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SUMMARY 

Music is a multidimensional sequence of pitches and temporal intervals that has a 

predictable structure over time. Prior literature has revealed that humans are innately 

equipped to learn and anticipate these pitches and intervals. Because of the important role 

music plays in humans' daily lives, learning how music interacts with other cognitive 

processes would help future utilization of music in clinical or applied ways. Though many 

studies have tested how to use music as a tool to improve other cognitive functions, fewer 

studies have investigated how music potentially affects memory encoding for information 

other than the music itself. This question is worth investigating, given music’s regular 

structure and frequent presence in the background while we study or simply experience our 

daily lives. Schema theory has shown that new information that is related to a learned 

memory structure can be encoded and learned faster, although this has never been directly 

tested, to the best of our knowledge, in the context of the learned structure being music. 

Thus, this study aimed to apply schema theory using an association between musical 

sequence properties and the workload required for parallel visual item sequence encoding 

– in doing so, I tested whether listening to familiar and regular music provided a "temporal 

schema" through its organized and hierarchical structure that has a cross-modal influence 

on the acquisition of other (here: visual) mnemonic information. Consistent with my 

hypotheses, the results revealed an interactive effect of music familiarity and music 

regularity on parallel visual sequential learning. While listening to music may improve or 

distract from parallel memory encoding in various circumstances, this study not only 

provided novel evidence that music regularity and familiarity were both factors 



 viii 

determining the music’s influence, but also implied that music’s effect on memory might 

depend on other individual differences factors. 
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CHAPTER 1. INTRODUCTION 

Can you recall the very last time when you heard a piece of music? It was usually 

not a remote event for most of us. According to a recent survey (2017), Americans on 

average listened to music for more than 32 hours within a week. Music has been deeply 

ingrained in human daily life from the early stages of human history (Cross, 2001; Huron, 

2001). Most people find music enjoyable, and humans have remarkable, innate music 

acquisition and perception abilities (Menon & Levitin, 2005; Norton et al., 2005; Patel, 

2010). Because of this, nowadays with easier access to music such as via Bluetooth, it is 

frequent to see people listening to music while doing other things, including when they 

perform important tasks like studying or working. This phenomenon has led researchers to 

question what effects music may have on other cognitive functions. For example, studies 

have provided evidence for facilitative effects of listening to music during motor tasks in 

patients afflicted with Morbus Parkinson (Bernatzky et al., 2004). Other studies have 

focused on how music modulated emotion and have demonstrated the possibility of using 

music as an intervention in mood disorder treatments (Moore, 2013).  

However, regarding its effect on memory, there has been debate over whether 

background music helps or distracts from parallel memory-related tasks (Furnham & 

Bradley, 1997; Jäncke & Sandmann, 2010). Some evidence suggested that listening to 

music could disrupt attention to working memory tasks such as reading comprehension, 

stealing cognitive resources and resulting in worse memory results (Furnham & Strbac, 

2002; Thompson et al., 2012). Others have found that using music paired with information 

could help memory performance such as improving autobiographical memory recall in 
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Alzheimer’s disease patients by providing contextual cues (Cuddy et al., 2017; Lord & 

Garner, 1993) as well as verbal memory and language learning (Kang & Williamson, 2014; 

Smith, 1985).  

There is therefore a long history of researchers testing music as a memory aid but 

the results have been different. Moreover, many of these studies have focused on 

verbal/linguistic related memory as well, but from an applied research angle this is not the 

only type of memory to suffer in neuropsychological conditions. The answer to whether 

music could help people memorize information, thus remains unclear and controversial, 

especially for non-auditory and non-linguistic information. There are a number of  possible 

explanations for this continued uncertainty. Firstly, not all music is created equal (meaning 

different genres, and individual compositions within a genre have distinctive properties 

that could influence their impact on memory) and not all people are equally good at 

processing music (Jonides, 2008; Negus, 2013; Seashore, 1937). This led me to consider a 

fundamental question in this thesis: does music of different properties (e.g. more- versus 

less-regular, familiar versus unfamiliar, etc.) have different effects on non-music 

information memory encoding? Moreover, music’s effect on memory and learning might 

be inconsistent due to people’s different music skills.  

