and wavelet in a centralized learning context for the
Machine Fault Simulator Dataset

Model 0 Model 1 Model 2
wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.5 0.9038 rbio3.5 0.8688 rbio3.9 0.8879
bior5.5 0.8929 coif17 0.8663 rbio3.7 0.8854
db29 0.8838 db30 0.8621 bior5.5 0.8808
db24 0.8817 db37 0.8608 coif16 0.8758
coif17 0.8800 coif15 0.8596 db37 0.8738
rbio2.8 0.8783 db38 0.8583 db35 0.8650
db35 0.8758 db32 0.8550 db29 0.8646
db27 0.8758 db29 0.8546 rbio2.8 0.8642
db38 0.8742 rbio3.9 0.8538 db26 0.8600
coif16 0.8729 db31 0.8508 db24 0.8600

Model 3 Model 4 Model 5
wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.7 0.8846 rbio3.5 0.8925 coif16 0.8629
coif15 0.8575 bior5.5 0.8871 db37 0.8596
coif17 0.8571 rbio3.9 0.8863 coif17 0.8575
db31 0.8563 db33 0.8704 rbio3.7 0.8558
db36 0.8558 db31 0.8683 db38 0.8554
db38 0.8538 db35 0.8667 db32 0.8517
db29 0.8525 db25 0.8633 db25 0.8492
db34 0.8517 db38 0.8629 db27 0.8475
db33 0.8496 db23 0.8608 db33 0.8471
dmey 0.8488 db27 0.8550 coif12 0.8425

training set. The results of all tested wavelets are presented for the differ-

ent models on table C.1 to C.6 in the appendix C. Across multiple iteration of

training it was seen that taking 100 epochs and a training rate of 0.01 with the

Adam optimizer gave the best results. Table 5.2 presents the top 10 accuracy

for each of the 5 models with the for a variation of wavelet transform.

However, the results in this case have to be taken with caution as the bearing

in the test set in the same as the one for the training set. The main objective

here is to obtain a baseline on the Machine Fault simulator in the centralized

learning context so that it can be compared with the result in the federated

104

learning context in the same situation.

5.1.5 Performance in the federated learning context

The federated learning library presented in 4.7 is used to train multiple clients

in a federated learning context. The Machine Fault Simulator dataset is ran-

domly split across the clients to obtain one non iid dataset per client. Then,

the federated learning server is initiated.

Note: Here the concept of overall accuracy is introduced to describe the ac-

curacy of federated learning. It corresponds to the accuracy of models across

the dataset constituted by the aggregation of the data from all the clients. This

metric is presented more in detail in section 5.3.1.

The performance of each client depends on a number of other parameters

than the centralized learning context, such as the number of training rounds,

the number of clients per training round and the number of clients. If these

parameters are not set properly, it is possible that the clients model do not

converge to a minimum of the loss function.

It can be expected that an increase in number of retrained clients per round

will increase the final performance of the clients. Similarly, an increase of

the number of training rounds can be expected to increase the final accuracy

across clients.

However, depending on the situation, an increase of the number of clients can

have a different effect. In a simulation context in which the total amount of

data stays the same as the number of clients increases, resulting in a diminu-

tion of the amount of data per client, it is expected that it will be more difficult

for each client to attain a global minimum of the loss function. Consequently,

the federated averaging algorithm will not find the global minimum either, re-

105

sulting in a poor overall performance of the model. If the number of client

is increased while maintaining the amount of data per client constant, it is

expected that the overall performance of the model will improvement.

However, it is also expected that, if the new client’s data is not coherent with

the rest of the data, then the performance of the model will not increase and

may even decrease. The influence of the parameters should be verified.

In order to reduce the number of variables in this test, we are only considering

the wavelet and model which performed the best in the context of centralized

learning, that is the rbio3.5, for model 0.

First, we will test the influence of the number of clients over the overall ac-

curacy of the model. Second, we will assess the influence of the number of

training round. Finally, we will test the influence of the number of training

round.

Influence of the number of clients

As explained above, two cases should be distinguished, either the total

amount of data is kept constant as the number of client is increased, or the

total amount of data increases as each new client joins the federated learning

process. For the first case, it should be noted that keeping the total amount

of data constant is not representative of the reality as each client should be

joining the federated learning process with its own data. Thus, the total size

of the dataset should be increasing as we add clients.

In the second case, it is important to guarantee that the amount of data per

client is random, as in reality, nothing would ensure that the clients have the

same amount of data points.

Figure 5.6a present the evolution of the accuracy for 3 consecutive round of

106

federated training for a total number of clients from 3 to 80 by 5 increments.

(a) Accuracy evolution with increase total number of client (average over 10 runs)

(b) Loss evolution with increase total number of client (average over 10 runs)

Figure 5.6: Evolution of the accuracy 5.6a and the loss 5.6b for 5, 40 and 80 clients and
three consecutive training rounds.

In figure 5.6a, we can see that the more clients we have the faster the accuracy

of the model improves. However, the difference is not significant considering

the overlap in the standard deviation.

Additionally, it can be noted that as the number of runs increases, the stan-

dard deviation of each of the series is reduced, showing a convergence of the

model. Appendix D.3 presents the same trend for 5, 30 and 50; and 15, 35

and 75 total clients in D.4.

Creating the clients datasets: To obtain these results, the machine fault

simulator dataset was randomly split across eighty clients, so that we ensure

that the amount of data per client is random. Then, each client split it dataset

with a ratio of seventy percent for the training set and thirty percent for the

test set. This train-test ratio is a usual choice in machine learning. Once each

107

of the 80 clients has obtained a train and a test set, they send a copy of their

test set to the federated learning server, which aggregates all these datasets.

This is done so that, after a round of federated learning, training the overall

accuracy and loss of the model can be obtained by testing the model on this

aggregated test set constituted.

Note: In a production mode, the clients would not send their data to the feder-

ated server as it would defeat the advantage of data privacy and security that

federated learning as over centralized learning. The reason that, in this work,

the clients send their data to the server for testing, is that we want to be able

to compare the federated learning context to the centralized learning context.

At this point, each of the 80 clients has its own test and train set and the

federated learning server has a test set to be able to calculate the accuracy

and the loss of the model after the federated averaging of the client’s weights.

Federated Learning server with varying number of clients: Then, for

a number of clients N varying from 3 to 80, a federated learning server is

created with N clients, and the overall loss and accuracy was reported for

10 consecutive training rounds. The reason to stop at 80 clients is that the

MFS dataset use is the aggregate of the acquisition of 500 samples of 1024

data points in 16 different cases: load/no load, and rpm varying from 10Hz to

40Hz for a defective bearing or a healthy bearing. This gives 8000 samples,

so 80 clients give an average of 100 samples per clients which is enough to

ensure training and avoid edge effect of not having enough data points for a

client to learn.

108

Influence of the number of training rounds

Figure 5.7 shows the evolution of the overall loss and accuracy in the test set

for an increased amount of clients.

The client’s datasets are prepared in the same manner as explained in 5.1.5.

After preparing the client’s dataset and the server’s test set, a federated learn-

ing server is created with the eighty clients and ten rounds of trainings are

executed. A training round constitutes one execution of the do one round of

the federated learning API. Between, each of the rounds the server’s weights

are used for evaluation of the loss and accuracy of the model on the aggre-

gated test set obtained above.

Figure 5.7: Influence of the number of training round for eighty clients

In Figure 5.7, it can be seen that the accuracy of the model is around fifty

percent after one round which is as good as random guess as we are consid-

ering a binary classification healthy/defect. However, the accuracy quickly

increased to 90% for round two and three, which shows that the federated

learning approach converges to a minimum of the loss function. This is also

visible by the reduction in the standard deviation of across the different runs,

which decreases after each round. For round three and after, the accuracy

still increases, but the improvement in results is not significant compared to

the computational cost. Figure5.7 also illustrates why we limit the analysis

109

to three rounds in 5.1.5 when investigating the influence of the number of

clients. In the following, we will also limit the study to three training rounds.

Influence of the number of clients per training round

In this section, we study the influence of the number of clients retrained in

a pool of clients of a fixed size. This is different from the analysis done in

5.1.5 where it was the size of the pool of clients that was changed. The data

is prepared in the same way as presented in 5.1.5. Once the client’s dataset

are created, a federated server with eighty clients is created for values of the

number of training round from three to eighty by increments of five, and

three consecutive training rounds are carried out. For each of the training

rounds the overall accuracy and loss of the models are recorded. Figure 5.8

presents the results the average loss and accuracy for ten iterations of the

above described procedure.

We can see that the accuracy is increasing faster for five clients than for the

other case. Then, for forty clients the learning process is slower and also less

reliable across the ten runs, (as the standard deviation is greater). Finally, for

80 clients, the learning process is faster again and is the most reliable as the

standard deviation is the smallest for every round compared to retraining five

or forty clients. Appendix D.2, presents the same graphs for 5, 30 and 50

retrained clients in D.3 and 15, 35 and 75 retrained clients in D.4, and the

same trend can be seen.

Figure 5.9, generated with the same data, illustrates this point, it shows the

evolution of the average accuracy and loss as a function of the number of

retrained clients. Considering two consecutive rounds were we can see that,

with an increasing number of retrained clients per round, the accuracy, ini-

110

(a) Accuracy evolution with increase number of retrained clients

(b) Loss evolution with increase number of retrained clients

Figure 5.8: Evolution of the accuracy 5.8a and the loss 5.8b for 5, 40 and 80 clients and
three consecutive training rounds.

tially above 90% in round two, drops to 70% percent when we retrain 35

clients, and increases again when we keep increasing the number of retrained

clients per round.

Figure 5.9: Evolution of the average accuracy for the different numbers of retrained client
per round

111

Table 5.3: Confusion Matrix for the Peak Finding approach for the MFS Dataset

actual healthy 3047 953
actual defect 1032 2968

predicted
healthy

predicted
defect

5.1.6 Performance of the peak finding approach

The peak finding approach developed in [44] is used in order to identify de-

fects in the Machine Fault Dataset and to compare with the proposed solution

in the centralized learning and federated learning contexts. This approach

identifies the major peak in the spectrum and tries to identify outer race defect

signatures in it. Table 5.3 presents the results of this peak finding approach

on the Machine Fault Simulator. It can be seen that there is a large amount

of healthy signals that were classified as defective. These results are being

compared with the results from the other methods in the next sections.

Note: Contrary to the next dataset, in which the trend analysis of the Kurtosis

of the signal can be applied; here, the change of status of the bearing in the

dataset was simulated by replacing the healthy bearing by a defective bearing

of the same model. Consequently, there is no trend information to track on

the Machine Fault Simulator.

In this section, we have validated the data acquisition on the Machine Fault

simulator as well as the wavelet plus machine learning approach in both the

centralized learning context and the federated learning context. It has been

shown that in both cases the results are close to 90% of accuracy. However,

this dataset is generated from a test bench and the signal in the train and test

set are very similar as they come from the same bearing, this explains the

very high accuracy obtained in this case.

Finally, we have presented the results of a peak finding approach applied to

112

this same dataset. This approach is not based on machine learning thus; it

should not be affected by the afford-mentioned limitation in the dataset. In

order to further validate these results, another dataset will be used in the next

section.

First, the NASA Dataset is introduced and the selection process for the bear-

ings of this dataset is explained. Second, the neural network and wavelet

approach is tested in both the centralized context and federated context. Fi-

nally, the results of the peak finding approach are presented as well as the

results from the simple application of the eight of the Nelson Rules to the

evolution of the Kurtosis of the signal.

5.2 NASA data-set

5.2.1 Introduction of the Dataset

The NASA Bearing dataset is part of the Prognostics Data Repository, where

datasets for various assets are hosted online; those datasets are only hosted

by NASA and donated by other organizations. The Bearing Dataset was pro-

vided by the Center for Intelligent Maintenance Systems (IMS), University

of Cincinnati. It has been downloaded over 57 thousand times and has been

used in over 60 different papers (as of Spring 2021).

The NASA Bearing Data Set consists of 3 run-to-failure tests. For each test,

four bearings are positioned on the same shaft and submitted to a radial load,

and spun with a motor. Each bearing is equipped with accelerometers; for

the first experiment, Qiu et al. put one accelerometer on both the X and Y

axis; and for the second to last experiment, only one accelerometer is placed

on each bearing. The accelerometers used are PCB 353B33 High Sensitivity

Quartz ICP [38]. Thermocouples are also attached to the bearings, but the

113

thermal data are not provided in the Prognostics Data Repository. Figure

5.10 form [38] present the setup of the experiment.

Figure 5.10: Bearing test rig and sensor placement for NASA Dataset from [38].

The data acquisition is carried out every 10 minutes at a frequency of 20kHz

for 1 second resulting in 20.480 data points per acquisition file. The experi-

ments were stopped when a defect appeared on one of the four bearings:

Test 1: was stopped after 2,156 samples and an inner-race defect as well a

rolling element defect were respectively observed on bearing 3 and 4.

Test 2: was stopped much earlier after 984 samples with an outer race on

bearing 1.

Test 3: was stopped at 4,448 samples with an outer race on bearing 3.

5.2.2 A first analysis of the dataset and preprocessing

After decompressing the zip file downloaded from the repository, three fold-

ers are obtained, one per experiment. The folder contains 2156, 984, and

6323 CSV files for tests 1 to 3, respectively. The difference in the number of

114

files and the expected number of samples for test 3 is not explained. Docu-

mentation’s accuracy [38] with the data is validated by plotting the evolution

of Kurtosis for each bearing and each experiment.

For Test 1

Figure 5.13 show the Kurtosis trend increase for bearing 3 and 4 starting

around sample number 1,500 for bearing 4 and around sample 1,700 for bear-

ing 3. There is no increase in trend during test 3 for bearing 1 and 2, which

conform with the documentation from [38].

For Test 2

Figure 5.11 is obtained in the same manner as for test 1 (Figure 5.13). Again,

the observations are conformed to the documentation, and the defect is clear

in Bearing 1. It should be noted that there is a peak in the Kurtosis value

of Bearings 2 and 4 at the end of the acquisition, that could be explained by

vibration peak in the vibration of Bearing 1. As the 4 Bearings are connected

by the shaft, an important increase vibration in one bearing could propagate

along the shaft and be detected by the sensors on the other bearings.

However, the high Kurtosis values in Bearing 3 starting from the beginning

of the test cannot be explained.

For Test 3

Figure 5.12 present the longest test of the dataset, Bearing 3 is experiencing

a defect as expected. However, the defect region is very little compared to

the total duration of the test. Thus, even if this test gives more data, it really

115

Figure 5.11: Evolution of the Kurtosis over time for the second test of the NASA Dataset
for bearing number 1.

provides a large amount of healthy signal but does not provide many defective

signals.

Figure 5.12: Evolution of the Kurtosis over time for the third test of the NASA Dataset
for bearing number 3.

Table 5.4: Summary of the defect observed on the dataset

Test # Bearing # Fault Type
Test 1 Bearing 1 No defect

- Bearing 2 No defect
- Bearing 3 Inner race defect
- Bearing 4 Rolling element defect

Test 2 Bearing 1 Outer race defect
- Bearing 2 No defect
- Bearing 3 No defect
- Bearing 4 No defect

Test 3 Bearing 1 No defect
- Bearing 2 No defect
- Bearing 3 Outer race defect
- Bearing 4 No defect

116

(a)

(b)

(c)

(d)

Figure 5.13: Evolution of the Kurtosis over time for the first test of the NASA Dataset.
E.1a channels 1 and 2, for bearing 1 where no defect appeared; E.1b channels 3 and 4, for
bearing 2 where no defect appeared; E.1c channels 5 and 6, for bearing 3 where an inner
race defect appeared; E.1d channels 3 and 8, for bearing 4 where an outer race defect
appeared.

