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SUMMARY

As voice communication becomes an ever-more important and pervasive part of our

everyday lives, the issue of speech quality becomes more critical. One of the reasons for the

undesirable quality degradation is the appearance of audible echoes. This kind of quality

degradation is inherently from network equipment and end-user devices. To increase speech

quality and improve listening experience, it is necessary to design effective acoustic echo

cancellation systems.

Echo cancellation has been studied for several decades, and today it is easy to implement

echo cancellers on digital signal processors (DSPs). However, certain difficulties still remain

to meet the requirements imposed by the echo cancellation standard, and some fundamental

challenges still wait for breakthroughs. One of them is the nonlinearity in the acoustic echo

path. Nonlinearity usually comes from the price competition in the market of consumer

electronics. For economic purposes, the small-sized and low-cost analog components that

exhibit nonlinearity, such as loudspeakers and power amplifiers (PAs), are utilized. An echo

canceller performs poorly or does not work at all in the system where the net nonlinear

distortion is higher than a certain value.

In this dissertation, we address the aforementioned nonlinearity issue in acoustic echo

cancellation systems. To sufficiently remove the nonlinear acoustic echo, nonlinear adap-

tive filters have been proposed in the literature to identify the nonlinear acoustic echo

path. The identification is done by minimizing the mean square error (MSE) between the

microphone-received signal and estimated echo signal. In this way, the echo signal can be

reconstructed and subtracted from the microphone-received signal. However, the issues of

stability, convergence rate, and computational complexity inhibit nonlinear acoustic echo

cancellers (NAECs) from practical implementation. Thus, we are motivated to design effi-

cient NAECs in terms of stability, fast convergence rate, and low computational complexity.

First, we propose to perform nonlinearity identification based on the coherence function,
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which guarantees the stability of the nonlinear adaptive system. Later on, we present a

general framework for echo cancellation systems using a shortening filter that entails low

computational burden and fast convergence rate. Moreover, we develop methods to re-

move the system nonlinearity based on the coherence function, including the predistortion

linearization, nonlinear residual echo suppressor, and Hammerstein-Wiener model-based

NAEC.

To design an effective AEC is more than performing an system identification. Another

important issue for an AEC is the control logic design of filter adaptation. This problem is

caused by the interference at the near-end, including ambient noise and double-talk, when

both the far-end and near-end talkers speak at the same time. When double-talk occurs, the

adaptive filter may not converge and the identification of the echo path becomes difficult.

Double-talk detectors (DTDs) can be utilized to detect the presence of the near-end speech

and halt the AEC adaptation, thus to avoid filter divergence. However, DTD designs can be

quite complicated since it is often not easy to discriminate between the echo signal and the

near-end speech. Moreover, to the best of our knowledge, DTD has not been proposed in

conjunction with nonlinear AECs. Unlike double-talk, ambient noise of persistent existence.

Therefore, filter adaptation rate needs to be continuously adjusted according to the noise

characteristics, rather than being controlled based on carrying out detection. However, few

of the learning-rate control algorithms are designed specifically for acoustic echo cancellation

applications, which results in the ineffectiveness of these approaches in echo cancellation

systems.

In the second part of this dissertation, we focus on the control logic design issue. For

double-talk detection, we propose to design a DTD based on the mutual information (MI).

We show that the advantage of the MI-based method, when compared with the existing

methods, is that it is applicable to both the linear and nonlinear scenarios. Furthermore, we

extend the MI-based DTD design to the stereophonic acoustic echo cancellation systems.

For learning-rate adjustment, we propose a variable step-size and variable tap-length LMS

algorithm. Based on the fact that the room impulse response usually exhibits an exponential

decay envelop in acoustic echo cancellation applications, the proposed method finds the

xii



optimal step size and tap length at each iteration. Thus, it achieves faster convergence rate

and better steady-state performance.
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CHAPTER I

INTRODUCTION

1.1 Motivations

From analog to digital signals, from narrowband to broadband speech, from wireline to

wireless terminals, and from circuit-switched to packet-switched networks, there have been

tremendous advances in voice telecommunication technologies ever since Alexander Graham

Bell invented the telephone in 1876. However, conversation and collaboration using today’s

voice communication technology are still unnatural and even clumsy. The distraction of

holding a superfluous device such as a close-talk microphone and the lack of sensibility of

remote speaking environments lead to diminished interaction and productivity, and eventu-

ally cause customer dissatisfaction. It is no longer a luxury but truly a rational demand to

create a life-like voice communication mode that gives the involved people the impression

of being in the same acoustic environment, which is referred to as “immersive experience”

in the multimedia communication literature [62]. To achieve this goal, one of the problems

that must be addressed is acoustic echo cancellation.

In hands-free telephone systems, Internet phone, and teleconferencing systems, the cou-

pling between the loudspeaker and the microphone on one end of the system causes echoes

to occur, which degrades the speech quality for the listener on the other end. For this rea-

son, it is often necessary to implement an acoustic echo canceller (AEC). An AEC greatly

enhances speech quality, allows conferences to progress more smoothly and naturally, and

prevents listener fatigue. Echo cancellation has been studied for several decades. Most

AEC designs seek to remove the echo by reconstructing and subtracting an estimate of the

echo signal from the microphone-received signal. This is done by modeling the acoustic

echo path using an adaptive filter. The acoustic echo path is tracked by adaptively carrying

out system identification. Moreover, the adaptive filter has to work well in the presence of

interference, such as ambient noise. Thus, two main design issues for AECs are 1) adaptive
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filtering algorithms design, and 2) control logic design for filter adaptation.

The first design issue focuses on filter adaptation. Many adaptive filtering algorithms

have been developed to remove echoes while keeping full-duplex communications. One of the

well-adopted methods is the least mean square (LMS) algorithm. Several techniques based

on the affine projection algorithm (APA) or recursive least squares (RLS) algorithm have

been developed to cope with the ill-conditioned input autocorrelation matrix that degrades

the LMS performance [41]. However, a recent trend in price-competitive audio consumer

products has demanded low-cost and small-sized analog components (such as loudspeakers)

that usually exhibit nonlinear characteristics. Research results have shown that linear AECs

fail when nonlinearity is present in the acoustic echo path. In [10], it has been shown that

the performance of a linear AEC is limited by nonlinear components in the echo path. Also,

a statistical study of the LMS algorithm shows that even non-significant saturation could

degrade the performance of a linear active noise control system [18]. On the other hand,

large reverberation time leads to a long room impulse response. Usually, the finite impulse

response (FIR) filter, which models the room impulse response, can occupy several hundred

to several thousand taps [41]. This long room impulse response gives rise to slow filter

convergence and high computational complexity. The emerging nonlinearity combined with

the long room impulse response makes the AEC problem more complicated. Some methods

have been proposed in the literature to remove the nonlinear echo [101, 71, 17, 52, 20, 38].

However, there are limitations of the existing methods. First, the stability of nonlinear

systems is difficult to be guaranteed. Second, low convergence rate and high computational

complexity prevent these methods from being widely used in practical applications. Thus,

our research on the efficient nonlinear AEC (NAEC) design is well motivated.

The latter design issue is caused by double-talk or ambient noise. During the double-

talk period, since both the near-end speech and the echo signal arrive at the microphone

simultaneously, it is difficult to guarantee the convergence of the AEC filter. Consequently,

the AEC output consists of both the near-end speech and the uncancelled outgoing echo

signal, which is annoying to the far-end listener. One of the well-adopted methods to

combat double-talk is to utilize a double-talk detector (DTD), based on which the AEC

2



filter adaptation is frozen in the presence of the near-end speech [23, 110, 7, 28, 104, 12].

The existing DTDs are developed under the assumption of a linear echo path and do not

perform well in the presence of nonlinearity. With respect to the ambient noise, learning-

rate adjustment is suggested to achieve optimal convergence rate [11, 56, 3, 66, 57]. The

step size is controlled based on the noise characteristics. However, few of the existing

methods are specifically designed for acoustic echo cancellation applications and thus some

features of echo cancellation are not taken into account. For instance, in acoustic echo

cancellation systems, the characteristic of the room impulse response plays an important

role in the performance of AECs. Thus, we are motivated to carry out research on control

logic designs by taking into account the loudspeaker nonlinearity and room impulse response

characteristics.

1.2 Objectives

The objective of this dissertation is to provide a suite of relatively simple but effective solu-

tions to design the nonlinear AEC and its control logic. More specifically, this dissertation

focuses on the following topics:

• Nonlinear acoustic echo cancellation using the coherence function

• Double-talk detector (DTD) design using mutual information (MI)

• Step size and tap length control for the LMS algorithm

In the literature, nonlinear acoustic echo cancellers are usually realized by nonlinear

adaptive filters. Considering the memoryless nonlinearity from a loudspeaker and/or power

amplifier (PA), people use a Hammerstein system to model the nonlinear acoustic echo path

and carry out nonlinear system identification by minimizing the mean square error (MSE).

However, one issue is that it is difficult to guarantee stability because of a non-quadratic

objective function. We address the stability issue by using the coherence function and

design an efficient nonlinear AEC in terms of fast convergence rate and low computational

complexity. Specifically, we investigate different system structures to remove nonlinear

3



acoustic echoes, such as predistortion linearization, cascade structure, and post-processing

technique.

To be robust to double-talk situations, an AEC employs a DTD to freeze filter adap-

tation in the presence of near-end speech [29, 7]. Lots of DTD design methods have been

proposed in the literature for echo cancellation systems. Among various DTD techniques,

the correlation-based method is the most attractive one. However, it does not perform well

when the acoustic echo path is nonlinear since the correlation-based criterion captures only

the linear relationship between two random processes. In this dissertation, we investigate

DTD designs in nonlinear scenarios.

Ambient noise is another interference that may cause the AEC filter to diverge. To be

robust to noise, step size is optimized in each filter adaptation to adjust the filter learning

rate as a response to noise changes [65, 43]. On the other hand, convergence rate is proved

to be governed by the filter tap length. However, to the best of our knowledge, step size

and tap length have never been controlled jointly in the literature. Thus, we address a

simultaneous control for both step size and tap length to enhance the convergence rate and

the steady-state performance.

1.3 Outline

The rest of the dissertation is organized as follows:

In Chapter 2, acoustic echo cancellation system is introduced and some existing algo-

rithms for nonlinear echo cancellation and control logic desgins are reviewed. To remove

the nonlinear acoustic echo, we investigate two different system structures: NAEC with

cascade nonlinear adaptive filter and nonlinear residual echo suppressor (NRES). Moreover,

we discuss the limitations of the existing methods. For control logic design, we first analyze

the correlation-based DTD; then we introduce the roles that a step-size control plays in an

AEC in the presence of interference; at the end, we point out the deficiencies of the existing

design approaches.

In Chapter 3, we investigate different approaches to remove nonlinear acoustic echoes

in the system. We focus on the nonlinear acoustic echo cancellation using the coherence
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function and investigate different system structures. First, predistortion linearization helps

to enhance near-end listener’s experience. Then, a cascade structure-based NAEC is pro-

posed to identify the loudspeaker nonlinearity without knowing the room impulse response.

Thus, we not only guarantee the system stability but also improve the convergence rate.

Moreover, the NAEC with post-processing technique or a shortening filter are proposed to

improve the convergence rate. At the end, the Hammerstein-Wiener model-based NAEC is

proposed to combat acoustic echoes in the presence of multiple nonlinearities.

In Chapter 4, we focus on control logic designs for echo cancellation systems. First, we

propose to design a DTD using MI, which enables the DTD to be applicable in both the

linear and nonlinear scenarios. Then, we extend DTD designs into stereophonic systems

by using the generalized mutual information (GMI). Compared to MI, the use of GMI not

only reduces computational complexity but also facilitates the detection threshold selection.

For learning-rate adjustment, we propose a variable step size and variable tap length LMS

algorithm for the channel response with an exponential decay envelope.

Finally, in Chapter 5, we summarize this dissertation and suggest topics for future

research.

For the reader’s convenience, we have attempted to keep every chapter as self contained

as possible.
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CHAPTER II

BACKGROUND

In this section, we present a literature review to emphasize the necessity of removing the

nonlinear acoustic echoes in the system. We start with the traditional AEC structure and

the algorithms for implementing it. Next, focusing on the nonlinear acoustic echo path as

one of the challenges in the echo cancellation system, we review some AEC approaches for

tackling nonlinearity. Finally, we investigate the variable learning-rate adaptive algorithms

for robust AEC designs.

2.1 Acoustic Echo Cancellation System

The general setup for acoustic echo cancellation is shown in Fig. 1. The received far-

end speech is the output at the near-end loudspeaker, passing through the loudspeaker-

enclosure-microphone system (LEMS) to cause the echo signal. The microphone-received

signal is composed of the echo signal, near-end speech, noise, and any other distortions.

Most AEC designs seek to remove the acoustic echo by reconstructing and subtracting an

estimate of the echo signal from the microphone-received signal.

People at the far end of the transmission path are the primary beneficiaries of an AEC.

Installed at the near end, an AEC prevents the echo signal from being returned (echoed)

through the voice communication system. People speaking at the near end should not

be aware of the AEC if it functions properly. Since the person at the far end hears the

speech with better quality, the AEC enables the conversation to flow more smoothly and

thus benefits both parties. In order for participants at both ends (far and near) to hold a

full-duplex hands-free conversation, each end must be equipped with an AEC.

Historically, under the assumption of a completely linear acoustic chain (including a

power amplifier, loudspeaker, room impulse response, and microphone), a number of adap-

tive algorithms based on the gradient theory were developed to remove echoes while keeping

full-duplex communication characteristics. Due to its simplicity, the normalized least mean

6



AEC

Near-end speech

 + noise

LEMS

Echo

Far-end speech

Near-end speech + 

residual echo + noise

Mic

Speaker
PA

Figure 1: General setup of acoustic echo cancellation.

square (NLMS) algorithm [42] represents a popular approach for the adaptation of AECs.

However, the NLMS algorithm suffers from slow convergence for correlated input signals.

Therefore, more sophisticated algorithms with decorrelating capability, such as the affine

projection algorithm (APA) or the recursive least squares (RLS) algorithm [42], have been

proposed to speed up the adaptation of filter coefficients. On the other hand, these ap-

proaches increase the computational load remarkably. Consequently, the low-complexity

methods that exploit the fast block convolution techniques in the discrete Fourier trans-

form (DFT) domain have been introduced to relieve the computational burden. For ex-

ample, adaptive DFT-domain algorithms in the so-called constrained and unconstrained

versions are presented in [21] and [67], respectively. In these methods, the time-domain

linear convolution (used for filtering) and linear correlation (used for adaptation) are effi-

ciently implemented in the frequency domain using the overlap-save algorithm. However,

the procedure of data gathering might introduce a long delay. This inherent delay, which

is a few hundreds of milliseconds long for typical room acoustic scenarios, is intolerable, as

it prevents a natural, full-duplex speech conversation. As a result, a trade-off between the

computational complexity and the inherent delay is achieved using the partitioned block

7



frequency-domain adaptive filter (PBFDAF) algorithm [98]. The PBFDAF splits the time-

domain filter into a sequence of non-overlapping partitions. The adaptive filtering is then

realized by applying frequency-domain processing to each partition.

2.2 Nonlinear Acoustic Echo Cancellation

A recent trend in consumer electronics is to utilize low-cost and small-sized analog com-

ponents (such as loudspeakers) for economic considerations. These components usually

exhibit nonlinear characteristics, but the hope is to rely on powerful signal processing al-

gorithms to mitigate distortions. The nonlinearities in the LEMS can be roughly divided

into two types: nonlinearity with and without memory. Nonlinearity with memory usually

occurs in high-quality audio equipment when the time constant of the loudspeaker’s electro-

mechanical system is large compared to the sampling rate [30]. Memoryless nonlinearity

typically occurs in the low-cost power amplifier (PA) or loudspeaker of mobile equipment,

where weight constraints call for low supply voltages [101]. With respect to memoryless

nonlinearity, the existing methods for nonlinear echo cancellation can be classified into two

categories: nonlinear acoustic echo canceller (NAEC)-based and nonlinear residual echo

suppressor (NRES)-based methods.

2.2.1 Nonlinear Acoustic Echo Canceller (NAEC)

The general setup of the nonlinear acoustic echo cancellation system is shown in Fig. 2. The

received far-end signal s(n) is broadcasted at the near-end loudspeaker, generating the echo

signal c(n). The microphone-received signal y(n) is composed of the echo signal c(n) and

a signal v(n), representing the background noise and any other signals, such as the near-

end speech in a double-talk situation. The goal of an AEC is to subtract the echo signal

c(n) from the microphone-received signal y(n). The nonlinear AEC uses a Hammerstein

system to model the LEMS. Thus, it consists of a memoryless nonlinear block u(·;θ) and a

linear block h(n) corresponding to the PA/loudspeaker nonlinearity and the room impulse

response, respectively. The goal is to find an LEMS-equivalent filter to produce ĉ(n) such

that the energy in the error signal e(n) is minimized. In the following, we introduce a

general framework to carry out the nonlinear system identification.
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Figure 2: General setup of nonlinear acoustic echo cancellation.

Denote the output of the nonlinear block u(·;θ) by

z(n) = u(s(n);θ(n)). (1)

Note that θ is the parameter of the nonlinear model. Suppose that the AEC filter h(n) has

length Lh; we define vectors as

s(n) = [s(n), s(n− 1), ..., s(n− Lh + 1)]T , (2)

z(n) = [z(n), z(n− 1), ..., z(n− Lh + 1)]T , and (3)

h(n) = [h(n), h(n− 1), ..., h(n− Lh + 1)]T . (4)

Thus, the estimated echo signal can be expressed as

ĉ(n) = hT (n)z(n) = hT (n)u(s(n);θ(n)). (5)

The estimated error is obtained as

e(n) = y(n)− ĉ(n) = y(n)− hT (n)u(s(n);θ(n)). (6)

9



The LMS-type adaptation for a transversal filter can be derived by forming the gradient

of e2(n) with respect to the transversal filter coefficients. Applying this procedure to the

cascaded system described by (6), we obtain the following derivatives:

∇h(n) = −2e(n)z(n), (7)

∇θ(n) = −2e(n)u′(s(n),θ(n))T h(n). (8)

If h(n) and θ(n) are updated with step sizes µh and µθ, respectively, the LMS-type adap-

tation algorithm results in

h(n + 1) = h(n) + µhz(n)e(n), (9)

θ(n + 1) = θ(n) + µθu
′(s(n),θ(n))T h(n)e(n). (10)

Based on this framework, a number of algorithms have been proposed in the literature

to solve the NAEC problem. Among these approaches, the selection of different nonlinear

models to represent the acoustic echo path is widely studied. In [71], a Wiener-Hammerstein

system is used to model the acoustic echo path, in which both the hard clipping and soft

clipping are suggested to describe the nonlinear characteristic. More general cascade filters

and bilinear filters are proposed to compensate for nonlinear echoes in [17]. In [52] and

[20], a Hammerstein system is employed to represent the LEMS. An orthogonal polynomial

adaptive filter is proposed to accelerate the convergence rate of the nonlinear adaptive

filter in [52]. In [20], a nonlinear transform is derived from the raised-cosine function

to lower the computational complexity of filter coefficient updates. On the other hand,

some studies focus on the mechanism of filter adaptation. For instance, an NLMS-type

adaptation algorithm is investigated in [102] that allows simultaneous identification of a

polynomial nonlinearity and a linear finite impulse response (FIR) system. In [100], an

RLS-type adaptation is derived to speed up the convergence of the polynomial. Moreover,

some methods propose more efficient AEC designs in terms of both nonlinear models and

filter adaptation schemes, for example, the Volterra model-based [38, 59] and neural network

structure-based [83] approaches.
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2.2.2 Nonlinear Residual Echo Suppressor (NRES)

As discussed in Section 2.2.1, realizing the AEC as a nonlinear adaptive filter can improve

the echo attenuation performance in the presence of nonlinear echo paths. Unfortunately,

the convergence rate of the nonlinear adaptive filter achieved by the existing approaches

is slow. One way to overcome this drawback is to apply the residual echo suppression

technique to further reduce the residual echo that remains after a purely linear AEC. This

post-filtering technique for removing the nonlinear residual echo has been studied in [45, 61].