Another possible explanation for the undetermined effect of music on memory is 

that music might show unequal effects on different types of memory (e.g., active working 

memory vs. long-term episodic memory vs. semantic memory) or even for different types 

of target information being memorized. For example, many studies suggesting benefits of 

background music for memory encoding used text information as the memory target – this 

may be a critical detail because the overlap in involvement between our language system 
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and music system has been implied as one of the explanations of such facilitative music 

pairing effects (Ferreri et al., 2013; Moussard et al., 2012; Patel, 2010). Meanwhile, less 

evidence has been found to clarify how background music influences learning non-

text/non-verbal/non-linguistic information, and it is further the case that there is a lack of 

research focused on music pairing just during the memory encoding stage. From an applied 

angle that is an important limitation of the current literature, because it may not always be 

feasible to plan on replaying music from encoding to elicit retrieval in an individual (e.g., 

Cuddy et al., 2017; Lord & Garner, 1993). Considering the prevalence of music listening 

in daily life during information processing and encoding, in this study I sought to fill the 

gap on whether listening to background music influences non-text and non-auditory 

information processing during memory encoding. Due to the variability of memory types, 

information categories, and music features in the existing literature,  being able to answer 

the question of for whom (individual differences), when (e.g., its effect during memory 

recall vs. memory encoding), and what type of music could improve memory encoding will 

ultimately require more than one research experiment. But any more precise insights or 

discoveries about these questions would be important from both theoretical and applied 

interests. The answers could help us understand more about the basic science of how cross-

modal memory works, and could further the applied science of helping humans modulate 

their learning and working environment and addressing the idea that we could perhaps use 

music to optimize the efficiency of cognitive functions. For instance, as a student, I often 

listen to music while preparing for an exam – do any properties of the music matter for 

whether it is beneficial? In this study I aimed to narrow down the broad question of how 

music (broadly defined) affects memory (broadly addressed in the prior literature) to focus 
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on how background music affects visual sequential memory, which on one hand is a type 

of memory that does not share as much cognitive and neural substrate as linguistics and 

music do, but on the other hand is a major component of daily episodic memory and 

associations, as well as other long-term memory important for daily function like being 

able to retrieve a sequence of visual landmarks to navigate our environment. I further aimed 

to make the broad research topic manageable taking the concern raised above about 

potential variability in the prior literature in music genres and specific compositions used 

as stimuli, and zooming in on manipulating properties of music that can be more directly 

related to the memory sequencing psychology literature.  By asking such questions about 

a specific memory type and manipulating specific properties of music, one of my goals was 

to better identify whether a specific constructions of music could improve long-term 

sequence memory encoding.  

With this goal of studying specific mechanisms that modulate how music and other 

memories interact, in this thesis, I raised a new theoretical perspective for the music 

memory field on how music could be used to help sequential associative memory formation 

in other modalities. I proposed that research area can be moved forward  by building a 

bridge between the knowledge that our minds have a schematic music perception system 

and psychological theory surrounding “schemas” in human associative memory. The 

psychology of memory suggests that schemas (learned and stable associative memory 

structures/networks) enable new associated information to be encoded easier (Van 

Kesteren et al., 2012). Music cognitive science has indicated that that human music 

processing system could be connected to psychological schema because music perception 

was highly depended on prior knowledges in a way that music can become quickly 
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schematized and that learned music, which follows music syntax, could act as schemas to 

help new music learning (Leman, 2012). Based on these two theoretical bases (which were 

elaborated in further detail in the following text), I hypothesized that schematic music 

sequences could help new sequence encoding for associated information . By building a 

design in which I compose and manipulate the schematic nature of music stimuli, and pair 

it with visual sequences of information, the following thesis project aimed to reveal 

information that could inform strategies for pairing music that could potentially aid 

encoding of other memory sequences in our daily life (e.g., the sequence of sights 

contributing to an episodic memory or a navigational route, which can later – with multiple 

exposures - contribute forming or updating semantic knowledge).  