117

5.2.3 Selection of the data in the dataset

Out of the dataset 4 different faults can be used: 2 outer race defects, one

inner race defect and one rolling element defect. To be useful, the machine

learning algorithm should be able to recognize the defect on another bearing

than the one on which it had been trained. Consequently, we want to be able

to compare the developed method across two different bearings of the NASA

Dataset, so we will restrict the study to outer race defect. Indeed, on test 2,

and 3 of the dataset at least one of the bearing failed with an outer race defect,

thus, we could train on the test 2 and validate the approach on test 3. Test 1

only presents inner race and a rolling element defect, so will not be useful in

this work. To be able to train an ANN in supervised learning, the data needs

to be labeled, and in this case, it needs to obtain the region of the test 2 and

3 where the bearing can be considered to be healthy and where we consider

the defect to be present. On this matter, we will make a first selection of the

sample index visual on the Kurtosis graphs along the life of the bearing; this

is then refined using a visual inspection of the spectrum of the signal.

Selection of the defect and healthy region for test 2 bearing 1

As mentioned earlier, during test 2, bearing 1 experienced an outer race de-

fect. The first selection of this outer race can be seen in Figure 5.14 This

selection was refined by analyzing the spectrum on each side of the limit. In

the initial selection the spectrum on each side of the limits are presented on

Figure 5.15. It can be seen that on the initial region where the bearing is sup-

posed to be healthy, some harmonics from the defect already starts to appear.

Moreover, the defect is already very present in the spectrum for the region

where, the defect is supposed to only start to wear out. Consequently, these

118

Figure 5.14: The initial selection of the defect zone for bearing 1 of test 2

regions are refined by analyzing the spectrum for all samples around this first

guess. Figure 5.16 shows the spectrum of the last healthy signal and the first

defective sample. There is still a region where the classification is unsure and

this is normal as the degradation of the bearing is a continuous process.

(a)

(b)

Figure 5.15: Spectrum for test 2 bearing 1 at the end of the healthy zone (5.15a) and
beginning of the defective zone (5.15b)

Figure 5.17 shows the final classification for the test 2 bearing 1. Compared

to the initial classification, the healthy region has been reduced, and the de-

fective region has increased.

119

(a)

(b)

Figure 5.16: Spectrum for test 2 bearing 1 at the end of the healthy zone (5.16a) and
beginning of the defective zone (5.16b)

Figure 5.17: The final selection of the defect zone for bearing 1 of test 2

Selection of the defect and healthy region for test 3 bearing 3

Similarly to test 2, we first select the region visually on the Kurtosis, and we

then refine this selection by analyzing the spectrum of the signal around this

selection. This extra step is even more critical for test 3 as the bearing wears

out very abruptly.

The spectrum of the last healthy signal and of the first defective signal for

this initial selection are presented in Figure 5.19

120

Figure 5.18: The initial selection of the defect zone for bearing 3 of test 3

In this case, the redefinition of the region impacts more the defective region

were the defect was not really present in the first selection. Figure 5.20 shows

the spectrum of the final selection for the last healthy signal and the first

defective signal.

Finally, Figure 5.21 show the selection for the defect region for bearing 3 test

3. The change in terms of sample index is limited, the healthy region’s index

was increased by 1 samples and the defective region’s index was increased

by 13 samples (reduction of the number of 13).

Table 5.5 presents the limits of the final healthy and defective region for both

Test 2 and test 3 in terms of sample index.

Table 5.5: Healthy and defective region for test 2 and 3

Test # 2 3
Bearing # Bearing 1 Bearing 3
Fault Type Outer race defect Outer race defect

End of the Healthy region
(sample index) 500 6001

Beginning of the defect region
(sample index) 600 6163

5.2.4 Down sampling

The NASA Dataset is sampled at 20kHz, however, the other dataset of this

work, Machine Fault Dataset, is sampled a 1.6kHz. Consequently, to be able

121

(a)

(b)

Figure 5.19: Spectrum for test 3 bearing 3 at the end of the healthy zone (5.19a) and
beginning of the defective zone (5.19b)

to compare the results on these two datasets, we will down-sample the NASA

Dataset down to the around sampling rate. As we have 20480 data points per

sample in the NASA Dataset, we can obtain 16 sub-samples for each initial

sample, while maintaining at least 1kHz of sampling frequency. First, the

initial sample is filtered used a Butherworth filter represented in Figure 5.22.

The result of the application of the low-pass filter to spectrum in the defect

region of test 2 is presented in figure 5.23. It can be seen that there is no high

frequency components that would lead to some kind of aliasing.

5.2.5 Performance in the centralized learning context

The same centralized learning context as for the Machine Fault Simulator:

the different Discrete Wavelet Transform and the same models are used here.

122

(a)

(b)

Figure 5.20: Spectrum for test 3 bearing 3 at the end of the healthy zone (5.20a) and
beginning of the defective zone (5.20b)

Figure 5.21: The final selection of the defect zone for bearing 3 of test 3

However, this test is performed on the down-sampled NASA Dataset. In

order to introduce, more variety, the test number 2 of the NASA Bearing

Dataset is used as the train set, and the test number 3 is used as the test set.

The advantage of doing so is that the bearing used for training is different

from the bearing used for the test set. Consequently, there are 16000 Samples

of 1024 data points each. Table 5.6 extracted from the results presented in

123

Figure 5.22: Low pass filter frequency response

(a)

(b)

Figure 5.23: Spectrum of Bearing 1 test 2 in the defective region before filtering (5.23a)
and after filtering (5.23b)

appendix F shows the top 10 accuracy for each of the models for different

wavelet transforms.

The next section present the result in the federated learning context where the

results are going to be compared against the centralized learning results.

124

Table 5.6: Accuracy across models and wavelet in a centralized learning context for the
NASA Dataset

Model 0 Model 1 Model 2
Wavelet Accuracy Wavelet Accuracy Wavelet Accuracy
coif14 0.78125 bior3.3 0.729882813 bior3.5 0.665625
bior3.9 0.7390625 rbio3.5 0.675 bior3.9 0.665429688
bior3.3 0.73671875 bior3.7 0.66875 rbio3.7 0.65625
rbio3.1 0.68359375 bior3.9 0.665429688 coif12 0.653125
bior3.7 0.65 rbio3.3 0.6625 rbio3.9 0.653125
rbio3.5 0.646875 rbio3.1 0.652929688 coif14 0.65
rbio3.3 0.6375 coif15 0.65 rbio3.5 0.646875
db36 0.634375 rbio3.7 0.646875 db12 0.637695313
coif15 0.625 coif17 0.646875 rbio3.1 0.6375

Model 3 Model 4 Model 5
Wavelet Accuracy Wavelet Accuracy Wavelet Accuracy
rbio3.1 0.822265625 bior3.3 0.848632813 bior3.3 0.74824219
bior3.3 0.815039063 bior3.9 0.75859375 bior3.5 0.678125
bior2.8 0.749804688 rbio3.1 0.755273438 rbio3.9 0.66875
coif17 0.740625 coif12 0.73125 coif15 0.6625
bior3.5 0.740625 coif17 0.721875 db6 0.65917969
bior3.7 0.737304688 coif16 0.71875 bior3.7 0.65625
bior2.4 0.737109375 coif15 0.7125 rbio3.3 0.65
coif12 0.725 coif13 0.7125 db38 0.64375
coif10 0.725 rbio3.5 0.7125 rbio3.1 0.64375
db27 0.721875 bior3.5 0.709375 rbio3.7 0.6375

125

5.2.6 Performance in the federated learning context

In this section, we will test the federated learning approach on the NASA

Dataset. The same federated learning library is used as for the test on the

Machine Fault Simulator Dataset. However, as for the previous test on the

NASA dataset, the test and train set will be obtained from two different bear-

ings: bearing one of test two will be used as the train set and bearing number

three of test three will be used as the test set. Consequently, we can expect

the learning process to be harder in this situation that in the test of federated

learning on the Machine Fault Simulator where the same bearing was used to

generate the train set and the test set.

Creating the clients dataset and the test As mentioned above, the bearing

2 of test 2 will be used to create the train set. The data is labelled as presented

in section 5.2.3 and randomly distributed across the different clients. Once all

the clients are initialized with their data, the federated server’s own dataset is

updated with the data from the bearing one of test three. The server processes

the wavelet transform of this dataset with the same parameters as the one

provided to the clients.

In the following, we present the influence of three parameters of the federated

learning approach over the performance of the federated learning. We pro-

ceed, in the same order as for the Machine Fault Simulator, first, we study the

influence of the number of clients in the federated context, then the influence

of the number of training rounds. Finally, we test the influence of the number

of client per training round.

126

Influence of the number of clients

In Figure 5.26, we present the evolution of the loss and the accuracy for a

changing total number of clients. To obtain this, the NASA dataset was split

across 40 clients and the federated learning context was regenerated for a

number of clients from 10 to 40 by 10 increments. Indeed, with the initial

amount of data in the NASA dataset being fixed, we need to ensure that each

client has about the same number of data points no matter what is the total

number of clients for which we are testing.

Consequently, it would not be adequate to split the dataset by the number of

clients in the process as there would be four times more data points for ten

clients than for forty clients. This is the reason why we start by splitting the

dataset by forty and then distribute those slices to the clients. Thus, there

is four times less data in the federated context when running for ten clients

than when running for forty clients, which represents the reality where more

clients leads to more data. Moreover instead of keeping the number of re-

trained client constant to ten retrained clients per round, no matter the context,

it is important to keep the ratio of retrained clients to total number of client

constant. Indeed, keeping the number of retrained clients constant would re-

sult, for a context with 10 clients, to 100% of the clients are retrained for

each round, but only 25% of the clients are retrained for the context with

forty clients.

Therefore, the experiment was carried out while keeping the ratio of retrained

clients to 50% of the total number of clients. The results of this experiment

are presented in Figure 5.24

First, it is obvious that the results are not as good as for the Machine Fault

Simulator. As the objective of Figure 5.26 is to show the influence of the

127

(a) Accuracy evolution with increase total number of client (average over 10 runs)

(b) Loss evolution with increase total number of client (average over 10 runs)

Figure 5.24: Evolution of the accuracy 5.6a and the loss 5.6b for 10, 20, 30 and 40 clients
and fourteen consecutive training rounds.

number of clients over the accuracy, the current parameters of the federated

learning context are not optimized and the accuracy of the method is not op-

timal. It can be seen that asymptotically, forty clients in the federated context

perform much better than 10 clients with an accuracy of 72% compared to

just above 60% for ten clients. The test with twenty and thirty clients are

very close to the results for forty clients and the difference of accuracy of less

that 2% is not really significant. The fact that the runs with 10 clients perform

less than the 3 other sets of runs could be explained by the fact that with only

10 clients there is not enough data in the federated context to be able to learn.

Finally, the influence of the number of clients in the federated learning con-

text is not significant as long as there is enough clients for the federated algo-

rithm to obtain a minimum of the loss function.

128

Influence of the number of training round

In order to study the influence of the number of training rounds over the per-

formance of the federated learning approach, fourteen consecutive training

round are executed in the following context. The dataset is split into 40 dif-

ferent clients and 5 of them are retrained. The model’s weight is obtained

after federated averaging are then used for prediction on the first bearing of

test three of the NASA dataset, as described in 5.2.6. The choice of retrain-

ing five clients in context with a pool of 40 clients is motivated by the results

obtained in Figure 5.26a. Figure 5.25 presents the evolution of the loss and

the accuracy with the number of training rounds. It can be seen that the accu-

Figure 5.25: NASA Influence of the number of training round for forty clients

racy on the test set initially of 50%, slowly improve up to 80% in six rounds,

which is much slower than the results obtained on the Machine Fault Simu-

lator dataset. The maximum accuracy is found to be 83% for this setting.

Influence of the number of clients per training round

In this case, we study the influence of the number of clients per training

round. That is, for a fixed number of clients in the federated learning context,

we will change the number of clients that are requested to retrain their model

and to send new weights to the federated server. In this setting, 40 clients

129

were generated from the NASA dataset and thirteen training rounds were

executed with a number of retrained clients changing from 5 to 35 with 5

increments.

(a) NASA Accuracy evolution with increase number of retrained clients

(b) NASA Loss evolution with increase number of retrained clients

Figure 5.26: Evolution of the accuracy 5.8a and the loss 5.8b for 5, 15, 25, and 35 clients
and fourteen consecutive training rounds.

It can be seen that the setting with only five retrained clients per round is

performing the best. This is a counterintuitive result as, it could be expected

that the more clients are retrained the better the algorithm performs. However,

an explanation to that could be that, with an increase in the number of clients

per training round there is also an increase in the variation of the weights

received by the server.

As in the federated learning algorithm, the server calculates the new weights

between each round with a mean, it may become harder to find a global min-

imum of the loss function with more clients sending their weights.

These observations are similar to the one done on the Machine Fault Simu-

130

lator dataset, where the best accuracy was obtained with the least amount of

retrained clients. The main difference comes from the fact that, in the case

of the Machine Fault Simulator dataset, the accuracy re-increases when the

number of retrained client become close to the total number of client in the

context. Noting that, in the case of the Machine Fault Simulator, the test

set comes from the same bearing as the training set, the increase in accuracy

could be due to overfitting. Now that the results on the NASA Dataset have

been presented on the centralized learning and federated learning context, two

other method are going to be tested. First, the same peak finding approach as

tested on the Machine Fault Simulator is used on this dataset. Second, a trend

analysis approach based on the Nelson Rules is used to detect anomalies in

the Kurtosis of the vibration signal. Note that this last approach could not be

tested on the Machine Fault Simulator as it can only be used on degradation

trend of a bearing.

5.2.7 Performance of the peak finding approach

As for the Machine Fault Simulator Dataset, we apply a peak finding ap-

proach that iterates over the spectrum to predominant peaks to identify har-

monic families representative of an outer race defect. The dataset used is the

results from the region identified in bearing three of test three of the NASA

dataset. Table 5.7 shows the confusion matrix resulting from the classifica-

tion. Compared to the results obtained with this same approach on the NASA

dataset, we can see that the accuracy has decreased. This is due to the fact

that the NASA dataset contains signals representative of a defect (and labeled

as such) were the defect in the outer race is still quite small.

The next section presents the results of outlier detection on the trend of the

Kurtosis of this same bearing. Those two methods are presented to be used

131

Table 5.7: Confusion Matrix for the Peak Finding approach for the NASA Dataset

actual healthy 2412 148
actual defect 1635 925

predicted
healthy

predicted
defective

as reference compared to the developed methods.

5.2.8 Trend analysis approach

To analyze the Kurtosis evolution over the life of the bearing 3 of test 3, Table

5.8 show the results of classification of the height following Nelson Rules:

Rule 1: One point is more than 3 standard deviations from the mean (outlier)

Rule 2: Nine (or more) points in a row are on the same side of the mean

(shift)

Rule 3: Six (or more) points in a row are continually increasing (or decreas-

ing) (trend)

Rule 4: Fourteen (or more) points in a row alternate in direction, increasing

then decreasing (bimodal, 2 or more factors in data set)

Rule 5: Two (or three) out of three points in a row are more than 2 standard

deviations from the mean in the same direction (shift)

Rule 6: Four (or five) out of five points in a row are more than 1 standard

deviation from the mean in the same direction (shift or trend)

Rule 7: Fifteen points in a row are all within 1 standard deviation of the

mean on either side of the mean (reduced variation or measurement is-

sue)

Rule 8: Eight points in a row exist with none within 1 standard deviation of

the mean and the points are in both directions from the mean (bimodal,

132

Table 5.8: Precision, Recall and Accuracy for 8 different Nelson Rules

Precision Recall Accuracy
Rule1 1.00 0.84 0.92
Rule2 0.17 0.37 0.20
Rule3 1.00 0.03 0.68
Rule4 NA 0.00 0.67
Rule5 1.00 0.23 0.71
Rule6 1.00 0.23 0.71
Rule7 0.27 0.20 0.56
Rule8 1.00 0.07 0.69

Table 5.9: Confusion Matrix for the Trend approach for the NASA Dataset

actual healthy 2560 0
actual defect 396 2164

predicted
healthy

predicted
healthy

2 or more factors in data set)

Table 5.8 shows that the outlier detecting with Rule 1 is working extremely

well when on this Dataset. The results of the classification are presented in

the confusion matrix in Table 5.9.

