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NOMENCLATURE 

a inside radius 

b outside radius 

E elastic modulus 

e strain 

P pressure 

r radial distance 

S stress 

T temperature 

u radial displacement 

a coefficient of thermal expansion 

E strain 

v Poisson's ratio 

a stress 

Subscripts: 

a inside radius 

b outside radius 

e equivalent 

ep equivalent plastic 

et equivalent total 

i inside surface 

n nth point 



V 

o outside surface 

p plastic 

r radial 

t t a n g e n t i a l 

z longitudinal 

9 tangential 

T shear stress 

p radius of elastic-plastic interface 
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SUMMARY 

A problem encountered in some large thick-walled cylinders, gun 

barrels, is the decrease in bore diameter after some period of sustained 

use. The stress history of these guns consists of initial pre-stressing 

(autofrettage) followed by the pressure and thermal stresses resulting 

from rapid firing. 

Experimental data for a five-inch naval gun are available. These 

data consist of the final existing strain measurements. It is the 

object of this investigation to determine if the final stress state can 

be correctly predicted by analytical, calculations. 

Analytical calculations included elastic and plastic material 

behavior as well as temperature-dependent mechanical properties. The 

numerical method developed by Mendelson and Manson was used. The solu­

tion developed agreed with the experimental data from the inner surface 

to halfway along the radius of the cylinder. 
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CHAPTER I 

INTRODUCTION 

The objective of this thesis is to predict the final state of 

stress and strain existing in a. thick-walled tube which has been sub­

jected to a large internal pressure followed by a thermal stressing due 

to heating. This problem is associated with the loading history of the 

barrel of certain large guns. A typical loading history for a large 

gun barrel consists of first applying an internal pressure which 

severely cold works the material at the inner bore and results in 

residual compressive stresses upon removal of the pressure. This 

process is referred to as autofrettage. After autofrettage, some 

machining of the inner bore may be necessary in order to restore the 

proper bore diameter. When the gun is then used in a rapid fire condi­

tion, a temperature gradient develops In the gun barrel resulting in 

thermal stresses. 

A problem which may develop is the permanent decrease in the 

diameter of the bore after the rapid fire condition. A particular 

example of this was encountered in a five-Inch naval gun and a project 

was established at the Massachusetts Institute of Technology (M.I.T.) 

to analyze the problem (8). 

The M.I.T. project was provided two approximately three-foot 

The work at M.I.T. was conducted by the late Dr. W. R. Clough, 
who suggested and initiated the extension presented in this thesis. 
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sections of a five-inch gun. The gun from which the sections were cut 

had been subjected to 2245.62 equivalent service rounds and was one in 

which a permanent bore diameter decrease had been encountered. One of 

the three-foot lengths was that which terminated in the muzzle; the 

other extended from 73 inches to 128.5 inches from the breech (see 

Figure 1). 

The muzzle end was small enough to allow residual stress determi­

nation at M.I.T. by the Sachs boring out or turning down method. This 

method developed by G. Sachs for cylinders, rods and thick-walled tubes 

accounts for all three principal stresses and only assumes rotational 

symmetry about the axis of the tube and no change along its length. The 

method itself consists of boring out or turning down the tube in steps 

and measuring the dimensional change of the tube. For accuracy the 

length of the tube should be several times the diameter. The larger 

section was forwarded to the Naval Gun Factory as it was too large to 

be machined at the M.I.T. Machine Tool Laboratory. Data for this sec­

tion were not available at the time the project was disbanded. 

A preliminary review, at M.I.T., of the circumstances surrounding 

the bore diameter decrease led to the conclusion that this was the 

result of the combined effects of the radial expansion residual stresses 

and the high gun temperatures which give rise to thermal stresses of a 

large order of magnitude. The temperature at the surface of the bore 

has been estimated to be about 365°C after firing (8). The Bureau of 

Ordinance calculations indicate that the residual autofrettage stresses 

at the bore at 77,985 psi in compression in the tangential or hoop 
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Figure 1. Gun and Test Sections 
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direction. If elastic thermal stresses due to a 300°C temperature dif­

ferential and a logarithmic distribution are superimposed on the auto-

frettage stress a compressive stress of 167,715 psi results. A stress 

of such magnitude would in all likelihood cause compressive yielding 

and explain the bore decrease. Only qualitative results were possible 

from the M.I.T. study because the thermal stress analysis did not in­

clude plastic strain or temperature-dependent properties. 

In this thesis the analysis of the final stress state and sub­

sequent bore diameter decrease is extended to include a plasticity solu­

tion for the thermal stresses which incorporates the variance of proper­

ties with temperature. In order to include the plastic strain and 

temperature-dependent properties it is necessary to use a numerical 

solution. The best method seems to be the iterative solution developed 

by A. Mendelson and S. S. Manson (5). 

The method of analysis of the final residual stress state is as 

follows: 

1. The calculation of the rest or residual autofrettage stresses. 

To carry out this, it is first necessary to calculate the action stres­

ses present when a high liquid internal pressure is applied. This 

solution is arrived at from plasticity theory since the magnitude of 

the internal pressure is sufficient to cause considerable plastic 

deformation. The second step is to calculate the stresses caused by the 

internal pressure using purely elastic theory. By subtracting the 

purely elastic solution from the plasticity theory solution the residual 

stresses can be obtained. This assumes no further reyielding. 
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2. A temperature distribution of some kind is necessary for the 

calculation of the thermal stresses. Since the gun barrel is inherently 

one of rotational symmetry it is satisfactory to assume a temperature 

distribution that is a function of radius only and does not vary along 

the length of the gun barrel. With each round fired, there will be a 

temperature fluctuation and hence a transient state temperature dis­

tribution. However, it is judged that a gun fired at equal intervals 

in rapid fire could eventually be approximated as a steady state con­

duction problem. Therefore, for this analysis a steady state logarith­

mic distribution is assumed. 

The equilibrium temperature distribution is 

T. - T 
T(r) = T. - - 4 ~ ln(r/r.) 

l ln(r /r.) I 
o i 

as shown in Figure 2. 

Since thermal stresses arise from the difference in temperature 

along the cross section the lower temperature, in this case the outside, 

can be assumed to be zero in order to simplify the relationship. 

Thus: 

AT ln(r /r) 
T(r) = . > ,° * 

ln(r /r.) 
o I 

where AT = T. - T . 
l o 

3. The calculation of the final residual stress and strains will 

be done as follows. It is necessary to use the method developed by 



Figure 2. Temperature Distribution in a Hollow Cylinder 
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Mendelson and Manson which is basically an iterative numerical solution. 

First the state of strain caused by the autofrettage residual stresses 

is considered the permanent deformation of the cylinder at the time of 

application of the temperature distribution. 

