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SUMMARY

We will survey some of the major directions of research in arithmetic combi-

natorics and their connections to other fields. We will then discuss three new results.

The first result will generalize a structural theorem from Balog and Szemerédi. The

second result will establish a new tool in incidence geometry, which should prove use-

ful in attacking combinatorial estimates. The third result evolved from the famous

sum-product problem, by providing a partial categorization of bivariate polynomial

set functions which induce exponential expansion on all finite sets A ⊂ R.
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CHAPTER I

NOTATION

Set Arithmetic

For sets A and B define their sumset as

A+B = {a+ b|a ∈ A, b ∈ B},

and their difference set as

A−B = {a− b|a ∈ A, b ∈ B}.

Likewise, define their product set and divisor set as

A ·B = {ab|a ∈ A, b ∈ B},

and

A/B = {a
b
|a ∈ A, b ∈ B},

respectively.

Define dilation

k · A = {ka|a ∈ A},

which is not to be confused with iterated set addition:

kA = A+ A+ . . . A︸ ︷︷ ︸
k times

.

The following result relates estimates on sumsets and estimates on iterated-sumsets.

Lemma 1 (Plünnecke’s Inequality)[31]
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If A and B are two additive sets in an ambient abelian group and |A+B| ≤ K|B|,

then for any positive integer k, we have

|kA−mA| ≤ Kk+m|B|.

One way to measure the additive structure between two sets A and B is to count

the the number of additive quadruples

(a, a′, b, b′) ∈ A2 ×B2 : a+ b = a′ + b′.

We call the total number of additive quadruples the additive energy between A and

B and label it E(A,B). We call E(A,A) the internal additive energy of A.

Discrete Fourier Transforms

Associate with a set, A, the function

A(x) =

 1 if x ∈ A

0 x /∈ A

and define the Fourier coefficients of A with respect to a prime p as

Â(ζ) =
∑
a∈A

e
2πıζa
p for ζ ∈ {0, 1, . . . , p− 1}.

We define convolution of two functions A and B as

A ∗B(n) =
∑
a+b=n

A(a)B(b),

and observe that

ˆA ∗B(n) = Â(n)B̂(n)

Also useful will be Parseval’s Identity, which in this context gives us
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p|A| =
p−1∑
ζ=0

|Â(ζ)|2.

Graph Theory

Let G = G(V,E) denote an undirected graph consisting of a set of vertices V and

a set of undirected edges connecting two vertices.

For two sets of vertices X, Y ⊆ V , define

E(X, Y )

to be the number of edges of G with one vertex in X and one vertex in Y . Next

define the density between those vertex sets as

∆(X, Y ) =
E(X, Y )

|X||Y |
.

We will call a pair of disjoint vertex sets V1 and V2 ’ε-regular’ if, given any vertex

sets

X ⊆ V1, Y ⊆ V2,

satisfying

|X| ≥ ε|V1|, |Y | ≥ ε|V2|,

we have

|∆(X, Y )−∆(V1, V2)| ≤ ε.

This is to say that edges between V1 and V2 are relatively well distributed.

Geometry
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Within an abelian group, we can define an arithmetic progression P of length

k ≥ 3, with common difference d as

P = {a+ bn|0 ≤ b ≤ k − 1}.

Its natural generalization will prove even more useful. So we call the set

Q = {a0 + a1n1 + a2n2 + . . . aknk|1 ≤ ni ≤ Ni}

a Generalized Arithmetic Progression of dimension k and volume N1N2 . . . Nk. Keep

in mind that the volume of a GAP can be greater than its number of elements, because

some elements could have multiple representations.

Incidence geometry will have many applications. Given a set of points P and

curves L in the Euclidean plane, we call the occurrence of a point on a curve an

incidence, and label the total incidences between P and L as I(P,L). For our purposes

we will most often be interested in incidences between curves and grids. For sets A

and B define a grid as the set of points

A×B = {(a, b)|a ∈ A, b ∈ B}.

In a grid A×A, with |A| = n, we will call a curve ’n1−δ-rich’ if the curve is incident

to at least n1−δ points in the grid.
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CHAPTER II

INTRODUCTION

Arithmetic Combinatorics addresses the combinatorial properties of sets inside alge-

braic structures, most typically abelian groups, rings, or finite fields. We will motivate

the discussion of our new results by briefly surveying two interrelated lines of research.

In the process, we will illuminate how arithmetic combinatorics has both led to, and

flourished under progress from seemingly disparate fields, such as number theory,

harmonic analysis, discrete geometry, and graph theory.

2.1 Structural Results

Much of arithmetic combinatorics concerns the extent to which structure must occur

in all sufficiently large, or sufficiently dense sets. Put another way:

Large sets of disorder must contain regions of order.

The occurrence of “structure” can take on many different forms:

• Sárközy [26] showed that if A ⊆ [1, N ] and

A|| � N

(
(log logN)2

logN

)1/3

,

then A− A must contain a square.

• Vu and Nguyen showed [23] that after proper dilation, any zero-sum-free subset

A of Zp has the form

A = A′ ∪ A′′,

where the elements of A′ are small (
∑

x∈A′ |x| < p) and |A′′| ≤ p6/13+o(1).
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• Any sufficiently large subset of the vertices on an n dimensional hypercube con-

tain two connected vertices. This is equivalent to saying that for sufficiently

large subsets of F2
n, there must be two elements separated by a hamming dis-

tance of 1.

• Freiman showed [16] that if A is an additive set satisfying |A+A| < k|A|, then

there exists r and n dependent only on k, such that A is contained in a proper

GAP of rank at most r, and size at most n|A|. Clearly sets with small doubling

are highly structured.

• In the early 1900’s Schur showed that for every integer r > 0 and every r-coloring

of the set N of natural numbers, there is a monochromatic triple (x, y, z) ∈

N× N× N, where x, y, and z are distinct and x+ y = z.

• In 1927, Van der Waerden [33] showed that every r-coloring of N contains a

monochromatic arithmetic progression of arbitrary length.

Van der Waerden’s work inspired vast efforts to quantify the critical densities

at which sets of integers must contain arithmetic progressions. In fact, arithmetic

progressions have remained the most commonly researched form of structure. Let us

define

rk(N) = the size of the largest subset of {1, . . . , N} which avoids k-AP’s.

It is immediately clear that rk(N) ≥ rk+1(N) for all k, and that r3(N) in fact

counts the largest subset of [1, N ] with no arithmetic progressions. Establishing tight

bounds has proven untenable and heuristic arguments provide very little guidance.

Lower bounds have followed from complex constructions. Recalling the enigmatic

properties of the Cantor set, it is natural to consider the set
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S = {n ∈ [1, N ] | where n has no 1’s in its ternary expansion}.

Clearly the average of any two elements in S must have a 1 in its ternary expansion,

so S has no 3-AP’s.This gives the the lower bound N log3 2.In 1946, Behrend gave a

much stronger lower bound.

Behrend’s Construction [3]. Recognizing that the surface of a sphere does not

contain AP’s, we seek an appropriate map from Zm into Z which preserves that

property. Let n,M to be large integers to be determined later. Consider sets of the

form

S(r) = {x ∈ {1, . . .M}n : x2
1 + . . . xn

2 = r2}.

As r2 ranges over the integers from n to nM2, these sets cover the cube [1,M ]n. By

the pigeonhole principle, there must be one such set S with

|S| ≥ Mn

n(M2 − 1)
> Mn−2/n.

Now we want to map the vectors of S into [1, N ]. Define

P (x) = P (x1, . . . xn) =
1

2M

n∑
k=1

xk(2M)k.

Clearly P is one-to-one. We also observe that because S has no AP’s, and because

there is no ‘carrying’ when adding two elements, P (S) has no AP’s. Also, P (S) ⊂

[1, (2M)n]. So we need (2M)n to be no bigger than N . Setting M = bN1/n/2c and

n =
√

logN gives us the lower bound Ne−C
√

logN .

Erdős and Turan conjectured that rk(n) = o(n). Roth confirmed the conjecture

for k = 3. His proof went roughly as follows.

1. Take a set A of density δ inside [1, N ] and assume it has no non-trivial 3-AP’s.

Embed it inside Zp, for some appropriate prime p.
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2. Observe that the quantity

1

p

∑
k∈Zp

Â2(k)Â(−2k)

counts the number of 3-AP’s in A. Since we took A to be AP-free, there must

be at least one large Fourier coefficient aside from Â(0).

3. This large Fourier coefficient permits the existence of a long AP in Zp on which

A has increased density δ + δ2.

4. Loop back to step 2.

If δ = O(1), then the above algorithm must loop enough times to generate a

progression on which A has density greater than 1, a clear contradiction. Hence

δ = o(1).

The best known bounds to date,

N log1/4N

22
√

2
√

log2N
≤ r3(N) ≤ N(logN)−2/3+o(1),

are due to Elkin and Bourgain, respectively (both unpublished).

Before continuing, it is interesting to note the difference between the conditions

forcing arithmetic progressions in Z and the conditions forcing geometric progression

in Z, best illustrated by the following point. The square free integers clearly cannot

contain a 3-GP, {n, nr, nr2}, yet they have a density of 6
π2 .

In 1975, Szemerédi generalized Roth’s result to progressions of arbitrary length.

Theorem 2.1 (Szemerédi’s Theorem) Every subset of the integers with positive

upper density contains arbitrarily long arithmetic progressions.

Perhaps even more monumental than his theorem was the lemma he proved in the

process.
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Lemma 2 For every ε > 0, and m ≥ 1, there exist constants K > 0 and M > 0 such

that the following holds: If G is a graph having vertex set V satisfying |V | = k ≥ K,

then there exists an integer m′, with

m ≤ m′ ≤M,

and a partition of G into vertex sets V0, V1, . . . Vm′, with the following properties:

1. |V0| ≤ ε|V |. We call this the exceptional set.

2. |V1| = |V2| = . . . |Vm′|.

3. All but at most ε(m′)2 of the distinct pairs (Vi, Vj), 1 ≤ i, j ≤ m′ are ε-regular.

Szemerédi’s Theorem has since been proven by various different methods without

the use of the Regularity Lemma- first by Furstenberg [17] using ergodic theory and

then by Gowers [19] by using Fourier analysis and combinatorics. And yet Szemerédi’s

Regularity Lemma remains a monumental achievement in its own right, spawning

many applications in both Ramsey theory and combinatorics. One such application

of particular interest is the following widely used structural result by Balog and

Szemerédi.

Theorem 2.2 (Balog-Szemerédi Theorem) [1] Let A ⊆ ZD satisfy

E(A,A) ≥ |A|
3

K
.

Then there exist constants c and C dependent only on K such that there exists a large

subset A′ ⊆ A such that

|A′| ≥ c|A| and |A′ + A′| ≤ C|A|.

As just one example of how this theorem can be used, we will sketch a proof of

the following theorem which originally required its development.