In this section, we have presented the results of four different approaches

on the NASA Dataset, first we have determined which bearing test should

be used in this work as well as the region in which the bearing should be

considered as healthy or as defective. The first bearing of the second test and

the third bearing of the third test were respectively used as a train and as a

test set. The three approach tested on the Machine Fault Simulator Dataset

have seen their accuracy drop by around 10% when applied to this dataset.

The explanations to this drop are that, the defective and healthy signal on this

dataset are not as clean as for the Machine Fault Simulator.

Additionally, the fact that the train and test set are now generated from dif-

ferent bearings. Finally, we have tried a trend approach in the form of the

133

Nelson Rule, and it was found that the first Nelson Rule stating that one point

is more than 3 standard deviations from the mean was performing the best. In

the next section we will be establishing the metrics to compare those bearing

defect detection methods and compare them one to one.

5.3 Comparison of bearing defect detection methods

In this section, we will first define classical metrics used to compare classi-

fication methods. Then, we will compare the four above presented methods

one to one.

5.3.1 Performance metrics

In the context of bearing defect identification, the problem that we are trying

to solve is the one of a binary classification. Thus, it is suitable to use three

already existing metric heavily used for these problems.

Accuracy: gives the fraction of correct prediction made by the model over

the total number of prediction made by the model.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(5.1)

Precision: gives the ratio bearing correctly classified as having a defect. A

precision of 1 corresponds to a model that is always correct when it

predicts defects.

precision =
tp

tp+ fp
(5.2)

Recall: gives the ratio of defective bearing classified as having a defect. A

recall of 1 corresponds to a model that classified all the actually defec-

134

tive bearing as being defective.

precision =
tp

tp+ fn
(5.3)

Note: In the above equations, fp denotes the false positive (bearing healthy

classified as defective), fn denotes the false negative (bearing defective clas-

sified as healthy), tp denotes the true positive (bearing defective classified as

defective), tn denotes the true negative (bearing healthy classified as healthy)

Adaptation to federated learning Contrary to the other approach, the fed-

erated learning context is different as there is a different test set per client. In

order to compare this approach to the other, we need to define overall metrics.

In the case of the Machine Fault Simulator Dataset, the overall metrics are ob-

tained by executing the inference of the model on the aggregated dataset on

the server obtained by pulling the test sets of all the clients. For instance,

in the setting in which the federated context has 40 clients each with a 100

data point in their own dataset and a train/test ratio of 70 percent; each client

will have 30 samples in its test set and the aggregate test set will contain 120

samples (40·30). It is on this aggregate test set that the model will be tested.

In the case of the NASA dataset, we can simply use the data from the first

bearing of the third test to evaluate the federated approach

In the following, we report the result of the four different approaches: (1)

wavelet and neural network in centralized learning context, (2) wavelet and

neural network in federated learning context, (3) peak finding in spectrum,

(4) first Nelson rule for outlier detection. We first compare the centralized

learning method to the other ones, after we compare the federated learning

approach.

135

5.3.2 Centralized Learning and Trend analysis

Table 5.10 shows the results of the wavelet and neural network in a central-

ized context compared to the results of the Trend Analysis. As the Trend

Analysis is not applicable to the Machine Fault Simulator Dataset, the com-

parison will be only based on the NASA Dataset.

Overall, the Trend Analysis out-performs the Centralized Learning approach

on all metrics. The gap in accuracy between the Trend Analysis and the

Centralized learning approach can be explained by the large difference of

0.15 in the Recall of those two methods. Consequently, it can be concluded

that the Centralized Learning approach is not as sensitive to bearing defects

as the Trend Analysis.

Finally, it should be noted that the Trend Analysis comes with a major short-

coming as it cannot be applied when the rotational speed of the equipment

is changing as this change would be labeled as a defect. On the other hand,

the results presented for the Centralized Learning Approach on the Machine

Fault Simulator are for multiple turning speed of the equipment, and it can

be seen that the approach maintains a good precision with different turning

speeds.

Additionally, between the two datasets, the Centralized Learning approach’s

recall is higher by 0.15 in the case of the Machine Fault Simulator. This can

be explained by the fact that the NASA Dataset contains early defects that

just start to appear in the waveform.

Comparison results

The Peak Analysis performs better than the centralized learning ap-

proach however, this method is limited to constant turning speed equip-

136

Table 5.10: Comparison of precision, recall and accuracy between the Centralized Learn-
ing Approach and the Trend Analysis

Dataset NASA MFS
Approach CL Trend CL Trend
Precision 0.977 1.000 0.962 NA

Recall 0.694 0.845 0.842 NA
Accuracy 0.839 0.923 0.904 NA

ments.

In the next section, we compare the Centralized Learning approach to the

peak finding approach.

5.3.3 Centralized Learning and Peak analysis

In table 5.11, the comparison between the wavelet and Neural Network in

Centralized Learning approach is compared to the Peak Analysis for both the

NASA Dataset and the Machine Fault Simulator Dataset. For all metrics,

Table 5.11: Comparison of precision, recall and accuracy between the Centralized Learn-
ing Approach and the Peak Analysis

Dataset NASA MFS
Approach CL Peak CL Peak
Precision 0.977 0.862 0.962 0.757

Recall 0.694 0.361 0.842 0.742
Accuracy 0.839 0.652 0.904 0.752

the Centralized Learning approach performs better than the Peak Analysis.

This last method performs poorly on the NASA dataset with a recall of 0.36,

meaning that a large portion of actually defective signals are not flagged as

such. It is also interesting to note that this recall improves significantly on the

Machine Fault Simulator Dataset. This might again be due to the fact that the

defect on this dataset is more clear than for the default in the NASA Dataset.

137

As the peak analysis identifies peak in the vibration spectrum, it is then easier

to flag the defects in the Machine Fault Simulator dataset, leading to better

recall.

Comparison results

The Centralized Learning context for the wavelet and Neural Networks

performs better than the Peak Analysis for both Datasets.

In the next section, we will compare the wavelet and machine learning ap-

proach in two different context, the centralized learning context and the fed-

erated learning context.

5.3.4 Centralized Learning and Federated Learning

Table 5.12 shows the results for the three metrics.

Table 5.12: Comparison of precision, recall and accuracy between the Centralized Learn-
ing Approach and the Federated Learning Approach

Dataset NASA MFS
Approach CL FL CL FL
Precision 0.977 0.874 0.962 0.947

Recall 0.694 0.625 0.842 0.819
Accuracy 0.839 0.767 0.904 0.887

As expected, the centralized learning performs better than the federated learn-

ing, the result is confirmed by [88]. Indeed, the federated learning process

introduce another layer off complexity to the learning process with the fed-

erated averaging algorithm. From Table 5.12 it appears again that the bear-

ing defects are easier to identify in the Machine Fault Simulator than in the

NASA Dataset, as for both federated and centralized learning, the metrics

improves from the first Dataset to the Second one. The only metric that does

not increase from the NASA dataset to the Machine Fault Simulator dataset

138

is the precision in centralized learning, however, the difference between the

two settings is only of 0.01 which is not significant.

Comparison results

The Centralized Learning setting is performing better than the Feder-

ated Learning setting for the Wavelet and Neural Network approaches.

This analysis concludes the comparison of the Wavelet and Neural Network

in the centralized learning context. In the following section, the Wavelet and

Neural Network in the Federated Learning setting are compared to the Trend

Analysis and the Peak Analysis.

5.3.5 Federated Learning and Trend analysis

Table 5.13 shows the precision, recall and accuracy for the Wavelet and Neu-

ral Networks compared to the Trend Analysis for the two datasets.

Table 5.13: Comparison of precision, recall and accuracy between the Federated Learning
Approach and the Trend Analysis

Dataset NASA MFS
Approach FL Trend FL Trend
Precision 0.874 1.000 0.947 NA

Recall 0.625 0.845 0.819 NA
Accuracy 0.767 0.923 0.887 NA

It shows that the Trend Analysis performs better than the Federated Learning

on the NASA Dataset, which is expected as it was performing better than

the Centralized Learning approach, which was performing better than the

Federated Learning approach (cf. 5.10and 5.12). However, the Federated

Learning approach present the same advantages as the centralized learning

approach in the fact that they can be applied to varying rotational speeds

139

Comparison results

The Trend Analysis performs better than the Wavelet and Neural Net-

work approach when applied to constant rotational speed signals.

5.3.6 Federated Learning and Peak analysis

In this section, we conclude with the last of the comparison which is the

Wavelet and Neural Network in Federated Learning to the Peak Analysis.

Table 5.14 shows the results for the precision, recall and accuracy. As for

the Centralized Learning Approach, the Federated Learning approach out-

performs the Peak Analysis. The only metric where the two methods are

giving similar results is the precision in the NASA Datasets. This is probably

due to the fact that the Peak Analysis method is very sensitive on the NASA

dataset leading to a high precision, but also a very low recall with an overall

low accuracy.

Table 5.14: Comparison of precision, recall, and accuracy between the Federated Learn-
ing Approach and the Peak Analysis

Dataset NASA MFS
Approach FL Peak FL Peak
Precision 0.874 0.862 0.947 0.757
Recall 0.625 0.361 0.819 0.742
Accuracy 0.767 0.652 0.887 0.752

Comparison results

The Wavelet and Neural Network in the federated Learning context

outperforms the Peak Analysis approach

140

5.3.7 Summary of the results across methods

In conclusion, we have compared four different methods for bearing defect

detection on two different datasets: the Machine Fault Simulator Dataset and

the NASA Dataset. The one to one comparison of the precision, recall, and

accuracy of all these methods showed that: for a constant turning speed, a

control charts with the first Nelson rule is the best performing method.

However, this method is sensitive to change in turning speed and in load; con-

sequently, its field of application is limited. The Centralized and Federated

Learning Context for the Wavelet and Neural Network approaches, which are

the focus of this work, also give good results with an accuracy of more than

0.76 across the two datasets. More importantly, those methods were shown

to be very precise, which makes them highly scalable as they will not gen-

erate large amounts of False Positive. Moreover, the Peak Analysis that is

supposed to detect Outer Race Harmonic families performed poorly on both

of the datasets used in this study. Finally, it can be concluded that the pro-

posed wavelet and Neural Network performance are satisfying in both the

centralized and federated learning contexts.

In this chapter, the proposed data acquisition architecture was validated and

the PRU-ICSS of the BeagleBone AI were used to acquire vibration data on

the Machine Fault Simulator. Once this dataset set was generated, it was used

with another Dataset from NASA to validate the performance of the proposed

Wavelet and Neural Network approaches in both federated and centralized

learning contexts. The results were compared to a trend outlier detection

based on the first Nelson Rule and on the spectrum peak analysis method

developed in [44]. It was shown that, in the context of a varying rotational

speed, the proposed approach out-performs both the peak analysis and the

141

trend outlier detection. However, the trend outlier detection remains the best

technique in the case of a constant rotational speed. In the next chapter,

we will first present the contributions and limitation of this work, then the

research question will be answered and suggestion for future work in this

topic will be made.

142

CHAPTER 6

CONTRIBUTIONS AND LIMITATIONS

In this chapter, the contributions of this work are detailed, then the limitation

of the developed techniques are clarified. Thereafter, the hypothesis made in

chapter 3 are validated or rejected in order to answer the research questions.

Finally, in order to overcome some limitations, ideas for the future work in

this domain are proposed.

6.1 Contributions

The contribution of the work are multiple. First, in terms of implementation

and technical contribution. Second, the interest of the developed method is

presented. Third, the potential fields of application are detailed. Finally, the

novelty of the approach is emphasized.

6.1.1 Technical contributions

In terms of technical contributions, one I2C-PRU driver, the use of this driver

for vibration data acquisition, and one federated learning library were imple-

mented.

I2C-PRU Driver: this driver permit to control the I2C compatible sensors

with the Process Real-time Units of the BeagleBone AI. The PRU are con-

trolled by the ARM Cortex using the RPMsg driver and the driver enable the

use of the I2C bus of the BeagleBone AI with the PRU. This opens the field

143

of use of the BeagleBone AI to deterministic sensing application. Moreover,

this driver should be compatible with little adaptation to any device power by

the ti-am5729 chip. This driver is configured to use a 400khz clock but can

be easily reconfigured to use a 3.2MHz clock. The communication in the I2C

bus were validated using an I2C phase analyzer.

Data acquisition: the use of the BeagleBone AI PRU-ICSS for vibration

data acquisition was demonstrated. The above-mentioned driver is used to

acquire the sample which are then place in the PRU-ICSS memory. Once

the acquisition is completed, the non-deterministic Linux host can fetch the

samples. This implementation shows the power of the BeagleBone micro-

processor when used with the Process Real-time Units: they are low cost

microprocessors running Linux which are also able to carry out deterministic

task.

Federated Learning Library: this library was implemented as a wrapper

around the TensorFlow machine learning framework. It exposes a client and

sever architecture for federated learning processes simulations. Even if it is

not as complete as the TensorFlow Federated library, it is also less complex

and is not strongly type. This is an advantage and a limitation of the library

as it makes it much easier to use, but it is also a potential source of error if

the user is not rigorous.

The codes for the driver, its use, and the federated library are made available

on GitHub and one should feel free to use them and to contact the author in

case of questions.

144

6.1.2 Interest of the developed method

The proposed approach presents multiple interest as opposed to the classical

bearing defect detection.

First, considering the results in the Federated Learning context, it can be

argued that this bearing defect detection method leverages the power of the

most recent microprocessor in order to decouple the bearing defect detection

process from cloud computing.

Indeed, the Federated Learning approach was shown to obtain accuracies

around 0.75 with a very good precision, which makes the approach very scal-

able as it reduces the false positives.

Additionally, in a setting where data can be transmitted to the cloud, central-

ized learning to retrain the edge models was also tested and proven to obtain

better results than federated learning. However, this comes with limitations

in terms of data privacy.

6.1.3 Potential field of application

The proposed method uses edge inference of bearing defects using Discrete

Wavelet Transforms and Artificial Neural Networks. As it leverages the pro-

cessing power of the edge device, it drastically reduces the requirement in the

amount of bandwidth required by the system.

This open a field of applications where the bearing’s condition needs to be

monitored in an area were the network connectivity is limited or unreliable.

For instance, in a remote area like a wind-turbine field, the connectivity to

the internet might be limited, but one can imagine a federated learning pro-

cess between the wind-turbine of the same field which does not require ac-

145

cess to the cloud. In this case, only the status of each wind-turbine needs to

communicated over to the internet, which significantly reduces the required

bandwidth while taking advantage of the learning opportunities offered by

the vibration data of each wind-turbine.

Additionally, in a context of increasing cyber-risk, the more data is transmit-

ted to the internet, the more vulnerable a system is to attacks. For sensitive

equipment, sending only the diagnostic information and not the full process

data mitigates these new risks.

6.1.4 Novelty of the approach

This work presents a novel approach for bearing defect detection that lever-

ages the processing power available at the edge. This approach was proven

to work on outer race defect from two different datasets without any knowl-

edge of the bearing configuration. It constitutes a proof of concept of edge

federated learning of bearing defect detection. However, there are still some

limitations in the current implementation, these limitations are presented in

the following.