One important clue for my idea was the evidence at retrieval from both healthy 

individuals and those with memory-deficits that music provided sequential cues for 

memory and helped memory for associated information, putatively by providing 

reinstatement of associated temporal contexts (Kasdan & Kiran, 2018; Samson & Zatorre, 

1992). However, as noted above, there has been debate on the encoding side of memory 

over whether music played in the background of parallel information could positively 

affect learning results – there has been some evidence that listening to music during 

encoding could improve episodic memory performance (Ferreri et al., 2013; Proverbio et 

al., 2015), but music has also shown to impair visual associative memory performance in 

older adults (Reaves et al., 2016). In either case, the mechanisms for why music exerts such 

influences have also been unclear. Thus, one open question to be addressed was why music 

does not persistently benefit encoding across people and what properties of music matter 

for its influence.  
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Music is a highly complex stimulus. To constrain the research problem from the 

natural variability in music stimuli one might take from the radio to something that can be 

carefully manipulated in the laboratory, in this thesis I focused on two properties of music 

– familiarity and regularity. As noted above, music science has indicated music could form 

“temporal schemas” (Leman, 2012) – encoded sequential frameworks of pitches and timing 

that enabled people to predict what comes next in the composition with relatively limited 

effort and attention. As such, I hypothesized that one implication from theories of non-

temporal schemas (e.g., Van Kesteren et al., 2010) could be applied to music: Namely, in 

non-musical associative memory, new learning that is congruent with the structure of 

existing schemas is encoded and consolidated easier and faster, putatively because existing 

associations help bridge the new associations to be formed (Van Kesteren et al., 2010). For 

example, it may be easier to learn new locations on campus when other information about 

the structure of the environment is already known (Van Kesteren et al., 2018). If this theory 

translates to temporal schemas, then my hypothesis was that the regular and temporal 

structure of a piece of familiar music could provide a sequential “scaffold” through which 

new information – encoded in parallel - could become associated in sequence. Because I 

theorized the benefit came from learned (familiar) and regular music providing an existing 

predictive sequential structure, I predicted further that the benefit should not be limited to 

sequencing new auditory stimuli – rather, schema theory could provide a way through 

which background music might provide a rhythm and order to sequencing new information 

more generally, and thus help people encode and sequence arbitrary stimuli from various 

modalities in our lives.  
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To test my theory, I therefore paired novel, arbitrary visual shape sequences with 

music during a visual sequential learning task. Here in this study, I defined music as a 

sequence of tones ordered in a specific temporal relationship. Based on the schema theory, 

new memory encoding can benefit from being able to relate it to a familiar memory 

structure (Van Kesteren et al., 2012). Thus, my first primary hypothesis for my thesis 

was that visual memory sequence encoding could benefit more from pairing with known 

music sequences more than novel ones where the structure is unknown. In the experiment 

setting, I set up two conditions of music familiarity (first independent variable) – 

learned music and unlearned music (more details in Method and Results).  

Besides familiarity of music, I also hypothesized that the predictivity or regularity 

(second independent variable) of music would also have different effects on paired visual 

sequence learning, motivated by evidence in psychological schema theory that a stable and 

expected old memory structure (here a music sequence) could provide more information 

for structuring new long-term memories (here sequence associations for visual stimuli). 

Music science has found that music, similar to language, followed rules and syntax such 

as chords and octaves (Patel, 2003; Tan et al., 2017). In this study design, I aimed to 

manipulate music in the level of its syntactical correctness and referred it as music 

regularity. Admittedly, “Regularity” was not a technically-specific term in music science 

–I defined it by how I operationalized this term below as well as in the Method. In brief, I 

composed novel music stimuli following a specific predictive syntax and then created their 

comparable condition by breaking the syntactic rules while the musical components (notes) 

remained the same in order to ensure the two conditions only differed in their predictivity 

(see following and Method. for details). At a high level, the “regularity” manipulation I 
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used was based on evidence that “syntactically correct” music could form schemas for new 

music perception and learning (Leman, 2012). Something not tested before: here I aimed 

to leverage this evidence to investigate if such schematic music (music that following 

musical rules) could facilitate non-music sequence encoding. Similar to language, not all 

music genres are structured in the same manner, and not all individual music pieces are 

composed equally. What I targeted in this thesis was the idea that music has different levels 

of “regularity” – I used the terminology that music was “regular” when the arrangement of 

tones in temporal order was organized and statistically associated with each other (in music 

terms, the notes follow musical syntax and are linearly arranged). Studies showed that such 

regular music is predictable even for the first time listening, and such music evokes brain 

activity differently from syntactically irregular music with expectation violations (Hagoort, 

2003; Koelsch et al., 2007, 2019; Patel et al., 1998). Such data implied that humans are 

equipped with predictive coding for syntax-correct music. Thus, by manipulating regularity 

in experimentally-generated music, rather than allowing to be a freely varying parameter 

that might have contributed to variability in the prior literature on how music affects 

different types of memory, I could test whether the predictive/regular music affected 

parallel sequence learning differently than irregular music, as predicted by psychological 

schema theory.  