9



Theorem 2.3 (Balog-Szemerédi) [1]

For any k ∈ N, c > 0, there exists an N(c, k) such that, if A ⊂ Z has size

|A| ≥ N(c, k),

and contains c|A|2 3-term arithmetic progressions, then A must contain a k-term

arithmetic progression.

Sketch of Proof Basic Fourier analysis, similar to that used by Roth, shows that A’s

high number of 3-AP’s forces A to have high additive energy. The Balog-Szemerédi

theorem thus shows that A has a positive density subset A′ with small doubling

constant. From there, Freiman’s theorem tells us that A′ is a positive density subset

of a GAP with low rank. It follows that we must have a long progression P with

positive density intersection with A. So by Szemerédi’s theorem, A must have a long

arithmetic progression with length dependant on c and k.

In chapter 3, we will discuss generalizations of the Balog-Szemerédi theorem, one

of which we will make use of in chapter 6. In chapter 4, we will establish a new

generalization.

2.2 Combinatorial Estimates

Another major line of research in arithmetic combinatorics is the study of the effect

of arithmetic operations on the size of sets.

Given two sets of real numbers, A and B, we can easily see that

|A|+ |B| − 1 ≤ |A+B| ≤ |A||B|+ min(|A|, |B|).

The upper bound comes from the number of unique ways to choose an element from

A and an element from B. The lower bound comes from the following observation.

Order the elements of A as a1 < a2 < . . . ar and the elements of B as b1 < b2 < ...bs

It follows that A+B at least contains the r + s− 1 distinct elements

10



a1 + b1 < a1 + b2 < a1 + b3 < · · · < a1 + bs < a2 + bs < . . . ar + bs.

Under what conditions is the lower bound attained? Observe that by symmetry,

A+B also contains the r + s− 1 distinct elements

a1 + b1 < a2 + b1 < a3 + b1 < · · · < as + b1 < as + b2 < . . . as + br.

But if |A+B| = |A|+ |B| − 1 then the above two listings must be the same.

a1 + b2 = a2 + b1, a1 + b3 = a2 + b2 · · · ⇒ a2 − a1 = b2 − b1 = b3 − b2 = . . . ,

showing us that A and B both must be arithmetic progressions with the same common

difference.

Cauchy first addressed this question about sumsets in Fp, establishing the lower

bound min(p, |A|+ |B|−1) in 1813. Davenport later rediscovered this bound in 1935.

This result is considered the first in arithmetic combinatorics, and today all known

proofs still require some non-trivial idea, such as Fourier methods.

Let us now restrict ourselves to individual sets. Note the large gap between the

lower and upper bounds:

2|A| − 1 ≤ |A+ A| ≤ |A|(|A|+ 1)

2
.

This gap implores further investigation. For a random set, A, sums ai+bj are unlikely

to overlap, so we expect |A+A| will be on the order of |A|2. For a specific example,

set

A = {20, 21, 22, . . . 2n−1}

Since every sum ai+aj, i < j has a unique binary representation, |A+A| = |A|(|A|+

1)/2.

It is thus natural to say that a set A with small doubling has high additive structure

(with 2|A| − 1 being smallest possible). What other sets have small doubling?
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If we next take A to be any set of n elements from a progression of length kn,

then we immediately get |A + A| ≤ 2k|A|. If we take A to be a large subset of a

proper GAP, then it is again clear that A+A will not be significantly larger than A.

Freiman’s theorem, introduced earlier, says that such sets are the only kinds which

have small doubling.

It is important to observe that all of these properties of set addition have immedi-

ate analogues in set multiplication. For instance, if A is a geometric progression, then

|A · A| = 2|A| − 1. And we can use a geometric version of Freiman’s theorem to see

that the only sets A for which |A · A| ≤ k|A| are large subsets of proper generalized

geometric progressions.

It is natural to ask whether A + A and A · A can simultaneously be ’small’. In

other words, can A be relatively closed with respect to addition and multiplication?

In [13], Erdős and Szemerédi showed that it in fact cannot.

Theorem 2.4 There is some absolute constant ε > 0 such that if A is a set of real

numbers, |A| ≥ 2, then

max(|A+ A|, |A · A|) > |A|1+ε.

Efforts to quantify this sum-product phenomenon, as well as generalize it to other

settings, are a cornerstone of arithmetic combinatorics. In chapter 3, we will survey

that progress, but first, we will focus on Elekes’s effort to determine the correct

value of ε and its elegant connection to incidence geometry. We begin our foray into

incidence geometry with the following result:

Theorem 2.5 (Crossing Number Inequality)[31] Let G = G(V,E) be a graph with

|E| ≥ 4|V |. Let the crossing number, Cr(G), denote the minimum possible number of

intersections between edges of a graph drawn in the plane. Then the crossing number

Cr(G) > |E|3
64|V |2 .

12



Proof. First observe that any graph G can be made planar (crossing number zero)

by removing at most Cr(G) edges. Combining this fact with Euler’s characteristic

formula tells us that

Cr(G) ≥ |E| − 3|V |

for arbitrary graphs G(E, V ).

Now we fix G = G(V,E) with |E| ≥ 4|V |. Let V ′ be a random subset of V

consisting of vertices chosen independently with probability p to be determined later.

Let G′ = G′(V ′, E ′) be the subgraph of G induced by the vertices of V ′. Now we

apply the above inequality to G′, and utilize the linearity of expectation to see

E(Cr(G′)) ≥ E(|E ′|)− 3E(|V ′|).

Since each vertex of V has probability p of being in included in V ′, it follows again

by linearity of expectation that

E(|V ′|) = p|V |,

and

E(|E ′|) = p2|E|.

Now we consider a drawing of G with the minimal number of crossings, Cr(G).

Since each crossing spawns from four vertices, there is only a p4 probability that a

crossing survives when we pass to G′. So by one more applications of linearity of

expectation we have

E(Cr(G′)) ≤ p4Cr(G).

We now conclude that

Cr(G) ≥ p−2|E| − 3p−3|V |.

13



By setting p := 4|V |
|E| we achieve our desired inequality.

Theorem 2.6 (Szemerédi-Trotter theorem) Let P be a finite set of points and L be

a finite set of lines, both in R2. Then we have

I(P,L) ≤ 4|P |2/3|L|2/3 + 4|P |+ |L|

Proof. Without loss of generality we can disregard lines l ∈ L which do not contain

any points in P , since they do not contribute anything to the left-hand side. Thus

we assume that every line in L contains at least one point in P .

We proceed by embedding this information into a graph. Let G = G(P,E) be the

graph whose vertices are the points in P . Next, we connect two points (vertices) a

and b if and only if the open line segment from a to b lies in a line in L and contains

no points in P .

Now we count |E|, the number of edges, in two different ways. First, note that if

a line l in L contains k ≥ 1 points in p, then l contributes k− 1 edges to E Summing

over l ∈ L, we see

|E|+ |L| = I(P,L).

Secondly, we observe that G has a drawing in the plane, with the vertices in P

represented by distinct points, and with each edges (a, b) ∈ E represented by a line

seqment from a to b. Since no two lines can intersect in more than one point, we

conclude that

Cr(G) ≤ |L|2

Now, either |E| ≤ 4|P |, or we can apply the crossing number inequality, by which

Cr(G) ≥ |E|3
64|P |2 . It follows that

|E| ≤ max(4|P |, 4|P |2/3|L|2/3),

and our desired inequality follows. �

We can now use this tool to prove Elekes’s result.

14



Theorem 2.7 Let A be a finite non-empty set of reals. Then

|A+ A|+ |A · A| � (|A|5/4)

Proof. Define a grid

P = {(a, b)|a ∈ A+ A, b ∈ A · A},

with cardinality |A+ A||A · A|. Consider the set L of lines of the form

{(x, y)|y = a(x− b); a, b ∈ A}

It is clear that L has |A|2 elements. Additionally, each such line contains at least |A|

points in P , namely the points of the form (b+c, ac) with c ∈ A. Thus I(P,L) ≥ |A|3.

We apply the Szemerédi-Trotter theorem to conclude

|A|3 ≤ O((|A+ A||A · A|)2/3(|A|2)2/3 + |A+ A||A · A|+ |A|2).

From here, elementary algebra leads us to our claim. �

The key fact that Elekes needed for his proof, and which is a weak corollary of

the Szemerédi-Trotter incidence theorem, at least as far as just getting a non-trivial

bound of the sort

|A+ A| · |A · A| � |A|2+ε,

is the following basic claim.

Claim 1. There are absolute constants ε > 0 and δ > 0 such that if A and B are

sets of n real numbers, and n is sufficiently large (in terms of ε and δ), then any set

of at least n2−ε distinct lines contains a member that hits the grid in fewer than n1−δ

points. In other words, one cannot have a collection of n2−ε lines whereby all are

“n1−δ-rich” in the grid A×B.

Actually, Elekes’s proof only needs the following even weaker claim.
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Claim 2. There exist absolute constants ε > 0 and δ > 0 so that the following holds

for all integers n sufficiently large: Suppose that A and B are sets of real numbers of

size n, and that one has a family of lines such that

• There are at least n1−ε distinct slopes among them; and,

• every line is parallel to at least n1−ε others.

Then, at least one of the lines must hit the grid A×B in fewer than n1−δ points. In

other words, not all the lines can be n1−δ-rich in the grid.

In Chapter 5 we prove the following theorem, which shows that it is possible to

considerably strengthen this second claim; futhermore, our theorem is not the sort

that is quickly deducible from the Szemerédi-Trotter incidence theorem:

Theorem 5.1 For every ε > 0, there exists δ > 0 so that the following holds for

all n sufficiently large: Suppose that A and B are sets of real numbers of size n, and

that one has a family of lines such that

• There are at least nε distinct slopes among them; and,

• every line is parallel to at least nε others.

Then, at least one of the lines must hit the grid A×B in fewer than n1−δ points.

Our theorem is related to a conjecture of Solymosi (see [10, Conj. 3.10] for details),

which we modify and extend to make it better fit the context of the above results.

Solymosi’s Conjecture. For every ε > 0, there exists δ > 0, such that the following

holds for all integers n sufficiently large: Suppose A and B are sets of real numbers

of size n, and suppose that one has a collection of nε lines in general position (that

is, no pair is parallel, and no three meet at a point). Then, not all of the lines can

be n1−δ-rich in the grid A×B.

This conjecture of Solymosi easily implies our main theorem (Theorem 5.1) above,

for if one has a family of lines as described by our theorem, then it is a simple matter
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to select one line from each of � nε/3 groups of parallel lines in such a way that one

produces a collection in general position (first, select a single line of slope λ1; then,

select a line of slope λ2 6= λ1; then, select a line of slope λ3 6∈ {λ1, λ2} such that

the three lines do not have a common intersection point; then, select a line of slope

λ4 6∈ {λ1, λ2, λ3}...).

In chapter 6, we will broaden the concept of the sum-product phenomenon; but

first, we need to introduce an alternative notation for describing operations on sets.