6.2 Limitations

The proposed approaches present different limitations, in terms of acquisition

frequency of the vibration data, and in terms of defect identification accuracy.

6.2.1 Data-rate limitations

The developed PRU-I2C driver is limited in terms of acquisition frequency by

the clock of the I2C bus. In the current implementation, the bus is limited at a

frequency of 400kHz which gives a maximum sampling rate of 1600Hz while

146

validating the received 16-bit samples as explained in 4.3.3. Additionally, the

data point are stored in the PRU memory, which is limited in size, for 8bit

data the maximum number of data point achievable is 12288. In addition,

the data processing on the BeagleBone AI and the inference takes a couple

of seconds as it was implemented on the CPU, which limits the intervals

between two samples. However, this limitation is not critical because of the

rate at which a bearing usually wears out. Some solutions to address those

technical limitations are detailed in 6.4.

6.2.2 Defect identification limitation

Even if the centralized and federated learning approach compare fairly well to

the other bearing defect detection methods and benefit from good precision,

they still remain limited in terms of accuracy. In this work, the study of

the optimization of the Neural Network was not conducted, and it is highly

probable that other architecture will achieve much better results.

Finally, the test on the dataset where conducted on train and test set from

the same bearings models. Even if, two datasets with two different bearing

models where tested, this data remain experimental and generated on a test

bench: either at GeorgiaTech on the Machine Fault Simulator or retrieved

from the bearing run- to-failure test hosted on the NASA online repository

[38]. The approach was not tested on actual production data, which are by

nature more complex and less easy to learn from due to the change in the

production operations.

In the following section we go back to the hypothesis formulated in chapter

3 and validate or reject them based on the result obtained in the previous

chapters.

147

6.3 Answer to the Research question

6.3.1 Answer to the first research question

Research Question 1

How can bearing defect detection be automated without previous

knowledge of their configuration?

To answer the research question we formulated 2 hypotheses which are pre-

sented bellow:

Hypothesis 1

Wavelet transforms associated with machine learning enables auto-

mated bearing defect detection with the same performance as classical

methods without previous knowledge of the bearing configuration.

The result presented in section 5.3 show that we can indeed achieve the

similar performance as classical bearing defect detection methods. In

addition, in both the federated learning and centralized learning context, no

bearing configuration was provided. These approaches do not require the

intervention of an operator to predict the state of a bearing thus:

Hypothesis 1 is validated

Hypothesis 2

The wavelet transform step can be merged into the learning approach

in order to significantly improve the process. This can be achieved

not only at the device level by merging the algorithms, but also at the

148

network level by implementing a federated learning approach between

multiple devices.

The choice of the discrete wavelet used as a preprocessor for the Neural Net-

work was based on the accuracy of the obtained algorithm during training. It

was shown (C.f.: Table 5.2 and 5.6) that a correct choice of Discrete Wavelet

Transform leads to a significant improvement of up to 0.14. However, the

developed federated learning approach did not give better results than the

centralized learning approach as shown in Table 5.12. Nonetheless, even if

Federated learning does not improve the process, it presents other advantages

in terms of data privacy and security, as the data is kept local to the device

and not shared in the cloud.

Nevertheless:

Hypothesis 2 has to be rejected

Answer to Research Question 1

Finally, wavelet transform associated with machine learning enables

automated bearing defect detection with the same performance as clas-

sical methods without previous knowledge of the bearing configura-

tion. The choice of the wavelet used is critical to the final performance

of the model at the device level. At the network level, the use of Feder-

ated Learning will reduce the accuracy of the bearing defect detection

approach but will improve the data privacy and security.

149

6.3.2 Answer to the second research question

The second research question is the following:

Research Question 2

How can this approach be decoupled from cloud computing while

maintaining adequate sampling rate and sensitivity for predictive main-

tenance applications?

It was proposed to address it with the two hypothesis below:

Hypothesis 3

By leveraging the recent developments on microprocessor and System

on Chip, a parallel implementation of the above-mentioned techniques

can be developed at the edge.

Even if it was initially proposed to use the full capabilities of the BeagleBone

AI with the GPU and the DSP, some limitations were encountered and

the processing of the wavelet transform is done in parallel on the CPU

cores as well as the inference and the retraining of the machine learning

model. The computing time of a couple of second is compatible with online

execution of the proposed method. Moreover, the use of the PRU-ICSSS

of the BeagleBone AI’s chip enabled the deterministic data acquisition on

the same System on Chip as the one holding the Linux microprocessor.

The technique presented as a solution to the first research question was

successfully deployed at the edge as presented in 4, thus:

Hypothesis 3 is validated

150

Hypothesis 4

The parallel wavelet implementation at the edge enables an early de-

tection of the bearing defect that is suitable for predictive maintenance

planning.

The results for the centralized learning approach presented in 5.3.2, shows

that the proposed approach is comparable to control charts in terms of accu-

racy and prediction, which are used in predictive maintenance. Moreover,

the approach is also applicable in systems in which the rotational speed and

the load change along the time, and it maintains 90% of accuracy. Thus:

Hypothesis 4 is validated

Answer to Research Question 2

Finally, the proposed approach can be decoupled from the cloud even

without using all the specialized core of the BeagleBone AI. The in-

ference of the model is taking longer that it would have initially on the

specialized core, but it is not an issue for online monitoring of bearing

defect considering the time at which bearing defects appear.

6.3.3 Answer to the third research question

The last research question addresses the benchmarking with the cloud tech-

niques.

151

Research Question 3

What is the trade-off between cost and performance (speed, sampling

rate, and sensitivity) comparing the edge implementation and the cloud

implementation?

The following hypothesis was formulated.

Hypothesis 5

The edge implementation will have comparable or better results than

cloud computing services at a lower cost.

Even if the models used in this work were limited in size, thus giving an

advantage to the decoupled architecture against a cloud base implementation;

the results obtained in section 5.3 show that the decoupled approach has a

performance comparable to the cloud computing implementation.

The sampling rate of 1600Hz was enough to detect outer race defect with

an accuracy of 0.9 while maintaining a processing time compatible to online

monitoring of bearing defects.

Considering the cost of the solution compared to a cloud based solution,

no definitive answer is given as too many parameters are at play. On the

one hand, considering the cost of the edge solution at around $200 per

asset, one can achieve a cheaper cloud base solution with a strict digital

discipline to reduce the cost of the cloud base service while using low cost

microcontrollers (around $25), sensor (around $15). On the other hand,

in the case mentioned in 6.1.3, the cloud solution will become quickly

more expensive that the decoupled architecture as most of the cost of the

installation will be the cost of data transmission, giving an advantage to

the edge solution. As it was established that in some situations the edge

152

implementation is more expensive than the cloud base solution:

Hypothesis 5 is rejected

Answer to Research Question 3

Finally, even if the edge architecture proposed in the work give similar

results than cloud base architecture. The trade-off highly depends on

the application specific, and it is argued that one of the major factor of

decision will be the cost of data transmission

6.3.4 Answer to the main research question

Research Question

How can a new approach for automated bearing defect detection be

decoupled from Cloud computing?

Answer to Research Question

By leveraging the most recent SoC and using Wavelet Transform asso-

ciated to Neural Networks, an edge bearing defect detection approach

can be implemented. This approach can be trained in a centralized

learning context to obtain a similar accuracy, precision, and recall than

a cloud base approach while maintaining a speed compatible with on-

line monitoring of bearing defect for predictive maintenance. Further-

more, this same approach can also be used in a federated learning man-

ner to improve data security and privacy at the cost of a small reduction

of accuracy.

153

6.4 Future Work

In this work, one of the major limitations was the difficulty to use the special-

ized core of the BeagleBone AI. With a new version of this board expected

to be realized in the coming months, future work should adapt the current ap-

proach to the new version of the board. Indeed, it is likely that the PRU-I2C

driver will become deprecated as the new version of the BeagleBone AI will

use another Texas Instrument Chip. This new version of the BeagleBone AI

should be able to run the Texas Instrument library “Edge AI”. Adapting this

work to the library would open the possibility to run more complex models.

Moreover, the PRU-I2C driver could be expanded to support 3.2MHz clock-

ing in order to have a faster communication with the sensors. As there is no

such driver on other models of BeagleBone boards, it will be very valuable

to adapt the driver to these models.

Finally, the Federated Learning library can be extended to permit any client

to become the server of the centralized learning context, which would reduce

the sensitivity of the federated learning network to an issue in the server.

154

CHAPTER 7

CONCLUSION

This dissertation introduced a new bearing defect detection method using

wavelet transform and artificial neural networks at the edge.

After considering that the current methods used in the field of bearing defect

detection, they are either not automatized or require the use of cloud comput-

ing. This work leverages the process Real-time units’ deterministic capabil-

ities and CPU cores of the BeagleBone AI to carry out data acquisition and

processing in an architecture decoupled from the cloud.

The architecture achieves automatic bearing defects detection with accuracy

of up to 90% and a precision of 97% with a speed compatible to online mon-

itoring of bearing defects. These results are similar to the ones obtained with

the other bearing defects detection methods used for comparison.

Moreover, while maintaining an accuracy of up to 88% and a precision of

up to 94%, this architecture can be deployed in a federated learning manner,

which increases the data safety and privacy in world of ever-increasing cyber-

risk.

Finally, the use of the proposed approach to process vibration data at the edge

significantly reduces the need to transmit large amounts of data to the cloud

as only the status of the equipment needs to be reported to the user.

155

Appendices

156

APPENDIX A

DERIVATION OF THE BEARING DEFECT FREQUENCIES

A.1 Derivation

Figure A.1: Components of rolling elements bearings[108]

From Figure A.1, the radius of the outer race is given by db
2

+ dB
2

cos θ. De-

noting No the outer race’s angular speed, the velocity of a point of the outer

race is:

Vo =
No

2
[dP + dB cos θ] (A.1)

The velocity in the inner can be derived similarly to equation A.1 and is:

Vi =
Ni

2
[dP − dB cos θ] (A.2)

And the velocity at the center of the rolling element can be computer as the

mean between the between Vi and Vo such that Vc = Vo+Vi
2

. Then we can

157

obtain the rotational speed at the center of the rolling element with:

Nc =
Vo + Vi

2

2

dP

=
1

2dP
[No (dP + dB cos θ) +Ni (dP − dB cos θ)]

=
1

2

[
No

(
1 +

dB
dP

cos θ

)
+Ni

(
1− dB

dP
cos θ

)] (A.3)

From the above computed rotational speed we can compute the frequency at

which a single element passes at a given point of the outer race:

No/b = No −Nc

= No −
1

2

[
No

(
1 +

dB
dP

cos θ

)
+Ni

(
1− dB

dP
cos θ

)]
=

1

2
(No −Ni)

[
1− dB

dP
cos(θ)

] (A.4)

Considering that they are n rolling elements in the bearing, we obtain the

frequency of any rolling element passing on one given point of the outer race:

Nn
o/b =

n

2
|No −Ni|

[
1− dB

dP
cos(θ)

]
(A.5)

Similarly to A.5, we derive the passage frequency of any rolling element on

the inner-race:

Nn
i/b =

n

2
|Ni −No|

[
1 +

dB
dP

cos(θ)

]
(A.6)

Denoting Nr the rotational speed of a rolling element we can express Vo as in

A.1 but also:

Vo =
1

2
NrdB +

1

2
Nc [dP + dB cos(θ)] (A.7)

158

Equating A.1 and A.7 and solving for Nr:

Nr = [No −Nc]

[
dP
dB

+ cos(θ)

]
(A.8)

Then we can use A.8 and reinject the value of Nc from A.3 to find:

No

(
1 +

dB
dP

cos θ

)
=

NrdB +
1

2

(
1 +

dB
dP

cos θ

)
×
[
No

(
1 +

dB
dP

cos θ

)
+Ni

(
1− dB

dP
cos θ

)]

After solving for Nr the rotational speed of a rolling element we find:

Nr =
1

2
|No −Ni|

[
dP
dB

+ cos θ

] [
1− dB

dP
cos θ

]
=

1

2
|No −Ni|

dP
dB

[
1−

(
dB
dP

cos θ

)2
] (A.9)

A.2 Summary of the bearing defect frequencies

Finally, we have obtained the excitation frequency for defects on the inner

and outer-races, those frequencies are called:

BPFO for Ball Pass Frequency Outer-race:

BPFO =
n

2
|No −Ni|

[
1− dB

dP
cos(θ)

]
(A.10)

BPFI for Ball Pass Frequency Inner-race:

BPFI =
n

2
|Ni −No|

[
1 +

dB
dP

cos(θ)

]
(A.11)

159

BPFI for Ball Pass Frequency Inner-race:

FTF = n |Ni −No|
[
1 +

dB
dP

cos(θ)

]
(A.12)

With:

n : the number of rolling elements in the bearing

No : the rotational frequency of the outer-race

Ni : the rotational frequency of the inner-race

dB : the diameter of the rolling element

dP : the diameter of the circle described by the rolling element

θ : the contact angle

Note: These formulas use the |Ni −No| which is usually referred as fr

160

APPENDIX B

MACHINE FAULT SIMULATOR

Here we present some anoted pictures of the Machine Fault Simulator, which

are not essential to the understanding of the system but can help to clarify it.

B.1 Imbalance loader installed

This picture represents the machine fault simulator with the imbalance loader

in operation. Some weight can be screwed on the imbalance loader.

Figure B.1: The MFS with the imbalance loader installed

161

B.2 Components of the Machine Fault Simulator

Here we present another view of the major components of the Machine Fault

Simulator

Figure B.2: The MFS with the imbalance loader installed

162

APPENDIX C

CENTRALIZED LEARNING ON MACHINE FAULT SIMULATOR

DATASET

C.1 Model 0

Accuracy of Model 0 on the Machine Fault Simulator for different families

of discrete wavelet transforms.

163

Table C.1: Accuracy of Model 0 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.5 0.9038 bior3.7 0.8533 sym16 0.8221 coif2 0.7421
bior5.5 0.8929 rbio3.3 0.8504 db18 0.8204 bior6.8 0.735
db29 0.8838 db33 0.85 db1 0.8204 rbio1.3 0.7325
db24 0.8817 sym13 0.8492 sym4 0.82 sym5 0.7025
coif17 0.88 rbio5.5 0.8488 bior2.2 0.8175 db5 0.6825
rbio2.8 0.8783 coif4 0.8488 db4 0.8171 coif6 0.6821
db35 0.8758 sym14 0.8479 sym12 0.8167 db3 0.6792
db27 0.8758 db19 0.8467 db37 0.8129 db2 0.6633
db38 0.8742 coif8 0.8467 bior3.3 0.8113 coif13 0.6504
coif16 0.8729 sym19 0.8467 db12 0.8092 rbio3.9 0.5958
coif9 0.8717 sym10 0.8438 db31 0.8071 rbio3.1 0.5733
db22 0.8692 coif1 0.8433 db30 0.8 coif5 0.5671
db23 0.8671 db7 0.8421 sym15 0.7996 sym9 0.5592
coif10 0.8667 db25 0.8408 sym7 0.7954 db6 0.5163
coif7 0.8663 bior1.5 0.8404 db15 0.7892 sym11 0.5067
db36 0.8654 dmey 0.8392 db16 0.7846 db13 0.5063
coif11 0.8633 coif3 0.8379 rbio4.4 0.7792 rbio2.6 0.5063
db26 0.8617 sym18 0.8375 sym17 0.7738 sym6 0.5063
db14 0.86 sym2 0.8367 rbio2.2 0.7671 haar 0.5063
bior3.9 0.8588 sym8 0.8354 db20 0.7625 db34 0.5063
db32 0.8583 bior3.5 0.8354 sym20 0.7608 coif15 0.5063
coif14 0.8575 db28 0.8283 rbio6.8 0.7575 coif12 0.5063
db11 0.8558 bior2.4 0.8283 rbio1.5 0.7567 bior2.8 0.5063
db17 0.855 bior4.4 0.8271 rbio2.4 0.7542 bior3.1 0.5063
db21 0.855 bior1.1 0.8271 bior2.6 0.7533 bior1.3 0.5063
db9 0.8533 rbio3.7 0.8242 db10 0.7475
db8 0.8533 rbio1.1 0.8238 sym3 0.7433

C.2 Model 1

Accuracy of Model 1 on the Machine Fault Simulator for different families

of discrete wavelet transforms.