The nonlinear acoustic echo cancellation using an NRES is shown in Fig. 3.

ˆ( )y n

AEC

LEMS

( )s n

( )e n( )r n
( ) ( )z n v n+

( )y n
NRES

( )d n

Figure 3: Nonlinear acoustic echo cancellation with an NRES.

Let s(n) denote the far-end signal and d(n) denote the microphone-received signal, which

consists of the near-end speech z(n), the background noise v(n), and the acoustic echo y(n).

The adaptive AEC tries to identify the LEMS and produce an estimate of the echo signal

denoted by ŷ(n). The estimated echo is then subtracted from the microphone-received

signal to produce the residual signal r(n):

r(n) = d(n)− ŷ(n) = z(n) + v(n) + y(n)− ŷ(n). (11)

If the acoustic echo path exhibits nonlinear characteristics, a linear AEC can not completely

remove the acoustic echo. We define the nonlinear residual echo p(n) as the difference
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between the true echo signal y(n) and its estimate ŷ(n):

p(n) = y(n)− ŷ(n). (12)

Similar to the post filter commonly used in the linear echo case, the NRES is a frequency-

dependent, real-valued gain filter C(f), realized by the frequency-domain processing on a

frame-by-frame basis [39]. Accordingly, for each frame, the NRES output e(n) and the

residual signal r(n) are related in the frequency domain as

E(m)(f) = C(m)(f)R(m)(f), (13)

where m is the frame index; E(m)(f) and R(m)(f) are the DFTs of the mth frame of e(n)

and r(n), respectively, at the discrete frequency f . The resulting E(m)(f) is transformed

back into the time domain by the inverse DFT (IDFT), and the output signal e(n) is then

synthesized with the overlap-save method. One way to design the gain function C(f) is

described next. For notational simplicity, we omit the frame index m when feasible from

this point on.

The optimal gain C(f) can be derived by minimizing the contribution of the nonlinear

residual echo R(f) to the output signal E(f) in the mean square error (MSE) sense. Based

on the results obtained from [61, 39], the optimal C(f) is

C(f) =
Sr(f)− Sp(f)

Sr(f)
, (14)

where Sr(f) and Sp(f) denote the power spectral density (PSD) functions of r(n) and

p(n), respectively. Here, we focus on the suppression of the nonlinear residual echo without

attenuating the background noise. If noise reduction is considered, the gain function in (14)

can be rewritten as

C(f) =
Sr(f)− Sp(f)− Sv(f)

Sr(f)
, (15)

where Sv(f) is the PSD of the background noise v(n). Since we assume v(n) to be a white

noise, (14) can be used in place of (15). In (14), Sr(f) can be estimated easily by recursively

smoothing
∣∣R(m)(f)

∣∣2 as in

Ŝ(m)
r (f) = λŜ(m−1)

r (f) + (1− λ)
∣∣∣R(m)(f)

∣∣∣
2
, (16)
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where 0 < λ < 1 is the forgetting factor. Therefore, calculating of the optimal gain C(f)

is reduced to estimating the PSD of p(n). In [61], based on the power filter model of the

acoustic echo path, an additional adaptive filter, referred to as the residual echo filter, is

used to estimate the nonlinear residual echo, following which Sp(f) is calculated.

2.2.3 Limitations

Although a number of methods have been proposed in the literature to combat the nonlinear

acoustic echo, there is still room to explore both NAEC- and NRES-based methods due to

the limitations of the existing methods.

For the category of NAEC-based methods, convergence and complexity are the two most

important issues. Volterra filter-based methods make use of the linear relationship between

the error signal and filter coefficients to guarantee convergence [38, 59], but an adaptive

Volterra filter requires high computational complexity [38]. Cascade structures have been

proposed to reduce the complexity of the Volterra-based method, but it is hard to assure the

convergence to the optimal solution or even guarantee a stable adaptation behavior because

of the non-quadratic surface of the objective function [101, 71, 17, 52, 20, 60]. For instance,

a smaller step size is used for an adaptive nonlinear filter in a Hammerstein system to

ensure convergence in [101]. It has also been recommended not to adapt the nonlinear filter

until the linear one has “sufficiently” converged. A strategy of adapting the coefficients of

a linear post filter before the nonlinear one in a Wiener-Hammerstein system is employed

as a remedy for the convergence issue in [71]. In [60], an adaptive orthogonalized power

filter is proposed to improve the convergence rate. The orthogonal basis is updated online

in each iteration, and the Gram Schmidt procedure is employed to find the orthogonalized

coefficients. As a result, computational complexity is increased. Therefore, it is challenging

to achieve satisfactory performance in terms of both convergence rate and complexity.

For the category of NRES-based methods, the post-processing scheme is first proposed

in the context of linear echoes to combine the acoustic echo control and noise reduction

[39, 70]. However, all these methods require a linear echo path and thus are not applicable

when nonlinear distortions are present. Recently, the post-processing technique has been
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applied to the nonlinear cases, but some design challenges still remain. The NRES approach

proposed in [45] requires a frequency-domain model of the nonlinear residual echo that must

be determined in advance. Since this model depends on the hardware components in the

echo path, it must be acquired for each hardware setup separately. Similar to the linear case

in [70], the NRES in [61] includes a residual echo filter to estimate the nonlinear residual

echo. However, the convergence rate and computational complexity of the NRES filter

depend on the length of the auxiliary filter. Usually, a desirable length of the auxiliary

filter is the length of the room impulse response. Thus, the insufficient knowledge of the

room impulse response degrades the residual echo suppression performance.

2.3 Control Logic for the Robust AEC Design

The main objective in an AEC design is to identify the unknown acoustic echo path and

hence to subtract an estimate of the acoustic echo from the microphone-received signal.

However, when the far-end and near-end talkers speak at the same time, the near-end

speech acts as an uncorrelated noise to the adaptive filter and causes the filter to diverge,

which results in an annoying audible echo to pass through to the far end. Robust echo

cancellation requires a control logic for filter adaptations to account for the interference in

the microphone-received signal. The general structure of an AEC with a controller is shown

in Fig. 4.

ˆ( )c n

Filter

path

Local speech

Echo

( )x n

( )e n( )y n( )s n

( )c n
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Adaptation

algorithm

Figure 4: General structure of an AEC with a controller.
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The far-end speech x(n) is the output at the near-end loudspeaker, causing the echo

signal c(n). The microphone-received signal y(n) is composed of the echo signal c(n) and

near-end speech s(n). The AEC employs an adaptive filter to model the acoustic echo

path and perform the echo cancellation. The controller adjusts the learning rate of the

AEC filter based on the interference (noise and/or near-end speech). The controller can be

designed in two different ways: (1) to detect the presence of the near-end speech using a

double-talk detector (DTD) and then lock the filter adaptation; (2) to adjust the learning

rate continuously without detecting double-talk occurrences.

2.3.1 Double-Talk Detection

Most echo controllers attempt to detect double-talk occurrences and then react by freezing

the adaptation of the adaptive filter. A DTD employs available signals or estimates to make

the decision of whether or not near-end speech s(n) is present. The DTD decision is then

utilized to design the control logic for the AEC filter. In general, double-talk detection is

handled in the following way:

1) A detection statistic ξ is formed using available signals, e.g., x, y, e, etc., and the

estimated filter coefficients.

2) The detection statistic ξ is compared to a preset threshold T and the double-talk is

declared if ξ > T .

3) Once a double-talk is declared, the filter adaptation is disabled.

4) If ξ ≤ T , the comparison of ξ to T and filter adaptation continue.

The Geigel algorithm [23] has been proven effective for line echo cancelers. However, it

does not provide reliable performance when applied to AECs. Cross-correlation-based DTD

techniques [110, 7] have been proposed, that appear to be suitable for AEC applications.

DTDs have also been developed for subband [51] and stereo [54] AEC applications.

Here, the cross-correlation methods in [110, 7] are briefly described as follows.
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2.3.1.1 Cross-Correlation Method

The cross-correlation vectors between x(n) and y(n) and between x(n) and e(n) are defined

as

cxy = [cxy,0, cxy,1, ..., cxy,Lh−1]
T , (17)

cxe = [cxe,0, cxe,1, ..., cxe,Lh−1]
T , (18)

where Lh is the length of the AEC filter and

cxy,i =
E[x(k − i)y(k)]√

E [x2(k − i)]E [y2(k)]
, (19)

cxe,i =
E[x(k − i)e(k)]√

E [x2(k − i)]E [e2(k)]
. (20)

The detection statistic ξ can be formed by taking the norm of the cross-correlation

vectors [110]. Any scalar metric, such as l1, l2, or l∞ norm, is feasible when determining

the norm. For example, the l∞-based decision statistic results in

ξxy =
[
max

i
|cxy,i|

]
, (21)

and

ξxe =
[
max

i
|cxe,i|

]
. (22)

Note that the threshold T is desired to be independent of x(n), y(n), and e(n). Thus, the

method in [7] applies a normalization technique in the sense that the detection statistic is

equal to one when the near-end signal is absent.

2.3.1.2 Normalized Cross-Correlation Method

The normalized cross-correlation vector is defined as

cxy =
(
σ2

yRx

)−1/2
rxy, (23)

where σ2
y is the variance of y(n), Rx is the autocorrelation matrix of x(n), and rxy is the

cross-correlation between x(n) and y(n). The corresponding detection statistic is obtained

by taking the l2 norm of the normalized cross-correlation vector:

ξxy = ‖cxy‖2. (24)
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It is shown in [7] that the decision statistic can be expressed as

ξxy =

√
hTRxxh√

hTRxxh + σs2

, (25)

where σ2
s denotes the near-end speech power. It is easily seen that ξxy = 1 when s(n) = 0

and ξxy < 1 when s(n) 6= 0.

It is known that the existing methods are based on the linear relationship between the

far-end signal x(n) and the microphone-received signal y(n):

y(n) = xT (n)h(n) + s(n). (26)

However, when nonlinearity is present in the acoustic echo path, e.g., the loudspeaker

exhibits nonlinear characteristics, x(n) and y(n) are no longer linearly related:

y(n) = g(x(n))T h(n) + s(n), (27)

where g(·) denotes the nonlinearity in the loudspeaker. Thus, the existing DTD algorithms

fail to perform well. To the best of our knowledge, a DTD has not been proposed in

conjunction with nonlinear AECs. Although [9] derives an optimum log-likelihood ratio

test (LRT), the Gaussian assumption no longer holds when nonlinearity is present.

2.3.1.3 Statistical Analysis

By viewing the DTD design as a binary detection problem, the DTD performance can be

evaluated using detection theory concepts that were developed for radar and communication

applications [16, 106]. Formulating a binary hypothesis test for a DTD as

• H0: double-talk is absent (ξ ≥ T ), and

• H1: double-talk is present (ξ < T ),

we review the general characteristics of a binary detection scheme:

1. Probability of False Alarm (PFA): The probability of declaring detection when near-

end speech is absent:

PFA = P [accepting H1|H0 is true] =
∫ T

−∞
f(ξ|H0)dξ. (28)
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2. Probability of Detection (PD): The probability of successful detection when near-end

speech is present:

PD = P [accepting H1|H1 is true] =
∫ T

−∞
f(ξ|H1)dξ. (29)

A “good” detection method should maximize PD while minimizing PFA. In general, higher

PD is achieved at the cost of higher PFA. To quantify the relationship between PD and PFA,

receiver operating characteristic (ROC) curves are widely used in radar and communication

applications. We use a similar approach to evaluate the performance of a DTD.

2.3.2 Learning-Rate Adjustment

In a normal telephone conversation, double-talk occurs approximately 20% of the time

[96]. In some AEC scenarios, the background noise is continuously present and the use of

a DTD becomes futile because the AEC filter may diverge considerably before a double-

talk period is detected. This may be the case, for example, in a noisy teleconferencing

application, in an automatic gain adjustment system equipped with an echo canceller, or in

an adaptive feedback cancellation (AFC) system [99, 80]. These applications have provided

the motivation to improve the robustness of the adaptive algorithm to compensate for

the detection lag as well as other DTD imperfections. A variable learning rate has been

used without the detection of double-talk occurrences. In [22, 47], a so-called maximum-

length correlation estimate replaces the stochastic gradient room impulse response (RIR)

estimate whenever a double-talk situation occurs. In [73] and [64], an adaptive cross-spectral

technique is employed instead of the standard adaptive algorithm, and it is shown to be

robust in double-talk situations. In [107, 108], double-talk robustness is established by

taking into account the characteristics of the near-end signal.

Even though many adaptive algorithms are theoretically applicable for AEC designs,

in the applications with limited precision and processing power, the least mean square

(LMS) algorithm [42] and its modifications (e.g., the normalized LMS, frequency-domain

LMS, and subband LMS [6]) are usually used. The performance of the LMS algorithm,

in terms of convergence rate, misadjustment, and stability, is governed by the step size.

With the stability condition, the selection of the step size reflects a trade-off between fast
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convergence rate and good tracking ability on the one hand and low misadjustment on the

other hand. To meet these conflicting requirements, the step size needs to be controlled.

Thus, a number of variable step size (VSS) NLMS algorithms have been proposed [3, 66,

95, 8, 75]. Although these algorithms can be applied in the context of AEC designs, they

consider only the background noise as the interference and are not specifically designed for

double-talk situations. Under the assumption of a stationary interference (noise and/or

near-end speech), the long-term statistic of filter misadjustment is used to determine step

size. In [105], a frequency-domain echo canceller with a variable learning rate is proposed.

The optimal learning rate is adjusted as a function of both the interference and the filter

misadjustment. This frequency-domain method is briefly described as follows.

The NLMS filter of length Lh is defined as

e(n) = y(n)− ĥ
T
(n)x(n), (30)

with the adaptation of filter coefficients

ĥ(n + 1) = ĥ(n) + µ
e(n)x(n)
‖x(n)‖2

. (31)

Considering the filter misadjustment δ(n) = ‖ĥ(n)−h‖2
2, and knowing y(n) = hT (n)x(n)+

v(n), where v(n) denotes the near-end interference, we obtain the expected misadjustment

under the assumption that x(n) and v(n) are white signals [105]:

E [δ(n + 1)|δ(n), x(n)] = δ(n)
[
1− 2µ

Lh
+

µ2

Lh
+

µ2σ2
v

δ(n)‖x(n)‖2

]
, (32)

where E[·] denotes the statistical expectation, and σ2
v denotes the variance of the signal

v(n). Because (32) is a convex function, the expected misadjustment can be minimized

with respect to the step size µ by solving ∂E[δ(n + 1)]/∂µ = 0. This leads to the optimal

learning rate

µopt(n) =
1

1 + σ2
v

δ(n)‖x(n)‖2/Lh

. (33)

When there is no near-end interference (σ2
v), it can be seen that (33) simplifies to µopt(n) = 1,

which is consistent with [46]. However, the white-noise assumption does not hold in acoustic

echo cancellation applications. It has been observed that the input signal across consecutive
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fast Fourier transform is less uncorrelated than the original time-domain signal. Thus, the

optimal step size in (33) is applied to adaptive filter algorithms that operate in the frequency

domain [105].
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CHAPTER III

NONLINEAR ACOUSTIC ECHO CANCELLATION BASED ON THE

COHERENCE FUNCTION

In this chapter, we present several methods to remove the nonlinear acoustic echo in echo

cancellation systems. We consider the memoryless nonlinearity, which comes from the

loudspeaker and/or PA. Since the LEMS in Fig. 1 consists of a nonlinear PA/loudspeaker

followed by a linear subsystem (the room impulse response), the LEMS can be well rep-

resented by the Hammerstein model [60, 17]. We adopt nonlinear basis expansion form

for nonlinearity modeling and focus on nonlinear acoustic echo cancellation. Specifically,

we investigate three different structures: predistortion linearization (Section 3.2), cascade

structure (Section 3.3), and post processing (Section 3.4). We apply the coherence function

into these structures and discuss the advantages of them. In addition, we consider the

issue of computational complexity (Section 3.5) and investigate the echo cancellation in the

presence of multiple nonlinearities (Section 3.6).

3.1 Coherence Function and Its Properties

Let y(n) and z(n) be real-valued discrete-time random processes, n = 0, 1, . . . , N−1. Define

the discrete-time Fourier transform (DTFT) of y(n) as

Y (f) =
N−1∑

n=0

y(n)e−j2πfn, (34)

where −0.5 ≤ f ≤ 0.5 is the normalized frequency. The cross-correlation function between

y(n) and z(n) at delay m is

Ryz(m) = E [y(n)z(n + m)] , (35)

where E[·] denotes the statistical expectation. The cross-spectral density function between

y(n) and z(n) is the DTFT of Ryz(m):

Syz(f) =
N−1∑

m=0

Ryz(m)e−j2πfm. (36)
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3.1.1 Magnitude Squared Coherence (MSC) Function

Define the (magnitude squared) coherence function (MSC) between y(n) and z(n) at fre-

quency f as [13]

Cyz(f) =
|Syz(f)|2

Syy(f)Szz(f)
, (37)

where Syy(f) is the power spectral density (PSD) function of y(n) at frequency f , and

similarly for Szz(f). The coherence function has been well studied and applied to many

interesting problems, such as system analysis [13, 53], signal-to-noise ratio measurement and

noise reduction [63, 24], and time delay estimation [14]. In [26, 72], the coherence function

has been used in the blind source separation problem.

It can be shown that [13] 0 ≤ Cyz(f) ≤ 1, ∀f , and that Cyz(f) = 1, ∀f , if and only

if y(n) = a(n) ∗ z(n) + b(n), where ∗ denotes the linear convolution. Here, a(n) and b(n)

are deterministic quantities; a(n) can be regarded as the impulse response of a linear time-

invariant (LTI) system linking y(n) to z(n), and b(n) can be considered as a modeling error

or other deterministic error. Thus, the coherence function can be viewed as a measure of

the linear relationship between two random processes.

3.1.2 Pseudo-MSC Function and Its Properties

Define the pseudo-MSC function between y(n) and z(n) at frequency f as [27]

C̃yz(f) =
|Syz(f)|2
Syy(f)σ2

z

, (38)

where σ2
z = E

[
z2(n)

]
is the power of z(n). It is clear that C̃yz(f) ≥ 0, ∀f . The major

difference between the pseudo-MSC function in (38) and the MSC function in (37) is in the

normalizer, where the power of the signal z(n) (σ2
z) is used instead of its PSD Szz(f).

The following properties hold for the pseudo-MSC function [90, 92].