A highly relevant concept to my operationalization of “Regularity” is prior studies 

on human recognition of music with more or less regularity (represented by comparing 

tonal vs. atonal music) also have shown that humans could fail to perceive syntactically 

incorrect music as an event with hierarchical structure (Dibben, 1994). This hierarchy in 

music is important, because it means that notes are perceived as grouped into motifs, which 
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are then grouped into lines or sections, which are grouped into movements and stanzas 

(Lerdahl & Jackendoff, 1983). A non-music analog is that in language sentences are made 

up by phonemes grouped into words grouped into phrases - and it turns out that regularly-

structured music’s hierarchy enables human to better encode and understand the music 

(Levitin, 2006), and therefore this hierarchical structure and relationships of pitch and 

temporal intervals are important for music to be a meaningful event (and something that is 

degraded in irregular music) (Bigand et al., 2014; Dibben, 1994). To relate this back to my 

thesis idea, based on schema theory, if schemas could facilitate information encoding by 

providing a persistent template for how associations are organized (van Kesteren et al., 

2014), and given evidence from music science that that applies to temporal dimension as 

well (i.e., for music’s sequential associations), then irregularly-structured music – with low 

level of hierarchical structure and looser relationship between pitches and temporal 

intervals - should provide a less-effective sequential schema for new learning. Thus my 

second primary hypothesis for my thesis was that irregular music would thus result in 

less benefit or even impaired paired long-term sequence information encoding, compared 

to regular music.  

To test this second hypothesis, I created purely-instrumental music stimuli, 

following western classical music composition, which represented the type of music people 

might listen to during their daily life. I manipulated this classically-composed music into 

two conditions of music based on the regularity. In the study, my “regular” music 

composition stimuli, or syntactically schematic music, followed the predictive rules of 

western music. For example, it was regular music when keys were arranged by a flow of 

perfect fifth. In contrast, the irregular music condition lost/violated the regular predictable 
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pattern of tones and temporal interval, which as I described in detail above was predicted 

as a necessary feature for the music stimuli to provide sequential schemas for new visual 

sequences learning (i.e., for how classical music on the radio might help us encode the 

series of landmarks we pass during navigation). Importantly, however, in my design 

irregular music had the same set of tones across the composition as a whole as regular 

music so that varying tones or keys were not a possible confound for comparisons between 

sequence learning paired with my regular vs irregular stimuli, and so that irregular music 

was still memorable such that people were able to get familiar with it (more details in 

Method), ensuring a clean contrast based on regularity. To avoid possible confusion from 

the music-related terminology, in the following text when I referred to either of my musical 

conditions generally (since both conditions are sequences made up of tones) I would call 

them simply “musical sequences” or “music”. 

Although cross-modal schema effects have not been directly tested in the manner 

proposed here, there have been hints from neuroscience studies that further support my 

predictions for their possible influences in my study: First of all, at a high level my study 

aimed to study cross-modal schema benefits on learning. We did know at least that the 

associations within schemas themselves could be multi-modal, involving abstract or 

higher-level knowledge and concepts in both humans and rodents. For example, schemas 

in school learning material could help encode new knowledge, which could be highly 

abstract and involves representations acquired through both text and oral/visual 

presentation (van Kesteren et al., 2014). Animals studies have shown that in the 

hippocampus, an area strongly associated with memory encoding and consolidation, 

schemas and associative memory were represented by hierarchically-organized neural 
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representations, suggesting that relevant memories shared overlapping neural states even 

when the component pieces of associative information were of different types (e.g. item 

and spatial location) (McKenzie et al., 2014). Second of all, in this study I proposed that 

music would help encoding of sequences of new information by providing a stable and 

regular temporal order. Neuroscience has identified regions such as the hippocampus at not 

only being good at associating new cross-modal information (Gilbert & Kesner, 2002; 

Henke et al., 1999; Holdstock et al., 2010) but being a brain region with a remarkable 

ability to process temporal and sequential structure (Barnett et al., 2014; Eichenbaum, 

2014; Kesner et al., 2002). Because such literature indicated shared neural substrate for 

associative memory development and temporal sequence encoding, for the purposes of my 

study this suggested the brain had mechanisms in place that could enable us to take 

advantage of temporal sequence representations that were provided by familiar music in 

order to reinforce the encoding of new information via such temporal structure.  

