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SUMMARY

In this dissertation we study several non-convex and stochastic optimization prob-

lems. The common theme is the use of integer programming techniques including valid

inequalities and reformulation to solve these problems.

We first study a strategic planning model in which the activities to be planned, such as

production and distribution in a supply network, require technology to be installed before

they can be performed. The technology improves over time, so that a decision-maker has

incentive to delay starting an activity to take advantage of better technology and lower

operational costs. The model captures the fundamental trade-off between delaying the

start-time of an activity and the need for some activities to be performed now. Models of

this type are used in the oil industry to plan the development of oil fields. This problem is

naturally formulated as a mixed-integer program with a bilinear objective. We develop a

series of progressively more compact mixed-integer linear formulations, along with classes of

valid inequalities that make the formulations strong. We also present a specialized branch-

and-cut algorithm to solve an extremely compact concave formulation. In addition, we

study a special case in which the activities are constrained to be nondecreasing over time, a

constraint that was present in the motivating application. Computational results indicate

that these formulations can be used to solve large-scale instances.

We next study methods for optimization with joint probabilistic constraints. A prob-

abilistic constraint arises from a model in which data in the constraints is random, and a

decision-maker wishes to obtain a solution which satisfies the random constraints with a

given high probability. One difficulty in solving such probabilistic programs is that evaluat-

ing feasibility requires multi-dimensional integration, and hence is difficult in general. We

propose to address this difficulty by solving approximation problems based on Monte Carlo

samples of the random data. We demonstrate that this scheme can be used to yield both

feasible solutions and lower bounds. We conduct preliminary computational tests of the

xii



sampling approach which indicate that it can be used to yield good feasible solutions and

reasonable bounds on their quality. We next discuss how the non-convex sample approxima-

tion problem can be solved when only the right-hand side is random by using mixed-integer

programming (MIP). We give a MIP formulation and study the relaxation corresponding

to a single row of the probabilistic constraint. We obtain two strengthened formulations.

As a byproduct of this analysis, we obtain new results for the previously studied mixing

set, subject to an additional knapsack inequality. We present computational results which

indicate that by using our strengthened formulations, instances that are considerably larger

than have been considered before can be solved to optimality.

Finally, we study stochastic programming problems under stochastic dominance con-

straints. A stochastic dominance constraint states that a random outcome which depends

on the decision variables should stochastically dominate a given reference random variable.

Such constraints allow for flexible management of risk in an optimization framework. We

present new formulations for both first and second order stochastic dominance which are

significantly more compact than existing formulations. In addition, for the non-convex first

order constraint, we present a specialized branching scheme and heuristics that can be used

with the new formulation. We conduct computational tests which illustrate the benefits of

the new formulations.
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CHAPTER I

INTRODUCTION

1.1 Background

In this dissertation, we study several optimization problems in which the feasible region or

the objective is not convex. A classical example of such a non-convex optimization problem

is a mixed-integer programming (MIP) problem given by

min cx + hy (1)

s.t. Ax + Gy ≥ b

x ∈ Rn
+, y ∈ Zp

+

where Rn
+ is the set of nonnegative real n-dimensional vectors, and Zp

+ is the set of non-

negative integral p-dimensional vectors. The vectors x and y represent the decisions to be

made. An instance of problem (1) is specified by the data (c, h,A,G, b) where c ∈ Rn and

h ∈ Rp specify the costs of the decisions, A is an m by n matrix, G is an m by p matrix

and b ∈ Rm. The data (A,G, b) specify a set of linear inequalities the decision vectors must

satisfy. The set S = {x ∈ Rn
+, y ∈ Zp

+ : Ax + Gy ≥ b} is called the feasible region of (1).

The feasible region of (1) is not convex because of the constraint that y take on only integer

values.

A successful technique for solving non-convex optimization problems, and MIP problems

in particular, is the branch-and-cut method, which we will briefly describe. See, for example,

[50] for a much more extensive discussion of branch-and-cut and other algorithms for solving

MIP problems.

We first discuss the branch-and-bound method and then discuss how the bounds used

in this method can be improved using valid inequalities and reformulation. The branch-

and-cut method is basically a branch-and-bound method in which the bounds are improved

using valid inequalities.
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1.1.1 Branch-and-Bound

Branch-and-bound is an enumeration scheme in which we search for the optimal solution

by progressively dividing the feasible region into smaller subregions. In doing so, a search

tree, also known as a branch-and-bound tree, is constructed where each node in the tree

corresponds to a particular subregion of the feasible region. The idea is to avoid complete

enumeration by calculating a lower bound on the value of the best possible solution in the

subregion at each node. If this lower bound exceeds the objective value of a solution we

have already found, then we do not need to explore this subregion any further. Algorithm

1 is a generic version of the branch-and-bound method to solve a general problem of the

form

z∗ = min{f(x) : x ∈ S}.

The algorithm maintains an upper bound ub on the optimal value z∗ and a set of nodes

Algorithm 1: Generic Branch-and-bound Algorithm

Set Nodes = {(S,−∞)}, ub = +∞;1

while Nodes 6= ∅ do2

Choose (F, lb) ∈ Nodes;3

Let hub = UpperBound(F);4

if hub < ub then5

Set ub = hub;6

Set Nodes = {(F ′, lb′) ∈ Nodes : lb
′ < ub};7

end8

Let clb = LowerBound(F);9

if clb < ub then10

Choose F1 and F2 such that F = F1 ∪ F2;11

Set Nodes = Nodes ∪ {(F1, clb), (F2, clb)};12

end13

end14

Nodes where each node is specified by a subset F of the feasible region S and a lower bound

lb which satisfies f(x) ≥ lb for all x ∈ F . An iteration of the algorithm begins by selecting a

node (F, lb) in Nodes. In line 4 a function UpperBound(F ) is called, which attempts to find

an upper bound on the minimum cost of any solution x ∈ F . Typically an upper bound

is obtained by running a heuristic which attempts to find low cost feasible solution x ∈ F .

If the heuristic succeeds, UpperBound(F ) returns the objective cost of this solution f(x),

2



otherwise it returns +∞. If a feasible solution with objective value less than the current

upper bound ub is found, the upper bound is updated in line 6, and the nodes in Nodes

which have a lower bound as large as the new upper bound are discarded. Next, the function

LowerBound(F ) is called, which returns a lower bound clb which satisfies clb ≤ f(x) for all

x ∈ F . The function LowerBound(F ) may also detect that F = ∅, in which case it returns

+∞. If clb ≥ ub, there can be no solution in F which has an objective better than the

current best value we have, and hence we do not explore this subregion further. Otherwise,

in lines 11 and 12 the algorithm divides the region F into two subregions and adds these

to Nodes. The algorithm terminates when there are no nodes left in Nodes, after which it

reports that ub is the optimal value if it is finite, otherwise it reports that S = ∅.

To apply the generic branch-and-bound algorithm to solve a specific problem, one must

specify:

• Node selection: how to choose a node in Nodes (line 3),

• Upper bound: how to implement the function UpperBound(F ) (line 4),

• Lower bound: how to implement the function LowerBound(F ) (line 9), and

• Branching: how to divide a feasible subregion F (line 11).

As an example, we discuss typical options for each of these tasks for branch-and-bound

applied to MIP problems (1). Two common node selection strategies are depth-first and

best bound. In the depth-first strategy, one of the two most recently created nodes is selected.

In the best bound strategy, a node which has the least lower bound is selected.

In mixed-integer programming, the lower and upper bound functions can be accom-

plished together by solving the linear programming (LP) relaxation

min cx + hy (2)

s.t. Ax + Gy ≥ b

x ∈ Rn
+, y ∈ R

p
+

where the constraint y ∈ Zp
+ has been relaxed to y ∈ R

p
+. Because any solution feasible to

(1) is also feasible to (2), the optimal solution to (2) yields a lower bound to the optimal

3



solution of (1). Solving the LP relaxation can also serve as an attempt to find an upper

bound, since if the optimal solution (x∗, y∗) happens to have y∗ ∈ Zp
+, then (x∗, y∗) is a

feasible solution to (1). If y∗ /∈ Zp
+, then the upper bound function failed and reports +∞

as the upper bound. In mixed-integer programming, the feasible subregion F at a node

is typically specified by a set of additional linear inequalities, say By ≥ d, applied to the

integer variables. That is, F = {x ∈ Rn
+, y ∈ Zp

+ : Ax + Gy ≥ b,By ≥ d}. Thus, the lower

bound for a node with feasible subregion F specified in this manner can be calculated by

solving the node LP relaxation

min cx + hy

s.t. Ax + Gy ≥ b

By ≥ d

x ∈ Rn
+, y ∈ R

p
+.

Branching in mixed-integer programming is typically done by specifying constraints on

the integer variables. Most often, the constraints added are just bounds on the integer

variables. A desirable property of a branching strategy is that the optimal solution (x∗, y∗)

for the relaxation at the current node should not be feasible to the relaxations of either of

the subdivisions created from this node. This can be accomplished by branching on integer

variables by selecting a variable, say yj, which has a fractional value y∗j = f in the optimal

solution of the current relaxation. Then, the current feasible subregion F is divided into

F = F1 ∪ F2 with F1 = {(x, y) ∈ F : yj ≤ ⌊f⌋} and F2 = {(x, y) ∈ F : yj ≥ ⌊f⌋ + 1}

where ⌊f⌋ = max{z ∈ Z : z ≤ f}. Note that the relation F = F1 ∪ F2 is valid because yj

is integer for all (x, y) ∈ F ⊆ S. Also, in this case it happens that F1 ∩ F2 = ∅, which is a

nice property since it implies solutions in F will not be considered in multiple subregions,

although it is not a necessary property.

The computational efficiency of a branch-and-bound algorithm is determined by how

many iterations are performed (i.e., how many nodes are explored), and how long each

iteration takes. The most time-consuming step in an iteration is typically the calculation

of the lower bound. In mixed-integer programming this is usually done by solving the

4



LP relaxation, and hence the size of the formulation (number of rows and variables) will

have an impact on how long each iteration takes. Assuming the lower bound can be cal-

culated “sufficiently fast,” the computational success of a branch-and-bound algorithm will

be determined by how many nodes must be explored. In particular, it is crucial that the

computed lower bounds be “tight,” that is, they should be close to the true optimal value

so that lower bound comparisons in lines 7 and 10 of the branch-and-bound algorithm will

frequently allow subregions to be excluded from the search.

1.1.2 Improving the Lower Bounds

Because of the importance of the quality of the lower bounds used in a branch-and-bound

algorithm, we now discuss two methods for improving the lower bounds for the case of

mixed-integer programming: valid inequalities and reformulation.

Valid inequalities

An inequality αy ≥ α0, or (α,α0), is called a valid inequality for a set S if it is satisfied

by all points in S. By definition, if a valid inequality is added to the linear programming

relaxation for a feasible region S, the LP will still be a relaxation of S. Since adding

constraints to a linear program may increase the optimal objective, the lower bound obtained

by the LP can be improved by adding valid inequalities. For example, suppose we have

solved the LP relaxation of a pure integer version of (1) (in which the continuous variables

x are not present), and obtain a solution y∗ which is not integer. Then, we can attempt

to find a valid inequality which the solution y∗ does not satisfy, and hence by adding

this inequality to the linear program we would “cut off” this solution. In this context, a

valid inequality is often called a cutting plane. We then re-solve the linear program with

this inequality added, and since the previous optimal solution is now infeasible, there is a

chance the objective value will increase, leading to an improved lower bound.

Given a collection F of valid inequalities for S, and a relaxation solution y∗, the problem

of checking whether there exists a valid inequality (α,α0) ∈ F which cuts off y∗ and finding

one if one exists is known as the separation problem. The separation problem should be

efficiently solvable in order to use valid inequalities from a class F to strengthen the lower

5



bounds from a linear programming relaxation.

The convex hull of a set S, denoted by conv(S), is defined to be the set of all points

which are convex combinations of points in S. That is, x ∈ conv(S) if and only if there

exists finitely many points x1, . . . , xk each in S and a vector λ ∈ Rk
+ with

∑k
i=1 λi = 1 such

that x =
∑k

i=1 λix
i. When S is the feasible region of a mixed-integer program, conv(S) is

a polyhedron. If we knew a set of valid inequalities which described this polyhedron, then

the mixed-integer program could be solved as a linear program. However, typically expo-

nentially many inequalities are required to describe conv(S) and so it would be necessary

to separate these inequalities only as needed.

Unfortunately, separating over the convex hull of a set S is as hard as optimizing over

the set S, and so it is not practical to solve hard optimization problems purely by adding

valid inequalities. However, we can hope to find classes of inequalities which we can separate

efficiently and which lead to improved lower bounds. A successful technique for generating

valid inequalities to strengthen the linear programming relaxation is to generate inequalities

based on a relatively simple substructure of the overall problem. A classic pioneering

example of this technique is the use of cutting planes obtained from single knapsack rows

of an integer program [19]. In this case, cutting planes are generated from constraints of

the form
p

∑

i=1

aiyi ≤ b

which appear in the integer programming formulation.

Another example of a relatively simple substructure, which is more closely related to

the work in this dissertation, is the union of finitely many sets, known as a disjunction.

For example, suppose in the case of mixed-integer programming that the feasible region

S = {x ∈ Rn
+, y ∈ Zp

+ : Ax + Gy ≥ b} includes a constraint of the form

∑

i∈I

yi = 1.

Let P = {x ∈ Rn
+, y ∈ R

p
+ : Ax + Gy ≥ b} be the feasible region of the linear programming
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relaxation of S. Then,

S =
⋃

i∈I

{(x, y) ∈ S : yi = 1} ⊆
⋃

i∈I

{(x, y) ∈ P : yi = 1}.

Hence, valid inequalities for the set D = ∪i∈I{(x, y) ∈ P : yi = 1} are also valid for

S. Furthermore, since |I| ≤ p, optimization over D can be done efficiently by separately

optimizing over |I| polyhedra. Thus, it is theoretically possible to separate over the set

conv(D) efficiently. In fact, it is possible to write an explicit linear program which solves

the separation problem over conv(D) [5]. This linear program is |I| times larger than the

original linear program, so separation with this approach may not be efficient when |I| is

fairly large. However, it may be possible to exploit problem specific structure to separate

over the inequalities which define conv(D) more efficiently, and this is an approach we

employ often in this dissertation.

Reformulation

Given an optimization problem

min{f(x) : x ∈ S} (3)

the problem

min{g(w) : w ∈ W} (4)

is a reformulation of (3) if for all x ∈ S there exists w ∈ W with g(w) ≤ f(x) and conversely,

for all w ∈ W there exists x ∈ S with f(x) ≤ g(w). Thus, if w∗ is an optimal solution

to (4), then there exists a solution x∗ feasible to (3) which satisfies f(x∗) ≤ g(w∗). In

fact, this solution must be optimal to (3) since for any x ∈ S there exists w ∈ W with

f(x) ≥ g(w) ≥ g(w∗) ≥ f(x∗). Thus, the reformulation (4) can be used to solve (3).

The motivation for reformulation is that the reformulated problem (4) may be more

amenable to solution by branch-and-cut. In particular, a reformulation may lead to a

relaxation which yields a better lower bound or can be solved more efficiently. For example,

in the second chapter of this dissertation we study a problem which is initially formulated

as a mixed-integer program with bilinear objective. If we relax the integrality restrictions
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in this formulation, we obtain a relaxation which is a non-convex bilinear program, and

hence is not efficiently solvable. However, we are able to reformulate this problem as a

mixed-integer program with linear objective, so that when the integrality restrictions are

relaxed, a linear programming relaxation is obtained. In many cases, a reformulation which

yields better relaxation lower bounds can be obtained by adding variables and constraints to

the original formulation. Such a reformulation is sometimes called an extended formulation.

A classical example of a reformulation of this type is the extended formulation for the

uncapacitated lot sizing problem [7, 25, 55]. In this case, there is a trade-off between

the possibly improved lower bound obtained from the reformulation relaxation and the

increased time to obtain the lower bound due to the increased formulation size. In the

example of the uncapacitated lot sizing problem with T periods, the extended formulation

has O(T 2) variables and constraints as opposed to O(T ) variables and constraints in the

original formulation. However, the linear relaxation of the extended formulation already

gives the convex hull of this formulation, whereas exponentially many valid inequalities are

required to define the convex hull of the original formulation.

1.2 Dissertation Overview

In the second chapter of this dissertation we study a problem which has a non-convex ob-

jective. This problem arises from a strategic planning model in which the activities to be

planned, such as production and distribution in a supply network, require technology to

be installed before they can be performed. The technology improves over time, so that a

decision-maker has incentive to delay starting an activity to take advantage of better tech-

nology and lower operational costs. The model captures the fundamental trade-off between

delaying the start-time of an activity and the need for some activities to be performed now.

Models of this type are used in the oil industry to plan the development of oil fields. This

problem is naturally formulated as a mixed-integer program with a bilinear objective. We

develop a series of progressively more compact mixed-integer linear formulations, along with

classes of valid inequalities that make the formulations strong. Our approach in studying
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these formulations is to consider the relaxation obtained from a single activity in the prob-

lem. The inequalities we derive for the different formulations are sufficient to define the

convex hull of the single activity relaxation. We also present a specialized branch-and-cut

algorithm to solve an extremely compact concave formulation. In addition, we study a spe-

cial case in which the activities are constrained to be nondecreasing over time, a constraint

that was present in the motivating application. We show how the formulations we have

developed can be strengthened using this additional constraint, and in particular, we find

that for the compact concave formulation a very strong formulation is obtained with the

addition of just one valid inequality for each activity. Computational results indicate that

these formulations can be used to solve large-scale instances, whereas a straightforward

linearization of the mixed-integer bilinear formulation fails to solve even small instances. In

addition, we find that due to its compactness, the concave formulation can be used to gener-

ate good feasible solutions and reasonable optimality guarantees for problems which are so

large that just solving the linear programming relaxation of the mixed-integer programming

formulations takes prohibitively long.

In the third chapter of the dissertation we study optimization problems with joint prob-

abilistic constraints. A probabilistic constraint arises from a model in which data in the

constraints is random, and a decision-maker wishes to obtain a solution which satisfies the

random constraints with a specified (usually high) probability. Except in a few special cases,

probabilistic constraints define a non-convex feasible region. In addition, solving problems

with probabilistic constraints is difficult because checking feasibility requires evaluating a

multi-dimensional integral. We propose to address this latter difficulty by solving approxi-

mation problems based on Monte Carlo samples of the random data. We demonstrate that

the sample approximation problems we propose can be used to yield both feasible solutions

and lower bounds. This is in contrast to recent approximations of probabilistic constraints

[17, 51, 52] which yield feasible solutions, but no lower bounds, so that the conservatism

of these solutions cannot be evaluated. The disadvantage of the sample approximation we

propose is that the feasible region is non-convex, even if the deterministic feasible region is

convex and the constraints which are enforced with high probability are linear. We conduct
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preliminary computational tests of the sampling approach which indicate that the sample

approximation problem can be used to yield good feasible solutions and reasonable bounds

on the quality of these solutions.

The sample approximation scheme we have studied can be applied to a very wide range

of problems with probabilistic constraints. However, the use of this scheme may be limited

due to the difficulty of solving the non-convex approximation problem. We therefore discuss

how the sample approximation problem can be solved in an important special case by using

mixed-integer programming. In particular, we consider a probabilistically constrained pro-

gram (PCP) in which only the right-hand side is random. We give a mixed-integer program-

ming formulation for the sample approximation problem of PCP and study the relaxation

corresponding to a single row of the probabilistic constraint. We use results on a previously

studied mixed-integer set, known as a mixing set [3, 32, 48], to obtain two strengthened

formulations. The first is strengthened with an exponential class of valid inequalities and

the second is an extended formulation which is as strong as the first augmented with all

these inequalities. As a byproduct of our analysis, we obtain new valid inequalities for

both formulations of the mixing set subject to an additional knapsack inequality. For the

extended formulation, the new class of inequalities we introduce characterizes the convex

hull of the single row probabilistic constraint when all realizations of the right-hand side are

equally likely, in which case the knapsack inequality simplifies to a cardinality constraint.

We present computational results which indicate that by using our strengthened formula-

tions, instances of probabilistically constrained linear programs that are considerably larger

than have been considered before can be solved to optimality. In particular, this approach

allows us to solve instances with a large number of possible realizations, so that the sample

approximation problem for this special case can be solved even with a large sample size.

In the fourth and final chapter of this dissertation, we introduce new formulations for

stochastic programming under stochastic dominance constraints. A stochastic dominance

constraint states that a random outcome which depends on our decisions should stochas-

tically dominate a given reference random variable. Such constraints allow for flexible

management of risk in an optimization framework. The first type of stochastic dominance
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constraint we consider is second order stochastic dominance, which defines a convex feasible

region. For this case, we present a linear programming formulation which has the advantage

that it has O(N) rows, as opposed to O(N2) in an existing formulation [22], where N is the

number of possible outcomes of the random inputs. Computational results indicate that,

when using a commercial linear programming solver, large instances are solved two orders

of magnitude faster using this new formulation than using the existing formulation.

The second type of stochastic dominance constraint we consider is first order stochas-

tic dominance, which defines a non-convex feasible region. We present a mixed-integer

programming formulation for first order stochastic dominance which has O(N) rows, as

opposed to O(N2) rows in an existing formulation [53, 54]. In addition, the relaxation of

this formulation is a formulation for second order dominance, which has been shown to be

a tight relaxation of first order dominance constraints [54]. We also develop a specialized

branching strategy and specialized heuristics for use with the new formulation. Compu-

tational results indicate that this formulation can be used to find optimal and provably

near-optimal solutions for large instances.
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CHAPTER II

STRATEGIC PLANNING WITH START-TIME DEPENDENT

VARIABLE COSTS

2.1 Introduction

We study a multiple period strategic planning model in which the activities to be planned,

such as production at supply points, have technology dependent costs. Specifically, we

assume technology must be installed before an activity can be performed, and that once

installed it cannot be changed for the remainder of the planning horizon. In general, tech-

nology improves over time so that a decision maker has incentive to delay installation to

benefit from reduced operating costs. On the other hand, immediate requirements such as

customer demands may require some activity to be performed now. In this chapter of the

dissertation we present a planning model that captures this basic trade-off.

This research was motivated by a strategic planning model in the upstream oil and

gas industry in which a firm is planning the long-term development of oil fields and trans-

portation modes between the fields and downstream processing facilities. This development

involves the installation of facilities that cost billions of dollars. A generic version of this

application consists of a simple production and distribution planning problem with con-

straints

∑

j∈J

vijt − xit = 0 ∀i ∈ I, t ∈ T (5)

∑

i∈I

vijt = Djt ∀j ∈ J, t ∈ T (6)

0 ≤ xit ≤ Mi ∀i ∈ I, t ∈ T (7)

where T = {1, . . . , T} is an index set of time periods, T is the planning horizon, I is an index

set of production nodes with per-period capacity Mi for all i ∈ I and J is an index set of

demand nodes with demands Djt for each j ∈ J and t ∈ T . The variables xit represent the

production quantities at production node i in time period t and the variables vijt represent
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the distribution quantities from i to j in period t. In the motivating application, the time

periods are years and the time horizon is twenty to thirty years, reflecting the long-term

planning of very expensive investments. If the production and distribution costs are linear,

the problem of minimizing costs to meet demand decomposes into T simple transportation

problems. However, in this application the production and distribution costs are start-time

dependent. That is, before we can produce at a node (or send flow on an arc), we must first

install technology at that node, and the technology installed will determine the per unit

cost of production at that node over the entire planning horizon. In addition, the period

in which we install technology will determine the fixed cost for the installation, if any.

Therefore, our planning problem becomes a question of if and when to install technology

at each supply node and distribution arc, and given these decisions how much to produce

at each node and distribute along each arc to minimize the total cost of meeting demand

over the planning horizon.

A natural formulation of the problem introduces binary variables to model the decision

of which period technology will be installed (which we refer to as the start period), and

leads to a mixed-integer program with bilinear objective. We present a straightforward

compact linearization of this formulation, which yields a mixed-integer linear formulation.

However, this linearization yields poor lower bounds, and hence is not computationally

useful. Another approach, due to Adams and Sherali [1], that has been used in solving

general mixed-integer bilinear programs is to create a linearization of the formulation by

defining new variables which represent all product terms in the objective. This approach

can yield linearizations which yield very good lower bounds. Although the resulting linear

program may be intractably large, they develop specialized Lagrangian relaxation methods

to generate strong lower bounds without actually solving the full linear program. We follow

a similar approach in attempting to generate strong linear formulations for our problem,

but we exploit problem specific structure to generate strong formulations that are relatively

small. In particular, we focus on the substructure arising from a single activity problem,

and develop strong formulations for it.

The remainder of this chapter is organized as follows. We begin by reviewing some
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related literature in Section 2.2. We present the problem definition in Section 2.3 and

present our study of integer linear formulations for this problem in Section 2.4. This section

may be considered a case study in formulation development for a discrete problem initially

defined with a nonlinear objective. We begin with an extended formulation in Section

2.4.1, which is theoretically interesting because it is integral in the single activity case.

However, we are interested in solving problems with a large number of activities and a

long planning horizon, so that this formulation will be too large to use for solving large

instances. Thus, in Section 2.4.2 we introduce a compact linearization of the mixed-integer

bilinear program and show how it can be strengthened using ideas from the classical lot

sizing problem. In Section 2.4.3 we derive an even more compact formulation in which no

linearizing variables are introduced. The only variables are the activity levels and binary

variables capturing the decision of which period will be the start period. In Section 2.5 we

show how a concave minimization formulation of the problem can be solved in a branch-

and-cut framework without adding even the binary variables, leading to a formulation with

very small linear programming relaxations. We show in Section 2.6 how the formulations

we have developed can be strengthened when an additional constraint that the activities

be nondecreasing over time is present. We present computational results in Section 2.7

comparing the different formulations and testing the effectiveness of the valid inequalities

developed for them. Finally, we make some concluding remarks and discuss directions for

future research in Section 2.8.

2.2 Related Literature

The production and distribution planning problem described in the introduction can be

interpreted as a dynamic facility location problem, where installing technology corresponds

to opening a facility. In the dynamic facility location problem, we must select which facilities

to open and when so as to meet demand over the horizon at minimum cost. Typically in

these models, (see, e.g.,[66]), there is a fixed cost to open a facility, which depends on the

period in which the facility is opened, and once opened, production at a facility incurs a

variable cost which depends on the period in which production occurs. This is in contrast
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to our model which assumes the variable cost depends on the period in which the facility is

opened. This is indeed an added complication since, in the special case when there are no

fixed costs, the standard dynamic facility location problem becomes a simple transportation

problem, whereas our model remains NP -hard even with T = 2 (see Section 2.3). A notable

exception is the model initially presented in [68] in which variable costs depend on the period

in which the facility opens as well as on the period in which production occurs. This model

is essentially an uncapacitated version of the extended formulation we present in Section

2.4.1. However, the authors then immediately assume the variable costs will not depend on

the period in which the facility opens, and obtain a more compact formulation for which

they develop a dual ascent method to solve. We are interested in solving problems in which

the number of activities to be planned (or potential facilities to open) is large, so that the

extended formulation is too large to be of practical use. Thus, our focus is to develop

compact formulations which are still strong. We remark here that for the formulation we

develop in Section 2.4.2 we will assume the variable costs depend only on the period in

which the technology is installed and not on the period in which the production occurs,

whereas the subsequent formulations can handle joint dependence of the variable costs on

the start period and on the period in which activity occurs.

Another related area of work is the capacity expansion literature [46]. In [58], Ra-

jagopalan presents a capacity expansion and replacement model which allows fixed and

variable costs to depend on the period in which capacity is installed. The key assumption

which enables the development of a strong formulation for this model is that capacity can

be installed in small increments relative to demand, so that it is reasonable to assume a

continuous amount of capacity can be installed to exactly satisfy demand. Furthermore,

the model in [58] allows expansion to occur repeatedly, and allows older technology to be

retired and replaced with newer technology. In contrast, our model is more restrictive;

capacity can be installed only once, and is a discrete decision of whether to install or not.

Then, given that capacity has been installed, there is a secondary continuous decision of

how much to use. The model of [58] would be more appropriate if capacity represents,

for example, computers or even trucks in a fleet; our model would be more appropriate if
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capacity represents, for example, building a power plant or installing a pipeline. Another

difference is that the model in [58] considers capacity expansion of only one type of capacity,

or in our context, a single activity. Of course, with multiple activities, the formulation of

[58] can still be used by combining the single activity formulations for each activity. How-

ever, in terms of methodology, [58] introduces a disaggregate, or extended formulation, of

the model, which is similar in spirit to the extended formulation we will present in Section

2.4.1. Because we are interested in solving problems with a large number of activities, we

seek more compact formulations and use the extended formulation only for theoretical pur-

poses, whereas [58] use the extended formulation for computation. The paper [60] considers

a capacity expansion problem in which the capacity expansion decision is assumed to be

discrete as in our model, but it only captures the fixed costs of the capacity; the variable

costs are assumed to be insignificant. This is in contrast to our model, in which the variable

costs are significant. Other works in this area include [39], [44] and [59], all of which allow

installation of continuous amounts of capacity. The paper [44] considers a multiple product

model and focuses on the trade-off between installing capacity dedicated for each product

type and flexible capacity capable of producing all products. The paper [59] is notable in

that it includes a model in which technological improvements can be random, although it

is not clear that it could be solved for reasonable sized problems.

2.3 Problem Definition and Complexity

We consider a multiple period planning model with time horizon T periods, and let T =

{1, . . . , T}. We have a set A of unique activities to plan, with |A|= m. For each activity

a ∈ A, we let xat be a decision variable representing the activity level in period t ∈ T . For

each activity, the vector xa ∈ RT of activity levels over the horizon is constrained to be in

a set Xa ⊆ [0,Ma]
T where Ma > 0 represents an upper bound on the activity which, for

simplicity, is common over all periods.

The activities to be planned are linked by additional variables and constraints which

represent system demands that motivate activities to be performed. The linking variables

are given by uj for j ∈ N for some index set N with |N | = n. The linking constraints are
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specified by the set C ⊆ Rn+Tm so that any feasible solution (u, x) must satisfy (u, x) ∈ C.

We assume for convenience that C is a polyhedron, but the approach can also be applied if

C is described by a polyhedron subject to additional constraints such as integrality on some

of the variables, so that it is natural to optimize over C using a branch-and-cut framework.

In the motivating application the activities are production and distribution in a network

and C is given by the network flow balance constraints and the requirement that demands

must be met.

The primary complication, and the motivation for the present work, is the non-convex

objective. Before an activity can be performed, an enabling technology must be installed.

We refer to the period in which the technology is installed as the start period. Activity

levels can only be positive in periods on or after the start period. If s ∈ T is the start

period, then a fixed charge of fas ≥ 0 is incurred, and the variable cost of production in

period t ≥ s is cast ≥ 0. If an activity is never performed, then we take the start period,

by definition, to be period T + 1. For each activity a we introduce a vector ya ∈ {0, 1}T of

binary decision variables where we have yat = 1 if and only if period t is the start period of

activity a. Since each activity can only be started once, each binary vector must satisfy

∑

t∈T

yat ≤ 1. (8)

Define Y =
{

y ∈ {0, 1}T : (8)
}

and Y R =
{

y ∈ RT
+ : (8)

}

.

We state our strategic planning problem as the mixed-integer bilinear program

(SP) min
∑

a∈A

T
∑

s=1

(

fas +

T
∑

t=s

castxat

)

yas +
∑

j∈N

djuj

s.t. xat −
t

∑

s=1

Mayas ≤ 0 ∀a ∈ A, t ∈ T (9)

(u, x) ∈ C, xa ∈ Xa, ya ∈ Y ∀a ∈ A.

The first term in the objective is bilinear, and captures the fixed and variable costs over the

horizon for each activity. For an activity a, if period s is the start period, then yas = 1 and

the objective records the cost fas +
∑T

t=s castxat, correctly capturing the fixed and variable

costs over the entire horizon for this activity. In addition to the costs of the activities, the
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objective also includes a linear cost term
∑

j∈N djuj for the linking variables, where d ∈ Rn.

The constraints (9) ensure that for each activity there is no positive activity before its start

period.

Our approach to developing formulations for this problem is to study the substructure

corresponding to a single fixed activity a. Therefore, for the development of our theoretical

results, we will suppress the index a. Thus, the substructure of interest which we study is

simply

(MIBL) min

T
∑

s=1

(

fs +

T
∑

t=s

cstxt

)

ys (10)

s.t. xt −
t

∑

s=1

Mys ≤ 0 ∀t ∈ T (11)

x ∈ X, y ∈ Y.

Of course, the optimization problem MIBL itself is trivial since it is optimal to perform no

activity at a cost of zero. However, by developing strong formulations for MIBL, and for

each activity including this in the formulation for SP, we achieve a strong formulation for

SP, in which the additional constraints require activity to be performed.

Complexity

We now show that with start-time dependent variable costs, the motivating application,

presented in the introduction, is NP -hard. In the presence of fixed costs, the NP -hard

uncapacitated facility location problem is a special case of the motivating application with

T = 1, showing already that this problem is NP -hard. More interesting is that with start-

time dependent variable costs, the problem is NP -hard even when there are no fixed costs

and T = 2. As stated in the introduction, the application allows both the production and

distribution costs to be start-time dependent. For the complexity proof, it is sufficient to

allow only the production costs to be start-time dependent, the production quantities to

be uncapacitated, and the variable distribution costs to be time-independent. In addition,

the general problem allows variable costs to depend on both the start-time and the period

in which the activity is performed. We assume here that the variable costs depend only on
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the start-time, that is, we take cist = c̄is for all t = s, . . . , T . We therefore state this special

case of the motivating application as

(DUFL-S) min
∑

i∈I

∑

s∈T

(

c̄is

T
∑

t=s

xit + fis

)

yis +
∑

i∈I

∑

j∈J

∑

t∈T

gijvijt

s.t. xit − M
t

∑

s=1

yis ≤ 0 ∀i ∈ I, t ∈ T

(5) − (7), v ≥ 0, yi ∈ Y ∀i ∈ I

where M = maxt∈T

{

∑

j∈J Djt

}

and all data are nonnegative and rational.

Theorem 1. DUFL-S is NP -hard even when all fixed costs are zero and T = 2.

Proof. We reduce the uncapacitated facility location problem

(UFL) min
S⊆Ĩ







∑

i∈S

h̃i +
∑

j∈J̃

min
i∈S

g̃ij







to DUFL-S, where Ĩ is an index set of possible facility locations, J̃ is an index set of demand

sites, h̃i is the cost to open facility i and g̃ij is the cost to serve customer j from facility i.

Given an instance of UFL we construct an instance of DUFL-S which answers the

question: is there a feasible solution to UFL with cost at most K? We let I = Ĩ, J = J̃ ∪ Ĩ

so that our set of supply nodes are the same, but in DUFL-S, our demand nodes include

both the supply and demand nodes from UFL. We set the data in DUFL-S as

gij = g̃ij ∀i ∈ Ĩ , j ∈ J̃ , gii = 0 ∀i ∈ Ĩ

gii′ = 2 ∀i, i′ ∈ Ĩ s.t. i 6= i′

Dj1 = 1,Dj2 = 0 ∀j ∈ J̃ , Di1 = 0,Di2 = h̃i ∀i ∈ Ĩ

c̄i1 = 1, c̄i2 = 0 ∀i ∈ Ĩ , fi1 = 0, fi2 = 0 ∀i ∈ Ĩ .

With this data, the objective in DUFL-S becomes

∑

i∈Ĩ

yi1

2
∑

t=1

xit +
2

∑

t=1

∑

i∈Ĩ

∑

j∈J̃

g̃ijvijt + 2
2

∑

t=1

∑

i∈Ĩ

∑

j∈Ĩ\{i}

vijt.

We claim there exists a solution to UFL with cost at most K if and only if there exists a

solution to DUFL-S with cost at most K + |J̃ |. Thus, let S ⊆ Ĩ be such that

∑

i∈S

h̃i +
∑

j∈J̃

min
i∈S

g̃ij ≤ K.
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We construct a solution to DUFL-S by setting yi1 = 1 if and only if i ∈ S then setting xi1

and vij1 to meet first period demand from the nodes in S at minimum cost. This leads to

a first period cost in DUFL-S of |J̃ | +
∑

j∈J̃ mini∈S g̃ij . In the second period, we meet the

demand at each demand node i ∈ Ĩ by producing at supply node i ∈ Ĩ and shipping to

demand node i. Because yi1 = 1 only if i ∈ S, the total second period cost is then
∑

i∈S h̃i.

Therefore, the total cost of this solution does not exceed

|J̃ | +
∑

j∈J̃

min
i∈S

g̃ij +
∑

i∈S

h̃i ≤ K + |J̃ |.

Now, suppose a solution (x, y, v) to DUFL-S has cost at most K+ |J̃ |. Let S = {i : yi1 = 1}.

Then,
∑

i∈I

yi1

2
∑

t=1

xit = |J̃ | +
∑

i∈S

h̃i

and

2
∑

t=1

∑

i∈Ĩ

∑

j∈J̃

g̃ijvijt + 2
2

∑

t=1

∑

i∈Ĩ

∑

j∈Ĩ\i

vijt ≥
∑

i∈Ĩ

∑

j∈J̃

g̃ijvij1 ≥
∑

j∈J̃

min
i∈S

g̃ij

and hence
∑

i∈S h̃i +
∑

j∈J̃ mini∈S g̃ij ≤ K completing the proof.

2.4 Mixed-Integer Linear Formulations

In this section we present strong mixed-integer linear formulations for MIBL. In doing so,

we pay close attention to the size of the formulations developed. In particular, we are

interested in solving (at least approximately) problems with a large number of activities

and a long planning horizon, so that formulations which involve a large number of auxiliary

variables may be undesirable.

In this section, we assume X = [0,M ]T . For more general X ⊆ [0,M ]T , the formulations

developed in this section remain valid, as long as we also include the condition that x ∈ X.

2.4.1 Extended Formulation

We begin with an extended formulation, which introduces O(T 2) auxiliary variables, directly

contradicting our stated goal of keeping the formulations small. However, this formulation

has the nice property that it is integral for the single activity problem, and this property is

useful for proving tightness of the more compact formulations we present in the sequel.
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We introduce auxiliary variables wst for 1 ≤ s ≤ t ≤ T , to represent the amount of

the activity that is charged the variable costs associated with a start-period s, but is used

in period t ≥ s. This is analogous to the extended formulation for the lot sizing problem

[6, 25, 55, 50], in which we can interpret wst as the amount that is produced in period s to

meet demand in period t. With these additional variables, MIBL is reformulated as

min

T
∑

s=1

T
∑

t=s

cstwst +

T
∑

s=1

fsys

s.t.

t
∑

s=1

wst − xt ≥ 0 ∀t ∈ T (12)

wst − Mys ≤ 0 ∀1 ≤ s ≤ t ≤ T (13)

w ≥ 0, x ≥ 0, y ∈ Y.

We refer to this formulation as EF.

We now study the tightness of this formulation. Let

FE =
{

(x, y,w) ∈ [0,M ]T × Y × R
T (T+1)/2
+ : (12) − (13)

}

represent the feasible region of the extended formulation, and let PE represent the polytope

obtained by dropping the integrality restriction on the binary variables in FE . For a set F ,

let conv(F ) represent the convex hull of F . Analogous to the similar result for the extended

formulation of the standard lot sizing problem [6, 50], we have

Theorem 2. PE = conv(FE).

Proof. We prove the equivalent result that the polytope PE has y integer in all extreme

points. Let PE
1 be the polytope given by PE with M = 1. We will show that PE

1 is

an integral polytope. The result then follows since (Mx, y,Mw) ∈ PE if and only if

(x, y,w) ∈ PE
1 , so that if y is integral in all extreme points of PE

1 then it is integral in

all extreme points of PE . We claim that the system defining PE
1 is totally dual integral

(see, e.g., [50] p. 537). To prove this, consider the linear programming relaxation of EF

having M = 1 and arbitrary objective given by

max

T
∑

t=1

c̃txt +

T
∑

s=1

T
∑

t=s

d̃stwst +

T
∑

t=1

f̃tyt
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where the coefficients (c̃, f̃ , d̃) ∈ Z2T+T (T+1)/2 are integer. The dual of this linear program

is

min π0 s.t. π0 −
T

∑

t=s

σst ≥ f̃s ∀s ∈ T

σst − γt ≥ d̃st ∀1 ≤ s ≤ t ≤ T

γt ≥ c̃t ∀t ∈ T

σ ≥ 0, γ ≥ 0, π0 ≥ 0.