Given a set A and a bivariate function f(x, y), define

f(A,A) = {f(x, y)|x, y ∈ A}.

In this setting, clearly A + A corresponds to the function f(x, y) = x + y and A · A

corresponds to f(x, y) = xy. Yet this latter notation is more versatile, permitting

more complicated set functions such as f(x, y) = x2(y+ 1) +xy+ 1, which cannot be

represented by the prior notation.

It is natural to deviate slightly from the extensive work on sum-product inequal-

ities by studying the effect of other bivariate functions on the size of a set. We will

call f a set expander if there exists an ε > 0 such that for all sufficiently large A,

|f(A,A)| > |A|1+ε

Take, as an example, the function f(x, y) = (x − 1)(y − 1). For A = {20 +

1, 21 + 1, . . . 2n−1 + 1}, we have f(A,A) = {20, 21, . . . 22n−2}. So clearly f is not a

set expander. In chapter 6, we will categorize all degree 2 and degree 3 bivariate

polynomial expanders.
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CHAPTER III

REVIEW OF LITERATURE

The Balog-Szemerédi-Gowers theorem has a rich history, and is a very useful tool

in additive combinatorics. It began with a paper by Balog and Szemerédi [1], and

then was refined by Gowers [18] to the following basic result (actually, Gowers proved

somewhat more than we bother to state here):

Theorem 3.1 There exists an absolute constant κ > 0 such that the following holds

for all finite subsets X and Y of size n > n0 of an abelian group: Suppose that there

are at least Cn3 solutions to x1 + y1 = x2 + y2, xi ∈ X and yi ∈ Y . Then, X contains

a subset X ′, of size at least Cκn, such that

|X ′ +X ′| ≤ C−κn.

Sudakov, Szemerédi and Vu [28] proved a refinement of this theorem (Balog [2]

independently obtained a similar result), given as follows:

Theorem 3.2 Let n,C,K be positive numbers, and let A and B be two sets of n

integers. Suppose that there is a bipartite graph G(A,B,E) with at least n2/K edges

and |A +G B| ≤ Cn. Then one can find a subset A′ ⊂ A and a subset B′ ⊂ B such

that |A′| ≥ n/16K2, |B′| ≥ n/4K and |A′ +B′| ≤ 212C3K5n.

Remark. It is not difficult to show that this theorem, along with some lemmas

and theorems of Ruzsa (the Ruzsa triangle inequality [31], and the Ruzsa-Plunnecke

Theorem [25]), implies that we may take κ < 20 in Theorem 3.1.

In the same paper, Sudakov, Szemerédi and Vu [28, Theorem 4.3] proved the

following powerful hypergraph version of the Balog-Szemerédi-Gowers Theorem:
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Theorem 3.3 For any positive integer k, there are polynomials fk(x, y) and gk(x, y)

with degrees and coefficients depending only on k, such that the following holds. Let

n,C,K be positive numbers. If A1, ..., Ak are sets of n positive integers, H(A1, ..., Ak, E)

is the k-partite, k-uniform hypergraph with at least nk/K edges, and |⊕kHi=1Ai| ≤ Cn,

then one can find subsets A′i ⊂ Ai such that

• |A′i| ≥ n/fk(C,K) for all 1 ≤ i ≤ k;

• |A′1 + · · ·+ A′k| ≤ gk(C,K)n.

The notation ⊕H means that the sum is restricted to the hypergraph H.

Beautiful and useful as it is, it would be nice if one had some control on the degrees

of these polynomials f and g. And, for particular applications, it would be good to

be able to control the rate of growth of sums A′1 + · · ·+ A′`, where ` is much smaller

than k – it would be good to be able to bound the size of this sum from above by

C1+εKdkn, (1)

where dk depends only on k. Perhaps such a bound can be developed by modifying

the proof of Sudakov, Szemerédi and Vu; however, in this chapter, we take a different

tack, and produce an alternate proof of a related hypergraph Balog-Szemerédi-Gowers

theorem, where such an upper bound as (1) will be implicit, though only for the case

where A1 = · · · = Ak. In our proof, we will use some of the same standard tricks as

Sudakov, Szemerédi and Vu do in their proof.

The notation we use to describe this theorem, and its proof, will be somewhat

different from that used by Sudakov, Szemerédi and Vu. Furthermore, we will not

attempt here to give the most general formulation of the theorem.

Our work in chapter 5 makes use of several standard methods in arithmetic combi-

natorics, though is quite intricate and technical. In particular, some of our approaches
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are similar to those appearing in the well-known paper of Bourgain, Katz and Tao

[5], as was pointed out to us by P. M. Wood. Even so, we do not assume any results

more sophisticated than the Szemerédi-Trotter theorem. It was pointed out to us

recently by T. Tao that perhaps we could make use of a particular sum-product ideas

of Bourgain to give a simpler proof; however, we decided to present here our original

approach.

It is possible that perhaps some of the ideas of Harald Helfgott [20] might allow

us to give a shorter proof, as part of our argument can be phrased in terms of growth

and generation in subgroups of GL2(R).

In 1997, Székely [29] generalized the Szemerédi and Trotter’s incidence bound for

general curves, which will be essential in chapter 6. In 2003, Tóth [32] extended the

lines and incidences bounded to the complex plane. Many more results in incidence

geometry can be found in [10],[4],[24],[12], and [6].

As discussed in the introduction, Erdős and Szemerédi first studied sum-product

inequalities over Z in [13]. Nathanson [22] showed that one can set δ = 1/31 to satisfy

|A+ A|+ |A · A| � |A|1+δ.

Ford [15] further improved δ it to 1/15 The proof of Elekes we discussed not only

improved δ to 1/4, it extended the result to R. Solymosi [27] recently improved δ to

3/11 and extended the study to complex numbers, by building on Elekes’ connection

to incidence geometry.

Bourgain, Katz and Tao [5] first studied the sum-product phenomenon over finite

fields. In a recent preprint, Ernie Croot and Derrick Hart studied the problem over

C[x]. More along the lines of our work in chapter 6, Van Vu [34] characterized the

bivariate polynomials P of degree k over Fq[x1, x2] such that for all A ⊆ Fq,
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max{|A+ A|, |P (A)|} ≥ |A|min{δ( |A|
2

k4q
)1/4, δ(

q

k|A|
)1/3}.

More directly, our work expands on the following work of Elekes, Nathanson, and

Rusza [11], which will help us reduce our work in chapter 6.

Theorem 3.4 Let A ⊂ R and let f be a strictly convex (or concave) function. Then

|A+ f(A)| � |A|5/4.
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CHAPTER IV

ON A CERTAIN GENERALIZATION OF THE

BALOG-SZEMERÉDI-GOWERS THEOREM

In this chapter, we will prove the following generalization of the Balog-Szemerédi-

Gowers theorem.

Theorem 4.1 For every 0 < ε < 1/2 and c > 1, there exists δ > 0, such that the

following holds for all k sufficiently large, and all sufficiently large finite subsets A of

an additive abelian group: Suppose that

S ⊆ A× A× · · · × A = Ak,

and let

Σ(S) := {a1 + · · ·+ ak : (a1, ..., ak) ∈ S}.

If

|S| ≥ |A|k−δ, and |Σ(S)| < |A|c,

then there exists

A′ ⊆ A, |A′| ≥ |A|1−ε,

such that

|`A′| = |A′ + · · ·+ A′| ≤ |A′|c(1+ε`).

4.1 Proof of Theorem 5.1

4.1.1 Notation and basic assumptions

It will be advantageous to describe the proof in terms of strings. So, the set

S ⊆ Ak
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will be thought of as a collection of strings of length k:

x1x2 · · ·xk,

where each xi ∈ A.

Often, we split these strings up into substrings; for example, the string

x = x1 · · ·xk

can be written as a product of a “left substring ` of length k/2” (assume k is even)

and a “right substring r of length k/2”. So,

x = `r.

We may assume that

k = 2n,

since if this is not the case, then we let k′ be the largest power of 2 of size at most k,

and proceed as follows: Given a string x1 · · · xk in S, we write it as a product `xrx,

where

`x := x1 · · ·xk′ and rx := xk′+1 · · ·xk.

Now, for some string y we will have that rx = y for at least |S|/|A|k−k′ choices for

x ∈ S. Letting S ′ denote the set of all strings `x with rx = y, we will have

|S ′| ≥ |A|k′−δ,

and clearly

|Σ(S ′)| ≤ |Σ({`xy : x ∈ S ′})| ≤ |Σ(S)| ≤ |A|c.

So, we could just assume that our k had this value k′ all along (remember, we get

to choose k to be as large as needed to get the desired conclusion).
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4.1.2 Lengths of iterations and the choice of δ and k

Our proof will be highly iterative, and will produce a sequence of sets

S0 := S, S1, S2, ..., each Sm ⊆ Akm ,

until one is found that has certain nice properties.

We will think of this process in terms of ‘replacing’ the set Sm ⊆ Akm with a set

Sm+1 ⊆ Akm+1 that satisfies ‘better’ inequalities, specifically

|Sm+1| ≥ Akm+1−δm+1 , and |A|1−O(δ) ≤ |Σ(Sm+1)| ≤ |Σ(Sm)|1−ε/400c,

where each δi ≤ 5iδ. Clearly, for δ > 0 small enough, the number of such iterations

we can take will be bounded from above in terms of ε and c. Furthermore, since at

each step, km+1 will be at least half the size of km, so long as the initial value of

k0 = k is large enough in terms of c and ε, we will not run out of dimensions.

Since our theorem is a qualitative result, in that it does not even attempt to

explain how δ or k depends on ε and c, there is no need to be more precise about just

how small one needs take δ or how large to take k, in order for our iteration process

to terminate and prove our theorem.

Let

S0 := S, k0 := k, δ0 := δ, and set m := 0.

4.1.3 The iteration part of the argument

Given a string x of length km/2, we let Rm(x) denote the set of all strings y of length

km/2 such that

xy ∈ Sm.

We analogously define Lm(y) to be those strings x such that xy ∈ Sm.
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We will now select an x, and therefore Rm(x), very carefully, so that it satisfies

certain useful properties: We begin with the inequality

∑
x

|Rm(x)| = |Sm| ≥ |A|km−δm .

We now apply the following lemma.

Lemma 3 Suppose that V is a set of n elements, and suppose that

U1, U2, ..., Ur ⊆ V

satisfy
r∑
i=1

|Ui| ≥ rn1−δ.

Then, there exists 1 ≤ j ≤ r such that

∑
1≤i≤r

|Ui ∩ Uj| ≥ rn1−2δ.

Proof of the lemma. Let r(v) denote the number of sets Ui that contain the element

v ∈ V . One easily sees that

∑
v∈V

r(v)2 =
∑

1≤i,j≤r

|Ui ∩ Uj|,

and ∑
v∈V

r(v) =
r∑
i=1

|Ui|.