Some other hints that my hypothesized effects of music on learning should occur 

came from studies of parallel-sequence learning: one study showed that learning could 

occur in parallel for two independent sequences when one of them was non-attentionally-

demanding (as familiar music can be)(Curran & Keele, 1993). Second, when two streams 

of information were present (e.g. color and text), implicit sequence learning of either 

stream could happen only when the two streams of information were stably correlated, 

meaning that same pairs of individual stimuli of the sequences co-occur during learning 

(Weiermann et al., 2010). Such data further motivated my hypothesis that by building a 

pairing between music and visual sequences, people might benefit from implicit temporal 

sequence processing of the music in relation to the visual stimuli and improve their explicit 
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visual sequence memory. Critically, however, they also suggested that if music was 

disorganized and unpredictable in its structure (as I tested through the irregular condition 

in the following design), this could produce 1) distracting effects of music (consistent with 

the interpretations from Furnham & Bradley, 1997; Jäncke & Sandmann, 2010) and 2) 

further impair encoding of new, parallel sequences of information because the sequential 

relationships in the music were themselves irregular.  

For this thesis, I was particularly interested in the applied potential of this work, 

and the fact that it could help us understand alternative learning and memory strategies that 

may be applied to helping patients with memory deficits such as dementia, as exhibited in 

Alzheimer’s disease, or even attention deficits. One exciting possibility was that retrieving 

sequential knowledge in other attention-free settings may also influence incidental learning 

of new information. For example, sequential and rhythmic body movements like dance 

might also be able to benefit new learning when paired. Critically, however, any applied 

angle for such work must consider individual differences. People could differ dramatically 

in their memory and their music abilities, and because of this, music interventions could 

differentially impact musicians vs non-musicians or simply any individual as a function of 

their innate music abilities. Because of this, this thesis also examined at the role of 

individual differences on my hypothesized cross-modal learning effects. The results might 

help our understanding of whether music modulates memory in some more than others. 

Given that most of our lives involve listening to music, at both the group and individual 

differences level, my study could provide evidence for how this practice influences our 

daily tasks – perhaps without us knowing it.   
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CHAPTER 2. BACKGROUND 

2.1 Humans Use Music Schemas to Process and Anticipate Music. 

Music has played an essential role in entertainment and communication across 

human history, and humans have evolved in a way that makes them highly adept at music 

recognition and production. Although a piece of music can contain complex information 

from multiple domains, humans can memorize it rapidly with small cognitive workload 

(Tan et al., 2017).  

One of the skills that supports humans’ music processing efficiency is the 

anticipation for both pitch sequences and temporal intervals making up the music “flow”. 

The ability to predict future events is an essential function for animals to have faster 

responses to environmental changes, and associate negative (as well as positive) outcomes 

with sequences of events, and we see an interesting reflection of this in our processing of 

music. Such sequential prediction and learning processes have been tied in human 

neuroscience work to evidence for universal neural mechanisms that process error 

detection such as ERN (error-related negativity), a brain signal that occurs when the brain 

detects a behavioral error (M Falkenstein, 1990). Brain regions such as basal ganglia, 

medial prefrontal cortex and medial temporal lobe also support error detection and event 

prediction (Alexander & Brown, 2014; Michael Falkenstein et al., 2001; Knutson et al., 

2003). Although such mechanism-level insight has been limited in studies of music, these 

neural circuits have been broadly implicated in studies of music processing and prediction. 