It is simple to see that the optimal dual solution is

π0 = max
s∈T

{f̃s +
T

∑

t=s

σst}

σst = (d̃st + γt)
+ ∀1 ≤ s ≤ t ≤ T

γt = (c̃t)
+ ∀t ∈ T

where we use the notation (·)+ = max {·, 0}. Thus, the dual solution is integral and so the

system defining the primal is totally dual integral, and hence PE
1 is an integral polytope.

We remark that if M is integral, the arguments in the above proof can be used to

establish that the extreme points of PE have x and w integer as well as y.

2.4.2 Linearizing the Bilinear Formulation

In this section, we assume the variable costs depend only on the start-time, that is we assume

cst = c̄s for all t = s, . . . , T . This is an interesting special case because it is already NP -

hard, even without fixed costs. In addition, this assumption was satisfied in the application

under consideration. Under this assumption, we can rewrite the objective of the MIBL

formulation as
T

∑

s=1

(

fs + c̄s

T
∑

t=s

xt

)

ys (14)

A natural way to deal with the bilinear objective term appearing in (14) in a compact way

is to introduce linearization variables zs to capture the bilinear terms ys
∑T

t=s xt for each

s ∈ T . That is, zs represents the amount of activity that is charged at the variable cost of
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period s, c̄s. Then, we obtain the mixed-integer linear formulation

min
∑

s∈T

fsys +
∑

s∈T

c̄szs

s.t. zs −
T

∑

t=s

xt + (1 − ys)(T−s+1)M ≥ 0 ∀s ∈ T (15)

z ≥ 0, x ≥ 0, y ∈ Y, and (11)

which we refer to as the weak linearization (WL) formulation. If period s is the start

period, then ys = 1 and constraint (15) ensures that zs ≥
∑T

t=s xt so the variable cost c̄s is

charged on the activity over the entire horizon. On the other hand, if the activity does not

begin in period s, ys = 0 so that (15) is not binding, and because we are minimizing we

will have zs = 0, so that none of the activity is charged at the variable cost of period s, as

desired. Although this yields a correct formulation, we will see in the computational results,

Section 2.7, that the bounds from the linear programming relaxation of this formulation

are extremely weak.

2.4.2.1 Strengthening Using Ideas from Lot Sizing

The main problem with the WL formulation is the presence of the weak constraints (15).

Indeed, when the binary variables are fractional, it is possible to have positive activity levels,

and yet have zs = 0 for all s, so that we pay no variable costs for the activity we perform.

Fortunately, it turns out that constraints (15) can be eliminated by using an idea from lot

sizing. Note that we can interpret zs as an economic amount that is paid for in period s

which can be used by the physical activities xt in any period t ≥ s. With this interpretation,

our formulation appears similar to the lot sizing problem, in which we have to produce to

meet demands over time [7, 50]. Using this analogy, we can add the constraints,

t
∑

s=1

zs ≥
t

∑

s=1

xs ∀t ∈ T (16)

which state that the cumulative amount we pay for up to each time period t must be at

least as much as the physical activity levels up to period t. Formally, we can argue validity
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of (16) by observing that

t
∑

s=1

zs =

t
∑

s=1

ys

T
∑

j=s

xj ≥
t

∑

s=1

ys

t
∑

j=s

xj =

t
∑

j=1

xj

j
∑

s=1

ys ≥
t

∑

s=1

xs

where the last inequality follows because
∑

s ys ≤ 1. The difference between our problem

and the standard lot sizing problem is that all activity must be charged the variable cost

corresponding to the start period, or equivalently, our economic production variables, zs,

can only be positive in the start period. Thus, we obtain the lot sizing inspired formulation,

LS, given by

min
∑

s∈T

fsys +
∑

s∈T

c̄szs

s.t. zs − (T−s+1)Mys ≤ 0 ∀s ∈ T (17)

x ≥ 0, z ≥ 0, y ∈ Y, (11) and (16)

where (17) guarantees that zs can only be positive in the start period. We would obtain a

more compact valid formulation by eliminating the constraints (11) and replacing them with

bounds xt ≤ M . However, we include (11) since their presence tightens the formulation and

allows the commercial MIP solver we use to generate cuts based on these variable upper

bounds, and computational results indicate that this benefit far outweighs the increased

formulation size.

2.4.2.2 The Convex Hull

In this section we characterize the convex hull of feasible solutions to the LS formulation.

Thus, we study the set

FLS =
{

(x, y, z) ∈ [0,M ]T × Y × RT
+ : (16) − (17)

}

.

Theorem 3. conv(FLS) is given by the set of (x, y, z) ∈ R3T
+ which satisfy (8), (17) and

∑

t∈S

xt ≤
∑

t∈L

zt + M
∑

t∈S

∑

s∈{1,...,t}\L

ys ∀S,L ⊆ T . (18)

Proof. Note that (16) and (11) are special cases of (18). Let PLS be the set of (x, y, z) which

satisfy the inequalities stated in the theorem. We prove conv(FLS) ⊆ PLS by showing (18)
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are valid for FLS . Let (x, y, z) ∈ FLS and let i ∈ T be such that yi = 1. If yt = 0 for all t,

set i = T + 1. If i ∈ L, then
∑

t∈L zt = zi ≥
∑

t∈T xt ≥
∑

t∈S xt and (18) holds. If i /∈ L,

then for t ∈ S we have xt = 0 ≤ M
∑

s∈{1,...,t}\L ys if t < i and xt ≤ M = M
∑

s∈{1,...,t}\L ys

if t ≥ i. Hence,
∑

t∈S

xt ≤ M
∑

t∈S

∑

s∈{1,...,t}\L

ys

and (18) holds.

Now, suppose (x, y, z) ∈ PLS . We show that there exists w such that

T
∑

t=s

wst ≤ zs ∀s ∈ T (19)

and (x, y,w) ∈ conv(FE), as defined in Section 2.4.1. By Theorem 2, PE = conv(FE)

and so the latter condition can be verified by checking that (x, y,w) satisfy the inequal-

ities defining the polyhedron PE. Consider a network G with node set given by V =

{u, v, rs ∀s ∈ T ,mt ∀t ∈ T }. The arcs in this network consist of arcs from u to rs with

capacity zs for s ∈ T , arcs from rs to mt with capacity Mys for all 1 ≤ s ≤ t ≤ T , and arcs

from mt to v with capacity xt for all t ∈ T . An example of this graph for T = 3 is given

in Figure 1, where the label on each arc represents its capacity. Since (x, y, z) ∈ PLS we

have x ∈ RT
+ and y ∈ Y R. Thus, if we associate wst with the flow from rs to mt in this

network, it is easy to check that if this network has a u−v flow of
∑

t∈T xt, then the desired

w exists. It follows from the max-flow min-cut theorem that if the capacity of every u − v

cut in G is at least
∑

t∈T xt, then there exists a u − v flow of this value. Let U ⊂ V with

u ∈ U and v /∈ U and consider the cut defined by U and V \ U . Let S = {t ∈ T : mt /∈ U}

and L = {s ∈ T : rs /∈ U}. The capacity of this cut is

∑

s∈L

zs +
∑

t∈S

∑

s∈{1,...,t}\L

Mys −
∑

t∈S

xt +
∑

t∈T

xt.

Since (x, y, z) satisfies (18) for all S,L ⊆ T , it follows that the capacity of this cut is at

least
∑

t∈T xt. Thus, there exists a u − v flow of
∑

t∈T xt.

We complete the proof by demonstrating that the existence of w such that (x, y,w) ∈

conv(FE) and (19) is satisfied implies (x, y, z) ∈ conv(FLS). So suppose such a w exits.

We first observe that there exists a w′ such that (x, y,w′) ∈ conv(FE) and
∑T

t=s w′
st =
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Figure 1: Example of network G with T = 3.

zs ∀s ∈ T . This follows because zs ≤ (T −s+1)Mys so that where necessary wst can be

increased to obtain equality in (19) without violating the inequalities (13), i.e. wst ≤ Mys.

Next, let (xi, yi, wi), i ∈ I be a set of points of FE and λ ∈ R
|I|
+ such that

∑

i∈I λi = 1 and

(x, y,w′) =
∑

i∈I λi(x
i, yi, wi). For each i ∈ I, define zi by zi

s =
∑T

t=s wi
st ∀s ∈ T . Then it

is easy to check that (x, y, z) =
∑

i∈I λi(x
i, yi, zi) and that (xi, yi, zi) ∈ FLS for i ∈ I, thus

establishing that (x, y, z) ∈ conv(FLS).

The proof demonstrates how separation of (18) can be accomplished by finding the

minimum cut in a network with O(T ) nodes. This immediately implies that separation

can be accomplished with O(T 3) complexity by finding the maximum flow in this network.

Because of the special structure of the network, it is possible to find a minimum cut with

complexity O(T 2) using dynamic programming. For t ∈ T define Gt to be the subgraph of

G induced by the nodes {u, v, rt, . . . , rT ,mt, . . . ,mT } and for k = 0, 1, . . . , T − t + 1, define

vt(k) to be the minimum capacity of a u − v cut, (U, V ), on Gt with the restriction that

|V ∩ {mt, . . . ,mT } | = k. Then, the capacity of the minimum u − v cut in G is given by

min{v1(k) : k = 0, . . . , T}. The values vt(k) can be computed as follows.

Theorem 4. vT (0) = xT , vT (1) = zT , and for t = T − 1, . . . , 1

vt(0) =
T

∑

s=t

xs (20)

vt(k) = min{vt+1(k) + xt, vt+1(k − 1)} + min{zt,Mkyt} k = 1, . . . , T − t (21)

vt(T−t+1) = vt+1(T − t) + zt. (22)

26



Proof. Fist first prove vT (0) = xT and vT (1) = zT . Note that |V ∩ {mT } | = 0 implies

mT ∈ U . If also rT ∈ U , the value of the cut is xT , whereas if rT ∈ V , the value of the cut

is zT + xT ≥ xT , hence vT (0) = xT . The restriction |V ∩ {mT} | = 1 implies mT /∈ U . If

rT ∈ U , the value of the cut is MyT , whereas if rT ∈ V , the value of the cut is zT ≤ MyT

and hence vT (1) = zT .

We next prove (21). Let k ∈ {1, . . . , T − t} and (U, V ) be any u − v cut in Gt with

|V ∩ {mt, . . . ,mT }| = k and let cap(U, V ) represent the capacity of this cut. Consider the

following four cases:

Case 1: rt ∈ U , mt ∈ V. Then, |V ∩ {mt+1, . . . ,mT }| = k − 1. Then, cap(U, V ) is given

by the capacity of (U \ {rt}, V \ {mt}) in the graph Gt+1, which is at least vt+1(k − 1),

plus Mkyt, representing the capacity of the arcs from rt to the k arcs in V ∩ {mt, . . . ,mT }.

Hence, in this case

cap(U, V ) ≥ vt+1(k − 1) + Mkyt. (23)

Case 2: rt ∈ U , mt /∈ V . Then, |V ∩ {mt+1, . . . ,mT }| = k and hence cap(U, V ) is given by

the capacity of (U \ {rt}, V ) in the graph Gt+1, which is at least vt+1(k), plus Mkyt plus

xt, representing the capacity of the arc from mt /∈ V to v. Thus, in this case

cap(U, V ) ≥ vt+1(k) + Mkyt + xt. (24)

Case 3: rt /∈ U , mt ∈ V . This case is similar to case 1, except the cut does not include the

arcs from rt to arcs in V , and instead includes the arc from u to rt, yielding

cap(U, V ) ≥ vt+1(k − 1) + zt. (25)

Case 4: rt /∈ U , mt /∈ V . Similar reasoning as cases 2 and 3 yields

cap(U, V ) ≥ vt+1(k) + xt + zt. (26)

Combining (23) - (26), we obtain

cap(U, V ) ≥ min{vt+1(k) + xt + min{zt,Mkyt}, vt+1(k − 1) + min{zt,Mkyt}}

= min{vt+1(k) + xt, vt+1(k − 1)} + min{zt,Mkyt}.
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Since this is true for any u− v cut (U, V ) which satisfy |V ∩{mt, . . . ,mT }| = k, this implies

vt(k) ≥ min{vt+1(k) + xt, vt+1(k − 1)} + min{zt,Mkyt}.

We now show that by using an optimal cut from Gt+1, we can always construct a cut which

has capacity equal to this lower bound. Indeed, consider the following two cases.

Case 1: vt+1(k) + xt > vt+1(k − 1). Let (U ′, V ′) be a u − v cut in Gt+1 which has |V ′ ∩

{mt+1, . . . ,mT }| = k − 1 and cap(U ′, V ′) = vt+1(k − 1). Then, construct a cut (U, V ) by

letting V = V ′ ∪ {mt} and U = U ′ ∪ {rt} if zt ≤ Mkyt and letting V = V ′ ∪ {mt, rt} and

U = U ′ if zt > Mkyt. By construction cap(U, V ) = vt+1(k − 1) + min{zt,Mkyt}.

Case 2: vt+1(k) + xt ≤ vt+1(k − 1). Let (U ′, V ′) be a u − v cut in Gt+1 which has |V ′ ∩

{mt+1, . . . ,mT }| = k and cap(U ′, V ′) = vt+1(k). Then, construct a cut (U, V ) by letting

V = V ′ and U = U ′ ∪ {mt, rt} if zt ≤ Mkyt and letting V = V ′ ∪ {rt} and U = U ′ ∪ {mt}

if zt > Mkyt. By construction cap(U, V ) = vt+1(k) + xt + min{zt,Mkyt}.

In either case, we obtain the lower bound and hence we have proved (21).

Now consider (20). If (U, V ) is any u−v cut in Gt which satisfies |V ∩{mt, . . . ,mT } | = 0

then ms ∈ U for all s = t, . . . , T . Then, it is clear that it is optimal to also have rs ∈ U for

all s = t, . . . , T , yielding the optimal capacity of vt(0) =
∑T

s=t xs.

Finally, consider (22). Let (U, V ) be any u−v cut in Gt which satisfies |V ∩{mt, . . . ,mT } | =

T − t + 1. Then ms ∈ V for all s = t, . . . , T . If rt ∈ U , then cap(U, V ) ≥ vt+1(T − t) +

M(T − t + 1)yt, whereas if rt /∈ U , then cap(U, V ) ≥ vt+1(T − t) + zt. Since this is true for

any such (U, V ) and zt ≤ (T − t + 1)Myt, this implies vt(T −t+1) ≥ vt+1(k − 1) + zt. A

(U, V ) cut which attains this lower bound can be obtained by letting (U ′, V ′) be a cut in

Gt+1 which has ms ∈ V for all s = t + 1, . . . , T and has cap(U ′, V ′) = vt+1(T − t) and then

setting U = U ′ and V = V ′ ∪ {mt}.

The recursion given in Theorem 4 can be used to calculate v1(k) for all k = 0, 1, . . . , T

in O(T 2) time. In addition, as is standard in dynamic programming, the implementation

of the dynamic program can be accomplished in such a way as to yield a (U, V ) cut which

obtains the minimum.
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2.4.2.3 Start-time and Production-period Dependent Variable Costs

The LS formulation does not allow dependence of the variable costs on the period in which

the activity occurs (the activity period in the sequel). This restriction may limit the ap-

plicability of this formulation. For example, in long-term strategic planning models it is

common to incorporate discounting of costs to the present value. It is not clear that it is

possible incorporate discounting of costs to the current period into this formulation.

The LS formulation can be used in one special case which allows dependence of vari-

able costs on both the start period and the activity period. Suppose the variable cost for

production in period t given that start period was s ≤ t is given by cst = c̄s + c̃t, where

c̄ ∈ RT
+ represents the component of variable cost that is start-time dependent, and c̃ ∈ RT

+

represents the component of variable cost that activity-time dependent. In this additive

costs case, the LS formulation can be used as-is by using c̄ as the start-time dependent

variable costs, and adding the term
∑T

t=1 c̃txt to the objective. Even if the variable costs do

not satisfy this additive assumption, appropriate choice of c̄ and c̃ may yield a reasonable

approximation.

For general costs cst for 1 ≤ s ≤ t ≤ T , we can obtain a linear objective by adding the

variables wst as in the extended formulation. Although this introduces O(T 2) variables, we

could create a formulation which is somewhat of a hybrid between the extended formulation

EF and the formulation LS, which has only O(T ) constraints. To do so, we replace the O(T 2)

constraints (13) of the extended formulation with the aggregated constraints

T
∑

t=s

wst ≤ (T − s + 1)Mys ∀s ∈ T

which are analogous to the constraints (17) used in the LS formulation. The additional

rows of the extended formulation could then be added as cuts. However, in the next section

we will present a linear formulation which allows dependence of variable costs on both the

start time and the activity time, and does not require a quadratic number of variables.

Because this formulation uses in O(T ) constraints and variables, we expect this to be a

better formulation.
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2.4.3 Formulation Based on Bilinear Model

We now present a linear formulation that does not introduce the auxiliary variables zt, t ∈

T . In addition to using fewer variables, this formulation is more flexible because it allows the

variable costs to depend both on the start-time and on the period in which the activities are

performed. To obtain a linear objective in this case, we introduce an upper bound variable,

µ, on the bilinear term in the objective, and move the bilinear term into the constraints.

That is, we simply reformulate MIBL as

min µ +
T

∑

s=1

fsys

s.t. µ −
T

∑

s=1

ys

T
∑

t=s

cstxt ≥ 0 (27)

x ≥ 0, y ∈ Y, and (11).

Now, note that for any fixed feasible binary vector y the constraints reduce to a set of

linear constraints. Furthermore, there are only T + 1 feasible binary vectors, so that the

feasible region is the union of exactly T +1 polyhedra. Therefore, optimizing a general linear

function over this feasible region is easy, and consequently separating over the convex hull of

this feasible region is also theoretically easy. In fact, disjunctive programming theory can be

used to write an explicit, polynomial sized linear program to separate over this convex hull,

see [5]. However, we prefer to have an explicit characterization of inequalities defining the

convex hull, and an efficient combinatorial algorithm for separation over these inequalities.

We therefore study the convex hull of the set

FBL =
{

(µ, x, y) ∈ R × [0,M ]T × Y : (11) and (27)
}

.

Theorem 5. conv(FBL) is given by the set of (µ, x, y) ∈ RT+1
+ × Y R which satisfy (11)

and

µ ≥
T

∑

t=1

cittxt −
T

∑

s=1

T
∑

t=s

M(citt − cst)
+ys (28)

for all it ∈ {1, . . . , t} ∀t ∈ T .

Proof. Let PBL be the set of (µ, x, y) ∈ RT+1
+ × Y R which satisfy (11) and (28). Let

(µ, x, y) ∈ FBL and let it ∈ {1, . . . , t} ∀t ∈ T . If x = y = 0, the inequality is trivially valid.
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Otherwise, let k be the period such that yk = 1 and yt = 0 for all t 6= k. Then xt = 0 for

t = 1, . . . , k − 1 and

µ ≥
T

∑

t=k

cktxt (29)

≥
T

∑

t=k

cktxt −
T

∑

t=k

(citt − ckt)
+(M − xt) (30)

≥
T

∑

t=k

cktxt +
T

∑

t=k

(citt − ckt)xt −
T

∑

t=k

M(citt − ckt)
+ (31)

=

T
∑

t=1

cittxt −
T

∑

s=1

T
∑

t=s

M(citt − cst)
+ys

where (29) follows from (27), (30) follows since xt ≤ M for all t ∈ T , and (31) follows since

x ≥ 0. This proves that (28) is valid for FBL and hence conv(FBL) ⊆ PBL.

We next prove that PBL ⊆ conv(FBL). Let (µ, x, y) ∈ PBL and consider the linear

program

LP ∗ = max

T
∑

t=1

xtγt −
T

∑

t=1

t
∑

s=1

Mysπst (BSLP)

s.t. γt − πst ≤ cst ∀1 ≤ s ≤ t ≤ T

γ ≥ 0, π ≥ 0

Note that this problem decomposes by t, and that because ys ≥ 0 for all s, there exists an

optimal solution with πst = (γt − cst)
+ for all 1 ≤ s ≤ t ≤ T and so LP ∗ =

∑

t∈T LP ∗
t

where

LP ∗
t = max

{

xtγt −
t

∑

s=1

Mys(γt − cst)
+ : γt ≥ 0

}

∀t ∈ T . (32)

Next note that we can assume γt ≥ ct := min {cst : s = 1, . . . , t} in (32) since if γt < ct, then

the second term in the objective disappears, and since xt ≥ 0, we will not make the solution

worse by increasing γt. Additionally, we can assume γt ≤ ct := max {cst : s = 1, . . . , t}.

Indeed, if γt > ct, the objective becomes

xtγt −
t

∑

s=1

Mys(γt − cst) = γt

(

xt − M

t
∑

s=1

ys

)

+ M

t
∑

s=1

cst

and because xt ≤ M
∑t

s=1 ys we will not make the solution worse by decreasing γt. Finally,

we claim that we can restrict γt to be in the set {cst : s = 1, . . . , t} for all t. Indeed,
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between distinct values of cst, the objective is linear, and hence, depending on the sign of

the coefficient on γt, a solution which is no worse can be obtained by either increasing or

decreasing γt to the next higher or lower cst value. Thus,

LP ∗ =
T

∑

t=1

max

{

cittxt −
t

∑

s=1

Mys(citt − cst)
+ : it ∈ {1, . . . , t}

}

= max

{

T
∑

t=1

cittxt −
T

∑

s=1

T
∑

t=s

M(citt − cst)
+ys : it ∈ {1, . . . , t} ∀t ∈ T

}

≤ µ

by (28) since (µ, x, y) ∈ PBL. Now, taking the dual of BSLP, we have

LP ∗ = min

T
∑

s=1

T
∑

t=s

cstwst

s.t. 0 ≤ wst ≤ Mys ∀1 ≤ s ≤ t ≤ T

t
∑

s=1

wst ≥ xs ∀s ∈ T .

Hence, because we also have
∑

t∈T yt ≤ 1, there exists w ∈ R
T (T+1)/2
+ such that (x,w, y) ∈

PE , the polyhedral relaxation of the extended formulation (see Section 2.4.1), and

µ ≥
T

∑

s=1

T
∑

t=s

cstwst. (33)

Now, let (xi, yi, wi), i ∈ I be extreme points of PE and λ ∈ R
|I|
+ be such that

∑

i∈I λi = 1

and (x, y,w) =
∑

i∈I λi(x
i, yi, wi). Now, for each i ∈ I, define µi =

∑T
s=1

∑T
t=s cstw

i
st. We

claim that (µi, yi, xi) ∈ FBL for i ∈ I. Indeed, by Theorem 2, the vectors yi are integral,

and hence yi ∈ Y for each i. Also xi ≥ 0 and for t ∈ T we have xi
t ≤

∑t
s=1 wi

st ≤ M
∑t

s=1 yi
s

so that (11) is satisfied. Finally, if yi = 0, then (27) is trivially satisfied, otherwise let k be

the period in which yi
k = 1. Then we have,

µi =

T
∑

t=k

cktw
i
kt ≥

T
∑

t=k

cktx
i
t =

T
∑

s=1

ys

T
∑

t=s

cstx
i
t

so that (27) is again satisfied. Next, we have from (33) that

µ ≥
T

∑

s=1

T
∑

t=s

cstwst =
∑

i∈I

λi

T
∑

s=1

T
∑

t=s

cstw
i
st =

∑

i∈I

λiµ
i.

Thus, we conclude that there exists α ≥ 0 such that (µ, x, y) =
∑

i∈I λi(µ
i, xi, yi) +

α(1,0,0) with (µi, xi, yi) ∈ FBL for i ∈ I. Observing that (1,0,0) is a feasible direction

for FBL, this establishes that (µ, x, y) ∈ conv(FBL) as desired.
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Theorem 5 yields an exponential class of inequalities (28) since for each t, one can choose

an index it ∈ {1, . . . , t}, leading to T ! possible inequalities. We therefore discuss separation

of (28). Given a point (µ∗, x∗, y∗), testing whether there is an inequality of the form (28)

which this point violates amounts to testing whether RHS∗ > µ∗ where

RHS∗ =
T

∑

t=1

max
it∈{1,...,t}

{

cittx
∗
t −

t
∑

s=1

M(citt − cst)
+y∗s

}

.

Then, define v(i, t) =
∑t

s=1(cit−cst)
+y∗s for 1 ≤ i ≤ t ≤ T and observe that these quantities

can be calculated in O(T 3) time. Rewriting RHS∗ as

RHS∗ =

T
∑

t=1

max
i=1,...,t

{citx
∗
t − v(i, t)}

we see that we can subsequently calculate RHS∗ in O(T 2) time, leading to separation in

O(T 3).

Despite the characterization of conv(FBL) given in Theorem 5, it is still not obvious how

to obtain a compact valid mixed-integer linear formulation when the nonlinear constraints

(27) are dropped. A simple option is to use

µ ≥
T

∑

t=s

cstxt − (1 − ys)M
T

∑

t=s

cst ∀s ∈ T (34)

and then add inequalities (28) as needed to strengthen the formulation. This yields a valid

formulation since if ys = 1, then the right-hand side of (34) yields the correct cost lower

bound for µ, whereas if ys = 0 the right-hand side of (34) will not be positive, and hence

will not constrain µ. However, we can avoid adding (34), which are likely to be weak, by

observing that a small subset of the inequalities (28) are sufficient to guarantee a valid

mixed-integer linear formulation.

Theorem 6. FBL is given by the set of (µ, x, y) ∈ R× [0,M ]T × Y which satisfy (11) and

µ ≥
k−1
∑

t=1

cttxt +

T
∑

t=k

cktxt −
k−1
∑

t=1

t
∑

s=1

M(ctt − cst)
+ys −

T
∑

t=k

t
∑

s=1

M(ckt − cst)
+ys ∀k ∈ T . (35)

Proof. Let

G =
{

(µ, x, y) ∈ R × [0,M ]t × Y : (11) and (35)
}
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so that our aim is to prove G = FBL. First note that the kth inequality in (35) corresponds

to the inequality (28) in which we take it = t for t = 1, . . . , k−1, and it = k for t = k, . . . , T .

Thus, we already know (35) are valid for FBL, and hence FBL ⊆ G.

Next, let (µ, x, y) ∈ G. To show (µ, x, y) ∈ FBL we must show (27) is satisfied. If

x = y = 0, then (35) yields µ ≥ 0 for any k, and hence (27) holds. Otherwise, let k be the

period such that yk = 1 and yt = 0 for all t 6= k. Then, the kth inequality in (35) yields

µ ≥
T

∑

t=k

cktxt −
T

∑

t=k

M(ckt − ckt)
+ =

T
∑

s=1

ys

T
∑

t=s

cstxt

so that (27) again holds.

As a consequence of this theorem, we obtain a new valid mixed-integer linear formulation

for this problem, which we refer to as the LBL formulation, and a class of valid inequalities,

given in Theorem 5 which can be added to make the formulation as tight as is possible for

a single activity.

2.5 Concave Formulation

In this section we demonstrate how problem SP can be formulated as a very compact

concave minimization problem, and present a specialized branch-and-cut algorithm to solve

this formulation. This formulation is based on rewriting the single activity problem MIBL

as

min {h(x) : x ∈ X} (36)

where h : [0,M ]T → R is given by

h(x) = min

T
∑

s=1

(

fs +

T
∑

t=s

cstxt

)

ys

s.t. y ∈ Y,

t
∑

s=1

Mys ≥ xt ∀t ∈ T .

For any vector x ∈ RT
+, x 6= 0, we let tmin(x) = min {t ∈ T : xt > 0} . We also define

tmin(0) = T + 1. Then, we can write h(x) as

h(x) = min

{

fs +

T
∑

t=s

cstxt : s = 1, . . . , tmin(x)

}

(37)
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where we define fT+1 = 0. That is, for each x ∈ [0,M ]T , h(x) is the minimum cost to

perform the activity, subject to the feasibility requirement that the start period, s, of the

activity must occur on or before the first period in which the activity level is positive.

We next observe that the function h(x) is concave, although not separable concave.

We therefore have a concave minimization formulation of problem SP with simple linear

constraints. General purpose methods have been developed to solve such types of NP -hard

problems, see e.g. [38]. However, our problem has special structure which we exploit to

enable us to solve large scale instances.

Theorem 7. h is concave over [0,M ]T .

Proof. Let xk, k ∈ K be a set of points in [0,M ]T and λ ∈ R
|K|
+ be such that

∑

k∈K λk = 1.

Also, let x =
∑

k∈K λkx
k. Then,

h(x) = min

{

fs +

T
∑

t=p

cstxt : s = 1, . . . , tmin(x)

}

= min

{

∑

k∈K

λk

(

fs +

T
∑

t=s

cstx
k
t

)

: s = 1, . . . , tmin(x)

}

≥
∑

k∈K

λk min

{

fs +

T
∑

t=s

cstx
k
t : s = 1, . . . , tmin(x

k)

}

(38)

=
∑

k∈K

λkh(xk)

where (38) follows since tmin(x) ≤ tmin(x
k) for all k such that λk > 0.

We propose a specialized branch-and-cut method to solve this formulation. First, we

reformulate (36) by introducing an objective upper bound variable µ to obtain the formu-

lation

min
{

µ : µ ≥ h(x), x ∈ [0,M ]T
}

. (CM)

In our method, we relax the nonlinear inequality µ ≥ h(x) and subsequently enforce it by

branching. In addition, we generate valid inequalities to approximate the non-convex set

E =
{

(µ, x) ∈ R × [0,M ]T : µ ≥ h(x)
}

(39)

in order to obtain tight lower bounds at nodes in our branch and bound tree.
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In describing this method, we continue to focus on the single activity problem CM, but

it should be understood that in the context of the overall problem SP, the branching may

have to be done on each of the activities in the formulation, and consequently, at each

node in the tree a choice must be made as to which activity to branch on. Furthermore,

we present node relaxations for a single activity, but it should be understood that when

we refer to solving a node relaxation, we are solving the relaxation of the overall problem,

using the relaxations from all the activities together.

2.5.1 Branching and Lower Bounds

In the mixed-integer linear formulations which had binary variables y, branching on these

variables meant we were branching on the decision of which period would be the start

period. In this approach, we still branch on this decision, implicit in the definition of h, but

we do so without introducing the binary variables. Specifically, we branch on the implicit

variable, s, representing the start period of the activity. At every node n in the branch and

bound tree, we will have that s ∈ {l(n), . . . , u(n)} where 1 ≤ l(n) ≤ u(n) ≤ T + 1. Recall

that if T + 1 is the start period, this means the activity never starts. At the root node,

node 0, we set l(0) = 1 and u(0) = T + 1.

Lower Bounds

We are interested in deriving lower bounds on the cost function h(x) subject to the

restriction that the start period s satisfies l ≤ s ≤ u. Therefore, define the cost function

given this restriction by

h(x; l, u) = min

{

fs +
T

∑

t=s

cstxt : l ≤ s ≤ min(u, tmin(x))

}

for x such that xt = 0 for t = 1, . . . , l − 1. Also, define

f(l, u) = min {fs : l ≤ s ≤ u}

ct(l, u) = min {cst : l ≤ s ≤ min(t, u)} for t = l, . . . , T.

Then, we have the lower bound given by
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Theorem 8.

h(x; l, u) ≥ f(l, u) +

T
∑

t=l

ct(l, u)xt. (40)

Proof. Let x be such that xt = 0 for t = 0, . . . , l−1. For convenience let m = min(u, tmin(x)).

Then,

h(x; l, u) = min

{

fs +

T
∑

t=s

cstxt : l ≤ s ≤ m

}

≥ f(l,m) + min

{

T
∑

t=s

cstxt : l ≤ s ≤ m

}

≥ f(l, u) +
u

∑

t=l

min {cst : l ≤ s ≤ t}xt +
T

∑

t=u+1

ct(l, u)xt

= f(l, u) +

T
∑

t=l

ct(l, u)xt

where the last inequality follows since for t ≤ u, xt > 0 implies tmin(x) ≤ t ≤ u.

At the root node we have no restrictions on the start time so that l = 1 and u = T + 1

and we obtain the lower bound h(x) ≥
∑T

t=1 c(1, t)xt, where the fixed cost term vanished

because, by definition, fT+1 = 0.

At a node in the branch-and-bound tree, if we have l ≤ s ≤ u, we obtain a lower bound

by replacing µ ≥ h(x) with

µ ≥ f(l, u) +

T
∑

t=l

ct(l, u)xt. (41)

An important property of this lower bound is that it is exact when l = u. That is,

h(x; l, l) = fl +

T
∑

t=l

cltxt = f(l, l) +

T
∑

t=l

ct(l, l)xt

so that if (41) is enforced when l = u, we necessarily have µ ≥ h(x).

Branching

At any node n in the tree, we first solve the relaxation for that node obtained by

including (41) in the linear program and obtain a solution x. If the optimal objective of the

relaxation exceeds the cost of the best incumbent solution, we can fathom this node without

branching further. Otherwise, we check whether the inequality µ ≥ h(x) is violated (for
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any activity). If not, we have a new incumbent solution, and we need not explore this node

any further. If so, then because we have enforced (41), we must have l(n) < u(n), so we can

select k ∈ {l(n), . . . , u(n) − 1} . We then create two nodes, d1 and d2 by enforcing s ≤ k in

d1 and enforcing s > k in d2. This is achieved by setting l(d1) = l(n) and u(d1) = k, and

l(d2) = k + 1 and u(d2) = u(n). Thus, the lower bound (41) will be updated in the two

nodes, and in addition, we will enforce that xt = 0 for t = 1, . . . , k in node d2, reflecting the

restriction in that node that the activity cannot start until period k + 1.

This branching scheme ensures that each path in the resulting branch-and-bound tree

will finitely terminate with a leaf node in which l(n) = u(n) (if not earlier) and will therefore

not have to be explored further. Thus the branching scheme is finite for each single activity,

and hence will be finite for finitely many activities.

2.5.2 Improving the Lower Bounds

In the LS and LBL formulations we were able to explicitly characterize the convex hull of

the set of feasible solutions. We have not been able to do that for the feasible set E of this

formulation, given by (39). Fortunately, we can still separate all inequalities valid for E by

solving a linear program. The proof follows a direct derivation of this linear program, but

we note that it could also be obtained by disjunctive programming theory [5].

Theorem 9. Let (µ, x) ∈ R× [0,M ]T . Then, (µ, x) ∈ conv(E) if and only if µ ≥ v∗ where

v∗ = max β +

T
∑

t=1

αtxt

s.t. M
T

∑

t=s

σst + β ≤ fs ∀s ∈ T

αt − σst ≤ cst ∀1 ≤ s ≤ t ≤ T (42)

β ≤ 0, σst ≥ 0 ∀1 ≤ s ≤ t ≤ T.

Moreover, if µ < v∗, the optimal solution yields an inequality of the form

µ ≥ β +
T

∑

t=1

αtxt, (43)

which cuts off (µ, x) and is valid for conv(E).
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Proof. Consider a generic valid inequality for E given by γµ ≥ β +
∑T

t=1 αtxt. We are

interested only in nontrivial inequalities, i.e., those which are not implied by the bounds on

x. Note that any such inequality will have a nonzero coefficient on µ. Furthermore, because

the direction (1,0) is feasible for E, the coefficient on µ must be positive. Therefore, by

scaling we can assume that any nontrivial inequality for E is of the form (43).

Now, observe that E =
⋃T+1

s=1 Es where

Es =

{

(µ, x) ∈ R × [0,M ]T : µ ≥ fs +

T
∑

t=s

cstxt, xt = 0, t = 1, . . . , s − 1

}

.

Note that for each s ∈ T the extreme points of Es are given by xt = M ∀t ∈ S and xt = 0

otherwise, and µ = fs +M
∑

t∈S cst for all S ⊆ {s, . . . , T} . Also note that ET+1 = {(0,0)}.

Since any extreme point of conv(E) must be an extreme point of Es for some s ∈

{1, . . . , T + 1}, we conclude that an inequality (43) is valid for E if and only if β ≤ 0 and

M max
S⊆{s,...,T}

∑

t∈S

(αt − cst) + β ≤ fs ∀s = 1, . . . , T. (44)

The sth condition in (44) is equivalent to fs ≥ β + Mθs where

θs = max

T
∑

t=s

ωst(αt − cst) = min

T
∑

t=s

σst

s.t. 0 ≤ ωst ≤ 1 ∀t = s, . . . , T s.t. σst ≥ αt − cst ∀t = s, . . . , T

σst ≥ 0 ∀t = s, . . . , T

by integrality of the first linear program and linear programming duality. It follows that

inequality (43) is valid for E if and only if there exists σ such that (β, α, σ) is feasible to

(42).

It only remains to prove that v∗ exists and is finite. This follows since the linear program

(42) is feasible since 0 is a feasible solution and bounded since

β +

T
∑

t=1

αtxt ≤ f1 − M

T
∑

t=1

σ1t +

T
∑

t=1

xt(c1t + σ1t) ≤ f1 +

T
∑

t=1

c1txt.
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2.5.3 Feasible Solutions

Any solution to a node relaxation in the branch-and-bound tree will yield a solution which

satisfies the physical constraints of the concave formulation. Thus, all we need to do to

obtain a feasible solution at any node is to calculate the true cost of each activity for the

levels given by the relaxation solution.

2.6 Special Case: Nondecreasing Activities

We now turn the special case in which we restrict the flows to be nondecreasing over

time, that is we add the constraint x ∈ XN =
{

x ∈ RT
+ : x1 ≤ x2 ≤ · · · ≤ xT ≤ M

}

. This

constraint was present in the application that motivated this work.

As long as we explicitly include the condition x ∈ XN , all the formulations we have

developed remain valid. However, by using the fact that x ∈ XN , we can obtain stronger

formulations, which we shall do in this section.

The mixed-integer bilinear formulation for the problem with this nondecreasing con-

straint then becomes MIBL-N:

min

T
∑

s=1

(

fs +

T
∑

t=s

cstxt

)

ys

s.t. xt ≤
t

∑

s=1

Mys ∀t ∈ T (45)

x ∈ XN , y ∈ Y.

2.6.1 Extended Formulation

With the addition of the nondecreasing constraint, the extended formulation, EF, presented

in Section 2.4.1 is no longer integral. Therefore, we present the following formulation, EF-N,
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which is valid when the nondecreasing constraints are present, and is integral.

min

T
∑

s=1

T
∑

t=s

(

T
∑

i=t

csi

)

wst +

T
∑

s=1

fsys

s.t.

t
∑

s=1

wst ≥ xt − xt−1 ∀t ∈ T (46)

T
∑

t=s

wst ≤ Mys ∀s ∈ T (47)

x ∈ XN , y ∈ Y,w ≥ 0.

In the above, we define x0 := 0. Note that this formulation has O(T 2) variables as did

formulation EF, but unlike formulation EF, it has only O(T ) constraints. Let us define

FEN =
{

(x, y,w) ∈ XN × Y × R
T (T+1)/2
+ : (46) − (47)

}

.

Theorem 10. EF-N is a valid formulation for MIBL-N.

Proof. Let (x, y) be feasible to MIBL-N, with objective cost µ =
∑T

s=1

(

fs +
∑T

t=s cstxt

)

ys.

We show there exists w ∈ R
T (T+1)/2
+ such that (x, y,w) ∈ FEN and

µ =
T

∑

s=1

T
∑

t=s

T
∑

i=t

csiwst +
T

∑

s=1

fsys. (48)

First, if y = 0, then also x = 0 and we can take w = 0 and (48) trivially holds. So assume

y 6= 0 and let k be the period such that yk = 1 and yt = 0 for t 6= k. Now let w ∈ R
T (T+1)/2
+

be given by wst = 0 for all t = s, . . . , T, s 6= k and wkt = xt−xt−1 for t = k, . . . , T. Then (46)

holds for all t and (47) holds for all s 6= k. For s = k, we have
∑T

t=k wkt = xT ≤ M = Myk

so that again (47) holds. Finally, we have

µ =

T
∑

s=1

(

fs +

T
∑

t=s

cstxt

)

ys =

T
∑

s=1

fsys +

T
∑

i=k

ckixi

=
T

∑

s=1

fsys +
T

∑

i=k

cki

i
∑

t=k

(xt − xt−1)

=
T

∑

s=1

fsys +
T

∑

t=k

T
∑

i=t

ckiwkt

=

T
∑

s=1

fsys +

T
∑

s=1

T
∑

t=s

(

T
∑

i=t

csi

)

wst
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so that (48) holds.

Next, let (x, y,w) ∈ FEN and let µ be the cost of this solution in EF-N, given in (48).

We show (x, y) is feasible for MIBL-N and µ ≥
∑T

s=1

(

fs +
∑T

t=s cstxt

)

ys. If y = 0, then

also x = 0 and w = 0 and the claim is trivial. So suppose y 6= 0 and let k be such that

yk = 1 and yt = 0 for all t 6= k. Then, wst = 0 for all s 6= k, t = s, . . . , T and
∑T

t=k wkt ≤ M .