Property I: 0 ≤ ∫ 0.5
−0.5 C̃yz(f)df ≤ 1;

∫ 0.5
−0.5 C̃yz(f)df = 1 if and only if y(n) and z(n) are

linearly related, i.e., y(n) = a(n) ∗ z(n) + b(n), where a(n) and b(n) are deterministic

processes.

Proof: Since Cyz(f) ≥ 0, ∀f , it is obvious that
∫ 0.5

−0.5
C̃yz(f)df ≥ 0. (39)

22



Denote by Y (f) and Z(f) the DTFTs of y(n) and z(n), respectively. The covariance

between Y (f) and Z(f) can be shown as

Cov[Y (f), Z(f)] = NSyz(f).

It follows easily that

Cov[Y (f), Y (f)] = NSyy(f), (40)

Cov[Z(f), Z(f)] = NSzz(f). (41)

Thus, the pseudo-MSC function between y(n) and z(n) can be rewritten as

C̃yz(f) =
|Syz(f)|2

Syy(f)Szz(f)
· Szz(f)

σ2
z

=
|Cov[Y (f), Z(f)]|2

Cov[Y (f), Y (f)]Cov[Z(f), Z(f)]
· Szz(f)

σ2
z

. (42)

Recalling the Cauchy-Schwartz inequality [90], we infer that

∫ 0.5

−0.5
C̃yz(f)df ≤

∫ 0.5

−0.5

Szz(f)
σ2

z

df = 1, (43)

with equality if and only if

|Cov[Y (f), Z(f)]|2 = Cov[Y (f), Y (f)]Cov[Z(f), Z(f)], (44)

i.e., when

Y (f) = A(f)Z(f) + B(f), (45)

where A(f) and B(f) are deterministic constants at frequency f . Transforming (45) into

the time domain, we obtain

y(n) = a(n) ∗ z(n) + b(n), (46)

where a(n) and b(n) are deterministic processes. a(n) can be regarded as the impulse

response of an LTI system linking z(n) to y(n), and b(n) can be considered as a modeling

error or other deterministic error.

Property II: The metric
∫ 0.5
−0.5 C̃yz(f)df provides a means for quantifying the linear associa-

tion between two stationary random processes. This is equivalent to using the normalized
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linear minimum mean square error (LMMSE) criterion to quantify the degree of the linear

association between two stationary random processes.

Proof: Consider two stationary random processes y(n) and z(n). To measure how closely

these two random processes are linearly related, y(n) is designated as the excitation of a

linear operator h(n) and z(n) is designated as the target response. The linear operator’s

output ẑ(n) is then specified by

ẑ(n) =
∑

τ

h(τ)y(n− τ)dτ. (47)

To quantify the performance of h(n), the modeling error is introduced as e(n) = z(n)− ẑ(n),

and the mean square error (MSE) E
[
e2(n)

]
is to be minimized. It is well known that the

LMMSE solution for (47) is

Ho(f) =
Szy(f)
Syy(f)

, (48)

where the subscript o denotes the optimal solution of h(n) in the LMMSE sense. The

degree of the linear association between the processes y(n) and z(n) is revealed through the

behavior of LMMSE by

E
[
e2
o(n)

]
=

∫ 0.5

−0.5

[
Szz(f)− Syy(f) |Ho(f)|2

]
df

= σ2
z

[
1−

∫ 0.5

−0.5
C̃yz(f)df

]
. (49)

To determine the level of linear association between y(n) and z(n), a more convenient scalar

measure is given by the normalized LMMSE:

ρyz =
E

[
e2
o(n)

]

E [z2(n)]
. (50)

Substitution of (49) into (50) yields

ρyz = 1−
∫ 0.5

−0.5
C̃yz(f)df. (51)

Therefore, a high degree of the linear association between y(n) and z(n) is revealed when
∫ 0.5
−0.5 C̃yz(f)df is close to one (or ρyz is close to zero). On the other hand, little linear

association is indicated when
∫ 0.5
−0.5 C̃yz(f)df is close to zero (or ρyz is close to one).
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3.2 NAEC with Predistortion Linearization

Considering the nonlinearity due to the PA and/or loudspeaker, we propose to linearize the

LEMS using a predistorter. Afterwards, we apply the linear AEC as usual (see Fig. 5).

Precompensation (in the electric domain) of the PA/loudspeaker nonlinearity is preferable

to postcompensation (in the acoustic domain), because the former is easier to implement

digitally. Many nonlinear system identification and compensation methods are available

in the literature [15, 40, 25, 33, 48, 35]. We propose the MSC function-based criterion

to compensate for the nonlinear distortions in a Hammerstein system. We show that the

advantage of the coherence function-based method as compared with existing methods is

that it is “blind” to the presence of an unknown linear block (e.g., the long room impulse

response between the loudspeaker and the microphone) [93, 94].

Local speech

LEMS

Echo

( )v n

( )c n

Predistorter

Linear

AEC

ˆ( )c n

( )y n

( )x n

( )e n

( )s n

( )d ⋅

( )g ⋅

Figure 5: Predistortion architecture for the nonlinear AEC.

3.2.1 Predistorter Design

Consider the Hammerstein system which consists of a memoryless nonlinear mapping d(·)
followed by an LTI block with the impulse response h(n). Denote by g(·) a memoryless

predistorter function block inserted just before the Hammerstein system to compensate for
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the nonlinearity in d(·). We seek a parametric approach for g(·) and denote its parameter

vector by φ. The block diagram for this method is shown in Fig. 6. In Fig. 6, s(n) is

the system input, x(n) is the output of the predistorter g(·), and y(n) is the output of the

Hammerstein system. Let g(·) be a linear combination of the basis functions bk(s):

g(s;φ) =
K∑

k=1

φkbk(s), φ = [φ1, φ2, ..., φK ]T , (52)

where T denotes transpose. Correspondingly,

x(n;φ) = g(s(n);φ), (53)

y(n;φ) = d(x(n;φ)) ∗ h(n). (54)

( )x n

( )h n

( )y n( )s n

)(⋅d

 Systemn Hammerstei

);( φφφφ⋅g

max ( )J φ

Figure 6: Finding the predistorter g(·;φ) using a MSC-based criterion.

We propose the following criterion to estimate the predistorter parameter vector φ [94]:

φ̂ = arg max
φ

J1(φ), (55)

where

J1(φ) =
∫ 0.5

0
Ĉsy(f ;φ)df, (56)

and Ĉsy(f ;φ) is the estimated MSC function between s(n) and y(n). The MSC function is

estimated according to (37), where the auto- and cross-spectral densities can be estimated

using the Welch method with the fast Fourier transform (FFT) [14]. Thus, the MSC

function is close to one only at the discrete set of frequencies used by the FFT. Finer

frequency resolution in the FFT can be achieved by zero-padding.
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Denote by s(i)(t) and y(i)(n) the ith block of the system input and output, where y(i)(n)

is generated according to y(i)(n) = d(g(s(i)(n);φ(i−1)))∗h(n) and the initial φ(0) is generated

such that x(0)(n) = s(0)(n). We adapt the φ(i) estimate to increase J1(φ(i)) from block to

block. At the convergence, J1(φ) is maximized at a point where the coherence function

Ĉsy(f ;φ) approaches one at all frequencies. This implies that the overall system between

s(n) and y(n) has been linearized.

A Wiener system consists of an LTI block followed by a memoryless nonlinear block,

thus the pre-inverse of a Hammerstein system is a Wiener system. The pre-inverse is defined

such that its concatenation with the original nonlinear system equals identity. Therefore,

the predistorter of a Hammersterin system can also be designed by identifying a Wiener

system. Most Wiener system identification methods such as [15, 40] solve for the system

parameters of both the linear and the nonlinear parts simultaneously. Compared with those

methods, our coherence function-based method uses only a nonlinear block to compensate

for the memoryless nonlinearity in the Hammerstein system, and works independently of

the subsequent LTI block. Therefore, the proposed method is robust even if the LTI system

parameters are unknown. This is a desirable quality for AEC applications since the echo

canceller filter can be as long as a few thousand taps. Also, in traditional nonlinear system

identification procedures, the computational complexity grows exponentially with the mem-

ory length. In contrast, the coherence function-based method is insensitive to the presence

of an LTI system, so the length of the LTI system impulse response has no effect on the

computational complexity of the nonlinearity identification stage. In the AEC application,

once the nonlinear part is compensated for, the residual LTI system can be compensated

by a linear AEC as usual.

3.2.2 Simulations

In the simulation examples shown, the source signal s(n) was generated according to an

i.i.d. Gaussian distribution. For the nonlinear acoustic echo path, loudspeaker nonlinearity

is modeled by d(s) = tanh(s) = (e2s − 1)/(e2s + 1), where tanh(·) denotes the hyperbolic

tangent function. For the LTI system, the IMAGE method [2] was used to generate a room
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impulse response of the length 1024 with the sampling rate 8 kHz. The nonlinearity in the

loudspeaker is known to be smooth or mild and can be effectively modeled by polynomials

[60]. Thus, it is appropriate to approximate the nonlinearity in the predistorter block g(·)
in Fig. 6 using the polynomial basis bk(s) = sk, k = 1, 2, ..., K. K is the highest order

of the polynomial basis, empirically selected to be 7. We are thus assuming a modeling

error, since neither d(·) nor its inverse is precisely a polynomial function. The simulations

were carried out in a noise-free environment. For implementation, we adopted a quasi-

Newton method with a mixed quadratic and cubic line search procedure and used as initial

estimate, φ(0) = [1, 0, . . . , 0]T . Figure 7 (a) shows two estimated coherence functions: Ĉsy(f)
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Figure 7: Predistortion: (a) Estimated coherence functions; (b) Linearization perfor-
mance.

between the system input and the system output with predistortion, and Ĉo
sy(f) between

the system input and the system output without predistortion. With the predistortion,

Ĉsy(f) approaches one at each normalized frequency f , indicating that s(n) and y(n) are

basically linearly related, and the nonlinearity in the system has been effectively removed.

Figure 7 (b) shows the linearization result using the predistorter. It can be seen that the

concatenated system consisting of the predistorter g(·) followed by the nonlinear block d(·)
has an approximate linear characteristic.
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3.3 NAEC with a Cascade Nonlinear Filter

As discussed in Section 3.2, predistrotion can effectively remove the nonlinear echo by

linearizing the acoustic echo path. However, the echo cancellation is carried out in two stages

and the nonlinearity can not be adaptively linearized. From the perspective of practical

applications, an adaptive method is desirable in echo cancellation systems since the LEMS is

usually time-varying. Rather than performing the linearization in the predistortion method,

we adopt the cascade NAEC structure (see Fig. 2) and propose to adaptively compensate

for the loudspeaker nonlinearity. Since the nonlinear AEC uses a cascade nonlinear filter

to model the nonlinear LEMS, it consists of a memoryless nonlinear block u(·;θ) and a

linear block h(n) corresponding to the PA/loudspeaker nonlinearity d(·) and the room

impulse response, respectively. In this section, we first introduce a pseudo-MSC function-

based method to identify the nonlinearity in the acoustic echo path. Then, an on-line

implementation of the NAEC design is presented.

3.3.1 Nonlinearity Identification Using the Pseudo-MSC Function

Let us model u(·;θ) as a linear combination of nonlinear basis functions bk(s) with corre-

sponding coefficients θk:

u(s;θ) =
K∑

k=1

θkbk(s), θ = [θ1, θ2, ..., θK ]T . (57)

Given the system shown in Fig. 2, if the function u(·;θ) is a perfect match to the true

nonlinearity d(·), then the processes y(n) and z(n) are perfectly linearly related. Thus, the

vector θ in the nonlinear block u(·;θ) can be found as follows [92, 90]:

θ̂ = arg max
θ

J(θ), (58)

where

J(θ) =
∫ 0.5

−0.5
C̃yz(f ;θ)df. (59)

The motivation for us to adopt this pseudo-MSC function is twofold: (i) the pseudo-MSC

function facilitates the closed-form solution for the nonlinear identification; and (ii) the

pseudo-MSC function-based method provides the LMMSE performance.
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Define

b(n) = [b1(s(n)), b2(s(n)), ..., bK(s(n))]T . (60)

For instance, if the basis functions are polynomials, we have b(n) =
[
s(n), s2(n), ..., sK(n)

]T .

The output signal of the nonlinear block can be expressed as (see Fig. 2)

z(n;θ) = u (s(n);θ) = θT b(n). (61)

From (61), we infer that

σ2
z = θT E

[
b(n)bT (n)

]
θ, (62)

Syz(f ;θ) = θT syb(f), (63)

where syb(f) is a vector with the kth element being the cross-spectral density function

between y(n) and bk(s(n)), 1 ≤ k ≤ K. Substituting (62) and (63) into (38), we can rewrite

the objective function in (59) as

J(θ) =
θTR1θ

θTR2θ
, (64)

where

R1 =
∫ 0.5

−0.5
S−1

yy (f)syb(f)sH
yb(f)df, (65)

R2 = E
[
b(n)bT (n)

]
, (66)

and H denotes the Hermitian transpose. The ratio in (64) is known as the generalized

Rayleigh quotient whose solution θ̂ satisfies

R1θ̂ = λmaxR2θ̂, (67)

where λmax is the largest generalized eigenvalue for the pair (R1, R2).

We have shown that the identification of the nonlinear block u(·;θ) can be carried

out independently from the linear part h(n). This approach sets itself apart from other

conventional methods, whereby the estimations of u(·;θ) and h(n) are coupled using the

MMSE criterion.

31



3.3.2 Adaptive NAEC Using the Pseudo-MSC Function

In this part, we introduce an on-line implementation of the pseudo-MSC function-based

nonlinearity identification method. Consider the objective function in (64). From the

Rayleigh-Ritz theorem [32], all the generalized eigenvectors of matrices R1 and R2 are the

stationary points of J(θ) and the generalized eigenvalues are the values of J(θ) evaluated

at the corresponding stationary points. This is because when the first-order derivative of

J(θ) is set to zero,

∂J(θ)
∂θ

=
θTR2θ(2R1θ)− θTR1θ(2R2θ)(

θTR2θ
)2 = 0, (68)

we obtain

R1θ =
θTR1θ

θTR2θ
R2θ = J(θ)R2θ. (69)

Therefore, the following updating equation can be used to compute the principal generalized

eigenvector [77]

θ(n) =
θT (n− 1)R2(n)θ(n− 1)
θT (n− 1)R1(n)θ(n− 1)

R−1
2 (n)R1(n)θ(n− 1). (70)

In the following, we present an on-line algorithm to find R1(n) and R2(n). Define the mth

segment of signals y(n) and bk(n) (k = 1, 2, ..., K) as

y(m)(l) = y(mP + l), 0 ≤ l ≤ L− 1,

b
(m)
k (l) = bk(mP + l), 0 ≤ l ≤ L− 1, k = 1, 2, ..., K,

where m and L are the index and the length of the data segment, respectively; P is the

window sliding step size. The discrete time index n is related to the segment index m by

m = bn/P c, where b·c rounds a number towards minus infinity. For the mth segment vector,

define

y(m) =
[
y(m)(0), ..., y(m)(L− 1)

]T
,

b
(m)
k =

[
b
(m)
k (0), ..., b(m)

k (L− 1)
]T

, k = 1, 2, ..., K.
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To obtain an unbiased estimate of the auto- and cross-spectral densities, we use the following

recursive estimators:

s
(m)
yb (fi) = ρs

(m−1)
yb (fi) + (1− ρ)Y (m)(fi)

[
B(m)(fi)

]∗
,

S(m)
yy (fi) = ρS(m−1)

yy (fi) + (1− ρ)
∣∣∣Y (m)(fi)

∣∣∣
2
,

where ∗ denotes conjugation; ρ is a forgetting factor with constraint 0 < ρ < 1; Y (m)(fi)

is the discrete Fourier transform (DFT) of y(m) at the ith frequency bin, and B(m)(fi) is a

K × 1 vector with the kth entry being the DFT of b
(m)
k at the ith frequency bin. When the

segment length L is short, we zero-pad each segment to length Q ≥ L to ensure sufficient

resolution of the frequency axis. Therefore, we estimate R1 in (65) as follows:

R1(n) =
N∑

i=1

s
(m)
yb (fi)

[
s

(m)
yb (fi)

]H /
S(m)

yy (fi) . (71)

From (66), we form the following estimate of R2 at time n

R2(n) = ρR2(n− 1) + (1− ρ)b(n)bT (n). (72)

According to the Sherman-Morrison-Woodbury matrix inversion lemma [32, p. 50], R−1
2 (n)

can be estimated recursively via

R−1
2 (n) =

1
ρ
R−1

2 (n− 1)− 1− ρ

ρ

R−1
2 (n− 1)b(n)bT (n)R−1

2 (n− 1)
ρ + (1− ρ)bT (n)R−1

2 (n− 1)b(n)
. (73)

Based on (61), we express the nth output of the nonlinear filter as z(n) = θT (n−1)b(n).

Denote

α(n) = θT (n− 1)R2(n)θ(n− 1). (74)

Using (72), the recursive estimator of α(n) can be obtained as

α(n) = ρθT (n− 1)R2(n− 1)θ(n− 1) + (1− ρ)θT (n− 1)b(n)b(n)T θ(n− 1)

≈ ρα(n− 1) + (1− ρ)z2(n), (75)

where we assume that the consecutive values of θ are approximately the same. Thus, we

reduce the computational complexity by avoiding matrix multiplications. Substitution of

(74) into (70) yields

θ(n) = α(n)
R−1

2 (n)R1(n)θ(n− 1)
θT (n− 1)R1(n)θ(n− 1)

. (76)
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Table 1: On-line algorithm of NAEC based on the pseudo-MSC function.

Initialize
θ(−1) ∈ <K×1 random vector
R−1

2 (−1) ∈ <K×K large random matrix
α(−1) ∈ < = 0
v(−1) ∈ <N×1 = 0

s
(−1)
k ∈ CN×1 = 0, k = 1, 2, ..., K

Update
for n = 0, 1, ..., N

z(n) = θT (n− 1)b(n)
α(n) = ρα(n− 1) + (1− ρ)z2(n)
R−1

2 (n) = 1
ρR

−1
2 (n− 1)

− 1−ρ
ρ

R−1
2 (n−1)b(n)bT

(n)R−1
2 (n−1)

ρ+(1−ρ)bT
(n)R−1

2 (n−1)b(n)

m = bn/P c
Y (m) = FFT

{
y(m)

}

B
(m)
k = FFT

{
b

(m)
k

}
, k = 1, 2, .., K

v(m) = ρv(m−1) + (1− ρ)
∣∣∣Y (m)

∣∣∣
2

s
(m)
k = ρs

(m−1)
k + (1− ρ)Y (m) ⊗

[
B

(m)
k

]∗
, k = 1, 2, ..., K

u
(m)
i =

[
s
(m)
1 (i), s(m)

2 (i), ..., s(m)
K (i)

]T
, i = 1, 2, ..., Q

R1(n) =
∑i=Q

i=1 u
(m)
i

[
u

(m)
i

]H /
v(m)(i)

Q(n) = R1(n)θ(n− 1)
β(n) = θT (n− 1)Q(n)
θ(n) = α(n)

β(n)R
−1(n)Q(n)

e(n) = y(n)− h(n)T z(n)
h(n + 1) = h(n) + µ z(n)

‖z(n)‖22
e(n)

end for n

The updating equations (71), (73), and (75) for R1(n), R−1
2 (n), and α(n), respectively, give

rise to an on-line algorithm for implementing (76).