So, the Cauchy-Schwarz inequality tells us that

∑
1≤i,j≤r

|Ui ∩ Uj| ≥

(
r∑
i=1

|Ui|

)2

|V |−1 ≥ r2n1−2δ.

Picking out any value i making the sum over j on the corresponding terms on the

left-hand-side maximal, we see that

r∑
j=1

|Ui ∩ Uj| ≥ rn1−2δ,
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as claimed. �

From this lemma we easily deduce that there exists x such that∑
y

|Rm(x) ∩Rm(y)| ≥ |A|km−2δm .

Next, we let

Sm+1 := {yz ∈ Sm : z ∈ Rm(x)}, (1)

and we observe that

|Sm+1| =
∑
y

|Rm(x) ∩Rm(y)| ≥ |A|km−2δm ;

so, Sm+1 is not too much smaller than Sm.

We now let

δm+1 := 2δm, and km+1 := km,

and observe that Sm+1 satisfies

|Sm+1| ≥ |A|km+1−δm+1 ,

and we in addition have that every element of Sm+1 can be expressed as yz, where

z ∈ Rm(x) = Rm+1(x).

Now suppose that there is a string y of length km+1/2 such that if

|Rm+1(y)| ≥ |A|km+1/2−2δm+1 ,

then

|Σ(Rm+1(y))| ≤ |Σ(Sm+1)|1−ε/400c.

If this occurs, then we let

Sm+2 := Rm+1(y), km+2 := km+1/2, δm+2 := 2δm+1,

and we reassign

m ← m+ 2,

and then we start back at the very beginning of this subsection 4.1.3.
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4.1.4 The sets H ′ and H ′′

When we come out of the iteration loops from the previous subsection, we finish with

a set Sm having a number of highly useful properties, among them:

• |Sm| ≥ |Am|km−δm ;

• For a particular string x of length km/2, each Rm(y) ⊆ Rm(x); and,

• If we let H denote those strings h of length km/2 such that

|Rm(h)| ≥ |Am|km/2−2δm ,

then for every such h we will have that

|Σ(Sm)|1−ε/400c < |Σ(Rm(h))| ≤ |Σ(Sm)|.

One can easily show, using the lower bound for |Sm|, that for |A| sufficiently large,

|H| > |Am|km/2−2δm .

Since ∑
z∈Rm(x)

|{h ∈ H : hz ∈ Sm}| ≥ |H| · |A|km/2−2δm ,

we deduce that there exists z ∈ Rm(x) such that there are at least

|H| · |A|−2δm ≥ |A|km/2−4δm

vectors h ∈ H satisfying

hz ∈ Sm. (2)

Fix one of these z, and let

H ′ ⊆ H
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denote all those h ∈ H such that (2) holds. Note that

|H ′| ≥ |A|km/2−4δm . (3)

Next, let

H ′′ ⊆ H ′

denote those h ∈ H ′ such that there are at least

|H ′| · |Σ(H ′)|−1/2 (4)

other h′ ∈ H ′ satisfying

Σ(h′) = Σ(h).

We have that

|H ′ \H ′′| ≤ |Σ(H ′)|(|H ′| · |Σ(H ′)|−1/2) = |H ′|/2

So,

|H ′′| ≥ |H ′|/2 ≥ |A|km/2−5δm , (5)

for |A| sufficiently large.

We also note that

|Σ(H ′′)| ≤ |Σ(H ′)| = |Σ({hz : h ∈ H ′})| ≤ |Σ(Sm)|.

This is one of the places where it was essential to have that z ∈ Rm(h) for all h ∈ H ′.

Now suppose that, in fact,

|Σ(H ′′)| ≤ |Σ(Sm)|1−ε/400c. (6)

If so, then we set

Sm+1 := H ′′, km+1 := km/2, δm+1 := 5δm,
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and then we update m to

m ← m+ 1,

and we repeat our iteration process again, starting in subsection 4.1.3.

On the other hand, if (6) does not hold, then we will have that

|Σ(Sm)|1−ε/400c ≤ |Σ(H ′′)| ≤ |Σ(H ′)| ≤ |Σ(Sm)| (7)

4.1.5 The final leg of the proof

From the fact that

|Σ({hu ∈ Sm : h ∈ H ′′, u ∈ Rm(h)})| ≤ |Σ(Sm)|,

along with the fact that Rm(h) ⊆ Rm(x) and

|Σ(Sm)|1−ε/400c ≤ |Σ(Rm(h))| ≤ |Σ(Rm(x))| ≤ |Σ(Sm)|,

as well as (7), we deduce that there are at least

|Σ(H ′′)|2( min
h∈H′′

|Σ(Rm(h))|2)|Σ(Sm)|−1 ≥ |Σ(Sm)|3−ε/100c

quadruples

σ1, σ2 ∈ Σ(H ′′), and σ3, σ4 ∈ Σ(Rm(x)),

such that

σ1 + σ3 = σ2 + σ4.

Now we apply Theorem 3.1, setting

X := Σ(H ′′), and Y := Σ(Rm(x)).

Following the comment after Theorem 3.2, we have that there exists

Σ ⊆ Σ(H ′′), |Σ| ≥ |Σ(H ′′)|1−ε/2c,
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such that

|Σ + Σ| ≤ |Σ|1+ε/2c. (8)

Let H ′′′ denote the set of all

h ∈ H ′′,

such that

Σ(h) ∈ Σ.

By (3), (4), and (7), we have that

|H ′′′| ≥ |Σ|(|H ′| · |Σ(H ′)|−1/2)

≥ |Σ(H ′′)|1−ε/2c|H ′| · |Σ(Sm)|−1/2

≥ |Σ(H ′′)|1−ε/2c|Σ(H ′′)|−1/(1−ε/400c)|H ′|/2

≥ |Σ(H ′′)|−ε/c|H ′|

≥ |A|km/2−4δm−ε.

By simple averaging, there is some vector

w ∈ Akm/2−1,

such that there are at least

|A|1−4δm−ε

vectors h ∈ H ′′′ whose last km/2− 1 coordinates are the vector w. The upshot of this

is that if we let

A′ := {a ∈ A : aw ∈ H ′′′},

then

|A′| ≥ |A|1−4δm−ε, (9)

and

A′ + A′ + 2Σ(w) ⊆ Σ(H ′′′) + Σ(H ′′′) = Σ + Σ.
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Now we apply a weak form of the Ruzsa-Plunnecke Theorem [25], given as follows:

Theorem 4.2 Suppose that X is some finite subset of an additive abelian group, such

that

|X +X| ≤ C|X|.

Then, we have that

|kX| = |X +X + · · ·+X| ≤ Ck|X|.

Using

X := Σ, and C := |Σ|ε/2c,

we deduce that for ` even,

|`A′| ≤ |`Σ| ≤ |Σ|1+ε`/2c ≤ |A|c+ε` ≤ |A′|(c+ε`)/(1−4δm−ε)

By selecting δ > 0 small enough (and therefore δm > 0 small enough), relative to

ε > 0, we can ensure that for ε < 1/2,

|`A′| ≤ |A′|c(1+2ε`).

Of course, when 1/2 ≤ ε < 1 the inequality is trivial, as c > 1. Clearly, on rescaling

ε appropriately, our theorem is proved.
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CHAPTER V

ON RICH LINES IN GRIDS

In this chapter, we will prove the following theorem:

Theorem 5.1 For every ε > 0, there exists δ > 0 so that the following holds for all

n sufficiently large: Suppose that A and B are sets of real numbers of size n, and that

one has a family of lines such that

• There are at least nε distinct slopes among them; and,

• every line is parallel to at least nε others.

Then, at least one of the lines must hit the grid A×B in fewer than n1−δ points.

5.1 Proof of the main theorem

The first step in our proof is to reduce from the case of working with grids A×B to

grids A × A. This is easily handled by simply letting C = A ∪ B, and then noting

that the hypotheses of our theorem imply that we have a family of rich lines passing

through the grid C×C. Upon rescaling n to |A∪B| ≤ 2n, we see that we could have

just assumed that our grid was A× A (or C × C) all along.

5.1.1 Producing new rich lines from old ones

In our proof we will be combining together lots of pairs of rich lines, possibly of

different slope: Given a line ` hitting A× A in some points, we let

X(`) = projection of ` ∩ (A× A) onto the x− axis;

Y (`) = projection of ` ∩ (A× A) onto the y − axis.

32



If two lines

` : y = λx+ µ and `′ : y = λ′x+ µ′,

have the property that

|Y (`) ∩ Y (`′)| = “large”,

then there will be lots of triples

(x, z, y) ∈ A× A× A

satisfying

λx+ µ = y = λ′z + µ′.

So, the new line

z = (λ/λ′)x+ (µ− µ′)/λ′

also hits the grid A× A in many points.

A convenient way of keeping track of the new rich lines that we can produce from

old ones is to use matrix notation: We form the association

y = λx+ µ ↔

 λ µ

0 1

 .
Then, when we combine together lines as above, the new line we get will be the one

associated to a certain product of matrices; specifically,

y = (λ/λ′)x+ (µ− µ′)/λ′

↔

 λ/λ′ (µ− µ′)/λ′

0 1

 =

 λ′ µ′

0 1


−1  λ µ

0 1



A basic fact, which is an easy consequence of the Cauchy-Schwarz inequality, is

the following lemma:
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Lemma 4 Given lines

`1, ..., `K ,

each hitting a grid

A × A,

in at least

n1−δ0 points,

we have that at least

K2n−2δ0/2

of the pairs (`i, `j) have the property that

|Y (`i) ∩ Y (`j)| ≥ n1−2δ0/2. (1)

If the lines `1, ..., `K have slopes λ1, ..., λK , respectively, then upon combining it

with our preceeding observations, we deduce that there are lots of lines of slope λi/λj,

for lots of pairs (i, j), such that each is at least n1−2δ0/2 rich in the grid A× A.

5.1.2 Passing to a set of rich lines with usable properties

Given ε > 0, we let δ′ > 0 denote some parameter that we will choose later. Then,

given ε, δ′ > 0 we let δ > 0 be some parameter chosen later. We will show that if

δ > 0 is small enough, and if (as stated in the hypotheses of our theorem) we had a

set of lines involving nε slopes, each parallel to at least nε others, each n1−δ-rich in

the grid, then in fact there would have to exist at least n4 lines, each hitting A×A in

at least two points. This clearly cannot happen, because there are fewer lines hitting

the grid in two points than there are ordered pairs of points of the grid; there are n2

points of the grid, and therefore n4 ordered pairs. This will prove our theorem.

So, we assume that ε > 0 is given, and then we will select δ′ > 0 as small as

needed, and then choose δ > 0 even smaller later.
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We begin by letting L1(λ) denote the set of our lines having slope λ. We note

that

|L1(λ)| ≥ nε,

where λ is one of the slopes of our set of lines. To make certain later estimates easier,

we will trim our list of lines so that for each slope λ we have

|L1(λ)| = dnεe.

Denote our initial set of slopes by Λ1.