Hence, by (46) we have wkt =
∑t

s=1 wst ≥ xt − xt−1 for t ≥ k. Thus, by (48) we have

µ = fk +

T
∑

t=k

T
∑

i=t

ckiwkt

≥ fk +

T
∑

t=k

T
∑

i=t

cki(xt − xt−1)

= fk +
T

∑

t=k

cktxt =
T

∑

s=1

(

fs +
T

∑

t=s

cstxt

)

ys.

Finally, for j ∈ T such that j < k we have

xj =

j
∑

t=1

(xt − xt−1) ≤

j
∑

t=1

t
∑

s=1

wst = 0 = Myj

and for j ≥ k we have

xj ≤

j
∑

t=1

t
∑

s=1

wst =

j
∑

t=k

wkt ≤ Myk = M

j
∑

t=1

yt

by (47) so that (45) holds, completing the proof.

Let PEN be the polytope defined by relaxing the integrality restrictions in FEN . We

have the analog to Theorem 2.

Theorem 11. PEN = conv(FEN ).

Proof. As in the proof of Theorem 2 we prove the polytope PEN is integral when M = 1

which establishes the theorem since it then implies y is integral in all extreme points of PEN

even when M 6= 1. So consider the case M = 1 and apply the transformation δt = xt−xt−1

42



for t = 1, . . . , T . Then the constraints in the relaxation PEN become

δt −
t

∑

s=1

wst ≤ 0 ∀t ∈ T

T
∑

t=s

wst − ys ≤ 0 ∀s ∈ T

∑

t∈T

yt ≤ 1

∑

t∈T

δt ≤ 1

in addition to the nonnegativity on y,w and δ. This constraint matrix is totally unimodular

and the right-hand side is integral and hence the corresponding polytope is integral. It

follows that the polytope PEN is also integral.

2.6.2 A Linearized Formulation

In this section, we study how the lot sizing inspired formulation, LS, given in Section 2.4.2

can be strengthened using the nondecreasing restriction on the activities. As in Section

2.4.2, this formulation will work only when the variable cost depends only on the start-

time, that is cst = c̄s for all 1 ≤ s ≤ t ≤ T . Let

FLSN =
{

(x, y, z) ∈ XN × Y × RT
+ : (16) − (17)

}

be the feasible region of this formulation. The only difference between FLSN and FLS

defined in Section 2.4.2 is that in FLSN we restrict x ∈ XN rather than just x ∈ [0,M ]T .

We start by showing how the lot sizing inequalities

t
∑

s=1

zs ≥
t

∑

s=1

xs ∀t ∈ T (16)

which were used to obtain the improved formulation LS can be tightened.

Theorem 12. The inequalities

t
∑

s=1

zs ≥
t

∑

s=1

xs + (T − t)xt ∀t ∈ T (49)

are valid for FLSN .
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Proof. Let (x, y, z) ∈ FLSN and let k be the period in which yk > 0 (if yt = 0 ∀t ∈ T the

inequality holds trivially). Because zt = 0 for all t 6= k, we must have zk ≥
∑T

s=k xs and

xt = 0 for t = 1, . . . , k − 1. Thus, if t ≥ k, we have

t
∑

s=1

zs = zk ≥
T

∑

s=k

xs ≥
t

∑

s=k

xs + (T − t)xt =

t
∑

s=1

xs + (T − t)xt

and if t < k, then
t

∑

s=1

zs = 0 =

t
∑

s=1

xs + (T − t)xt.

Thus, for all t, the inequality (49) is valid.

We refer to the formulation obtained from LS by adding the constraints x ∈ XN , and

replacing the constraints (16) with the constraints (49) as LS-N. We now present a class of

inequalities valid for FLSN which are similar to the class given in (18).

Theorem 13. Let L,S ⊆ T with S = {s1, . . . , sl} and s1 < s2 < · · · < sl. Then, the

inequality
l

∑

i=1

(si+1 − si)xsi
≤

∑

t∈L

zt + M

l
∑

i=1

∑

t∈{1,...,si}\L

(si+1 − si)yt (50)

is valid for FLSN where sl+1 := T + 1.

Proof. Let k be such that yk = 1 and yt = 0 for all t 6= k. Then xt = zt = 0 for all t < k,

and zk ≥
∑T

t=k xt. Suppose first that k ∈ L. Then,

l
∑

i=1

(si+1 − si)xsi
=

l
∑

i=1

si+1−1
∑

t=si

xsi
≤

l
∑

i=1

si+1−1
∑

t=si

xt =
T

∑

t=1

xt ≤ zk =
∑

t∈L

zt

and hence (50) holds.

Now suppose k /∈ L. Let j = min{i = 1, . . . , l + 1 : si ≥ k}. Then,

l
∑

i=1

(si+1 − si)xsi
=

l
∑

i=j

(si+1 − si)xsi
≤ M(sl+1 − sj) = M(T − sj + 1)

and
l

∑

i=1

∑

t∈{1,...,si}\L

(si+1 − si)yt = M
l

∑

i=j

(si+1 − si) = M(T − sj + 1)

and hence (50) holds, completing the proof.
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We conjecture that inequalities (50) are sufficient to define the convex hull of FLSN ,

but have not yet been able to prove this. This is an area for further work.

We now discuss separation of inequalities (50). We begin by writing (50) in a slightly

different form. For S ⊆ T and t ∈ T , define

gt(S) = min{k ∈ S ∪ {T + 1} : k ≥ t}.

Then,

l
∑

i=1

∑

t∈{1,...,si}\L

(si+1 − si)yt =
∑

t∈T \L

∑

i:si≥t

(si+1 − si)yt

=
∑

t∈T \L

(T − gt(S) + 1)yt.

Given (x, y, z) ∈ XN ×Y R ×RT
+ satisfying (16) - (17) the separation problem to determine

if there is an inequality (50) which is violated is

min
S={s1,...,sl}⊆T

L⊆T

{

∑

t∈L

zt + M
∑

t∈T \L

(T − gt(S) + 1)yt −
l

∑

i=1

(si+1 − si)xsi

}

.

However, note that for a given set S, the optimal set L is simply determined by letting

t ∈ L if zt ≤ M(T − gt(S) + 1)yt for each t ∈ T . Thus, the separation problem reduces to

min
S={s1,...,sl}⊆T

{

T
∑

t=1

min{zt,M(T − gt(S) + 1)yt} −
l

∑

i=1

(si+1 − si)xsi

}

.

Now construct an acyclic network with node set {0, 1, . . . , T, T +1} and arcs from s to t for

all 0 ≤ s < t ≤ T + 1, with cost

dst =
t

∑

j=s+1

min{zj ,M(T − t + 1)yj} − (t − s)xs

where we define zT+1 = x0 = 0. Each path from 0 to T + 1 in this network, say

(0, s1, . . . , sl, T + 1), corresponds to a set S = {s1, . . . , sl} ⊆ T and vice versa. The cost of

the path (0, s1, . . . , sl, T + 1) is

l
∑

i=0

dsi,si+1
=

l
∑

i=0

si+1
∑

j=si+1

min{zj ,M(T − si+1 + 1)yj} −
l

∑

i=1

(si+1 − si)xsi

=

T
∑

t=1

min{zt,M(T − gt(S) + 1)yt} −
l

∑

i=1

(si+1 − si)xsi
(51)
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where (51) follows since gt(S) = si+1 for j such that si < j ≤ si+1. It follows that separation

of inequalities (50) can be accomplished by finding a shortest path from 0 to T + 1 in this

network. Calculating the cost coefficients can be done in O(T 2) time and finding the shortest

path can then be accomplished in O(T 2) by finding the shortest path from s to T + 1 in

the order s = T, . . . , 1, 0. Thus, separation of inequalities (50) can be accomplished with

complexity O(T 2).

2.6.3 Formulation Based on Bilinear Model

We now study how the LBL formulation introduced in Section 2.4.3 can be strengthened

using the nondecreasing restriction x ∈ XN . Let

FBLN =
{

(µ, x, y) ∈ R× XN × Y : (45) and (27)
}

.

FBLN represents the feasible region of MIBL-N, with the bilinear term in the objective

moved into the constraints.

We next show that if (µ, x, y) ∈ R × XN × Y R satisfy (45) then separation of (µ, x, y)

from conv(FBLN ) can be accomplished by solving

V (x, y) = max
δ,α

T
∑

t=1

(xt − xt−1)δt −
T

∑

s=1

Mysαs

s.t. δt − αs ≤
T

∑

i=t

csi ∀1 ≤ s ≤ t ≤ T (BLLP-P)

δ ≥ 0, α ≥ 0,

or equivalently, its dual

min
w

T
∑

s=1

T
∑

t=s

T
∑

i=t

csiwst

s.t.

t
∑

s=1

wst ≥ xt − xt−1 ∀t ∈ T (BLLP-D)

T
∑

t=s

wst ≤ Mys ∀s ∈ T

w ≥ 0,
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which is recognized to be a minimum cost network flow problem on a bipartite network.

We first show that feasible solutions to BLLP-P yield valid inequalities for FBLN .

Lemma 14. Suppose (δ, α) is feasible to BLLP-P. Then

µ ≥
T

∑

t=1

δt(xt − xt−1) −
T

∑

s=1

Mαsys (52)

is a valid inequality for FBLN .

Proof. Let (µ, x, y) ∈ FBLN . By linear programming duality, if (δ, α) is feasible to BLLP-P

then
T

∑

t=1

(xt − xt−1)δt −
T

∑

s=1

Mysαs ≤
T

∑

s=1

T
∑

t=s

T
∑

i=t

csiwst (53)

for all w feasible to BLLP-D. Now, by Theorem 10, since (x, y) is feasible to MIBL-N there

exists w such that (x, y,w) is feasible to EF-N, and

T
∑

s=1

T
∑

t=s

T
∑

i=t

csiwst =

T
∑

s=1

ys

T
∑

t=s

cstxt. (54)

But, then w is feasible to BLLP-D and so (53) holds. Combining (53) with (54) yields

T
∑

t=1

(xt − xt−1)δt −
T

∑

s=1

Mysαs ≤
T

∑

s=1

ys

T
∑

t=s

cstxt ≤ µ

where the last inequality follows from (27), and hence (52) holds.

Further exploiting the relationship between BLLP-D and the EF-N, we obtain

Theorem 15. Let (µ, x, y) ∈ R × XN × Y R satisfy (45). Then, (µ, x, y) ∈ conv(FBLN ) if

and only if V (x, y) ≤ µ.

Proof. First note that BLLP-P is feasible since (0,0) is a feasible solution. We claim that

also BLLP-D is feasible. First, by similar arguments to the proof of Theorem 11, we have

{(x, y) ∈ XN × Y R : (45)} = conv
(

{(x, y) ∈ XN × Y : (45)}
)

. Hence, there exist (xi, yi)

with yi integer for i ∈ I and λ ∈ R
|I|
+ such that

∑

i∈I λi = 1 and
∑

i∈I λi(x
i, yi) = (x, y).

Because EF-N is a valid formulation for MIBL-N, there exists wi for i ∈ I such that

(xi, yi, wi) ∈ FEN . Thus, w =
∑

i∈I λiw
i is feasible for BLLP-D. Therefore, both BLLP-P

and BLLP-D have optimal solutions, so V (x, y) is well defined and finite.
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Now, the “only if” part follows from Lemma 14. Next suppose V (x, y) ≤ µ. Then, there

exists w such that (x, y,w) ∈ PEN , and

T
∑

s=1

T
∑

t=s

T
∑

i=t

csiwst ≤ µ. (55)

By Theorem 11, there exists (xi, yi, wi) ∈ FEN for i ∈ I and λ ∈ R
|I|
+ such that

∑

i∈I λi = 1

and
∑

i∈I λi(x
i, yi, wi) = (x, y,w). Now, for i ∈ I let µi =

∑T
s=1 yi

s

∑T
t=s cstx

i
t. By Theorem

10,
T

∑

s=1

T
∑

t=s

T
∑

i=t

csiw
i
st ≥ µi

for each i ∈ I and hence

∑

i∈I

λiµi ≤
∑

i∈I

λi

T
∑

s=1

T
∑

t=s

T
∑

i=t

csiw
i
st

=
T

∑

s=1

T
∑

t=s

T
∑

i=t

csiwst ≤ µ

by (55). Thus, there exists β ≥ 0 such that (µ, x, y) =
∑

i∈I λi(µ
i, xi, yi) + β(1,0,0) and so

(µ, x, y) ∈ conv(FBLN ) since (1,0,0) is a feasible direction for FBLN .

Thus, if (µ, x, y) ∈ R × XN × Y R satisfies (45) then separation is indeed accomplished

by solving BLLP-P. If V (x, y) > µ and (δ, α) is the optimal solution to BLLP-P, then (52)

defines a valid inequality which is violated by (µ, x, y). Note that BLLP-D has fewer rows

than BLLP-P, so that it may be computationally advantageous to solve BLLP-D rather

than BLLP-P.

As in the case without the nondecreasing restriction, it is sufficient to take a subset of

size T of the valid inequalities defined in Lemma 14 to yield a valid formulation. For k ∈ T

we define α̂k by

α̂k
s =































max
{

(
∑T

i=t cki −
∑T

i=t csi

)+
: k ≤ t ≤ T

}

s = 1, . . . , k − 1

0 s = k

max
{

(
∑T

i=t cki −
∑T

i=t csi

)+
: s ≤ t ≤ T

}

s = k + 1, . . . , T
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and define δ̂k by

δ̂k
t =















min
{

α̂k
s +

∑T
i=t csi : 1 ≤ s ≤ t

}

t = 1, . . . , k − 1

∑T
i=t cki t = k, . . . , T.

We have an analog to Theorem 6.

Theorem 16. FBLN is given by the set of (µ, x, y) ∈ R× XN × Y which satisfy (45) and

µ ≥
T

∑

t=1

δ̂k
t (xt − xt−1) −

T
∑

s=1

Mα̂k
sys ∀k ∈ T . (56)

Proof. Let

GN =
{

(µ, x, y) ∈ R× XN × Y : (45) and (56)
}

so that we must prove GN = FBLN . We first show each inequality (56) is valid for FBLN

and hence FBLN ⊆ GN . Consider inequality (56) for a k ∈ T . This inequality corresponds

to an inequality of the form (52), with δt = δ̂k
t for t ∈ T and αs = α̂k

s for s ∈ T . Thus,

we verify that (δ̂k, α̂k) is feasible to BLLP-P and hence yields a valid inequality by Lemma

14. It is immediate that δ̂k ≥ 0 and α̂k ≥ 0. Now consider a fixed s and t such that

1 ≤ s ≤ t ≤ T . If s > k then also t > k and hence

δ̂k
t − α̂k

s ≤
T

∑

i=t

cki −
(

T
∑

i=t

cki −
T

∑

i=t

csi

)

=
T

∑

i=t

csi.

If s = k then t ≥ k and hence

δ̂k
t − α̂k

s =

T
∑

i=t

csi.

If s < k and t ≥ k then

δ̂k
t − α̂k

s ≤
T

∑

i=t

cki −
(

T
∑

i=t

cki −
T

∑

i=t

csi

)

=

T
∑

i=t

csi.

Finally, if s < k and t < k then

δ̂k
t − α̂k

s ≤ α̂k
s +

T
∑

i=t

csi − α̂k
s =

T
∑

i=t

csi

and so (δ̂k, α̂k) is feasible to BLLP-P.
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Next let (µ, x, y) ∈ GN . We show (27) is satisfied, and hence (µ, x, y) ∈ FBLN . Let

k ∈ T be the period such that yk = 1 (if y = x = 0 (27) is trivially satisfied). Because

xt = 0 for t = 1, . . . , k − 1 and ys = 0 for all s 6= k inequality (56) for this k yields

µ ≥
T

∑

t=k

(xt − xt−1)

T
∑

i=t

cki

=
T

∑

t=k

(xt − xt−1)
T

∑

i=t

cki

=

T
∑

i=k

cki

i
∑

t=k

(xt − xt−1) =

T
∑

i=k

ckixi =

T
∑

s=1

ys

T
∑

t=s

cstxt

hence (27) is satisfied.

The coefficients (δ̂k, α̂k) take on a simpler form in the case of “improving technology,”

that is, if csi ≥ cti whenever s ≤ t ≤ i. In this case, for each k, α̂k
s = 0 for s = 1, . . . , k and

α̂k
s =

T
∑

i=s

cki −
T

∑

i=s

csi

and δ̂k
t =

∑T
i=t cti for t = 1, . . . , k − 1 and δ̂k

t =
∑T

i=t cki for t = k, . . . , T .

Theorem 16 yields a new mixed-integer linear formulation which is valid when the activ-

ities are restricted to be nondecreasing. We refer to this formulation as LBLN. This formu-

lation can be strengthened by adding violated inequalities obtained from solving BLLP-P.

As an alternative or supplement to adding inequalities obtained from solving BLLP-P

we can add inequalities which are valid for the concave formulation CM. In the next section

we will see that with the addition of the constraints x ∈ XN , the convex hull of the CM

formulation is given by a single valid inequality, (58). Although this inequality does not

involve the binary variables y, this inequality is still valid for FBLN . Therefore, by adding

this inequality to the LBLN formulation, we will obtain a linear relaxation that yields a

bound as strong as possible from a single activity. The disadvantage of this relative to

using inequalities obtained from solving BLLP-P which involve the binary variable y is that

(58) will not be strengthened by branching on the y variables. This disadvantage can be

overcome at the expense of a more cumbersome implementation by adding the branching

constraints (60) of the CM formulation as cuts which are locally valid at each node in the
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branch-and-bound tree. An advantage of using the LBLN formulation strengthened with

(58) over just using the more compact CM formulation is that by using the binary variables

we are not required to implement a specialized branching mechanism. In addition, the

presence of the binary variables may allow for generation of general purpose cutting planes

which consider more of the problem than a single activity.

2.6.4 Concave Formulation

The branch-and-cut method of Section 2.5 can still be used to solve formulation CM when

we add the constraints x ∈ XN . However, by using the nondecreasing restriction, we can

significantly improve the lower bounds. Thus, we seek valid inequalities for the set

EN =
{

(µ, x) ∈ R× XN : µ ≥ h(x)
}

or equivalently, lower bounds on h(x) which are valid for x ∈ XN .

Note that the extreme points of XN are given by the points M t ∈ RT for t = 1, . . . , T, T+

1 with M t
s = 0 for s = 1, . . . , t−1 and M t

s = M for s = t, . . . , T . We then have the following

lower bound on h.

Theorem 17. If x ∈ XN , then

h(x) ≥
T

∑

t=1

(

h(M t) − h(M t+1)
)

xt/M. (57)

Proof. Let us evaluate the right-hand side of (57) for x = Mk for some k ∈ {1, . . . , T, T +1}.

T
∑

t=1

(

h(M t) − h(M t+1)
)

xt/M =

T
∑

t=k

(

h(M t) − h(M t+1)
)

= h(Mk).

Thus, the lower bound is valid for all extreme points of XN . The result then follows from

concavity of h, Theorem 7.

Thus, we can strengthen the CM formulation by adding the inequality

µ ≥
T

∑

t=1

(

h(M t) − h(M t+1)
)

xt/M (58)

Combined with the inequalities that define the feasible region, this single inequality is

sufficient to define the convex hull of EN .
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Theorem 18.

conv(EN ) =
{

(µ, x) ∈ R × XN : (58)
}

.

Proof. Let

lb(x) =

T
∑

t=1

(

h(M t) − h(M t+1)
)

xt/M

and let H =
{

(µ, x) ∈ R × XN : µ ≥ lb(x)
}

so that we must prove conv(EN ) = H. We

immediately have conv(EN ) ⊆ H by validity of the lower bound (57).

The converse is also immediate since the extreme points of H are given by (lb(M t),M t)

for t = 1, . . . , T, T+1, and we have seen in the proof of Theorem 17 that lb(M t) = h(M t) so

that these points also satisfy lb(M t) ≥ h(M t) and hence are feasible to EN . This completes

the proof since the ray (1,0) is the only feasible direction for both H and EN .

In the context of the branch-and-bound algorithm described in Section 2.5, we seek

lower bounds on h(x; l, u); the cost function subject to the restriction that the start-time s

be in the set {l, . . . , u} for 1 ≤ l ≤ u ≤ T + 1. In particular, we seek lower bounds that are

valid and tight under the additional restriction that x ∈ XN . Recall the definition

f(l, u) = min {fs : s = l, . . . , u} .

We then have the following lower bound.

Theorem 19. Let 1 ≤ l ≤ u ≤ T+1 and x ∈ XN be such that xt = 0 for all t = 1, . . . , l−1.

Then,

h(x; l, u) ≥ f(l, u) +

T
∑

t=l

(

h(M t; l, u) − h(M t+1; l, u)
)

xt/M. (59)

Furthermore, the above inequality is satisfied at equality if either l = u, or x = Mk for some

k ≥ l.

Proof. We first prove the inequality is satisfied at equality for x = Mk for any k ≥ l. Fix

some k ≥ l. The right-hand side of the inequality becomes

f(l, u) +

T
∑

t=k

(

h(M t; l, u) − h(M t+1; l, u)
)

= f(l, u) + h(Mk; l, u) − f(l, u) = h(Mk; l, u)

where the first equality follows since h(MT+1; l, u) = f(l, u). Now, note that under the

restriction on the start time s ≥ l the extreme points in the x space are given by Mk for
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k = l, . . . , T . The validity of the lower bound then follows from concavity of h(·; l, u), which

can be established in a manner identical to the proof that h is concave. Finally, if l = u,

then the right-hand side of (59) becomes

f(l, l) +

T
∑

t=l

(

h(M t; l, l) − h(M t+1; l, l)
)

xt/M

= f(l, l) +
T

∑

t=l

[

fl + M
T

∑

k=t

clk −
(

fl + M
T

∑

k=t+1

clk

)]

xt/M

= fl +

T
∑

t=l

cltxt = h(x; l, l).

Hence, at a node in which we have restricted s ∈ {l, . . . , u} we add the inequality

µ ≥ f(l, u) +

T
∑

t=l

(

h(M t; l, u) − h(M t+1; l, u)
)

xt/M (60)

which is valid under this restriction. By Theorem 19 we know that if l = u, this inequality

will force the cost to be correct. Also, using arguments similar to those in the proof of

Theorem 18 we can show that this inequality defines the convex hull of the single activity

relaxation under this restriction.

2.7 Computational Results

We performed computational tests to compare the different formulations and to investigate

the effect of using the valid inequalities. We tested six different formulations: WL, LS,

LS.C, LBL, LBL.C and CM. WL refers to the Weak Linearization formulation of Section

2.4.2. LS refers to the lot sizing inspired formulation of Section 2.4.2.1 and LBL refers

to the formulation presented in Section 2.4.3. LS.C and LBL.C refer to the LS and LBL

formulations, using the valid inequalities (18) and (28) respectively. CM refers to the

concave minimization formulation of Section 2.5, solved with the specialized branch-and-

cut algorithm. We did not test the extended formulation which is not practical for large

instances.

Table 1 summarizes the number of variables and rows, not including cuts, in each of

the formulations. For the extended formulation EF, we list only the approximate size, to
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emphasize that it is quadratic in the number of periods. The number of rows in the LS for-

mulations includes the inequalities (11) which are not necessary for the LS formulation, but

yield significantly better computational results. The constraint matrices in all formulations

Table 1: Sizes of the different formulations.

Formulation # Variables # Rows

EF O(T 2|A|) O(T 2|A|)
LS 3T |A| (3T + 1)|A|
LBL (2T + 1)|A| (2T + 1)|A|
CM (T + 1)|A| T |A|

are quite sparse, having O(T 2|A|) nonzeros, even in the extended formulation.

In Section 2.7.1 we describe the instances used for the tests. In Section 2.7.2 we make

some comments about the implementation of our methods. In Section 2.7.3 we present the

results on instances which do not have the nondecreasing constraint, and in Section 2.7.4 we

present results on the same set of instances, but with the nondecreasing constraint present.

2.7.1 Test Instances

We conducted our tests on instances of the production and distribution planning problem

presented in the introduction. For this problem, the activities consist of production and

distribution in a transportation network with |I| supply points, |J | demand points and arcs

between all supply and demand points. Therefore, |A| = |I|(|J |+1). We randomly generated

instances which have characteristics similar to data in the application that motivated this

work. The variable costs for these instances depends only on the start-time, and not on

the period in which the activity occurs, so that the formulations of Section 2.4.2 apply.

In all cases, the variable costs decrease at a constant rate as the start period is delayed.

Fixed costs for installing technology were not considered in the motivating application, but

because fixed costs may be present in other applications we generated instances with and

without fixed costs. For instances with fixed costs, the fixed cost does not depend on the

start period.
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2.7.2 Implementation Comments

We used CPLEX 9.0 as our mixed-integer programming solver, and implemented the ad-

dition of valid inequalities using CPLEX cut callback routines. For the implementation of

the specialized branch-and-cut algorithm to solve the CM formulation we used CPLEX to

solve the linear programming relaxations, select nodes to explore and manage the branch-

and-cut tree. We implemented our custom branching strategy using the branch callback

routine provided by CPLEX.

We let CPLEX generate the cuts it generates by default, and in particular, because of

the network structure of our test instances, CPLEX was able to generate many flow cover

inequalities for the LS and LBL formulations.

We investigated different strategies for using the valid inequalities we have developed,

including generating locally and globally valid inequalities at nodes throughout the search

tree, and at varying frequencies. However, we found that the simple strategy of generating

globally valid inequalities at the root node was most effective, and therefore this is the

strategy we used.

For the production and distribution planning application, we are deciding if and when

to install technology at supply points as well as on distribution arcs in the network. Because

the decisions of when to start a supply node affect the decisions of when to start distribution

on arcs from that node, it makes sense to put priority on these decisions, and we have done

so in our implementations. For the LS and LBL formulations, this is done by giving the

corresponding binary variables appropriate priority levels in CPLEX. When solving the CM

formulation the activity selection criterion we use favors selection of a supply activity over

a distribution activity. The criterion is simply to branch on the activity which has the

maximum disparity between the actual cost of the activity over the horizon ha(x) and the

lower bound on the cost given by the current value of µa. This tends to favor selection of

supply activities because the supply activity levels are generally larger than the distribution

activity levels (since one supply output can be split on many distribution arcs).
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2.7.3 Results

We first conducted tests on a set of small instances to compare the solution times and

number of nodes required to solve instances to optimality. For these instances we used a

time limit of one hour. We used a set of 30 instances, half with and half without fixed

costs. Table 2 lists each of the different sizes of instances in this test set and the geometric

average time, taken over five instances of each size, to solve these instances to optimality.

For the WL formulation, none of the instances could be solved to optimality within the

one hour time limit, so we report the average remaining optimality gaps and the average

gap between the best solution found by WL and the optimal solution (UB Gap). The

average remaining optimality gaps with the WL formulation were huge, 57% on average.

More significantly from a practical standpoint, the best solution found within the hour time

limit was 6.1% more costly than the optimal solution on average. In contrast, Tables 2 and

3 indicate that these instances could be solved in minutes using the LS, LS.C, LBL and

LBL.C formulations. An asterisk next to an item in these tables indicates that the reported

average is a lower bound on the true average since some of the instances included were not

solved to optimality in an hour (this only occurs for CM). Table 3 shows summary statistics

for 30 instances, including the geometric averages of the number of nodes and time required

to solve the instances. It also shows the average and maximum ratio of the solution time for

each formulation to the best solution time over all the formulations, as well as the number

of instances in which each formulation had the best time.

Table 2: Results for small instances.
WL Gaps Average Time (s)

FC? (|I|, |J |, T ) Opt UB LS LS.C LBL LBL.C CM

No (10,5,10) 78.9% 1.4% 30.1 28.3 18.4 16.2 *54.0
(15,5,10) 76.8% 1.5% 46.4 45.1 41.0 28.6 *497.9

(10,10,10) 55.6% 0.9% 70.5 50.9 52.8 35.0 *506.3

Yes (10,5,10) 46.0% 10.3% 16.6 20.8 6.5 6.6 *227.9
(15,5,10) 49.6% 11.3% 162.0 196.5 81.1 89.9 *1577.3

(10,10,10) 38.8% 11.2% 47.4 50.8 24.6 23.7 *373.3

* Some times were capped at one hour: average is a lower bound.

Tables 2 and 3 indicate that for the LS and LBL formulations on small instances, using
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Table 3: Summary results for 30 small instances.
LS LS.C LBL LBL.C CM

Ave time (s) 48.2 48.8 28.3 24.7 *349.7
Ave ratio to best time 2.27 2.36 1.35 1.09 *47.4
Max ratio to best time 4.91 5.16 5.23 1.55 *367.2
# Best time 0 2 14 14 0
Ave nodes 626 407 1042 407 *38236

the new cuts reduces the number of nodes on average over all instances, slightly reduces the

average solution time for instances without fixed costs, but does not help the solution times

for instances with fixed costs. These tables also indicate that LBL.C tends to solve these

sized instances to optimality significantly faster than the alternatives, whereas solving CM

takes significantly longer than the alternatives.

We also tested the formulations, excluding the WL formulation, on a set of 90 large

instances, 45 without and 45 with fixed costs. We used a time limit of two hours for these

instances, and none of the formulations were able to provably solve any of these instances

to optimality within this time limit.

Table 4 lists the instance sizes and the average optimality gap obtained within the time

limit using the different formulations. Each entry in this table is an average over five in-

stances of the size given in the row. For the LS formulation, the root LP relaxation was

not solved within the time limit for one of the largest instances with fixed costs, and so the

average gap reported is over the other four instances. From this table we observe that the

LBL.C formulation yields the smallest optimality gap after two hours in almost all cases. In

addition, using the valid inequalities in the LBL formulation usually reduces the optimality

gap obtained after two hours. In contrast to this, using the valid inequalities in the LS for-

mulation does not always reduce the optimality gap. The explanation for this is that in the

larger LS formulation, the additional time spent solving the linear programming relaxations

when using the valid inequalities outweighs the improved lower bounds obtained by using

them. An important observation to make from this table is that although these formulations

could not solve these large instances to optimality within two hours, the optimality gaps

were usually reasonable, with most being not much larger than one percent. The instances
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Table 4: Average optimality gaps for large instances.
Average Optimality Gap

FC? (|I|, |J |, T ) LS LS.C LBL LBL.C CM

No (50, 20, 10) 0.39% 0.36% 0.47% 0.32% 0.67%
(75, 20, 10) 0.25% 0.21% 0.29% 0.19% 0.50%

(100, 20, 10) 0.26% 0.19% 0.33% 0.18% 0.54%
(50, 20, 15) 0.58% 0.44% 0.70% 0.44% 0.77%
(75, 20, 15) 0.55% 0.73% 0.75% 0.40% 0.77%

(100, 20, 15) 0.86% 0.71% 0.71% 0.44% 0.85%
(50, 20, 20) 2.42% 2.38% 1.88% 1.25% 1.28%
(75, 20, 20) 1.58% 1.54% 1.50% 0.86% 1.18%

(100, 20, 20) 1.72% 1.87% 1.92% 1.26% 1.36%

Yes (50, 20, 10) 0.62% 0.48% 0.60% 0.56% 0.91%
(75, 20, 10) 0.51% 0.44% 0.51% 0.52% 0.82%

(100, 20, 10) 0.44% 0.59% 0.52% 0.47% 0.81%
(50, 20, 15) 0.94% 2.27% 1.01% 1.01% 1.36%
(75, 20, 15) 1.65% 1.88% 0.89% 0.83% 1.17%

(100, 20, 15) 2.12% 2.05% 0.79% 0.74% 1.39%
(50, 20, 20) 5.32% 5.26% 1.86% 1.85% 2.96%
(75, 20, 20) 5.58% 5.58% 2.31% 2.60% 4.17%

(100, 20, 20) *3.39% *3.42% 3.34% 3.31% 3.98%

* Average is for four of the five instances at that size.

with fixed costs and T = 20 periods are an exception, with average optimality gaps in the

3-4% range in the best cases. It is also evident from Table 4 that the instances with fixed

costs are more difficult to solve than those without fixed costs.

Table 5: Results for 45 large instances without fixed costs.
LS LS.C LBL LBL.C CM

Ave % above UB∗ 0.34% 0.39% 0.25% 0.11% 0.03%
Max % above UB∗ 2.48% 2.33% 2.00% 1.22% 0.51%
# Best UB 2 5 1 16 22
Ave LB gap to UB∗ 0.62% 0.55% 0.71% 0.49% 0.85%
Max LB gap to UB∗ 1.63% 1.80% 1.58% 1.39% 1.66%
# Best LB 0 4 0 43 0
Root LP time 554.1 558.4 195.0 193.7 13.2

Tables 5 and 6 present summary statistics for the instances without and with fixed costs,

respectively. In these tables we report for each of the formulations the average and maximum

percent by which the cost of the best solution found by the formulation exceeds UB∗, the

value of the best solution found over the six formulations. We also indicate the number of
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instances for which each formulation found the best solution. These results indicate that for

large instances without fixed costs the concave formulation CM is most effective for finding

good feasible solutions, whereas for the instances with fixed costs the LBL formulations

(with and without cuts) are most effective. These results may be explained by looking at

the average times to solve the root LP using formulation CM. For the instances without

fixed costs, the root LP of CM solves much more quickly than the alternatives, allowing it to

search many more nodes for improved feasible solutions within the two hour time limit. On

the other hand, for the instances with fixed costs, the root LP time is faster for formulation

CM, but not so much faster as to outweigh the benefits of having binary variables present

in the LBL formulation, which enables CPLEX to use its heuristics to search for good

solutions. The results on the root LP solve times suggest that CM may be the only viable

formulation to approximately solve even larger instances than the ones we have presented.

For example, for the largest instances with fixed costs, with |I| = 100, |J | = 20, T = 20, the

geometric average time to solve the LBL relaxation was 1823 seconds, whereas the average

for CM was 259 seconds.

Table 6: Results for 45 large instances with fixed costs.
LS LS.C LBL LBL.C CM

Ave % above UB∗ *1.21% *1.43% 0.11% 0.15% 0.61%
Max % above UB∗ *5.46% *5.83% 2.04% 3.05% 4.71%
# Best UB 8 7 17 16 1
Ave LB gap to UB∗ *1.10% *1.06% 1.21% 1.18% 1.36%
Max LB gap to UB∗ *4.01% *4.01% 3.92% 3.89% 4.04%
# Best LB 1 36 0 8 1
Root LP time *1374.9 *1379.3 245.2 245.1 77.0

* Based on 44 of the 45 instances.

Tables 5 and 6 also show for each formulation the average and maximum percentage gap

between the lower bound provided by that formulation and UB∗, defined as the difference

between UB∗ and the lower bound, divided by UB∗. These results explain why, despite

having good performance for finding good feasible solutions, CM yields worse average op-

timality gaps as shown in Table 4. The lower bounds obtained using CM are significantly

worse than those obtained using the other formulations. The primary reason for this is that
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this formulation does not have any binary variables, and so CPLEX cannot generate any

general purpose cutting planes, such as the flow cover inequalities.

2.7.4 Nondecreasing Special Case

We also conducted experiments using the formulations we have developed to solve instances

in which the activities (flows and production quantities in the network) are restricted to

be nondecreasing. The instances for these tests are just the instances used for the tests

described in Section 2.7.3, with the addition of the nondecreasing constraints. Note that

the formulations in this case have O(T |A|) more rows than specified in Table 1.

As in Section 2.7.3, we first conducted tests on a set of small instances. We initially

tested the formulations developed in Sections 2.4 and 2.5 which do not use the nonde-

creasing restriction to strengthen the formulations. Table 7 gives the results. The results

are qualitatively similar to those obtained for the small instances without the nondecreas-

ing restriction, although the computation times with the new formulations are longer. In

particular, most of the instances could be solved to optimality within the one hour time

limit using formulations LS and LBL, whereas the weak linearization formulation left huge

optimality gaps.

Table 7: Results for small nondecreasing instances.
WL Gaps Average Time (s)

FC? (|I|, |J |, T ) Opt UB LS LS.C LBL LBL.C CM

No (10,5,10) 77.23% 1.51% 54.3 66.9 54.8 40.5 *116.8
(15,5,10) 75.29% 2.48% *400.4 *344.5 *276.5 *159.8 *620.9

(10,10,10) 56.06% 1.16% *449.1 *350.3 *329.7 *310.2 *648.2

Yes (10,5,10) 39.34% 8.03% 22.3 25.6 15.1 18.4 121.4
(15,5,10) 47.35% 11.76% *209.0 *236.4 211.0 210.7 *474.8

(10,10,10) 35.80% 9.66% 45.2 43.9 47.8 48.3 *199.0

* Some times were capped at one hour: average is a lower bound.

We next tested the formulations developed in Section 2.6 which are strengthened by

using the nondecreasing restriction. These results are given in Tables 8 and 9. Here, LSN

refers to the lot sizing formulation, with the stronger inequalities (49) used in place of (16).

LSN.C refers to formulation LSN augmented with the inequalities of Theorem 13 added at
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the root node. LBLN refers to the formulation derived in Theorem 16. Two strengthened

versions of LBLN were tested: LBLN.S adds the inequality (58) which was developed for the

concave formulation and LBLN.C adds the inequalities of Lemma 14 as violated at the root

node. Finally, CMN refers to the concave minimization formulation, in which (58) is used

in the initial relaxation, and (60) is used when r(anching). It is clear that strengthening

Table 8: Results for small nondecreasing instances using nondecreasing restriction.
Average Time (s)

FC? (|I|, |J |, T ) LSN LSN.C LBLN LBLN.S LBLN.C CMN

No (10,5,10) 8.3 7.6 3.8 4.2 10.1 2.2
(15,5,10) 11.4 11.7 5.0 4.9 12.8 3.3

(10,10,10) 19.5 17.3 9.3 8.9 20.9 10.0

Yes (10,5,10) 23.3 20.7 14.9 11.5 23.8 11.2
(15,5,10) 135.0 139.6 115.8 93.0 143.4 51.7

(10,10,10) 30.2 28.3 34.6 14.7 38.2 23.6

the formulations using the nondecreasing restriction yields significantly faster computation

times. In addition, we see that in contrast to the case without the nondecreasing condition,

the concave formulation CMN often yields the smallest computation times despite requiring

more nodes to solve the problems. When using CMN, solving each node relaxation is much

faster due to the compactness of the formulation and the fact that only a single inequality

(58) is required to obtain a reasonable lower bound. Moreover, although more nodes are

required to solve CMN than the integer linear formulations, the number is not significantly

more, as was the case when the nondecreasing restriction was not present. This may be

explained by the fact that we add (60) at each node, which yields the convex hull of the

single activity formulation subject to the additional conditions imposed by branching.

Table 9: Summary results for 30 small nondecreasing instances.

LSN LSN.C LBLN LBLN.S LBLN.C CMN

Ave time (s) 23.6 22.4 9.9 10.5 17.1 10.0
Ave ratio to best 3.9 3.8 1.7 1.8 4.1 2.4
Max ratio to best 10.4 9.8 4.0 4.8 18.0 21.8
# Best time 0 0 4 6 3 17
Ave nodes 210.2 161.0 267.3 266.8 239.2 1803.0
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We next tested the formulations which were strengthened using the nondecreasing re-

striction on 90 large instances, 45 with and 45 without fixed costs. The average optimality

obtained gaps after the two hour time limit are reported in Table 10. From these tables we

observe that for the relatively smaller instances, those with T ≤ 15, all the formulations did

quite well, usually yielding optimality gaps of less than one percent. We also observe that

for both the LSN and the LBLN formulations, adding cuts to strengthen the formulation

did not significantly affect the results. It appears that the strengthened formulations ob-

tained using the nondecreasing condition yield good formulations without the need to add

additional cuts.

Table 10: Average optimality gaps for large nondecreasing instances.