Using this plastic strain and logarithmic temperature distribu­

tion the thermal stresses are calculated. In several places the com­

bined stresses will be above the yield point of the material causing 

further plastic flow. The thermal stresses are then recalculated with 

the further plastic deformation. This procedure is repeated until con­

vergence to the action thermal stresses and total plastic deformation 

are obtained. Using this total plastic deformation the temperature is 

removed and the stresses recalculated. If any further yielding occurs 

the total plastic deformation is adjusted accordingly and the stresses 

adjusted correspondingly. 

For the calculation of the thermal action stresses, the tempera­

ture variation of the yield strength, Young's modulus of elasticity and 

the coefficient of expansion were considered. Work hardening effects 

were ignored because in the ranges of plastic strain encountered the 

steel behaves as a perfectly plastic material. 

Recall the autofrettage process induces compressive stress at the 

inner surface. The thermal gradient causes a further compressive 

stress. If fact, this further stress causes 3'ielding of the material 

near the bore in compression. After the thermal load is removed this 

permanent compressive deformation causes a tensile residual tangential 

or hoop stress which in turn causes a decrease in bore diameter. 



If a transient analysis was attempted the slope of the tempera­

ture curve would naturally be steeper. The area closer to the bore 

would be more highly stressed than in the steady state analysis. Con­

sequently there will be more plastic deformation in the area near the 

bore and less further toward the outside than using a steady state 

analysis. There will be increased values of final residual stresses 

result 5.ng from the larger amounts of plastic deformation. 
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CHAPTER II 

BASIC ANALYTICAL AND EXPERIMENTAL METHODS 

Elastic Deformation of a Cylinder 

If a long circular cylinder of uniform thickness is subjected to 

a uniformly distributed internal pressure the deformation produced Is 

symmetrical about the axis of the cylinder and does not vary along Its 

length (2). 

Consider a section cut from the cylinder perpendicular to the 

axis (see Figure 3). 

From the condition of symmetry there are no shear forces and the 

displacements are radial. Since there are no shear stresses a stress 

element appears as in Figure h. 

By summing the forces in the radial (r) direction the equilibrium 

equation is developed. 

da o - o^ 

-JU-E 1= o 
dr r 

Now consider the same ring from a displacement point of view 

remembering the condition of symmetry (see Figure 5). Engineering 

strain is defined as change of length divided by the original length 

AT du J 

AL u + —- dr - u , 
r _ dr du 

r L dr dr 
r 
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Figure 3. A Cross Section of the Bore 
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Figure 4. Stress Element in Polar Coordinates 

du , 
-— u + -j— dr dr 

Figure 5. Deformation in Polar Coordinates 
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- ̂ i - (r+u)de - rd9 _ u 
E6 " I. rd6 r 

Both £ and e are functions of a single variable, r. They are not 

independent and must be related to one another in some fashion. If e 

is differentiated with respect to r 

d£e du 1 u 
dr dr r 2 

Rewritten as 

r ~=— = e - e 
dr r 

This is the compatibility relation for a cylinder. Note that the pre­

ceding equations are independent of end conditions or boundary condi­

tions . The only requirement is that the deformations are symmetrical 

about the axis. For the solution it is necessary to introduce a 

stress-strain relationship. In the elastic region Hooke's Law is that 

relationship. In the plastic region it is necessary to use the Prandtl-

Reuss or the Levy-Mises stress-strain relations. 

Elastic Solution for a Cylinder 
With Internal Pressure P 

Hooke's Law is 

er = | [ V v ( V O z ) ] (1) 



- [ae-v(Vaz)] 

£ = ~ [a -v(a +aQ)] 
E z r 6 

Written in terms of stresses, 

E , x v 
a = (e +VE Q + •=- a 
r 2 r 8 1 - v z 1 - v 

ae = 7 - £ -T ( v V £ e ) + r ^ - 7 ° z 
1 ~ V 

From the strain-displacement relationships 

Then 

du 
dr 

E du u 
a = =- k— + v *-
r 2 dr r 

1 - v ^ 

+ a 
1 - v z 

a~ = 
1 - v' 

du u 
v __ + _ 
dr r 1 - v z 

Substitute these values into the equilibrium equation 
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d u 1 du u 

7T+FiF- — = ° 
dr r 

( 4 ) 

for which u = Ar + — is a solution. 
r 

du A B 
E = — s -A • T 

r dr 2 

u . B 

r 

Substitute into Hooke's Law (1). 

A + a - va, 
r i 

A + = a„ - vo - va 6 r z 

E(E ) = a -va -va z z r 

Solve these equations simultaneously for a , a„, and a 
r 0 z 

(l+v)(l-2v) — = (l-2v) ~ + ve 2 z r 
(5) 

(l+v)(l-2v) -=- = A + (l-2v) — + ve 
L 2 Z 

r 

(l+v)(l-2v) f£ = 2vA + (1-v), 
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To evaluate A and B the boundary conditions are: 

when r = b o - 0 (free surface) 
r 

when r = a a = -P 
r 

Solve for A and B using these boundary conditions and substitute into 

Equations (2) 

2 
a p 

r v2 2 
b - a 

1 - (6) 

a2P 

K 2 2 

b - a 

1 + 

2vPa' 
°Z = E EZ + 9 

b - a 

For a closed end cylinder 

G = 
Pa' 

z ? 2 
b - a 

For an open end c y l i n d e r 

a = 0 
z 

For a f i x e d end c y l i n d e r er = 0 and 
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2vPaz 

a z ,2 2 
b - a 

Yield Conditions 

In order to determine the stresses in an elastic-plastic cylinder 

it is necessary to determine at what stress level yielding occurs. With 

combined stresses it is not sufficient to say yielding is initiated when 

any one of the principal stresses reaches the yield point, but rather 

when some combination of the principal stresses reaches the yield point. 

The theories of yielding commonly used are the maximum shear stress or 

Tresca theory and the von Mises or distortion energy theory. 

The Maximum Shear Stress, proposed by Tresca and Saint-Venant, 

states that plastic yielding occurs when 

°1 ' °3 
T max = s—— 

reaches a critical value. Both in uniaxial tension and uniaxial com­

pression the maximum shearing stress is a /2. a is the yield point of 

the material in simple tension or compression. Hence the yield condi­

tion can be stated as 

a. - a_ a 1 3 o 
T max = = — 

or 

31 ' °3 = °c 
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where a is the largest principal stress and o is the smallest. 

The distortion energy condition introduced by von Mises states 

yielding occurs when the quantity 

"' = I5G C ( V C 2 ) 2 + (V°3 ) 2 + (°2-°3>2] 

reaches a critical value, 

For uniaxial loading the distortion energy becomes 

2 
a 

"'-il 

and the yield condition is then 

a = — /(a -a0)2 + (ff a )2 + (a -a )i 
O nr 1 2 1 o 1 6 

Plastic Deformation of a Cylinder 

Hoffman-Sachs Solution 

For the case of plane strain the so-called critical pressure, 

at which plastic flow commences, can be determined using the distortion 

energy criterion for yielding. The distortion energy condition for a 

cylinder is 

(o -a ) 2 + c° 9 -o 2 ) 2 + (v az ) 2 = 2 oo 
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which by substituting values from Equations (6) becomes 

P 2aW 2 
i 2T7 = 3 °o 
1 - a /b 

The expression on the left will be greatest at the inner surface r = a 

thus giving the critical pressure P at which yielding of the cylinder 

is initiated. 