Using Lemma 4, we can easily deduce that there are at least

|Λ1|2n−O(δ)

ordered pairs

(λ, λ′) ∈ Λ1 × Λ1,

for which there are at least

|L1(λ)| · |L1(λ
′)|n−O(δ) ∼ n2ε−O(δ)

pairs of lines

(`, `′) ∈ L1(λ)× L1(λ
′) (2)

satisfying

|Y (`) ∩ Y (`′)| ≥ n1−O(δ). (3)

Note that each of these intersections gives rise to a line having slope λ/λ′ that hits

A× A in n1−O(δ) points.

When such a pair (λ, λ′) has the above property we will say that it is “good for

step 1”. Note that our definition of “good” is dependent upon the implied constants

in the big-ohs – for our purposes, the implied constants in the “good for step i” can

all be taken to be 1000i.
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If a pair (λ, λ′) is good for step 1, and if in addition we have that the number of

distinct lines of slope λ/λ′ produced by combining pairs (`, `′) satisfying (2) and (3)

is at least

nε(1+δ′), (4)

we will say that (λ, λ′) is “very good for step 1”.

Let us suppose that all but at least a fraction n−O(δ) of the “good” pairs (λ, λ′)

are, in fact, “very good”. Let Λ2 denote these “very good” pairs, and note that we

are saying

|Λ2| ≥ |{good pairs}|n−O(δ) ≥ |Λ1|2n−O(δ).

For θ ∈ Λ2, say θ = (λ, λ′), we let L2(θ) denote those lines produced by combining

together pairs of lines, one from L1(λ) and the other from L1(λ
′). Note that for all

θ ∈ Λ2 we have, by (4), that

|L2(θ)| ≥ nε(1+δ′).

And, as with the set of lines L1(λ), we trim our set of lines (in an arbitrary manner)

so that for every such θ we have that

|L2(θ)| = dnε(1+δ′)e.

It is easily deduced from Lemma 4 that there are at least

|Λ2|2n−O(δ)

ordered pairs

(θ, θ′) ∈ Λ2 × Λ2,

for which there are at least

|L2(θ)| · |L2(θ
′)|n−O(δ) ∼ n2ε(1+δ′)−O(δ)
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pairs of lines

(`, `′) ∈ L2(λ)× L2(λ
′)

satisfying

|Y (`) ∩ Y (`′)| ≥ n1−O(δ).

When such a pair (θ, θ′) has the above property we will say that it is “good for

step 2”, and we say that it is “very good for step 2” if the set of rich lines that it

produces has size at least

nε(1+δ′)2 .

We will repeat the above process we have started as above, by defining Λ3 to be

the set of all “very good for step 2” pairs β = (θ, θ′) ∈ Λ2×Λ2, and we will let L3(β)

be those lines produced by combining together ones from L2(θ) with L(θ
′), and then

trimming the list so that

|L3(β)| = dnε(1+δ′)2e.

It is clear that we can continue the above process, producing sets

Λ4, Λ5, ..., where Λi ⊆ Λi−1 × Λi−1,

and sets

L3(α3), L4(α4), ..., where αi ∈ Λi.

However, the process cannot go on for too long, since we always have the upper bound

|Lt(α)| ≤ n4,

since the lines of Lt(α) will hit the grid in at least two points. In fact,

t � T := (1/δ′) log(4/ε).

Well, the above sequence of Λj’s and Lj(αj)’s is not quite what we want, because

for later arguments we will need that the sequence terminates with t > k, for some

37



k = k(ε) depending only on ε > 0. The way we get around this is as follows: Going

back to how our sequences of Λj’s and Lj(αj)’s are defined, if we are willing to allow

the Λj, j = 1, 2, ..., k to merely contain “good for step j” pairs, instead of “very good

for step j” pairs, then the problem of stopping at time t ≤ k is avoided. There is

the issue of how to trim the sets L2(α2), ..., Lk(αk) in the right way. To solve this

problem, we merely trim them so that they each contain nε−O(δ) lines, which is easily

guaranteed. Furthermore, by choosing δ′ > 0 small enough, we can still have that for

j > k and θ ∈ Λj,

|Lj(θ)| = dnε(1+δ′)je,

the reason being that for small δ′ > 0, the (1 + δ′)k can be made as close to 1 as

needed.

Before unraveling what this all means, we make one more observation: An element

θ ∈ Λi corresponds to a pair of elements of Λi−1, and each member of the pair itself

corresponds to pairs of elements of Λi−2, and so on; so, in the end, an element of

θ ∈ Λi in fact corresponds to a sequence of elements of Λ1 of length 2i−1. Say the

sequence is

λ1, ..., λ2i−1 .

Then, the lines it corresponds to all have slope

λ1 · · ·λ2i−2 / λ2i−2+1 · · ·λ2i−1 .

When our above process terminates at time t satisfying

k < t � T,

we will have that the following all hold:
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• First, for at least

|Λ1|2
t−2

n−Ot(δ)

sequences

λ1, ..., λ2t−2 ∈ Λ1

we will have a set of lines of slope

λ1 · · ·λ2t−3 / λ2t−3+1 · · ·λ2t−2

that are n1−Ot(δ)-rich in our grid A× A.

• Second, there are at least

|Λ1|2
t−1

n−Ot(δ)

pairs of sequences

λ1, ..., λ2t−1 ∈ Λ1, and λ′1, ..., λ
′
2t−1 ∈ Λ1,

corresponding to a pair of elements

(ν1, ν2) ∈ Λt−1 × Λt−1,

that are “good for step t” but not “very good for step t” (since otherwise we could

continue the iteration for another step). For such a pair, suppose that our n1−Ot(δ)-rich

lines corresponding to ν1 are of the form

y = (λ1 · · ·λ2t−3/λ2t−3+1 · · ·λ2t−2)x + Bν1 , (5)

and those corresponding to ν2 are of the form

y = (λ′1 · · ·λ′2t−3/λ′2t−3+1 · · ·λ′2t−2)x+Bν2 . (6)

Then, since the pair (ν1, ν2) is “good for step t”, we have that there are

|Bν1| · |Bν2 |n−Ot(δ)
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ordered pairs of lines, one corresponding to ν1 and the other to ν2, such that when

combined, give us an n1−Ot(δ)-rich line of the form

y = αx+ (b1 − b2)/β,

where

α = λ1 · · ·λ2t−3λ′2t−3+1 · · ·λ′2t−2/λ′1 · · ·λ′2t−3λ2t−3+1 · · ·λ2t−2 ,

where

b1 ∈ Bν1 , b2 ∈ Bν2 , and where β = λ′1 · · ·λ′2t−3/λ′2t−3+1 · · ·λ′2t−2 .

Furthermore, since the pair (ν1, ν2) is not “very good for step t”, we have that the

possibilities for the difference b1 − b2 is at most

nε(1+δ′)t ≤ |Lt−1(ν1)|1+δ′ = |Bν1|1+δ′ .

What this means is that the “additive energy” between the sets Bν1 and Bν2

must be “large”. In fact, because there are so many pairs (ν1, ν2), there must exist

ν1 ∈ Λt−1 such that there are at least

|Λt−1|n−Ot(δ)

choices for ν2 ∈ Λt, such that we have the following lower bound for the additive

energy:

E(Bν1 , Bν2) = |{(b1, b2, b3, b4) ∈ Bν1 ×Bν1 ×Bν2 ×Bν2 : b1 − b3 = b2 − b4}|

≥ |Bν1|3−O(δ′).

We now require the following standard lemma.

Lemma 5 Suppose that X and Y are sets of size M , such that

E(X, Y ) = |{(x, x′, y, y′) ∈ X ×X × Y × Y : x− y = x′ − y′}| ≥ cM3.

Then, there is some translate u such that

|(X + u) ∩ Y | ≥ cM.
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Proof of the Lemma. Another way of writing the additive energy is

E(X, Y ) =
∑
u∈X
v∈Y

|(X − u) ∩ (Y − v)|.

So, by simple averaging, among the M2 pairs (u, v) ∈ X × Y , there exists one for

which

|(X − u+ v) ∩ Y | = |(X − u) ∩ (Y − v)| ≥ cM ;

�

So, for some fixed ν1 ∈ Λt−1, and for |Λt−1|n−Ot(δ) elements ν2 ∈ Λt−1, there exist

translates τ(ν2) for which

|Bν1 ∩ (Bν2 + τ(ν2))| ≥ |Bν1|n−Ot(δ
′).

We now arrive at the following basic claim.

Claim 3. Under the hypotheses of our theorem, there are distinct slopes

θ1, ..., θN ,

where

N > nε−O(δ),

such that for

m = 2t−2,

at least Nm−O(δ) of the m-fold products θi1 · · · θim , we have a set of n1−O(δ)-rich lines

of the form

y = θi1 · · · θimx + B(i1, ..., im),

where B(i1, ..., im) is some set of slopes. We furthermore assume there is a set C of

real numbers such that for each of these > Nm−O(δ) sets B(i1, ..., im), there exists a
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real number τ(i1, ..., im), such that

|B(i1, ..., im) 4 (C + τ(i1, ..., im))| < |B(i1, ..., im)|n−O(δ). (7)

Here, S4T denotes the symmetric difference between S and T .

Proof of the claim. Basically, we just need to show how these slopes θi link up

with the lines in (5) and (6); further, we need to explain the presence of the δ here,

rather than the δ′ appearing earlier.

Let us first address the issue of the δ versus of the δ′: Since we get to choose δ′ > 0

as small as desired relative to ε > 0, we can just as well rewrite it is δ > 0.

As to the relationship between the θi’s above and the λj’s in (5), we will take

{θ1, ..., θN} = {λi} ∪ {1/λi}.

Then, for m = 2t−2 we have that the lines of (5) have slope of the form θi1 · · · θim .

Furthermore, the fact that t > k is what will allow us to take m as large as needed.

�

Now we combine together pairs of these rich lines – as discussed in subsection

5.1.1 – having the same slope, to produce many other rich lines having slope 1: Fix

one of the slopes θi1 · · · θim leading to rich lines with the set of slopes B(i1, ..., im).

Applying Lemma 4, we find that there are at least

|B(i1, ..., im)|2n−O(δ)

ordered pairs

(b, b′) ∈ B(i1, ..., im)×B(i1, ..., im),

such that the line

y = x + (b− b′)/θi1 · · · θim

is n1−O(δ)-rich in the grid A× A.
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From (7), and a little bit of effort, we can easily deduce that at least |B(i1, ..., im)|2n−O(δ)

of these pairs (b, b′) have the property that there exists (c, c′) ∈ C × C satisfying

(b, b′) = (c+ τ(i1, ..., im), c′ + τ(i1, ..., im)).

For such pairs, we will have that

b− b′ = c− c′.