164

Table C.2: Accuracy of Model 1 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.5 0.8688 db15 0.8138 sym6 0.7667 db8 0.7008
coif17 0.8663 db13 0.8125 db20 0.7650 coif7 0.6792
db30 0.8621 coif6 0.8083 db3 0.7650 bior1.1 0.6683
db37 0.8608 bior3.7 0.8067 rbio1.1 0.7642 coif12 0.6667
coif15 0.8596 db16 0.8046 db4 0.7633 sym14 0.6508
db38 0.8583 coif5 0.8029 sym2 0.7625 rbio4.4 0.6379
db32 0.8550 sym17 0.8029 db17 0.7600 bior1.3 0.6046
db29 0.8546 bior2.6 0.8013 rbio1.5 0.7596 db1 0.5958
rbio3.9 0.8538 sym11 0.7963 coif1 0.7592 db11 0.5925
db31 0.8508 rbio6.8 0.7942 db21 0.7583 db33 0.5513
db25 0.8488 db14 0.7925 rbio2.2 0.7579 rbio2.4 0.5067
db27 0.8446 db28 0.7921 sym4 0.7575 bior5.5 0.5067
coif10 0.8421 db36 0.7875 db2 0.7554 haar 0.5063
coif16 0.8400 bior2.4 0.7850 bior4.4 0.7542 db34 0.5063
db35 0.8358 coif2 0.7846 db5 0.7538 bior2.2 0.5063
coif13 0.8354 coif4 0.7821 rbio1.3 0.7492 coif3 0.5063
coif9 0.8317 rbio5.5 0.7821 sym13 0.7483 bior3.3 0.5063
db18 0.8313 db7 0.7796 sym10 0.7475 db24 0.5063
rbio2.6 0.8308 bior2.8 0.7771 sym8 0.7471 db23 0.5063
db22 0.8283 bior6.8 0.7750 db6 0.7450 sym18 0.5063
bior3.9 0.8246 sym9 0.7746 db9 0.7421 coif11 0.5063
coif14 0.8246 sym7 0.7725 sym20 0.7392 sym15 0.5063
rbio3.3 0.8238 bior3.5 0.7700 db26 0.7379 db12 0.5063
db19 0.8233 db10 0.7696 sym3 0.7254 rbio3.1 0.5063
rbio2.8 0.8200 sym16 0.7692 coif8 0.7246 bior3.1 0.4942
rbio3.7 0.8167 sym12 0.7692 sym5 0.7075
bior1.5 0.8154 dmey 0.7671 sym19 0.7058

C.3 Model 2

Accuracy of Model 2 on the Machine Fault Simulator for different families

of discrete wavelet transform

165

Table C.3: Accuracy of Model 2 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.9 0.8879 coif9 0.8375 bior3.3 0.7942 rbio1.5 0.7313
rbio3.7 0.8854 rbio5.5 0.8371 rbio3.1 0.7925 db7 0.7213
bior5.5 0.8808 sym9 0.8371 db20 0.7900 rbio3.5 0.7096
coif16 0.8758 db6 0.8363 sym7 0.7888 coif8 0.7079
db37 0.8738 bior3.7 0.8354 db11 0.7888 bior3.9 0.7029
db35 0.8650 rbio2.4 0.8333 coif3 0.7871 coif7 0.6913
db29 0.8646 db9 0.8308 coif12 0.7838 db13 0.6804
rbio2.8 0.8642 sym19 0.8250 sym10 0.7783 sym8 0.6550
db26 0.8600 sym16 0.8242 bior1.1 0.7746 coif6 0.6488
db24 0.8600 sym13 0.8188 rbio2.2 0.7725 rbio4.4 0.6471
coif15 0.8588 bior2.8 0.8179 db12 0.7708 bior1.3 0.6346
db25 0.8579 rbio1.1 0.8167 sym17 0.7704 db15 0.6300
coif14 0.8567 sym12 0.8158 db2 0.7675 db32 0.5850
coif11 0.8563 bior6.8 0.8146 sym18 0.7642 bior2.6 0.5642
coif10 0.8558 db18 0.8146 db5 0.7633 sym4 0.5633
rbio2.6 0.8550 sym3 0.8108 rbio1.3 0.7608 db21 0.5367
db36 0.8546 db8 0.8075 sym2 0.7596 db22 0.5329
db19 0.8542 rbio6.8 0.8058 db3 0.7575 coif17 0.5063
db33 0.8529 coif5 0.8038 sym20 0.7521 db28 0.5063
coif13 0.8467 sym6 0.8033 sym14 0.7517 bior3.1 0.5063
bior1.5 0.8442 coif4 0.8033 sym15 0.7488 db34 0.5063
db17 0.8429 coif1 0.8008 bior2.2 0.7442 db38 0.5063
db30 0.8425 db31 0.8000 haar 0.7421 sym11 0.5063
db14 0.8413 db27 0.7971 bior2.4 0.7413 db23 0.5063
dmey 0.8413 db10 0.7963 bior4.4 0.7379 coif2 0.5063
bior3.5 0.8396 sym5 0.7950 db1 0.7367
db16 0.8396 db4 0.7946 rbio3.3 0.7342

C.4 Model 3

Accuracy of Model 3 on the Machine Fault Simulator for different families

of discrete wavelet transforms

166

Table C.4: Accuracy of Model 3 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.7 0.8846 sym13 0.8250 sym5 0.7996 db24 0.7542
coif15 0.8575 db15 0.8246 coif9 0.7988 db18 0.7538
coif17 0.8571 bior5.5 0.8242 rbio3.9 0.7988 db19 0.7488
db31 0.8563 bior3.7 0.8233 rbio2.2 0.7967 sym16 0.7358
db36 0.8558 bior2.8 0.8225 coif11 0.7954 sym12 0.7317
db38 0.8538 bior3.5 0.8192 sym2 0.7938 coif3 0.7308
db29 0.8525 rbio6.8 0.8188 sym14 0.7933 rbio2.4 0.7296
db34 0.8517 coif10 0.8188 sym4 0.7921 bior1.1 0.7192
db33 0.8496 db13 0.8188 db9 0.7917 sym7 0.7146
dmey 0.8488 db6 0.8167 coif5 0.7900 sym6 0.7017
coif14 0.8458 coif4 0.8158 sym20 0.7879 rbio1.3 0.7004
rbio3.3 0.8454 sym3 0.8146 db30 0.7850 db3 0.6908
db25 0.8438 db7 0.8138 sym15 0.7833 db23 0.6821
rbio2.8 0.8433 db17 0.8125 bior2.4 0.7792 rbio3.1 0.6517
db28 0.8421 bior2.6 0.8117 db4 0.7792 coif8 0.6479
rbio2.6 0.8400 db35 0.8113 sym9 0.7767 bior4.4 0.6363
db21 0.8379 db8 0.8113 coif2 0.7729 bior1.3 0.6213
coif12 0.8371 sym11 0.8104 db5 0.7704 db10 0.6108
bior3.9 0.8346 db20 0.8104 sym10 0.7696 db12 0.5667
db37 0.8346 db14 0.8096 sym8 0.7646 db1 0.5567
coif7 0.8338 db2 0.8088 haar 0.7625 bior3.1 0.5138
db32 0.8338 sym19 0.8083 db22 0.7621 bior3.3 0.5063
coif16 0.8321 bior2.2 0.8050 bior6.8 0.7621 db26 0.4938
coif13 0.8317 rbio3.5 0.8046 db16 0.7617 db11 0.4938
rbio5.5 0.8304 db27 0.8046 rbio1.5 0.7608 coif1 0.4938
bior1.5 0.8300 sym18 0.8017 sym17 0.7575
coif6 0.8283 rbio4.4 0.8004 rbio1.1 0.7563

C.5 Model 4

Accuracy of Model 4 on the Machine Fault Simulator for different families

of discrete wavelet transforms

167

Table C.5: Accuracy of Model 4 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.5 0.8925 sym16 0.8367 sym6 0.8063 sym14 0.7163
bior5.5 0.8871 coif7 0.8367 db20 0.8033 db9 0.6875
rbio3.9 0.8863 db15 0.8363 sym20 0.8025 rbio4.4 0.6800
db33 0.8704 db12 0.8354 bior2.2 0.8008 rbio3.1 0.6683
db31 0.8683 sym9 0.8350 coif2 0.7967 coif1 0.6663
db35 0.8667 db21 0.8346 bior4.4 0.7883 sym12 0.6563
db25 0.8633 sym8 0.8333 coif10 0.7879 db3 0.6517
db38 0.8629 db1 0.8329 sym18 0.7875 bior2.6 0.6367
db23 0.8608 db14 0.8313 bior2.8 0.7854 db36 0.6275
db27 0.8550 rbio6.8 0.8304 db5 0.7850 bior3.5 0.6017
coif13 0.8504 coif11 0.8300 dmey 0.7842 sym13 0.5950
coif9 0.8504 db22 0.8288 coif14 0.7754 bior3.3 0.5679
coif12 0.8471 db10 0.8271 coif5 0.7754 rbio2.2 0.5450
sym17 0.8467 bior6.8 0.8267 rbio1.3 0.7738 rbio2.6 0.5158
coif16 0.8458 db6 0.8258 sym5 0.7713 bior3.1 0.5088
db32 0.8458 db8 0.8246 rbio1.5 0.7667 coif3 0.5063
rbio5.5 0.8458 bior2.4 0.8242 db29 0.7667 db13 0.5063
db26 0.8450 sym11 0.8238 rbio2.4 0.7663 sym15 0.4958
bior1.5 0.8446 db4 0.8233 db19 0.7650 coif17 0.4938
db11 0.8438 db2 0.8204 sym3 0.7633 coif15 0.4938
db17 0.8438 sym10 0.8196 bior1.1 0.7625 db7 0.4938
coif8 0.8438 db18 0.8196 db30 0.7604 haar 0.4938
rbio3.3 0.8433 db34 0.8175 coif4 0.7575 rbio3.7 0.4938
sym4 0.8425 sym7 0.8158 sym2 0.7563 db16 0.4938
bior3.9 0.8425 db28 0.8158 coif6 0.7421 bior3.7 0.4917
rbio2.8 0.8421 bior1.3 0.8142 rbio1.1 0.7300
sym19 0.8413 db37 0.8100 db24 0.7271

C.6 Model 5

Accuracy of Model 5 on the Machine Fault Simulator for different families

of discrete wavelet transforms

168

Table C.6: Accuracy of Model 5 in centralized learning for different wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
coif16 0.8629 bior1.3 0.8138 sym19 0.7863 sym8 0.7558
db37 0.8596 coif6 0.8092 rbio5.5 0.7858 rbio2.2 0.7554
coif17 0.8575 db28 0.8088 sym3 0.7846 db6 0.7546
rbio3.7 0.8558 coif11 0.8071 db14 0.7804 bior3.7 0.7542
db38 0.8554 sym18 0.8050 rbio3.5 0.7800 bior6.8 0.7533
db32 0.8517 db22 0.8038 db10 0.7771 sym2 0.7529
db25 0.8492 rbio3.3 0.8038 db8 0.7771 bior3.3 0.7517
db27 0.8475 rbio2.8 0.8029 db34 0.7767 sym5 0.7488
db33 0.8471 rbio6.8 0.8021 bior2.2 0.7721 rbio4.4 0.7479
coif12 0.8425 bior3.9 0.8017 db3 0.7717 rbio1.3 0.7471
coif15 0.8421 sym20 0.8013 db5 0.7713 sym16 0.7467
db31 0.8421 sym15 0.7967 coif4 0.7704 bior4.4 0.7463
db24 0.8379 rbio1.1 0.7963 sym14 0.7704 dmey 0.7346
coif13 0.8371 db23 0.7958 db18 0.7692 db12 0.7304
db35 0.8371 sym12 0.7954 rbio2.4 0.7692 coif5 0.7250
db36 0.8367 db30 0.7946 haar 0.7688 bior2.4 0.7192
db21 0.8321 sym13 0.7933 sym6 0.7667 db4 0.7179
db20 0.8279 coif14 0.7921 sym9 0.7642 sym7 0.7154
coif9 0.8271 db1 0.7908 bior1.1 0.7617 db11 0.7017
bior2.8 0.8254 sym17 0.7908 bior3.5 0.7617 coif1 0.7004
coif8 0.8250 rbio3.1 0.7904 sym4 0.7617 db13 0.6825
db29 0.8217 coif7 0.7896 db2 0.7608 db15 0.6075
rbio2.6 0.8183 db7 0.7896 coif2 0.7604 db26 0.5538
rbio3.9 0.8183 db16 0.7892 sym10 0.7600 db19 0.5063
coif10 0.8163 db9 0.7883 sym11 0.7592 bior3.1 0.4938
bior2.6 0.8146 bior5.5 0.7879 rbio1.5 0.7575
db17 0.8142 coif3 0.7875 bior1.5 0.7563

169

APPENDIX D

FEDERATED LEARNING ON MACHINE FAULT SIMULATOR

DATASET

D.1 Influence of the total number of client

Figure D.3 and D.4 show the evolution of the accuracy and the loss with an

increase in the number of clients. The representation is obtained for 10 runs

of the same experiment and shows the average of the accuracy and loss per

round with the standard deviation. The representation the intuitive result that

the more we have in the federated learning context the better the accuracy

gets. However, the improvement is not significant in this case, as the error

bar overlap quite often with the average of the other series.

(a) Accuracy evolution for 5, 30 and 50 total clients

(b) Loss evolution for 5, 30 and 50 total clients

Figure D.1: Evolution of the accuracy D.3a and the loss D.3b for 3 training rounds

170

(a) Accuracy evolution for 15, 35 and 75 total clients

(b) Loss evolution for 15, 35 and 75 total clients

Figure D.2: Evolution of the accuracy D.2a and the loss D.2b for 3 training rounds

D.2 Influence of the number of retrained client per round

Figure D.3 and Figure D.4 present the evolution of the loos and the accuracy

for a changing number of retrained clients and a constant number (80) clients

in the pool and for three consecutive rounds of training. For the first round of

the accuracy one round of

171

(a) Accuracy evolution for 5, 30 and 50 total clients

(b) Loss evolution for 5, 30 and 50 total clients

Figure D.3: Evolution of the accuracy D.3a and the loss D.3b for 3 training rounds

(a) Accuracy evolution for 15, 35 and 75 total clients

(b) Loss evolution for 15, 35 and 75 total clients

Figure D.4: Evolution of the accuracy D.4a and the loss D.4b for 3 training rounds

172

APPENDIX E

KURTOSIS EVOLUTION OVER BEARING LIFE FOR NASA

DATASET

The following pages present the evolution of the Kurtosis for the 3 runs to

failure test form [38] As a reminder, table E.1 presents the final state of each

bearing for each test.