Average Optimality Gap
FC? (|I|, |J |, T ) LSN LSN.C LBLN LBLN.S LBLN.C CMN

No (50, 20, 10) 0.24% 0.22% 0.21% 0.20% 0.20% 0.36%
(75, 20, 10) 0.20% 0.20% 0.17% 0.18% 0.17% 0.31%

(100, 20, 10) 0.26% 0.27% 0.22% 0.23% 0.22% 0.31%
(50, 20, 15) 0.42% 0.41% 0.41% 0.40% 0.40% 0.54%
(75, 20, 15) 0.56% 0.54% 0.63% 0.58% 0.52% 0.53%

(100, 20, 15) 0.65% 0.80% 0.49% 0.50% 0.42% 0.40%
(50, 20, 20) 1.75% 2.00% 1.14% 1.22% 1.36% 0.86%
(75, 20, 20) 2.36% 3.04% 0.93% 1.32% 1.26% 0.67%

(100, 20, 20) *2.94% *2.83% 1.26% 1.26% 1.64% 0.50%

Yes (50, 20, 10) 0.51% 0.54% 0.44% 0.43% 0.43% 0.70%
(75, 20, 10) 0.66% 0.70% 0.57% 0.55% 0.53% 0.70%

(100, 20, 10) 0.69% 0.69% 0.58% 0.59% 0.62% 0.67%
(50, 20, 15) 1.17% 1.25% 1.24% 1.17% 1.21% 1.22%
(75, 20, 15) 4.55% 4.58% 1.05% 1.05% 1.04% 1.00%

(100, 20, 15) 6.75% 6.75% 0.94% 0.94% 0.93% 0.89%
(50, 20, 20) 12.44% 12.77% 9.94% 10.53% 9.19% 1.96%
(75, 20, 20) ** ** 14.34% 14.18% 13.15% 1.63%

(100, 20, 20) ** ** 10.73% 10.65% 9.55% 1.24%

* Average is for four of the five instances at that size.
** The root linear program was not solved for any of the instances at that size.

In Tables 11 - 13 we present summary statistics for these 90 instances. Table 11 presents

the results for the 45 instances without fixed costs. From this table we see that the CMN

formulation is clearly the best at generating good feasible solutions. In the worst case, the

solution it generated was 0.03% worse than the best solution generated. However, the LBLN
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formulation was also not bad, generating solutions which were on average only 0.22% more

costly than the best generated. We also observe that the LBLN formulations yield the best

lower bounds, but that the lower bounds from the CMN formulation are not significantly

worse. The summary results for the smaller instances with fixed costs, those with T = 10

or T = 15 are presented in Table 12. These results are qualitatively similar to the results

for the instances without fixed costs. One difference is that advantage possessed by the

CMN formulation in time to solve the root LP is greater for the instances with fixed costs.

Finally, in Table 13 we present the summary results for the 15 instances with fixed costs and

T = 20. We separated these results from those with T ≤ 15 because for these instances the

LSN and LBLN formulations spent the majority of the two hour time limit just solving the

root LP relaxation, and hence these formulations did not have time to find good solutions.

In fact, the larger LSN formulation was only able to solve the root relaxation in the two

hour limit for the five of the 15 instances with |I| = 50. In contrast, the CMN formulation

solves the root LP relaxation much more quickly and was therefore still able to find good

solutions. As a result, the CMN formulation yielded the best solution in all cases, and the

best solution found by the other formulations was significantly worse.

Table 11: Summary results for 45 large nondecreasing instances without fixed costs.

LSN LSN.C LBLN LBLN.S LBLN.C CMN

Ave % above UB∗ *0.61% *0.73% 0.22% 0.27% 0.30% 0.00%
Max % above UB∗ *3.41% *3.67% 1.41% 1.95% 2.04% 0.03%
# Best UB 1 4 0 0 5 36
Ave LB gap to UB∗ *0.40% *0.40% 0.39% 0.39% 0.39% 0.50%
Max LB gap to UB∗ *1.09% *1.09% 1.08% 1.11% 1.10% 1.24%
# Best LB 1 2 16 14 12 0
Root LP time *821.6 *804.6 304.4 321.4 305.4 109.6

* Based on 44 of the 45 instances.

2.7.5 Comparison of General and Nondecreasing Results

We now compare the computational results obtained with and without the nondecreasing

restriction. Table 14 presents the average optimality gaps obtained after the two hour

time limit (as in Tables 4 and 10) using the LBL formulation with and without cuts and
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Table 12: Summary results for 30 large nondecreasing instances with fixed costs and
T ≤ 15.

LSN LSN.C LBLN LBLN.S LBLN.C CMN

Ave % above UB∗ 1.79% 1.83% 0.14% 0.13% 0.13% 0.00%
Max % above UB∗ 10.90% 10.90% 0.62% 0.41% 0.38% 0.02%
# Best UB 0 0 2 1 1 27
Ave LB gap to UB∗ 0.71% 0.71% 0.66% 0.66% 0.66% 0.86%
Max LB gap to UB∗ 1.16% 1.14% 1.04% 1.05% 1.05% 1.35%
# Best LB 0 1 12 11 6 0
Root LP time 1163.2 1131.0 378.3 372.3 379.8 82.3

Table 13: Summary results for 15 large nondecreasing instances with fixed costs and
T = 20.

LSN LSN.C LBLN LBLN.S LBLN.C CMN

Ave % above UB∗ *12.5% *12.7% 11.8% 11.9% 10.6% 0.0%
Max % above UB∗ *16.2% *14.6% 20.5% 17.2% 20.5% 0.0%
# Best UB 0 0 0 0 0 15
Ave LB gap to UB∗ *1.71% *1.71% 1.43% 1.42% 1.43% 1.61%
Max LB gap to UB∗ *2.39% *2.40% 2.44% 2.41% 2.42% 2.96%
# Best LB 2 0 5 2 6 0
Root LP time *3609.6 *3484.0 2587.4 2770.2 2561.0 419.4

* Based on the 5 of the 15 instances with |I| = 50.
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the CM formulation. The LS formulation is excluded from this comparison because in

most cases it does not yield competitive results. The results are generally similar in that

Table 14: Comparison of results with and without nondecreasing constraint.

General Activities Nondecreasing Activities
FC? (|I|, |J |, T ) LBL LBL.C CM LBLN LBLN.C CMN

No (50, 20, 10) 0.47% 0.32% 0.67% 0.21% 0.20% 0.36%
(75, 20, 10) 0.29% 0.19% 0.50% 0.17% 0.17% 0.31%
(100, 20, 10) 0.33% 0.18% 0.54% 0.22% 0.22% 0.31%
(50, 20, 15) 0.70% 0.44% 0.77% 0.41% 0.40% 0.54%
(75, 20, 15) 0.75% 0.40% 0.77% 0.63% 0.52% 0.53%
(100, 20, 15) 0.71% 0.44% 0.85% 0.49% 0.42% 0.40%
(50, 20, 20) 1.88% 1.25% 1.28% 1.14% 1.36% 0.86%
(75, 20, 20) 1.50% 0.86% 1.18% 0.93% 1.26% 0.67%
(100, 20, 20) 1.92% 1.26% 1.36% 1.26% 1.64% 0.50%

Yes (50, 20, 10) 0.60% 0.56% 0.91% 0.44% 0.43% 0.70%
(75, 20, 10) 0.51% 0.52% 0.82% 0.57% 0.53% 0.70%
(100, 20, 10) 0.52% 0.47% 0.81% 0.58% 0.62% 0.67%
(50, 20, 15) 1.01% 1.01% 1.36% 1.24% 1.21% 1.22%
(75, 20, 15) 0.89% 0.83% 1.17% 1.05% 1.04% 1.00%
(100, 20, 15) 0.79% 0.74% 1.39% 0.94% 0.93% 0.89%
(50, 20, 20) 1.86% 1.85% 2.96% 9.94% 9.19% 1.96%
(75, 20, 20) 2.31% 2.60% 4.17% 14.34% 13.15% 1.63%
(100, 20, 20) 3.34% 3.31% 3.98% 10.73% 9.55% 1.24%

most of the instances could be solved to within a reasonable optimality gap within two

hours. One difference is that adding the new valid inequalities to the LBL formulation

without the nondecreasing condition is very helpful, whereas they are not helpful when

the nondecreasing constraint is present. A possible explanation for this is that the LBLN

formulation has already been strengthened somewhat using the nondecreasing restriction,

so that the incremental strengthening obtained from adding more valid inequalities does not

outweigh the increased time to solve the linear programming relaxations. Another difference

is that the concave formulation performs better relative to the LBL formulation in the case

of nondecreasing activities, particularly for the instances with long planning horizon T .

This can be explained partially because the convex hull of the concave formulation is given

by a single additional inequality in the nondecreasing case, whereas many cuts have to be

added to obtain a strong relaxation for the concave formulation in the general activities
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case. Adding these additional cuts can somewhat offset the compactness advantage of the

concave formulation. In addition, the formulations with the nondecreasing restriction have

more rows due to the nondecreasing constraints, and hence, given the same two hour time

limit, it will be relatively more important to be using a more compact formulation.

2.8 Concluding Remarks

We have studied a strategic planning model which addresses the question of when to in-

stall technology in an environment in which technology is improving over time. A natural

formulation of this model leads to a mixed-integer program with bilinear objective. We

have developed a series of progressively more compact formulations that can be used to

solve large-scale instances. Some of the results we have developed to strengthen these

formulations have been implemented in practice and have led to significant reductions in

computation time.

Our computational study indicates that a simple linearization of the bilinear objective

yields a formulation with very weak bounds, and hence fails to solve even small instances.

However, strengthening this formulation by using ideas from lot sizing enables small in-

stances to be solved to optimality quickly, and reasonable optimality bounds to be obtained

for large instances. Studying the mixed-integer bilinear program directly leads to a new

mixed-integer linear formulation which introduces significantly fewer linearization variables.

Using this formulation leads to reduced computation times for the small instances, and im-

proved optimality gaps within the specified time limit for large instances. In particular, this

more compact formulation allows better feasible solutions to be found. Implementation of

valid inequalities we have developed for this formulation can also lead to improved com-

putational times. Finally, we have presented a specialized branch-and-cut algorithm which

solves an extremely compact concave minimization formulation, and hence can be used to

generate good solutions and optimality bounds for large-scale instances. In particular, for

very large-scale instances, just solving the relaxation of the mixed-integer linear formula-

tions may take prohibitively long, so that using this formulation may be the only viable

option.
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In this study, we began by assuming only that the activity levels are constrained by

an upper bound, common over all time periods. However, our approach can be used when

more general constraints on the activity levels are present. One example of such a con-

straint, which was present in a variant of the application that motivated this work, is that

the activities are restricted to be nondecreasing over time, and we have seen in Section 2.6

that the formulations can be strengthened by using this additional restriction. The com-

putational results indicate that using these strengthened formulations leads to significantly

reduced computation times. Another plausible example of an activity constraint is a ramp-

ing restriction on the activity levels, which would state that once an activity is begun, it

must be performed within certain levels over time. Our approach can still be used to yield

formulations and valid inequalities in this case. However, as in the nondecreasing special

case, it may be possible to make use of these additional restrictions on the activities over

time to yield stronger formulations. This is an area for future work.

A major limitation of our model is that it assumes all data is deterministic. Considering

that the problem we study is a strategic planning problem with a long planning horizon, it

is unrealistic to assume the data for future periods is known with certainty. In particular,

data such as the customer demands and costs of not meeting demand (e.g., prices of the

product that would have been sold) would be uncertain at the time the decisions are being

made. Perhaps more significantly, the improvements in technology which determine the

start-time dependent variable costs are likely to be challenging to predict. Therefore, it

would be valuable to study extensions to this model which consider this uncertainty. This

will be a very challenging extension, due to the multi-period nature of the problem and

the difficulty in even modeling technology improvements over time. Thus, this problem

could serve as an excellent motivation for the development of new modeling approaches and

optimization methods for solving large-scale problems under uncertainty.
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CHAPTER III

NEW APPROACHES FOR OPTIMIZATION WITH PROBABILISTIC

CONSTRAINTS

3.1 Introduction

Consider an optimization problem with a probabilistic or chance constraint

min
{

cx : x ∈ X, P
{

G(x, ξ) ≤ 0
}

≥ 1 − ǫ
}

(PCP)

where X ⊂ Rn represents a deterministic feasible region, c ∈ Rn, ξ is a random vector

taking values in Rd, G : Rn × Rd → Rm is a given constraint mapping and ǫ is a risk

parameter chosen by the decision maker, typically near zero, e.g., ǫ = 0.01 or ǫ = 0.05.

Problem PCP is also referred to as a probabilistic program. In PCP we enforce a single

probabilistic constraint over all rows in the constraints G(x, ξ) ≤ 0, rather than requiring

that each row independently be satisfied with high probability. Such a constraint is known

as a joint probabilistic constraint, and is appropriate in a context in which it is important to

have all constraints satisfied simultaneously and there may be dependence between random

variables in different rows.

Problems with joint probabilistic constraints have been extensively studied; see [57] for

background and an extensive list of references. Probabilistic constraints have been used

in various applications including supply chain management [43], production planning [49],

optimization of chemical processes [35, 36] and surface water quality management [67].

Unfortunately, probabilistic programs are still largely intractable except for a few very

special cases. There are two primary reasons for this intractability. First, in general,

for a given x ∈ X, the quantity P
{

G(x, ξ) ≤ 0
}

is hard to compute, as it requires multi-

dimensional integration, and hence just checking feasibility of a solution is difficult. Second,

the feasible region defined by a probabilistic constraint generally is not convex. We propose

to address the difficulty in checking feasibility by solving a sample approximation problem

based on a finite number of Monte Carlo samples of ξ. In addition, we propose to solve the
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resulting non-convex sample approximation problem by mixed-integer programming.

In Section 3.3 we study how a sample approximation problem can be used to generate

feasible solutions and optimality bounds for general probabilistic programs. We show that a

sample approximation problem with risk level larger than the nominal risk level ǫ will yield

a lower bound to the true optimal value with probability approaching one exponentially

fast. This leads to an a priori estimate on the sample size required to have high confidence

that the sample approximation will yield a lower bound. We also discuss alternative means

of generating lower bounds, which can be used regardless of the sample size used. We then

provide conditions under which solving a sample approximation problem with a risk level

smaller than ǫ will yield feasible solutions to the original problem with high probability.

Once again, we obtain a priori estimates on the sample size required to obtain high confi-

dence that the sample approximation problem will yield a feasible solution to the original

problem.

A key difference between our sample approximation scheme and existing approximations

(e.g. [17, 51, 52]) is that we allow the risk level in the sample approximation problem to be

positive, that is, we do not require that all sampled constraint sets be satisfied. Instead,

the constraint sets which will be satisfied can be chosen optimally. The disadvantage of this

scheme is that the sample approximation problem with positive risk level has a non-convex

feasible region, and hence can be difficult to solve despite having a simplified probabilistic

structure. Thus, in Section 3.4, we study how the sample approximation problem can be

solved by mixed-integer programming. In particular, we study the special case in which

only the right-hand side ξ is random, leading to strong formulations which can be used to

solve instances with many rows and very many scenarios. Our approach in developing these

formulations is to consider the relaxation obtained from a single row of the probabilistic

constraint. This yields a system similar to the mixing set introduced by Günlük and Pochet

[32], subject to an additional knapsack inequality. We derive strong valid inequalities for

this system by first using the knapsack inequality to “pre-process” the mixing set and

then applying the mixing inequalities of [32]; see also [3, 31]. We also derive an extended

formulation, equivalent to one given by Miller and Wolsey in [48]. Making further use

69



of the knapsack inequality, we derive more general classes of valid inequalities for both

the original and extended formulations. If all scenarios are equally likely, the knapsack

inequality reduces to a cardinality restriction. In this case, we characterize the convex hull

of feasible solutions to the extended formulation for the single row case. Although these

results are motivated by the application to PCP, they can be used in any problem in which

a mixing set appears along with a knapsack constraint.

The remainder of this chapter is organized as follows. We begin in Section 3.2 by dis-

cussing how our work relates to previous work. In Section 3.3 we present and analyze the

sample approximation scheme. In Section 3.4 we study how the sample approximation

problem can be solved in the special case in which only the right-hand side is random. We

present results of a preliminary computational study of the use of the sample approximation

scheme in Section 3.5. In Section 3.6 we present computational results using the strength-

ened formulations to solve the sample approximation problem. We close with concluding

remarks and directions for future research in Section 3.7.

3.2 Relation to Previous Work

We begin by discussing results which are related to the sample approximation scheme we

propose in Section 3.3. For solving the sample approximation problem we consider the case

in which only the right-hand side is random, and thus we discuss methods which have been

used to solve this special case of PCP. Finally, we discuss prior work that has used integer

programming to solve problems with probabilistic constraints.

3.2.1 Approximations of Probabilistic Constraints

The idea of using sample approximation problems in stochastic programming has a long

history, and this approach is often referred to as Sample Average Approximation (SAA).

Usually, this approach is applied to solve problems of the form

min
x∈X

E
[

F (x, ξ)
]

(61)

in which the expected value of a function depending on the random vector ξ is to be

optimized, with the decision variables varying in a deterministic feasible region. In the
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SAA scheme, random samples ξ1, . . . , ξN are taken of ξ and the objective in (61) is replaced

by the sample average objective, leading to the approximation problem

min
x∈X

1

N

N
∑

i=1

F (x, ξi). (62)

In [20] it is shown that under fairly mild conditions for any β > 0, the probability that the

distance between the optimal value (and solution) of (62) and the true optimal value (and

solution) of (61) exceeds β converges to zero exponentially fast in N . In [65] the authors

consider the SAA approach when X is a convex set, F (x, ξ) is convex in x for all ξ and either

(61) has a unique minimum or ξ has finite distribution and (61) corresponds to a two-stage

stochastic linear program. Under these conditions, they show the optimal solution to (62)

is an optimal solution of (61) with probability approaching one exponentially fast in N . In

[41] similar results are derived for the case in which the feasible region is finite. In addition,

[41] presents a statistical method for generating optimality bounds by solving multiple SAA

problems. In the context of two-stage stochastic programs, these results are extended in [2]

to the case in which the second stage may have integer variables and the first stage feasible

region is not necessarily finite. A significant computational study of the SAA method in

these contexts has been conducted in [45].

Results for the SAA approach applied to problems with random quantities in the con-

straints are less common. In [64], a class of problems is studied which includes problems

with expected value constraints, i.e.

min
x∈X

{

E
[

F (x, ξ)
]

: E
[

H(x, ξ)
]

≥ b
}

. (63)

A probabilistic constraint P
{

G(x, ξ) ≤ 0
}

≥ 1−ǫ can be cast as an expected value constraint

by letting H(x, ξ) = I
(

G(x, ξ) ≤ 0
)

, where I
(

·
)

is the indicator function taking value one

when · is true and zero otherwise. Thus, E[H(x, ξ)] = P
{

G(x, ξ) ≤ 0
}

. Unfortunately, in

[64], it is assumed that H is continuous in x, and hence these results are not applicable

for probabilistic constraints. This is also true for the recent results presented in [8], where

convergence to a (possibly local optimal) solution which satisfies second order optimality

conditions is studied in the case where H may be non-convex. In [4] a model with expected

value constraints in which the function H is not necessarily continuous is considered, and
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hence their analysis does apply to the case of probabilistic constraints. However, they

consider only the case in which the feasible region is finite, and they only discuss the

theoretical rate of convergence. In contrast, we begin with a similar analysis for the finite

feasible region case, but then extend the analysis to a number of significantly more general

settings. In addition, we separate the analysis of when the sample approximation will be

likely to yield a lower bound, and when it will be likely to yield feasible solutions. This

separate analysis allows for the development of methods which yield optimality statements

which hold with high probability.

Vogel [70] considers convergence properties of the sample approximation we use for prob-

abilistic programs. When only the right-hand side is random with continuous distribution,

it is shown that the probability that the distance between the sample feasible region and

true feasible region is larger than any positive threshold decreases exponentially fast with

the size of the sample. However, the convergence rate has poor dependence on the dimension

of the random vector, implying that the number of samples required to yield a reasonable

approximation would have to grow exponentially in this dimension. Better convergence is

demonstrated for the case of random right-hand side with discrete distribution. For the gen-

eral case, linear convergence is demonstrated in the case of continuous distributions. Our

analysis of the sample approximation problem extends these results by improving on the

convergence rates and by analyzing what happens when we allow the sample approximation

problem to have different risk level than the nominal risk level ǫ. This allows the sample

approximation problem to be used to generate feasible solutions and optimality bounds.

Recently, a number of approaches have been proposed to find approximate solutions

to probabilistic programs; the common theme among these is that they all seek “safe” or

conservative approximations which can be solved efficiently. That is, they propose approxi-

mation problems which are convex and yield solutions which are feasible, or at least highly

likely to be feasible, to the original probabilistic program. Approaches of this type include:

the scenario approximation method introduced by Calafiore and Campi [16, 17] and sig-

nificantly extended by Nemirovski and Shapiro [51]; the Bernstein approximation scheme

of Nemirovski and Shapiro [52]; and robust optimization e.g., [11, 15, 27]. The scenario
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approximation methods are most similar to the sample approach we propose in that they

solve an approximation problem based on independent Monte Carlo samples of the random

vector. For example, if the problem has the form

min
x∈X

{

f(x) : P
{

G(x, ξ) ≤ 0
}

≥ 1 − ǫ
}

(64)

the scenario approximation of [16, 17] takes samples ξ1, . . . , ξN and solves the approximate

problem

min
x∈X

{

f(x) : G(x, ξi) ≤ 0 i = 1, . . . ,N
}

. (65)

That is, the scenario approximation enforces all of the constraints corresponding to the

samples taken. When X ⊆ Rn is a convex set, f is convex and G is convex in x for each

ξ, they show that the scenario approximation problem will yield a feasible solution to (64)

with probability at least 1 − δ for

N ≥
2

ǫ
log

(

1

δ

)

+ 2n +
2n

ǫ
log

(

2

ǫ

)

. (66)

In addition, under the stated convexity assumptions, the scenario approximation problem

remains a convex program. An advantage of this approach relative to the approximations

[11, 15, 27, 52] is that the only assumption that is made on ξ is that samples can be taken

from it. In [51], it is shown that by taking random samples from a modified distribution, the

number of scenarios, N , required to yield a feasible solution to (64) grows logarithmically

with 1/ǫ, as compared to the linear growth given in (66).

The conservative approximations, when applicable, are attractive because they allow

efficient generation of feasible solutions. In particular, they can yield feasible solutions

when the probabilistic constraint is “hard,” that is, with ǫ very small, such as ǫ = 10−6 or

even ǫ = 10−12. However, in a context in which ǫ is not so small, such as ǫ = 0.05 or ǫ = 0.01,

the probabilistic constraint is more likely to represent a “soft” constraint, one which the

decision-maker would like to have satisfied, but is willing to allow a nontrivial chance that

it will be violated if doing so would significantly decrease the cost of the implemented

solution. In this latter context, it would be desirable to obtain solutions which are feasible

to the probabilistic constraint along with an assurance that the solutions are not too much
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more costly than the lowest cost solution attaining the same risk level. In this way, the

decision-maker can be confident they are choosing from solutions on the efficient frontier

between the competing objectives of cost and risk. Unfortunately, with one exception, the

recently proposed conservative approximations say very little in terms of how conservative

the solutions are. In particular, it is not possible to make a statement about how much

worse the objective is relative to the optimal value at a fixed risk level ǫ. The exception

to this is [52], in which a statistical scheme for finding a lower bound based on solving

multiple scenario approximations of the form (65) is presented, although the effectiveness

of this bounding approach is not thoroughly investigated.

We propose a sample approximation scheme which is based on Monte Carlo samples of

the random vector ξ, but in contrast to the scenario approximation approach, we do not

require all sets of constraints to be satisfied. Instead, we solve an approximation problem

which is itself an optimization problem with probabilistic constraints, but in this case the

probability distribution is taken to be the empirical distribution obtained from the sample.

The advantage of this approach is that it allows the generation of optimality guarantees

with high probability, and allows these guarantees to be improved with increasing sample

size. In addition, we expect it to yield solutions which are less conservative than those

given by the conservative approximation schemes. The major disadvantage of our sample

approximation is that even in the nice case when X is convex, f is convex, and G(x, ξ) is

convex in x the sample approximation problem will not be convex. Additionally, our sample

approximation scheme will only be applicable when ǫ is not too small, since for very small ǫ

the number of samples required to obtain a reasonable approximation would be intractably

large.

Finally, we note that in the context of generating feasible solutions for (64), our sample

approximation scheme includes as a special case the scenario approximation of [16, 17] in

which the constraints corresponding all samples are enforced. In this special case, we obtain

results very similar to those in [17] in terms of how many samples should be used to yield a

solution feasible to (64) with high probability. However, our analysis is quite different from

the analysis of [17], and in particular, requires a significantly different set of assumptions.
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In some cases our assumptions are more stringent, but there are also a number of cases in

which our assumptions apply and those of [17] do not, most notably if the feasible region

X is not convex, as in the case of a mixed-integer program.

3.2.2 Probabilistic Constraints with Random Right-hand Side

When we turn to solving the sample approximation problem, we consider the special case

in which randomness appears only in the right-hand side of the probabilistic constraints.

Despite its restrictiveness, this special case has received considerable attention in the liter-

ature, see, e.g., [18, 21, 57]. In the case of continuous random variables, the primary focus

has been on special cases in which the feasible region turns out to be convex. In [56, 57],

Prékopa demonstrates that if the probability measure associated with the random right-

hand side is logarithmically concave, then the associated probabilistic constraint defines a

convex set. Furthermore, it is demonstrated that many continuous distributions indeed sat-

isfy this property. Because of this, methods to solve general convex programming problems

can be adapted to solve the probabilistic programming problem in this case. However, the

work required to obtain reasonable estimates of the function values and gradient evaluations

required for these methods grows very quickly with the dimension of the random vector,

since these estimates require integration in multiple dimensions. As a result, these methods

are limited to problems with relatively small dimension of the random right-hand side.

When the random right-hand side vector is discrete, the majority of past work has

attempted to make use of the concept of p-efficient points. The set of p-efficient points basi-

cally corresponds to the set of non-dominated solutions of the probabilistically constrained

program, and has been shown to be finite when the random right-hand side is discrete (but

not necessarily finite), although the size is generally exponential in the dimension of the

vector. A number of methods have been developed that attempt to solve such problems by

exploiting this structure, see for example [13, 21, 57]. These methods have proven successful

for solving problems with discrete distributions in which the dimension of the random vector

is not too large. Unfortunately, as the dimension increases, the problem of generating these

p-efficient points can become intractable. If the random vector consists of independent and
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bounded component random variables, a binary integer program can be solved to generate

p-efficient points as needed, although it increases in size with the dimension of the random

vector and the number of possible values each component random variable can take on. As

noted in [21], generation of p-efficient points in the case of dependent random variables will

require new specialized algorithms.

In [14], the probabilistic set covering problem (PSC) is introduced. PSC is a set covering

problem in which the right-hand side is random and a probabilistic constraint is enforced.

In [14], the authors propose to solve PSC by enumeration, explicit or implicit, of the p-

efficient points. More recently, in [63], the authors propose a formulation which also uses

the ideas of p-efficient points, but exploits the possible existence of independent sub-vectors

of the right-hand side. Because the sub-vectors have much smaller dimension, the number

of p-efficient points for each sub-vector is manageable. This formulation is possible because

the random right-hand side vector can only take values zero or one. In [62], Saxena proposes

a delayed constraint generation scheme for this formulation of PSC which can possibly be

used when the size of the sub-vectors gets large.

Another approach for solving probabilistic programs when only the right-hand side is

random has been given in [18], in which a branch and bound algorithm is proposed. This

algorithm is based on monotonicity arguments and can in theory be applied if the right-

hand side random vector is discrete or continuous. However, for general distributions the

inherent difficulty of checking feasibility persists, limiting the applicability to cases in which

the dimension of right-hand side vector is small.

3.2.3 MIP Approach to Probabilistic Constraints

The idea to use mixed-integer programming (MIP) to solve linear programs with probabilis-

tic constraints when the distribution of ξ is finite has been explored by Ruszczyński in [61].

Using the concept of dominance between the different possible outcomes of ξ, the author

proposes to strengthen the MIP by adding precedence constraints and combining these with

the knapsack inequality appearing in the formulation to develop valid inequalities, based on

the idea of an induced cover and lifting. These techniques allow the solution of moderate
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size instances in this general setting which allows randomness in the constraint matrix. Un-

fortunately, as the number of random components increases, the occurrence of dominance

between scenarios will likely decrease, so that these techniques may not be sufficient to solve

larger instances. In our analysis of solving the sample approximation problem, we begin

with the same MIP formulation presented in [61], but we take advantage of the assumption

that only the right-hand side is random to obtain strong formulations for that special case.

3.3 Sample Approximations

We now study how Monte Carlo sampling can be used to generate probabilistically con-

strained problems with finite distribution which can be used to approximate problems with

general distributions. We begin by considering the general problem

z∗ǫ = min
{

f(x) : x ∈ Xǫ

}

(Pǫ)

where

Xǫ =
{

x ∈ X : P
{

G(x, ξ) ≤ 0
}

≥ 1 − ǫ
}

.

Here X ⊆ Rn represents the deterministic feasible region, f(x) is the real valued objective

function, and G : Rn × Rd → Rm is a constraint mapping depending on x and a random

vector ξ : Ω → Rd defined on a probability space (Ω,Σ, P ). We let Ξ denote the support of

ξ, that is, Ξ is the smallest closed set such that P
{

ξ ∈ Ξ
}

= 1. We assume z∗ǫ exists and

is finite. For example, if X is compact and G(x, ξ) is affine in x for each ξ ∈ Ξ, then Xǫ is

closed [34] and hence compact, and so if f(x) is continuous then an optimal solution exists

whenever Xǫ 6= ∅. Furthermore, we take as an assumption the measurability of any event

S taken under probability, such as the event {G(x, ξ) ≤ 0} for each x ∈ X.

If X is a polyhedron, f(x) = cx, G(x, ξ) = ξ − Tx (d = m) then we obtain the

probabilistically constrained linear program with random right-hand side

min
{

cx : x ∈ X,P
{

Tx ≥ ξ
}

≥ 1 − ǫ
}

. (PCLPR)

We can also model a two-stage problem in which we make a decision x and wish to guarantee

that with probability at least 1 − ǫ there is a feasible recourse decision y satisfying Wy ≥
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H(x, ξ), where W is an m by l matrix, and H : Rn × Rd → Rm. This is accomplished by

letting G : Rn × Rd → R be defined by

G(x, ξ) = min
µ,y

{µ : Wy + µe ≥ H(x, ξ), µ ≥ −1}

where e ∈ Rm is a vector of all ones. Indeed, G(x, ξ) ≤ 0 if and only if there exists y ∈ Rl

and µ ≤ 0 such that Wy + µe ≥ H(x, ξ), which occurs if and only if there exists y ∈ Rl

such that Wy ≥ H(x, ξ).

Due to the general difficulty in calculating P
{

G(x, ξ) ≤ 0
}

for a given x ∈ X, we

seek to approximate Pǫ by solving a sample approximation problem. We let ξ1, . . . , ξN be

independent Monte Carlo samples of the random vector ξ. Then, for fixed α ∈ [0, 1) the

sample approximation problem is defined to be

ẑN
α = min

{

f(x) : x ∈ XN
α

}

(PN
α )

where

XN
α =

{

x ∈ X :
1

N

N
∑

i=1

I
(

G(x, ξi) ≤ 0
)

≥ 1 − α
}

.

We adopt the convention that if XN
α = ∅ then ẑN

α = +∞, whereas if PN
α is unbounded, we

take ẑN
α = −∞. We assume that, except for these two cases, PN

α has an optimal solution.

This assumption is satisfied, for example, if X is compact, f(x) is continuous and G(x, ξ)

is continuous in x for each ξ ∈ Ξ, since then XN
α is the union of finitely many compact sets

(in this case ẑN
α = −∞ is also not possible). If α = 0, the sample approximation problem

PN
0 corresponds to the scenario approximation of probabilistic constraints, studied in [17]

and [51]. Our goal is to establish statistical relationships between problems Pǫ and PN
α for

α ≥ 0. We first consider when PN
α yields lower bounds for Pǫ, then consider when PN

α yields

feasible solutions for Pǫ.

3.3.1 Lower Bounds

We now establish a bound on the probability that PN
α yields a lower bound for Pǫ. Let

ρ(α, ǫ,N) =

⌊αN⌋
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i.
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ρ(α, ǫ,N) represents the probability of having at most ⌊αN⌋ “successes” in N independent

trials, in which the probability of a success in each trial is ǫ.

Lemma 20. Assume Pǫ has an optimal solution. Then,

P
{

ẑN
α ≤ z∗ǫ

}

≥ ρ(α, ǫ,N).

Proof. Let x∗ ∈ Xǫ be an optimal solution to Pǫ. Then, P
{

G(x∗, ξi) � 0
}

≤ ǫ for each i.

Hence, if we call the event {G(x∗, ξi) � 0} a success, then the probability of a success in

trial i is φ̄(x∗) := P
{

G(x∗, ξi) � 0
}

≤ ǫ. By definition of XN
α , x∗ ∈ XN

α if and only if

1

N

N
∑

i=1

I
(

G(x∗, ξi) ≤ 0
)

≥ 1 − α ⇔
1

N

N
∑

i=1

I
(

G(x∗, ξi) � 0
)

≤ α

⇔
N

∑

i=1

I
(

G(x∗, ξi) � 0
)

≤ ⌊αN⌋.

Hence, P
{

x∗ ∈ XN
α

}

is the probability of having at most ⌊αN⌋ successes in N trials. Also,

if x∗ ∈ XN
α then ẑN

α ≤ z∗ǫ . Thus,

P
{

ẑN
α ≤ z∗ǫ

}

≥ P
{

x∗ ∈ XN
α

}

= ρ(α, φ̄(x∗),N) ≥ ρ(α, ǫ,N)

since ρ(α, ǫ,N) is decreasing in ǫ.

For example, if α = 0 as in previously studied scenario approximation [17, 51], then we

obtain P
{

ẑN
α ≤ z∗ǫ

}

≥ ρ(0, ǫ,N) = (1 − ǫ)N . For this choice of α, it becomes very unlikely

that the sample approximation PN
α will yield a lower bound as N gets large. For α > ǫ

we see different behavior: the sample approximation yields a lower bound with probability

approaching one exponentially fast as N increases. The proof is based on Hoeffding’s

inequality.

Theorem 21 (Hoeffding’s Inequality [37]). Let Y1, . . . , YN be independent random variables

with P
{

Yi ∈ [ai, bi]
}

= 1 where ai ≤ bi for i = 1, . . . ,N . Then, if t > 0

P
{

N
∑

i=1

(Yi − E[Yi]) ≥ tN
}

≤ exp
{

−
2N2t2

∑N
i=1(bi − ai)2

}

.

Theorem 22. Let α > ǫ and assume Pǫ has an optimal solution. Then,

P
{

ẑN
α ≤ z∗ǫ

}

≥ 1 − exp
{

−2N(α − ǫ)2
}

.
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Proof. Let x∗ be an optimal solution to Pǫ. As in the proof of Lemma 20, if x∗ ∈ XN
α then

ẑN
α ≤ z∗ǫ . For i = 1, . . . , N let Yi be a random variable taking value 1 if G(x∗, ξi) � 0 and

0 otherwise. Then, P
{

Yi ∈ [0, 1]
}

= 1 and E[Yi] ≤ ǫ. Hence,

P
{

ẑN
α > z∗ǫ

}

≤ P
{

x∗ /∈ XN
α

}

= P
{ 1

N

N
∑

i=1

Yi > α
}

≤ P
{ 1

N

N
∑

i=1

(Yi − E[Yi]) > α − ǫ
}

≤ exp
{

−
2N2(α − ǫ)2

N

}

= exp
{

−2N(α − ǫ)2
}

where the first inequality follows since E[Yi] ≤ ǫ and the second inequality follows from

Hoeffding’s inequality.

Theorem 22 indicates that by taking a risk parameter α > ǫ in our sample approxi-

mation problem, we will obtain a lower bound to the true optimal value with probability

approaching one exponentially fast as N increases. Stated another way, suppose we solve

a sample approximation problem PN
α with α = ǫ. Then for any γ > 0 such that γ < ǫ, the

optimal value of this problem, ẑN
ǫ will be a lower bound to the optimal value of Pǫ−γ with

probability approaching one exponentially fast with N . If γ is small this states that the

optimal solution to the sample problem will have cost no worse than any solution that is

“slightly less risky” than the nominal risk level ǫ.

Theorem 22 immediately yields a method for generating lower bounds with specified

confidence 1 − δ, where δ ∈ (0, 1). If we select α > ǫ and

N ≥
1

2(α − ǫ)2
log

(1

δ

)

then Theorem 22 ensures that ẑN
α ≤ z∗ǫ with probability at least 1 − δ. Indeed, with this

choice of α and N , we have

P
{

ẑN
α > z∗ǫ

}

≤ exp
{

−2N(α − ǫ)2
}

≤ exp
{

− log
(1

δ

)}

= δ.

Because 1/δ is taken under logarithm, we can obtain a lower bound with high confidence,

i.e. with δ very small, without increasing the sample size N too large. On the other hand,
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the required sample size grows quadratically with 1/(α − ǫ) and hence will be large for α

very close to ǫ.

Lemma 20 can also be used to obtain lower bounds with specified confidence, using the

bounding procedure proposed by Nemirovski and Shapiro [52]. They restrict α = 0 in the

sample approximation, but the technique can be applied in exactly the same way when

α > 0, and it is likely this can make the bounding technique significantly more powerful.

The idea is as follows. Take M sets of N independent samples of ξ, given by ξi,j for

j = 1, . . . ,M and i = 1, . . . , N and for each j solve the associated sample approximation

problem

ẑN
α,j = min

{

f(x) : x ∈ XN
α,j

}

where

XN
α,j =

{

x ∈ X :
1

N

N
∑

i=1

I
(

G(x, ξi,j) ≤ 0
)

≥ 1 − α
}

.

We then rearrange the values {ẑN
α,j}

M
j=1 to obtain the order statistics ẑN

α,[j] for j = 1, . . . ,M

satisfying ẑN
α,[1] ≤ · · · ≤ ẑN

α,[M ]. Then, a lower bound which is valid with specified confidence

1 − δ can be obtained as follows.

Theorem 23. Let δ ∈ (0, 1), α ∈ [0, 1), and N,L and M be positive integers such that

L ≤ M and
L−1
∑

i=0

(

M

i

)

ρ(α, ǫ,N)i
(

1 − ρ(α, ǫ,N)
)M−i

≤ δ. (67)

Then,

P
{

ẑN
α,[L] ≤ z∗ǫ

}

≥ 1 − δ.

Proof. We show P
{

ẑN
α,[L] > z∗ǫ

}

≤ δ. Note that ẑN
α,[L] > z∗ǫ if and only if less than L of

the values ẑN
α,j satisfy ẑN

α,j ≤ z∗ǫ . Thus, calling the event {ẑN
α,j ≤ z∗ǫ } a success, the event

ẑN
α,[L] > z∗ǫ occurs if and only if there are less than L successes in M trials, in which the

probability of a success is η := P
{

ẑN
α,j ≤ z∗ǫ

}

. The result then follows since η ≥ ρ(α, ǫ,N)

by Lemma 20 and so

L−1
∑

i=0

(

M

i

)

ηi(1 − η)M−i ≤
L−1
∑

i=0

(

M

i

)

ρ(α, ǫ,N)i
(

1 − ρ(α, ǫ,N)
)M−i

≤ δ
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by (67).

An interesting special case of Theorem 23 is obtained by taking L = 1. In this case, we

are taking as our lower bound the minimum of the optimal values obtained from solving

the M sample approximation problems. To have confidence 1 − δ that the lower bound is

truly a lower bound, we should choose M such that

(

1 − ρ(α, ǫ,N)
)M

≤ δ. (68)

With the choice of L = 1, let us consider how large M should be with α = 0 and with

α = ǫ. With α = 0, we obtain ρ(0, ǫ,N) = (1 − ǫ)N . Hence, to have confidence 1 − δ to

obtain a lower bound, we should take

M ≥ log

(

1

δ

)

/ log

(

1

1 − (1 − ǫ)N

)

. (69)

Using the inequality log(1 + x) ≤ x for x > 0 we have

log

(

1

1 − (1 − ǫ)N

)

= log

(

1 +
(1 − ǫ)N

1 − (1 − ǫ)N

)

≤
(1 − ǫ)N

1 − (1 − ǫ)N
.

Hence, when α = 0, we should take

M ≥ log

(

1

δ

)

1 − (1 − ǫ)N

(1 − ǫ)N
.

Thus, for fixed ǫ ∈ (0, 1), the required M grows exponentially in N . For example, using

(69), if δ = 0.001 and ǫ = 0.01, then for N = 250 we need M ≥ 82, for N = 500 we need

M ≥ 1, 048, and for N = 750 we need M ≥ 12, 967. If δ = 0.001 and ǫ = 0.05, then for

N = 50 we should take M ≥ 87, for N = 100 we should take M ≥ 1, 160, and for N = 150

we must already have M ≥ 15, 157! Thus, to keep M reasonably small, we must keep N

small, but this will weaken the lower bound obtained in each sample.