P =, L^*£L. a 
c 3 o 

To investigate the progress of the plastic front from the inner 

face to the outer face of the tube when the pressure is greater than 

the critical pressure consider a value p, the radius of the elastic-

plastic interface. Conditions throughout the plastic region are 

governed by the von Mises condition for yielding and by the Levy-Mises 

theory of plastic flow, 

de 2a - a - a, z z r f 
de 2a - o» - o 
r r G z 

Recall that for plane strain e = 0 and consequently de = 0 gives 
z z 

2a - a - aQ = 0 z r 6 

manipulating 
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a + o 
r G 

z 2 

Substitute this value of a into the von Mises yield criterion and get 

aa - o = — a 
9 r ^ o 

(7) 

The differential equation of equilibrium becomes 

^ r 2_^ 
d r ' /3 r 

A solution to this equation is 

2a 
a = lnr + C 
r /T 

(8) 

The constant of integration C is determined from the condition that the 

stress a is continuous across the elastic-plastic interface at radius 
r 

p. The stress in the plastic region is 

2a 
(a ) 
r v=p / T 

lnp + C 

At the elastic-plastic interface the material is in a state of incipient 

yielding. Thus 

2 
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and s ince a t p a = P the two values of c can be equated. r e r ^ 

2a a 
o o 

lnp + c = — 
3 

/3 '-7 

From this equation 

C = - — 
/3 

2 lnp + 1 - ̂ y 
b 

and entering with this value of C into Equation (8) one has 

a r 2 
o 2 i n i - • 1 + Kr 

°r " 'ft P b2 
(9) 

and from Equation (7) 

a | 2 
-£ 2 m ^ t i + p-

p b2 /3 

a 21 
J : o 2 in * + £y| 

Z /? ^ J 

The above equations furnish stresses in the plastic region. For the 

outer elastic shell the stresses are obtained by substituting for P the 

critical pressure needed to cause yielding at p. 

a 1 2] 
P = = J2. l -

J 

c /3 h"\ 
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Then 

o 
o 

7f 2 2 
(10) 

a 
o 

7f 
2 2 

£_._ + P_ 
,2 2 
b r 

a = z 
*3 

To find the relationship between the applied pressure p and the radius 

of the elastic-plastic interface p, recall that at r = a the stress 

a = -P and 
r 

a 
P = -° 

/3 
2 in £. + 1 - L 

For any value of P, p can be found by an iterative procedure. 

Coffin-MacGregor Partially Plastic Solution (4) 

Coffin-MacGregor et al. have developed a numerical method of 

calculating the autofrettage stresses in an open end cylinder. The 

basic assumptions for the material within the cylinder are: 

1. Law of Yielding ( v°t ) 2 + ( v ^ t ^ v 0 ^ 2 = 2a' 

2. Equilibrium r = r 
do 

r 
- 3 - O^ - O 

dr t r 
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de 
3. Compatibility of Strains r —-— = e - e 

4. Elastic Compressibility e + e + E = — = (a +a +a ) 

5. Constant Axial Strain z - k 
z 

6. All stresses and strains are continuous across the elastic-plastic 
interface. 

7. Total end load of the cylinder must be zero. 

r 
o 

Z = 2TT / a rdi^ = 0 
^ Z 
r. 
l 

8. The material obeys a perfectly plastic stress-strain relationship. 

9. There is an elastic region where the stress-strain relationship is 
given by the ordinary elastic equations. 

From the above-mentioned assumptions, the following differential 

equations for the stress and a quantity D may be derived. 

a T = <s. - o 
v t r 

(W -W,)a2 - W,a a^ 
T z 1 z 1 r t t , 

at = TDENOMI • ( V V 

, (V ar ) (W ZtV , 
az = (DENOM) — C(VV 

= ( ^ ) ( V S ) 

(DENOM) Cot"ar) 
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where o .o *o - the stresses m the radial, tangential and axial 
r' t' z ,. to 

directions. 

z , e ,e = the strains in the radial, tangential and axial 
r' t' z to 

directions. 

c 5a -̂5a = derivatives of the principal stresses with respect 
to the radius r. 

(DENOM) = (aJ>a2)Wn + 2a a W0 t z 1 t z 2 

W = 1 + D 

W2 = v + D/2 

1 r ^ 
a = a - — (a +o ) 
r r 2 t z 

at = at " \ ( ar + az } 

a = a - 7T (a +a. ) 
z z 2 r t 

These differential equations can be solved numerically to give values 

of o , o , o and D for any ratio of radii and any depth of yielding. 
I? L Z 

The values a /a , a^/a , a /a and D where a is the yield strength r o5 t o' z o o J 6 

are given in tables for 1 < r /p. £ 4 and 1 < r /r < r /r. in reference & o i o o I 

(4). 

The strains may be computed from the relationships 

Ee = (1+D)c - (v+D/2)(at+az) 



24 

Ee = (H-D)q. - (v+D/2)(a +a ) 
L L X Zj 

Ee = (1+D)a - (v+D/2)(a +a ) 
z z r t 

The stresses in the elastic region are 

a = — (a +a, ) 
r 2 rp tp 

1 -
I1 J 

a+ = T (a +a. ) t 2 rp tp 

r ,2 

1 + o 
r 

^ 

0 = 0 

z zp 

where the p subscript denotes the value of the stresses at r = r , the 

elastic-plastic interface. 

Thermal Stress Analysis 

Mendelson and Manson Procedure (5,6) 

The Mendelson and Manson procedure modified by Johnson is essen­

tially a numerical iterative solution involving simultaneous solution 

of the equilibrium, compatibility and stress-strain equations. Mendel­

son and Manson have developed the method of successive approximations 

for a solid circular cylinder in terms of integral equations. Johnson 

has modified the Mendelson and Manson technique to solve for the stress 

state in a hollow cylinder and has written the equations in finite dif­

ference form. 
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The analysis of a long hollow circular cylinder is subject to 

the following assumptions: 

1. The cylinder material is linearly elastic up to the 
elastic limit; beyond this point, plastic flow occurs. 

2. Axial symmetry exists. 

3. e is a constant. 
z 

4. Steady state conditions are present as far as heat 
flow is concerned. 

5. Calculations are made at a sufficient distance from 
the ends so that end conditions are negligible. 

6. The cylinder is subjected to internal pressure and 
is without axial restraint. 

7. The coefficient of thermal expansion and the modulus 
of elasticity vary in a known manner with temperature. 

8. Poisson's ratio is a constant. 

9. The deformation theory of plasticity with the von Mises 
yield condition is used. 

The determination of stresses and strains in a long cylinder 

follows the usual treatment for plane strain problems; the equilibrium 

equation is given by 

da a - o r, 
^ + ^ ^ = 0 (11) 
dr r 

The compatibility equation is 



and the stress strain equations are 

e = — [a -v(anta )] + aT + e r E r 6 z rp 
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£e = E [ a8"v < 0rwz ) ] + aT + £ e P 
(13) 

e = =- [a -v(a +a„)] + aT + £ z E z r 6 J zp 

Writing Equation (12) in terms of stresses by use of Equation (13) gives 

dr 
1 \> v 
E 8 E r E z 6p 

1 + v (Ve» 

rp 8p 
(14) 