In acoustic echo cancellation applications, the update of the linear part can be imple-

mented by the NLMS algorithm. Table 1 summarizes our adaptive NAEC algorithm based

on the pseudo-MSC function, where ⊗ denotes the element-wise product between two vec-

tors. The advantage of the proposed method is that it identifies the nonlinearity without

knowing the linear block in the Hammerstein system, which guarantees the stability of

cascade nonlinear filter and leads to a faster convergence rate.
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3.3.3 Simulations

In this section, the performance of the proposed methods is assessed via computer simula-

tions. In the following simulation examples, the far-end signal s(n) was generated according

to an i.i.d. Gaussian distribution or real speech signal. For the acoustic echo path, both

the loudspeaker nonlinearity and room impulse response were generated in the same way as

in Section 3.2.2. The nonlinear block u(·;θ) in AEC used polynomial basis functions with

the highest order K selected to be 7. The block size used in the Welch method is L = 256,

and the window sliding step size is P = 192.

3.3.3.1 Identification Performance

To quantitatively evaluate the system identification performance, misadjustment is taken

as a figure of merit. For the nonlinear part misadjustment, we use the normalized mean

squared error (NMSE) defined as

NMSE (dB) = 10 log10

∑M
m=1 |d(s(m))− u(s(m))|2∑M

m=1 |d(s(m))|2
, (77)

where the number of samples was M = 65, 536. For the linear part misadjustment, we

adopt the distance measure as

Dh(dB) = 10 log10

‖h− ĥ‖2
2

‖h‖2
2

, (78)

where ‖ · ‖2 denotes the L2 norm. With the proposed method, the NMSE and Dh were

-48.5 dB and -43.1 dB, respectively, indicating that both the nonlinear and linear parts

converged to the true values. Thus, the simulation results validated the theoretical anal-

ysis. The nonlinear coefficients update in (70) is analogous to the RLS update rule that

tracks the Wiener solution and the convergence is proved using the ordinary differential

equation (ODE) in [77]. As long as the convergence of the nonlinear part is guaranteed,

the convergence of the linear part is reduced to the convergence of the traditional NLMS

algorithm, which has been well documented in the adaptive filtering theory literature [42].

3.3.3.2 Stability and Convergence

This part presents the echo cancellation performance with stationary and real speech input,

respectively. Echo return loss enhancement (ERLE) is used as a figure of merit for the
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performance of AECs:

ERLE (dB) = 10 log10

E
[
y2(n)

]

E [e2(n)]
, (79)

where y(n) and e(n) represent the microphone-received signal and the residual echo signal,

respectively.

Define the signal-to-noise ratio (SNR) as the ratio of the echo signal level to the back-

ground noise level:

SNR (dB) = 10 log10

E
[
c2(n)

]

E [v2(n)]
. (80)

The signal y(n) is generated for a single-talk situation with the additive white Gaussian

noise (AWGN) such that an SNR of 35 dB is achieved. For comparison purposes, we also

implement the RLS-like algorithm [101]. In [101], the auto-covariance matrix needs to

be reinitialized every δ samples to avoid instability. Figure 8 (a) shows the ERLEs of the

proposed method and the RLS-like method (for different δ) with a Gaussian signal as input.

We notice that the increase of δ leads to the faster convergence, while unlimitedly increasing

δ causes the algorithm divergence. Comparatively, our proposed method further improves

the convergence rate and guarantees the stability. This is mainly because the proposed

method decouples the nonlinear identification from the estimation of the linear part.

Although our analysis is based on the stationary input, we expect the proposed method

also works for real speech signals, because we investigate not only static status as ERLE,

but also dynamic properties as convergence rate. With an SNR of 30 dB, the ERLEs with

speech signal input are depicted in Fig. 8 (b), which also demonstrates the effectiveness of

the proposed method.
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Figure 8: ERLE in a cascade architecture: (a) white Gaussian input; (b) real speech input.
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3.3.4 ITU-T G.167 Test

The AEC performance criteria and their related measurement methods are defined by the

International Telecommunications Union (ITU)-T Recommendation G. 167 [78]. The Rec-

ommendation specifies the performance characteristics and values with which AECs should

comply to. The diagram for the AEC performance evaluation is shown in Fig. 9. The AEC

performance criteria are referred to four interfaces [78]:

(1) User receive interface (Rout): The place(s) where acoustic attributes relating to the

characteristics of speech listened to by the local user(s) are measured.

(2) User send interface (Sin): The place(s) where acoustic attributes relating to the char-

acteristics of speech produced by the local user(s) are measured.

(3) Network receive interface (Rin): A point where the electrical signals received from the

network are available.

(4) Network send interface (Sout): A point where the electrical signals sent to the network

are available.
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Figure 9: ITU-T G. 167 test of an AEC.

In this test, we consider two types of criteria: the coupling loss and the time adaptivity.

(I) Coupling Loss

The AEC coupling loss parameters include (see Fig. 9):
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• Terminal Coupling Loss (TCL or TCLw), defined as

TCL (dB) = 10 log10

E[s2(n)]
E[e2(n)]

. (81)

• Receive Loss (RL), defined as

RL (dB) = 10 log10

E[s2(n)]
E[x2(n)]

. (82)

• Coupling Loss (CL), defined as

CL (dB) = 10 log10

E[x2(n)]
E[y2(n)]

. (83)

• Echo Return Loss Enhancement (ERLE), defined as

ERLE (dB) = 10 log10

E[y2(n)]
E[e2(n)]

. (84)

(II) Time Adaptivity

The time adaptivity parameters represent the AEC ability to converge during the initial

time, after double-talk situations and echo path variations in a noiseless environment. The

AEC time adaptivity parameters include

• Initial convergence time (Tic)

• Recovery time after double-talk (Trdt)

• Recovery time after path variation (Trpv)

According to the Recommendation G. 167 test procedure, we evaluate the terminal

coupling loss during the single-talk (TCLwst), double-talk mode (TCLwdt), and echo path

variation (TCLwpv). In addition, we measure the time adaptability parameters (Tic, Trdt,

Trpv). The test procedure is briefly described in Appendix B. The Recommendation

requirements and test results are summarized in Table 2. It can be seen that the proposed

NAEC meets all the test requirements. And for every test, it leaves margin for the design

of additional components in the system.
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Table 2: ITU-T G. 167 test results.

Quantity Description Result (dB) Requirement
TCLwst Echo loss in single talk 63.3 > 45 dB
TCLwdt Echo loss in double talk 32.7 > 25 dB
TCLwpv Echo loss during echo path variation 35.7 > 20 dB
Tic Initial convergence time 30.2 1 sec, 20 dB
Trdt Recovery time after double talk 28.2 1 sec, 20 dB
Trpv Recovery time after echo path variation 42.3 1 sec, 20 dB

3.4 NRES Using the MSC Function

As discussed in Section 2.2.2, in lieu of the NAEC, the NRES technique can be applied to

remove the nonlinear acoustic echo. Moreover, it is shown that the optimal gain C(f) of the

NRES can be reduced to the estimation of the PSD of the nonlinear residual echo p(n). In

this section, we propose to estimate the PSD of p(n) using the multiple coherence function

[86]. Compared to the method in [61], the estimation of the PSD of the nonlinear residual

echo bypasses the estimation of the additional filter coefficients. Therefore, our proposed

method improves the convergence rate and is robust to the length of the acoustic echo path.

3.4.1 Residual Echo Power Estimation

Suppose that the LEMS in Fig. 3 consists of a (memoryless) nonlinear amplifier and/or

loudspeaker followed by a linear subsystem (the room impulse response). We model the

nonlinearity f(·) in the amplifier/loudspeaker block as a linear combination of basis func-

tions bk(·) with corresponding coefficients αk:

d(s;α) =
K∑

k=1

αkbk(s), (85)

where bk(s) = sk and K is the order of nonlinearity. If the room impulse response is modeled

by an FIR filter h(n) with length Lh, the nonlinear acoustic echo can be expressed as

y(n) =
Lh−1∑

l=0

h(l)
K∑

k=1

αkbk(s(n− l)). (86)
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Assuming that the AEC uses an FIR filter ĥ(n) (an estimate of h(n)) with length L′h, we

obtain the estimated echo as

ŷ(n) =
L′h−1∑

l=0

ĥ(l)s(n− l). (87)

Usually we choose L′h < Lh, since we can decrease the computational complexity by sacrific-

ing some echo cancellation performance when the reverberation time of the room response

is too long. Combining (86), (87), and (12), we obtain the nonlinear residual echo:

p(n) =
Lh−1∑

l=0

h(l)
K∑

k=1

αkbk(s(n− l))−
L′h−1∑

l=0

ĥ(l)s(n− l)

=
K∑

k=1

gk(n) ∗ xk(n), (88)

where

gk(n) =





αkh(n)− ĥ(n), k = 1

αkh(n), k = 2, ..., K
(89)

and xk(n) = bk(s(n)). Therefore, the nonlinear residual echo p(n) can be treated as the

output signal of a multiple-input single-output (MISO) system with the input signals being

xk(n) (k = 1, ..., K). Due to the presence of nonlinearity, there is much energy in the

residual echo. Thus, we employ a postfilter to further suppress the echo.

The Fourier transform of (88) yields

P (f) =
K∑

k=1

Gk(f)Xk(f), (90)

where Gk(f) and Xk(f) are the Fourier transforms of gk(n) and xk(n), respectively. Define

vectors

G(f) = [G1(f), G2(f), ..., GK(f)]T , (91)

X(f) = [X1(f), X2(f), ..., XK(f)]T . (92)

Using (90), the PSD of p(n) can be expressed as

Sp(f) = E
[|P (f)|2] = GH(f)Sxx(f)G(f), (93)
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where

Sxx(f) = E
[
X∗(f)XT (f)

]
=




S11(f) · · · S1K(f)

S21(f) · · · S2K(f)
...

...

S21(f) · · · SKK(f)




(94)

is the autocorrelation matrix of X(f), with its ijth element being the cross-spectral density

function between xi(n) and xj(n). Furthermore, the linear MMSE solution for Gk(f) of

(90) can be calculated as

sxp(f) = Sxx G(f), (95)

where

sxp(f) = E [X∗(f)P (f)] = [S1p(f), ..., SKp(f)]T (96)

is the cross-correlation vector between X(f) and P (f), with its ith element being the cross-

spectral density function between xi(n) and p(n). Combining (93) and (95), we obtaine the

PSD of the nonlinear residual echo as

Sp(f) = sH
xp(f)S−1

xx (f)sxp(f). (97)

Note that the nonlinear residual echo p(n) is not accessible, since it is hidden in the micro-

phone signal r(n). Assume that the near-end speech, the background noise, and the far-end

speech are mutually independent of each other. Thus, sxp(f) = sxr(f), and correspondingly

(97) can be rewritten as

Sp(f) = sH
xr(f)S−1

xx (f)sxr(f). (98)

Since the signals xi(n) and r(n) are known, the recursive estimate of the ith entry in sH
xr(f)

and the ijth entry in Sxx can be given, respectively, as

[
ŝ(m)

xr (f)
]
i
= λ

[
ŝ(m−1)

xr (f)
]
i
+ (1− λ)[X(m)

i (f)]∗R(f), (99)
[
Ŝ(m)

xx (f)
]
ij

= λ
[
Ŝ(m−1)

xx (f)
]
ij

+ (1− λ)[X(m)
i (f)]∗X(m)

j (f). (100)

To avoid high computational complexity associated with the matrix inversion, S−1
xx (f) can

be calculated recursively according to the Sherman-Morrison-Woodbury matrix inversion

42



lemma [44]:

(S(m)
xx (f))−1 =

1
λ

(S(m−1)
xx (f))−1 −

(
1− 1

λ

)

· (S(m−1)
xx (f))−1(X(m)(f))∗(X(m)(f))T (S(m−1)

xx (f))−1

(X(m)(f))T (S(m−1)
xx (f))−1(X(m)(f))∗

. (101)

Therefore, the PSD estimate of the nonlinear residual echo Ŝp(f) can be obtained by sub-

stituting (99), (100), and (101) into (98). Correspondingly, the nonlinear gain C(f) can be

found using (14).

Remark: We recognize that (98) can be rewritten as

Sp(f) =
sH

xr(f)S−1
xx (f)sxr(f)
Sr(f)

· Sr(f) = Γx1...xK ,r(f) · Sr(f), (102)

where Γx1...xK ,r(f) is the so-called multiple coherence function [74]. It can be shown that 0 ≤
Γx1...xK ,r(f) ≤ 1, ∀f ; and the multiple cohere function Γx1...xK ,r(f) indicates the fraction of

the power in the signal r(n) that is attributed to the linear combination of x1(n), ..., xK(n).

Therefore, (102) extracts the power of the signal that is related to x1(n), ..., xK(n) from the

signal r(n). This is exactly the PSD of the nonlinear residual echo signal.

3.4.2 Simulations

The performance of the proposed method is assessed via computer simulations. The nonlin-

earity of the power amplifier/loudspeaker is modeled by a third-order polynomial function:

d(s) = −0.0325s3 − 0.0003s2 + 0.4824s. (103)

The room impulse response was generated according to

h(n) =





β(n)e−αn, 4 ≤ n ≤ Lh

0, otherwise
(104)

where β(n) was i.i.d. standard Gaussian distributed; Lh = 512 and α = 0.004. A white noise

v(n) was added and the resulting SNR was 30 dB. Here, the linear AEC is implemented using

the frequency-domain NLMS algorithm [41], since the subsequent NRES is also performed

in the frequency domain.
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Figure 10: Performance of the linear AEC with/without the NRES with a white Gaussian
noise as the input signal.

In the first experiment, we used a white Gaussian noise for the far-end signal. For

comparison purposes, we also implemented the method of [61]. The ERLEs obtained for

different approaches are shown in Fig. 10. We can see that both the nonlinear approaches

remarkably improved the echo attenuation performance compared to the purely linear AEC.

The proposed method outperforms the method of [61] in terms of the convergence rate. This

is because the proposed method estimates Sp(f) directly, whereas the estimate of Sp(f) in

[61] depends on the convergence of another filter with length La. The major advantages of

the proposed method are that it bypasses the estimation of the additional filter coefficients
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and requires no knowledge of the room impulse response length Lh. This can also be seen

from Fig. 10, where the method in [61] uses La = 350 (< Lh) for the additional adaptive

filter to estimate Sp(f). It is seen that inadequate filter length gives rise to a large bias

in the estimate of Sp(f), and correspondingly the performance of the algorithm in [61] is

degraded, whereas the proposed method is not affected.

Next, we evaluated the performance of the proposed method using speech data as the

input signal. In Fig. 11, we show the ERLEs obtained with the proposed NRES and with

a linear RES (LRES) in [39]. We notice that the nonlinear approach provides a consistent

increase in echo attenuation throughout the data frame.
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Figure 11: Performance of the AEC with LRES and NRES using speech as the input
signal.

In the last experiment, we evaluated the performance of the proposed method in the

double-talk situation. The far-end speech s(n) is shown in Fig. 12(a). The near-end speech

z(n) is depicted in Fig. 12(b). In Fig. 12(c), the NRES output signal e(n) is shown. It

can be seen that the near-end speech is hardly distorted, while the echo signal has been

sufficiently suppressed.
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Figure 12: Different signals for nonlinear acoustic echo cancellation: (1) far-end speech
s(n), (2) near-end speech z(n), (3) NRES output e(n).

3.5 Cascade NAEC with a Shortening Filter

In this section, we design an efficient AEC that exhibits fast convergence rate and low

complexity by using a shortening filter. Figure 13 shows the architecture of our proposed

nonlinear AEC. We introduce an FIR filter w(n) after the acoustic echo path (see Fig.

13) [91]. Let the LEMS consist of a (memoryless) nonlinear PA/loudspeaker followed by a

linear subsystem (the room impulse response); it can be well represented by a Hammerstein

model. The linear room impulse response followed by an FIR filter w(n) is still a linear

system. The purpose of introducing w(n) is to make the “effective” channel, which is the

convolution of the room impulse response and w(n), have a smaller number of dominant
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taps. Although in theory, the convolution of two sequences yields a longer sequence, when

designed carefully, a more compact sequence can result [1]. The shortening filter design has

also been proposed in other applications. For example, a shortening filter has been used to

shorten the long impulse response of twisted-pair telephone lines, and it is more commonly

referred to as a channel shortening equalizer (CSE) [69].
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Figure 13: Nonlinear AEC structure with a shortening filter.

Suppose that the shortening filter w(n) and the AEC filter h(n) have lengths Lw and

Lh, respectively. Define vectors

w(n) = [w0(n), w1(n), ..., wLw−1(n)]T , (105)

y(n) = [y(n), y(n− 1), ..., y(n− Lw + 1)]T . (106)

The reference signal d(n) can be expressed as

d(n) = wT (n)y(n). (107)

For the AEC branch, we use the nonlinear basis expansion to model the nonlinear function
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u(·;θ) as in (57). Define vectors

b(n) = [b1(s(n)), b2(s(n)), ..., bK(s(n))]T , (108)

h(n) = [h0(n), ..., hLh−1(n)]T , (109)

x(n) = [x(n), ..., x(n− Lh + 1)]T , (110)

and a matrix

S(n) = [b(n), b(n− 1), ..., b(n− Lh + 1)] . (111)

The output of the AEC branch is

z(n) = hT (n)x(n) = θT (n)S(n)h(n). (112)

Our goal is to design w(n), u(·;θ) and h(n) such that d(n) and z(n) approximately

cancel each other in a single-talk scenario (i.e., the near-end speech is not present). The

purpose of the shortening filter w(n) is to reduce the required number of taps in h(n) and

thus reduce the complexity and improve the convergence rate of the AEC.

From Fig. 13, the error signal e(n) can be written as [cf. (107) and (112)]

e(n) = d(n)− z(n) = wT (n)y(n)− θT (n)S(n)h(n). (113)

Then, the MSE can be expressed as

J(θ,h,w) = E
[
e2(n)

]
= E

[(
wT (n)y(n)− θT (n)S(n)h(n)

)2
]
. (114)

We propose the following criterion to solve the unknown parameters [91]:

[θ̂, ĥ, ŵ] = arg min
θ,h,w

J(θ,h,w), subject to ‖θ‖2 = 1, ‖h‖2 = 1, (115)

where the constraints are added to avoid trivial solutions and ‖ · ‖2 denotes the l2 norm.

3.5.1 Filter Coefficients Update

3.5.1.1 Adaptive Algorithm to Update the Linear Filters

Since the error signal in (113) is a linear function of h(n) and w(n), the update equations

can be derived using the LMS algorithm [42] by finding the partial derivatives of e2(n). For
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the AEC filter h(n), we obtain

h(n + 1) = h(n) + µhe(n)∇h

{
θT (n)S(n)h(n)

}

= h(n) + µhe(n)ST (n)θ(n), (116)

where ∇h denotes the partial derivative over h and µh is the step size. Similarly, the update

equation for the shortening filter w(n) is [cf. (114)]

w(n + 1) = w(n)− µwe(n)y(n), (117)

where µw is the step size. Note that the idea of the shortening filter is similar to the one in

[1]. The update equations (116) and (117) do not ensure stability unless a strong condition

is imposed on the step sizes µh and µw. The optimum step size for the LMS algorithm that

guarantees stability and fast convergence leads to the so-called NLMS algorithm [42]:

h(n + 1) = h(n)+
µh

‖ST(n)θ(n)‖2
2

e(n)ST(n)θ(n), (118)

w(n + 1) = w(n)− µw

‖y(n)‖2
2

e(n)y(n). (119)

3.5.1.2 Adaptive Algorithm to Update the Nonlinear Filter

We introduce three schemes to update the nonlinear filter coefficients [84].