Many EEG studies have shown that people predict musical beats to follow a preferred 

rhythm, and the frequency of timing intervals in the music synchronize with oscillations in 
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various brain areas (Large et al., 2015; Nakamura et al., 1999). One of the most frequently 

highlighted findings is that the human brain reacts to a violations of these predictions in 

what will come next in the music with event-related potentials (ERPs) such as the early 

right anterior negativity (ERAN) and frequency mismatch negativity (MMN) (Herholz et 

al., 2009). For example, ERAN usually happens 200ms after a chord that people “feel 

uncomfortable with” and MMN (fronto-central negativity) reacts most strongly for out-of-

key tones (M. A. Rohrmeier & Koelsch, 2012) – both responses are ultimately thought to 

depend on having had prediction, from a schema of musical structure, for what chords and 

tones “should have come next”. Other areas such as the auditory cortex and inferior frontal 

cortex have also been shown to support music prediction and music memory (Salimpoor 

et al., 2013; Watanabe et al., 2008).  

Interestingly, the brain produces error-responsive potentials during both music and 

language processing that are similar, arguably because they both follow have basic syntax 

and structural (schematic) rules (Bigand et al., 2014). Interestingly, music syntax is not just 

found in humans. For example, primates can recognize octaves, which indicates that 

specific music rules exist across species and can be innate.  

The syntax and structure are important, because studies have also shown that 

humans are better at processing  musical sequences where durations of the temporal 

intervals between notes are in a ratio of specific integers (Janata & Grafton, 2003). Other 

studies have shown that people prefer to group tones with short intervals into one section 

or an musical episode (Tan et al., 2017). Although musical rhythm structure and styles 

change across cultures, humans generally expect regular rhythmic sequence patterns (Tan 

et al., 2017). These syntax or basic rules in music enable humans to predict ongoing music 
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with good accuracy. One implication for the present proposal is that since people 

powerfully process the regularity of music and the predictability of music, and likewise 

music that is irregularly structured and scrambled is difficult to predict and process and 

this may influence parallel cognitive functions.   

The syntax of music also helps humans to process even novel pieces of music in 

clusters, within which tones are harmonic to each other. The existence of chords is one 

example of defining clusters. Similar to visual perception, humans group auditory stimuli 

based on Gestalt or related rules (Tan et al., 2017). The human auditory system tends to 

detect well-regulated or prior learned patterns of input from both tonal and temporal 

dimensions, and is less efficient in learning irregular patterns of sound like noise (Tan et 

al., 2017). Integrating ongoing dynamics of sounds into clusters enables people to make 

chunks in working memory (called “phrases” in music), during listening that enable easier 

encoding. Collectively, these features are highly reminiscent of characteristics of other 

forms of “schemas” (discussed below) – with familiarity and statistical regularities in the 

structure of music enabling us to process and predict tones and timing efficiently, even the 

first time we hear a composition. 

Behavioral studies have confirmed that music with tonal sequence patterns can be 

rapidly learned by mere exposure (M. Rohrmeier & Rebuschat, 2012). Besides the auditory 

system's rapid detection of the agreement of sounds with basic music rules and syntax, the 

efficient music learning system also heavily relies on encultured schemas, long-term 

memory for prior music experiences, and short-term repetition. Leman (2012) described in 

detail in his book how and why memory networks involved in schemas are also involved 

in processing music. In brief, he argued that when listening to one piece of novel music, 
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listeners will form expectations based on musical patterns stored in memory and rapidly 

scan the architecture of the music by integration and segmentation. The outcomes of this 

procedure may be buffered and processed within the working memory network (often in 

chunks, as I noted above). Meanwhile, prior knowledge of music will help listeners to 

recognize familiar or preferred patterns and these patterns could be culture-specific. This 

detection, if any, can evoke and stimulate encoding processes in long-term memory 

networks. By automatically comparing the new auditory sequence with prior music 

memory, the new information can be more quickly stored due to an existed exemplar. The 

whole process, after being repeating with just a few exposures, can result in forming 

accurate cognitive representation for the newly learned music and its overlap with the old 

music memory, together clustering the features of new music with prior music knowledge 

into an updated version of the schema (Leman, 2012). In this way, our semantic knowledge 

of music can grow and evolve through the same principles attributed to other forms of 

knowledge in the memory literature. 

In conclusion, the extant studies suggested music acquisition and recognition 

abilities were highly developed in humans. The mechanisms behind it involved several 

neural systems and a strong musical schematic processing system, putatively through the 

same schema processing circuits attributed to other forms of memory, enabled people to 

learn music unintendedly. People can memorize or even reproduce a piece of music without 

declarative understanding of the meaning or the grammar behind the music (Ettlinger et 

al., 2011). Because of the extraordinary music perception and the fact that many people 

love to listen to music while focusing on other executive function-demanding tasks, the 
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important question this study asked was how background music affects memory for new 

knowledge learning and episodic encoding.  