Also solving the last of Equation (13) for E and substituting in 

Equation (14) gives 

_d_ 
dr J ae " If ar ~ M£z " TT ( W + vaT + V£

zp 

+ aT + e 
ep 

1 + v , v rp 9p 

T— ( W + g -
£ - E 

r 
(15) 

For the generalized plane strain problem £ is a constant and is 
2 

determined from the axial loading on the cylinder as follows: 
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or 

Therefore 

/ a zrdr = — 
a 

rb a2P 
/ ̂ z + ̂ V°'e) " EaT ~ E £

ZP
] r dr = ^ 

a 

£ = 

a2P 
2 

b 
" / [v(ar+ae) - EaT -
a 

- Ee D]rd zP r 

b 
/ Erdr 
a 

(17) 

Substituting Equation (17) into Equation (15) gives a pair of simul­

taneous differential Equations (11) and (15) which can be solved for 

a and a.. r 6 

In the finite difference method a number of discrete point sta­

tions are chosen along the radius. It is assumed that at each of the 

points the plastic strains, the temperature, the quantities E, a, and v 

are known, and also that the values of these quantities can be approxi­

mated midway between these point stations. Using middle differences, 

let 

da 
dr 1 

n~2 

a - cr o + o ^ 
n n-1 n n+1 

and a r - r -i n + ̂- 2 
n n-1 2 

Substituting this and similar relations for other quantities into 



E q u a t i o n s (11) and ( 1 5 ) , 

and 

Co - D 6 , = F a . + G o . . 
n r n n 6n n r n - 1 n 0 n - l 
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C'a + D'aOT1 = F ' a . + G' a n 1 + H ' + P ' 
n r n n 9n n r n - 1 n 6 n - l n n 

(19) 

where 

C = 
1 1 

+ h 2 r 
n n 

, , _ v v 1 + v 
'n =' (hE) (hE) 2E r 

n n n n 

D = 
n 2 r 

D' n 
1 v 1 + v 

H T T (hE) + 2E r 
n n n n 

F = 
1 1 

n h 2 r 
n - 1 

1 + v 
ThEl 

n - 1 
(hE) , 2E _ r .. n - 1 n - 1 n - 1 

n 2 r n - 1 
s' = l 1 + V 

n " (hE) " ' (hE) ~ 2E . r , 
n - 1 n - 1 n - 1 n - 1 

H' = V " ^ C(aT) - («T) , ] 
n h n n - 1 

n 

P ' = 
n 

JL ^ _ JL 
h 2 r + h 

n n n 

1 _v_ 
£ 8pn 2 r + h 

n n 
rpn |h 

1 v 
2 r . 

n n - 1 ' p n - 1 

2 r .n h 
n - 1 n 

' r p n - 1 
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Considering the linear nature of Equations (18) and (19) and the 

possibility of successive application of these equations in going from 

station to station, it follows that the stresses at any station can 

ultimately be expressed in linear terms of the stresses at any other 

station. For convenience, the stresses at all stations are expressed 

in terms of the tangential stress at the inner radius o,, : thus, 
to Oa ' 

a = A oa + B (20) 
rn rn 9a rn 

aQ = Afl a_ + B0 (21) 
9n 0n 6a 8n 

a . = A _aQ + B . (22) 
rn-1 rn-1 8a rn-1 

V - l " A9n-l06a + B6n-1 (23) 

Substituting these values of a ~ o„ . o . , and a. . into Equations & rn' 6n' rn-1 6n-l ^ 

(18) and (19), 

(C A - D AQ - F A . - G AD .)aQa + (C B n rn n 6n n rn-1 n 6n-l 8 n rn 

(24) 

- D B 0 - F B n - G B Q .) = 0 
n 0n n rn-1 n 8n-l 

(CTB - DTBQ - F'B . - G'BQ _ - H' - P') = 0 (25) 
n rn n 0n n rn-1 n 6n-l n n 

In Equations (2M-) and (25) the stress a_(a) is completely arbi-
u 

trary, since it depends only upon the boundary conditions and not on 
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the equations of elasticity. Thus, the equations are valid for any 

value of afl(a). For this to be true, the terms in the parentheses must 

equal zero. Therefore, 

CA - D L - F A . - G A. = 0 
n rn n 8n n rn-1 n 6n-l 

C B - D B0 - F B . - G Ba . = 0 n rn n fin n rn-1 n 6n-l 

(26) 

C'A - DTAQ - F'A n - G'AQ n = 0 n rn n 6n n rn-1 n 6n-l 

C'B - D'B. -F'B _ - G'B:n , + H' + PT = 0 n rn n Gn n rn-1 n 0n-l n n 

Solving these four equations simultaneously for A , A_ , B , and B- , 
& ^ J rn' 6n' rn' 0n' 

A = KA _ + LA. . 
rn rn-1 Bn-1 

/i ~ — K ri , T L A„ _ 

6n rn-1 6n-l 
(27) 

} = KB . + LBQ , + M 
rn rn-1 6n-l n 

Bfl = K'B . + LrBQ , + MT 
6n rn-1 0n-l n 

where 

D'F + D F' CF' - C'F 
n n n n ? . n n n n 

n " C Df + D'D n " C D' + D'D 
n n n n n n n n 



31 

D'G + D G' C G' - C'G 
n n n n , n n n n 

L - ——^-;—•—TTTT:— b n C D' + C 'D n C D' + C 'D 
n n n n n n n n 

D ( H ' + P ' ) C ( H ' + P T ) 
,, n n n ,,t n n n 
M = ——- — M = n C D ' + C ' D n C D ' + C ' D 

n n n n n n n n 

At r = a (station 1, inside surface), a = 0 (boundary condi­

tion) and aQ = a„ . Substituting in Equations (20) and (21), 

t)n ua 

0 = A an + B 
ra 6a ra 

a6a = A6aa9a + B8a 

These equations are true regardless of the value of a . Therefore, 

B 6 a = 0 

A6a = 1 

(28) 

A = 0 
ra 

B = 0 
ra 

The radial stress at the outside surface « 0 (boundary condition) 

Therefore, 
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or 

a = 0 = A Ka„ + B , 
rb rb 6a rb 

°*a = ^ <*> 
rb 

From the known coefficients at the first station (Equation (28)), 

the coefficients at all other stations can be determined progressively 

by successive applications of Equation (27). When all of the coeffi­

cients have been determined, the unknown an can be determined from 

Equation (29). Then the radial and tangential stresses can be deter­

mined at each station using Equations (20) and (21). 