Now suppose we take L = 1 and α = ǫ. Then, for N “large enough” (e.g. Nǫ ≥ 10), we

have ρ(ǫ, ǫ,N) ≈ 1/2. Indeed, ρ(ǫ, ǫ,N) is the probability that a binomial random variable

with success probability ǫ and N trials is at most ⌊ǫN⌋. With N large enough relative

to ǫ, this probability can be approximated by the probability that a random variable with

Normal distribution having mean ǫN does not exceed ⌊ǫN⌋. Because the median of the
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normal distribution equals the mean, we obtain ρ(ǫ, ǫ,N) & 1/2. Thus, with L = 1 and

α = ǫ, we should choose M such that (1/2)M ≤ δ, or

M ≥ log2

(

1

δ

)

.

Note that this bound is independent of N and ǫ. For example, for δ = 0.001, we should take

M ≥ 10. The independence of N has the advantage that we can take N to be as large as

is computationally tractable, which will tend to make each of the optimal values ẑN
ǫ,j closer

to the true optimal z∗ǫ , and hence make the lower bound minj{ẑ
N
ǫ,j} tighter.

3.3.2 Feasible Solutions

We now consider conditions under which an optimal solution to PN
α , if one exists, is feasible

to Pǫ. The idea is that if we take the risk parameter α in PN
α to be smaller than ǫ, then

for N large enough the feasible region of PN
α will be a subset of the feasible region of Pǫ, so

that any optimal solution to PN
α must be feasible to Pǫ. Unlike the case for lower bounds,

we will need to make additional assumptions to assure PN
α yields a feasible solution with

high probability.

We begin by assuming that the feasible region X is finite. Note, however, that |X| may

be exponentially large, for example X could be the feasible region of a bounded integer

program. We then show how this assumption can be relaxed and replaced with some milder

assumptions.

3.3.2.1 Finite X

Theorem 24. Suppose X is finite and α ∈ [0, ǫ). Then,

P
{

XN
α ⊆ Xǫ

}

≥ 1 − |X \ Xǫ| exp
{

−2N(ǫ − α)2
}

.

Proof. Consider any x ∈ X \ Xǫ, i.e. x ∈ X with P
{

G(x, ξ) ≤ 0
}

< 1 − ǫ. We want to

estimate the probability that x ∈ XN
α . For i = 1, . . . ,N define the random variable Yi by

Yi = 1 if G(x, ξi) ≤ 0 and Yi = 0 otherwise. Then, E[Yi] = P
{

G(x, ξi) ≤ 0
}

< 1 − ǫ and

P
{

Yi ∈ [0, 1]
}

= 1. Observing that x ∈ XN
α if and only if (1/N)

∑N
i=1 Yi ≥ 1 − α and
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applying Hoeffding’s inequality, we obtain

P
{

x ∈ XN
α

}

= P
{ 1

N

N
∑

i=1

Yi ≥ 1 − α
}

≤ P
{

N
∑

i=1

(Yi − E[Yi]) ≥ N(ǫ − α)
}

≤ exp
{

−2N(ǫ − α)2
}

.

Then,

P
{

XN
α ⊆ Xǫ

}

= P
{

∃x ∈ XN
α s.t. P

{

G(x, ξ) ≤ 0
}

< 1 − ǫ
}

≤
∑

x∈X\Xǫ

P
{

x ∈ XN
α

}

≤ |X \ Xǫ| exp
{

−2N(ǫ − α)2
}

.

For fixed α < ǫ and δ ∈ (0, 1), Theorem 24 shows that if we take

N ≥
1

2(ǫ − α)2
log

(

|X \ Xǫ|

δ

)

then if PN
α is feasible, it will yield a feasible solution to Pǫ with probability at least 1 − δ.

If |X| ≤ Un, we can take

N ≥
1

2(ǫ − α)2
log

(

1

δ

)

+
n

2(ǫ − α)2
log(U). (70)

Note that N grows linearly with the dimension n of the feasible region, and logarithmically

with 1/δ, so that the confidence of generating a feasible solution can be made large without

requiring N to be too large. However, the quadratic dependence on ǫ − α implies that this

a priori estimate of how large N should be will grow quite large for α near ǫ. If we take

α = 0, we obtain improved dependence of N on ǫ.

Theorem 25. Suppose X is finite and α = 0. Then,

P
{

XN
0 ⊆ Xǫ

}

≥ 1 − |X \ Xǫ|(1 − ǫ)N .

Proof. With α = 0, if x ∈ X satisfies P
{

G(x, ξ) ≤ 0
}

< 1 − ǫ, then x ∈ XN
0 if and only

if G(x, ξi) ≤ 0 for each i = 1, . . . ,N , and hence P
{

x ∈ XN
0

}

< (1 − ǫ)N . The claim then

follows just as in the proof of Theorem 24.
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When α = 0, to obtain confidence 1 − δ that PN
α will yield a feasible solution to Pǫ

whenever PN
α is feasible, we should take

N ≥ log−1

(

1

1 − ǫ

)

log

(

|X \ Xǫ|

δ

)

.

If |X| ≤ Un, then it is sufficient to take

N ≥
1

ǫ
log

(

1

δ

)

+
n

ǫ
log U (71)

where we have used the inequality log(1/(1 − ǫ)) ≥ ǫ. Hence, with α = 0, the required

sample size again grows linearly in n, but now also linearly with 1/ǫ. Note the similarity

between the bound (71) and the bound of Campi and Calafiore [17],

N ≥
2

ǫ
log

(

1

δ

)

+ 2n +
2n

ǫ
log

(

2

ǫ

)

which also exhibits linear dependence in n and (nearly) linear dependence in 1/ǫ. This is

interesting considering the significantly different assumptions used for the analysis. In [17]

it is assumed that X is a convex set and G(x, ξ) is a convex function of x for every possibly

value of ξ. In contrast, we make the strong assumption that X is finite, but require no

other assumptions on the form of the random constraint G(x, ξ) ≤ 0.

3.3.2.2 Random right-hand side

We now show how the assumption that X is finite can be relaxed when the probabilistic

constraint involves randomness only in the right-hand side. Thus, in this section we assume

G(x, ξ) = ξ−g(x) where g : Rn → Rm, and Ξ ⊆ Rm. Let the cumulative distribution func-

tion of ξ be F (y) = P
{

ξ ≤ y
}

for y ∈ Rm. Then, the feasible region of the probabilistically

constrained problem with random right-hand side is

X̄ǫ =
{

x ∈ X : F (g(x)) ≥ 1 − ǫ
}

.

The feasible region of the sample approximation problem for α ∈ [0, 1) is

X̄N
α =

{

x ∈ X :
1

N

N
∑

i=1

I
(

g(x) ≥ ξi
)

≥ 1 − α
}

.

We first consider the case that ξ has a finite distribution, that is, Ξ = {ξ1, . . . , ξK}. Note

that K may be very large, for example K = Um for a positive integer U . Next, for

j = 1, . . . ,m define Ξj = {ξk
j : k = 1, . . . ,K} and finally let C =

∏m
j=1 Ξj.
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Theorem 26. Suppose Ξ has a finite distribution and let α ∈ [0, ǫ). Then,

P
{

X̄N
α ⊆ X̄ǫ

}

≥ 1 − |C| exp
{

−2N(ǫ − α)2
}

.

Proof. Let Cǫ = {y ∈ C : F (y) ≥ 1 − ǫ} and

CN
α =

{

y ∈ C :
1

N

N
∑

i=1

I
(

y ≥ ξi
)

≥ 1 − α
}

.

Because C is a finite set, we can apply Theorem 24 to obtain

P
{

CN
α ⊆ Cǫ

}

≥ 1 − |C| exp
{

−2N(ǫ − α)2
}

. (72)

Now, let x ∈ X̄N
α , so that x ∈ X and

∑N
i=1 I

(

g(x) ≥ ξi
)

≥ N(1 − α). Define ȳ ∈ C by

ȳj = max{yj ∈ Ξj : yj ≤ gj(x)} j = 1, . . . ,m

so that by definition, ȳ ≤ g(x). Next, note that if g(x) ≥ ξi for some i, then also ȳ ≥ ξi

since ξi ∈ C. Hence,
∑N

i=1 I
(

ȳ ≥ ξi
)

≥ N(1 − α) and so ȳ ∈ CN
α . Hence, when CN

α ⊆ Cǫ,

F (ȳ) ≥ 1− ǫ and because ȳ ≤ g(x), also F (g(x)) ≥ 1− ǫ and so x ∈ X̄ǫ. Since x ∈ X̄N
α was

arbitrary, this shows that when CN
α ⊆ Cǫ, X̄N

α ⊆ X̄ǫ and the result follows from (72).

If, for example, |Ξj| ≤ U for each j, then |C| ≤ Um so to obtain confidence 1 − δ that

X̄N
α ⊆ X̄ǫ it is sufficient to take

N ≥
1

2(ǫ − α)2
log

(

1

δ

)

+
m

2(ǫ − α)2
log U. (73)

The difference between this bound and (70) is that (73) depends linearly on m, the dimension

of ξ, whereas (70) depends linearly on n, the dimension of x.

As in the case of Theorem 25, if we take α = 0, we can obtain the stronger convergence

result

P
{

X̄N
0 ⊆ X̄ǫ

}

≥ 1 − |C|(1 − ǫ)N .

The assumption in Theorem 26 that Ξ is finite can be relaxed if we assume X̄ǫ ⊆

X̄(l, u) := {x ∈ X : l ≤ g(x) ≤ u} for some l, u ∈ Rm. This assumption is not very strict.

Indeed, if we define l ∈ Rm by

lj = min{l ∈ R : Fj(l) ≥ 1 − ǫ}
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where Fj is the marginal distribution of ξj for j = 1, . . . ,m then g(x) ≥ l for any x ∈ X̄ǫ.

This holds because if gj(x) < lj for some j, then P
{

g(x) ≥ ξ
}

≤ P
{

gj(x) ≥ ξj

}

=

Fj(gj(x)) < 1 − ǫ by definition of lj and hence x /∈ X̄ǫ. Furthermore, if X is compact and

g(x) is continuous in x, then if we define u ∈ Rm by

uj = max{gj(x) : x ∈ X} j = 1, . . . ,m

then each uj is finite, and by definition, g(x) ≤ u for any x ∈ X̄ . Under the assumption

that X̄ǫ ⊆ X̄(l, u) the assumption that Ξ is finite can be replaced by the assumption that

Ξ ∩ {y ∈ Rm : l ≤ y ≤ u} is finite, leading to a result similar to Theorem 26, with a nearly

identical proof.

Alternatively, when X̄ǫ ⊆ X̄(l, u), we can obtain a similar result if ξ has a Lipschitz

continuous cumulative distribution function F on [l, u] = {y ∈ Rm : l ≤ y ≤ u}. That is,

we assume there exists L > 0 such that

|F (y) − F (y′)| ≤ L‖y − y′‖∞ ∀y, y′ ∈ [l, u]

where ‖y‖∞ = max{|yj | : j = 1, . . . ,m}. Under the assumption that X̄ǫ ⊆ X̄(l, u) we add

the constraints l ≤ g(x) ≤ u to the sample approximation problem to obtain

X̄N
α (l, u) =

{

x ∈ X̄(l, u) :
1

N

N
∑

i=1

I
(

g(x) ≥ ξi
)

≥ 1 − α
}

.

We define D = max{uj − lj : j = 1, . . . ,m}. Then we have

Theorem 27. Suppose X̄ǫ ⊆ X̄(l, u) and F is Lipschitz continuous with constant L. Let

α ∈ [0, ǫ) and β ∈ (0, ǫ − α). Then,

P
{

X̄N
α (l, u) ⊆ X̄ǫ

}

≥ 1 − ⌈DL/β⌉m exp
{

−2N(ǫ − α − β)2
}

.

Proof. Let K = ⌈DL/β⌉ and define Yj = {lj + (uj − lj)i/K : i = 1, . . . ,K} for j = 1, . . . ,m

and

Y =

m
∏

j=1

Yj,

so that |Y | = Km and that for any y ∈ [l, u] there exists y′ ∈ Y such that y′ ≥ y and

‖y − y′‖∞ ≤ β/L. Indeed, for a given y ∈ [l, u] such a y′ can be obtained by letting

y′j = min{w ∈ Yj : w ≥ yj} j = 1, . . . ,m.
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With this definition of y′, we have y′ ≥ y and

|y′j − yj| = y′j − yj ≤ (uj − lj)/K ≤ D/K ≤ β/L j = 1, . . . ,m.

Next, let Yǫ−β = {y ∈ Y : F (y) ≥ 1 − ǫ + β} and

Y N
α =

{

y ∈ Y :
1

N

N
∑

i=1

I
(

y ≥ ξi
)

≥ 1 − α
}

. (74)

Since Y is finite and α < ǫ − β, we can apply Theorem 24 to obtain

P
{

Y N
α ⊆ Yǫ−β

}

≥ 1 − |Y | exp
{

−2N(ǫ − α − β)2
}

.

Now, let x ∈ X̄N
α (l, u) and let y′ ∈ Y be such that y′ ≥ g(x) and ‖y′ − g(x)‖∞ ≤ β/L. By

Lipschitz continuity of F , this implies

F (y′) − F (g(x)) ≤ L‖y′ − g(x)‖∞ ≤ β. (75)

Because x satisfies
∑N

i=1 I
(

g(x) ≥ ξi
)

≥ N(1−α) and y′ ≥ g(x), we have
∑N

i=1 I
(

y′ ≥ ξi
)

≥

N(1 − α) and hence y′ ∈ Y N
α . Thus, using (75), when Y N

α ⊆ Yǫ−β occurs,

F (g(x)) ≥ F (y′) − β ≥ (1 − ǫ + β) − β = 1 − ǫ.

Since x ∈ X̄N
α (l, u) was arbitrary, Y N

α ⊆ Yǫ−β implies X̄N
α (l, u) ⊆ X̄ǫ and the result follows

from (74).

To obtain confidence at least 1 − δ that X̄N
α (l, u) ⊆ X̄ǫ it is sufficient to take

N ≥
1

2(ǫ − α − β)2
log

(

1

δ

)

+
m

2(ǫ − α − β)2
log

⌈DL

β

⌉

.

Note that for fixed ǫ > 0 and α ∈ [0, ǫ), β is a free parameter which can be chosen in

(0, ǫ − α). If, for example, we take β = (ǫ − α)/2 we obtain

N ≥
2

(ǫ − α)2
log

(

1

δ

)

+
2m

(ǫ − α)2
log

⌈ 2DL

ǫ − α

⌉

.

Once again, if α = 0, similar arguments can be used to conclude that if

N ≥
2

ǫ
log

(

1

δ

)

+
2m

ǫ
log

⌈2DL

ǫ

⌉

then P
{

X̄N
0 (l, u) ⊆ X̄ǫ

}

≥ 1 − δ.
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3.3.2.3 Lipschitz continuous G

We now turn to the problem of using a sample approximation problem to generate feasible

solutions to Pǫ when X is not necessarily finite, and G(x, ξ) does not necessarily have the

form G(x, ξ) = g(x) − ξ. In this section, we assume for simplicity of exposition that G

takes values in R. This is without loss of generality, since if Ḡ : Rn × Rd → Rm we can

define G : Rn × Rd → R by G(x, ξ) = max{Ḡj(x, ξ) : j = 1, . . . ,m} and the constraints

G(x, ξ) ≤ 0 and Ḡ(x, ξ) ≤ 0 are equivalent. In this section, we shall make the following

Lipschitz continuity assumption on G.

Assumption 1. There exists L > 0 such that

|G(x, ξ) − G(x′, ξ)| ≤ L‖x − x′‖∞ ∀x, x′ ∈ X and ∀ξ ∈ Ξ.

It is important that the Lipschitz constant L is independent of ξ ∈ Ξ, and this condition

makes Assumption 1 rather stringent. There are, however, interesting cases in which the

assumption does hold. For example, if Ξ is finite (with possibly huge cardinality) and G(x, ξ)

is Lipschitz continuous with Lipschitz constant L(ξ) for each ξ ∈ Ξ, then Assumption 1 holds

with L = max{L(ξ) : ξ ∈ Ξ}. Alternatively, if Ξ is compact and G(x, ξ) = max{Tj(ξ)x :

j = 1, . . . ,m} and Tj : Ξ → Rn is continuous in ξ for each j, then Assumption 1 holds with

L = sup
ξ∈Ξ

{

max{‖Tj(ξ)‖∞ : j = 1, . . . ,m}
}

.

To generate feasible solutions for this general case, we will also need to modify the

sample approximation problem somewhat. In addition to taking a risk level α less than the

nominal risk level ǫ, we will require that at least (1 − α)N of the constraints be satisfied

strictly. That is, for a fixed γ > 0, we define the sample approximation feasible region to

be

XN
α,γ =

{

x ∈ X :
1

N

N
∑

i=1

I
(

G(x, ξ) + γ ≤ 0
)

≥ 1 − α
}

.

Finally, we will assume that X is bounded, and let D = sup{‖x − x′‖∞ : x, x′ ∈ X} be the

diameter of X.

Theorem 28. Suppose X is bounded with diameter D and Assumption 1 holds. Let α ∈
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[0, ǫ), β ∈ (0, ǫ − α) and γ > 0. Then,

P
{

XN
α,γ ⊆ Xǫ

}

≥ 1 − ⌈1/β⌉⌈2LD/γ⌉n exp
{

−2N(ǫ − α − β)2
}

.

Proof. For x ∈ X, let φ(x) = P
{

G(x, ξ) ≤ 0
}

. Let J = ⌈1/β⌉ and for j = 1, . . . , J − 1,

define

Xj =
{

x ∈ X :
j − 1

J
≤ φ(x) <

j

J

}

and let XJ = {x ∈ X : (J − 1)/J ≤ φ(x) ≤ 1}. Next, we claim that for each j there

exists a finite set Zγ
j ⊆ Xj such that |Zγ

j | ≤ ⌈2LD/γ⌉n and for all x ∈ Xj there exists

z ∈ Zγ
j such that ‖x − z‖∞ ≤ γ/L. Indeed, because Xj ⊆ X and X is bounded with

diameter D, there exists a finite set Y ⊆ Rn with |Y | ≤ ⌈2LD/γ⌉n such that for all x ∈ X

there exists y ∈ Y such that ‖x − y‖∞ ≤ γ/2L. For any y ∈ Rn and η > 0, define

B(y, η) = {x ∈ RN : ‖y −x‖∞ ≤ η}. Now, let Y ′
j = {y ∈ Y : Xj ∩B(y, γ/2L) 6= ∅}, and for

y ∈ Y ′
j select an arbitrary xy ∈ Xj ∩ B(y, γ/2L). Then, let

Zγ
j =

⋃

y∈Y ′
j

xy.

By definition, Zγ
j ⊆ Xj and |Zγ

j | ≤ ⌈2LD/γ⌉n. In addition, for any x ∈ Xj , there exists y

such that x ∈ B(y, γ/2L) and because for this y, Xj ∩B(y, γ/2L) 6= ∅ there exists xy ∈ Zγ
j

such that ‖xy − y‖∞ ≤ γ/2L. Hence,

‖xy − x‖∞ ≤ ‖xy − y‖∞ + ‖y − x‖∞ ≤ γ/L.

Now, define

Zγ =
J
⋃

j=1

Zγ
j

and observe that |Zγ | ≤ J⌈2LD/γ⌉n. Next, define Zγ
ǫ−β =

{

x ∈ Zγ : P
{

G(x, ξ) ≤ 0
}

≥

1 − ǫ + β
}

and

Zγ,N
α =

{

x ∈ Zγ :
1

N

N
∑

i=1

I
(

G(x, ξi) ≤ 0
)

}

.

Since Zγ is finite and α < ǫ − β we can apply Theorem 24 to obtain

P
{

Zγ,N
α ⊆ Zγ

ǫ−β

}

≥ 1 − ⌈1/β⌉⌈2LD/γ⌉n exp
{

−2N(ǫ − α − β)2
}

. (76)
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Now consider an arbitrary x ∈ XN
α,γ . Let j ∈ {1, . . . , J} be such that x ∈ Xj . By definition

of Zγ
j there exists z ∈ Zγ

j such that ‖x−z‖∞ ≤ γ/L. By definition of Xj and because Zγ
j ⊆

Xj , we have |φ(x)− φ(z)| ≤ β. In addition, Assumption 1 implies |G(x, ξi)−G(z, ξi)| ≤ γ.

Hence, if G(x, ξi) + γ ≤ 0 then G(z, ξi) ≤ 0 and, because x satisfies
∑N

i=1 I
(

G(x, ξi) + γ ≤

0
)

≥ N(1 − α), it follows that z satisfies
∑N

i=1 I
(

G(z, ξi) ≤ 0
)

≥ N(1 − α). Thus z ∈ Zγ,N
α

and so if Zγ,N
α ⊆ Zγ

ǫ−β then φ(z) ≥ 1 − ǫ + β. Thus, φ(x) ≥ φ(z) − β ≥ 1 − ǫ when

Zγ,N
α ⊆ Zγ

ǫ−β. Since x ∈ XN
α,γ was arbitrary, Zγ,N

α ⊆ Zγ
ǫ−β implies XN

α,γ ⊆ Xǫ and the result

follows from (76).

Once again, for fixed ǫ and α < ǫ, β is a free parameter to be chosen in (0, ǫ−α). If we

choose, for example β = (ǫ − α)/2, then we can assure XN
α,γ ⊆ Xǫ with confidence at least

1 − δ by taking

N ≥
2

(ǫ − α)2

[

log

(

1

δ

)

+ n log
⌈2LD

γ

⌉

+ log
⌈ 2

ǫ − α

⌉]

.

Additionally, if α = 0, similar arguments show that XN
0,γ ⊆ Xǫ occurs with probability at

least 1 − δ if

N ≥
2

ǫ

[

log

(

1

δ

)

+ n log
⌈2LD

γ

⌉

+ log
⌈2

ǫ

⌉]

.

Regardless of whether α = 0 or α > 0 the term 1/γ is taken under log, and hence γ can be

made very small without significantly increasing the required sample size, suggesting that

modifying the sample approximation problem to require at least (1 − α)N of the sampled

constraints to be satisfied with slack at least γ need not significantly alter the feasible region.

3.3.2.4 A Posteriori Feasibility Checking

The results of Sections 3.3.2.1 - 3.3.2.3 demonstrate that with appropriately constructed

sample approximation problems, the probability that the resulting feasible region will be a

subset of the true feasible region Xǫ approaches one exponentially fast. This gives strong

theoretical support for using these sample approximations to yield solutions feasible to Xǫ.

These results yield a priori estimates on how large the sample size N should be to have high

confidence the sample approximation feasible region will be a subset of Xǫ. However, these

a priori estimates are likely to yield required sample sizes which are very large, and hence
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the sample approximation problems will still be impractical to solve. This is particularly

true if α > 0 and ǫ−α is small. However, typically in sampling approximation results such

as these, the a priori estimates of the required sample size are very conservative, and in

fact much smaller sample sizes are sufficient. See [45] for a computational demonstration

of this phenomenon for the case of Sample Average Approximation applied to two-stage

stochastic linear programs. Thus, a natural alternative to using the sample size suggested

by the a priori estimates is to solve a sample approximation problem with a smaller sample

to yield a candidate solution x̂ ∈ X, and then conduct an a posteriori check to see whether

P
{

G(x̂, ξ) ≤ 0
}

≥ 1 − ǫ. A simple method for conducting an a posteriori analysis of the

risk of a candidate solution is to take a single very large Monte Carlo sample ξ1, . . . , ξN ′

and count how many times G(x̂, ξi) ≤ 0 holds. Bounds on the true risk P
{

G(x̂, ξ) ≤ 0
}

which hold with high confidence can then be constructed, and if N ′ is very large, these

bounds should be tight. This approach will not work well if the allowed risk ǫ is extremely

small, but on the other hand, we do not expect the sample approximation approach to

be practical in this case anyway. Of course, if good estimates of P
{

G(x̂, ξ) ≤ 0
}

can be

obtained efficiently by some other method, for example if G(x, ξ) = ξ−g(x) and ξ consists of

independent components, then this other method should be used for a posteriori feasibility

checking.

3.4 Solving the Sample Approximation

We now turn to solving the sample approximation problem in the case of a probabilistic

programming problem with random right-hand side given by

min cx

s.t. P
{

g(x) ≥ ξ
}

≥ 1 − ǫ

x ∈ X.

(PCPR)

Here X ⊆ Rn represents a deterministic feasible region, ξ is a random vector taking values

in Rm, g : Rn → Rm, ǫ ∈ (0, 1) (typically small) and c ∈ Rn. An interesting special

case of PCPR is the probabilistically constrained linear program with random right-hand

side (PCLPR), in which X is a polyhedron and g(x) = Tx for an m × n matrix T . We
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assume that ξ has finite support, that is there exist vectors, ξi ∈ Rm, i = 1, . . . ,N such

that P
{

ξ = ξi
}

= πi for each i where πi > 0 and
∑N

i=1 πi = 1. Note that in the sample

approximation problem, we would have πi = 1/N for all i. We begin by considering general

probabilities here because much of the analysis applies to this case. We refer to the possible

outcomes as scenarios. We assume without loss of generality that ξi ≥ 0 and πi ≤ ǫ for

each i. We also define the set N = {1, . . . ,N}.

Before proceeding, we note that PCPR is NP -hard even when the constraint x ∈ X is

not present, all outcomes are equally likely and g is very simple.

Theorem 29. PCPR is NP -hard, even in the special case in which πi = 1/N for all i ∈ N ,

the constraints x ∈ X are not present, g(x) = x, and c = (1, . . . , 1) ∈ Rm.

Proof. Let K = ⌈(1 − ǫ)N⌉. Then, under the stated conditions PCPR can be written as

min
I⊆N







m
∑

j=1

max
i∈I

{

ξi
j

}

: |I| ≥ K







.

We show that the associated decision problem:

(DPCLP) Given non-negative integers ξi
j for i = 1, . . . ,N, j = 1, . . . ,m, K ≤ N

and B, is there an I ⊆ N such that |I| ≥ K and
∑m

j=1 maxi∈I

{

ξi
j

}

≤ B?

is NP -complete by reduction from the NP -complete problem CLIQUE. Consider an in-

stance of CLIQUE given by graph G = (V,E), in which we wish to decide whether there

exists a clique of size C. We construct an instance of DPCLP by letting {1, . . . ,m} = V ,

N = E, B = C, K = C(C − 1)/2 and ξi
j = 1 if edge i is incident to node j and ξi

j = 0

otherwise. The key observation is that for any I ⊆ E, and j ∈ V ,

max
i∈I

{

ξi
j

}

=











1 if some edge i ∈ I is incident to node j

0 otherwise.

Hence, if there exists a clique of size C in G then we have a subgraph of G consisting of C

nodes and C(C − 1)/2 edges. Thus there exists I ⊆ N with |I| = C(C − 1)/2 = K and

m
∑

j=1

max
i∈I

{

ξi
j

}

= C = B
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and the answer to DPCLP is yes.

Conversely, if the answer to DPCLP is yes, there exists I ⊆ E of size at least K =

C(C − 1)/2 such that the number of nodes incident to I is at most B = C. This can only

happen if I defines a clique of size C.

3.4.1 The MIP Formulation

We now formulate PCPR as a mixed-integer program [61]. To do so, we introduce for each

i ∈ N , a binary variable zi, where zi = 0 guarantees that g(x) ≥ ξi. Observe that because

ǫ < 1 we must have g(x) ≥ ξi for at least one i ∈ N , and because ξi ≥ 0 for all i, this

implies g(x) ≥ 0 in every feasible solution of PCPR. Then, letting v = g(x), we obtain the

MIP formulation of PCPR

(PMIP ) min cx

s.t. x ∈ X, g(x) − v = 0 (77)

v + ξizi ≥ ξi i = 1, . . . ,N (78)

N
∑

i=1

πizi ≤ ǫ (79)

x ≥ 0, z ∈ {0, 1}N

where (79) is equivalent to the probabilistic constraint

N
∑

i=1

πi(1 − zi) ≥ 1 − ǫ.

If X represents the feasible region of a mixed-integer linear program and g(x) = Tx for

a m × n matrix T , then PMIP is a mixed-integer linear program, otherwise, PMIP is a

mixed-integer nonlinear program.

3.4.2 Strengthening the Formulation

We begin by considering how the formulation PMIP can be strengthened when the proba-

bilities πi are general. In Section 3.4.2.2 we present results specialized to the case when all

πi are equal.
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3.4.2.1 General Probabilities

Our approach is to strengthen PMIP by ignoring (77) and finding strong formulations for

the set

F :=
{

(v, z) ∈ Rm
+ × {0, 1}N : (78), (79)

}

. (80)

Note that

F =

m
⋂

j=1

{(v, z) : (vj , z) ∈ Gj} ,

where for j = 1, . . . ,m

Gj =
{

(vj , z) ∈ R+ × {0, 1}N : (79), vj + ξi
jzi ≥ ξi

j i = 1, . . . ,N
}

.

Thus, a natural first step in developing a strong formulation for F is to develop a strong for-

mulation for each Gj . In particular, note that if an inequality is facet-defining for conv(Gj),

then it is also facet-defining for conv(F ). This follows because if an inequality valid for Gj

is supported by N + 1 affinely independent points in RN+1, then because this inequality

will not have coefficients on vi for any i 6= j, the set of supporting points can trivially be ex-

tended to a set of N +m affinely independent supporting points in RN+m by appropriately

setting the vi values for each i 6= j.

The above discussion leads us to consider the generic set

G =
{

(y, z) ∈ R+ × {0, 1}N : (79), y + hizi ≥ hi i = 1, . . . ,N
}

(81)

obtained by dropping the index j and setting y = vj and hi = ξi
j for each i. We assume

without loss of generality that h1 ≥ h2 ≥ · · · ≥ hN . The relaxation of G obtained by

dropping (79) is a mixing set given by

P =
{

(y, z) ∈ R+ × {0, 1}N : y + hizi ≥ hi i = 1, . . . ,N
}

.

This set has been extensively studied, in varying degrees of generality, by Atamtürk et. al [3],

Günlük and Pochet [32], Guan et. al [31] and Miller and Wolsey [48]. The star inequalities

of [3] given by

y +

l
∑

j=1

(htj − htj+1
)ztj ≥ ht1 ∀T = {t1, . . . , tl} ⊆ N , (82)
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where t1 < t2 < · · · < tl and htl+1
:= 0 are valid for P . Furthermore, these inequalities can

be separated in polynomial time, are facet-defining for P when t1 = 1, and are sufficient to

define the convex hull of P [3, 31, 32].

We can tighten these inequalities for G by using the knapsack constraint (79). In

particular, let p := max{k :
∑k

i=1 πi ≤ ǫ}. Then, from the knapsack constraint, we cannot

have zi = 1 for all i = 1, . . . , p + 1 and thus we have y ≥ hp+1. This also implies that the

mixed-integer constraints in G are redundant for i = p + 1, . . . ,N . Thus, we can replace

the inequalities y + hizi ≥ hi for i = 1, . . . ,N in the definition of G by the inequalities

y + (hi − hp+1)zi ≥ hi i = 1, . . . , p. (83)

That is, we have

G =
{

(y, z) ∈ R+ × {0, 1}N : (79), (83)
}

. (84)

In addition to yielding a tighter relaxation, the description (84) of G is also more compact.

In typical applications, ǫ is near 0, suggesting p << N . When applied for each j in the set

F , if p is the same for all rows, this would yield a formulation with mp << mN rows.

By applying the star inequalities to (84) we obtain

Theorem 30. The inequalities

y +

l
∑

j=1

(htj − htj+1
)ztj ≥ ht1 ∀T = {t1, . . . , tl} ⊆ {1, . . . , p} (85)

with t1 < . . . < tl and htl+1
:= hp+1, are valid for G. Moreover, (85) is facet-defining for

conv(G) if and only if ht1 = h1.

Proof. The result follows directly from Proposition 3.4 and Theorem 3.5 of [3] after ap-

propriate reformulation. See also [31, 32]. However, since our formulation differs some-

what, we give a self-contained proof. To prove (85) is valid, let (y, z) ∈ G and let

j∗ = min
{

j ∈ {1, . . . , l} : ztj = 0
}

. Then y ≥ htj∗ . Thus,

y +
l

∑

j=1

(htj − htj+1
)ztj ≥ htj∗ +

j∗−1
∑

j=1

(htj − htj+1
) = ht1 .

If ht1 < h1, then a stronger inequality can be obtained by including index 1 in the set

T , proving that this is a necessary condition for (85) to be facet-defining. Consider the

96



following set of points: (h1, ei), i ∈ N \T , (hi,
∑i−1

j=1 ej), i ∈ T and (hp+1,
∑p

j=1 ej), where ej

is the jth unit vector in Rn. It is straightforward to verify that these n + 1 feasible points

satisfy (85) at equality and are affinely independent, completing the proof.

We refer to the inequalities (85) as the strengthened star inequalities. Because the

strengthened star inequalities are just the star inequalities applied to a strengthened mixing

set, separation can be accomplished using an algorithm for separation of star inequalities

[3, 31, 32].

3.4.2.2 Equal Probabilities

We now consider the case in which πi = 1/N for all i ∈ N . Thus p = max{k :
∑k

i=1 1/N ≤

ǫ} = ⌊Nǫ⌋ and the knapsack constraint (79) becomes

N
∑

i=1

zi ≤ Nǫ

which, by integrality on zi, can be strengthened to the simple cardinality restriction

N
∑

i=1

zi ≤ p. (86)

Thus, the feasible region (84) becomes

G′ =
{

(y, z) ∈ R+ × {0, 1}N : (83), (86)
}

.

Although the strengthened star inequalities are not sufficient to characterize the convex hull

of G′, we now show that it is possible to separate over conv(G′) in polynomial time. To

obtain this result we first show that for any (γ, α) ∈ RN+1, the problem

min
{

γy + αz : (y, z) ∈ G′
}

(87)

is easy to solve. For k = 1, . . . , p let

Sk = {S ⊆ {k, . . . ,N} : |S| ≤ p−k+1}

and

S∗
k ∈ arg min

S∈Sk

{

∑

i∈S

αi

}

.

Also, let S∗
p+1 = ∅ and k∗ ∈ arg min{γhk +

∑

i∈S∗
k
αi : k = 1, . . . , p + 1}.
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Lemma 31. If γ < 0, then (87) is unbounded. Otherwise, an optimal solution to (87) is

given by y = hk∗ and zi = 1 for i ∈ S∗
k∗ ∪ {1, . . . , k∗ − 1} and zi = 0 otherwise.

Proof. Problem (87) is unbounded when γ < 0 because (1,0) is a feasible direction for G′.

Now suppose γ ≥ 0. We consider all feasible values of y, y ≥ hp+1. First, if y ≥ h1, then the

zi can be set to any values satisfying (86), and hence it would yield the minimum objective

to set zi = 1 if and only if i ∈ S∗
1 and to set y = h1 since γ ≥ 0. For any k ∈ {2, . . . , p + 1},

if hk−1 > y ≥ hk then we must set zi = 1 for i = 1, . . . , k − 1. The minimum objective in

this case is then obtained by setting y = hk and zi = 1 for i = 1, . . . , k − 1 and i ∈ S∗
k. The

optimal solution to (87) is then obtained by considering y in each of these ranges.

Using Lemma 31, we can optimize over G′ by first sorting the values of αi in increasing

order, then finding the sets S∗
k by considering at most p−k+1 of the smallest values in this

list for each k = 1, . . . , p + 1. Subsequently finding the index k∗ yields an optimal solution

defined by Lemma 31. This yields an obvious algorithm with complexity O(N log N +p2) =

O(N2). It follows that we can separate over conv(G′) in polynomial time. We begin by

characterizing the set of valid inequalities for G′.

Theorem 32. Any valid inequality for G′ with nonzero coefficient on y can be written in

the form

y ≥ β +

n
∑

i=1

αizi. (88)

Furthermore, (88) is valid for G′ if and only if there exists (σ, ρ) such that

β +
k−1
∑

i=1

αi + (p−k+1)σk +
N

∑

i=k

ρik ≤ hk k = 1, . . . , p + 1 (89)

αi − σk − ρik ≤ 0 i = k, . . . ,N, k = 1, . . . , p + 1 (90)

σ ≥ 0, ρ ≥ 0. (91)

Proof. First consider a generic inequality of the form γy ≥ β +
∑N

i=1 αizi. Since (1,0) is a

feasible direction for G′, we know this inequality is valid for G′ only if γ ≥ 0. Thus, if a

valid inequality for G′ has nonzero coefficient γ on y, then γ > 0, and so we can scale the

inequality such that γ = 1, thus obtaining the form (88). Now, since any extreme point
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of conv(G′) is an optimal solution to (87) for some (γ′, α′) ∈ RN+1, we know by Lemma

31 that the extreme points of conv(G′) are contained in the set of feasible points given by

y = hk, zi = 1 for i = 1, . . . , k − 1 and i ∈ S, and zi = 0 otherwise, for all S ∈ Sk and

k = 1, . . . , p + 1. This fact, combined with the fact that (1,0) is the only feasible direction

for G′, implies inequality (88) is valid for G′ if and only if

β +
k−1
∑

i=1

αi + max
S∈Sk

∑

i∈S

αi ≤ hk k = 1, . . . , p + 1. (92)

Note that

max
S∈Sk

∑

i∈S

αi = max
ω

n
∑

i=k

ωikαi

s.t.

N
∑

i=k

ωik ≤ p−k+1 (93)

0 ≤ ωik ≤ 1 i = k, . . . ,N

= min
σ,ρ

(p−k+1)σk +
n

∑

i=k

ρik

s.t. σk + ρik ≥ αi i = k, . . . ,N (94)

σk ≥ 0, ρik ≥ 0 i = k, . . . ,N

by linear programming duality since (93) is feasible and bounded and its optimal solution

is integral. It follows that condition (92) is satisfied and hence (88) is valid for G′ if and

only if there exists (σ, ρ) such that the system (89) - (91) is satisfied.

Using Theorem 32 we can separate over conv(G′) by solving a polynomial size linear

program.

Corollary 33. Suppose (y∗, z∗) satisfy z∗ ∈ Z :=
{

z ∈ [0, 1]N :
∑N

i=1 zi ≤ p
}

. Then,

(y∗, z∗) ∈ conv(G′) if and only if

y∗ ≥ LP ∗ = max
α,β,σ,ρ

{

β +

N
∑

i=1

αiz
∗
i : (89) − (91)

}

(95)

where LP ∗ exists and is finite. Furthermore, if y∗ < LP ∗ and (α∗, β∗) is optimal to (95),

then y ≥ β∗ +
∑N

i=1 α∗zi is a valid inequality for G′ which is violated by (y∗, z∗).
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Proof. By Theorem 32, if y∗ ≥ LP ∗, then (y∗, z∗) satisfies all valid inequalities for G′

which have nonzero coefficient on y. But, z∗ ∈ Z and integrality of the set Z imply

(y∗, z∗) also satisfies all valid inequalities which have a zero coefficient on y, showing that

(y∗, z∗) ∈ conv(G′). Conversely, if y∗ < LP ∗, then the optimal solution to (95) defines a

valid inequality of the form (88) which is violated by (y∗, z∗).

We next argue that (95) has an optimal solution. First note that it is feasible since we

can set β = hp+1 and all other variables to zero. Next, because z∗ ∈ Z, and Z is an integral

polytope, we know there exists sets Sj, j ∈ J for some finite index set J , and λ ∈ R
|J |
+ such

that
∑

j∈J λj = 1 and z∗ =
∑

j∈J λjz
j where zj

i = 1 if i ∈ Sj and 0 otherwise. Hence,

β +
N

∑

i=1

αiz
∗
i = β +

∑

j∈J

λj

∑

i∈Sj

αi =
∑

j∈J

λj(β +
∑

i∈Sj

αi) ≤
∑

j∈J

λjh1 = h1

where the inequality follows from (92) for k = 1 which is satisfied whenever (α, β, σ, ρ)

is feasible to (89) - (91). Thus, the objective is bounded, and so (95) has an optimal

solution.

Although (95) yields a theoretically efficient way to separate over conv(G′), it still may

be too expensive to solve a linear program to generate cuts. We would therefore prefer to

have an explicit characterization of a class or classes of valid inequalities for G′ with an

associated combinatorial algorithm for separation. The following theorem gives an example

of one such class, which generalizes the strengthened star inequalities.

Theorem 34. Let m ∈ {1, . . . , p}, T = {t1, . . . , tl} ⊆ {1, . . . ,m} and Q = {q1, . . . , qp−m} ⊆

{p+1, . . . , N}. For m < p, define ∆m
1 = hm+1 − hm+2 and

∆m
i = max







∆m
i−1, hm+1 − hm+i+1 −

i−1
∑

j=1

∆m
j







i = 2, . . . , p − m.