Table E.1: Summary of the defect observed on the dataset

Test # Bearing # Fault Type
Test 1 Bearing 1 No defect

- Bearing 2 No defect
- Bearing 3 Inner race defect
- Bearing 4 Rolling element defect

Test 2 Bearing 1 Outer race defect
- Bearing 2 No defect
- Bearing 3 No defect
- Bearing 4 Outer race defect

Test 3 Bearing 1 No defect
- Bearing 2 No defect
- Bearing 3 Outer race defect
- Bearing 4 No defect

173

E.1 Kurtosis evolution over time for the 3 bearing run to failure test of

[38]

(a)

(b)

(c)

(d)

Figure E.1: Evolution of the Kurtosis over time for the first test of the NASA Dataset.
E.1a bearing 1, no defect appeared, E.1b bearing 2, no defect appeared, E.1c bearing 3,
an inner race appeared, E.1d bearing 4, a rolling element defect appeared.

174

E.2 Kurtosis evolution over time for the 3 bearing run to failure test of

[38]

(a)

(b)

(c)

(d)

Figure E.2: Evolution of the Kurtosis over time for the second test of the NASA Dataset.
E.2a bearing 1, an outer defect appeared, E.2b bearing 2, no defect appeared, E.2c bearing
3, no defect appeared, E.2d bearing 4, no defect appeared.

175

E.3 Kurtosis evolution over time for the 3 bearing run to failure test of

[38]

(a)

(b)

(c)

(d)

Figure E.3: Evolution of the Kurtosis over time for the second test of the NASA Dataset.
(E.2a) bearing 1, no defect appeared, (E.2b) bearing 2, no defect appeared, (E.2c) bearing
3, an outer race defect appeared, (E.2d) bearing 4, no defect appeared.

176

APPENDIX F

CENTRALIZED LEARNING ON NASA DATASET

F.1 Model 0

Accuracy of Model 0 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
coif14 0.7813 sym12 0.6031 sym10 0.5813 bior3.1 0.5641
bior3.9 0.7391 bior2.4 0.6031 sym7 0.5813 sym15 0.5625
bior3.3 0.7367 db28 0.6000 db7 0.5781 bior1.3 0.5625
rbio3.1 0.6836 db29 0.6000 sym13 0.5781 sym6 0.5625
bior3.7 0.6500 db38 0.6000 bior4.4 0.5781 sym17 0.5594
rbio3.5 0.6469 db13 0.5969 db16 0.5750 coif6 0.5594
rbio3.3 0.6375 sym14 0.5969 bior2.6 0.5750 rbio1.1 0.5594
db36 0.6344 db19 0.5938 rbio2.8 0.5750 sym2 0.5563
coif15 0.6250 sym3 0.5938 rbio2.6 0.5750 sym16 0.5563
dmey 0.6250 coif16 0.5938 bior1.1 0.5750 rbio1.5 0.5563
db24 0.6188 db11 0.5938 db10 0.5719 db4 0.5500
coif17 0.6156 sym20 0.5906 db23 0.5719 bior5.5 0.5469
rbio3.7 0.6156 coif3 0.5906 db6 0.5719 rbio6.8 0.5438
bior2.2 0.6156 sym19 0.5875 coif9 0.5719 coif5 0.5406
db37 0.6156 db9 0.5875 db3 0.5719 bior1.5 0.5406
db21 0.6125 sym18 0.5875 db15 0.5719 db34 0.5367
bior2.8 0.6125 coif1 0.5875 sym9 0.5719 sym4 0.5000
db30 0.6125 db25 0.5875 db22 0.5719 bior3.5 0.5000
db27 0.6125 rbio1.3 0.5875 db12 0.5719 rbio4.4 0.5000
db35 0.6125 db31 0.5875 db8 0.5688 db5 0.5000
coif7 0.6094 haar 0.5875 rbio5.5 0.5688 coif11 0.5000
sym11 0.6072 db18 0.5844 db14 0.5688 db20 0.5000
coif13 0.6063 coif4 0.5844 rbio2.4 0.5688 coif8 0.5000
rbio3.9 0.6063 db1 0.5844 sym5 0.5688 rbio2.2 0.5000
coif10 0.6063 db32 0.5844 db33 0.5688 coif2 0.5000
db26 0.6063 bior6.8 0.5813 sym8 0.5656
coif12 0.6031 db17 0.5813 db2 0.5656

177

F.2 Model 1

Accuracy of Model 1 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
coif14 0.7813 sym12 0.6031 sym10 0.5813 bior3.1 0.5641
bior3.9 0.7391 bior2.4 0.6031 sym7 0.5813 sym15 0.5625
bior3.3 0.7367 db28 0.6000 db7 0.5781 bior1.3 0.5625
rbio3.1 0.6836 db29 0.6000 sym13 0.5781 sym6 0.5625
bior3.7 0.6500 db38 0.6000 bior4.4 0.5781 sym17 0.5594
rbio3.5 0.6469 db13 0.5969 db16 0.5750 coif6 0.5594
rbio3.3 0.6375 sym14 0.5969 bior2.6 0.5750 rbio1.1 0.5594
db36 0.6344 db19 0.5938 rbio2.8 0.5750 sym2 0.5563
coif15 0.6250 sym3 0.5938 rbio2.6 0.5750 sym16 0.5563
dmey 0.6250 coif16 0.5938 bior1.1 0.5750 rbio1.5 0.5563
db24 0.6188 db11 0.5938 db10 0.5719 db4 0.5500
coif17 0.6156 sym20 0.5906 db23 0.5719 bior5.5 0.5469
rbio3.7 0.6156 coif3 0.5906 db6 0.5719 rbio6.8 0.5438
bior2.2 0.6156 sym19 0.5875 coif9 0.5719 coif5 0.5406
db37 0.6156 db9 0.5875 db3 0.5719 bior1.5 0.5406
db21 0.6125 sym18 0.5875 db15 0.5719 db34 0.5367
bior2.8 0.6125 coif1 0.5875 sym9 0.5719 sym4 0.5000
db30 0.6125 db25 0.5875 db22 0.5719 bior3.5 0.5000
db27 0.6125 rbio1.3 0.5875 db12 0.5719 rbio4.4 0.5000
db35 0.6125 db31 0.5875 db8 0.5688 db5 0.5000
coif7 0.6094 haar 0.5875 rbio5.5 0.5688 coif11 0.5000
sym11 0.6072 db18 0.5844 db14 0.5688 db20 0.5000
coif13 0.6063 coif4 0.5844 rbio2.4 0.5688 coif8 0.5000
rbio3.9 0.6063 db1 0.5844 sym5 0.5688 rbio2.2 0.5000
coif10 0.6063 db32 0.5844 db33 0.5688 coif2 0.5000
db26 0.6063 bior6.8 0.5813 sym8 0.5656
coif12 0.6031 db17 0.5813 db2 0.5656

178

F.3 Model 2

Accuracy of Model 2 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
bior3.5 0.6656 db24 0.6094 db15 0.5906 db16 0.5781
bior3.9 0.6654 coif9 0.6094 db34 0.5906 sym12 0.5781
rbio3.7 0.6563 db18 0.6094 db10 0.5906 haar 0.5781
coif12 0.6531 coif10 0.6094 db13 0.5906 sym2 0.5781
rbio3.9 0.6531 sym17 0.6094 sym10 0.5906 rbio5.5 0.5781
coif14 0.6500 sym16 0.6094 rbio4.4 0.5906 db37 0.5750
rbio3.5 0.6469 db25 0.6063 rbio1.3 0.5906 sym14 0.5750
db12 0.6377 bior4.4 0.6031 sym9 0.5906 db2 0.5719
rbio3.1 0.6375 db21 0.6031 bior1.3 0.5906 coif8 0.5719
rbio3.3 0.6375 coif4 0.6031 sym3 0.5906 db33 0.5719
db29 0.6313 db32 0.6031 db11 0.5875 db5 0.5688
coif17 0.6313 dmey 0.6031 sym6 0.5875 db4 0.5656
bior3.7 0.6281 sym18 0.6031 sym4 0.5875 rbio2.6 0.5656
bior2.8 0.6281 db38 0.6000 rbio6.8 0.5875 sym7 0.5656
coif15 0.6250 bior5.5 0.6000 sym5 0.5867 sym11 0.5625
db35 0.6250 coif6 0.6000 coif2 0.5844 db20 0.5594
db31 0.6219 rbio2.8 0.6000 sym13 0.5844 db9 0.5500
bior2.2 0.6219 rbio1.1 0.6000 db3 0.5813 coif1 0.5438
db27 0.6188 bior2.4 0.5969 db19 0.5813 sym8 0.5438
coif11 0.6188 coif7 0.5969 coif5 0.5813 bior1.5 0.5375
db28 0.6188 bior6.8 0.5969 sym15 0.5813 bior3.1 0.5178
db26 0.6188 rbio2.2 0.5969 rbio1.5 0.5813 db23 0.5000
sym19 0.6188 db30 0.5938 coif3 0.5781 db14 0.5000
coif16 0.6156 db22 0.5938 db17 0.5781 bior3.3 0.5000
db36 0.6125 bior1.1 0.5938 db7 0.5781 sym20 0.5000
coif13 0.6125 db1 0.5938 db8 0.5781
rbio2.4 0.6125 bior2.6 0.5906 db6 0.5781

179

F.4 Model 3

Accuracy of Model 3 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
rbio3.1 0.8223 db9 0.6906 db17 0.6625 bior1.3 0.6344
bior3.3 0.8150 db26 0.6906 db2 0.6625 rbio2.2 0.6313
bior2.8 0.7498 rbio1.5 0.6875 db7 0.6563 coif7 0.6313
coif17 0.7406 sym16 0.6875 sym18 0.6563 db1 0.6281
bior3.5 0.7406 sym3 0.6844 sym20 0.6563 rbio4.4 0.6281
bior3.7 0.7373 coif9 0.6844 rbio2.8 0.6563 db15 0.6250
bior2.4 0.7371 db18 0.6813 db29 0.6563 coif5 0.6250
coif12 0.7250 sym7 0.6813 bior1.1 0.6563 haar 0.6219
coif10 0.7250 sym5 0.6781 db34 0.6531 db19 0.6156
db27 0.7219 rbio1.3 0.6781 coif14 0.6531 db22 0.6156
bior2.2 0.7188 db14 0.6750 bior3.1 0.6504 sym4 0.6156
coif6 0.7188 db24 0.6750 sym8 0.6500 coif1 0.6156
db38 0.7156 coif15 0.6750 db35 0.6500 sym2 0.6154
coif16 0.7125 db16 0.6750 db33 0.6469 rbio2.4 0.6125
dmey 0.7094 coif13 0.6750 sym12 0.6469 sym6 0.6094
bior5.5 0.7094 rbio3.3 0.6748 db37 0.6469 rbio6.8 0.6063
sym14 0.7063 sym15 0.6719 rbio3.9 0.6469 sym11 0.6063
db21 0.7061 db32 0.6719 db8 0.6438 bior1.5 0.6000
rbio3.5 0.7031 sym19 0.6719 db36 0.6438 db28 0.5938
coif11 0.7031 db20 0.6688 db5 0.6438 sym13 0.5906
rbio3.7 0.7031 db30 0.6688 db31 0.6406 db23 0.5875
bior6.8 0.7031 db6 0.6656 bior4.4 0.6406 db4 0.5750
coif8 0.7031 db13 0.6656 coif4 0.6406 coif3 0.5688
bior3.9 0.7031 rbio1.1 0.6656 sym9 0.6375 rbio5.5 0.5656
db12 0.6969 coif2 0.6656 db3 0.6375 db10 0.5000
rbio2.6 0.6969 db11 0.6625 bior2.6 0.6375
sym17 0.6938 sym10 0.6625 db25 0.6344

180

F.5 Model 4

Accuracy of Model 4 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
bior3.3 0.8486 db15 0.6750 db8 0.6500 haar 0.6313
bior3.9 0.7586 db32 0.6750 db14 0.6469 sym4 0.6313
rbio3.1 0.7553 coif10 0.6750 db2 0.6469 rbio2.4 0.6250
coif12 0.7313 sym13 0.6719 sym5 0.6469 rbio2.6 0.6250
coif17 0.7219 db17 0.6688 db28 0.6438 db3 0.6219
coif16 0.7188 db37 0.6688 db23 0.6438 bior6.8 0.6188
coif15 0.7125 db9 0.6688 bior2.2 0.6438 sym2 0.6133
coif13 0.7125 db38 0.6688 sym9 0.6438 db1 0.6125
rbio3.5 0.7125 db11 0.6688 rbio2.2 0.6438 sym6 0.6125
bior3.5 0.7094 db7 0.6656 rbio3.7 0.6438 rbio5.5 0.6094
rbio3.3 0.7090 coif5 0.6656 rbio6.8 0.6438 sym7 0.6063
db22 0.7063 db26 0.6656 db4 0.6406 db19 0.6000
db25 0.7031 db13 0.6656 bior1.3 0.6406 rbio1.5 0.6000
coif11 0.7031 sym19 0.6656 sym3 0.6406 sym10 0.6000
db35 0.7031 sym8 0.6656 sym18 0.6406 bior1.5 0.5969
sym17 0.7000 rbio2.8 0.6656 db31 0.6375 db24 0.5938
dmey 0.6969 rbio3.9 0.6656 coif4 0.6375 bior5.5 0.5938
sym16 0.6938 bior2.6 0.6652 sym14 0.6375 db29 0.5813
db27 0.6875 coif6 0.6625 rbio4.4 0.6375 db16 0.5781
coif8 0.6875 sym11 0.6625 bior2.4 0.6344 sym20 0.5719
coif1 0.6875 rbio1.3 0.6625 coif9 0.6344 coif3 0.5688
db30 0.6844 coif7 0.6594 db18 0.6344 db10 0.5688
db33 0.6844 bior2.8 0.6594 bior1.1 0.6344 coif14 0.5656
bior3.7 0.6840 db5 0.6563 sym15 0.6344 coif2 0.5654
db36 0.6813 rbio1.1 0.6563 sym12 0.6344 bior3.1 0.5129
db21 0.6781 db12 0.6531 db20 0.6313
db34 0.6781 db6 0.6500 bior4.4 0.6313

181

F.6 Model 5

Accuracy of Model 5 on the NASA Dataset for different families of discrete

wavelet transforms

wavelet accuracy wavelet accuracy wavelet accuracy wavelet accuracy
bior3.3 0.7482 db37 0.6219 coif7 0.6031 bior5.5 0.5906
bior3.5 0.6781 db34 0.6219 rbio2.6 0.6000 db9 0.5875
rbio3.9 0.6688 coif8 0.6219 sym12 0.6000 db11 0.5875
coif15 0.6625 db24 0.6219 rbio1.3 0.6000 rbio1.1 0.5844
db6 0.6592 bior2.6 0.6219 sym3 0.6000 sym6 0.5844
bior3.7 0.6563 sym13 0.6188 db16 0.6000 db19 0.5844
rbio3.3 0.6500 db29 0.6188 db23 0.5969 haar 0.5844
db38 0.6438 db32 0.6188 db4 0.5969 db13 0.5813
rbio3.1 0.6438 coif13 0.6188 sym11 0.5969 rbio4.4 0.5813
rbio3.7 0.6375 db30 0.6188 rbio6.8 0.5969 sym9 0.5813
db36 0.6375 coif4 0.6188 sym2 0.5969 db7 0.5813
rbio3.5 0.6375 db27 0.6188 bior2.4 0.5969 db15 0.5813
db22 0.6375 sym19 0.6156 sym17 0.5969 rbio2.2 0.5813
db33 0.6344 bior6.8 0.6125 sym10 0.5938 coif3 0.5781
bior2.8 0.6344 sym15 0.6125 db21 0.5938 db2 0.5781
coif16 0.6313 db14 0.6125 db25 0.5938 sym7 0.5781
coif10 0.6313 sym14 0.6094 db18 0.5938 bior4.4 0.5781
bior3.9 0.6313 coif11 0.6094 db1 0.5938 bior1.3 0.5781
sym18 0.6281 sym16 0.6063 coif2 0.5938 sym8 0.5750
coif6 0.6250 db3 0.6063 rbio2.4 0.5906 sym4 0.5750
db31 0.6250 db35 0.6063 db12 0.5906 bior1.5 0.5750
dmey 0.6250 coif5 0.6063 rbio1.5 0.5906 sym5 0.5719
coif12 0.6250 db10 0.6063 bior1.1 0.5906 db5 0.5656
bior2.2 0.6250 sym20 0.6063 db26 0.5906 rbio5.5 0.5625
coif9 0.6219 coif14 0.6031 db17 0.5906 bior3.1 0.5354
db20 0.6219 rbio2.8 0.6031 db28 0.5906
coif1 0.6219 coif17 0.6031 db8 0.5906

182

REFERENCES

[1] Unlocking the potential of the internet of things, https : / /
www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/the-internet-of-things-
the- value- of- digitizing- the- physical- world,
Article, Accessed: 2019-11-24, 2015.