By the pigeonhole principle, there exists at least one pair (in fact, lots of pairs)

(c, c′) ∈ C × C, c 6= c′, such that at least Nm−O(δ) of the sequences i1, ..., im have the

property that the line

y = x + (c− c′)/θi1 · · · θim

is n1−O(δ)-rich in the grid A× A. Let us denote this constant c− c′ as ξ, so that our

rich lines all look like

y = x + ξϕi1 · · ·ϕim , where ϕi := 1/θi.

By combining together pairs of these lines, as discussed in subsection 5.1.1, we

can form new ones of the form

y = x + ξ(ϕi1 · · ·ϕim − ϕj1 · · ·ϕjm) (8)

that are rich in the grid. If we then combine together pairs of those lines, we get ones

of the form

y = x + ξ(ϕi1 · · ·ϕim − ϕj1 · · ·ϕjm

+ϕk1 · · ·ϕkm − ϕ`1 · · ·ϕ`m). (9)

Continuing in this manner, we can generate lines of slope 1 with y-intercept equal

to ξ times alternating sums of m-fold products of the ϕi’s; and, at the tth iteration,

these alternating sums have 2t terms.
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5.1.3 The sequence Θi

Now we take a digression for a few pages, and define and analyze a certain sequence

of expressions: Starting with the set

Θ := {ϕi : i = 1, 2, ...},

consider the sequence of sets (expressions)

Θ1 := Θ.Θ−Θ.Θ, Θ2 := Θ1.Θ1 −Θ1.Θ1, (10)

and so on. If we formally expand out the expressions, we will get sums of the following

type: Θ1 consists of sums of the type

a1a2 − a3a4, ai ∈ Θ,

and Θ2 consists of the sums

a1a2a5a6 − a3a4a5a6 − a1a2a7a8 + a3a4a7a8

−a9a10a13a14 + a9a10a15a16 + a11a12a13a14 − a11a12a15a16, (11)

where again each ai ∈ Θ. We will not bother to write down Θ3! In general, at the

jth iteration, the terms in the alternating sum will involve 4j variables ai, and the

number of terms will be 22j−1.

Later on, in another subsection, we will show that so long as δ > 0 is small enough,

upon expanding Θt−2 into the alternating sum of products of variables a1, ..., a4t−2 , as

in (10) and (11), at least

|Θ|4t−2

n−Ot(δ)

choices for these ai ∈ Θ will produce a

θ = θ(a1, ..., a4t−2) ∈ Θt−2
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so that the line

y = x + ξθ (12)

is n1−Ot(δ)-rich in the grid A × A. We will then use Lemma 6 to show that this is

impossible for t large enough and δ > 0 small enough. The fact that t > k, where

k is chosen as large as desired (k is as appears in subsection 5.1.2), will allow us to

reach our contradiction, thereby proving Theorem 5.1.

5.1.3.1 A certain inductive claim

The key fact that we will show and use to accomplish our goal is the following.

Claim 4. Suppose that g(x1, ..., xu) is some polynomial in the variables x1, ..., xu,

which are to be thought of as taking on values in the set Θ. Consider the expansion

of

ΘjΘjg(x1, ..., xu)

into the variables a1, ..., a2·4j , x1, ..., xu ∈ Θ. 1 Suppose that there are at least

|Θ|2·4j+un−Oj,u(δ).

choices for these variables, producing a value

γ = γ(a1, ..., xu) = ΘjΘjg(x1, ..., xu)

such that the line

y = x + ξγ

is n1−Oj,u(δ)-rich in the grid A× A. Then, there are at least

|Θ|4j+1+un−Oj,u(δ)

choices for the variables

b1, ..., b4j+1 , y1, ..., yu ∈ Θ

1The first Θj is expanded into a1, ..., a4j , and the second Θj is expanded into a4j+1, ..., a2·4j .
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such that the line

y = x + ξγ′, γ′ = γ′(b1, ..., yu) ∈ Θj+1g(y1, ..., yu)

is n1−Oj,u(δ)-rich in A× A.

Proof of the claim. Under the hypotheses of the above claim, the pigeonhole

principle implies that for at least

|Θ|4j+1+un−Oj,u(δ) (13)

choices of variables

b1, ..., b2·4j , c1, ..., c2·4j , x1, ..., xu ∈ Θ,

we will have that if we let

γ1 := γ1(b1, ..., b2·4j , x1, ..., xu) ∈ ΘjΘjg(x1, ..., xu),

and

γ2 := γ2(c1, ..., c2·4j , x1, ..., xu) ∈ ΘjΘjg(x1, ..., xu)

(note that the value of x1, ..., xu here is the same as for γ1), then both the lines

y = x + ξγ1 and y = x + ξγ2

are n1−Oj,u(δ)-rich in A × A. Furthermore, by dint of Lemma 4 and the comments

following it, we will additionally have that for (13) many choices of the bi’s, ci’s, and

xi’s, the pair of lines may be combined to produce the new line

y = x + ξ(γ1 − γ2),

which will also be n1−Oj,u(δ)-rich in A× A.

This

γ1 − γ2 = (ΘjΘj −ΘjΘj)g(x1, ..., xu)

has the form Θj+1g(x1, ..., xu). Clearly this proves the claim. �
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A consequence of this claim, and an easy induction argument (to be described

presently), is that if the number of choices for

x1, ..., x2Z ∈ Θ

for which

y = x + ξx1 · · ·x2Z (14)

is n1−OZ(δ)-rich in A× A is at least

|Θ|2Zn−OZ(δ), (15)

which it is by the properties of the set Θ described earlier, then there are at least

|Θ|4Zn−OZ(δ)

choices for y1, ..., y4Z ∈ Θ such that the line

y = x+ ξγ, γ = γ(y1, ..., y4Z ) ∈ ΘZ

is n1−OZ(δ)-rich in A× A.

The way that this is proved is as follows: First, write the product

x1 · · ·x2Z = (x1x2)(x3x4) · · · (x2Z−1x2Z ).

Then, applying the claim to the pair x1x2, and then x3x4, and so on, we deduce that

lots of variable choices make lines y = x + ξα, α ∈ Θ1 · · ·Θ1 (2Z−1 copies here), rich

in A× A. Then, the claim is applied again to the products Θ1Θ1 (grouped in twos),

leading to lines y = x+ ξβ, β ∈ Θ2 · · ·Θ2 (2Z−2 copies here). Continuing, one reaches

lines y = x+ ξγ, γ ∈ ΘZ , as claimed.

Combining this deduction with Claim 3, we deduce:

Claim 5. There are at least

N4t−2−Ot(δ)
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choices of variables a1, ..., a4t−2 ∈ Θ such that for θ = θ(a1, ..., a4t−2) ∈ Θt−2, the line

y = x + ξθ

is n1−Ot(δ)-rich in A× A.

5.1.4 A growth lemma

Given a probability measure f supported on a finite set C, we let f ∗ denote a certain

measure on CC − CC given as follows:

f ∗(x) :=
∑

c1c2−c3c4=x

f(c1)f(c2)f(c3)f(c4). (16)

Lemma 6 Suppose that C is a finite set of real numbers. Let f be a measure on C.

Then,

max
x

f ∗(x) � (max
x

f(x))4/3(log |C|)2.

5.1.4.1 Proof of Lemma 6

Let

M := max
x

f(x).

We begin by partitioning the set C into the disjoint sets, some of which may be

empty:

C = C1 ∪ C2 ∪ · · · ∪ Ck ∪ C0,

where for i ≥ 1,

Ci := {c ∈ C : f(c) ∈ (2−iM, 2−i+1M ]},

where C0 is the remaining elements of C, and where

k = b5 log |C|/ log 2c+ 1.

We define

f ∗α,β,γ,δ(x) :=
∑

c1∈Cα,c2∈Cβ,c3∈Cγ,c4∈Cδ
c1c2−c3c4=x

f(c1)f(c2)f(c3)f(c4).
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We have that

f ∗(x) =
∑

0≤α,β,γ,δ≤k

f ∗α,β,γ,δ(x).

To prove the theorem, then, all we need to do is get bounds on these individual terms,

and then sum them up.

First, we can easily bound the total contribution of the terms where any of the

α, β, γ, or δ is 0: The contribution of all such terms is clearly bounded from above by

�
∑

x∈CC−CC

M2−5 log |C|/ log 2 � |C|−1.

Now we handle the other terms. First, suppose that 1 ≤ α, β, γ, δ ≤ k. Then, one

easily sees from the fact f is a probability measure that

|Ci| � 2iM−1, i = α, β, γ, δ.

The size of f ∗α,β,γ,δ(x) is

� M42−α−β−γ−δ|{a ∈ Cα, b ∈ Cβ, c ∈ Cγ, d ∈ Cδ : ab− cd = x}|. (17)

To bound this last factor from above, we will apply Elekes’s [9] idea of using the

Szemerédi-Trotter incidence theorem [30] to prove sum-product inequalities. We begin

with the Szemerédi-Trotter theorem:

Theorem 5.2 Suppose that one has N points and L lines in the plane. Then, the

number of incidences is bounded from above by

O((NL)2/3 +N + L).

The way we apply this theorem is as follows: Consider the family of lines

ax+ cy = z, where a ∈ Cα, c ∈ Cγ.
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Note that there are |Cα| · |Cγ| lines in total.

Each of these lines intersects the grid Cβ×Cδ in some number of points (or perhaps

no points at all). The total number of incidences (x, y) ∈ Cβ × Cδ is the right-most

factor of (17). From the Szemerédi-Trotter theorem, this number is

� (|Cα| · |Cβ| · |Cγ| · |Cδ|)2/3 + |Cβ| · |Cδ|+ |Cα| · |Cγ|

� 22(α+β+γ+δ)/3M−8/3 + 2β+δM−2 + 2α+γM−2.

The total weight f(a)f(x)f(c)f(y) that each such representation ax+ cy = z gets is

� 2−α−β−γ−δM4.

So,

f ∗α,β,γ,δ(z) � 2−(α+β+γ+δ)/3M4/3 + 2−α−γM2 + 2−β−δM2.

It follows that for all z ∈ CC − CC,

f ∗(z) � |C|−1 +M4/3(log |C|)2 � M4/3(log |C|)2.

The second inequality here comes from the fact that M ≥ |C|−1, which follows from

the fact that f is a probability measure.

5.1.5 Continuation of the proof

We now define a sequence of functions by first letting

f0(h) :=

 1/N, if h ∈ Θ;

0, if h 6∈ Θ.

(Note that f0 is a probability measure.) Then, we inductively define

fi+1(h) := f ∗i (h),

where f ∗ is as in (16). It is easy to see that these fi are all also probability measures.
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The connection between this function f and our sequence of Θi is as follows: For

a given real number h we have that fj(h) is |Θ|−4j times the number of choices for

x1, ..., x4j ∈ Θ

such that

θ = θ(x1, ..., x4j) ∈ Θj

satisfies

θ = h.

As will will see, the upper bound on fj(h) provided by Lemma 6 will produce for us

a lower bound on the number of rich lines in our grid.