Then, with htl+1
:= hm+1,

y +

l
∑

j=1

(htj − htj+1
)ztj +

p−m
∑

j=1

∆m
j (1 − zqj

) ≥ ht1 (96)

is valid for G′ and facet-defining for conv(G′) if and only if ht1 = h1.
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Proof. First note that if m = p, we recover the strengthened star inequalities. Now, let m <

p and T,Q satisfy the conditions of the theorem and let (y, z) ∈ G′ and S = {i ∈ N : zi = 1}.

Suppose first there exists tj ∈ T \S and let j∗ = min{j ∈ {1, . . . , l} : tj /∈ S}. Then, ztj∗ = 0

and so y ≥ htj∗ . Hence,

y +
l

∑

j=1

(htj − htj+1
)ztj ≥ htj∗ +

j∗−1
∑

j=1

(htj − htj+1
)

= ht1 ≥ ht1 −

p−m
∑

j=1

∆m
j (1 − zqj

)

since ∆m
j ≥ 0 for all j.

Next, suppose T ⊆ S. Now let k =
∑

i∈Q(1− zi) so that, because |Q| = p−m, 0 ≤ k ≤

p−m and
∑

i∈Q zi = p−m−k. Because Q ⊆ {p + 1, . . . ,N}, we know
∑p

i=1 zi+
∑

i∈Q zj ≤ p

and hence
∑p

i=1 zi ≤ k + m. It follows that y ≥ hk+m+1. Next, note that by definition,

∆m
1 ≤ ∆m

2 ≤ · · · ≤ ∆m
p−m. Thus

p−m
∑

j=1

∆m
j (1 − zqj

) ≥
k

∑

j=1

∆m
j = ∆m

k +

k−1
∑

j=1

∆m
j

≥ (hm+1 − hm+k+1 −
k−1
∑

j=1

∆m
j ) +

k−1
∑

j=1

∆m
j

= hm+1 − hm+k+1. (97)

Using (97), y ≥ hk+m+1 and the fact that T ⊆ S we have

y +
l

∑

j=1

(htj − htj+1
)ztj ≥ hk+m+1 +

l
∑

j=1

(htj − htj+1
)

= hk+m+1 + ht1 − hm+1 ≥ ht1 −

p−m
∑

j=1

∆m
j (1 − zqj

)

completing the proof of validity.

The proof that ht1 = h1 is a necessary condition for (96) to be facet-defining is exactly

the same as that given for the star inequalities in the proof of Theorem 30.
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Consider the following set of points in G′:

(h1, ei +
∑

j∈Q

ej) i ∈ N \ T \ Q (98)

(hi,
i−1
∑

j=1

ej +
∑

j∈Q

ej) i ∈ T (99)

(hm+l(k)+1,

l(k)+m
∑

j=1

ej +
k−1
∑

j=l(k)

eqj
+

p−m
∑

j=k+1

eqj
) k = 1, . . . , p − m (100)

(hm+1,
m

∑

j=1

ej +
∑

j∈Q

ej) (101)

where

l(k) := max







l = 1, . . . , k : ∆m
k = hm+1 − hm+l+1 −

l−1
∑

j=1

∆m
j







.

First note that l(k) is well-defined since if ∆m
k 6= hm+1 − hm+k+1 −

∑k−1
j=1 ∆m

j then ∆m
k =

∆m
k−1. Inductively, if ∆m

k 6= hm+1 − hm+l+1 −
∑l−1

j=1 ∆m
j for some l < k, then ∆m

k = ∆m
l−1.

Since, by definition ∆m
1 = hm+1 − hm+2 we know we must have ∆m

k = hm+1 − hm+l+1 −

∑l−1
j=1 ∆m

j for some l ≤ k. Verification that the points (98),(99) and (101) satisfy (96) at

equality is straightforward. For point k in the set of points (100), the left-hand side of (96)

evaluates to:

hm+l(k)+1 + (h1 − hm+1) +

l(k)−1
∑

j=1

∆m
j + ∆m

k = h1

by definition of l(k), and hence points (100) satisfy (96) at equality. Verification that the

N + 1 points given in (98)-(101) are affinely independent is straightforward, concluding the

proof.

Example 1. Let N = 10 and ǫ = 0.4 so that p = 4 and suppose h1−5 = {20, 18, 14, 11, 6}.

102



The formulation of G′ for this example is

y + 14z1 ≥ 20

y + 12z2 ≥ 18

y + 8z3 ≥ 14

y + 5z4 ≥ 11

10
∑

i=1

zi ≤ 4, zi ∈ {0, 1} i = 1, . . . , 10.

Let m = 2, T = {1, 2} and Q = {5, 6}. Then, ∆2
1 = 3 and ∆2

2 = max {3, 8 − 3} = 5 so that

(96) yields

y + 2z1 + 4z2 + 3(1 − z5) + 5(1 − z6) ≥ 20.

Separation of inequalities (96) can be accomplished by a simple modification to the

routine for separating the strengthened star inequalities.

3.4.3 A Strong Extended Formulation

3.4.3.1 General Probabilities

Let

FS =
{

(y, z) ∈ R+ × [0, 1]N : (79), (85)
}

.

FS represents the polyhedral relaxation of G, augmented with the strengthened star in-

equalities. Note that the inequalities (83) are included in FS by taking T = {i}, so that

enforcing integrality in FS would yield a valid formulation for the set G. Our aim is to

develop a reasonably compact extended formulation which is equivalent to FS. To do so,

we introduce variables w1, . . . , wp and let

EG =
{

(y, z, w) ∈ R+ × {0, 1}N+p : (102) − (105)
}
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where

wi − wi+1 ≥ 0 i = 1, . . . , p (102)

zi − wi ≥ 0 i = 1, . . . , p (103)

y +

p
∑

i=1

(hi − hi+1)wi ≥ h1 (104)

N
∑

i=1

πizi ≤ ǫ (105)

and wp+1 := 0. The variables wi can be interpreted as deciding whether or not scenario

i is satisfied for the single row under consideration. The motivation for introducing these

variables is that because they are specific to the single row under consideration, the ordering

on the hi values implies that the inequalities (102) can be safely added. Note that this is

not the case for the original variables zi for i ∈ N since they are common to all rows in

the formulation. The inequalities (103) ensure that if a scenario is infeasible for the single

row under consideration, then it is infeasible overall. Because of the inequalities (102), the

inequalities (83) used in the description (84) of G can be replaced by the single inequality

(104). We now show that EG is a valid formulation for G.

Theorem 35. Proj(y,z)(EG) = G.

Proof. First, suppose (y, z, w) ∈ EG. Let l ∈ {1, . . . , p + 1} be such that wi = 1, i =

1, . . . , l − 1 and wi = 0, i = l, . . . , p. Then, y ≥ h1 − (h1 − hl) = hl. For i = 1, . . . , l − 1 we

have also zi = 1 and hence,

y + (hi − hp+1)zi ≥ hl + (hi − hp+1) ≥ hi

and for i = l, . . . ,N we have y + (hi − hp+1)zi ≥ hl ≥ hi which establishes that (y, z) ∈ G.

Now, let (y, z) ∈ G and let l = min {i : zi = 0}. Then, y + (hl − hp+1)zl = y ≥ hl. Let

wi = 1, i = 1, . . . , l − 1 and wi = 0, i = l, . . . , p. Then, zi ≥ wi for i = 1, . . . , p, wi are

non-increasing, and y ≥ hl = h1 −
∑p

i=1(hi − hi+1)wi which establishes (y, z, w) ∈ EG.

An interesting result is that the linear relaxation of this extended formulation is as

strong as having all strengthened star inequalities in the original formulation. A similar
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type of result has been proved in [48]. Let EF be the polyhedron obtained by relaxing

integrality in EG.

Theorem 36. Proj(y,z)(EF ) = FS.

Proof. First suppose (y, z) ∈ FS. We show there exists w ∈ R
p
+ such that (y, z, w) ∈ EF .

For i = 1, . . . , p let wi = min{zj : j = 1, . . . , i}. By definition, 1 ≥ w1 ≥ w2 ≥ · · ·wp ≥ 0

and zi ≥ wi for i = 1, . . . , p. Next, let T := {i = 1, . . . , p : wi = zi} = {t1, . . . , tl}, say. By

construction, we have wi = wtj for i = tj , . . . , tj+1 − 1, j = 1, . . . , l (tp+1 := p + 1). Thus,

p
∑

i=1

(hi − hi+1)wi =
l

∑

j=1

(htj − htj+1
)wtj =

l
∑

j=1

(htj − htj+1
)ztj

implying that y +
∑p

i=1(hi − hi+1)wi ≥ h1 as desired.

Now suppose (y, z, w) ∈ EF . Let T = {t1, . . . , tl} ⊆ {1, . . . , p}. Then,

y +

l
∑

j=1

(htj − htj+1
)ztj ≥ y +

l
∑

j=1

(htj − htj+1
)wtj

≥ y +
l

∑

j=1

tj+1−1
∑

i=tj

(hi − hi+1)wi

= y +

p
∑

i=t1

(hi − hi+1)wi.

But also, y +
∑p

i=1(hi − hi+1)wi ≥ h1 and so

y +

p
∑

i=t1

(hi − hi+1)wi ≥ h1 −
t1−1
∑

i=1

(hi − hi+1)wi ≥ h1 − (h1 − ht1) = ht1 .

Thus, (y, z) ∈ FS.

Because of the knapsack constraint (105), formulation EF does not characterize the

convex hull of feasible solutions of G. We therefore investigate what other valid inequalities

exist for this formulation. We introduce the notation

fk :=

k
∑

i=1

πi, k = 0, . . . , p.

Theorem 37. Let k ∈ {1, . . . , p} and let S ⊆ {k, . . . ,N} be such that
∑

i∈S πi ≤ ǫ − fk−1.

Then,
∑

i∈S

πizi +
∑

i∈{k,...,p}\S

πiwi ≤ ǫ − fk−1 (106)

is valid for EG.
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Proof. Let l = max {i : wi = 1} so that zi = wi = 1 for i = 1, . . . , l and hence
∑N

i=l+1 πizi ≤

ǫ − fl. Suppose first l < k. Then,
∑

i∈{k,...,p}\S πiwi = 0 and the result follows since, by

definition of the set S,
∑

i∈S πi ≤ ǫ − fk−1. Next, suppose l ≥ k. Then,

∑

i∈S

πizi ≤
∑

i∈S∩{k,...,l}

πizi +
N

∑

i=l+1

πizi ≤
∑

i∈S∩{k,...,l}

πi + ǫ − fl

and also
∑

i∈{k,...,p}\S πiwi =
∑

i∈{k,...,l}\S πi. Thus,

∑

i∈S

πizi +
∑

i∈{k,...,p}\S

πiwi ≤
∑

i∈S∩{k,...,l}

πi + ǫ − fl +
∑

i∈{k,...,l}\S

πi = ǫ − fk−1.

3.4.3.2 Equal Probabilities

Now, consider the case in which πi = 1/N for i = 1, . . . ,N . Then the extended formulation

becomes

EG′ =
{

(y, z, w) ∈ R+ × {0, 1}N+p : (86) and (102) − (104)
}

.

The inequalities (106) become

∑

i∈S

zi +
∑

i∈{k,...,p}\S

wi ≤ p−k+1 ∀S ∈ Sk, k = 1, . . . , p. (107)

Example 2. (Example 1 continued.) The extended formulation EG′ is given by

w1 ≥ w2 ≥ w3 ≥ w4

zi ≥ wi i = 1, . . . , 4

y + 2w1 + 4w2 + 3w3 + 5w4 ≥ 20

10
∑

i=1

zi ≤ 4, z ∈ {0, 1}10 , w ∈ {0, 1}4 .

Let k = 2 and S = {4, 5, 6}. Then (107) becomes

z4 + z5 + z6 + w2 + w3 ≤ 3.

Next we show that in the equal probabilities case, the inequalities (107) together with the

inequalities defining EG′ are sufficient to define the convex hull of the extended formulation

EG′. Let

EH ′ =
{

(y, z, w) ∈ R+ × [0, 1]N+p : (86), (102) − (104) and (107)
}
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be the linear relaxation of the extended formulation, augmented with this set of valid

inequalities.

Theorem 38. EH ′ = conv(EG′).

Proof. That EH ′ ⊇ conv(EG′) is immediate by validity of the extended formulation and

the inequalities (107).

To prove EH ′ ⊆ conv(EG′) we first show that it is sufficient to prove that the polytope

H =
{

(z,w) ∈ [0, 1]N+p : (86), (102), (103) and (107)
}

is integral. Indeed, suppose H is integral, and let (y, z, w) ∈ EH ′. Then, (z,w) ∈ H, and

hence there a exists a finite set of integral points (zj , wj), j ∈ J , each in H, and a weight

vector λ ∈ R
|J |
+ with

∑

j∈J λj = 1 such that (z,w) =
∑

j∈J λj(z
j , wj). For each j ∈ J define

yj = h1 −
∑p

i=1(hi − hi+1)w
j
i so that (yj , zj , wj) ∈ EG′ and also

∑

j∈J

λjy
j = h1 −

p
∑

i=1

(hi − hi+1)wi ≤ y.

Thus, there exists µ ≥ 0 such that (y, z, w) =
∑

j∈J λj(y
j , zj , wj) + µ(1,0) where each

(yj , zj , wj) ∈ EG′ and (1,0) is a feasible direction for EG′, which establishes that (y, z, w) ∈

conv(EG′).

We now move to proving the integrality of H, or equivalently, that H = conv(HI) where

HI = H ∩ {0, 1}N+p. Thus, if (z,w) ∈ H, we aim to prove (z,w) ∈ conv(HI). We do this

in two steps. First we establish a sufficient condition for (z,w) ∈ conv(HI), and then show

that if (z,w) ∈ H it satisfies this condition.

A sufficient condition for (z,w) ∈ conv(HI).

First observe that the feasible points of HI are given by wj = 1 for j = 1, . . . , k − 1 and

wj = 0 for j = k, . . . , p and

zj =















1 j = 1, . . . , k − 1 and j ∈ S

0 j ∈ {k, . . . ,N} \ S

107



for all S ∈ Sk and k = 1, . . . , p + 1. Thus, an inequality

N
∑

j=1

αjzj +

p
∑

j=1

γjwj − β ≤ 0 (108)

is valid for conv(HI) if and only if

k−1
∑

j=1

(αj + γj) + max
S∈Sk

∑

j∈S

αj − β ≤ 0 k = 1, . . . , p + 1. (109)

Representing the term max
{

∑

j∈S αj : S ∈ Sk

}

as a linear program and taking the dual,

as in (93) and (94) in the proof of Theorem 32, we obtain that (109) is satisfied and hence

(108) is valid if and only if the system of inequalities

k−1
∑

j=1

(αj + γj) +

N
∑

j=k

ρjk + (p−k+1)σk − β ≤ 0 (110)

αj − σk − ρjk ≤ 0 j = k, . . . ,N (111)

σk ≥ 0, ρjk ≥ 0 j = k, . . . ,N (112)

has a feasible solution for k = 1, . . . , p + 1. Thus, (w, z) ∈ conv(HI) if and only if

max
α,β,γ,σ,ρ







N
∑

j=1

αjzj +

p
∑

j=1

γjwj − β : (110) − (112), k = 1, . . . , p + 1







≤ 0.

For k = 1, . . . , p + 1, associate with (110) the dual variable δk, and with (111) the dual

variables ηjk for j = k, . . . ,N. Then, applying Farkas’ lemma to (110) - (112) and the

condition
N

∑

j=1

αjzj +

p
∑

j=1

γjwj − β > 0
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we obtain that (w, z) ∈ conv(HI) if and only if the system

p+1
∑

k=j+1

δk = wj j = 1, . . . , p (113)

p+1
∑

k=j+1

δk +

j
∑

k=1

ηjk = zj j = 1, . . . , p (114)

p+1
∑

k=1

ηjk = zj j = p + 1, . . . ,N (115)

(p−k+1)δk −
n

∑

j=k

ηjk ≥ 0 k = 1, . . . , p + 1 (116)

δk − ηjk ≥ 0 j = k, . . . ,N, k = 1, . . . , p + 1 (117)

p+1
∑

k=1

δk = 1 (118)

δk ≥ 0, ηjk ≥ 0 j = k, . . . ,N, k = 1, . . . , p + 1 (119)

has a feasible solution, where constraints (113) are associated with variables γ, (114) and

(115) are associated with α, (116) are associated with σ, (117) are associated with ρ,

and (118) is associated with β. Noting that (113) and (118) imply δk = wk−1 − wk for

k = 1, . . . , p + 1, with w0 := 1 and wp+1 := 0, we see that (w, z) ∈ conv(HI) if and only if

wk−1 − wk ≥ 0 for k = 1, . . . , p + 1 and the system

min{j,p+1}
∑

k=1

ηjk = θj j = 1, . . . , n (120)

n
∑

j=k

ηjk ≤ (p−k+1)(wk−1 − wk) k = 1, . . . , p + 1 (121)

0 ≤ ηjk ≤ wk−1 − wk j = k, . . . ,N, k = 1, . . . , p + 1 (122)

has a feasible solution, where θj = zj −wj for j = 1, . . . , p and θj = zj for j = p + 1, . . . ,N .

Verification that (z,w) ∈ H implies (z,w) ∈ conv(HI).

Let (z,w) ∈ H and consider a network G with node set given by V =

{u, v, rk for k = 1, . . . , p + 1, mj for j ∈ N}. This network has arcs from u to rk with ca-

pacity (p − k + 1)(wk−1 − wk) for all k = 1, . . . , p + 1, arcs from rk to mj with capacity

wk−1 −wk for all j = k, . . . ,N and k = 1, . . . , p + 1, and arcs from mj to v with capacity θj
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for all j ∈ N . An example of this network with N = 4 and p = 2 is given in Figure 2. The

labels on the arcs in this figure represent the capacities. For the arcs from nodes rk to nodes

mj, the capacity depends only on the node rk, so only the first outgoing arc from each rk

is labeled. It is easy to check that if this network has a flow from u to v of value
∑

j∈N θj,

then the system (120) - (122) has a feasible solution. We will show that (z,w) ∈ H implies

the minimum u − v cut in the network is at least
∑

j∈N θj, and by the max-flow min-cut

theorem, this guarantees a flow of this value exists, proving that (z,w) ∈ conv(HI).

r1 m1

u r2 m2 v

r3 m3

m4

2(1 − w1)

1(w1 − w2)

0

1 − w1

w1 − w2

w2

θ1

θ2

θ3

θ4

Figure 2: Example of network G with p = 2 and N = 4.

Now, consider a minimum u − v cut in the network G, defined by a node set U ⊂ V

with u ∈ U and v /∈ U . Let S = {mj : j ∈ N \ U}. Note that if rk /∈ U we obtain an arc in

the cut, from u to rk, with capacity (p− k + 1)(wk−1 −wk), whereas if rk ∈ U , we obtain a

set of arcs in the cut, from rk to mj for j ∈ S such that j ≥ k, with total capacity

∑

j∈S∩{k,...,N}

(wk−1 − wk) = |S ∩ {k, . . . ,N} |(wk−1 − wk).

Thus, because wk−1 ≥ wk we can assume that in this minimum u−v cut rk ∈ U if and only

if |S∩{k, . . . ,N} | < p−k+1. Hence, if we let l = min{k = 1, . . . , p+1 : |S∩{k, . . . ,N} | ≥

p−k+1} then we can assume rk ∈ U for 1 ≤ k < l and rk /∈ U for l ≤ k ≤ p + 1.

We now show that S ⊆ {l, . . . ,N}. Indeed, suppose j < l. If j ∈ S then the cut includes

arcs from rk to mj with capacity (wk−1 − wk) for all 1 ≤ k ≤ j yielding a total capacity

of 1 − wj. If j /∈ S, then the cut includes an arc from mj to v with capacity θj = zj − wj .
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Because zj ≤ 1, this implies we can assume that in this minimum u − v cut if j < l, then

j /∈ S.

Now suppose that l = 1, which occurs if |S| ≥ p. Then the value of the minimum cut is

given by

p+1
∑

k=1

(p − k + 1)(wk−1 − wk) +
∑

j /∈S

θj = p −

p
∑

k=1

wk +
∑

j /∈S

θj

≥ (p −
∑

j∈S

zj) +
∑

j∈N

θj ≥
∑

j∈N

θj

since
∑

j∈N zj ≤ p. Thus, in this case, the value of the minimum cut is at least
∑

j∈N θj.

So now assume l > 1. In this case, we claim that |S| = p − l + 1. Indeed, if not, then

|S| > p − l + 1, and so |S ∩ {l − 1, . . . ,N} | ≥ p − (l − 1) − 1, contradicting the minimality

in the definition of l since l − 1 also satisfies the condition in the definition.

The capacity of this minimum u − v cut is

C =
l−1
∑

k=1

(p − k + 1)(wk−1 − wk) +

p+1
∑

k=l

|S|(wk−1 − wk) +
∑

j∈N\S

θj.

Since,
l−1
∑

k=1

(p − k + 1)(wk−1 − wk) =

p
∑

k=l

p
∑

j=k

(wk−1 − wk) =

p
∑

j=l

(wl−1 − wj)

it follows that

C = (p − l + 1)wl−1 −

p
∑

k=l

wk + (1 − wl−1)|S| +
∑

j∈N\S

θj

= (p − l + 1) −

p
∑

k=l

wk +
∑

j∈N\S

θj ≥
∑

j∈N

θj

by (107) for k = l since S ⊆ {l, . . . ,N} and |S| = p − l + 1.

We close this section by noting that inequalities (107) can be separated in polynomial

time. Indeed, suppose we wish to separate the point (z∗, w∗). Then separation can be

accomplished by calculating

V ∗
k = max

S∈Sk







∑

i∈S

z∗i +
∑

i∈{k,...,p}\S

w∗
i







= max
S∈Sk

{

∑

i∈S

θ∗i

}

+

p
∑

i=k

w∗
i
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for k = 1, . . . , p where θ∗i = z∗i − w∗
i for i = 1, . . . , p and θ∗i = z∗i for i = p + 1, . . . ,N. If

V ∗
k > p−k+1 for any k, then a violated inequality is found. Hence, a trivial separation

algorithm is to first sort the values θ∗i in non-increasing order, then for each k, find the

maximizing set S ∈ Sk by searching this list. This yields an algorithm with complexity

O(N log N + p2) = O(N2). However, the complexity can be improved to O(N log N) as

follows. Start by storing the p largest values of θ∗i over i ∈ {p + 1, . . . ,N} in a heap, and

define V ∗
p+1 = 0. Then, for k = p, . . . , 1 do the following. First insert θ∗k into this heap.

Next remove the largest value, say θ∗max, from the heap and finally calculate V ∗
k by

V ∗
k = V ∗

k+1 + max {θ∗max, 0} + w∗
k.

The initial heap construction is accomplished with complexity O(N log N), and the algo-

rithm then proceeds through p steps, each requiring insertion into a heap and removal of

the maximum value from a heap, which can each be done with O(log p) complexity, yield-

ing overall complexity of O(N log N). For general probabilities πi, (heuristic) separation of

inequalities (106) can be accomplished by (heuristically) solving p knapsack problems.

3.5 Sample Approximation Experiments

We conducted experiments to test the effectiveness of the sample approximation approach

for yielding good feasible solutions and lower bounds. In particular, our aim is to determine

whether using α > 0 in the sample approximation can yield better solutions than when

using α = 0 as in the scenario approximation approach of [16, 51]. In addition, we test

whether reasonable lower bounds which are valid with high probability can be obtained.

We first conducted tests on a probabilistic version of the classical set covering problem,

which has been studied recently in [14, 63, 62]. This problem has both finite feasible region

and finite distribution (although both are exponentially large) so that for generating feasible

solutions, the stronger Theorems 24 and 26 apply. These results are given in Section 3.5.1.

We also conducted tests on a probabilistic version of the transportation problem. For this

problem, the feasible region is continuous and we also use a joint normal distribution for the

right-hand side vector, so that Theorem 27 applies. These results are presented in Section

3.5.2.
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Note that although Theorem 22 provides support for using the sample approximation

scheme to generate lower bounds, we will use Theorem 23 to actually obtain lower bounds

which are valid with high confidence, because it can be used regardless of how many sce-

narios N are used (with the possible drawback that using smaller N will yield weaker lower

bounds). Similarly, Theorems 24, 26, and 27 support the use of sample approximation to

yield feasible solutions, but we do not use these Theorems to guide our choice of α and

N . Indeed, the bounds implied by these theorems would suggest using N which is far too

large to be able to solve the approximation problem. Instead, we experiment with different

values of α and N , and perform an a posteriori test on each solution generated to determine

whether it is feasible (with high confidence).

3.5.1 Probabilistic Set Cover Problem

The Probabilistic Set Cover Problem is given by

min
{

cx : P
{

Ax ≥ ξ
}

≥ 1 − ǫ, x ∈ {0, 1}n
}

(PSC)

where c ∈ Rn is the cost vector, A is an m × n zero-one matrix and ξ is a random vector

taking values in {0, 1}m. We conducted tests on a single instance of PSC, with two values

of ǫ, 0.05 and 0.1.

Test Instance

Following [14], we based our tests on a deterministic set covering instance, scp41, of the

OR library [10], which has m = 200 rows and n = 1000 columns. Also following [14], the

random vector ξ is assumed to consist of 20 independent sub-vectors, with each sub-vector

having size k = 10 following the circular distribution. The circular distribution is defined by

parameters λj ∈ [0, 1] for j = 1, . . . , k. First, Bernoulli random variables Yj for j = 1, . . . , k

are generated independently with P
{

Yj = 1
}

= λi. Then, the random sub-vector is defined

by ξj = max{Yj , Yj+1} for j < k and by ξk = max{Y1, Yk}. We use the same parameters as

in [14], which are given in the preprint [12]. Because of the simple form of this distribution,

given a solution x, it is possible to calculate exactly P
{

Ax ≥ ξ
}

. Thus, when a solution is

obtained from a sample approximation problem, we test a posteriori whether it is feasible at
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a given risk level by exactly calculating P
{

Ax ≥ ξ
}

. To illustrate this calculation, we show

how to calculate the probability for a single sub-vector, that is P
{

ξj ≤ yj, j = 1, . . . , k
}

.

Then, with y = Ax, the overall probability P
{

Ax ≥ ξ
}

is calculated as the product of the

probabilities for each sub-vector. Let J = {1 ≤ j ≤ k : yj = 0}. Then,

P
{

ξj ≤ yj, j = 1, . . . , k
}

= P
{

ξj = 0,∀j ∈ J
}

= P
{

Yj = 0,∀j ∈ J+
}

=
∏

j∈J+

(1 − λj)

where J+ = ∪j∈J{j, (j + 1) mod k}. Although in this test, calculation of the distribution

function is easy, we stress that this is not a necessary condition to use the sample approxi-

mation, it is only necessary that sampling from the distribution can be done efficiently.

Solving the Sample Approximation

To solve the sample approximation problem of the PSC, we used a MIP formulation

which is equivalent to the extended formulation studied in Section 3.4.3. The formulation

is not exactly the same, since because the random right-hand side can take on only two

values, it can be simplified somewhat. Let the scenarios obtained in the sample of size N

be denoted by ξi for i = 1, . . . , N , where each ξi ∈ {0, 1}m. Then, the formulation we use is

min cx

s.t. Ax ≥ y

yj + zi ≥ 1 ∀i, j s.t. ξi
j = 1 (123)

N
∑

i=1

zi ≤ p (124)

x ∈ {0, 1}n, z ∈ {0, 1}N , y ∈ {0, 1}m

where p = ⌊αN⌋. We could relax the intregrality restriction on the y variables, but we found

that leaving this restriction and also placing higher branching priority on these variables

significantly improved performance when solving with CPLEX 9.0. The intuition behind

this is that if we fix yj = 1, then we are enforcing the constraint Ajx ≥ 1, and on the

other hand, if we fix yj = 0, then any scenario i for which ξi
j = 1 will be fixed to 1, and

constraint (124) will quickly become binding. We also found that some simple preprocessing
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of the formulation significantly helped solution times. If, for a row j,
∑

i ξi
j > p, then we

cannot have yj = 0, and so we fixed yj = 1, and the corresponding inequalities (123) for

j were not included. For our tests this happened very often. After this preprocessing,

for each j there will be at most p inequalities in (123), so that these inequalities add at

most mp rows and O(mp) nonzeros to the formulation. Using this formulation, we found

the sample approximation problems could be solved quickly, in all cases in less than ten

seconds, and usually much less. However, this may be due to the particular distribution

used, which yielded sample approximation problems in which very many of the yj variables

could be fixed to one, and thus this should not be taken as a study of the effectiveness of

this formulation in general. Rather, we are interested here only in the properties of the

solutions generated by the sample approximation problems.

Feasible Solutions

We first tested the effectiveness of the sample approximation approach for generating

feasible solutions. To do so, we varied the risk level of the approximation problem, α, and

sample size, N . For each combination of α and N we generated and solved 10 sample

approximation problems. Table 15 gives statistics of the solutions generated for the PSC

instance with ǫ = 0.05, and Table 16 gives the same for the PSC instance with ǫ = 0.1. For

each combination of α and N , we report statistics on the risk of the generated solutions,

where for a solution x, the risk is P
{

Ax � ξ
}

, as well as on the costs of the feasible solutions

generated, i.e. those solutions which have risk less than 0.05 and 0.1 respectively. For the

risk of the solutions, we report the average, minimum, maximum and sample standard

deviation over the 10 solutions. For the solutions costs, we report first how many solutions

were feasible, then report the average, minimum, maximum and sample standard deviation

of the cost taken over these solutions.

We first discuss results for the case of nominal risk level ǫ = 0.05. When using α = 0, the

best results were obtained with N in the range of 80-130, and these are the results we report.

With α = 0, as N increases more constraints are being enforced, which leads to smaller

feasible region of the approximation and higher likelihood that the optimal solution of the

115



Table 15: Solution results for PSC sample problems with ǫ = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.000 80 0.068 0.010 0.115 0.035 3 416.3 406 425 9.6
90 0.067 0.010 0.108 0.031 3 414.0 406 418 6.9

100 0.072 0.010 0.141 0.042 3 420.7 418 424 3.1
110 0.029 0.000 0.074 0.023 9 422.9 413 429 5.8
120 0.028 0.000 0.114 0.038 8 425.1 418 429 4.8
130 0.021 0.000 0.044 0.018 10 426.0 409 429 6.3

0.045 1000 0.051 0.030 0.060 0.010 4 405.3 404 409 2.5
3000 0.044 0.039 0.051 0.004 8 404.4 404 405 0.5
5000 0.043 0.039 0.050 0.004 10 404.4 404 405 0.5
7500 0.043 0.039 0.046 0.003 10 404.3 404 405 0.5

10000 0.042 0.039 0.046 0.003 10 404.6 404 405 0.5

0.050 1000 0.058 0.044 0.070 0.009 1 404.0 404 404 ***
3000 0.052 0.046 0.059 0.004 3 404.0 404 404 0.0
5000 0.050 0.046 0.055 0.003 4 404.0 404 404 0.0
7500 0.049 0.044 0.051 0.003 5 404.0 404 404 0.0

10000 0.047 0.044 0.051 0.003 9 404.0 404 404 0.0

Table 16: Solution results for PSC sample problems with ǫ = 0.1.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.000 60 0.122 0.073 0.206 0.038 3 421.0 407 428 12.1
70 0.089 0.030 0.206 0.051 7 415.7 407 425 6.8
80 0.068 0.010 0.115 0.035 8 414.9 406 425 6.3
90 0.067 0.010 0.108 0.031 9 414.6 400 428 8.3

100 0.072 0.010 0.141 0.042 6 418.3 408 424 5.8
110 0.029 0.000 0.074 0.023 10 423.0 413 429 5.5

0.095 1000 0.102 0.093 0.112 0.007 4 387.3 387 388 0.5
3000 0.093 0.083 0.103 0.006 9 388.2 387 390 1.3
5000 0.094 0.089 0.103 0.004 8 387.6 387 390 1.2
7500 0.093 0.085 0.103 0.004 9 387.6 387 390 1.0

10000 0.090 0.083 0.093 0.005 10 387.9 387 390 1.4

0.100 1000 0.107 0.093 0.120 0.008 1 387.0 387 387 ***
3000 0.098 0.093 0.112 0.006 6 387.0 387 387 0.0
5000 0.100 0.093 0.112 0.005 4 387.0 387 387 0.0
7500 0.099 0.093 0.103 0.004 5 387.0 387 387 0.0

10000 0.097 0.093 0.103 0.004 7 387.0 387 387 0.0
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approximation is feasible at the nominal risk level. However, the smaller feasible region

also causes the cost to increase, so that increasing N more would yield overly conservative

solutions. We also conducted tests with α = 0.045 and α = 0.05, and for these values of α

we used a significantly larger sample size. The best feasible solution found using α = 0 had

cost 406, and the average cost of the feasible solutions found was significantly greater than

this. When α > 0, a feasible solution with cost 404 was found in one of the ten runs for

every combination of α and N . When α = ǫ = 0.05 was used, every feasible solution found

had cost 404. Even when α = 0.045 was used, in which case feasible solutions were found

more consistently, the average cost of the feasible solutions was still less than the minimum

cost of a feasible solution found using α = 0.

For ǫ = 0.1, we observed similar results. In this case, when using α = 0, the best results

were obtained with N in the range of 60-110. The best solution found using α = 0 had cost

400, whereas the best solution found using α > 0 was 387, which was obtained by one of

the ten runs for every combination of α > 0 and N .

In terms of the variability of the risks and costs of the solutions generated, using α > 0

and a much larger sample size yielded solutions with much lower variability than when using

α = 0 and small sample size. This is not surprising since using a larger sample size naturally

should reduce variability. On the other hand, constraining the sample approximation to

have α = 0 prohibits the use of a larger sample size, as the solutions produced then become

overly conservative.

Lower Bounds

We next discuss the results for obtaining lower bounds for the PSC. We used the pro-

cedure of Theorem 23 with α = ǫ and M = 10. We use the same 10 sample approximation

problems as when generating feasible solutions. As argued after Theorem 23, with α = ǫ,

we have ρ(α, ǫ,N) = ρ(ǫ, ǫ,N) & 1/2. Then, if we take L = 1 the test of Theorem 23 yields

a lower bound with confidence 0.999. Taking L = 1 corresponds to taking the minimum

optimal value over all the M = 10 runs (not just over the ones which yielded feasible solu-

tions). More generally, we can take L ∈ {1, . . . , 10} yielding a lower bound with confidence
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at least

1 −
L−1
∑

i=0

(

10

i

)

ρ(ǫ, ǫ,N)i
(

1 − ρ(ǫ, ǫ,N)
)10−i

& 1 −
L−1
∑

i=0

(

10

i

)

(1/2)10

to obtain possibly “tighter” lower bounds of which we are less confident.

Table 17: Lower bounds for PSC sample problems with α = ǫ = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 395 396 397 398 2.2% 2.0% 1.7% 1.5%
3000 399 400 400 400 1.2% 1.0% 1.0% 1.0%
5000 400 400 400 400 1.0% 1.0% 1.0% 1.0%
7500 400 400 400 400 1.0% 1.0% 1.0% 1.0%

10000 400 404 404 404 1.0% 0.0% 0.0% 0.0%

The results obtained using varying values of N and ǫ = α = 0.05 are given in Table

17. The gaps reported are the percent by which the lower bound is below the best feasible

solution (404, obtained by any of the tested combinations of α > 0 and N). Thus, for

example, by solving 10 problems with sample size N = 1000 we obtained a feasible solution

of cost 404, and lower bound of 397, which is valid with probability at least 0.989. Solving

10 sample problems with sample size N = 5000 also yields a feasible solution of cost 404,

but a lower bound of 400, valid with probability 0.999. By solving 10 sample problems with

N = 10000, we obtain a feasible solution of cost 404, and confidence at least 0.989 that this

is actually the optimal solution to PSC at risk level ǫ = 0.05.

Table 18 yields the lower bound results obtained with ǫ = α = 0.1 and varying sample

size N . Solving 10 sample problems with N = 1000 we obtained a feasible solution of cost

387, and can say with confidence 0.989 that the optimal solution is at most 1.55% less costly

than this solution. Using N = 10000, we obtain a feasible solution of the same cost, but a

lower bound which states that with confidence at least 0.999 the optimal solution has cost

at most one less (0.26%) than this solution.

3.5.2 Probabilistic Transportation Problem

We next tested the sampling approach on a probabilistic version of the classical trans-

portation problem, which we call the Probabilistic Transportation Problem (PTP). In this
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Table 18: Lower bounds for PSC sample problems with α = ǫ = 0.1.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 381 382 384 385 1.55% 1.29% 0.78% 0.52%
3000 382 385 386 386 1.29% 0.52% 0.26% 0.26%
5000 382 385 386 386 1.29% 0.52% 0.26% 0.26%
7500 385 385 386 386 0.52% 0.52% 0.26% 0.26%

10000 386 386 386 387 0.26% 0.26% 0.26% 0.00%

problem, we have a set of suppliers I and a set of customers D with |D| = m. The suppliers

have limited capacity Mi for i ∈ I. There is a transportation cost cij for shipping a unit

of product from supplier i ∈ I to customer j ∈ D. The customer demands are random and

are represented by a random vector d̃ taking values in Rm. We assume we must choose the

shipment quantities before the customer demands are known. We enforce the probabilistic

constraint

P
{

∑

i∈I

xij ≥ d̃j, j = 1, . . . ,m
}

≥ 1 − ǫ (125)

where xij ≥ 0 is the amount shipped from supplier i ∈ I to customer j ∈ D. The objective

is to minimize distribution costs subject to (125), and the supply capacity constraints

∑

j∈D

xij ≤ Mi, ∀i ∈ I.

Test Instances

We conducted our tests on an instance with 40 suppliers and 50 customers. The supply

capacities and cost coefficients were randomly generated using normal and uniform distri-

butions respectively. The demand is assumed to have a joint normal distribution. The

mean vector and covariance matrix were randomly generated. We considered two cases for

the covariance matrix: a low variance and a high variance case. In the low variance case,

the standard deviation of the one dimensional marginal random demands is 10% of the

mean on average. In the high variance case, the covariance matrix of the low variance case

is multiplied by 25, yielding standard deviations of the one dimensional marginal random

demands being 50% of the mean on average. In both cases, we consider a single risk level
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ǫ = 0.05.

We remark that for this particular choice of distribution, the feasible region defined by

the probabilistic constraint is convex [56]. However, the dimension of the random vector d̃ is

m = 50, and so evaluating P
{

y ≥ d̃
}

for a single vector y ∈ Rm is difficult. Hence, applying

variations of standard convex programming techniques will not likely be efficient. However,

generating random samples from the joint normal distribution is easy so that generating

(non-convex) sample approximation problems can be accomplished.

Once a sample approximation is solved yielding solution x̂, we use a single very large

sample (N ′ = 250, 000), to estimate P
{

ŷ ≥ d̃
}

where ŷ ∈ Rm is the vector given by

ŷj =
∑

i∈I x̂ij for j ∈ D. Letting d1, . . . , dN ′
be the realizations of this large sample, we

calculate
∑N ′

i=1 I
(

ŷ ≥ di
)

and use the normal approximation to the binomial distribution

to construct an upper bound α̂ on the true solution risk P
{

ŷ ≥ d̃
}

, which is valid with

confidence 0.999. Henceforth for this experiment, if we say a solution is feasible at risk

level ǫ, we mean α̂ ≤ ǫ, and so it is feasible at this risk level with confidence 0.999. We

used such a large sample to get a good estimate of the true risk of the solutions generated,

but we note that because this sample was so large, generating this sample and calculating

∑N ′

i=1 I
(

ŷ ≥ di
)

often took longer than solving the sample approximation itself.

Solving the Sample Approximation

We solved the sample approximation problem using the formulation PMIP, augmented

with the strengthened star inequalities. In Section 3.6 we present computational results of

this and other formulations for solving the probabilistic transportation problem with finite

distribution, so we will not discuss this more here. However, we should mention that in

contrast to the probabilistic set cover problem, solving the sample approximation problem

with the largest sample size we consider (N = 10000) and largest α (0.05) takes a nontrivial

amount of time, in some cases as long as 30 minutes. On the other hand, for N = 5000, the

worst case was again α = 0.05 and usually took less than 4 minutes to solve.