The plastic strains are given by the equations 

E = ~ 2 - (26 -efl-e ) 
rp 3e . v 6 z r et 

- ep eeP = if"
 (2WEz> (30) 

* et 

E = ~E - £fl 
zp rp 6p 

where 

eet = ̂  /(Vefl)2 t ( V T J 5 ; (ee-ez)2 (31) 

and the equivalent plastic strain e is related through the stress-

strain curve of the material by the following relation: 
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2 °e 
e . = ~ - ~ ( 1 + v ) + £ ( 3 2 ) 

et 3 E ep 

where a is the equivalent stress and is 

1 
G = _L /(a -0)2 + (a -a )2 + fS~^ )

2~ (33) 
e yr- r 6 r z 6 z 

The Method of Calculation can be summarized as follows: 

1. Assume values of the plastic strains usually zero every­
where. 

2. Solve Equations (11) and (15) by the finite difference 
method. 

3. Calculate the total strains by means of Equations (13). 

4-. Calculate ez from Equation (17) using an appropriate 
technique such as Simpson's Rule of Numerical Integration. 

5. Calculate the equivalent total strain e from Equation 
(31). e t 

6. Calculate e from Equation (32). 
ep 

7. Calculate e , £„ and c from Equations (30). 
rp 6p zp ^ 

8. Using these values of plastic strain, go back to step 2. 

9. Continue until convergence is obtained. 

Experimental Determination 

There are several ways of determining the residual or rest 

stresses in a system. These stresses may result from non-uniform dis­

tribution of plastic strain such as is found in autofrettaged guns. 

Nearly all methods of residual stress determination are destruc­

tive in nature. A non-destructive stress determination may be accom­

plished on the surface of the specimen by means of X-rays, but if a 
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stress distribution throughout a test piece is required, it is necessary 

to machine away part of the surface, to create new surfaces on which the 

X-rays may act. Most methods of stress determination are approximate in 

nature. While there are several methods available for determination of 

uniaxial or biaxial states of stress, there appears to be only one 

generally accepted method for determination of a triaxial state of 

stress, and this may be applied only to rods, cylinders and thick-walled 

tubes. This process is the Sachsf boring out method. 

Sachs' Boring Out Method 

This method developed by Sachs (7) takes account of all three 

principal stresses and assumes only that they have rotational symmetry 

and are uniform along the length of the specimen. The method consists 

of measuring the change of length and diameter of the tube as the inside 

is bored out in steps ; a measurement being made after each boring oper­

ation. The tube should have a length some three times its diameter. 

The length and diameter measurements should be taken at several places 

around the object and averaged. 

The residual stresses locked in the body may be determined by 

the following equations. 

a = 
2 

1 - V 
<v« or - * (34) 

a, = 
1 - v' 

(F -F) £!- — 
K b J dT 2F 

(35) 

a = 
r 

1 - v 

(Fb-F) 

2F 
(36) 
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where o ,0,0 = the radial, tangential and axial stresses correspond­
ing to the area F. 

v = Poisson's Ratio taken as 0.3 for gun steel. 

E = modulus of elasticity taken as 30 x 106 psi for gun 
steel. 

e = axial strain. z 

E = tangential strain. 

9 = £ + vc . 
t z 

A = E + ve_,_. 
z t 

F = cross sectional area of the original cylinder = 
TTD2/4. 
o 

F = area calculated from the inside diameter D- after 
2 -*-

boring each layer = TVD./4. 
The experimentally determined data may be smoothed by plotting 

the quantities e , e , A and 9 against the area F and then by drawing 

smooth curves through as many of the data points as is practical. The 

c\ fl 
slopes required in the calculation procedure dA/df and -r=- may be taken 

from these smooth curves. 

It is essential that machining operations be done with great 

care. The cutting tool should be sharp to minimize cold working and 

heating effects. Measurements of strain should be made at constant 

temperature, or adequate corrections should be made for temperature 

changes found at the time of strain measurement. 

When the entire operation is finished, there are general tests 

which may be applied to the results in order to give an indication of 

their reliability. 

1. On a plot of longitudinal stress 0 against the cross section 

of the bore the areas under the curves that represent compression should 
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be equal to those that represent tension. 

2. Equal compressive and tensile areas should be found on the 

tangential stress o plot. 

3. The residual radial stress a should of necessity be zero at 
r J 

the inner and outer surfaces. 
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CHAPTER III 

ANALYTICAL RESULTS 

The Mendelson and Manson method of successive approximations is 

not the only solution considered in this stud}/. The solution of D. R. 

Bland, which is a closed form solution, was considered and rejected 

because in the Bland solution the axial stress is assumed to be in mag­

nitude between the radial and tangential stresses. This assumption is 

indeed valid for a wide range of conditions. This assumption allows use 

of the Tresca or Maximum Shear Stress yield criterion which facilitates 

solving the equilibrium equation. 

An elastic thermal stress analysis, the results of which are given 

in Table 3, clearly show that the axial stress is somewhat larger than 

the tangential stress. Thus, it is necessary to utilize the von Mises 

yield criterion which considers all three principal stresses. The 

Mendelson and Manson method Incorporates the van Mises yield criterion 

and was subsequently chosen to calculate the states of stress and 

strain, both autofrettage and thermal. 

Variable Properties 

In any solution to a thermal stress problem, it is desirable to 

include provisions for the temperature dependency of the physical 

properties of the material, Young's modulus, coefficient of thermal 

expansion and yield strength. The particular steel of which the gun 

was manufactured is a feritic steel of the following composition: 
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0.04% C, 0.64% Mn, 0.26% Si, 0.028% P, 0.037% S, 0.10% Cr, 0.22% Ni, 

0.55% Mo, and 0.11% V and has yield strength of 75,000 psi. 

The difficulties in finding data giving temperature dependence 

of the properties of any particular steel were compounded in this case 

by the fact that the steel was a war time melt. The forging of the gun 

barrel was completed in 194-3. No records are available giving the 

variation of the physical constants with temperature, if tests were car­

ried out to evaluate temperature dependency. Attempts were made to 

approximate the values for the coefficient of thermal expansion with 

data generated from tests of a steel of similar composition (9). Rather 

than guess at a yield strength-temperature relationship, a constant 

yield strength of 75,000 psi was used for all temperatures. 

In the paper by Roberts and Nortcliffe (10), a description was 

given of vibrational method for determination of Young's modulus which 

is particularly convenient for measurements at high temperatures. 

Results at temperatures up to 1000°C were given for several feritic 

steels. It was subsequently noticed that the variations of Young's 

modulus with temperature, up to 600°C, were practically identical, 

regardless of the composition of the steel. Hoyt gives slightly dif­

ferent values for the effects of temperature on the elastic modulii of 

steels (11). 