Now, Lemma 6 implies that for some constant c > 0, if

t ≥ k := c log(1/ε),

then for all h,

f ∗t−2(h) ≤ 1/n5

So, for each real number h, there are at most

n−5|Θ|4t−2

choices for x1, ..., x4t−2 ∈ Θ such that θ = θ(x1, ..., x4t−2) equals h. Combining this

with Claim 5, we quickly deduce that there are n5−Ot(δ) distinct values of θ among

these rich lines (of Claim 5). If δ > 0 is small enough relative to ε, then we will see

that this number exceeds n4.

We have now reached a contradiction, since there can be at most n4 lines that hit

an n× n grid in at least two points each. Our theorem is now proved.
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CHAPTER VI

ON BIVARIATE SET FUNCTIONS AND EXPONENTIAL

EXPANSION

Recall that a bivariate polynomial f over R[x, y] is a set-expander if there exists an

ε > 0 such that

|f(A,A)| � |A|1+ε

for all finite sets A ⊂ R.

In this chapter we will prove the following theorems.

Theorem 6.1 A bivariate polynomial of degree 2 over R[x, y] is not a set expander

if and only if it is expressible in the form

(i)f(x, y) = g(x) + c · g(y),

where g is a quadratic,

(ii)f(x, y) = a(x+ r)(y + r) + c,

or

(iii)f(x, y) = g(x+ ry),

where g is quadratic, for some a, c, r ∈ R.

Theorem 6.2 A bivariate polynomial of degree 3 over R[x, y] is not a set expander

if and only if it is expressible in the form

(i)f(x, y) = g(x) + c · g(y),
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where g is a degree 3 polynomial,

(ii)f(x, y) = a(x+ r)2(y + r) + c,

(iii)f(x, y) = a(x+ r)(y + r)2 + c,

or

(iv)f(x, y) = g(x+ ry),

where g is a degree 3 polynomial, for some a, c, r ∈ R.

Our general strategy will be to assume that f |(A,A)| ≤ |A|1+ε. Then we will see

that unless f is as prescribed in our hypotheses , we can produce large sets of ‘rich’

curves and apply an incidence theorem to induce a lower bound on ε.

6.1 Tools

Proposition 1 A bivariate set function f(x, y) is a set expander if and only if

f(ax+ b, ay + b) + c

is a set expander, for a, b, c ∈ R, a 6= 0.

Proof: The proposition is made clear by associating the set A with the set A′ =

A−b
a

. So f(a ∗A′+ b, a ∗A′+ b) = f(A,A) Translation by c obviously has no effect on

the size of a set. �

Just as Solymosi used the Szemerédi-Trotter theorem to establish sum-product

estimates, we too will take advantage of incidence geometry. But for our purposes, we

need an estimate of incidences between grid-points and curves, which was established

by Székeley.

Theorem 6.3 (Generalized Szemerédi-Trotter theorem)[29] Let P be a finite collec-

tion of points in R2, and let L be a finite collection of curves in R2. Suppose that
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any two curves in L intersect in at most α points, and any two points in P are

simultaneously incident to at most β curves. Then

|{(p, l) ∈ P × L : p ∈ l}| = O(α1/3β1/3|P |2/3|L|2/3 + |L|+ β|P |).

We will be using the GST theorem in conjunction with the following simple

counting argument to produce large sets of rich curves.

Proposition 2 Let f be a bivariate function such that each element of f(A,A) has

O(|A|) representations as f(a, b), (a, b) ∈ A2. If ε > 0 satisfies

|f(A,A)| < |A|1+ε,

then there are Ω(|A|2−ε) curves

gc,d : f(x, c)− f(y, d) = 0,

which each contain Ω(|A|1−ε) solutions (x, y) ∈ A2.

Proof: First we count Q, the number of quadruples (x, c, y, d) ∈ A4 satisfying

f(x, c) = f(y, d).

Let h(k) denote the number of pairs (a, b) ∈ A2 for which f(a, b) = k. Also, define

g(k) =

 1 if f(a, b) = 1 for some (a, b) ∈ A2

0 otherwise.

Observe that h(k)g(k) = g(k) and g(k)2 = g(k). Now apply the Cauchy-Schwartz

Inequality to see
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 ∑
k∈f(A,A)

(h(k)g(k)

2

≤

 ∑
k∈f(A,A)

h(k)2

 ∑
k∈f(A,A)

g(k)2


⇒

 ∑
k∈f(A,A)

g(k)

2

≤ (Q)

 ∑
k∈f(A,A)

g(k)


⇒

(
|A|2

)2 ≤ Q|f(A,A)|

⇒ Q ≥ |A|4

|f(A,A)|
⇒ Q ≥ |A|3−ε.

Let K denote the number of pairs (c, d) for which gc,d has at least |A|1−ε/2 so-

lutions (x, y) ∈ A2. Each (c, d) counted by K trivially contributes at most M |A|

solutions (x, y) (for some constant M dependent on f), while the remaining pairs

(c, d) contribute at most |A|1−ε/2 solutions (x, y). Thus a trivial upper bound on the

number of solutions to f(x, c) = f(y, d) leads to the following inequalities:

K ·M |A|+ (|A|2 −K)|A|1−ε/2 ≥ |A|3−ε

⇒ K(M |A| − |A|1−ε/2) ≥ |A|3−ε/2

⇒ K ≥ |A|3−ε/2
M |A| − |A|1−ε

⇒ K ≥ (|A|2−ε)/2M.

�

We can also use the GST theorem to give a slightly strengthened version of the

result concerning concave (or convex) curves we introduced in the review of literature.

Corollary 1 Let A ∈ R be a finite set and set I be an open interval containing A.

If f is a continuous non-linear function which changes concavity only finitely many

times on R, then

|A+ f(A)| � |A|5/4.
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Proof: Consider the grid G = (A + f(A)) × (A + f(A)), and the set of curves

Cs,t : {(a + s, f(a) + t), a ∈ I}, for s ∈ f(A) and t ∈ A. Now apply the Generalized

Szemerédi-Trotter theorem. We have |A + f(A)|2 grid points and |A||f(A)| curves,

each of which contains at least |A| grid points. Since f only changes concavity a

finite number of times, α and β are both absolute constants. Also because of our

restrictions on f , we know |f(A)| = Θ(|A|). So we have

|A||f(A)||A| � (|A+ f(A)|2)2/3(|A||f(A))2/3

⇒ ‖A|3 � |A+ f(A)|4/3|A|4/3

⇒ |A+ f(A)| � |A|5/4.

To make full use of our incidence bound estimates, we will need the following result

from algebraic geometry.

Theorem 6.4 (Bezout’s Theorem) [21] Two algebraic curves of degree m and n in-

tersect in at most mn points unless they have a common factor.

�

Finally, we will need to use the following fact:

Lemma 7 Bivariate linear functions over R[x, y] are not set-expanders. That is, for

every c ∈ R and every ε > 0, there exist arbitrarily large sets A ⊂ R such that

|A+ c · A| � |A|1+ε.

Proof:Case 1: If c is rational, let c = a
b
, where gcd(a, b) = 1. Then set

A = {b, 2b, . . . Nb},
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so that

A+ c · A = {xb+ ya : 1 ≤ x, y ≤ N}.

It is clear that for all ε > 0,

|A+ c · A| ≤ (b+ a)N ≤ |A|1+ε,

for A sufficiently large.

Case 2: Now assume c is algebraic and that its minimal polynomial over Z[x]

with the smallest possible coefficients (in absolute value) is

m0x
k +m1x

k−1 + . . .mk−1x+mk

Now consider the set

A = {x0 + x1c+ x2c
2 + . . . xk−1m0c

k−1 : 1 ≤ xi, yi ≤ N},

with size Nk. We can see that

A+ c · A = {x0 + x1c+ x2c
2 + . . . xk−1m0c

k−1

+y0c+ y1c
2 + y2c

3 . . . ykm0k − 1ck : 1 ≤ xi, yi ≤ N}

= {(x0 − yk−1mk) + c(x1 + y0 − yk−1mk−1) + . . .

ck−1(xk−1 + yk−2 − yk−1m1) : 1 ≤ xi, yi ≤ N}.

It follows that for every ε > 0

|A+ cA| = Oc(N
k) = Oc|A| < |A|1+ε,

for A sufficiently large.

Case 3: Lastly, assume c is transcendental. Then set

A = {x0 + x1c+ . . . xk−1c
k−1 : 1 ≤ xi ≤ N},
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where k will be chosen later.

If any element of A had multiple representations of the above form, that would

contradict the fact that c is transcendental. So |A| = Nk. And for any ε > 0,

|A+ cA| = |{x0 + (x1 + y0)c+ . . . (xk−1 + yk−2)c
k−1 + yk−1c

k : 1 ≤ xi, yi ≤ N}

≤ (N)k+12k−1

= |A|N2k−1

< |A|N2, for k = log2N

< |A|1+ε,

for N sufficiently large.

6.2 Proof of Theorem 6.1

Let us begin by assuming that a polynomial set function f has no crossterms. Then

it can be written as

f(x, y) = g(x) +m(y).

Clearly, we can assume that neither g norm contain a constant term, as translation

by a constant will not change the size of any output set. Notice that if m is a scalar

multiple of g, then we can set A to a pre-image (with respect to g) of an appropriate

set prescribed in the proof of Lemma 7, and |f(A,A)| will be small.

Now assume that m is not a multiple of g. So we have,

|f(A,A)| = |g(A) +m(A)|

= |A′ +m(g−1(A′)|, where A′ = g(A)

= |A′ + h(A′)|, where h = mg−1.
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Notice that if h was neither concave up nor concave down, then h′′(x) = 0 and so

h′(x) = s, where s is some constant. Yet we see

h′(x) =
f ′(g−1(x))

g′(g−1(x))

⇒ f ′(x) = s · g′(x)

⇒ f(x) = s · g(x) + t, where s and t are constants.

Since we assumed that neither h nor g contained a constant term, t = 0. And since

we are considering f and g which are not scalar multiples of one another, it follows

that h must have concavity. Because f and g are polynomials, h can only change

concavity a finite number of times. So by Corollary 1 , we have

|f(A,A)| � |A|5/4.

This takes care of form (i) for both Theorem 6.1 and 6.2.

Now we will handle the cases that have cross terms. The first, and most obvious

application of Proposition 1 will be to assume, in each of our cases, that the leading

term has coefficient 1 and that there is no constant term.

Case 1: f(x, y) = xy + ax+ by

First notice that

f(x− b, y − b) + ab = (x− b)(y − b) + a(x− b) + b(y − b) + ab

= xy − bx− by + b2 + ax+ by − ab− b2 + ab

= x(y + a− b),

so by appropriate use of Proposition 1, we can reduce case 1 to the case f(x, y) =

x(y + r). When r = 0, f corresponds to the form (ii), and by setting A equal to

a geometric progression, f is easily seen not to be a set expander. Now let r 6= 0.
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Without loss of generality, we can assume that A is a positive set and r is positive.