Low Variance Instance
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Table 19: Solution results for low variance PTP sample problems with ǫ = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.000 900 0.048 0.036 0.066 0.011 7 2.0266 2.0199 2.0320 0.0045
950 0.047 0.039 0.055 0.005 6 2.0244 2.0185 2.0291 0.0041

1000 0.045 0.040 0.051 0.004 8 2.0253 2.0185 2.0300 0.0039
1500 0.033 0.025 0.043 0.005 10 2.0336 2.0245 2.0406 0.0053

0.030 5000 0.049 0.045 0.050 0.002 6 2.0098 2.0075 2.0114 0.0013
7500 0.045 0.041 0.047 0.002 10 2.0112 2.0094 2.0136 0.0015

10000 0.042 0.041 0.044 0.001 10 2.0129 2.0112 2.0145 0.0010

0.031 5000 0.050 0.047 0.051 0.002 4 2.0096 2.0090 2.0106 0.0007
7500 0.046 0.043 0.049 0.002 10 2.0104 2.0086 2.0126 0.0015

10000 0.043 0.042 0.045 0.001 10 2.0120 2.0104 2.0138 0.0010

0.032 5000 0.051 0.047 0.053 0.002 3 2.0089 2.0083 2.0097 0.0007
7500 0.047 0.045 0.050 0.002 9 2.0096 2.0077 2.0117 0.0014

10000 0.044 0.043 0.046 0.001 10 2.0111 2.0096 2.0129 0.0010

0.033 5000 0.052 0.049 0.054 0.002 2 2.0080 2.0073 2.0088 0.0011
7500 0.048 0.045 0.051 0.002 7 2.0092 2.0075 2.0107 0.0012

10000 0.045 0.044 0.047 0.001 10 2.0103 2.0089 2.0118 0.0009

0.034 5000 0.053 0.050 0.055 0.002 0 *** *** *** ***
7500 0.049 0.046 0.052 0.002 5 2.0089 2.0079 2.0098 0.0008

10000 0.046 0.045 0.048 0.001 10 2.0095 2.0082 2.0110 0.0008

0.035 5000 0.054 0.051 0.056 0.002 0 *** *** *** ***
7500 0.051 0.047 0.053 0.002 4 2.0083 2.0073 2.0091 0.0008

10000 0.048 0.045 0.050 0.001 10 2.0086 2.0073 2.0101 0.0008

0.036 5000 0.055 0.053 0.057 0.002 0 *** *** *** ***
7500 0.052 0.049 0.054 0.002 2 2.0079 2.0077 2.0080 0.0002

10000 0.049 0.047 0.051 0.001 8 2.0080 2.0066 2.0093 0.0008
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We begin by presenting results for the instance in which the distribution of demand

has relatively low variance. For generating feasible solutions, we tested α = 0 with various

sample size N and report the results for the sample sizes which yielded the best results.

Once again, this means we use a relatively small sample size for the case α = 0, as compared

to the cases with α > 0. We tested several values of α > 0 and varying sample size. In

contrast to the PSC case, we found that taking α = ǫ or even α close to ǫ did not yield

feasible solutions, even with a large sample size. Thus, we report results for many different

values of α in the range 0.03 to 0.036. The primary reason for reporting results for this many

different values of α is to illustrate that within this range, the results are not extremely

sensitive to the choice of α.

Table 20: Lower bounds for low variance PTP sample problems with α = ǫ = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 1.9755 1.9757 1.9775 1.9782 1.55% 1.54% 1.45% 1.42%
3000 1.9879 1.9892 1.9892 1.9910 0.93% 0.87% 0.87% 0.78%
5000 1.9940 1.9943 1.9948 1.9951 0.63% 0.62% 0.59% 0.57%
7500 1.9954 1.9956 1.9959 1.9963 0.56% 0.55% 0.54% 0.52%

10000 1.9974 1.9977 1.9980 1.9981 0.46% 0.45% 0.43% 0.42%

Table 19 gives the characteristics of the solutions generated for the different values of α

and N . We observe that as in the case of the PSC, the average cost of the feasible solutions

obtained using α > 0 is always less than the minimum cost of the feasible solutions obtained

with α = 0. However, for this instance, the minimum cost solution obtained using α = 0 is

not so significantly worse than the minimum cost solutions using different values of α > 0,

being between 0.40% and 0.58% more costly. As in the case of the PSC, using α > 0 and

large N significantly reduced the variability of the risk and cost of the solutions generated.

We next investigated the quality of the lower bounds that can be obtained for PTP

by solving sample approximation problems. As in the case of the PSC, we obtained lower

bounds by generating and solving 10 sample approximation problems with α = ǫ = 0.05.

By taking the lowest value of all the optimal values we obtain a lower bound valid with
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confidence 0.999, taking the second smallest yields a lower bound which is valid with confi-

dence 0.989, etc. The results for different values of N are given in Table 20. For reference,

the percentage gap between these lower bounds and the best feasible solution found (with

cost 2.0066) is also given. Using N ≥ 3000 we obtain lower bounds that are valid with

confidence 0.999 and are within one percent of the best feasible solution, indicating that

for this low variance instance, the lower bounding scheme yields good evidence that the

solutions we have found are good quality.

High Variance Instance

Table 21: Solution results for high variance PTP sample problems with ǫ = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.000 900 0.050 0.035 0.066 0.010 4 3.5068 3.4672 3.5488 0.0334
950 0.050 0.041 0.058 0.006 6 3.4688 3.4403 3.4917 0.0191

1000 0.045 0.041 0.052 0.004 9 3.4895 3.4569 3.5167 0.0234
1500 0.030 0.022 0.035 0.005 10 3.5494 3.5205 3.6341 0.0368

0.030 5000 0.050 0.045 0.053 0.002 4 3.4014 3.3897 3.4144 0.0101
7500 0.046 0.043 0.050 0.002 9 3.4060 3.3920 3.4235 0.0098

10000 0.043 0.041 0.046 0.001 10 3.4139 3.4001 3.4181 0.0055

0.031 5000 0.051 0.044 0.054 0.003 2 3.4094 3.3991 3.4197 0.0146
7500 0.047 0.044 0.051 0.002 8 3.4016 3.3958 3.4118 0.0065

10000 0.044 0.040 0.047 0.002 10 3.4083 3.3983 3.4247 0.0089

0.032 5000 0.052 0.045 0.055 0.003 2 3.4049 3.3945 3.4152 0.0146
7500 0.048 0.046 0.052 0.002 8 3.3965 3.3910 3.4064 0.0062

10000 0.045 0.041 0.048 0.002 10 3.4032 3.3934 3.4193 0.0087

0.033 5000 0.053 0.046 0.057 0.003 1 3.4107 3.4107 3.4107 ***
7500 0.049 0.046 0.054 0.002 7 3.3928 3.3865 3.4020 0.0062

10000 0.046 0.042 0.049 0.002 10 3.3982 3.3885 3.4139 0.0086

0.034 5000 0.054 0.047 0.058 0.003 1 3.4064 3.4064 3.4064 ***
7500 0.050 0.047 0.055 0.002 5 3.3903 3.3817 3.3971 0.0056

10000 0.048 0.044 0.050 0.002 10 3.3934 3.3840 3.4084 0.0085

0.035 5000 0.056 0.048 0.059 0.003 1 3.4022 3.4022 3.4022 ***
7500 0.052 0.049 0.056 0.002 2 3.3903 3.3881 3.3925 0.0031

10000 0.049 0.045 0.051 0.002 6 3.3936 3.3861 3.4034 0.0072

0.036 5000 0.057 0.049 0.060 0.003 1 3.3979 3.3979 3.3979 ***
7500 0.053 0.050 0.057 0.002 0 *** *** *** ***

10000 0.050 0.046 0.053 0.002 4 3.3927 3.3859 3.3986 0.0054
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Table 21 gives the characteristics of the solutions generated for the high variance in-

stance. In this case, the maximum cost of a feasible solution generated using any combina-

tion of α > 0 and N was less than the minimum cost of any feasible solution generated using

α = 0. The minimum cost feasible solution generated with α = 0 was between 0.87% and

1.7% more costly than the best feasible solution generated for the different combinations

of α > 0 and N . Thus, it appears that for the high variance instance, using α > 0 in a

sample approximation is more important for generating good feasible solutions than for the

low variance instance.

Table 22 gives the lower bounds for different confidence levels and sample sizes, as well

as the gaps between these lower bounds and the best feasible solution found. In this case,

solving 10 instances with sample size N = 1000 yields a lower bound that is not very

tight, 5.11% from the best solution cost at confidence level 0.999. Increasing the sample

size improves the lower bound, but even with N = 10000, the gap between the lower

bound at confidence 0.999 and the best solution found is 1.83%. Thus, it appears that for

the high variance instance, the sample approximation scheme exhibits considerably slower

convergence, in terms of the lower bounds, the feasible solutions generated, or both.

Table 22: Lower bounds for high variance PTP sample problems with α = ǫ = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 3.2089 3.2158 3.2178 3.2264 5.11% 4.91% 4.85% 4.59%
3000 3.2761 3.2775 3.2909 3.2912 3.12% 3.08% 2.69% 2.68%
5000 3.3060 3.3075 3.3077 3.3094 2.24% 2.19% 2.19% 2.14%
7500 3.3083 3.3159 3.3165 3.3169 2.17% 1.95% 1.93% 1.92%

10000 3.3200 3.3242 3.3284 3.3299 1.83% 1.70% 1.58% 1.53%

3.6 MIP Approach for Solving the Sample Approximation

We performed computational tests on the probabilistic transportation problem introduced in

Section 3.5.2. We randomly generated instances with the number of suppliers fixed at 40 and

varying numbers of customers and scenarios. The supply capacities and cost coefficients were

generated using normal and uniform distributions respectively. For the random demands,
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we experimented with independent normal, dependent normal and independent Poisson

distributions. We found qualitatively similar results in all cases, but the independent normal

case yielded the most challenging instances, so for our experiments we focus on this case. For

each instance, we first randomly generated the mean and variance of each customer demand.

We then generated the number N of scenarios required, independently across scenarios and

across customer locations, as Monte Carlo samples with these fixed parameters. In most

instances we assumed all scenarios occur with probability 1/N (corresponding to the sample

approximation problem), but we also did some tests in which the scenarios have general

probabilities, which were randomly generated. CPLEX 9.0 was used as the MIP solver

and all experiments were done on a computer with two 2.4 Ghz processors (although no

parallelism is used) and 2.0 Gb of memory. We set a time limit of one hour. For each problem

size we generated 5 random instances and, unless otherwise specified, the computational

results reported are averages over the 5 instances.

3.6.1 Comparison of Formulations

In Table 23 we compare the results obtained by solving our instances using

1. formulation PMIP given by (77) - (79),

2. formulation PMIP with strengthened star inequalities (85), and

3. the extended formulation of Sect. 3.4.3, but without (106) or (107).

When the strengthened star inequalities are not used, we still used the improved formulation

of G corresponding to (84). Recall that the strengthened star inequalities subsume the rows

defining the formulation PMIP; therefore, when using these inequalities we initially added

only a small subset of the mp inequalities (83) in the formulation. Subsequently separating

the strengthened star inequalities as needed guarantees the formulation remains valid. For

formulation PMIP without strengthened star inequalities, we report the average optimality

gap that remained after the hour time limit was reached, where we define the optimality gap

as the difference between the final upper and lower bounds, divided by the upper bound.

For the other two formulations, which we refer to as the strong formulations, we report
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the geometric average of the time to solve the instances to optimality. We used ǫ = 0.05

and ǫ = 0.1, reflecting the natural assumption that we want to meet demand with high

probability.

Table 23: Average solution times for different formulations.
PMIP PMIP+Star Extended

Probabilities ǫ m N Gap Cuts Time(s) Time(s)

Equal 0.05 100 1000 0.18% 734.8 7.7 1.1
100 2000 1.29% 1414.2 31.8 4.6
200 2000 1.02% 1848.4 61.4 12.1
200 3000 2.56% 2644.0 108.6 12.4

0.10 100 1000 2.19% 1553.2 34.6 12.7
100 2000 4.87% 2970.2 211.3 41.1
200 2000 4.48% 3854.0 268.5 662.2
200 3000 5.84% 5540.8 812.7 490.4

General 0.05 100 1000 0.20% 931.8 9.0 3.9
100 2000 1.04% 1806.6 55.2 13.2

0.10 100 1000 1.76% 1866.0 28.7 52.5
100 2000 4.02% 3686.2 348.5 99.2

The first observation from Table 23 is that formulation PMIP without the strengthened

star inequalities failed to solve these instances within an hour, often leaving large optimality

gaps, whereas the instances are solved efficiently using the strong formulations. The number

of nodes required to solve the instances for the strong formulations is very small. The

instances with equi-probable scenarios were usually solved at the root, and even when

branching was required, the root relaxation usually gave an exact lower bound. Branching

in this case was only required to find an integer solution which achieved this bound. The

instances with general probabilities required slightly more branching, but generally not

more than 100 nodes. Observe that the number of strengthened star inequalities that were

added is small relative to the number of rows in the formulation PMIP itself. For example,

with equi-probable scenarios, ǫ = 0.1, m = 200 and N = 3, 000, the number of rows in

PMIP would be mp = 60, 000, but on average, only 5, 541 strengthened star inequalities

were added. Next we observe that in most cases the computation time using the extended

formulation is significantly less than the formulation with strengthened star inequalities.

Finally, we observe that the instances with general probabilities take somewhat longer to
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solve than those with equi-probable scenarios but can still be solved efficiently.

3.6.2 The Effect of Increasing ǫ

The results of Table 23 indicate that the strong formulations can solve large instances to

optimality when ǫ is small, which is the typical case. However, it is still an interesting

question to investigate how well this approach works for larger ǫ. Note first that we should

expect solution times to grow with ǫ if only because the formulation sizes grow with ǫ.

However, we observe from the chart in Figure 3 that the situation is much worse than this.

This chart shows the root LP solve times and optimality gaps achieved after an hour of

computation time for an example instance with equi-probable scenarios, m = 50 rows and

N = 1, 000 scenarios at increasing levels of ǫ, using the formulation PMIP with strengthened

star inequalities. Root LP solve time here refers to the time until no further strengthened

star inequalities could be separated. We see that the time to solve the root linear programs

does indeed grow with ǫ as expected, but the optimality gaps achieved after an hour of

computation time deteriorate drastically with growing ǫ. This is explained by the increased

time to solve the linear programming relaxations combined with an apparent weakening of

the relaxation bound as ǫ increases.

ǫ

Figure 3: The effect of increasing ǫ.
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Table 24: Results with and without inequalities (107).

Root Gap Nodes Time(s) or Gap
m ǫ N Ext +(107) Ext +(107) Ext +(107)

25 0.3 250 1.18% 0.67% 276.9 69.0 121.2 93.9
0.3 500 1.51% 0.58% 455.0 165.8 750.6 641.3

0.35 250 2.19% 1.50% 1259.4 409.0 563.2 408.4
0.35 500 2.55% 1.61% 2297.6 968.8 0.22% 0.06%

50 0.3 500 2.32% 2.00% 991.8 238.6 1.37% 1.41%
0.3 1000 2.32% 1.75% 28.3 8.5 1.98% 1.66%

0.35 500 4.10% 3.31% 650.4 92.9 3.03% 2.66%
0.35 1000 4.01% 3.23% 22.7 6.2 3.58% 3.17%

3.6.3 Testing Inequalities (107)

With small ǫ the root relaxation given by the extended formulation is extremely tight,

so that adding the inequalities (107) is unlikely to have a positive impact on computa-

tion time. However, for larger ǫ, we have seen that formulation PMIP, augmented with

the strengthened star inequalities, and hence also the extended formulation, may have a

substantial optimality gap. We therefore investigated whether using inequalities (107) in

the extended formulation can improve solution time in this case. In Table 24 we present

results comparing solution times and node counts with and without inequalities (107) for

instances with larger ǫ. We performed these tests on smaller instances since these instances

are already hard for these values of ǫ. We observe that adding inequalities (107) at the root

can decrease the root optimality gap significantly. For the instances that could be solved

in one hour, this leads to a significant reduction in the number of nodes explored, and a

moderate reduction in solution time. For the instances which were not solved in one hour,

the remaining optimality gap was usually, but not always, lower when the inequalities (107)

were used. These results indicate that when ǫ is somewhat larger, inequalities (107) may

be helpful on smaller instances. However, they also reinforce the difficulty of the instances

with larger ǫ, since even with these inequalities, only the smallest of these smaller instances

could be solved to optimality within an hour.
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3.7 Concluding Remarks

We have studied a sample approximation scheme for probabilistically constrained opti-

mization problems and demonstrated how this scheme can be used to generate optimality

bounds and feasible solutions for very general optimization problems with probabilistic con-

straints. We have also conducted a preliminary computational study of this approach. This

study demonstrates that using sample approximation problems that allow a choice of which

sampled constraints to satisfy can yield good quality feasible solutions. In addition, the

sample approximation scheme can be used to obtain lower bounds which are valid with

high confidence. We found that good lower bounds could be found in the case of finite

(but possibly exponential) feasible region and distribution, and also in the case of continu-

ous feasible region and distribution, provided the distribution has reasonably low variance.

With continuous feasible region and distribution, if the distribution has high variance the

lower bounds were relatively weak. Future work in this area will include conducting more

extensive computational tests, and also extending the theory to allow generation of samples

which are not necessarily independent and identically distributed. For example, the use of

Latin hypercube sampling may yield significantly faster convergence.

The sample approximation problem we have studied is non-convex, and hence may in

general be difficult to solve. However, for the special case in which only the right-hand side

of the constraints is random, we have studied a mixed-integer programming formulation

which appears to be very effective. The MIP formulation we study can be used when

the different realizations have general probabilities, not just equal probabilities as in the

sample approximation case. In our polyhedral study of the MIP formulation we made use

of existing results on a mixed-integer substructure appearing in the formulation known

as a mixing set. We have also introduced new polyhedral results for the case in which

the mixing set additionally has a knapsack restriction. We have conducted computational

experiments for the case of a linear program with probabilistic constraints. These results

indicate that these formulations are extremely effective on instances in which relatively low

risk of violation of the constraints is allowed, which is the typical case. However, instances

in which the desired risk level is higher remain difficult to solve, partly due to increased
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size of the formulations, but more significantly due to the weakening of the formulation

bounds. Moreover, these instances remain difficult even when using the inequalities which

characterize the single row relaxation convex hull. This suggests that relaxations which

consider multiple rows simultaneously need to be studied to yield valid inequalities which

significantly improve the relaxation bounds for these instances.

The sample approximation scheme we have developed is quite general, but so far we

have only demonstrated that the sample approximation problem can be solved efficiently

in the case that only the right-hand side of the probabilistic constraints is random. Future

work will attempt to find methods to solve the sample approximation problem (that is, a

probabilistic program with finite distribution) in more general settings. The most obvious

extension will be to allow the constraint matrix in a probabilistically constrained linear

program to be random. A natural first step in this direction will be to extend results from

the generalized mixing set [48, 69] to the case in which an additional knapsack constraint

is present. An alternative, or perhaps a supplement, to this approach is to apply the ideas

of dominance given in [61] to the single row formulation. We say that scenario i dominates

another scenario k if the constraints of scenario k are automatically satisfied whenever the

constraints of scenario i are satisfied. In such a case, we can add the precedence constraint,

zi ≥ zk, to the formulation. The idea given in [61] was to find such dominance relations,

and then combine the corresponding precedence constraints with the knapsack inequality to

find strong valid inequalities. For moderate size problems it seems unlikely that dominance

between scenarios to be common, and hence this approach may not be that attractive.

However, suppose we take the approach given in the extended formulation of Section 3.4.3,

and for each row j in our formulation we introduce a set of binary variables representing

whether or not each scenario is satisfied for that row. Now, in applications we may expect

that for each row the number of random coefficients may not be very large. Therefore,

on a row-by-row basis, we may find that dominance between scenarios is common, and

hence adding precedence constraints and valid inequalities based on them combined with

the knapsack inequality may be fruitful.
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CHAPTER IV

NEW FORMULATIONS FOR STOCHASTIC PROGRAMMING

UNDER STOCHASTIC DOMINANCE CONSTRAINTS

4.1 Introduction

Stochastic programming under stochastic dominance constraints is an attractive approach

to managing risk in an optimization setting. The idea is to optimize an objective, such as the

expected profit, subject to a constraint that a random outcome of interest, such as the actual

profit, is “better” in a strong sense than a given reference random outcome. Here, “better” is

taken to mean that the random outcome we achieve stochastically dominates the reference

outcome. A simple example application is to choose investments so that you maximize

the expected return, subject to the constraint that the actual return should stochastically

dominate the return from a given index, such as the S&P 500. Stochastic programming

under stochastic dominance constraints has recently been studied in [22, 23, 24, 53, 54].

Let W and Y be random variables with distribution functions F and G. The random

variable W dominates Y in the first order, written W �(1) Y , if

F (η) ≤ G(η) ∀ η ∈ R. (126)

The random variable W dominates Y in the second order, written W �(2) Y , if

E
[

(η − W )+
]

≤ E
[

(η − Y )+
]

∀ η ∈ R. (127)

If W and Y represent random outcomes for which we prefer larger values, stochastic domi-

nance of W over Y implies a very strong preference for W . In particular, it is known that

(see, e.g. [71]) W �(1) Y if and only if

E[h(W )] ≥ E[h(Y )]

for all nondecreasing functions h : R → R for which the above expectations exist and are

finite. Thus, if W �(1) Y , any rational decision maker would prefer W to Y . In addition
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W �(1) Y if and only if

E[h(W )] ≥ E[h(Y )]

for all nondecreasing and concave functions h : R → R for which the above expectations

exist and are finite. Thus, if W �(2) Y , any rational and risk-averse decision maker will

prefer W to Y .

In this chapter, we present new, computationally attractive formulations for optimiza-

tion under stochastic dominance constraints. Let X ⊆ Rn represent a feasible region and

f : Rn → R represent an objective we want to maximize. Let Y be a given random vari-

able, which we refer to as the reference random variable, and let ξ be a random vector

taking values in Rm. Finally, let g : Rn × Rm → R be a given mapping which represents

a random outcome depending on the decision x and the random vector ξ. We consider the

two optimization problems

max
x

{

f(x) : x ∈ X, g(x, ξ) �(1) Y
}

(FSD)

and

max
x

{

f(x) : x ∈ X, g(x, ξ) �(2) Y
}

. (SSD)

We will present formulations for these problems when the random vector ξ and reference

random variable Y have finite distributions. That is, we assume ξ can take at most N

values, and Y can take at most D values. In particular,

1. We introduce a new linear formulation for SSD which has O(N + D) constraints,

as opposed to O(ND) constraints in a previous linear formulation. Computational

results indicate that this yields significant improvement in solution time.

2. We introduce a new mixed-integer programming (MIP) formulation for FSD which

also has O(N + D) constraints. In addition, the linear relaxation of this formulation

is also a formulation of SSD. As a result, the linear programming relaxation of this

formulation is equivalent to the SSD relaxation proposed in [53], and shown to be a

tight relaxation of FSD in [54].
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3. We present a specialized branching rule and heuristics for the new FSD formulation

and conduct computational tests which indicate that provably good, and in some cases

provably optimal, solutions can be obtained for large instances using this approach.

We do not make any assumptions on the set X or the mapping g in the development of our

formulations, but computationally we are interested in the case when X is a polyhedron

and g(x, ξ) is affine in x for all possible values of ξ, so that the formulations become linear

and linear integer programs, for SSD and FSD respectively.

In [24], it is shown that in some special cases the convex second order dominance con-

straint yields the convexification of the non-convex first order dominance constraint, and

that in all cases, the second order constraint is a relaxation of the first order constraint. Our

new formulations further illustrate this close connection by showing that relaxing integrality

in our new formulation for FSD yields a formulation for SSD.

In Section 4.2 we review some basic results about stochastic dominance and present

previous formulations for FSD and SSD. In Section 4.3 we present our new formulation for

SSD and in Section 4.4 we present our new formulation for FSD. In Section 4.5 we present

a specialized branching scheme and some heuristics for solving our new formulation of FSD.

In Section 4.6 we present some illustrative computational results, and we close with some

concluding remarks in Section 4.7.

4.2 Previous Results on Stochastic Dominance

For the purpose of developing formulations for FSD and SSD, it will be sufficient to present

conditions which characterize when a random variable W stochastically dominates the ref-

erence random variable Y . We will assume the distributions of W and Y are finite and

described by

µ{W = wi} = pi i ∈ N := {1, . . . ,N} (128)

ν{Y = yk} = qk k ∈ D := {1, . . . ,D} (129)

where µ and ν are the probability distributions induced by W and Y respectively. Further-

more, we assume without loss of generality that y1 < y2 < · · · < yD.
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Given a formulation which guarantees W stochastically dominates Y , a formulation

for FSD or SSD can be obtained by simply enforcing that g(x, ξ) = W . Then, if ξ has

distribution given by P{ξ = ξi} = pi for i ∈ N and we add the constraints

ui = g(x, ξi) i ∈ N (130)

to the formulation, we will have g(x, ξ) �(1) Y if and only if W �(1) Y and g(x, ξ) �(2) Y

if and only if W �(2) Y . Henceforth, we will only consider formulations which guarantee

stochastic dominance of W over Y , but based on the relation (130), the reader should think

of the values ui as decision variables, whereas the values yk are fixed.

When the reference random variable Y has finite distribution, the conditions for stochas-

tic dominance can be simplified, as has been observed, for example, in [22, 23]. We let y0 ∈ R

be such that y0 < y1 and introduce the notation (·)+ = max {0, ·}.

Lemma 39. Let W,Y be random variables with distributions given by (128) and (129).

Then, W �(2) Y if and only if

N
∑

i=1

pi(yk − wi)
+ ≤

D
∑

j=1

qj(yk − yj)
+ k ∈ D (131)

and W �(1) Y if and only if

P
{

W < yk

}

≤ P
{

Y ≤ yk−1

}

k ∈ D. (132)

The key simplification is that the infinite sets of inequalities in the definitions (126) and

(127) can be reduced to a finite set when Y has a finite distribution.

Second order stochastic dominance constraints are known to define a convex feasible

region [22]. In fact, condition (131) can be used to derive a linear formulation (in an

extended variable space) for second order stochastic dominance by introducing variables sik

representing the terms (yk −wi)
+ [22]. Thus, W �(2) Y if and only if there exists s ∈ RND

+

such that

N
∑

i=1

pisik ≤
D

∑

j=1

qj(yk − yj)
+ k ∈ D

sik + wi ≥ yk i ∈ N , k ∈ D.
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We refer to this formulation as SDLP. Note that this formulation introduces ND variables

and (N + 1)D constraints.

It is possible to use the nonsmooth convex constraints (131) directly, yielding a formu-

lation for SSD that does not introduce auxiliary variables and has O(D) constraints, and

specialized methods can be used to solve this formulation, see [23]. The advantage of using

a linear formulation is that it can be solved directly by readily available linear programming

solvers such as the open source solver CLP [26] or the commercial solver Ilog CPLEX [40].

Condition (132) can be used to derive a MIP formulation for first order stochastic

dominance [53, 54]. W �(1) Y if and only if there exists β such that

N
∑

i=1

piβik ≤
k−1
∑

j=1

qj k ∈ D (133)

wi + Mikβik ≥ yk i ∈ N , k ∈ D (134)

βik ∈ {0, 1} i ∈ N , k ∈ D.

We refer to this formulation as FDMIP. Here, Mik is sufficiently large to guarantee that if

βik = 1, then the corresponding constraint (134) will be redundant. For example, if other

constraints in the model imply wi ≥ li, then we can take Mik = yk − li for all i and k.

Although this formulation was presented in [53, 54], the authors do not recommend using

this formulation for computation, since the linear programming relaxation bounds are too

weak. Instead, because first order stochastic dominance implies second order dominance,

any formulation for second order dominance is a relaxation of first order dominance, and

the authors therefore propose to use the problem SSD as a relaxation for FSD. Thus, they

propose to use the formulation SDLP to obtain bounds for FSD, and to improve these

bounds using disjunctive cuts [5]. In addition, formulation SDLP is used as a basis for

heuristics to find feasible solutions for FSD. It is demonstrated in [54] that the bounds

from using SSD as a relaxation of FSD are usually good, and that using their heuristics

based on formulation SDLP, they are able to obtain good feasible solutions. However, these

results do not yield a convergent algorithm for finding an optimal solution to FSD, and

require the solution of SDLP, which we shall see in our computational results can be quite

time-consuming using commercial solvers.
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We also want to mention the recent work in [29, 30] in which first order and second order

stochastic dominance constraints induced by mixed-integer recourse models are considered.

In this two-stage model, an initial set of decisions is made, then the random outcome is

observed, and a set of mixed-integer recourse decisions can then be made at minimum cost.

In their model, a stochastic dominance constraint is enforced on the (random) recourse cost.

The formulations they present for the stochastic dominance constraints are based on the

formulations FDMIP and SDLP, respectively. It is clear that our more compact and tighter

formulations for FSD and SSD can also be applied in this setting, and we expect that doing

so would yield improved computational performance. The same authors have applied their

approach to risk modeling in power systems with dispersed generation [28].

4.3 A New Formulation for Second Order Stochastic Dominance

We motivate our new formulation for second order stochastic dominance by first considering

the case in which N = D and all outcomes are equally likely, that is, pi = qi = 1/N for

all i ∈ N . In this case, Dentcheva and Ruszczyński have shown in [24] that the second

order stochastic dominance constraint yields the convexification of the first order stochastic

dominance constraint. The proof of this result implicitly yields an alternative formulation

for second order stochastic dominance which we now describe. This formulation has also

been presented in [42] as a test for second order stochastic dominance, but it is clear that

it can also be used to implement stochastic dominance constraints in this case. Note that

when all outcomes are equally likely and N = D, W �(2) Y if and only if

N
∑

i=1

(yk − wi)
+ ≤

N
∑

i=1

(yk − yi)
+ k ∈ N .

Then, by a theorem in [47], it follows that W �(2) Y if and only if w majorizes y, that is,

k
∑

i=1

w[i] ≥
k

∑

i=1

yi k ∈ N (135)

where w[i] represents the ith smallest value in the vector w. Now, a theorem of Hardy,

Littlewood and Pólya [33] yields that (135) holds if and only if there exists π ∈ RN2

+ such

that
N

∑

j=1

πijyj ≤ wi i ∈ N ,

N
∑

j=1

πij = 1 i ∈ N , and

N
∑

i=1

πij = 1 j ∈ N . (136)
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Hence, this yields a formulation for second order dominance which uses N2 = ND auxiliary

variables, but only 3N linear constraints. Our aim is to present a formulation for second

order dominance between finitely distributed random variables which has general probabil-

ities and allows N 6= D. The formulation will not be based on the majorization theory, and

instead will follow from

Lemma 40. Let y1 ≤ y2 ≤ · · · ≤ yD and suppose w ∈ R and π ∈ RD
+ satisfy

w −
D

∑

j=1

yjπj ≥ 0 (137)

D
∑

j=1

πj = 1. (138)

Then,

(yk − w)+ ≤
k−1
∑

j=1

(yk − yj)πj k ∈ D.

Moreover, if w ≥ y1, then there exists π ∈ RD
+ which satisfies (137), (138) and

(yk − w)+ =

k−1
∑

j=1

(yk − yj)πj k ∈ D. (139)

Proof. First suppose w ∈ R and π ∈ RD
+ satisfy (137) and (138). Then, for each k ∈ D

(yk − w)+ ≤ (yk −
D

∑

j=1

yjπj)
+ by (137)

=
(

D
∑

j=1

(yk − yj)πj

)+
by (138)

≤
D

∑

j=1

(yk − yj)
+πj =

k−1
∑

j=1

(yk − yj)πj since π ≥ 0.

Now suppose w ≥ y1. If w ≥ yD, then π given by πD = 1 and πj = 0 for j = 1, . . . ,D − 1

satisfies (137) - (139). If w < yD, let i be the index such that yi ≤ w < yi+1 and note that

1 ≤ i < D. Let π be given by πj = 0 for j < i and for j > i+1, and πi = (yi+1−w)/(yi+1−yi)

and πi+1 = (w − yi)/(yi+1 − yi). Then, π ≥ 0 and π satisfies (138). In addition,

D
∑

j=1

πjyj =
1

yi+1 − yi

(

yi(yi+1 − w) + yi+1(w − yi)
)

= w
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and so (137) is satisfied. Finally, for k ≤ i,
∑k−1

j=1(yk − yj)πj = 0 = (yk − w)+ and for

k = i + 1,
i

∑

j=1

(yi+1 − yj)πj = (yi+1 − yi)

(

yi+1 − w

yi+1 − yi

)

= (yi+1 − w)+

and for k > i + 1,

k−1
∑

j=1

(yi+1 − yj)πj = (yk − yi)

(

yi+1 − w

yi+1 − yi

)

+ (yk − yi+1)

(

w − yi

yi+1 − yi

)

= (yk − w)+

and so (139) holds.

The standard way to represent the quantities (yk − w)+ in an optimization problem

where w is a decision variable to be maximized is to introduce variables sk for k ∈ D and

enforce sk ≥ 0 and sk ≥ yk − w for k ∈ D. This is how the formulation for second order

stochastic dominance SDLP is obtained from the condition (131). Lemma 40 yields an

alternative means to represent the quantities (yk − w)+ which also introduces D variables,

but introduces only two constraints. We take advantage of this representation to achieve

the following compact formulation for SSD.

Theorem 41. Let W,Y be random variables with distributions given by (128) and (129).

Then W �(2) Y if and only if there exists π ∈ RND
+ such that

D
∑

j=1

yjπij ≤ wi i ∈ N (140)

D
∑

j=1

πij = 1 i ∈ N (141)

N
∑

i=1

pi

k−1
∑

j=1

(yk − yj)πij ≤
k−1
∑

j=1

qj(yk − yj) k ∈ D. (142)

Proof. From Lemma 39, we know that W �(2) Y if and only if (131) holds. Suppose there

exists π ∈ RND
+ such that (140) - (142) hold. Then, by applying Lemma 40 to wi and

πi = (πi1, . . . , πiD) for each i ∈ N , we obtain

N
∑

i=1

pi(yk − wi)
+ ≤

N
∑

i=1

pi

k−1
∑

j=1

(yk − yj)πij ≤
k−1
∑

j=1

qj(yk − yj) =

D
∑

j=1

qj(yk − yj)
+

by (142) implying (131) holds and hence W �(2) Y .

138



Now suppose W �(2) Y so that (131) holds. Note that (131) for k = 1 implies that

wi ≥ y1 for each i ∈ N . Thus, we apply Lemma 40 for each wi to obtain a vector πi ∈ RD
+

such that (140) and (141) hold and

(yk − wi)
+ =

k−1
∑

j=1

(yk − yj)πij k ∈ D.

Hence, (131) implies

N
∑

i=1

pi

k−1
∑

j=1

(yk − yj)πij =
N

∑

i=1

pi(yk − wi)
+ ≤

k−1
∑

j=1

qj(yk − yj).

To use Theorem 41 to obtain a formulation for SSD, we replace wi with g(x, ξi) so that

(140) becomes

g(x, ξi) ≥
D

∑

j=1

yjπij i ∈ N (143)

and thus obtain the formulation given by

f∗
SSD = max

x,π

{

f(x) : (141), (142), (143), x ∈ X,π ∈ RND
+

}

.

We refer to this formulation as cSSD. This formulation introduces ND variables and O(N +

D) rows.

For computational purposes, it is beneficial to introduce variables v ∈ RD and replace

the D constraints in (142) with the 2D constraints

vj −
N

∑

i=1

piπij = 0 j ∈ D (144)

k−1
∑

j=1

(yk − yj)vj ≤
k−1
∑

j=1

(yk − yj)pj k ∈ D. (145)

This equivalent formulation has D additional variables and constraints, although the number

of constraints importantly remains O(N + D). The advantage of this version is that (144)

and (145) have O(ND) nonzeros, as compared to O(ND2) nonzeros in (142).
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4.4 A New Formulation for First Order Stochastic Dominance

As in the case for second order stochastic dominance, if N = D and all outcomes are equally

likely, a formulation for first order stochastic dominance which introduces N2 (binary)

variables and O(N) constraints has been presented in [42]. Once again, we are able to

generalize this to the case with general probabilities and N 6= D. An immediate advantage

of this formulation is that it is compact, and hence the linear programming relaxation can

be solved efficiently. In addition, we will see that the bound from this relaxation is exactly

the same as that from the second order stochastic dominance relaxation proposed in [53].

Theorem 42. Let W,Y be random variables with distributions given by (128) and (129).

Then W �(1) Y if and only if there exists π ∈ {0, 1}ND
such that (w, π) satisfy (140),(141)

and
N

∑

i=1

pi

k−1
∑

j=1

πij ≤
k−1
∑

j=1

qj k = 2, . . . ,D. (146)

Proof. Let us introduce the notation Ωk := {i ∈ N : wi < yk} for k ∈ D. Now, suppose

W �(1) Y . Then, by condition (132) in Lemma 39 we have

µ(Ωk) = µ{W < yk} ≤ ν{Y ≤ yk−1} =

k−1
∑

i=1

qi. (147)

Next, for i ∈ N , define k∗(i) := max {k ∈ D : i /∈ Ωk}. Note that k∗(i) always exists since

(132) for k = 1 implies µ{W < y1} = 0, and so for sure i /∈ Ω1 for each i. Next, note that

k∗(i) < k if and only if i ∈ Ωk. That k∗(i) < k implies i ∈ Ωk is immediate by the definition

of k∗(i). On the other hand, if i ∈ Ωk, then also i ∈ Ωj for all j > k, and so k∗(i) < k.

Now, for each i ∈ N , let πij = 1 for j = k∗(i) and πij = 0 for all j 6= k∗(i). By definition,

we have that π satisfies (141). For k > 1,
∑k−1

j=1 πij = 1 if and only if k∗(i) < k and so also

∑k−1
j=1 πij = 1 if and only if i ∈ Ωk. Hence,

µ(Ωk) =
N

∑

i=1

pi

k−1
∑

j=1

πij. (148)

Combining (148) with (147) shows that π satisfies (146), since also any π which satisfies

(141) trivially satisfies (146) for k = D. Finally, for each i ∈ N , we have
∑D

j=1 yjπij =

yk∗(i) ≤ wi since, by definition, i /∈ Ωk∗(i), thus establishing that π satisfies (140).
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Now suppose π ∈ {0, 1}ND satisfies (140),(141) and (146). For k ∈ D, let Ω′
k := {i ∈

N :
∑k−1

j=1 πij = 1}. Note that if i /∈ Ω′
k then

∑k−1
j=1 πij = 0 and by (141)

∑D
j=k πij = 1, and

so
∑D

j=1 yjπij ≥ yk. Using (140) we have that if i ∈ Ωk, then

D
∑

j=1

yjπij ≤ wi < yk

and hence also i ∈ Ω′
k. Therefore, by (146), we have for k ∈ D,

µ{W < yk} = µ(Ωk) ≤ µ(Ω′
k) =

N
∑

i=1

k−1
∑

j=1

πij ≤
k−1
∑

j=1

qj = ν{Y ≤ yk−1}

and so W �(1) Y by condition (132) in Lemma 39.

Using Theorem 42 with wi = g(x, ξi), we obtain the formulation for FSD given by

f∗
FSD = max

x,π

{

f(x) : (141), (143), (146), x ∈ X,π ∈ {0, 1}ND
}

.

We refer to this formulation as cFSD. As in the new formulation for second order stochastic

dominance, for computational purposes it is beneficial to use the equivalent formulation

obtained by introducing variables v ∈ RD and replacing the constraints (146) with the

constraints (144) and
k−1
∑

j=1

vj ≤
k−1
∑

j=1

qj k ∈ D. (149)

One advantage of formulation cFSD over FDMIP is the number of constraints is re-

duced from O(ND) to O(N + D), which means it should be more efficient to solve the

linear programming relaxation of cFSD than to solve that of FDMIP. We now consider

the relationship between the relaxation of this formulation and second order stochastic

dominance.

Lemma 43. Let W,Y be random variables with distributions given by (128) and (129),

and suppose there exists π ∈ RND
+ such that (w, π) satisfy (140),(141) and (146). Then,

W �(2) Y .
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Proof. Let π ∈ RND
+ and (w, π) satisfy (140),(141) and (146). Then,

N
∑

i=1

pi

k−1
∑

j=1

πij(yk − yj) =
N

∑

i=1

pi

k−1
∑

j=1

πij

k
∑

l=j+1

(yl − yl−1)

=

k
∑

l=2

(yl − yl−1)

N
∑

i=1

pi

l−1
∑

j=1

πij

≤
k

∑

l=1

(yl − yl−1)

l−1
∑

j=1

qj by (146)

=

k−1
∑

j=1

qj(yk − yj).

and hence π also satisfies (142) which implies W �(2) Y by Theorem 41.

As a result, we know that the linear programming relaxation of cFSD yields a bound at

least as strong as the bound obtained from the second order stochastic dominance relaxation.

This leads to the question as to whether the bound from cFSD could be strictly better. The

following theorem shows that this is not the case.

Theorem 44. Let W,Y be random variables with distributions given by (128) and (129).