Solutions were generated using both the data from Nortcliffe and 

Jones and the data from Hoyt. While the differences were small, solu­

tions using the data of Hoyt appeared to give better correlation with 

the experimental results. 
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Residual Autofrettage Stresses 

Residual stresses arise from the fact that not all of the mate­

rial is permanently deformed the same amount. In an elastic-plastic 

cylinder, such as an autofrettaged gun barrel, the elastic portion is, 

of course, not permanently deformed at all. When the load is removed, 

it is assumed that the cylinder unloads elastically. The cylinder will 

not return to its original dimensions due to the plastic deformation, 

thus inducing a state of residual stress. 

The rest or residual stresses introduced by the autofrettage 

process may be obtained by subtracting from the elastic-plastic action 

stresses equivalent purely elastic stresses due to the same internal 

pressure, P. The elastic-plastic action stresses are calculated by the 

Sachs closed form solution or by the Coffin-MacGregor numerical solu­

tion. 

The elastic stresses to be subtracted are arrived at by the 

Timoshenko solution for a thick-walled cylinder as given in section 1 

of Chapter II. 

The residual autofrettage stresses calculated in this fashion 

from the Sachs and Coffin-MacGregor action stress solution are given in 

Figures 6, 7, and 8. Also in Figures 6, 7, and 8 are the residual auto­

frettage stresses calculated from the Mendelson and Manson method. 

The Mendelson and Manson solution, for which a computer is 

required, calculated the residual stresses by first calculating the 

permanent deformation caused by the pressure P, then reducing the load 

to zero. The advantage of this method is if there is any reyielding of 
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Figure 6. Residual Autofrettage Radial Stresses 
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Figure 7. Residual Autofrettage Tangential Stresses 
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Figure 8. Residual Autofrettage Axial Stresses 
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the cylinder due to the residual stresses the program will adjust the 

plastic deformation until a stress state is calculated in which there 

is no reyielding. Note that the residual stresses calculated by the 

Mendelson-Manson method differ very little with those calculated by the 

Sachs and the Coffin-MacGregor methods. 

Machining 

Before the forging is made into a gun, it is machined to the 

final dimensions shown by the dotted lines in Figure 1. This step takes 

place after the forging is autofrettaged. 

For the muzzle section the bore radius was increased from 2.325 

inches to 2.55 inches, and the outer diameter decreased from 4-.5 inches 

to 3.75 inches. This removal of material will of course affect the 

residual stress distribution. 

The effect of the machining can be calculated by considering a 

tube of the final bored and turned dimensions inside a tube of the 

original pre-machined dimensions. For example, in Table 4- note that 

the tube of dimension 2.55 inside radius and 3.75 outside radius, the 

radial stress is -4-1,104- psi at 2.55 inches, and -9053 psi at 3.75 

inches. This is the equivalent of a tube of such dimensions with an 

internal pressure of 4-1,104 and an external pressure 9053 psi. 

The elastic stresses to be removed can be calculated from 

standard theory of elasticity solutions. These elastic removal 

stresses are then subtracted from the action stresses to give the 

after-machining residual stress distribution. 

The end load can be expressed as 



M-4 

r r 
P P 

z 
2 

2-rrr J 

P 

A 

rV 
r _ 1 r r 
P P 

r ^ r ") 
r r 

d 
z r r 

I P> I Pj 

where * = the after-machined radius. 

r = outside radius. 
o 

r. = the inside radius. 
1 

r = the radius of the elastic-plastic interface. 
P 

This integral can be separated into an elastic part and a plastic 

part. The elastic part can be integrated. The equation with substitu­

tion in the plastic part can be written as: 

2-rrr' 

1 
J°zp 

( *\2 
( ro } 

- 1 

x =ln 

2*A 
a e dx 

* z 
r. 
l 

r 

where a is the value of the axial stress at the elastic-plastic 
zp 

interface. 

The plastic part can be integrated numerically, perhaps by 

Simpson's rule. The end load removed by machining is then subtracted 

from the action axial stress to give the axial residual stress after 

machining. 
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Thermal Stresses 

A computer program is used to calculate the thermal stresses. 

The program is based on the Mendelson and Manson iterative solution to 

the thermal stress problem. The program incorporates the strain dis­

tribution accompanying the autofrettage residual stresses, calculated 

by a different program, as input. 

This strain distribution is considered the permanent deformation 

of the tube before the temperature is applied. Any further plastic 

deformation that accompanies the thermal stresses is superimposed on 

the permanent deformation and a total permanent deformation is calcu­

lated along with a stress distribution. 

The program converges to a solution after nine iterations and 

there is little change after the second iteration. The program also 

accounts for any temperature dependency of the physical properties 

through a subroutine. In the subroutine the properties are tabulated 

and accessed as needed by the main program. The programs and subroutine 

are given in Appendix A. 

Final Residual Stress Distribution 

The final residual stress distribution is calculated by removing 

the temperature and calculating the stresses caused by the total perma­

nent deformation of the cylinder. If at any point the combined stresses 

exceed the yield strength according to the von Mises condition, the 

total permanent deformation is adjusted and iteration continues. The 

final stress distribution is presented in Figures 9, 10 and 11. 
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Bore Diameter 

Recall from Chapter II that the radial displacement, u, is 

related to the tangential strain, e , by the relationship 

o 

U 

£e = ? 
where r is the radius. 

The diametral change of the bore, 2u, can be calculated if the 

final tangential strain at the bore can be found. After machining, the 

strain accompanying the autofrettage residual stresses is -7.54451 x 

-4 . . . . 
10 at the bore. During thermal loading additional compressive 

stresses cause more compressive strain which brings the total tangential 

-di­
strain to -7.65735 x io at the bore. Some of the strain is elastic 

and some is plastic. Upon removal of the thermal loading,the elastic 

strain will be recovered. The recovered elastic strain is calculated 

from the final residual stresses by Hooke's Law and is 

7.0220 x io" 4 

Thus, the diametral change Is 2efia which is -.000335 inches. This 

represents a decrease in bore diameter, although not of the magnitude 

reported in Table 1. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

A three-foot long section of the muzzle end of the five-inch 

naval gun was supplied M.I.T.; from a section of this, pure residual 

stresses were determined by the Sachs' boring out method. Initially, 

a piece 19 inches long was cut from this portion: this 19-inch piece 

was from the end furthest from the muzzle end, 

Preliminary machine work consisted of squaring and facing "the 

ends of this piece. It was then bored to a uniform internal diameter 

of 5.188 inches, thus giving a smooth instead of a rifled bore. The 

outer diameter was turned to insure that the inner and outer cylindrical 

surfaces were concentric. Six type A-l SPA wire resistance strain gages 

were mounted around the outer periphery of the tube at mid-length, at 

equal intervals of circumference. These gages were mounted in an axial 

direction and were electrically connected in series so as to obtain an 

average strain around the periphery of the gun section. An exactly 

similar arrangement was used for six more gages placed in a tangential 

direction around the periphery of the gun. Thus, two independent strain 

gage circuits were set up; a switching arrangement was set up so that 

only one decade resistance box and strain indicator would be required. 