So

|A(A+ r)| = | ln(A(A+ r))|

= | ln(A) + ln(A+ r)|

= |A′ + ln(eA
′
+ r)|, where A′ = ln(A)

= |A′ + h(A′)|, where h(x) = ln(ex + r)

� |A′|5/4

� |A|5/4,

by Corollary 1, since h(x) is concave-up for x > 0.

Case 2: f(x, y) = x2 + a1xy + a2y
2 + a3x+ a4y, a 6= 0

Now assume that |f(A,A)| ≤ |A|1+ε. Then by Proposition 2, there exists at least

Ω(|A|2−ε) pairs (c, d) for which

f(x, c) = f(y, d)

has at least |A|1−ε/2 solutions (x, y) ∈ A2. Put another way, we have at least Ω(|A|2−ε)

curves

gc,d : f(x, c)− f(y, d) = 0

⇒ (x2 − y2) + a1(cx− dy) + a2(c
2 − d2) + a3(x− y) + a4(c− d),

each of which intersect the grid A× A in at least |A|1−ε/2 points.

Before we can use the GST theorem, we need to be able to bound the number

of intersections between any two curves. Fortunately, Bezout’s theorem tells us that

no two of these curves can intersect in more than 22 = 4 points unless they share
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a common factor. So those curves which share highe than 4 intersections must be

reducible. If gc,d is reducible, it must be factorable into the form

(x+ y + b1)(x− y + b2) = 0.

Expanding and comparing coefficients gives us

b1 + b2 = a1c+ a3 (1)

b2 − b1 = −a1d− a3 (2)

b1b2 = a2(c
2 − d2) + a4(c− d). (3)

Solving for b1 and b2 and plugging them into (3) gives us

a2
1

4
(c2 − d2) +

a1a3(c− d)

2
= a2(c

2 − d2) + a4(c− d) (4)

⇒ (
a2

1

4
− a2)(c

2 − d2) + (
a1a3(c− d)

2
− a4)(c− d) = 0. (5)

The only way that (5) can have ω(|A|) solutions (c, d) is if a2 = (a1/2)2 and

a1a3

2
= a4. This reduces case 2 into form (iii), which does not produce an expander,

by Lemma 7 . Otherwise, (5) will have only Ø(|A|) solutions, giving us only Ø(|A|)

reducible curves. That still leaves us with Ω(|A|2−ε)−O(|A|) = Ω(|A|2−ε) irreducible

curves to work with, and we call that set of curves L, while P is just the set of the

|A|2 points from the grid A× A. We bound the number of incidences I(P,L) above

by the GST theorem and below by the simple count that each of Ω(|A|2−ε) curves has

at least Ω(A1−ε) points on the grid. That is to say:

|A|2−ε|A|1−ε � I(P,L)� (|A|2)2/3(|A|2)2/3.

Clearly, then ε > 1/6, and Theorem 6.1 is now proved
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6.3 Proof of Theorem 6.2

While more complicated, this proof follows the same strategy as the proof of Theorem

6.1. First note that form (ii) and form (iii) are essentially the same (just replace

f(x, y) with f(y, x)). So in considering the case in which we have no x3 and no y3,

we may assume that we do have an x2y term, and by Proposition 1, we can assume

its coefficient is 1.

Case 1: f(x, y) = x2y + a1xy
2 + a2xy + a3x

2 + a4y
2 + a5x+ a6y

Notice that the expansion of f(x− a3, y − a3) contains no x2 term. So by appro-

priate use of Proposition 1, we can cancel out the x2 term, leaving us with

x2y + a1xy
2 + a2xy + a3y

2 + a4x+ a5y.

So our curves

gc,d : f(x, c)− f(y, d) = 0

take the form

(x2c− y2d) + a1(xc
2 − yd2) + a2(xc− yd) + a3(c

2 − d2) + a4(x− y) + a5(c− d) = 0

If these equations factor, they must take the form

(x+ b1y + b2)(cx+ b3y + b4) = 0.

Expanding and matching coefficients leads to the following system of equations:

xy : cb1 + b3 = 0 (6)

y2 : b1b3 = −d (7)

x : b4 + cb2 = (a1c
2 + a2c+ a4) (8)

y : b2b3 + b1b4 = −(a1d
2 + a2d+ a4) (9)

constant : b2b4 = a3(c
2 − d2) + a5(c− d) (10)
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Equations (6) and (7) imply that in order for gc,d to be factorable, we must have

cd > 0, in which case

b1 =
√
d/c

b3 = −
√
cd.

Plugging those values into equation (9), we see

−(
√
cd)b2 + (

√
d/c)b4 = −(a1d

2 + a2d+ a4)

⇒ −cb2 + b4 = −(a1d
2 + a2d+ a4)

√
c/d.

Combining this with (8) gives us

b2 =
1

2c
((a1c

2 + a2c+ a4) + (a1d
2 + a2d+ a4)

√
c/d)

b4 =
1

2c
((a1c

2 + a2c+ a4)− (a1d
2 + a2d+ a4)

√
c/d).

Multiplying the two equations above give us

b2b4 =
1

4c
((a1c

2 + a2c+ a4)
2 − (a1d

2 + a2d+ a4)
2(c/d)).

But we already have a formula for b2b4 from (10), so we have

4a3(c
3d− cd3) + 4a5(c

2d− cd2) = (a1c
2 + a2c+ a4)

2d− (a1d
2 + a2d+ a4)

2c.

The only way this equations could have ω(|A|) solutions (c, d) ∈ A2 is if

a1 = a3 = a4 = 0, (∗)

and

a2
2 = 4a5(∗∗).
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In that case, we can greatly simplify our case into

f(x, y) = x2y + 2rxy + r2y

= (x+ r)2y.

Notice the similarity to case 1 of Theorem 6.1. If r = 0, than f clearly does not

exponentially expand A = {20, 21, . . . 2n−1}. This corresponds to the form (i). Now

assume r 6= 0. Again, we can assume without loss of generality that A is positive and

r is positive.

|A2(A+ r)| = | ln(A2(A+ r))|

= |2 ln(A) + ln(A+ r)|

= |A′ + ln(eA
′/2 + r)|, , where A′ = 2 ln(A)

= |A′ + h(A′)|, , where h(x) = ln(ex/2 + r)

≥ c|A′|5/4

= c|A|5/4,

by Corollary 1, since h is concave up for x > 0. It follows that f is a set expander

unless r = 0. On the other hand, if either (∗) or (∗∗) is not satisfied, than we

proceed as in case 2 of Theorem 6.1. Because we assume |f(A,A)| < |A|1+ε, we

have, Ω(|A|2−ε) − O(|A|) = Ω(|A|2−ε) irreducible curves, L, each of which intersect

Ω(|A|1−ε) grid-points P ∈ A× A. By the GST theorem,

|A|2−ε|A|1−ε � I(P,L)� (|A|2)2/3(|A|2)2/3.

Cleary, ε > 1/6, and this case is completed.
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Next we will consider the cases that include an x3 or y3 term. Again, because of

symmetry and Proposition 1, we can assume that f has an x3 term with coefficient

1.

Case 2: x3 + a1x
2y + a2xy

2 + a3y
3 + a4x

2 + a5xy + a6y
2 + a7x + a8y, where at

least one of a1, a2, a4 is non-zero.

Our curves gc,d : f(x, c)− f(y, d) can be written as

(x3 − y3) + a1(cx
2 − dy2) + a2(c

2x− d2y) + a3(c
3 − d3)

+ a4(x
2 − y2) + a5(cx− dy) + a6(c

2 − d2) + a7(x− y) + a8(c− d) = 0.

By exhausting a few possibilities, we see that if gc,d does factor, it must factor into

the form:

(x− y + b1)(x
2 + xy + y2 + b2x+ b3y + b4) = 0.

Expanding and matching coefficients gives us

x2 : b1 + b2 = a1c+ a4 (11)

y2 : b1 − b3 = a1d− a4 (12)

xy : b1 + b3 − b2 = 0 (13)

x : b1b2 + b4 = (a2c
2 + a5c) (14)

y : b1b3 − b4 = −(a2d
2 + a5d) (15)

constant : b2b4 = a3(c
3 − d3) + a6(c

2 − d2) + a7(c− d). (16)

Combining (11), (12), and (13) gives us
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b1 =
a1(c+ d)

3
(17)

b2 =
a1(2c+ d) + 3a4

3
(18)

b3 =
a1(c+ 2d) + 3a4

3
. (19)

Now add (14) to (15) and substitute (11), (12), and (13) to the left hand side to

get

a1
2

3
(c2 − d2) +

2a1a4

3
(c− d) = a2(c

2 − d2) + a3(c− d).

Next, subtract (15) from (14) to solve for b4, and plug that formula (along with (18))

into (16) to get

(
a1a2

6
− a3

1

54
)(c3 − d3) +

a1a5

6
(c2 − d2)

+
a1a7

3
(c− d) + (

a1
3

18
− a1a2

6
)c2d+ (

a1a2

6
− a1

3

18
)cd2

= a3(c
3 − d3) + a6(c

2 − d2) + a8(c− d).

The equation gc,d is reducible if and only if (c, d) ∈ A2 simultaneously satisfies

both of the above two equations. Thus it is clear that gc,d is reducible for ω(|A|) pairs

(c, d) only if the following conditions on f are met:

a2
1

3
= a2,

a1a5

6
= a6,

a1a7

3
= a8,

a1a2

9
= a3, and

2a1a4

3
= a5.
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In this case,

f(x, y) = (x3 + 3rx2y + 3r2xy2 + r3y3) +m(x2 + 2rxy + r2y2) + s(x+ ry)

= (x+ ry)3 +m(x+ ry)2 + s(x+ ry),

which, by one more application of Proposition 1, is equivalent to form (iv). If case

2 can not be reduced to that form, than gc,d is reducible for only O(|A|) pairs (c, d),

and by the same argument seen in previous cases, we have

|f(A,A)| > |A|1+1/6.

And our theorem is proved.

We believe that the theorem could be generalized in the obvious way.

Conjecture 6.5 A bivariate polynomial over R[x, y]is not a set expander if and only

if it is of the form

(i)f(x, y) = g(x) + c · g(y),

where g is a polynomial,

(ii)f(x, y) = (x+ r)a(y + r)b + c, where a, b ∈ Z+,

or

(iii)f(x, y) = g(x+ ry),

where g is a polynomial.

In order to prove this conjecture, we need to find a way to bypass the factorization

methods we used in our proofs.
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[1] A. Balog and E. Szemerédi, A statistical theorem of set addition, Combinatorica

14 (1994), 263-268.

[2] A. Balog, Many additive quadruples, CRM Proceedings and Lecture Notes in

Additive Combinatorics, 43 (2007).

[3] F. Behrend, On the sets of integers which contain no three in arithmetic pro-

gression, Proc. Nat. Acad. Sci.,23 (1946),331-332.

[4] J. Beck, On the lattice property of the plane and some problems of Dirac,
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