(1) NLMS Adaptation. Following a similar procedure as that developed for the coefficients

of the linear filters, the update equation for the nonlinear coefficients θ(n) can be derived

as

θ(n + 1)=θ(n)+
µθ

‖S(n)h(n)‖2
2+δ

e(n)S(n)h(n), (120)

where the regulation term δ is a small positive constant to avoid divergence at the initial

stage when h(0) = 0.

(2) RLS Adaptation. The adaptation of the nonlinear coefficients θ(n) can also be per-

formed by the RLS algorithm [101].

(3) Coherence Adaptation. An alternative method to update the nonlinear coefficients is

based on the pseudo-MSC function, see [92] for details.
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So far, we have introduced the adaptive schemes for both the linear and nonlinear parts.

The entire step-by-step algorithm is summarized in Table 3.

Table 3: Adaptive algorithm for the nonlinear AEC with a CSE.

Update θ(n + 1) by nonlinearity identification algorithms

e = d(n)− θT (n + 1)u(n)

h(n + 1) = h(n) + µh

‖ST (n)w(n))‖22
e(n)ST (n)w(n)

h(n + 1) = h(n+1)

‖h(n+1)‖2
w(n + 1) = w(n)− µw

‖y(n)‖22
e(n)y(n)

3.5.2 Performance Analysis

Residual Echo Power

In this section, we analyze the residual echo power, which is an important figure of merit

to measure the performance of AECs [84]. To separate the effect of the linear and nonlinear

filters, we assume that there is no model mismatch of the loudspeaker nonlinearity, i.e., the

nonlinearity in the loudspeaker can be modeled using u(·;θ) with the perfect knowledge

of θ. A block diagram for this analysis is given in Fig. 14. The LEMS consists of the

loudspeaker nonlinearity u(·;θ) and room impulse response hr(n). In the following, for any

quantity ξ, ξ̂ stands for its corresponding estimate.

Consider the background noise at the microphone, i.e., y(n) is the corrupted version of

c(n) by the noise v(n). Suppose the original room impulse response hr(n) has length Lo.

Define vectors

x̃(n)=[x(n), x(n−1), ..., x(n−Lw−Lo+2)]T , (121)

v(n)=[v(n), v(n−1), ..., v(n−Lw+1)]T , (122)
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Figure 14: System structure for the performance analysis.

and a matrix

H=




hr(0) · · · hr(Lo−1) 0 · · · 0

0 hr(0) · · · hr(Lo−1) 0 · · ·
...

...

0 · · · 0 hr(0) · · ·hr(Lo−1)




. (123)

Over a block of Lw output symbols, the input-output relationship of hr(n) can be cast in

the matrix form:

y(n) = Hx̃(n) + v(n). (124)

Define the correlation matrices

Rxx = E
[
x̃(n)x̃T (n)

]
, (125)

Ryy = E
[
y(n)yT (n)

]
, (126)

Rvv = E
[
v(n)vT (n)

]
, (127)

Rxy = RT
yx = E

[
x̃(n)yT (n)

]
. (128)

Based on the convergence analysis (see Appendix A), the nonlinear coefficients vector con-

verges to its true value, i.e., θ̂ = θ. Then, the optimal solution for ĥ based on (115) is the

eigenvector of matrix the R∆ corresponding to the smallest eigenvalue [1]:

R∆ĥ = λminĥ, (129)
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and the corresponding optimal solution for the shortening filter w is [1]

ŵ = RxyR−1
yy ĥ, (130)

where

∆ = Lo + Lw − 1− Lh, (131)

R∆ = [ILh
0Lh×∆] ·Rx/y · [ILh

0Lh×∆]T , (132)

Rx/y = Rxx −RxyR−1
yy Ryx =R−1

xx + HTR−1
vv H. (133)

Define the “filtered” room impulse response as

ĝ(n) = hr(n) ∗ ŵ(n), (134)

with its vector form as

ˆ̃g(n) = [ĝ0(n), ĝ1(n), ..., ĝLo+Lw−2(n)]T . (135)

Therefore, the residual echo signal can be written as

eres(n) = x(n) ∗ ĝ(n)− x(n) ∗ ĥ(n). (136)

The MMSE (i.e., residual echo power) can be obtained [1]:

E
[
e2
res(n)

]
= E

[(
x(n) ∗ ĝ(n)− x(n) ∗ ĥ(n)

)2
]

= λmin. (137)

Computational Complexity

Table 4 shows the computational complexity in terms of the number of multiplications

and additions required per iteration by the proposed and existing algorithms. For all the

algorithms, the auxiliary nonlinear block u(·;θ) uses the same order K. For the algorithms

without a shortening filter (NLMS, RLS, and MSC), the AEC filter h(n) adopts the same

length Lo as the original room impulse response. The computational complexity of these

algorithms depends on K and Lo. For the algorithms with a shortening filter (NLMS-CSE,

RLS-CSE, MSC-CSE), the computational complexity is given in terms of K, Lh, and Lw.

Usually, the order of the nonlinear model K is small, while the length of the room

impulse response Lo can be several hundreds or even close to a thousand. The goal of the
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Table 4: Computational complexity comparison of the proposed and existing methods.

Algorithms Multiplications Additions
NLMS 2KLo + 2Lo + 3K + 4 2KLo + Lo + 2K − 2
RLS 2KLo + 3K2 + 2Lo + 5K + 2 2KLo + 2K2 + Lo + 2K − 1
MSC 2KLo + 2(K + 1) log2 N + 8K2 2KLo + 3(K + 1) log2 N + 8K2

+2Lo + 17K + 4 +Lo + 6K − 3
NLMS-CSE 2KLh + 4Lh + 5K + 3Lw + 6 2KLh + 2Lh + 3K + 3Lw − 6
RLS-CSE 2KLh + 3K2 + 4Lh + 7K + 3Lw + 4 2KLh + 2K2 + 2Lh + 3K + 3Lw − 5
MSC-CSE 2KLh + 2(K + 1) log2 N + 8K2 2KLh + 3(K + 1) log2 N + 8K2

+4Lh + 17K + Lw + 4 +2Lh + 6K + Lw − 5

shortening filter is to use an FIR filter w(n) with a short length to “squeeze” most of the

room response power to a certain portion of the channel taps. Thus, the AEC filter h(n)

with a much smaller length Lh can be used to generate the echo signal. The dominant factor

of computational complexity for an AEC without a shortening filter resides in the terms Lo

and KLo. When Lh and Lw are much smaller than Lo, the computational complexity of

the proposed method is reduced considerably relative to the existing ones.

3.5.3 Simulations

Shortening Effect

In the simulations, the nonlinearity of the PA/loudspeaker obeys the same model as in

Section 3.2.2. The room impulse response was generated by an FIR filter whose coefficients

were obtained via

hr(n) =





β(n)e−αn, 4 ≤ n ≤ Lo

0, otherwise
(138)

with β(n) following the standard normal distribution; Lo = 300 and α = 0.02. We set the

filter length Lh = 100 and Lw = 300, respectively. The far-end signal s(n) was generated

according to an i.i.d. Gaussian distribution. The signal y(n) was generated with the SNR

set at 30 dB.

Figure 15 shows the results of the NLMS-based algorithms with/without the shortening

filter. It can be seen that the ERLE of the NLMS algorithm without the CSE can reach 29

dB, while the ERLE-CSE saturated at around 25 dB. This effect is ascribed to the residual

53



5000 10000 15000

0

5

10

15

20

25

Number of samples

E
R

LE
 (

dB
)

 

 

NLMS−CSE with L
h
=100

NLMS with L
h
=300

NLMS with L
h
=100

NLMS linear with L
h
=300

Figure 15: NLMS-based algorithms with/without the CSE.

error in (137). To analytically justify the 4dB performance loss of our proposed methods, we

calculated the theoretical residual error power in (137) by finding the minimum eigenvalue

of the matrix R∆ in (133). With the SNR of 30 dB, the theoretical results give us the

maximum ERLE as 25.3 dB, which is consistent with the simulated result. Although the

proposed method has a 4 dB loss in ERLE, it increases the convergence rate a lot while

achieving considerably good echo cancellation performance. Moreover, the proposed method

reduces the computational complexity significantly (see Table 4). In Fig. 15, we also show

the ERLEs of the NLMS algorithm with a shorter filter length (“NLMS with Lh = 100”)
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Figure 16: Impulse response: (a) The original room impulse response hr(n) has length
Lo = 300. (b) In theory, hr(n) ∗ w(n) would have length Lo + Lw − 1 = 599; the actual
effective duration of hr(n)∗w(n) is Lh = 100, illustrating the effect of the channel shortening
filter.

and the traditional linear AEC (“NLMS linear with Lh = 300”) as benchmarks. None of

them can achieve reasonable performance. This simulation shows the effectiveness of the

proposed method.

Figure 16 depicts the original and the shortened impulse response. We see that the

method is quite successful in reducing the effective impulse response length. A more com-

plete elimination of the tail of hr(n) ∗ w(n) can be achieved with a longer AEC filter, but

even with the given h(n) of length Lh = 100, a fairly high ERLE is achieved (see Fig. 15).

Identification Performance

To quantitatively evaluate the system identification performance, misalignment is taken

as a figure of merit. For the linear part misalignment, we use the distance measure defined
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as

Dh(dB) = 10 log10

‖ĝ − ĥ‖2
2

‖ĝ‖2
2

. (139)

Recall ĝ is the first part of the shortened room impulse response. For the nonlinear part

misalignment, we adopt the distance measure as

Dθ(dB) = 10 log10

‖θ − θ̂‖2
2

‖θ‖2
2

. (140)

For the proposed methods, Dh and Dθ are calculated when the iterative process is ter-

minated and at SNR = 30 dB (see Table 5). The results show that the estimates of the

nonlinear coefficients converge to the true values since the misalignment Dθ is very small.

The results also illustrate the effectiveness of the shortening filter since the residual energy

is negligible relative to the energy of the dominant part after shortening.

Table 5: Dh(dB) and Dθ(dB) of different methods.

NLMS-CSE RLS-CSE MSC-CSE
Dh(dB) -42.1 -42.8 -43.4
Dθ(dB) -44.9 -45.5 -45.8

Furthermore, we evaluate the performance of the proposed method for different ratios

of the room impulse response length Lo with respect to the AEC filter length Lh and

shortening filter length Lw. First, we fix Lo = 300 and Lw = 300. ERLEs with respect to

different Lo/Lh are shown in Table 6. It can be seen that decreasing Lh degrades the echo

cancellation performance due to the increase of the uncompensated residual error. Second,

ERLEs for different Lo/Lw are shown in Table 7 with Lo = 300 and Lh = 100. It can be

observed that larger Lw achieves better shortening performance, thus leads to better ERLE

performance, however more computational burden is incurred.

Convergence in Long Room Impulse Response

We evaluate the performance in more realistic scenarios, where a long room impulse

response with length 1024 was generated using the IMAGE method as in Section 3.2.2. To

compensate for the ERLE loss of the proposed method, we take advantage of the residual

echo suppressor (RES) after the echo canceller. For demonstration purposes, we implement
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Table 6: ERLE(dB) for different Lo/Lh.

Criterion \ Lo/Lh 1 2 3 4 5 6
NLMS-CSE 25.4 25.2 25.2 22.1 21.4 20.6
RLS-CSE 25.8 25.5 25.3 22.3 21.4 20.8
MSC-CSE 25.6 25.5 25.4 22.7 21.6 20.8

Table 7: ERLE(dB) for different Lo/Lw.

Criterion \ Lo/Lw 0.3 0.5 1 2 3 4 5
NLMS-CSE 27.4 25.7 25.2 21.2 19.6 18.9 18.0
RLS-CSE 28.0 25.9 25.3 21.2 19.8 18.8 18.1
MSC-CSE 27.4 26.3 25.4 21.5 19.8 18.7 18.2

a RES based on [39] by designing a gain filter in the frequency domain. Figure 17 (a)

shows the ERLE with an i.i.d. Gaussian far-end signal. It can be seen that the proposed

method performs well in the very long impulse response environment and converges much

faster than the one without the CSE but using a long linear filter. The performance of the

proposed methods is also justified using a real speech signal, which is illustrated in Fig. 17

(b). It is shown that our proposed methods outperform the existing ones.
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3.6 Cascade NAEC in the Presence of Multiple Nonlinearities

By considering the memoryless nonlinearity only from the PA/loudspeaker, the LEMS can

be well represented by the Hammerstein model. In this section, we take into account the

nonlinearities in both the loudspeaker and the microphone, in which case the LEMS can be

described by the Hammerstein-Wiener model. Thus, the NAEC design is reduced to the

Hammerstein-Wiener system identification. Numerous Hammerstein-Wiener system iden-

tification algorithms have been proposed in the literature. In [4], an identification scheme

for single-input single-output (SISO) Hammerstein-Wiener systems was developed. A very

specific model structure was assumed in [4] which limits its practical applicability. Building

upon [4], a more general blind identification technique for SISO systems was proposed in [5].

An iterative method was developed in [112], and a linear subspace intersection algorithm

was extended in [31] for the identification of Hammerstein-Wiener systems. However, to

the best of our knowledge, none of the existing Hammerstein-Wiener system identification

methods are suitable for the NAEC problem on hand, because (1) they are nonadaptive

and thus cannot be readily applied to a real-time echo canceller design, and (2) they incur

large computational load due to the presence of a long room impulse response.

3.6.1 System Structure and Nonlinearities Identification

We propose a new structure for the NAEC design as shown in Fig. 18 [88]. The adaptive

NAEC consists of three blocks. The nonlinear block g̃−1(·;β) models the inverse of the

microphone nonlinearity. Thus, the concatenation of the LEMS system with g̃−1(·;β) yields

a Hammerstein system. For echo cancellation, we use a nonlinear block f̃(·;α) and an

FIR filter h(n) to model the loudspeaker nonlinearity and the room impulse response,

respectively. Note that both the memoryless nonlinearity functions f̃(·;α) and g̃−1(·;β)

are approximated by a linear combination of nonlinear basis functions. As usual, the goal

of the NAEC is to minimize the power of the residual echo signal:

e(n) = y(n)− z(n) = g̃−1(r(n);β)− f̃(s(n);α) ∗ h(n). (141)
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Next, we introduce a two-stage method for the NAEC design. First, the nonlinearities

g̃−1(·;β) and f̃(·;α) are identified using the pseudo-MSC function-based method. After-

wards, h(n) can be estimated using the NLMS algorithm.

( )z n

LEMS

( )s n

( )e n( )y n
local speech

echo

( )h n

( ; )f ⋅� αααα

( )x n

( )r n
1
( ; )g

− ⋅� ββββ

( )J ,α βα βα βα β

Figure 18: AEC with multiple nonlinearities.

Define vectors

f(n) =
[
f1(s(n)), f2(s(n)), ..., fKf

(s(n))
]
, (142)

g(n) =
[
g1(r(n)), g2(r(n)), ..., gKg(r(n))

]
, (143)

where Kf and Kg are nonlinear orders. Thus, the output signals of the nonlinear modules

are obtained

x(n;α) = f̃(s(n);α) = αT f(n), (144)

y(n;β) = g̃−1(r(n);β) = βT g(n). (145)

If f̃(·;α) is a perfect match to f(·) and g̃−1(·;β) is the inverse of g(·) up to a scalar, then the

processes x(n) and y(n) will be perfectly linearly related. Since the pseudo-MSC function-

based metric
∫ 0.5
−0.5 C̃xy(f)df provides a means for quantifying the linear association between

two stationary random processes, we propose to solve for the parameters α and β in the
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nonlinear blocks as follows:
[
α̂, β̂

]
= arg max

α,β
J(α,β), (146)

where

J(α,β) =
∫ 0.5

−0.5

ˆ̃Cxy(f ;α,β)df. (147)

Because the estimates of α and β depend on each other, globally searching for α and β

incurs high computational complexity. However, given one of the unknown parameters, for

instance β, we can form the signal y(n) according to (145). Thus, the objective function

given the parameter vector β can be reduced to

J(α|β) =
αTR1α

αTR2α
, (148)

where

R1 =
∫ 0.5

−0.5
S−1

yy (f)syf(f)sH
yf(f)df, (149)

R2 = E
[
f(n)fT (n)

]
, (150)

and y(n) is formed given the current β. A similar form holds for β given α. Therefore, the

objective function (147) is a generalized Rayleigh’s quotient in α for given β and vice versa.

An alternating parameter estimation procedure is then the following relaxation algorithm

[103]:

α̂(k) = arg max
α

J(α, β̂(k − 1)), (151)

β̂(k) = arg max
β

J(α̂(k),β). (152)

An adaptive algorithm was also developed in [92] to update the parameter θ (which can be

α or β):

θ(n) =
θT (n− 1)R2(n)θ(n− 1)
θT (n− 1)R1(n)θ(n− 1)

R−1
2 (n)R1(n)θ(n− 1). (153)

The proposed iterative method for identifying the nonlinear parameters is summarized

in Table 8, where L denotes the data segment length. Once the two nonlinear blocks

have been identified, the linear block can be found via the least squares method. We

point out that the convergence of the proposed iterative method is not guaranteed [103].
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However, good initialization usually leads to convergence, which has been demonstrated by

simulations. Note that the proposed method decouples the identification of the linear part

from the nonlinear part, since the pseudo-MSC function is insensitive to the presence of an

unknown linear block [92]. This feature is desirable for the NAEC problem, in which case

the length of the room impulse response has no effect on the computational complexity for

the nonlinearity identification.

Table 8: Iterative method to estimate parameters α and β in the nonlinear blocks.

Initialize α(0) and β(0).
for k = 0, 1, ... do

All n ∈ [kL, (k + 1)L): update y(n) using (145) based on β(k).
update α(k + 1) using (153).
All n ∈ [kL, (k + 1)L): update x(n) using (144) based on α(k + 1).
update β(k + 1) using (153).

end for

3.6.2 Simulations

In the simulations for the nonlinearity identification, the source signal s(n) was generated

according to an i.i.d. Gaussian distribution. Both the loudspeaker and microphone nonlin-

earities obey the hyperbolic tangent function. We approximate the nonlinear functions f(·)
and g−1(·) with the polynomial bases and the corresponding orders are Kf = Kg = 7. α

and β are initialized such that x(n) = s(n) and y(n) = r(n), respectively.

Figure 19 (a) and (b) show the performance of the nonlinearity identification. Figure

19 (a) shows the loudspeaker nonlinearity f(·) and its estimate f̃(·); it can be seen that

the estimate approximates well the nonlinearity f(·). Figure 19 (b) shows the microphone

nonlinearity g(·) and the estimate of its inverse g̃−1(·), as well as the concatenated system

consisting of g(·) followed by the nonlinear block g̃−1(·), i.e., g̃−1(g(·)), which approximates

a linear characteristic.

In Fig. 20, we show the estimate of the objective function in (147) as a function of the

number of iterations. It can be seen that J(α,β) approaches one as the number of iterations
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increases. This implies that the two signals x(n) and y(n) are increasingly linearly related,

indicating that f̃(·) and g̃−1(·) approach f(·) and g−1(·), respectively, when a sufficient

number of samples are available.