A special fixture was constructed so that the short tube could be 

attached to the face plate of a Monarch lathe. This fixture is the same 

as one described in reference (12). 
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When ready to begin machining, an initial zero reading of the two 

strain gage circuits was determined. Temperature was measured by a 

thermocouple attached directly to the gun section. The desired amount 

of material was then machined away from the bore of the tube. The tube 

was allowed to remain in its fixture overnight, and at approximately 

8:00 a.m., further readings of strain and temperature were taken. This 

procedure was repeated until the tube was reduced to a thin shell. The 

purpose of the long rest period, approximately 20 hours, between machin­

ing operations and strain measurements was to allow thermal equilibrium 

to prevail. The variation of temperature observed was so small that it 

was not felt necessary to apply a temperature correction. The maximum 

variation from the temperature before the initial machining operation 

was 30°F (8). 

By this method described above, residual strain data were 

obtained. The conversion of these strain measurements into residual 

stresses by the Sachs method will be illustrated by a step-by-step 

calculation procedure. 

On the first page of Table 2 is shown the bore diameter before 

and after each machining operation. From these data the necessary 

quantities appearing in Equations (34), (35), and (36) can be calcu­

lated. These include the bore area F, F - F, F + F, 2F, F - F/2F 

and F, + F/2F where F, is the cross sectional area of the original 

cylinder. On the rest of the first page of Table 2, the strain data 

e and ê  , as measured is indicated. These values of strain were z t' 

plotted against the bore and F, and a smooth curve drawn through as 
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many of the data points as possible. The strain data were then 

graphically smoothed by means of the smooth curve, and the smoothed 

values of strain were rewritten in the sixth and seventh columns of 

page 1 of Table 2. Actually it was found that the experimental data 

plotted quite smoothly, and only very small corrections had to be 

applied. 

Using the smoothed values of strain, the quantities A and 8 were 

calculated as shown on the second page of Table 2. The quantities 6 

and A were then plotted against bore area, F, and smooth curves were 

drawn through the data points. In this case it was found that smooth 

curves could be drawn through all of the data points. If such had not 

been the case, it would have been necessary to add two more columns to 

Table 2 for smoothed values of 6 and A. From the smoothed curves the 

necessary sloped d9/dF and dA/dF were then calculated by taking the 

slopes of tangents at the previously used values of F. Once the values 

of 6 and A and their slopes have been arrived at, the residual stresses 

are computed from Equations (34-), (35), and (36) as shown in the 

remainder of Table 2. 

The final values of residual stress arrived at by this procedure 

for the muzzle piece are compared with the theoretical values of final 

residual stress in Figures 9, 10 and 11. 
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CHAPTER V 

DISCUSSION 

The plots presented In Figures 9, 10 and 11 show the comparison 

of the final stress state after the cylinders are autofrettaged and then 

at some later date exposed to a temperature of 365°C at the bore (8). 

The curve labeled "experimental" is generated from the data supplied 

in reference (8). 

The theoretical results were generated by the computer program 

which utilized the Mendelson and Manson method of determining thermal 

stresses. In Figure 9, the residual stress distribution in the radial 

direction, the agreement between theory and experiment is good, showing 

only slightly over 10% error in the worst case. For the tangential and 

axial stresses, the error is small from the bore to a radius of 3.1 

inches for tangential and 3.15 for the axial residual stress. 

From these points to the outer surface, there are differences. 

The shape of the experimental curve suggests that there is more plastic 

deformation in this region than accounted for by the theory. It appears 

that there is some plastic deformation from the outer surface, 3.75 

inches back to a radius of 3,40 inches. The theory predicts plastic 

deformation only in a small region near the outer surface. 

Note that due to the experimental procedure used there is no 

value reported for the residual stress at the bore. The first value 

of residual tangential stress given is at a radius of 2.594 inches 
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and for the tangential stress of 19,516 psi, which agrees very well 

with a theoretical stress of 19,424 psi at 2.6 inches. In the axial 

case, the first reported value is of 8604 psi at a radius of 2.594. 

The theoretical value of 6019 psi at 2.6 inches is not in such close 

agreement. This disagreement in the axial direction may arise from 

the fact that the gun is not strictly an open-end cylinder during 

thermal loading. Friction forces of the shell on the wall of the bore 

may induce further plastic deformeition in that area. Pressure forces 

from the firing of the shell were also not considered. 

The stresses arising from the firing pressure are from 10,000 

to 50,000 psi, which are not negligible. The positive pressure inside 

would cause compressive radial stresses and tensile tangential and 

axial stresses. These stresses are opposite in direction from those of 

the autofrettage process already present and the thermal stresses 

generated during firing. The firing pressure stresses would have the 

effect of reducing the magnitude of the stresses on the cylinder. Thus, 

the predicted stresses, thermal and final residual, will be somewhat 

greater due to not considering the pressure effects of firing. 

Disagreement possibly stems from the fact that the cylinder 

underwent several heat treatments before being autofrettaged and another 

heat treatment after the radial expansion. This final heat treatment 

definitely would affect the pattern of the autofrettage stresses. From 

the forging report, it is also obvious that the value of yield stress is 

not uniform throughout the casting. In the five transverse specimens 

tested, the yield strength ranged from 65,000 psi to 77,500 psi. 
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This could easily affect the amount of plastic deformation at 

various positions in the gun. 

Recall that the heat is generated by the rapid fire condition 

which is not a steady state conduction problem. It was assumed that 

the problem was steady state to simplify the solution. It was also 

judged that this fluctuating temperature distribution could be approxi­

mated as a steady-state problem. 

Transient temperature distributions would affect the material 

near the bore more than the rest of the material of the gun. Since in 

the area near the bore the theoretical solution agrees the best with 

the experimental data, it appears that the steady state analysis is 

sufficient to give an accurate thermal stress distribution. 

Naturally, more refined results could be contained if more 

detailed information about the mechanical properties of the material 

were available. 