[2] Léonard de vinci mourrait il y a 500 ans: Ses 5 inventions les
moins connues, https://www.arcinfo.ch/articles/
lifestyle / techno - et - sciences / leonard - de -
vinci - mourrait - il - y - a - 500 - ans - on - vous -
presente-ses-5-inventions-les-moins-connues-
835293, Website, Accessed : 2020-09-25.

[3] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault
diagnosis of electrical motors—a review,” IEEE Transactions on En-
ergy Conversion, vol. 20, no. 4, pp. 719–729, 2005.

[4] M. M. Khonsari and E. R. Booser, Applied Tribology Bearing Design
and Lubrication. John Wiley & Sons, 2008.

[5] Mobius institute - rolling element bearings, https : / / www .
mobiusinstitute.com/site2/default.asp, Website,
Accessed : 2020-04-07.

[6] X. Jin, D. Siegel, B. Weiss, E. Gamel, W. Wang, J. Lee, and J. Ni,
“The present status and future growth of maintenance in us manufac-
turing: Results from a pilot survey,” Manufacturing Review, vol. 3,
p. 10, Jan. 2016.

[7] G. Morales-Espejel and A. Gabelli, “A major step forward in life
modelling,” SKF Evolution, vol. 4, pp. 21–27, 2015.

[8] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Appli-
cations, challenges, and opportunities with china perspective,” Inter-
net of Things Journal, IEEE, vol. 1, pp. 349–359, Aug. 2014.

[9] W. Lidong and W. Guanghui, “Big Data in Cyber-Physical Systems,
Digital Manufacturing and Industry 4.0,” International Journal of En-
gineering and Manufacturing, vol. 6, no. 4, pp. 1–8, 2016.

183

https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.arcinfo.ch/articles/lifestyle/techno-et-sciences/leonard-de-vinci-mourrait-il-y-a-500-ans-on-vous-presente-ses-5-inventions-les-moins-connues-835293
https://www.arcinfo.ch/articles/lifestyle/techno-et-sciences/leonard-de-vinci-mourrait-il-y-a-500-ans-on-vous-presente-ses-5-inventions-les-moins-connues-835293
https://www.arcinfo.ch/articles/lifestyle/techno-et-sciences/leonard-de-vinci-mourrait-il-y-a-500-ans-on-vous-presente-ses-5-inventions-les-moins-connues-835293
https://www.arcinfo.ch/articles/lifestyle/techno-et-sciences/leonard-de-vinci-mourrait-il-y-a-500-ans-on-vous-presente-ses-5-inventions-les-moins-connues-835293
https://www.arcinfo.ch/articles/lifestyle/techno-et-sciences/leonard-de-vinci-mourrait-il-y-a-500-ans-on-vous-presente-ses-5-inventions-les-moins-connues-835293
https://www.mobiusinstitute.com/site2/default.asp
https://www.mobiusinstitute.com/site2/default.asp

[10] P. D. Urbina Coronado, R. Lynn, W. Louhichi, M. Parto, and E.
Wescoat, “Part data integration in the Shop Floor Digital Twin: Mo-
bile and cloud technologies to enable a manufacturing execution sys-
tem,” Journal of Manufacturing Systems, vol. 48, pp. 25–33, 2018.

[11] Indoor and outdoor geolocation based on ai for industry, https:
//www.zozio.tech/en/, Website, Accessed : 2020-10-02.

[12] R. B. Randall, Vibrations Based Condition Monitoring. John Wiley
& Sons, 2012.

[13] Mqtt.org, http://mqtt.org/, Website, Accessed : 2020-04-07.

[14] Mtconnect.org, https://www.mtconnect.org/, Website,
Accessed : 2020-04-07.

[15] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and
J. A. Guzzo, “A fog computing-based framework for process moni-
toring and prognosis in cyber-manufacturing,” Journal of Manufac-
turing Systems, vol. 43, pp. 25–34, 2017.

[16] P. Rauby, “Developing a smart and low cost device for machin-
ing vibration analysis,” Ph.D. dissertation, The George W. Woodruff
School of Mechanical Engineering, GeorgiaTech, 2018.

[17] What is arduino? https://www.arduino.cc/en/Guide/
Introduction, Website, Accessed : 2021-06-25.

[18] Socs, https://www.espressif.com/en/products/
socs, Website, Accessed : 2021-06-25.

[19] Our brief history, https://www.particle.io/about-
particle/, Website, Accessed : 2021-06-25.

[20] About us, https://www.pjrc.com/about/about_us.
html, Website, Accessed : 2021-06-25.

[21] Sparkfun products, https : / / www . sparkfun . com /
products, Website, Accessed : 2021-06-25.

[22] Nvidia jetson nano 2gb developer kit, https://developer.
nvidia . com / embedded / jetson - nano - 2gb -
developer-kit, Website, Accessed : 2021-06-25.

184

https://www.zozio.tech/en/
https://www.zozio.tech/en/
http://mqtt.org/
https://www.mtconnect.org/
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://www.espressif.com/en/products/socs
https://www.espressif.com/en/products/socs
https://www.particle.io/about-particle/
https://www.particle.io/about-particle/
https://www.pjrc.com/about/about_us.html
https://www.pjrc.com/about/about_us.html
https://www.sparkfun.com/products
https://www.sparkfun.com/products
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit

[23] Beaglebone ai, https://beagleboard.org/ai, Website,
Accessed : 2021-06-25.

[24] M. Elangovan, V. Sugumaran, K. I. Ramachandran, and S. Raviku-
mar, “Effect of SVM kernel functions on classification of vibration
signals of a single point cutting tool,” Expert Systems with Applica-
tions, vol. 38, no. 12, pp. 15 202–15 207, 2011.

[25] C. Drouillet, J. Karandikar, C. Nath, A.-C. Journeaux, M. El Man-
sori, and T. Kurfess, “Tool life predictions in milling using spindle
power with the neural network technique,” Journal of Manufacturing
Processes, vol. 22, pp. 161–168, 2016.

[26] Y. Fu, Y. Zhang, Y. Gao, H. Gao, T. Mao, H. Zhou, and D. Li, “Ma-
chining vibration states monitoring based on image representation
using convolutional neural networks,” Engineering Applications of
Artificial Intelligence, vol. 65, no. July, pp. 240–251, 2017.

[27] P. O’Donovan, C. Gallagher, K. Bruton, and D. T. O’Sullivan, “A
fog computing industrial cyber-physical system for embedded low-
latency machine learning Industry 4.0 applications,” Manufacturing
Letters, vol. 15, pp. 139–142, 2018.

[28] C.-A. Azencot, Foundations of machine learning chapter 9: Tree-
based approaches, 2017.

[29] ——, Foundations of machine learning chapter 10: Support vector
machines, 2017.

[30] F. Pérez-Cruz and O. Bousquet, “Kernel methods and their potential
use in signal processing,” IEEE Signal Processing Magazine, vol. 21,
no. 3, pp. 57–65, 2004.

[31] F Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in . . .,” Psychological Review, vol. 65, no. 6,
pp. 386–408, 1958.

[32] C.-A. Azencot, Foundations of machine learning chapter 11: Artifi-
cial neural networks, 2017.

[33] W. Hoffmann, “Some experience with ferrography in monitoring the
condition of aircraft engines,” Wear, vol. 65, no. 3, pp. 307–313,
1981.

185

https://beagleboard.org/ai

[34] X. Zhu, C. Zhong, and J. Zhe, Lubricating oil conditioning sensors
for online machine health monitoring – A review, 2017.

[35] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics—a
tutorial,” Mechanical Systems and Signal Processing, vol. 25, no. 2,
pp. 485 –520, 2011.

[36] N. J. Kessissoglou and Z. Peng, “Integrating Vibration and Oil Anal-
ysis for Machine Condition Monitoring,” Practicing Oil Analysis,
no. MAR./APR. 2003.

[37] S. Al-Dossary, R. I. Hamzah, and D. Mba, “Observations of changes
in acoustic emission waveform for varying seeded defect sizes in a
rolling element bearing,” Applied Acoustics, 2009.

[38] J. Lee, H. Qiu, J. Lin, and R. T. Services, ”bearing dataset”, NASA
Ames Prognostics Data Repository (http://ti.arc.nasa.
gov/project/prognostic-data-repository), NASA
Ames Research Center, Moffett Field, CA, 2007.

[39] B. Zhang, S. Zhang, and W. Li, “Bearing performance degradation
assessment using long short-term memory recurrent network,” Com-
puters in Industry, vol. 106, pp. 14–29, 2019.

[40] P. E. William and M. W. Hoffman, “Identification of bearing faults
using time domain zero-crossings,” Mechanical Systems and Signal
Processing, vol. 25, no. 8, pp. 3078–3088, 2011.

[41] A. Trip and J. E. Wieringa, “Individuals charts and additional tests
for changes in spread,” Quality and Reliability Engineering Interna-
tional, vol. 22, no. 3, pp. 239–249, 2006.

[42] E. S. PAGE, “CONTROL CHARTS WITH WARNING LINES,”
Biometrika, vol. 42, no. 1-2, pp. 243–257, Jun. 1955.

[43] C. Jw and J Tukey, “An algorithm for the machine calculation of
complex fourier series,” Math Comput, vol. 19, pp. 297–301, 1965.

[44] E. Prevost, “Detection of bearing defects with approximate bearing
configuration,” Ph.D. dissertation, The George W. Woodruff School
of Mechanical Engineering, GeorgiaTech, 2019.

[45] A. Oppenheim and R. Schafer, “From frequency to quefrency: A his-
tory of the cepstrum,” Signal Processing Magazine, IEEE, vol. 21,
pp. 95 –106, Oct. 2004.

186

(http://ti.arc.nasa.gov/project/prognostic-data-repository)
(http://ti.arc.nasa.gov/project/prognostic-data-repository)

[46] H. Konstantin-Hansen and H. Herlufsen, Envelope and cepstrum
analyses for machinery fault identification, 2010.

[47] G. D. White, Introduction to Machine Vibration. DLI Engineering
Corp, 1993.

[48] J. Antoni and R. B. Randall, “The spectral kurtosis: Application to
the vibratory surveillance and diagnostics of rotating machines,” Me-
chanical Systems and Signal Processing, vol. 20, no. 2, pp. 308–331,
2006.

[49] N. Sawahli, “Diagnostics, prognostics and fault simulation for rolling
element bearings,” Ph.D. dissertation, The University of New South
Wales, School of Mechanical and Manufacturing Engineering, 2007.

[50] D. Gabor, “Theory of communication. part 1: The analysis of infor-
mation,” Journal of the Institution of Electrical Engineers - Part III:
Radio and Communication Engineering, vol. 93, no. 26, pp. 429–441,
1946.

[51] J. N. Kutz, Data-Driven Modeling & Scientific Computation. Oxford,
2013.

[52] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[53] G. Strang and T. Nguyen, Wavelets and filter banks. SIAM, 1996.

[54] P. Goel, M. Chandra, A. Anand, and A. Kar, “An improved wavelet-
based signal-denoising architecture with less hardware consump-
tion,” Applied Acoustics, vol. 156, pp. 120–127, 2019.

[55] C. V. Garzón, G. B. Moncayo, D. H. Alcantara, and R. Morales-
Menendez, “Fault Detection in Spindles using Wavelets - State of
the Art,” IFAC-PapersOnLine, vol. 51, no. 1, pp. 450–455, 2018.

[56] A. Kumar, Y. Zhou, C. Gandhi, R. Kumar, and J. Xiang, “Bearing
defect size assessment using wavelet transform based deep convo-
lutional neural network (dcnn),” Alexandria Engineering Journal,
vol. 59, no. 2, pp. 999–1012, 2020.

[57] B. T. Holm-Hansen, R. X. Gao, and L. Zhang, “Customized wavelet
for bearing defect detection,” Journal of dynamic systems, measure-
ment, and control, vol. 126, no. 4, pp. 740–745, 2004.

187

[58] P. Kankar, S. C. Sharma, and S. Harsha, “Rolling element bearing
fault diagnosis using wavelet transform,” Neurocomputing, vol. 74,
no. 10, pp. 1638–1645, 2011.

[59] B. Paya, I. Esat, and M. Badi, “Artificial neural network based fault
diagnostics of rotating machinery using wavelet transforms as a pre-
processor,” Mechanical Systems and Signal Processing, vol. 11, no. 5,
pp. 751–765, 1997.

[60] O. José, L. Castro, C. C. Sisamón, J. Carlos, and G. Prada, “Bearing
Fault Diagnosis based on Neural Network Classification and Wavelet
Transform,” pp. 22–29, 2006.

[61] H. Wang, J. Chen, and G. Dong, “Feature extraction of rolling bear-
ing’s early weak fault based on EEMD and tunable Q-factor wavelet
transform,” Mechanical Systems and Signal Processing, vol. 48,
no. 1-2, pp. 103–119, 2014.

[62] Y. Wang, Z. He, and Y. Zi, “Enhancement of signal denoising and
multiple fault signatures detecting in rotating machinery using dual-
tree complex wavelet transform,” Mechanical Systems and Signal
Processing, vol. 24, no. 1, pp. 119–137, 2010.

[63] N. G. Kingsbury, “The dual-tree complex wavelet transform: a new
technique for shift invariance and directional filters,” paper 86, 1998.

[64] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-
tree complex wavelet transform,” IEEE Signal Processing Magazine,
vol. 22, no. 6, pp. 123–151, 2005.

[65] X. Zhang, Z. Liu, J. Wang, and J. Wang, “Time–frequency analysis
for bearing fault diagnosis using multiple Q-factor Gabor wavelets,”
ISA Transactions, vol. 87, pp. 225–234, 2019.

[66] Y. Zhang, K. Xing, R. Bai, D. Sun, and Z. Meng, “An enhanced
convolutional neural network for bearing fault diagnosis based on
time–frequency image,” Measurement: Journal of the International
Measurement Confederation, vol. 157, p. 107 667, 2020.

[67] M. M. Islam and J. M. Kim, “Automated bearing fault diagnosis
scheme using 2D representation of wavelet packet transform and
deep convolutional neural network,” Computers in Industry, vol. 106,
pp. 142–153, 2019.

188

[68] W. He, Q. Miao, M. Azarian, and M. Pecht, “Health monitoring of
cooling fan bearings based on wavelet filter,” Mechanical Systems
and Signal Processing, vol. 64-65, pp. 149–161, 2015.

[69] S. Haidong, J. Hongkai, Z. Ke, W. Dongdong, and L. Xingqiu, “A
novel tracking deep wavelet auto-encoder method for intelligent fault
diagnosis of electric locomotive bearings,” Mechanical Systems and
Signal Processing, vol. 110, pp. 193–209, 2018.