In the scenarios of the echo cancellation problem, ERLE [60] is used to measure the

performance of the proposed NAEC. The microphone-received signal r(n) was generated

under the single-talk scenario with the SNR set at 30 dB. Figure 21 (a) and (b) show the

ERLEs for the NAEC with respectively, noise and speech signal as the system input; both

demonstrate the effectiveness of the proposed nonlinear echo cancellation algorithm.
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Figure 19: Nonlinearity identification: (a) loudspeaker nonlinearity f(·); (b) inverse of
microphone nonlinearity g−1(·).
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Figure 21: Performance of the nonlinear acoustic echo cancellation: (a) with an i.i.d.
Gaussian signal as input; (b) with a speech signal as input.
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CHAPTER IV

INTERFERENCE-ROBUST ACOUSTIC ECHO CANCELLATION

In this chapter, we focus on interference-robust echo cancellation algorithms. Double-talk

detection and learning-rate adjustment are the control logic design scheme in response to

the occurrence so double-talk and ambient noise, respectively. First, we design double-talk

detectors (DTDs) by considering nonlinearities in the acoustic echo path. We propose to

use mutual information as a decision statistic and show that it can be applied to both mono-

phonic (Section 4.1) and stereophonic (Section 4.2) systems. Later on, we investigate the

learning-rate control of the least mean square (LMS) algorithm. Specifically, we investigate

a variable step size and variable tap length LMS algorithm under the assumption on an

exponential decay envelope of the channel impulse response (Section 4.3).

4.1 DTD Using Mutual Information for Monophonic NAECs

The DTD design is a challenging task since there is no universal rule to discriminate between

the echo signal and the near-end speech [11]. Typically, in a DTD, a decision statistic is for-

mulated based on the available signals or signal estimates and compared with a threshold to

determine whether a double-talk occurs. As discussed in Section 2.3.1, the cross-correlation-

based DTD techniques [110, 29, 7, 28] have been proposed that appear to be successful for

AEC applications. However, to the best of our knowledge, DTDs have not been proposed in

conjunction with nonlinear AECs. The correlation-based criterion captures only the linear

relationship between two random processes [110, 29, 7, 28]. Although [9] derives an opti-

mum log-likelihood ratio test (LRT), the Gaussian assumption of signals does not hold any

more when nonlinearity is present. Based on our experience, these schemes do not perform

well when the acoustic echo path is nonlinear. Thus, we are motivated to seek a DTD for

nonlinear AEC applications. Mutual information (MI) is in many ways the cornerstone

of classic information theory, playing central roles in the analysis of both digital and ana-

log communication systems [19]. The primary objective of DTD designs is to detect the
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presence of the near-end speech. In this section, we show how the MI is suitable for this

task.

4.1.1 Mutual Information (MI) and Its Calculation

We start with the fundamentals of MI. Denote continuous-valued random variables x and

y by the pair (x, y). The entropy or uncertainty of the variable x is defined in terms of its

probability density function (PDF) f(x):

H(x) = −
∫

x
f(x) log f(x)dx. (154)

After having observed y, the uncertainty of x is given by the conditional entropy, defined

in terms of the conditional PDF f(x|y) and the joint PDF f(x, y):

H(x|y) = −
∫

x

∫

y
f(x, y) log f(x|y)dydx. (155)

The MI between x and y is defined as [19]

I(x; y) = H(x)−H(x|y)

=−
∫

x
f(x) log f(x)dx+

∫

x

∫

y
f(x, y) log f(x|y)dydx, (156)

and measures the reduction in the uncertainty of x due to the knowledge of y.

Another view of MI is that it measures the degree to which x and y are not independent.

With the identity f(x, y) = f(x|y)f(y), the expression in (156) can be rewritten as

I(x; y) =
∫

x

∫

y
f(x, y) log

f(x, y)
f(x)f(y)

dxdy. (157)

When x and y are statistically independent, f(x, y) = f(x)f(y), and thus I(x; y) = 0. The

value of I(x; y) grows as x and y become more dependent. The more dependent x is on y,

the more information one gains about x once y is known, and therefore the less uncertain

x is when y is known. Moreover, MI is equivalent to the Kullback-Leibler distance between

the joint distribution f(x, y) and the product of the marginal distributions f(x) and f(y).

The following properties hold for MI [19].

Property I: 0 ≤ I(x; y) ≤ ∞.

Property II: I(x; y) = 0 if and only if x and y are statistically independent.
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Property III: I(x; y) = ∞ if and only if y is a function of x, i.e., y = g(x), where g(·) is

invertible.

Property IV: I(x; y) = I(u; v) if the transformation (x, y) → (u, v) has the form u = g(x),

v = p(y) with g(·) and p(·) being one-to-one mappings.

In order to calculate the MI between x and y, we need to estimate the joint distribution

f(x, y). Histogram and Kernel methods are widely used to estimate MI but entail high

computational complexity [82]. To reduce the complexity in these methods, we adopt a

recent estimator that estimates entropy from the average distance to the k-nearest neighbors

[58]. Consider a set of N input-output pairs zi = (xi, yi), i = 1, ..., N , and the maximum

norm [58]

‖z − z′‖∞ = max{|x− x′|, |y − y′|}, (158)

for a fixed positive integer k, we find zk(i) = (xk(i), yk(i)) as the k-th nearest neighbor of zi

according to the maximum norm. Define the following distances

εi/2 = ‖zi − zk(i)‖∞,

εx
i /2 = |xi − xk(i)|, εy

i /2 = |yi − yk(i)|. (159)

εi/2 is the distance from zi to its k-th neighbor. εx
i /2 and εy

i /2 are the distances between

the same points projected onto x and y subspaces. Let nx
i and ny

i be the numbers of sample

points that satisfy

|xi − xj | ≤ εx
i /2 and |yi − yj | ≤ εy

i /2. (160)

The estimator of the MI between x and y is then obtained:

Î(x; y) = ψ(k)− 1
k
− 1

N

N∑

i=1

[ψ(nx
i ) + ψ(ny

i )] + ψ(N), (161)

where ψ(·) is the Digamma function.

4.1.2 A Test Statistic Based on MI

Consider an AEC system with a DTD as illustrated in Fig. 4. The signal u(n) is the output

of the far-end speech x(n) at the near-end loudspeaker, causing an echo signal c(n) at
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Figure 22: Block diagram of a voice communication system with an AEC and a DTD.

the microphone. The microphone-received signal y(n) is composed of the echo signal c(n),

background noise v(n) and near-end speech s(n) (if any). A nonlinearity g(·) is included in

the echo path, which may be caused by a non-ideal power amplifier (PA) or loudspeaker.

For simplicity, we assume that the PA/loudspeaker is a memoryless nonlinear system. The

room impulse response is modeled by a finite impulse response (FIR) filter h(n) and is

tracked by the AEC.

Denote the output of the nonlinear block by

u(n) = g(x(n)). (162)

Define vectors

u(n) = [u(n), u(n− 1), ..., u(n− L + 1)]T , (163)

h(n) = [h0(n), h1(n), ..., hL−1(n)]T , (164)

where L is the length of the acoustic echo path. Thus, the microphone-received signal can

be written as

y(n) = hT (n)u(n) + s(n), (165)

and a noise-free scenario (v(n) = 0) is considered here. The DTD employs two signals x(n)

and y(n) to make the decision on whether the near-end speech s(n) is present or not. The
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idea here is to form a statistic ξ and compare it with a preset threshold T . Once double-talk

is declared, the AEC filter adaptation is disabled.

To design the decision statistic ξ, we first consider the linear case (u = g(x) = αx, α is

a non-zero constant). If s(n) is absent then y(n) = h(n) ∗ g(x(n)), i.e., y(n) fully depends

on x(n). Hence, to determine whether the signal s(n) is present or not is equivalent to

measuring the degree of dependency between x(n) and y(n). From the Property III of MI,

I(x; y) achieves the maximum when x and y are fully dependent. If we treat sequences x(n)

and y(n) as the realizations of random variables x and y, respectively, the presence of the

near-end speech reduces I(x; y). Therefore, we propose to use as the decision statistic, the

MI between x and y [89]

ξ = I(x; y), (166)

and formulate a binary hypothesis test:

H0 : if s(n) = 0 (double talk is absent), ξ ≥ T, (167)

H1 : if s(n) 6= 0 (double talk is present), ξ < T. (168)

When the echo path is nonlinear (u = g(x) is an invertible nonlinear mapping of x), we

know from the property IV of MI that the MI between x and y is the same as that between

u and y:

I(x; y) = I(g(x); y) = I(u; y). (169)

Therefore, the MI-based DTD in (187) and (188) still works in the presence of the memo-

ryless nonlinearity, provided that the nonlinear mapping is one-to-one. It is worth pointing

out that Shannon’s mutual information is a classical measure of statistical dependence be-

tween random variables no matter whether the relationship between two random variables is

linear or nonlinear. This makes MI a DTD decision statistic that is robust to nonlinearities.

4.1.3 Performance Evaluation

As discussed in Section 2.3.1, we use receiver operating characteristic (ROC) curve to eval-

uate the performance of an DTD. Since the statistical distribution of ξ is unknown, PD and

PFA are obtained by numerical methods. Detection or false alarm is counted only during

72



the active portions of the far-end speech because the effect of a pause or inactive portions

of the far-end speech on the filter update is minimal. We define an indicator νx to reflect

the activity of far-end speech

νx =





1, far-end speech is active,

0, far-end speech is inactive.
(170)

Similarly, an indicator νs is adopted for the near-end speech s(n), since silence in s(n)

usually does not cause AEC filters to diverge. We define the DTD output as a function of

the threshold T

φT =





1, if ξ < T,

0, if ξ ≥ T.
(171)

Before measuring PD, the threshold T is predetermined to meet the given PFA. First,

the decision statistic ξ is calculated with s(n) = 0 (i.e., the near-end speech is absent) as

a function of the threshold. The probability of false alarm at each threshold point T is

estimated as

PFA(T ) =
∑

i φT (i)νx(i)∑
i νx(i)

, (172)

where the index i indicates the ith DTD decision-making situation, which is actually the

data block number in the proposed method, since MI is calculated in a block-by-block

fashion. Then, the threshold T is determined to achieve the given PFA. Once the threshold

is determined, the near-end speech is applied, and the detection procedure runs again. The

probability of detection is calculated as

PD(T ) =
∑

i φT (i)νx(i)νs(i)∑
i νx(i)νs(i)

. (173)

Note that the detection probability can be affected by several factors, including

1. Signal-to-noise ratio (SNR), defined as

SNR(dB) = 10 log10

E
[
x2(n)

]

E [v2(n)]
. (174)

Recall that x(n) is the far-end speech, and v(n) is the background noise picked up by

the microphone.
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2. Far-to-near ratio (FNR), defined as the ratio between the far-end speech power level

to the near-end speech power level

FNR(dB) = 10 log10

E
[
x2(n)

]

E [s2(n)]
. (175)

3. Channel gain ‖h‖2, where ‖ · ‖2 denotes the l2 norm.

In order to thoroughly quantify detection performance, exhaustive simulations (in terms

of spatial, voice frequency and so on) of DTD methods are required. However, for practical

systems it is not necessary to simulate all possible situations to evaluate DTD algorithms.

For ROC implementations in the simulation section, we make reasonable assumptions and

confine the situation to representative cases.

4.1.4 Simulations

In the simulations, the nonlinearity of the loudspeaker was modeled by a sigmoid function

g(x) =
2

1 + e−2x
− 1. (176)

The IMAGE method [2] was used to generate a room impulse response of length 256 with

a sampling rate 8 kHz. We normalized the room impulse response such that ‖h‖2 = 1

in order to remove the dependence on the overall room response level. Both far-end and

near-end signals consist of real speech, the level of which were adjusted so that FNR = 0

dB. For comparison purposes, we also implemented the method in [29].

In the first experiment, we applied DTDs to the linear AEC case (g(x) = x). The

simulation was carried out under a noise-free condition. The results from both the proposed

DTD algorithm and the method of [29] are shown in Fig. 23. Figure 23 (a) shows the far-

end speech x(n) with 40,000 samples. Figure 23 (b) shows the near-end speech s(n) which

starts at the 15, 000th sample and ends at the 30, 000th sample. Figure 23 (c) shows the

microphone-received signal y(n). The DTD determines during which period the near-end

speech is present based on x(n) and y(n). Figure 23 (d) and (e) show the detection statistics

ξc =
∫ |γxy(f)|2df of [29] and the proposed ξm = I(x; y), respectively. The DTD decisions

are marked as circles on the top representing the “no-double-talk and AEC on” and circles
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Figure 23: DTD in the linear case: (a) far-end speech x(n), (b) near-end speech s(n),
(c) microphone-received signal y(n), (d) ξc and the DTD decision, (e) ξm and the DTD
decision. Circles: DTD decision, top = no double-talk, bottom = double-talk.

on the bottom as “double-talk present and AEC off”. The thresholds used in this example

were Tc = 0.92 and Tm = 2.5 for these two methods. We observe that both methods
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achieved good double-talk detection performance.

For the second example, we considered the nonlinearity g(x) as in (176) in the acoustic
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Figure 24: DTD in the nonlinear case: (a) far-end speech x(n), (b) near-end speech s(n),
(c) microphone-received signal y(n), (d) ξc and the DTD decision, (e) ξm and the DTD
decision. Circles: DTD decision, top = no double-talk, bottom = double-talk.
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echo path. We used the same configurations as in the linear case to perform double-talk

detection. The results are shown in Fig. 24. It can be seen that the performance of the

coherence-based method of [29] degraded a lot: with the same threshold as in the linear

case, the probability of false alarm increased. The proposed MI-based method performed

similarly as in the linear case. This example illustrates the robustness of our proposed

method in the presence of nonlinearity.

In the final experiment, we obtained ROC curves under different SNRs. The far-end

speech was 5 seconds long or 40000 samples at 8 kHz sampling rate. For the near-end, four

different speech segments (two males, two females) were chosen, each about 1.875 seconds

long. In order to achieve better statistical significance, the calculations were averaged

over 16 different conditions: four 1.875-second near-end speech samples located at different

positions within the 5-second far-end speech. The ROC curves are shown in Fig. 28 with

the SNR of 30 dB and 10 dB, respectively. It can be seen that under both the high-SNR (30

dB) and low-SNR (10 dB) cases, our proposed method outperformed the coherence-based

method of [29] in terms of achieving a higher PD for a given PFA. On the other hand, the

performance of the coherence-based method was degraded in the presence of nonlinearity,

whereas the proposed MI-based method produced almost the same performance with or

without nonlinearity, re-affirming the robustness of the proposed method. Recall that MI

is a measure of statistical dependence between random variables, whereas the coherence

function only measures the linearity between them. Zero MI always implies statistical

independence, but the coherence function can be zero for highly dependent non-Gaussian

data. Thus, MI is more powerful than the coherence function for measuring independence.
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Figure 25: ROCs: (a) SNR=30dB; (b) SNR=10dB.
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4.2 DTD Using Generalized Mutual Information for Stereophonic NAECs

The need to improve the quality of service in voice communication systems has led to

the exploration of stereo systems, which deploy two microphones and two loudspeakers

at both communication ends. Stereophonic acoustic echo cancellation is indispensable for

stereo systems and it can be viewed as a straightforward generalization of the single-channel

acoustic echo cancellation principle [97]. Similar to signal-channel (monophonic) systems,

DTDs play a very important role in stereophonic systems. Existing DTDs for two-channel

acoustic echo cancellation mainly utilize normalized cross-correlation vector (NCCV)-based

methods, which is first proposed in [7]. The decision statistic is formed based on the NCCV

between the far-end signal vector and microphone-received signal. To reduce computational

complexity and simplify implementation, a frequency-domain NCCV scheme is proposed in

[27]. However, the stereo auto-correlation function can be very ill-conditioned due to inter-

channel correlations. [55] proposes a method to decrease the influence of inter-channel

correlations on the reliability of DTDs by applying a weight function for the NCCV estima-

tion. However, in the presence of nonlinear acoustic echo path, the NCCV-based method

is not expected to perform well. In this section, we design a DTD based on the generalized

mutual information (GMI) between the input signal vector and output signal of a stereo

acoustic echo path.

4.2.1 DTD in Stereophonic Acoustic Echo Cancellation

Figure 26 shows a block diagram of a stereo nonlinear acoustic echo cancellation system.

For simplicity, the echo canceller structure for only one microphone is shown in the receiving

room on the left. The other microphone structure, not shown in Fig. 26, has an identical echo

canceller structure for different receiving room echo paths. We consider applications where

the loudspeaker/PA exhibits nonlinear characteristics; such might be the case when the

performance of analog components are sacrificed for price advantage. Let the nonlinearities

in two echo paths be represented by mappings d1(·) and d2(·). We denote the signals picked

up by the microphones in the transmission room by x1(n) and x2(n), and denote the echo

signal in the receiving room by c(n). At the receiving side, two room impulse responses are
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denoted by h1(n) and h2(n). Then, the microphone-received signal y(n) is composed of the

nonlinear acoustic echo c(n), background noise v(n), and near-end speech s(n) (if any):

y(n) = c(n) + s(n) + v(n), (177)

where the echo c(n) is expressed as

c(n) = h1(n) ∗ d1(x1(n)) + h2(n) ∗ d2(x2(n)). (178)
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Figure 26: Block diagram of stereo nonlinear acoustic echo cancellation.

From Fig. 26, the nonlinear acoustic echo canceller (NAEC) tries to model this unknown

system by a pair of cascaded nonlinear adaptive filters (d̂1, ĥ1) and (d̂2, ĥ2). However, the

occurrence of the near-end speech s(n) may cause the divergence of the NAEC filters. Thus,

a DTD is essential for the NAEC to work. Similar to the rationale in [89], the NCCV-based

method [27] is not expected to perform well in the nonlinear scenario, since the NCCV

between vector (x1(n), x2(n)) and y(n) cannot capture the nonlinear relationship between

them. Consider y(n) as the nth realization of the random variable y, similarly for x1(n)

and x2(n). From (177), y is nonlinearly related with vector (x1, x2). A straightforward
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extension from [89] is that the decision statistic can be formed by

ξ = I1(x1, x2; y), (179)

where I1(x1, x2; y) denotes the MI between vector (x1, x2) and y. However, the high-

dimensional computation of MI is difficult and unpractical using traditional methods, such

as histograms and kernel methods [55]. Moveover, another problem is that this MI is not

well normalized. Indeed, we can say that ξ is maximized when s(n) = 0. However, we do

not know the value of ξ in general. The amount of MI depends a great deal on the statistics

of signals and echo paths. As a result, the best value of the threshold will vary a lot from

one experiment to another. So there is no “natural” threshold level associated with the

variable ξ. This leads us to GMI.

4.2.2 Generalized Mutual Information (GMI) and Its Calculation

Let (x, y) = (x1, ..., xD, y) ∈ RD+1 be a (D + 1)-dimensional real-valued random vector

where each xi, i = 1, ..., D, y, x, and (x, y) are continuous valued and with probability

density function pxi(xi), py(y), px(x), and px,y(x, y), respectively. The GMI between

vector x and y is defined based on the Rényi entropy [79]

I2(x, y) = log2

∫

RD+1

p2
x,y(x, y)

px1(x1) · · · pxD(xD)py(y)
dxdy − log2

∫

RD

p2
x(x)

px1(x1) · · · pxD(xD)
dx. (180)

GMI measures the degree to which x and y are dependent and the value of I2(x; y) grows

as x and y become more dependent. The following properties hold for GMI.