It is concluded that this method of calculation gives a reliable 

estimate of the final interior diameter decrease, while providing an 

accurate picture of the final residual stress state in thick-walled 

cylinders. 
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Table 1. Bore Diameter Measurements Across Grooves Before 
and After 2245.62 Equivalent Service Rounds 

Diameter Across Diameter Across Expansion 
Inches Grooves Before Grooves After Across 

from Face Proof Firing, 2245.62 Esr., Grooves, 
of Breech Inches Inches Inches 

218 5.101 5.101 -.006 

223 5.101 5.096 -.005 

228 5.101 5.096 -.005 

233 5.101 5.096 -.005 

238 5.101 5.096 -.005 

243 5.101 5.097 -.004 

248 5.101 5.097 -.004 

253 5.101 5.097 -.004 

258 5.101 5.098 -.003 

263 5.101 5.098 -.003 

268 5.101 5.098 -.003 

273 5.101 5.098 -.003 

278 5.101 5.098 -.003 

283 5.101 5.098 -.003 
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Table 2. Calculation Procedure for Experimental 
Residual Stresses Muzzle End Section 

2.504 5.188 21.139 

2.664 5.328 22.286 

2.735 5.470 23.500 

2.807 5.613 24.745 

2.875 5.750 25.968 

2.948 5.895 27.293 

3.016 6.033 28.586 

3.084 6.167 29.870 

3.151 6.302 31.192 

3.220 6.440 32.574 

2.288 6.575 33.945 

3.358 6.715 35.414 

3.425 6.850 36.853 

3.495 6.990 38.375 

3.563 7.125 39.872 

3.65 7.300 41.845 

£ £^ £ £ 

Z t Z t 
Measured Graphically Smoothed 

Microinches/Inch Microinches/Inch 

0 0 0 0 

5 33 5 33 

10 67 10 67 

15 101 15 101 

20 134 20 134 

27 170 27 170 

33 2.04 33 204 

39 238 39 238 

45 260 45 260 

52 250 52 250 

GO 225 60 225 

69 227 69 227 

78 237 78 237 

92 263 89 256 

100 285 100 285 

120 351 
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Table 2. Continued 

d_A d0_ 
A 6 dF dF or od az 

0 0 12.6 

14.9 34.5 12.6 

30.1 70.0 12.6 

45.3 105.5 12.6 

6 0 . 2 1 4 0 . 1 1 2 . 6 

78 .0 1 7 8 . 1 1 2 . 6 

94 .2 2 1 3 . 9 1 2 . 6 

1 1 0 . 4 249 .7 1 0 . 0 

123 .0 2 7 3 . 5 5 .0 

1 2 7 . 0 265 .6 1.0 

127 .5 243 .0 3 .5 

1 3 7 . 1 2 4 7 . 7 6 . 7 

149 .0 2 6 0 . 4 9 .5 

1 6 5 . 8 2 8 2 . 7 1 2 . 3 

185 .5 315 .0 1 5 . 2 

2 2 5 . 3 387 .0 2 4 . 2 

28 .6 0 19,516 8604 

28 .6 499 16,780 7632 

28 .6 901 14,110 6633 

28 .6 1202 11,802 5614 

28 .6 1412 8,934 4615 

28 6 1566 6,264 3478 

28 6 1637 3,824 2407 

28 6 1651 1,418 310 

0 1541 -10,519 -2298 

10 3 1247 -13,121 -3880 

0 9 32 -8,934 -3290 

5 9 742 -7,648 -3099 

11 0 583 -7,352 -3349 

17 5 422 -7,747 -4055 

26 2 258 -8,934 -5123 

55 0 0 -12,758 -7427 



Table 3. Elastic Thermal Stresses 
Muzzle End Section 
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r °r ae az 

2.55 0 -72,007 -78,411 

2.65 -2457 -58,294 -64,412 

2.75 -4256 -45,489 -50,888 

2.85 -5491 -33,462 -37,400 

2.95 -6241 -21,840 -23,634 

3.05 -6574 -10,944 -10,519 

3.15 -549 -702 4,844 

3.25 -6180 11,657 18,109 

3.35 -5464 23,903 34,828 

3.45 -445 35,467 47,409 

3.55 -316 7 46,246 62,691 

3.65 -1675 56,320 74,257 

3.75 0 65,900 85,511 



Table 4. Action Autofrettage Stress 
Muzzle End Section 
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r a 
r 

2.325 _47s400 

2.3401 -46,814 

2.4601 -42,492 

2.55 -41,104 

2.5862 -38,190 

2.7188 -33,895 

2.8582 -29,646 

3.0047 -25,379 

3.1588 -21,185 

3.2 -20,114 

3.35 -16,552 

3.50 -13,457 

3.60 -11,574 

3.75 -9,053 

3.90 -6,818 

4.50 -4,826 

4.20 -3,044 

4.35 -1,443 

4.50 0 

39,024 -9335 

39,521 -8957 

43,732 -6503 

45,055 -5712 

47,806 -4047 

51,576 -2143 

55,529 -686 

59,083 288 

62,336 760 

61,266 760 

57,704 760 

54,589 760 

52,726 760 

50,205 760 

47,970 760 

45,978 760 

44,196 760 

42,596 760 

41,152 760 



61 

APPENDIX A 

THE MECHANICS OF THE COMPUTER SOLUTION 

The program used to calculate the final residual stress state of 

a thick-walled cylinder was written in Fortran IV, The computer used Is 

a UNIVAC 1108 owned and operated by the Rich Electronic Computer Center 

of the Georgia Institute of Technology. The Mendelson and Manson 

Thermal Stress solution was modified to calculate the autofrettage 

stresses by simply reducing the temper at uẑ e to zero and using the auto­

frettage pressure as input. Inputs were of the free-field format 

with the data separated by commas. For the calculation of autofrettage 

residual stress, the input was: Number of Points, Outside Diameter, 

Pressure, Finite Difference Increment. The residual stresses were 

calculated by first using the Mendelson and Manson method of successive 

approximations to calculate the action stress distribution and the 

plastic strain distribution. Then the load was reduced to zero. Using 

the previously calculated values of plastic strain as first approxima­

tions of the strain (step 2 of the Mendelson and Manson method), the 

final stress and total residual strain distributions are calculated. 

In the muzzle section there was no re-yielding of the material so one 

iteration was all that was necessary to obtain convergence. 

The residual stress distribution was compared with the Sachs and 

Coffin-MacGregor methods of residual stress calculation and was found to 

differ little from the residual stress distributions calculated by these 
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two methods. Figures 6, 7 and 8 show the residual stresses calculated 

by the three methods. 

The solution for the thermal stresses is a bit more complex. 

The pressure, since the thermal loading occurred some time after the 

autofrettage process, is reduced to zero. 

The total residual strain distribution calculated during the 

pressure solution is used as a first approximation of the plastic 

strains (step 2 of the Mendelson and Manson method). With this input, 

the solution requires eight iterations to converge to the action thermal 

stresses. 

The temperature is reduced to zero, with the total plastic strain 

calculated during the action thermal stresses remaining the same. If 

any re-yielding occurs when the effective stress is greater than the 

yield strength, the total plastic strain is adjusted accordingly. If 

there is no re-yielding, one iteration is sufficient to obtain the 

residual stress distribution. 

Variable Properties 

A sub-program called PCON was written to account for variable 

properties. The data available for change of Young's modulus and coef­

ficient of thermal expansion with temperature was in tabular form. 

Thus the sub-program PCON approximates the data as a series of steps. 

The sub-program calculates a value of Young's modulus and coefficient 

of thermal expansion for each station along the radius of the cylinder. 

As there were no data available for the temperature dependency of the 
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yield point of the gun steel, the yield point was assumed to be con­

stant at 75,000 psi. 
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