[70] L. Gelman, B. Murray, T. H. Patel, and A. Thomson, “Vibration diag-
nostics of rolling bearings by novel nonlinear non-stationary wavelet
bicoherence technology,” Engineering Structures, vol. 80, pp. 514–
520, 2014.

[71] Z. Liu, H. Cao, X. Chen, Z. He, and Z. Shen, “Multi-fault classifi-
cation based on wavelet SVM with PSO algorithm to analyze vibra-
tion signals from rolling element bearings,” Neurocomputing, vol. 99,
pp. 399–410, 2013.

[72] M. Borova, M. Prauzek, J. Konecny, and K. Gaiova, “Environmental
WSN Edge Computing Concept by Wavelet Transform Data Com-
pression in a Sensor Node,” IFAC-PapersOnLine, vol. 52, no. 27,
pp. 246–251, 2019.

[73] Consumer data privacy in a networked world: A framework for
protecting privacy and promoting innovation in the global digital
economy, https://obamawhitehouse.archives.gov/
sites/default/files/privacy-final.pdf, Article, Ac-
cessed: 2021-09-24, 2012.

[74] K. Ebrahimi, G. F. Jones, and A. S. Fleischer, “A review of data cen-
ter cooling technology, operating conditions and the corresponding
low-grade waste heat recovery opportunities,” Renewable and Sus-
tainable Energy Reviews, vol. 31, pp. 622–638, 2014.

[75] Microsoft, Project natick, https : / / natick . research .
microsoft.com, blog post, Accessed : 2021-03-04.

[76] H. B. Mcmahan and D. Ramage, “Communication-Efficient Learning
of Deep Networks from Decentralized Data,” vol. 54, 2017. arXiv:
arXiv:1602.05629v3.

[77] M. Chen and T. Ouyang, “Federated Learning Of Out-Of-Vocabulary
Words,” pp. 1–6, 2019. arXiv: arXiv:1903.10635v1.

189

https://obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf
https://natick.research.microsoft.com
https://natick.research.microsoft.com
https://arxiv.org/abs/arXiv:1602.05629v3
https://arxiv.org/abs/arXiv:1903.10635v1

[78] H. R. Roth, K. Chang, P. Singh, N. Neumark, W. Li, V. Gupta, S.
Gupta, L. Qu, A. Ihsani, B. C. Bizzo, Y. Wen, V. Buch, M. Shah,
F. Kitamura, M. Mendonça, V. Lavor, A. Harouni, C. Compas, J.
Tetreault, P. Dogra, Y. Cheng, S. Erdal, R. White, B. Hashemian,
T. Schultz, M. Zhang, A. McCarthy, B. M. Yun, E. Sharaf, K. V.
Hoebel, J. B. Patel, B. Chen, S. Ko, E. Leibovitz, E. D. Pisano, L.
Coombs, D. Xu, K. J. Dreyer, I. Dayan, R. C. Naidu, M. Flores, D.
Rubin, and J. Kalpathy-Cramer, “Federated learning for breast den-
sity classification: A real-world implementation,” in Domain Adap-
tation and Representation Transfer, and Distributed and Collabora-
tive Learning, vol. 12444, Cham: Springer International Publishing,
2020, pp. 181–191, ISBN: 9783030605476.

[79] A. Durrant, M. Markovic, D. Matthews, D. May, and J. Enright, “The
Role of Cross-Silo Federated Learning in Facilitating Data Sharing in
the Agri-Food Sector,” arXiv: arXiv:2104.07468v1.

[80] M Parimala, S. P. R. M, Q.-v. Pham, and K. Dev, “Fusion of Federated
Learning and Industrial Internet of Things : A Survey,” pp. 1–24,
2021. arXiv: arXiv:2101.00798v1.

[81] K. Nandury, A. Mohan, and F. Weber, “Cross-silo federated training
in the cloud with diversity scaling and semi-supervised learning,” in
ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 3085–3089.

[82] R. Kanagavelu, Z. Li, J. Samsudin, S. Hussain, F. Yang, Y. Yang,
R. S. M. Goh, and M. Cheah, “Federated learning for advanced man-
ufacturing based on industrial iot data analytics,” in Implementing
Industry 4.0: The Model Factory as the Key Enabler for the Future
of Manufacturing, C. Toro, W. Wang, and H. Akhtar, Eds. Cham:
Springer International Publishing, 2021, pp. 143–176, ISBN: 978-3-
030-67270-6.

[83] T. Hiessl, D. Schall, J. Kemnitz, and S. Schulte, “Industrial Feder-
ated Learning – Requirements and System Design,” pp. 1–12, 2021.
arXiv: arXiv:2005.06850v1.

[84] Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A blockchained
federated learning framework for cognitive computing in industry
4.0 networks,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 4, pp. 2964–2973, 2021.

190

https://arxiv.org/abs/arXiv:2104.07468v1
https://arxiv.org/abs/arXiv:2101.00798v1
https://arxiv.org/abs/arXiv:2005.06850v1

[85] N. Ge, G. Li, L. Zhang, and Y. Liu, “Failure prediction in produc-
tion line based on federated learning: an empirical study,” Journal of
Intelligent Manufacturing, 2021.

[86] S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri, “Op-
portunities of federated learning in connected, cooperative, and auto-
mated industrial systems,” IEEE Communications Magazine, vol. 59,
no. 2, pp. 16–21, 2021.

[87] M. Dhada and A. K. Parlikad, “Federated Learning for Collaborative
Prognosis,” no. Copen, pp. 1–6, 2019.

[88] W. Zhang, X. Li, H. Ma, Z. Luo, and X. Li, “Federated learn-
ing for machinery fault diagnosis with dynamic validation and self-
supervision,” Knowledge-Based Systems, vol. 213, p. 106 679, 2021.

[89] F. RasperryPi, About us, https://www.raspberrypi.org/
about/, Website, Accessed : 2021-02-01.

[90] F. BeagleBoad, About us, https : / / beagleboard . org /
about, Website, Accessed : 2021-02-01.

[91] T. Instrument, Am572x, block diagram, https://www.ti.com/
product/AM5729, Website, Accessed : 2021-02-01.

[92] Newark, Beaglebone ai, https : / / www . newark . com /
beagleboard / bbone - ai / sbc - beagle - bone - ai -
am5729-plus/dp/10AH2651, Website, Accessed : 2021-02-01.

[93] ——, Beaglebone black, https : / / www . newark . com /
element14 / bbone - black - wireless / beaglebone -
black-wireless-rohs/dp/95AC0788, Website, Accessed
: 2021-02-01.

[94] Tidl on beagleboneai, https : / / beagleboard . org / p /
175809/tidl-on-beaglebone-ai-1ee263, Website, Ac-
cessed : 2020-10-02.

[95] Ring oscillator, https : / / pub . pages . cba . mit . edu /
ring/, Website, Accessed : 2021-10-02.

[96] R. Birkett, Enhancing real-time capabilities with the pru, https:
//elinux.org/images/1/1c/Birkett--enhancing_
rt_capabilities_with_the_pru.pdf, Website, Accessed
: 2021-02-01.

191

https://www.raspberrypi.org/about/
https://www.raspberrypi.org/about/
https://beagleboard.org/about
https://beagleboard.org/about
https://www.ti.com/product/AM5729
https://www.ti.com/product/AM5729
https://www.newark.com/beagleboard/bbone-ai/sbc-beagle-bone-ai-am5729-plus/dp/10AH2651
https://www.newark.com/beagleboard/bbone-ai/sbc-beagle-bone-ai-am5729-plus/dp/10AH2651
https://www.newark.com/beagleboard/bbone-ai/sbc-beagle-bone-ai-am5729-plus/dp/10AH2651
https://www.newark.com/element14/bbone-black-wireless/beaglebone-black-wireless-rohs/dp/95AC0788
https://www.newark.com/element14/bbone-black-wireless/beaglebone-black-wireless-rohs/dp/95AC0788
https://www.newark.com/element14/bbone-black-wireless/beaglebone-black-wireless-rohs/dp/95AC0788
https://beagleboard.org/p/175809/tidl-on-beaglebone-ai-1ee263
https://beagleboard.org/p/175809/tidl-on-beaglebone-ai-1ee263
https://pub.pages.cba.mit.edu/ring/
https://pub.pages.cba.mit.edu/ring/
https://elinux.org/images/1/1c/Birkett--enhancing_rt_capabilities_with_the_pru.pdf
https://elinux.org/images/1/1c/Birkett--enhancing_rt_capabilities_with_the_pru.pdf
https://elinux.org/images/1/1c/Birkett--enhancing_rt_capabilities_with_the_pru.pdf

[97] T. Instrument, Am572x, technical reference manual, https : / /
www.ti.com/lit/ug/spruhz6l/spruhz6l.pdf, Tech-
nical Documentation, Accessed : 2021-03-04.

[98] ——, Processor sdk,remoteproc and rpmsg, https : / /
software-dl.ti.com/processor-sdk-linux/esd/
docs / latest / linux / Foundational _ Components /
PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.
html, Website, Accessed : 2021-02-01.

[99] ——, Pru assembly language tools v2.1, https://www.ti.
com/lit/ug/spruhv6a/spruhv6a.pdf, Technical Docu-
mentation, Accessed : 2021-03-04.

[100] Beaglebone ai am57x, https://esys.ir/images/img_
Item/1745/Files/BeagleBone-AI_sch.pdf, Technical
Drawing, Accessed: 2021-05-03.

[101] Sparkfun triple axis accelerometer breakout - kx132 (qwiic),
https://www.sparkfun.com/products/17871, Web-
site, Accessed : 2021-09-25.

[102] Tidl api user’s guide, introduction, https://downloads.ti.
com/mctools/esd/docs/tidl-api/intro.html, Web-
site, Accessed : 2021-10-02.

[103] Processor sdk linux, ti deep learning tidl, https://software-
dl.ti.com/processor-sdk-linux/esd/docs/05_00_
00_15/linux/Foundational_Components_TIDL.html,
Website, Accessed : 2021-10-02.

[104] Texasinstruments edgeai, https : / / github . com /
TexasInstruments/edgeai, Website, Accessed : 2021-10-02.

[105] Tensorflow, https://www.tensorflow.org, Website, Ac-
cessed : 2021-10-02.

[106] Introduction to tensorflow, https://www.tensorflow.org/
learn, Website, Accessed : 2021-10-02.

[107] Machine fault simulator, https : / / spectraquest . com /
machinery- fault- simulator/details/mfs, Website,
Accessed : 2021-09-25.

192

https://www.ti.com/lit/ug/spruhz6l/spruhz6l.pdf
https://www.ti.com/lit/ug/spruhz6l/spruhz6l.pdf
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf
https://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf
https://esys.ir/images/img_Item/1745/Files/BeagleBone-AI_sch.pdf
https://esys.ir/images/img_Item/1745/Files/BeagleBone-AI_sch.pdf
https://www.sparkfun.com/products/17871
https://downloads.ti.com/mctools/esd/docs/tidl-api/intro.html
https://downloads.ti.com/mctools/esd/docs/tidl-api/intro.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/05_00_00_15/linux/Foundational_Components_TIDL.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/05_00_00_15/linux/Foundational_Components_TIDL.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/05_00_00_15/linux/Foundational_Components_TIDL.html
https://github.com/TexasInstruments/edgeai
https://github.com/TexasInstruments/edgeai
https://www.tensorflow.org
https://www.tensorflow.org/learn
https://www.tensorflow.org/learn
https://spectraquest.com/machinery-fault-simulator/details/mfs
https://spectraquest.com/machinery-fault-simulator/details/mfs

[108] G. Gautier, R. Serra, and J.-M. Mencik, “Roller bearing monitor-
ing by new subspace-based damage indicator,” Shock and Vibration,
vol. 2015, Aug. 2015.

193

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Summary
	Introduction and Motivation
	Outline
	Rolling Element Bearing
	Bearing introduction
	Types of rolling element bearings

	Rolling Element Bearing Maintenance
	Maintenance strategies

	Internet of Things and Industry 4.0
	Internet of Things for Manufacturing
	Internet of Things platforms

	Machine Learning for defect detection
	Supervised and unsupervised machine learning
	Supervised algorithms

	Motivation

	Background and Literature Review
	Current bearing defect detection methods
	Time domain analysis
	Frequency domain analysis
	Fourier Transforms of a Signal
	Identification of defect frequencies

	Cepstrum Analysis
	Envelope analysis
	Time-frequency analysis
	Time-Frequency domain
	Short Time Fourier Transform (Gábor Transform)
	Wavelet Transforms

	Wavelet Transform for bearing defect detection
	Federated Learning
	Concept behind federated learning
	Advantages of Federated Learning
	Theory
	Application of Federated Learning

	Federated Learning in Manufacturing

	Problem Formulation
	Summary and Limitation of the current approaches
	Time domain limitations
	Frequency domain limitations
	Time-frequency possible improvements

	Research questions

	Federated Edge Identification of Bearing Defects
	BeagleBone AI presentation
	Texas Instrument Sitara AM5729 chip presentation
	BeagleBone System on Chip

	PRU-ICSS subsystem
	Presentation of the PRU-ICSS
	PRU-ICSS memory
	Interfacing the ARM and the PRU-ICSS
	Communication between the Host ARM and the PRU-ICSS subsystem
	Running a code on the PRU

	Deterministic data acquisition implementation
	Development of an I2C driver
	Driver's validation
	Deterministic Data Acquisition

	Data processing
	Edge inference of bearing status
	Introduction to Texas Instrument Deep Learning Library
	Limitation of the library

	Implementation on TensorFlow
	Introduction to TensorFlow
	Artificial Neural Network

	Federated Learning
	Reviewed architecture

	Validation of the proposed architecture
	Machine Fault Simulator data acquisition
	Presentation of the Machine Fault Simulator
	First data acquisition on the Machine Fault Simulator
	Final data acquisition on the Machine Fault Simulator
	Performance in the centralized learning context
	Performance in the federated learning context
	Performance of the peak finding approach

	NASA data-set
	Introduction of the Dataset
	A first analysis of the dataset and preprocessing
	Selection of the data in the dataset
	Down sampling
	Performance in the centralized learning context
	Performance in the federated learning context
	Performance of the peak finding approach
	Trend analysis approach

	Comparison of bearing defect detection methods
	Performance metrics
	Centralized Learning and Trend analysis
	Centralized Learning and Peak analysis
	Centralized Learning and Federated Learning
	Federated Learning and Trend analysis
	Federated Learning and Peak analysis
	Summary of the results across methods

	Contributions and limitations
	Contributions
	Technical contributions
	Interest of the developed method
	Potential field of application
	Novelty of the approach

	Limitations
	Data-rate limitations
	Defect identification limitation

	Answer to the Research question
	Answer to the first research question
	Answer to the second research question
	Answer to the third research question
	Answer to the main research question

	Future Work

	Conclusion
	Derivation of the Bearing Defect Frequencies
	Derivation
	Summary of the bearing defect frequencies

	Machine Fault Simulator
	Imbalance loader installed
	Components of the Machine Fault Simulator

	Centralized learning on Machine Fault Simulator Dataset
	Model 0
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5

	Federated Learning on Machine Fault Simulator Dataset
	Influence of the total number of client
	Influence of the number of retrained client per round

	Kurtosis evolution over bearing life for NASA Dataset
	Kurtosis evolution over time for the 3 bearing run to failure test of NASADataset
	Kurtosis evolution over time for the 3 bearing run to failure test of NASADataset
	Kurtosis evolution over time for the 3 bearing run to failure test of NASADataset

	Centralized learning on NASA Dataset
	Model 0
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5

	References