Property I: 0 ≤ I2(x; y) ≤ ∞.

Property II: I2(x; y) = 0 if and only if x and y are statistically independent.

Property III: I2(x; y) = I2(u; v) for any one-to-one mapping fi : ui = fi(xi), i = 1, ..., D

and g : v = g(y).

In stead of directly estimating probability density functions, [76] proposed an algorithm

to estimate I2(x; y) bypassing the estimation of distributions. Assuming N realizations of

random vector {x(n), y(n)}N
n=1, the algorithm in [76] works in two steps:

Step 1: Transform each sequence to the series of relative rank number xi(n) → rxi(n), i =
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1, ..., D, n = 1, ..., N , where

rxi(n) =
|{xi(m) < xi(n), 1 ≤ m ≤ N}|

N
, (181)

and | · | denotes the cardinality of a set. The same transform applies to y(n).

Step 2: Construct a (D + 1)-dimensional vector

r(D+1)(n) = (rx1(n), ..., rxD(n), ry(n)), (182)

and determine the number of pairs with distance less than ε/2

CD+1 =

∣∣{(i, j) : ‖r(D+1)(i)− r(D+1)(j)‖∞ < ε/2}
∣∣

Ntotal
, (183)

where 1/N ¿ ε/2 ¿ 1, 1 ≤ i < j ≤ N , ‖ · ‖∞ denotes the infinity norm, and the total

number of pairs is given by Ntotal = N(N − 1)/2. Calculate similarly CD but with the

D-dimensional vector

r(D)(n) = (rx1(n), ..., rxD(n)). (184)

Then, the estimation of I2(x, y) is be obtained as

Î2(x, y) = − log2 ε− log2 CD + log2 CD+1. (185)

In addition, it has been shown in [76] that the estimator is consistent for N →∞ and ε → 0

and Î2(x, y) ≤ − log2 ε. The upperbound of the estimate makes it a desirable feature for

DTD designs.

4.2.3 A Test Statistic Based on GMI

Based on (177), if s(n) is absent then y(n) = h1(n)∗d1(x1(n))+h2(n)∗d2(x2(n)), i.e., y(n)

fully depends on x1(n) and x2(n) (a noise-free scenario is considered here v(n) = 0). Hence,

to determine whether the near-end signal s(n) is present or not is equivalent to measuring

the degree of dependency between (x1(n), x2(n)) and y(n). Therefore, we propose to use as

the decision statistic, the normalized GMI between (x1, x2) and y [85]:

ξ = −I2(x1, x2; y)
log2 ε

, (186)
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and formulate a binary hypothesis test

H0 : if s(n) = 0 (double talk is absent), ξ ≥ T, (187)

H1 : if s(n) 6= 0 (double talk is present), ξ < T. (188)

It is pointed out that the advantage of using GMI in (186) instead of MI in (179) is twofold:

(i) the estimation of GMI without direct calculation of distribution relieves the computa-

tional complexity; (ii) the normalized representation of GMI leads to a function running

between 0 and 1, which facilitates the threshold selection.

4.2.4 Simulations

In the receiving room, the nonlinearity of each loudspeaker was modeled by a sigmoid

function

di(x) =
2

1 + e−αix
− 1, (189)

with α1 = 2, α2 = 2.5 for each channel, respectively. The receiving and transmission

room impulse responses hi(i = 1, 2) and gi(i = 1, 2) were both generated using the IM-

AGE method with lengths 256 and 50, respectively [2]. For comparison purposes, we also

implemented the NCCV-based method in [27].

The first experiment was carried out under a noise-free condition. The results from both

the proposed DTD algorithm and the method of [27] are shown in Fig. 27. Figure 27 (a) and

(b) show the microphone-received signal x1(n) and x2(n) in the transmission room. Figure

27 (c) and (d) show the near-end speech s(n) and the microphone-received signal y(n) in

the receiving room, respectively. The DTD determines during which period the near-end

speech is present based on signals x1(n), x2(n), and y(n). Figure 27 (e) and (f) show the

detection statistics ξc of [27] and the proposed ξm = I2(x1, x2; y), respectively. The decisions

made by the DTDs are marked as circles on the top representing the “double-talk absent

and AEC on” and circles on the bottom representing “double-talk present and AEC off”.

The thresholds used in this example were Tc = 0.91 and Tm = 0.52 for these two methods.

We observe that the proposed method achieves better performance than the method of [27],

since based on the threshold without miss detection, the false alarm occurred several times

in the method of [27].
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Figure 27: DTD performance: (a) far-end speech in the 1st channel x1(n), (b) far-end
speech in the 2nd channel x2(n), (c) near-end speech s(n), (d) microphone-received signal
y(n), (e) ξc and the DTD decision, (f) ξm and the DTD decision. Circles: DTD decision,
top = no double-talk, bottom = double-talk.
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In the second experiment, receiver operating characteristic (ROC) curves were obtained

with signal-to-noise ratio (SNR) of 30dB for both channels. In order to achieve better

statistical significance, the calculations were averaged over 16 different conditions similar

to [89]. The ROC curves are shown in Fig. 28. It can be seen that our proposed method

outperformed the NCCV-based method of [27] in terms of achieving a higher PD for a given

PFA.
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Figure 28: ROC with SNR of 30dB.
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4.3 Variable Step Size (VSS) and Variable Tap Length (VTL) LMS

In this section, we focus on the learning-rate control for the LMS algorithm. Among various

types of adaptive algorithms, the LMS algorithm is well known and widely used for its

simplicity and robustness [81]. As discussed in Section 2.3.2, the performance of the LMS

algorithm, in terms of convergence rate, misadjustment, mean-square error (MSE), and

computational cost, is believed to be governed by the step size of the adaptive filter [95, 75].

On the other hand, recent research results indicate that the filter tap-length is factor to

affect the LMS performance [68].

Usually, to describe an unknown linear time-invariant system accurately, a sufficiently

large filter tap length is needed, since the MSE is likely to increase if the tap length is

undermodeled [37, 68]. However, the computational cost is proportional to the tap length.

Moreover, an increase in filter length can slow down the convergence rate dramatically due

to the step-size restrictions [37, 109]. Thus, a variable tap-length algorithm, which finds

the appropriate tap-length for each iteration, is necessary to achieve both small MSE and

fast convergence. Existing variable tap-length algorithms such as [36, 34] are sensitive to

the parameter selection, i.e., different parameters result in different performance, according

to the discussion in [34].

Recently, the impulse response envelope is suggested to be one essential factor that de-

termines the convergence rate of a deficient-length filter [37, 111]. In many applications such

as acoustic echo cancellation, the unknown impulse response follows an exponential decay

envelope. For this kind of systems, a theoretically optimal variable tap-length sequence

is introduced in [37]. However, this algorithm entails large computational complexity as

a result of trying to solve Lambert’s W-function. To reduce the complexity, an adaptive

solution for the optimal tap length is proposed in [111], which ensures a well-behaved tran-

sient tap-length convergence. However, to the best of our knowledge, variable tap-length

algorithms have not been proposed in conjunction with a variable step size. It is well known

that with the stability conditions, the efficient step-size control trade-offs fast convergence

rate and tracking ability with filter misadjustment. Thus, we are motivated to develop a

low complexity algorithm with both a variable tap length and step size.
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4.3.1 Convergence Analysis of Deficient-Length LMS Filter

Consider an unknown length N exponential decay impulse response cN = [c0, c1, ..., cN−1]
T

modeled by

ci = e−iτr(i), i = 0, 1, ..., N − 1, (190)

where the decay rate τ is a known positive constant and r(i) is a zero-mean i.i.d. Gaus-

sian random process with variance σ2
r . The observed signal is a linear convolution of the

transmitted signal and the impulse response:

d(n) = xT
N (n)cN + v(n), (191)

where cN = [c0, c2, ..., cN−1]
T is the channel response and xN (n) = [x(n), x(n− 1), ..., x(n−N + 1)]T

is the input vector and v(n) is the additive noise. Here the problem we are considering is

to estimate {ci} given d(n) and x(n) using an LMS algorithm with variable tap length and

step size.

In the variable tap-length and variable step-size LMS algorithm, both the tap-length

and step-size are time-varying rather than fixed. We denote by M(n) and µ(n), respectively,

the integer tap-length and step-size for the coefficients updated at the nth iteration, and

assume that M(n) ≤ N . With the LMS criterion, the filter coefficients are updated by [37]

wM(n+1) =




wM(n)(n)

0
¯M(n+1)−M(n)


 + µ(n + 1)e(n)xM(n+1)(n + 1), (192)

where e(n) is the estimated error defined as

e(n) = d(n)− xT
M(n)(n)wM(n), (193)

xM(n)(n) = [x(n), x(n− 1)..., x(n−M(n) + 1)]T and wM(n) =
[
w1(n), w2(n)..., wM(n)(n)

]T

are the M(n)-tap adaptive filter input vector and the coefficients vector, respectively, and

0
¯

denotes a vector with all-zero entries. In the following, we introduce how to update the

tap-length M(n) and step-size µ(n) at each iteration.

Similar to [37, 111], we partition the impulse response cN into two parts as

cN ,




c′M(n)

c′′N−M(n)


 , (194)
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where c′M(n) can be viewed as the part modeled by wM(n), and c′′N−M(n) is the undermodeled

part. Define the estimation errors of partial and total coefficients, respectively, as

δM(n)(n) = wM(n) − c′M(n), (195)

and

δN (n) =




wM(n)

0
¯N−M(n)


− cN . (196)

Combining (191) and (195), we rewrite the signal estimate error in (193) as

e(n) = −xT
N (n)δN (n) + v(n). (197)

Substituting (197) into (192), we obtain

δN (n + 1) = A(n)δN (n) + µ(n + 1)v(n)




xM(n+1)(n + 1)

0
¯N−M(n+1)


 , (198)

where

A(n) = IN − µ(n + 1)




xM(n+1)(n + 1)

0
¯N−M(n+1)


xT

N (n), (199)

and IN is the N ×N identity matrix.

To quantitatively evaluate the misadjustment of the filter coefficients, MSD is taken as

a figure of merit, which is defined as

Λ(n) , Λ(M(n), µ(n)) = E
[‖δN (n)‖2

2

]
, (200)

where ‖ · ‖2 denotes the l2 norm. Note that at each iteration, MSD depends on both M(n)

and µ(n). Assume that both the signals x(n) and v(n) are i.i.d. zero-mean Gaussian with

variances σ2
x and σ2

v , respectively. According to the analysis in [37, 111], we find that

Λ(n + 1) =β(n + 1)Λ(n) + (η(n + 1)− β(n + 1))

E
[
‖c′′N−M(n+1)‖2

2

]
+ γ(n + 1), (201)

where

β(n + 1) = 1− 2µ(n + 1)σ2
x + (M(n + 1) + 2)µ2(n + 1)σ4

x, (202)

η(n + 1) = 1 + M(n + 1)µ2(n + 1)σ4
x, (203)

γ(n + 1) = M(n + 1)µ2(n + 1)σ2
xσ2

v . (204)
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From (201), we know that the convergence is affected by step-size, filter length, and the

undermodeled system response ‖c′′N−M(n+1)‖2
2. When M(n) increases to N , ‖c′′N−M(n+1)‖2

2

will drop to zero. Thus, we get the MSD update equation of the full-length LMS filter

Λ(n + 1) = β(n + 1)Λ(n) + γ(n + 1). (205)

Note that no information about the system response exists in (205). Therefore, the conver-

gence of the full-length LMS filter will not be affected by the shape of the system response,

while that of the deficient-length LMS filter will. This is the primary difference between

the full-length filter and deficient-length filter [37].

4.3.2 VSS-VTL LMS Algorithm with Exponential Decay Impulse Response

With (201), we may speculate the existence of an optimal time-variant filter length and step-

size, which can result in the fastest convergence. In the following, we propose to a solution

of both tap length and step size by minimizing MSD at each iteration [87]. Observing that

the MSD is a multi-variate function with respect to tap-length and step-size. We start by

trying to solve stationary points for this function. Taking the first-order partial derivative

of Λ(n + 1) with respect to M(n + 1) and µ(n + 1), respectively, we obtain

∂Λ(n + 1)
∂M(n + 1)

=µ2(n + 1)σ4
xΛ(n) + µ2(n + 1)σ2

xσ2
v

+ 2µ(n + 1)σ2
x

(
1− µ(n + 1)σ2

x

) dE
[
‖c′′N−M(n+1)‖2

2

]

dM(n + 1)
, (206)

∂Λ(n + 1)
∂µ(n + 1)

=2σ2
x

(
(M(n + 1) + 2)µ(n + 1)σ2

x − 1
)
Λ(n)

+ 2σ2
x(1− 2µ(n + 1)σ2

x)E
[
‖c′′N−M(n+1)‖2

2

]

+ 2µ(n + 1)σ2
xσ2

vM(n + 1). (207)

Based on the impulse pulse model in (190), we obtain

E
[
‖c′′N−M(n+1)‖2

2

]
=

e−2M(n+1)τ − e−2Nτ

1− e−2Nτ
E

[‖cN‖2
2

]
, (208)

E
[‖cN‖2

2

]
=

1− e−2Nτ

1− e−2τ
σ2

r . (209)
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Substituting (208) and (209) into (206) and setting the first-order partial derivatives ∂Λ(n+

1)/∂M(n + 1) and ∂Λ(n + 1)/∂µ(n + 1) to zero, we obtain

M(n + 1) = − 1
2τ

ln
µ(n + 1)

(
σ2

xΛ(n) + σ2
v

) (
1− e−2τ

)

4τ (1− µ(n + 1)σ2
x) σ2

r

, (210)

µ(n + 1) =
1− E

[
‖c′′

N−M(n+1)
‖22

]

Λ(n)

(M(n + 1) + 2)σ2
x + M(n+1)σ2

v
Λ(n) − 2σ2

xE
[
‖c′′

N−M(n+1)
‖22

]

Λ(n)

. (211)

Then, at each iteration, a pair of stationary points M(n + 1) and u(n + 1) can be obtained

by jointly solving Eqs. (210) and (211). Based on Eqs. (210) and (211), it is difficult to find

closed-form solutions for M(n+1) and µ(n+1). Moreover, the stationary points from (210)

and (211) lead to the global minimum of Λ(n+1) only if the MSD is a convex function with

respect to the tap-length and step-size. However, the convexity is difficult to be verified

due to the complicated Hessian matrix. In the following, we find an approximate solution

of M(n) and µ(n) rather than explicitly solving (210) and (211).

By assuming that M(n) is close to M(n + 1), we replace M(n + 1) by M(n) in (211)

µ(n + 1) =
1− E

[
‖c′′

N−M(n)
‖22

]

Λ(n)

(M(n) + 2)σ2
x + M(n)σ2

v
Λ(n) − 2σ2

xE
[
‖c′′

N−M(n)
‖22

]

Λ(n)

. (212)

Thus, in each iteration µ(n+1) and M(n+1) are obtained in an alternating manner by using

(212) and (210). Next, we show that in this alternating manner, convergence condition is

satisfied. Moreover, by removing the dependence in Eqs. (211) and (210) between each

other, µ(n+1) in (212) and M(n+1) in (210) are optimal solutions in terms of minimizing

Λ(n + 1) given the other.

Combining (194), (196), and (200), we obtain

Λ(n) = E
[‖δM(n)(n)‖2

2

]
+ E

[
‖c′′N−M(n+1)‖2

2

]
. (213)

Substituting (213) into (211), it is then straightforward to verify that u(n + 1) ensures the

convergence of (201) according to the condition in [37]

0 < µ(n + 1) <
2

(M(n + 1) + 2)σ2
x

. (214)
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Moreover, if there is no background noise
(
σ2

v = 0
)

and the filter tap length is perfectly

modeled
(
‖c′′N−M(n+1)‖2

2 = 0
)
, the step size in (211) simplifies to

µ(n + 1) =
1

(M(n + 1) + 2)σ2
x

, (215)

which is consistent with the step-size that achieves the optimum convergence rate and

adjustment in [46].

To analyze the behavior of µ(n+1) in (212), we take the second-order partial derivative

of (201) with respect to µ(n + 1):

∂2Λ(n + 1)
∂µ2(n + 1)

=2M(n + 1)σ2
x

(
σ2

xΛ(n) + σ2
v

)

+ 4σ4
x

(
Λ(n)− E

[
‖c′′N−M(n+1)‖2

2

])
. (216)

Based on (213), we know that
∂2Λ(n + 1)
∂µ2(n + 1)

> 0, (217)

which indicates that for any given tap length, MSD is a convex function in the step size

parameter. Therefore, with tap-length M(n), the step-size in (212) minimizes the MSD at

the (n + 1)st iteration. Similarly, the second-order partial derivative of (201) with respect

to M(n + 1) leads to

∂2Λ(n + 1)
∂M2(n + 1)

=
8µ(n)τ2σ2

x(1− µ(n)σ2
x)e−2M(n+1)τσ2

r

1− e−2τ
. (218)

For any step size that guarantees convergence (see (214)), it is straightforward to show

∂2Λ(n + 1)
∂M2(n + 1)

> 0, (219)

which indicates that with a given step size, MSD is also a convex function in the tap

length parameter. Therefore, with the step size µ(n + 1), the tap length in (210) achieves

the minimum MSD. So far, an optimal solution for the step size and tap length at each

iteration is described by (212) and (210). However, the estimates of µ(n) and M(n) still

depend on Λ(n). Next, we show how to estimate Λ(n) in the (n + 1)st iteration.

Based on the independence assumption between the filter input signal and the filter

coefficients, the MSE of the LMS filter is expressed as (see also [81, 111])

E
[
e2(n)

]
= σ2

xΛ(n) + σ2
v . (220)
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Combining (220), (212), and (210), the tap length and step size are obtained as follows:

µ(n + 1) =
E

[
e2(n)

]− σ2
v − σ2

xE
[
‖c′′N−M(n)‖2

2

]

σ2
x

(
M(n)E [e2(n)]− 2σ2

xE
[
‖c′′N−M(n)‖2

2

]) , (221)

M(n + 1) = − 1
2τ

ln
µ(n + 1)

(
1− e−2τ

)
E

[
e2(n)

]

4τ (1− µ(n + 1)σ2
x) σ2

r

. (222)

In practice, the statistical average E
[
e2(n)

]
can be estimated recursively by its time average:

e2(n) = ρe2(n− 1) + (1− ρ)e2(n), (223)

where 0 < ρ < 1 is the forgetting factor. Moreover, since the tap-length of a filter must

be an integer, we choose to only keep the integer part of M(n + 1) after its update by Eq.

(222). Finally, the entire adaptive algorithm is described sequentially by (193), (208), (221),

(222), and (192), which is summarized in Table 9.

Table 9: Variable step-size and tap-length LMS algorithm.

Step 1: Compute estimate error e(n) = d(n)− xT
M(n)(n)wM(n)(n).

Step 2: Compute the undermodeled channel gain Gc = e−2M(n+1)τ−e−2Nτ

1−e−2τ σ2
r .

Step 3: Estimate error power e2(n) = ρe2(n− 1) + (1− ρ)e2(n).