Then the linear programming relaxation of cFSD yields a valid formulation for second order

stochastic dominance. That is, W �(2) Y if and only if there exists π ∈ RND
+ such that

(w, π) satisfy (140),(141) and (146).

Proof. Due to Lemma 43, we need only show the “only if” part, so suppose W �(2) Y . By

Theorem 41, there exists π ∈ RND
+ such that (140), (141) and (142) are satisfied. We show

that this implies existence of π′ ∈ RND
+ such that (140) and (141) are satisfied, and (142)

is satisfied at equality, that is

N
∑

i=1

pi

k−1
∑

j=1

(yk − yj)π
′
ij =

k−1
∑

j=1

qj(yk − yj) (150)

for k ∈ D. Suppose no such π′ exists. Then, let l ≥ 2 be the maximum index such

that there exists a solution π′ ∈ RND
+ which satisfies (140), (141), (142) and (150) for

k = 2, . . . , l − 1 (if l = 2 then π′ = π works so such an l ≥ 2 exists). Next, let π′ ∈ RND
+

be a solution which satisfies (140), (141), (142) and (150) for k = 2, . . . , l − 1 and which

minimizes
∑N

i=1

∑D
k=l πik. We claim that

∑N
i=1

∑D
k=l π

′
ik > 0. Suppose not. Then (141)
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implies
∑l−1

j=1 π′
ij = 1 for all i ∈ N . In addition, by definition of l, (150) holds for k = l− 1.

Using this equality satisfied by π′ we obtain

N
∑

i=1

pi

l−1
∑

j=1

(yl − yj)π
′
ij =

N
∑

i=1

pi

l−1
∑

j=1

(yl − yl−1)π
′
ij +

N
∑

i=1

pi

l−2
∑

j=1

(yl−1 − yj)π
′
ij

= (yl − yl−1)

N
∑

i=1

pi

l−1
∑

j=1

π′
ij +

l−2
∑

j=1

qj(yl−1 − yj)

= (yl − yl−1)
N

∑

i=1

pi +
l−2
∑

j=1

qj(yl−1 − yj)
(

since
l−1
∑

j=1

π′
ij = 1

)

≥
l−1
∑

j=1

qj(yl − yl−1) +
l−2
∑

j=1

qj(yl−1 − yj)

=
l−1
∑

i=1

pi(yl − yj)

contradicting the definition of l because this would imply π′ satisfies (150) for k = l. Hence,

∑N
i=1

∑D
k=l π

′
ik > 0 and so there exists i′ and k′ ≥ l such that π′

i′k′ > 0. Next, let

δ1 = max{δ :

N
∑

i=1

pi

l−1
∑

j=1

(yl − yj)π
′
ij + pi′(yl − yl−1)δ ≤

l−1
∑

j=1

qj(yl − yj)}

and δ′ = min{δ1, π
′
i′k′}. Then δ′ > 0. Now, let π̂ be given by π̂ij = π′

ij for all i 6= i′ and

all j ∈ D, π̂i′j = π′
i′j for all j /∈ {l, k′}, π̂i′l = π′

i′l + δ′ and π̂i′k′ = π′
i′k′ − δ′ ≥ 0. Then,

π̂ ≥ 0 and it is easy to see that π̂ satisfies (140),(141) and (142) since π′ satisfies them. In

addition π̂ satisfies (150) for k = 1, . . . , l − 1. Finally, we obtain either π̂ satisfies (150) for

k = l, contradicting the definition of l, or
∑N

i=1

∑D
k=l π̂ik <

∑N
i=1

∑D
k=l π

′
ik, contradicting

the definition of π′. Thus, we have proved our claim that there exists π′ ∈ RND
+ which

satisfies (140), (141) and (150) for all k ∈ D. The proof is completed by observing that if

(150) is satisfied for k ∈ D, then also (146) is satisfied at equality for all k. Indeed, the case

k = 1 is trivial, and (150) for k = 2 yields

N
∑

i=1

pi(y2 − y1)π
′
i1 = q1(y2 − y1)

and hence
∑N

i=1 piπ
′
ij = q1 since y2 > y1. If k > 2, subtracting (150) for k − 1 from (150)

for k yields
N

∑

i=1

pi(yk − yk−1)

k−1
∑

j=1

π′
ij =

k−1
∑

j=1

qj(yk − yk−1)
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and since yk > yk−1 we can divide yk − yk−1 to obtain (146) holds with equality for k as

well.

Next, we illustrate the relationship between the formulation cFSD and FDMIP by pre-

senting a derivation of cFSD based on strengthening FDMIP. In FDMIP, if βik = 0, then

wi ≥ yk. But, because yk > yk−1 > · · · > y1, then we also know wi ≥ yk−1 > · · · > y1.

Thus, we lose nothing by setting βi,k−1 = · · · = βi1 = 0. Hence, we can add the inequalities

βik ≤ βi,k+1 i ∈ N , k ∈ D (151)

and maintain a valid formulation. The inequalities (134) can then be replaced by

wi −
D

∑

k=1

(βi,k+1 − βik)yk ≥ 0 i ∈ N

which together with inequalities (151) ensure that when βik = 0, we have wi ≥ yk. We

finally obtain the new formulation cFSD by substituting πik = βi,k+1 − βik for k ∈ D and

i ∈ N , where βi,D+1 = 1.

4.5 Branching and Heuristics for FSD

cFSD yields a mixed-integer programming formulation for FSD. Moreover, if X is a poly-

hedron and g(x, ξi) are affine in x for each i, cFSD is a mixed-integer linear programming

formulation, which can be solved by commercially available solvers such as Ilog CPLEX,

which are based on the branch-and-cut methodology. As has been shown in [54], the opti-

mal value of SSD yields a good bound on the optimal value of FSD, and hence the bound

obtained from relaxing integrality in cFSD should be good. In addition, because of the

compactness of cFSD, this bound can be calculated efficiently. However, we have found

that the default settings in Ilog CPLEX do not effectively generate good feasible solutions

for cFSD. In addition, the default branching setting does not help to find feasible solutions

or effectively improve the relaxation bounds. In this section we show that by exploiting the

special structure of this formulation, it is possible to develop specialized branching routines

and heuristics which yield improved computational performance.

Throughout this section, we will make use of the problem given by

f∗
cSSD(l,u) = max

x,π
{f(x) : (141), (142), (143), x ∈ X, l ≤ π ≤ u} (cSSD(l, u))
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which is the relaxation of cFSD with the addition of lower and upper bounds l, u ∈ {0, 1}ND

on the π variables. For example, the root relaxation of cFSD, cSSD, is obtained by setting

lij = 0 and uij = 1 for all i ∈ N , j ∈ D. More generally, l and u may be the bounds on π at

a node in the branch-and-bound tree obtained by branching, or bounds which are enforced

during a heuristic.

4.5.1 Branching for FSD

Standard variable branching for mixed-integer programming would select a fractional vari-

able πij , and then create two branches, one with πij fixed to one and one with πij fixed to

zero. However, the constraints (141) and (140) imply that for a fixed i, the set of variables

πij for j ∈ D are essentially selecting which value level yj the variable wi should be greater

than. In particular, the set of variables {πij : j ∈ D} is a Special Order Set, that is, at most

one of the variables in this set can be positive. As a result, it is natural to consider using

a Special Order Set branching rule (see, e.g. [9]). In this branching scheme, we select a set

index i ∈ N , specifying which Special Ordered Set to branch on, and also choose a level

index k ∈ {2, . . . ,D}. Then in the first branch the constraint
∑

j<k πij = 0 is enforced and

in the second branch
∑

j<k πij = 1 is enforced. In an implementation, the first condition

is enforced by changing the upper bound on the variables πij to zero for j < k, and the

second condition is enforced by changing the upper bound on the variables πij to zero for

j ≥ k.

To specify a Special Ordered Set branching rule, we must state how the set and level

indices are chosen. Our branching scheme is based on attempting to enforce the feasibility

condition (132)

µ{W < yk} ≤ ν{Y ≤ yk−1} k ∈ D.

At each node in which we must branch, we find k∗ = min
{

k ∈ D : {W < yk} >

ν {Y ≤ yk−1}
}

based on the values of w in the current relaxation solution. Note that if

such a k∗ does not exist, then we have W �(1) Y so the current solution is feasible. In

this case, if π is not integer feasible (which may happen), we construct an integer feasible

solution of the same cost as in the proof of Theorem 42, and as a result, branching is not
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required at this node. We will take k∗ to be the level index which we will branch on. Note

that (140) and (141) imply that wi ≥ y1 for all i in any relaxation solution, so that k∗ ≥ 2,

making it an eligible branching level index.

We next choose a set index i ∈ N such that

wi < yk∗ (152)

∑

j<k∗

πij < 1. (153)

We claim that such an index must exist. Indeed, let Ωk∗ = {i ∈ N : wi < yk∗}. By the

definition of k∗ we have
∑

i∈Ωk∗
pi >

∑k−1
j=1 qj and so, in particular, Ωk∗ 6= ∅. If there were

no i ∈ Ωk∗ which also satisfies (153), then we would have

N
∑

i=1

pi

k∗−1
∑

j=1

πij ≥
∑

i∈Ωk∗

pi >
k∗−1
∑

j=1

qj

violating (142). If there are multiple set indices which satisfy (152) and (153), we choose

the index which maximizes the product (yk∗ − wi)(1 −
∑

j<k∗ πij). In the first branch, we

enforce
∑

j<k∗ πij = 0 which by (140) forces wi ≥ yk∗. Because of (152), this will make the

current relaxation solution infeasible to this branch, and will promote feasibility of (132)

at the currently infeasible level k∗. In the second branch, we enforce
∑

j<k∗ πij = 1 and

because of (153) this will make the current relaxation solution infeasible for this branch.

The motivation for this choice of set index i is to make progress in both of the branches.

The motivation for the choice of level index k∗ is that in the first branch progress towards

feasibility of (132) is made, whereas by selecting k∗ small, reasonable progress is also made

in the second branch since this enforces πij = 0 for all j ≥ k∗.

4.5.2 Heuristics for FSD

We now present several heuristics we have developed that can be used with formulation

cFSD. An important factor in the efficiency of these heuristics, as well as more complex

heuristics that may be developed, is the ability to solve the relaxation of cFSD efficiently.

Consequently, the compactness of this new formulation should also be beneficial for gener-

ating high quality feasible solutions.
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We first present a simple and efficient heuristic, called the order preserving heuristic and

then present two variants of a diving heuristic which are more computationally demanding.

We finally discuss how the order preserving heuristic can be integrated into the diving

heuristics.

Order preserving heuristic

Given a solution x∗ to a relaxation of cFSD, let w∗ ∈ RN be the vector given by

w∗
i = g(x∗, ξi) for i ∈ N . The idea behind the order preserving heuristic is to use w∗

as a guide to build a solution π̂ ∈ {0, 1}ND which satisfies (141) and (142), and then

solve cSSD(π̂, π̂). If this problem is feasible, it yields a feasible solution to cFSD. The

heuristic is order preserving because it chooses π̂ in such a way that if w∗
i < w∗

i′ , then

∑

j∈D yjπ̂ij ≤
∑

j∈D yjπ̂i′j so that the constraints (143) obtained with this π̂ enforce lower

bounds on g(x, ξi) which are consistent with the ordering of w∗
i = g(x∗, ξi) obtained from

the current relaxation solution. The order preserving heuristic is given in Algorithm 2. The

Algorithm 2: Order preserving heuristic

Data: w∗ ∈ RN

Sort w∗ to obtain {i1, . . . , iN} = N with w∗
i1
≤ w∗

i2
≤ · · · ≤ w∗

iN
;1

Set t := 1 and π̂ij := 0 for all i ∈ N , j ∈ D;2

for k := 1 to D do3

while t ≤ N and
∑t

j=1 pij ≤
∑k

j=1 qj do4

π̂itk := 1;5

t := t + 1;6

end7

end8

Solve cSSD(π̂, π̂);9

if cSSD(π̂, π̂) is feasible then10

return (x̂, π̂), the optimal solution to cSSD(π̂, π̂);11

end12

algorithm begins by sorting the values of w∗. Then, lines 2 to 8 construct a solution π̂ which

is feasible to (141) and (142) by working in this order. To see that π̂ satisfies (141), observe

that the algorithm will terminate with t = N + 1, since when k = D,
∑t

j=1 pij ≤
∑D

j=1 qj

for all t ≤ N , so the loop on line 4 will only terminate when t > N . Since {i1, . . . , iN} = N ,

this implies that for each i ∈ N , there is some k such that the algorithm sets π̂ik = 1. The

condition
∑t

j=1 pij ≤
∑k

j=1 qj in line 4 ensures that (142) holds for π̂, since it ensures that
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for each k ∈ D,
k

∑

j=1

N
∑

i=1

piπ̂ij =

t(k)
∑

j=1

pij

where t(k) = max
{

t :
∑t

j=1 pij ≤
∑k

j=1 qj

}

.

The main work done in Algorithm 2 is the sorting of w∗, and solving of cSSD(π̂, π̂).

Note that this problem is small relative to the original problem cFSD, since the O(ND)

variables π are fixed, the constraints (141) and (142) no longer need to be considered, and

the constraints (143) reduce to lower bounds on the functions g(x, ξi) for i ∈ N .

Aggressive diving heuristic

The aggressive diving heuristic, described in Algorithm 3, is similar to the classic diving

heuristic of integer programming in that it involves progressively fixing values of πij and re-

solving the relaxation until either the relaxation solution yields value worse than a current

feasible solution value (or is infeasible), or a feasible solution is found. The difference is

that at each iteration, between re-solves of the relaxation, the aggressive diving heuristic

fixes many values of πij. In particular, by fixing a variable πik to one, constraint (141)

implies we have actually also fixed πij to zero for all j 6= k. Also, in each iteration, we fix

multiple variables to one, in such a way that the fixing causes at least one of the constraints

(143) with the smallest values of g(x, ξi) to become violated, and also at least one of the

constraints (143) with the largest values of g(x, ξi) to become violated. Similar to the

order preserving heuristic, Algorithm 3 attempts to build a solution which satisfies (141)

and (142), using the values of g(x∗, ξi) obtained from solving intermediate relaxations as a

guide. The difference is that the order preserving heuristic constructs a solution π̂ based

on a single relaxation solution, whereas Algorithm 3 solves multiple relaxations.

In Algorithm 3, E represents the set of indices i for which the level of the SOS1 set

{πij : j ∈ D} has not yet been fixed. In addition, the algorithm maintains vj =
∑

i∈N :lij=1 pi

for each j ∈ D, i.e. vj represents the sum of probabilities of sets which have been fixed at

level j. As such, constraint (142) will remain satisfied as long as

k
∑

j=1

vj ≤
k

∑

j=1

qj for all k ∈ D. (154)

148



Algorithm 3: Aggressive diving heuristic

Data: LB, a lower bound on f∗
FSD

Set E := N and vj := 0.0 for all j ∈ D;1

Set lij := 0 and uij := 1 for all i ∈ N , j ∈ D;2

while E 6= ∅ do3

Solve cSSD(l, u) ;4

if cSSD(l, u) is infeasible or f∗
cSSD(l,u) ≤ LB then terminate ;5

Let (x∗, π∗) be an optimal solution to cSSD(l, u);6

if π∗ ∈ {0, 1}ND
then terminate with feasible solution (x∗, π∗);7

Let w∗
i = g(x∗, ξi) for i ∈ E;8

Sort w∗ to obtain
{

i1, . . . , i|E|

}

= E with w∗
i1
≤ w∗

i2
≤ · · · ≤ w∗

i|E|
;9

Set constrains := FALSE and s := 1 ;10

while constrains = FALSE and s ≤ |E| do11

Let k̂ = 1 + max
{

k ∈ D :
∑k

j=1 vj + pis >
∑k

j=1 qj

}

;
12

Set lisk̂ := 1 ;13

Set vk̂ := vk̂ + pis ;14

if w∗
is

< yk̂ then Set constrains := TRUE;15

Set s := s + 1 and E = E \ {is} ;16

end17

Set constrains := FALSE and t := |E| ;18

while constrains = FALSE and t ≥ s do19

Let k̂ = max
{

k ∈ D :
∑D

j=k vj <
∑D

j=k qj

}

;
20

Set litk̂ := 1 ;21

Set vk̂ := vk̂ + pit ;22

if w∗
it

< yk̂ then Set constrains := TRUE;23

Set t := t − 1 and E = E \ {it} ;24

end25

end26

Solve cSSD(l, u) ;27

if cSSD(l, u) is feasible then28

Let (x∗, π∗) be an optimal solution to cSSD(l, u);29

terminate with feasible solution (x∗, π∗);30

end31
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The algorithm terminates either at line 5, line 7, or after executing lines 27-31 with E = ∅.

If cSSD(l, u) is found to be infeasible when solved in line 4, or the relaxation solution cost

exceeds LB, then the algorithm terminates at line 5 without finding an improved feasible

solution. If the solution (x∗, π∗) of cSSD(l, u) has π∗ integral, then we terminate in line 7

with a feasible solution. In fact, this termination criterion can be relaxed somewhat. If x∗

satisfies (132), then we can construct an integer solution π′ such that (x∗, π′) is feasible to

cFSD, and hence terminate even though π∗ may not have been integral.

When E = ∅, the main loop in the algorithm terminates. In this case, in the solution of

cSSD(l, u), π is actually fixed to l. We claim that at this point l satisfies (141) and (142).

Indeed, for each i,
∑

j∈D lij = 1 since any time an index i is removed from E in lines 16 or

24, this index had lik̂ set to one in lines 13 or 21, and conversely any time an index i has

lik set to one for some k, it is immediately removed from E, so no other lik′ will be set to

one. In addition, we verify that (142) holds by verifying that (154) holds throughout the

algorithm. First observe that (154) is trivially satisfied at the beginning of the algorithm.

The only lines in which the values of v are modified are lines 14 and 22. By the definition

of k̂ in line 12,
k

∑

j=1

vj + pis ≤
k

∑

j=1

qj for all k = k̂, . . . ,D

and therefore (154) holds even after vk̂ is increased in line 14. Next, observe that the

algorithm maintains
D

∑

j=1

vj +
∑

i∈E

pi = 1. (155)

Indeed, this is initially true since the algorithm begins with
∑D

j=1 vj = 0 and E = N .

Likewise, anytime a value of vj is increased by an amount pi in lines 14 or 22, the index i

is subsequently removed from E in lines 16 or 24. Next, by definition of k̂ in line 20,

D
∑

j=k

vj ≥
D

∑

j=k

qj for all k = k̂ + 1, . . . ,D.

Then by (155) and
∑

i∈N pi = 1, this implies that at line 22

k
∑

j=1

vj + pit ≤
k

∑

j=1

vj +
∑

i∈E

pi ≤
k

∑

j=1

pj for all k = k̂, . . . ,D
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since it ∈ E. Therefore (154) holds also after vk̂ is increased in line 22.

We remark that the fixing in Algorithm 3 could be done exclusively from smallest to

largest, as in lines 10 to 17, or exclusively from largest to smallest, as in lines 18 to 25.

However, we have observed from computational experience that going from both directions

generally yields both better feasible solutions and faster convergence in terms of the number

of times cSSD(l, u) has to be solved.

One-at-a-time diving heuristic

We have also considered a variant of the aggressive diving heuristic, which we call the

one-at-a-time diving heuristic. The only difference with this variant is that in each iteration

we fix at most two variables πij to one at each iteration: one corresponding to the smallest

unfixed level, and one corresponding to the largest unfixed level. Thus, the description of

this heuristic is exactly as given in Algorithm 3, with the exception that the while loops in

lines 10 - 17 and 18 - 25 are executed at most once, with no check that the fixings being

done are constraining. This heuristic fixes fewer variables per iteration, and hence will likely

take more iterations to complete than the aggressive diving heuristic. The hope is that this

extra time will lead to better feasible solutions.

Integration of order preserving and diving heuristics

In our computational experiments we found that because the order preserving heuristic

is very efficient to run, it is beneficial to use it in conjunction with either of the diving

heuristics. The idea is simply to call the order preserving heuristic during each iteration

of the diving heuristic, using the current relaxation solution. If this yields an improved

feasible solution, we keep it, but still continue the dive heuristic until it terminates. At the

end, we report the best feasible solution found over all iterations in the dive.

4.6 Computational Results

We conducted computational experiments to test the new formulations for stochastic dom-

inance we have presented. Following [42] and [54], we conducted our tests on a portfolio

optimization problem with stochastic dominance constraints. In this problem, we wish to

choose the fraction of our investment to invest in n different assets. The return of asset j is
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a random variable given by Rj with E[Rj] = rj. We are also given a reference random vari-

able Y and our objective is to maximize the expected return subject to the constraint that

the random return we achieve stochastically dominates Y . Thus, the portfolio optimization

problems we consider are

max
{

n
∑

j=1

rjxj : x ∈ X,

n
∑

j=1

Rjxj �(k) Y
}

k = 1, 2 (156)

where X =
{

x ∈ Rn
+ :

∑n
j=1 xj = 1

}

.

We constructed test instances using the daily returns of 435 stocks (n = 435) in the

S&P 500, for which daily return data was available from January 2002 through March

2007. We take each daily return as an outcome that occurs with equal probability. For

each desired number of outcomes N , we constructed three instances by taking the N daily

returns immediately preceding March 14 of the years 2005, 2006, and 2007. For example,

the instance for year 2007, with N = 100 is obtained by taking the daily returns in the days

from November 16, 2006 through March 14, 2007.

For the reference random variable Y , we use the returns that would be obtained by

investing an equal fraction in each of the available assets. That is, we take Y =
∑n

j=1 Rj/n.

Hence, if Ri
j is the return that is achieved under outcome i for asset j, then the distribution

of Y is given by ν
{

Y =
∑n

j=1 Ri
j/n

}

= 1/N for i ∈ N . Note that in this case, the number

of outcomes of Y is the same as the number of outcomes of R, i.e., D = N . This is an

extreme case: in many settings we would expect D to be significantly less than N . However,

this extreme case will yield challenging instances for comparing the formulations.

We used CPLEX 9.0 [40] to solve the LP and MIP formulations and all experiments were

done on a computer with two 2.4 Ghz processors (although no parallelism is used) and 2.0

Gb of memory. The specialized heuristics and branching for first order stochastic dominance

were implemented using callback routines provided by the CPLEX callable library.

4.6.1 Second Order Dominance

We first compared the solution times using the formulations SDLP and cSSD to solve the

portfolio optimization problem (156) with second order dominance constraint (k = 2 in

(156)). We tested eight different sizes N and three instances for each size. These linear
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programs were solved using the dual simplex method, the default CPLEX setting, and a

time limit of 100,000 seconds was used. Table 25 gives the solution times. From this table

Table 25: Comparison of solution times (s) for SSD

2005 2006 2007
N SDLP cSSD SDLP cSSD SDLP cSSD

100 3.3 0.6 2.4 0.3 3.5 0.9
200 102.7 4.6 82.7 3.7 121.7 7.4
300 1063.4 16.9 882.9 12.6 756.6 27.4
400 4858.7 35.9 4252.8 129.8 4291.6 110.7
500 10345.3 42.4 11364.9 89.0 12550.8 185.6
600 27734.3 180.3 43927.4 78.1 27492.3 376.4
700 69485.8 592.4 58946.8 59.9 59144.0 812.1
800 *100122.0 4834.9 *100100.0 91.9 *100095.0 491.5

* Not solved in time limit.

it is clear that when using a commercial LP solver, the new formulation cSSD allows much

more efficient solution of SSD, yielding a solution in time two orders of magnitude less

than using SDLP directly. Formulation cSSD has O(N) rows as opposed to O(ND) =

O(N2) rows in SDLP, leading to a significantly reduced basis size, so that the time per

iteration using formulation cSSD is significantly less. However, we have also observed that

significantly fewer iterations are required to solve cSSD, which also contributes substantially

to its efficiency.

We should stress that because N = D in this test, the relative improvement of cSSD

over SDLP is likely the best case. For instances in which D is of much more modest size,

such as D = 10, we would not expect such extreme difference between the performance of

cSSD and SDLP.

4.6.2 First Order Dominance

We next present results of our tests on the portfolio optimization problem (156) in which a

first order stochastic constraint is enforced (k = 1 in (156)).

We first present the results from using two variants of the heuristics presented in Section

4.5.2. The two variants correspond to the Aggressive Dive and the One-at-a-time Dive

heuristics, both using the Order Preserving heuristic to attempt to find intermediate feasible
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solutions at each iteration. We investigated other variants, but found these to yield the

best results in terms of time and solution quality. The results for these heuristics are

presented in Table 26. The instance with N = 100 from 2006 is excluded because the

Table 26: Results for two heuristics.

Aggressive Dive One-at-a-time Dive
Year N Time Its Gap Time Its Gap

2005 100 1.3 4 0.95% 1.5 28 0.90%
150 4.5 4 1.60% 10.3 28 0.76%
200 7.7 6 1.17% 24.2 33 1.09%
250 19.1 7 0.53% 16.8 48 0.40%
300 34.4 9 1.44% 206.3 53 1.37%
350 281.4 7 3.16% 432.8 36 2.03%
400 114.4 7 0.76% 575.1 41 1.24%

2006 150 10.5 7 1.19% 21.4 41 1.09%
200 9.2 5 0.79% 7.4 20 0.78%
250 21.5 4 0.63% 43.2 21 0.51%
300 34.5 6 1.06% 509.2 24 0.68%
350 115.0 8 0.94% 142.1 46 0.68%
400 119.3 7 1.75% 122.6 38 1.74%

2007 100 1.5 3 0.60% 4.0 26 0.17%
150 10.9 6 4.09% 26.7 51 3.42%
200 39.0 7 3.14% 68.1 69 2.44%
250 133.1 9 3.69% 179.7 56 2.94%
300 225.3 12 2.49% 286.5 59 2.39%
350 319.8 3 20.82% 2333.0 89 8.21%
400 759.2 9 5.82% 4785.8 94 4.71%

optimal solution is found by CPLEX default heuristics after solving the root relaxation.

For both of the heuristic variants tested we report the total time, the number of iterations,

and the optimality gap of the best solution found, relative to the lower bound from the

root relaxation (Gap = [Upper Bound - Lower Bound]/Upper Bound). We see that the

Aggressive Diving heuristic takes less time, but usually yields worse solutions than the

One-at-a-Time Diving heuristic. For the 2005 and 2006 instances, both heuristics yield

reasonably good solutions, usually within one percent of the upper bound. For the 2007

instances, however, there remains significant gap between the feasible solutions generated

and the upper bound, particularly when using the Aggressive Diving heuristic. Observe

that the total time for running these heuristics for yielding solutions to FSD compares very
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favorably with the time to solve the formulation SDLP for SSD to simply yield an initial

lower bound for FSD.

We tested four solution methods for solving FSD:

• FDMIP: Solve FDMIP with default CPLEX settings,

• cFSD: Solve cFSD with default CPLEX settings and CPLEX SOS1 branching,

• cFSD+H: Solve cFSD with CPLEX SOS1 branching and specialized heuristic, and

• cFSD+H+B: Solve cFSD with CPLEX, specialized heuristic, and specialized branch-

ing.

When solving cFSD with and without the heuristic (but not with the specialized branching),

we declare the sets of variables {πij : j ∈ D} for i ∈ N as special ordered sets, allowing

CPLEX to perform its general purpose special ordered set (SOS1) branching, as discussed

in Section 4.5.1. We found that this yields better results than having CPLEX perform its

default single variable branching. Note that our specialized branching scheme also uses

SOS1 branching, but crucially differs from the CPLEX implementation in the selection of

the SOS1 set and level to branch on.

The heuristic used in the last two methods is the Aggressive Diving heuristic. We

chose this heuristic because it runs faster, and the disadvantage that it tends to yield

lower quality solutions can be offset by calling it more frequently within the branch-and-cut

solution method. In our implementation, we call the heuristic at every node of depth less

than five, at every fifth node for the first 100 nodes, at every 20th node between 100 and

1000 nodes, and at every 100th node thereafter. When the heuristic is used we turn off the

CPLEX heuristics and preprocessing. The preprocessing was turned off for implementation

convenience, but we found it had little effect for formulation cFSD anyway.

The specialized branching used in the last method is the branching strategy given in

Section 4.5.1. For this case, we set the CPLEX branching variable selection to select the

most fractional variable since this takes the least time and we do not use CPLEX’s choice

of branching variable anyway.
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We first compare the time to solve the root linear program relaxations and the resulting

lower bound from formulations FDMIP and cFSD. These results are given in Table 27.

For formulation FDMIP we report the results before and after addition of CPLEX cuts.

The results obtained after the addition of CPLEX cuts are under the column FDMIP.C.

For cFSD, we report only the results after the initial relaxation solution, because CPLEX

cuts had little effect in this formulation. For formulation FDMIP we report the percent by

Table 27: Comparison of root LP relaxations for FSD formulations.

Time (s) Percent above cFSD UB
Year N cFSD FDMIP FDMIP.C FDMIP FDMIP.C

2005 100 1.0 6.6 41.4 5.36% 3.46%
150 1.8 19.7 89.5 7.64% 6.18%
200 4.7 36.3 196.2 8.42% 5.87%
250 15.1 49.9 365.0 9.34% 6.78%
300 31.0 232.6 681.5 9.78% 7.50%
350 88.0 509.7 1201.0 4.36% 3.05%
400 97.6 427.7 1566.2 5.14% 3.19%

2006 100 0.4 3.9 4.3 0.21% 0.00%
150 3.8 16.2 82.0 1.54% 1.03%
200 4.8 26.3 140.9 1.38% 1.08%
250 17.5 91.1 325.8 3.99% 2.45%
300 16.4 191.3 575.6 4.60% 3.53%
350 52.3 227.7 1157.8 8.49% 6.52%
400 69.1 1254.7 2188.6 6.92% 5.77%

2007 100 2.0 4.5 33.5 7.55% 3.70%
150 8.1 17.0 148.4 7.69% 6.06%
200 17.8 33.3 300.8 9.75% 8.26%
250 36.1 121.4 413.1 14.13% 10.71%
300 43.5 298.6 732.6 11.12% 8.26%
350 114.0 320.9 1060.7 10.80% 10.60%
400 245.7 2010.8 3664.2 11.53% 11.02%

which the upper bound (UB) obtained from the relaxation with and without cuts exceeds

the upper bound obtained from the relaxation of cFSD. It is clear from Table 27 that the

relaxation of formulation cFSD provides significantly better upper bounds in significantly

less time.

We next tested how the different methods performed when run for a time limit of

10000 seconds. Table 28 reports the optimality gap remaining after this time limit. All
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formulations were able to solve the 2006 instance with N = 100 in less than a minute,

so this instance is excluded. Using formulation cFSD with the heuristic and specialized

branching, 8 of the remaining 20 instances were solved to optimality within the time limit,

and for these instances the solution time is reported. From Table 28 we observe that

Table 28: Comparison of optimality gaps for FSD after time limit.

Optimality Gap cFSD+H+B
Year N FDMIP cFSD cFSD+H Gap Time (s)

2005 100 1.69% 0.68% 0.68% - 864.0
150 2.84% 0.99% 0.73% - 223.1
200 4.46% 1.09% 0.87% - 1987.3
250 8.82% 0.31% 0.24% - 2106.6
300 ** 3.41% 1.21% 1.15%
350 ** ** 2.15% 1.39%
400 ** 10.67% 0.73% 0.31%

2006 150 1.71% 0.77% 0.55% 0.18%
200 1.25% 0.57% 0.55% - 1752.1
250 4.82% 0.97% 0.44% - 274.9
300 4.56% 4.24% 0.85% - 9386.8
350 ** 1.96% 0.65% 0.53%
400 ** 4.77% 1.21% 0.87%

2007 100 0.13% 0.14% 0.15% - 41.6
150 13.90% 4.11% 2.37% 1.85%
200 ** 3.80% 1.64% 0.67%
250 ** 9.13% 2.12% 0.67%
300 ** ** 2.43% 2.01%
350 ** ** 6.74% 6.37%
400 ** ** 5.82% 5.79%

** No feasible solution found.

even without the use of specialized heuristic or branching formulation cFSD outperforms

formulation FDMIP. However, in several instances cFSD fails to find a feasible solution,

and in several others the optimality gaps for the feasible solutions found are quite bad.

This is remedied to a significant extent by using the specialized heuristic, in which case a

feasible solution is found for every instance, and in most cases it is within 2% of the upper

bound. If, in addition, we use the specialized branching scheme, the final optimality gaps

are reduced even further, with many of the instances being solved to optimality.

Table 29 gives more detailed results for the methods based on formulation cFSD. First,

157



for each of these methods, the table indicates the percent by which the final upper bound

(UB) was below the initial upper bound (Root UB) obtained simply from solving the linear

programming relaxation. These results indicate that by using CPLEX branching, with and

without the specialized heuristic, very little progress is made in improving the upper bound

through branching. In contrast, the specialized branching scheme improves the upper bound

considerably, with the exception of the two largest instances for 2007. However, for these

instances the majority of the time was spent solving the initial relaxation and running

the heuristic, and so very few branches were performed. For the instances which were

solved to optimality using the specialized heuristics and branching, the percent by which

the final upper bound is below the root upper bound represents the gap between the SSD

relaxation bound and optimal value of FSD. These results confirm the results of [54] which

indicate that the problem SSD is a tight relaxation of FSD. Table 29 also reports the

Table 29: Lower and upper bounds results using cFSD.

% UB below Root UB % LB below Best UB
Year N cFSD +H +H+B cFSD +H +H+B

2005 100 0.02% 0.02% 0.69% 0.01% 0.01% 0.01%
150 0.00% 0.00% 0.66% 0.33% 0.07% 0.01%
200 0.00% 0.00% 0.74% 0.36% 0.14% 0.01%
250 0.00% 0.00% 0.20% 0.11% 0.04% 0.01%
300 0.00% 0.00% 0.06% 3.47% 1.17% 1.16%
350 0.00% 0.00% 0.26% ** 1.93% 1.41%
400 0.00% 0.00% 0.23% 11.68% 0.50% 0.31%

2006 150 0.04% 0.04% 0.42% 0.38% 0.17% 0.18%
200 0.00% 0.00% 0.54% 0.04% 0.01% 0.01%
250 0.00% 0.00% 0.38% 0.60% 0.06% 0.01%
300 0.00% 0.00% 0.57% 3.84% 0.29% 0.01%
350 0.00% 0.00% 0.14% 1.86% 0.52% 0.54%
400 0.00% 0.00% 0.64% 4.34% 0.57% 0.88%

2007 100 0.00% 0.00% 0.14% 0.01% 0.02% 0.01%
150 0.23% 0.25% 0.79% 3.70% 1.88% 1.88%
200 0.01% 0.00% 0.70% 3.23% 0.95% 0.67%
250 0.00% 0.02% 1.20% 8.72% 0.96% 0.68%
300 0.00% 0.00% 0.45% ** 2.03% 2.05%
350 0.00% 0.00% 0.00% ** 7.22% 6.80%
400 0.00% 0.00% 0.03% ** 6.15% 6.15%

** No feasible solution found.
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percent by which the value of the best feasible solution found (LB) is below the best upper

bound found over all methods (Best UB). Not surprisingly, these results indicate that using

the specialized heuristic significantly improves the value of the feasible solutions found.

However, these results also indicate that combining the specialized branching with the

heuristic usually yields further improved solutions, indicating that the specialized branching

scheme is beneficial both for improving the upper bounds and for finding better feasible

solutions.

4.7 Concluding Remarks

We have introduced new formulations for optimization under first and second order stochas-

tic dominance constraints, in the case when there are finitely many possible outcomes of

the random variables. For the second order dominance constraint, the new formulation is

a linear program and has the advantage that it introduces many fewer rows than the pre-

viously introduced linear programming formulation. Computational results indicate that

for the case in which the number of possible outcomes for the reference random variable

is large, the new formulation can be solved orders of magnitude faster than the previous

formulation.

For the first order dominance constraint, the new formulation is a mixed-integer pro-

gram and also has the advantage that it introduces many fewer rows than the previously

introduced MIP formulation. In addition, the linear programming relaxation of this for-

mulation is also a formulation for second order stochastic dominance, leading to a tight

relaxation bound. Despite these advantages, directly solving this new formulation with a

commercial MIP solver was not effective at generating good feasible solutions and improv-

ing the upper bound beyond the initial linear programming relaxation. Thus, we developed

a specialized branching scheme and specialized heuristics for use with this formulation.

Computational results indicate that using these techniques with the new formulation allow

solution to optimality of some large instances, and yields low remaining optimality gaps for

the majority of the remaining instances. Although the specialized branching strategy and

heuristics yielded improved performance, this was critically enabled by the compactness of
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the new formulation and tightness of its relaxation bound.

More computational experiments need to be performed to test the effectiveness of the

new formulations in different settings. For example, we tested the case in which the number

of possible realizations of the reference random variable, D, is large. The case in which D

is small should also be tested. This case is interesting because it may represent a model

in which the decision-maker wishes to enforce a small collection of risk constraints. In

particular, from Lemma 39, we recognize the first-order stochastic dominance constraint

as simply a collection of probabilistic constraints, or Value-at-Risk constraints, as they

are known in the finance literature. In addition, when D is significantly smaller, it may

be possible to significantly increase the number of possible realizations, N , of the random

vector appearing in the constraints. Another setting in which to test the new formulations

is in two-stage stochastic programming with stochastic dominance constraints, as has been

recently studied in [29, 30], where they use the previous, less compact, formulations for the

stochastic dominance constraints.

Finally, it will be interesting to study a Monte Carlo sampling based approximation

scheme for problems with stochastic dominance constraints having more general distribu-

tions. If the reference random variable has a finite distribution, then the first order stochas-

tic dominance constraint is a collection of finitely many probabilistic or chance constraints.

Thus, results on sample approximations for probabilistic constraints may be applied to yield

approximations for stochastic dominance constraints in which the random vector ξ appear-

ing in the constraint may have general distribution. See Chapter 3 and references therein

for results on sample approximations of probabilistic constraints. It will be interesting to

explore whether the specific structure of the first order stochastic dominance constraint

can yield results beyond direct application of the results for probabilistic constraints. For

second order stochastic dominance, similar sample approximation results may be possible,

but there is less previous work to build from.
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[7] Bárány, I., Van Roy, T. J., and Wolsey, L. A., “Strong formulations for multi-item
capacitated lot sizing,” Management Science, vol. 30, pp. 1255–1261, 1984.

[8] Bastin, F., Cirillo, C., and Toint, P. L., “Convergence theory for nonconvex stochastic
programming with application to mixed logit,” Mathematical Programming, vol. 108,
pp. 207–234, 2006.

[9] Beale, E. and Tomlin, J., “Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables,” in Proc. Fifth Inter-

nat. Conf. on OR (Lawrence, J., ed.), (London, UK), pp. 447–454, Tavistock Publica-
tions, 1970.

[10] Beasley, J., “Or-library: Distributing test problems by electronic mail,” Journal of the

Operational Research Society, vol. 41, pp. 1069–1072, 1990.

[11] Ben-Tal, A. and Nemirovski, A., “Robust convex optimization,” Mathematics of Op-

erations Research, vol. 23, pp. 769–805, 1998.
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[14] Beraldi, P. and Ruszczyński, A., “The probabilistic set-covering problem,” Operations

Research, vol. 50, pp. 956–967, 2002.

161



[15] Bertsimas, D. and Sim, M., “The price of robustness,” Operations Research, vol. 52,
pp. 35–53, 2004.

[16] Calafiore, G. C. and Campi, M. C., “Uncertain convex programs: randomized solutions
and confidence levels,” Mathematical Programming, vol. 102, pp. 25–46, 2005.

[17] Calafiore, G. C. and Campi, M. C., “The scenario approach to robust control design,”
IEEE Transactions on Automatic Control, vol. 51, pp. 742–753, 2006.

[18] Cheon, M.-S., Ahmed, S., and Al-Khayyal, F., “A branch-reduce-cut algorithm for the
global optimization of probabilistically constrained linear programs,” Mathematical

Programming, vol. 108, pp. 617–634, 2006.

[19] Crowder, H., Johnson, E. L., and Padberg, M. W., “Solving large scale zero-one linear
programming problems,” Operations Research, vol. 31, pp. 803–834, 1983.

[20] Dai, L., Chen, H., and Birge, J. R., “Convergence properties of two-stage stochastic
programming,” Journal of Optimization Theory and Applications, vol. 106, pp. 489–
509, 2000.
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[35] Henrion, R., Li, P., Möller, A., Steinbach, M. C., Wendt, M., and Wozny, G., “Stochas-
tic optimization for operating chemical processes under uncertainty,” in Online Opti-

mization of Large Scale Systems (Grötschel, M., Krunke, S., and Rambau, J., eds.),
pp. 457–478, Springer, 2001.
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