Step 4: Update step-size µ(n + 1) = e2(n)−σ2
v−σ2

xGc

σ2
x(M(n)e2(n)−2σ2

xGc)
.

Step 5: Update tap-length M(n + 1) = − 1
2τ ln

µ(n+1)(1−e−2τ)e2(n)

4τ(1−µ(n+1)σ2
x)σ2

r
.

Step 6: Update coefficients wM(n+1)(n) =
[

wM(n)(n)
0M(n+1)−M(n)

]
+ µ(n + 1)e(n)xM(n+1).

4.3.3 Simulations

In this section, the performance of the proposed method is assessed via computer simula-

tions. For comparison purposes, we also implemented the fixed tap-length LMS algorithm

and the variable tap-length LMS algorithm in [111]. The setup of all the simulations is
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similar to that in [111]: The impulse response was generated according to (190), which was

a white Gaussian noise sequence with zero-mean and variance σ2
r of 0.01 weighted by an

exponential decay profile. The impulse response length was N = 1024, and the envelope

decay rate τ was 0.005. One realization of the unknown response is shown in Fig. 29. The

filter input was a zero-mean i.i.d. Gaussian process with variance σ2
x = 1. The noise was

another white Gaussian process with zero mean and variance σ2
v of 0.01. All the following

results were obtained by averaging over 100 Monte Carlo trials.
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Figure 29: One realization of impulse response.

First, we evaluated the convergence performance of the proposed method. MSD and

MSE curves with respect to the number of iterations are depicted with different types of

LMS algorithms. The step size for the fixed tap-length LMS algorithm is set to 1/1026,
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which corresponds to the optimal step-size in (215). For both the algorithm in [111] and the

proposed method, the initial tap-length M(0) was chosen as 20 and the forgetting factor in

(220) was 0.99. The MSDs are shown in Fig. 30(a). It is seen that the algorithm in [111]

converged faster than the fixed tap-length LMS algorithm due to the variable step size,

and both exhibited similar steady-state MSDs. The proposed method further improved

the convergence rate and achieved lower steady-state MSD, due to the fact that MSD is

minimized in terms of both the tap length and step size at each iteration. The MSEs are

shown in Fig. 30(b), which also validates the advantages of the proposed method in terms

of both convergence rate and steady-state performance. We point out that the consistency

between the MSD and MSE results is in agreement with the theoretical analysis in (220).

Both of them are presented here since different applications may focus on different criteria.

For instance, MSD is more suitable in channel estimation, whereas MSE is preferable in

echo cancellation applications.
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Figure 30: Comparison of convergence performance with different LMS algorithms: (a)
MSD; (b) MSE.

The values of tap length and step size of the proposed method and the method in [111]

are shown in Fig. 31. The step sizes are shown in log scale for demonstration purposes. For

the method in [111], it is seen that the tap length saturates at around 800. Similar variability

is observed for the step size, since the step size simply follows µ(n) = µ′/(M(n− 1) + δ)σ2
x,

with the parameters δ and µ′ being set to 5 and 0.5, respectively. Comparatively, the step

size in the proposed method saturates at a smaller value, which provides finer coefficients

update. Therefore, the proposed method achieves better performance (see Fig. 30).
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Figure 31: Comparison of tap-length and step-size with different LMS algorithms: (a)
tap-length M(n); (b) step-size µ(n).
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Finally, we evaluate the performance of the proposed method with respect to the initial

value. The steady-state MSDs with different initial tap-length are shown in Table 10. It

can be observed that with a wide range of the initial tap-length, the MSD converges to

the value that achieves an effective modeling of the significant energy within the impulse

response. Thus, we claim that the proposed algorithm is robust to the selection of initial

tap-length.

Table 10: Steady-state MSDs and MSEs with different initial tap-length.

M(0) 20 50 100 200 500 800
MSD(∞) (dB) -29.4 -29.7 28.6 -29.3 -30.1 -29.4
MSE(∞) (dB) 19.6 19.7 19.2 19.5 19.9 19.7
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CHAPTER V

CONCLUSIONS

This dissertation aimed to design AECs in the presence of nonlinearity in the echo path and

the controller logic working associatively with AECs. Specifically, to remove the nonlinear

acoustic echo, we investigated three different structures: predistortion linearization, cascade

structure, and post-processing technique. The loudspeaker linearization improved both the

far-end and near-end talkers’ experience. In cascade structure, a pseudo-MSC function-

based method was proposed to identify the nonlinear acoustic echo path. This method

decoupled the identification of the nonlinear part from linear part in a Hammerstein system,

and thus guaranteed system stability. The post-procssing method employed a residual echo

suppressor to enhance the convergence rate of filter adaptation, which also combined the

echo cancellation with noise reduction. Focusing on the issues of convergence rate and

computational complexity, we also proposed other methods to combat nonlinear echo in

the system, such as cascade NAECs with a shortening filter and AECs in the presence

of multiple nonlinearities. For the control logic design, we investigated the DTD design

and learning-rate control. To detect double-talk, a mutual information-based criterion was

introduced to construct a DTD decision statistic, which is applicable to both the linear

and nonlinear scenarios. Furthermore, a generalized mutual information-based statistic was

suggested to extend the DTD design into stereophonic systems, which facilitates threshold

selection and reduces complexity. To adjust the learning rate, we proposed a variable step

size and tap length LMS algorithm for the systems with the impulse response exhibiting

an exponential decay envelope. The proposed method achieved both better steady-state

performance and faster convergence rate. Throughout this research, computer simulations

and real speech data experiments were conducted to demonstrate the performance of the

proposed algorithms.
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5.1 Contributions

We summarize below primary contributions of this dissertation:

• Proposed a predistortion linearization structure for nonlinear acoustic echo cancella-

tion to improve the near-end’s listening experience.

• Proposed a peudo-MSC function-based NAEC design to guarantee system stability

and improve filter convergence rate.

• Proposed an NRES without explicitly estimating the power spectral density of residual

echo signal to improve the convergence rate.

• Proposed an efficient NAEC design by incorporating a shortening filter to improve

convergence rate and reduce computational complexity.

• Proposed a Hammerstein-Wiener model-based NAEC to handle multiple nonlinearities

in acoustic echo cancellation systems.

• Proposed a mutual information-based DTD design to enhance robustness to system

nonlinearity.

• Proposed a generalized information-based DTD for NAECs in stereophonic acoustic

echo cancellation systems.

• Proposed a variable step size and tap length LMS algorithm to improve steady-state

performance and convergence rate.

5.2 Suggestions for Future Research

The following is a list of interesting research topics that can be pursued as extensions of

this dissertation:

• Design the NAEC or NRES by incorporating the psychoacoustic concepts and models.

• Develop the NAEC or NRES for multi-channel acoustic echo cancellation systems.

100



• Develop AECs and DTDs for general nonlinearities, such as nonlinearity with memory

effects.

• Develop DTDs based on statistical models.
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APPENDIX A

CONVERGENCE ANALYSIS OF NLMS-BASED NAEC WITH

SHORTENING FILER

The convergence of adaptive Hammerstein system has been well studied in [49, 50]. However,

the introduction of shortening filter makes the convergence analysis more challenging. Based

on the following assumptions, we discuss the convergence behavior of the residual echo power

for NLMS adaptation. Denote the optimal solutions of filters h(n), w(n), and u(·;θ(n)) by

h, w, and θ, respectively.

• The nonlinearity of loudspeaker and linear room impulse response are time invariant.

• There is no mismatch between the nonlinear model and the loudspeaker nonlinearity.

• The optimal solution h approximates the first Lh taps of g̃.

• There is no noise in the microphone received signal, i.e., v(n) = 0.

• Double talk situation does not exist before the filters converge.

• The input signal s(n) is wide-sense stationary.

Define

S̃(n)=[S(n) S∆(n)] , ˆ̃g(n)=
[
ĝT (n) ĝT

∆(n)
]T

, (224)

where

ĝ(n) = [ĝ0(n), ĝ1(n), ..., ĝLh−1(n)]T ,

ĝ∆(n) = [ĝLh
(n), ĝLh+1(n), ..., ĝLh+∆−1(n)]T ,

S∆(n) = [b(n− Lh), b(n−Lh − 1), ..., b(n− Lh −∆ + 1)] .
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The reference signal d̂(n) and the estimated signal ẑ(n) can be expressed as

d̂(n) = θT S̃(n)ˆ̃g(n) = θTS(n)ĝ(n) + θTS∆(n)ĝ∆(n), (225)

ẑ(n) = θ̂
T
(n)S(n)ĥ(n). (226)

Then, the error signal can be written as

e(n)= d̂(n)− ẑ(n)=θTS(n)ĝ(n)+θTS∆(n)ĝ∆(n)−θ̂
T
(n)S(n)ĥ(n). (227)

Define

eθ(n) , θTS(n)h− θ̂
T
(n)S(n)h = εT

θ (n)u(n), (228)

where εθ(n) is the nonlinear coefficients error εθ(n) = θ − θ̂(n). Note that eθ(n) can

be interpreted as the estimation error produced by the nonlinear AEC filter under the

assumption of perfect linear coefficients, i.e., ĥ(n) = h and ŵ(n) = w. Similarly, define the

tracking errors caused by imperfect h or w, respectively

eh(n) = εT
h (n)x(n), (229)

ew(n) = −εT
w(n)y(n), (230)

where εh(n) and εw(n) are errors of the coefficients of AEC filter h(n) and shortening filter

w(n), respectively

εh(n) = h− ĥ(n), (231)

εw(n) = w − ŵ(n). (232)

Note that the desired w should give ĝ∆ ≈ 0. Thus, the estimation error of w leads to

an imperfect g̃(n). Therefore, an alternative way to express the error signal due to the

inaccurate estimate of w is given by

ew(n) = −θTS(n)εg(n)− θTS∆(n)εg∆(n), (233)

where εg =g−ĝ(n) ≈ h−ĝ(n), and εg∆ =g∆−ĝ∆(n).

Finally, the error signal in (227) can be approximated by the first order terms

e(n) ≈ eθ(n) + eh(n) + ew(n) + θTS∆(n)g∆, (234)
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where the second order terms are neglected. It is pointed out that this approximation

ignores the interactions between update of different parameters. This is suitable when each

coefficients vector gets more and more converged. We will use some simulation results to

show that the solution found from the proposed method is not far from the “perfect” one.

Based on the assumption that h ≈ g and (136) we obtain

eres(n) ≈ xT
∆(n)g∆ = θTS∆(n)g∆, (235)

where x∆(n) = [x(n− Lh), ..., x(n− Lh −∆ + 1)]T . Combining (234) and (235), we obtain

e(n) ≈ eθ(n) + eh(n) + ew(n) + eres(n). (236)

Hence, the residual error is decoupled into four terms, where the first three terms are the er-

rors caused by the estimation errors of the individual unknown coefficients, and the last one

is due to the imperfect shortening. Note that, during the update of each filter coefficients,

the quadratic form of (114) makes it difficult to analyze the convergence. However, the

decoupling of the residual error allows us to analyze the algorithm’s performance, because

each decoupled error term is generated by the coefficients estimation error of only one filter.

In the following, we discuss the convergence characteristic of the algorithm. Based on

(236), the MSE can be expressed as

J(n) = E
[
e2(n)

]

≈E
[
e2
w(n)

]
+ E

[
e2
h(n)

]
+ E

[
e2
θ(n)

]
+ E

[
e2
res(n)

]

+2E [ew(n)eh(n)]+2E [ew(n)eθ(n)]+2E [eh(n)eθ(n)]

+2E [ew(n)eres(n)] . (237)

Consider only w as an unknown parameter, which is updated by (119). Combining

(232) and (119), we obtain

εw(n + 1)=w − ŵ(n + 1)

=
[
ILw−

µw

‖y(n)‖2
2

y(n)yT (n)
]

εw(n), (238)
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where e(n) = ew(n) = −εT
w(n)y(n). According to the direct-averaging method [42, p. 259],

the solution of the difference equation (238), operating under the assumption of a small

step-size, is close to the solution of the following stochastic difference equation

εw(n+1)=E

[
ILw−

µw

‖y(n)‖2
2

y(n)yT(n)
]

εw(n). (239)

Assuming that the size of y(n) is long enough, we obtain E
[
y(n)yT (n)

‖y(n)‖22

]
≈ E[y(n)yT (n)]

LwE[y2(m)]
.

Denote σ2
y = LwE

[
y2(m)

]
and Ry = E

[
y(n)yT (n)

]
. By applying the eigenvalue decom-

position on Ry, we obtain

Ry = QyΛyQT
y , (240)

where Qy is a unitary matrix and Λy is a diagonal matrix consisting of the eigenvalues

λ
(i)
y , i = 1, 2, ..., Lw. Define ε̄w(n) = QT

y εw(n). We rewrite (239) as

ε̄w(n + 1) =
(
I− µw

σ2
y

Λy

)
ε̄w(n). (241)

For the ith entry of ε̄w(n) we obtain

ε̄(i)w (n) =
(

1− µw

σ2
y

λ(i)
y

)n

ε̄(i)w (0). (242)

Since εw(n) is independent of y(n), we may replace the stochastic product y(n)yT (n) by

its expected value and hence write

E
[
e2
w(n)

]
= E

[
εT
w(n)y(n)yT (n)εw(n)

]
= E

[
εT
w(n)Ryεw(n)

]
. (243)

Using (241) and (242), we may express E
[
e2
w(n)

]
in (243) as

E
[
e2
w(n)

]
=E

[
ε̄T
w(n)Λyε̄w(n)

]
=

Lw∑

i=1

λ(i)
y E

[∣∣∣ε̄(i)w (n)
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2
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λ(i)
y

(
1−µw

σ2
y

λ(i)
y

)2n(
ε̄(i)w (0)

)2
. (244)

Similarly, the MSEs of the estimates of h and θ are obtained respectively

E
[
e2
h(n)

]
=

Lh∑

i=1

λ(i)
x

(
1− µh

σ2
x

λ(i)
x

)2n(
ε̄
(i)
h (0)

)2
, (245)

E
[
e2
θ(n)

]
=

K∑

i=1

λ(i)
u

(
1− µθ

σ2
u

λ(i)
u

)2n(
ε̄
(i)
θ (0)

)2
, (246)
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where λ
(i)
x and λ

(i)
u are the ith eigenvalues of the auto-correlation matrices Rx = E

[
x(n)xT (n)

]

and Ru = E
[
u(n)uT (n)

]
, respectively. σ2

x, σ2
u, ε̄

(i)
h , and ε̄

(i)
θ are defined in a similar way as

σ2
y and ε̄

(i)
w .

For the cross terms in (237), we assume that different coefficients are independent on

each other. Following the similar procedure, we obtain

E[ew(n)eh(n)]=−
Lw∑
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Lh∑

j=1
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, (247)

E[ew(n)eθ(n)]=−
Lw∑

i=1

K∑

j=1

Ryu(i, j)ε̄(i)w (0)ε̄(j)θ (0)·
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u
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, (248)

E[eh(n)eθ(n)]=
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, (249)

E [ew(n)eres(n)]=−
Lw∑

i=1

ryx(i)ε̄(i)w (0)
(
1−µw

σ2
y

λ(i)
y

)n

, (250)

where Ryx(i, j), Ryu(i, j), and Rxu(i, j) are, respectively, the (i, j)th entries of matrices

Ryx =QT
wE

[
y(n)xT (n)

]
Qh, Ryu =QT

wE
[
y(n)uT (n)

]
Qθ, and Rxu =QT

h E
[
x(n)uT (n)

]
Qθ;

ryx(i) is the ith entry of the vector ryx = QT
wE

[
y(n)xT

∆(n)
]
g∆. Therefore, the MSE in

(237) can be written in eq. (251) [cf. (244) - (250)].
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According to (251) we know that the convergence rate depends on the eigenvalues

λ
(i)
y , i = 1, 2, .., Lw, λ

(i)
x , i = 1, 2, .., Lh, and λ

(i)
u , i = 1, 2, .., K, and the smallest eigen-

value dominates the convergence rate. The step sizes should be small enough to guarantee

the convergence, and the selection of step size depends on the statistical properties of sig-

nals. Different from other AECs, we notice that as time goes on, there is a residual echo

power λmin which is due to the imperfect shortening filter.
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APPENDIX B

ITU-T G.167 AEC TEST PROCEDURE

B.1 Weighted terminal coupling lossCsingle talk (TCLwst)

Step 1: All the AEC functional units are initially reset and then enabled.

Step 2: A signal is applied at Rin for a sufficient time (to be defined, under study) so

that the different functional units (in particular the acoustic echo canceller) reach

their steady states. No other speech signal than the acoustic return from the loud-

speaker(s) is applied to the microphone(s).

Step 3: Make an electrical measurement of the signal at Sout. The value TCLwst is the

difference (in dB) between the signal level before the enabling of the AEC and the

signal level at this step in the test.

B.2 Weighted terminal coupling loss C double talk (TCLwdt)

Step 1: The AEC is firstly operated as in the test of TCLwst (steps 1 and 2).

Step 2: After the echo loss has attained TCLwst, an acoustic signal simulating the local

user’s speech is applied at the Sin point for 2 seconds.

Step 3: The processing unit is frozen, and then the simulated local speech is removed.

Step 4: Make an electrical measurement of the signal at Sout. The value TCLwdt is the

difference (in dB) between the signal level before the enabling of the AEC and the

signal level at this step in the test.

B.3 Terminal coupling loss during echo path variation (TCLwpv)

Step 1: The AEC is firstly operated as in the test of TCLwst (steps 1 and 2).

Step 2: After TCLwst has attained its recommended value, a simulated or real echo path

variation is applied for 5 seconds (means to produce echo path variations are under
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study).

Step 3: At the end of the echo path variation, the processing unit is frozen, and the signal

level at Sout is measured. The value TCLwpv is the difference (in dB) between the

signal level before the enabling of the AEC and the signal level at this step in the

test.

B.4 Initial convergence time (Tic)

Step 1: All the AEC functional units are initially reset and then enabled.

Step 2: A signal is applied at Rin and a timer is started.

Step 3: After 1 second, the processing unit is frozen.

Step 4: Make an electrical measurement of the signal at Sout. The time interval specified

in step 3 is called Tic.

B.5 Recovery time after double talk (Trdt)

Step 1: The AEC is firstly operated as in the test of TCLwst (steps 1 and 2).

Step 2: After TCLwst has attained its recommended value, the signal applied at Rin is cut

off and a signal simulating the local user’s speech is applied at the Sin point for 2

seconds.

Step 3: The received signal is again applied at Rin, and after 2 seconds the signal simulating

the local user’s speech is cut off; then a timer is started.

Step 4: After 1 second the timer is stopped and the processing unit is frozen.

Step 5: The electric signal level at Sout is measured. The time interval specified in step 4

is called Trdt.

B.6 Recovery time after echo path variation (Trpv)

Step 1: The AEC is firstly operated as in the test of TCLwst (steps 1 and 2).
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Step 2: After TCLwst has attained its recommended value, a simulated or real echo path

variation is applied during 5 seconds (means to produce echo path variations are

under study).

Step 3: At the end of the echo path variation a timer is started.

Step 4: After 1 second, the processing unit is frozen and the signal level at Sout is measured.

The time interval specified in this step of the test is called Trpv.
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[59] Küch, F. and Kellermann, W., “Partitioned block frequency-domain adaptive
second-order volterra filter,” IEEE Trans. on Signal Processing, vol. 53, pp. 564–575,
Feb. 2005.
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