2.2 Can music enhance memory of other types? 

Music is often used as mnemonic device for declarative memory. For example, many 

people learned the alphabet using a song when they were kids. Similarly, music can be a 

powerful memory cue, such that people might recall details and emotions from a remote 

event when hearing a piece of music again after a long time. Music can serve as a 

sequentially-structured delivery of temporal context for episodic memory and can be used 

to cue recall of an event (Belfi et al., 2016; Janata, 2009; Wallace, 1994). It is thus natural 

to consider the possibility and the mechanisms through which sequentially-structured 

music can aid human memory. 

Some studies have shown that pairing music with text-type information could 

improve retrieval success when music is later played (Moussard et al., 2012; Rainey & 

Larsen, 2002). The ability of music to serve as a retrieval cue may be unsurprising – if each 

note, or perhaps a collection of notes, is associated with a stimulus and treated as an 

associative retrieval cue, this could support pattern completion of a memory. But does it 

aid encoding, per se? Several studies have shown that word spelling accuracy significantly 

increased when, during learning, the words were presented through music instead of by 

speech (Schlaug et al., 2010). Many commercial advertisements have taken advantage of 

this phenomenon and paired brief and easily memorized music to their slogans (Yalch, 

1991). The pairing effect has also led to new interventions in some memory disorders. For 

example, one study showed that aphasia patients benefited from using melodic intonation 
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therapy, which asked patients to sing instead of speaking out words (Albert et al., 1973). 

Similar therapy was used in Alzheimer's patients – their autobiographical memory retrieval 

has been shown to be better during listening to familiar music, which putatively provides 

contextual cues (Irish et al., 2006). Pairing music with visual cues such as film clips can 

help to recall of the visual stimuli (Boltz et al., 1991).  

Importantly, most of the above current evidence for music's enhancement on non-music 

memory focuses on pairing music with text or only on how music, especially old-memory 

related and previously-experienced music - as an event context - can help evoke recall of 

the memory. There is a need for work that explicitly tests how music, both familiar and 

novel, might affect memory during encoding and learning. In the study, I tested whether 

familiar and regular music conveyed a benefit to learning associations between other 

stimuli (in my design, simple abstract shapes) during encoding, and whether it did so 

through the lens of the schema memory theory. 

2.3 Information encoding and consolidation benefits from associating to the 

schema. 

The above literature review focused on music properties and music schemas. What 

do we know about schemas from the broader memory literature? Standard consolidation 

theory holds that memory consolidation processes involve transferring instances of 

declarative memories formed in the hippocampus gradually, over time, out to the cortex  – 

most information needs numerous revisits or internal replay events to become stable, 

lasting, hippocampus-independent memory (Gais & Born, 2004; Hasselmo, 2006; Nadel 

et al., 2000). However, striking data have shown that when new associative information is 
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congruent in some way with the structure of previously encoded knowledge or old 

memories, referred to as a “schema”, the memory encoding process is more efficient and 

the consolidation process can be much faster (Tse et al., 2007; Van Kesteren et al., 2010). 

For example, the first time a child sees an eagle, he/she might have no idea what that animal 

is. But with prior knowledge that birds have wings and beaks, he/she could easily encode 

the species of eagles, categorize this type of animal with birds rather than - e.g. - with dogs, 

and make predictions about other characteristics of eagles that have not yet been observed.  

The schema can be highly abstract and consist of hierarchical information – it 

encompasses different dimensions of the memories and thus may be multi-modal 

(McKenzie et al., 2014). Typically, schemas have been studied in non-temporal forms (e.g., 

knowledge of spatial environment structure or the relationships between concepts), but the 

critical finding is that novel associations (e.g., that eagles often fish) are better learned 

when present in a familiar context or semantic framework than an unexpected one (e.g., 

when other behaviors and features of birds are known than when eagles are the first bird 

ever encountered or learned about (Van Kesteren et al., 2010). Evidence from cognitive 

neuroscience has linked several neural mechanisms to the learning benefit  of the schema 

(McKenzie et al., 2013; Preston & Eichenbaum, 2013; Van Kesteren et al., 2010, 2018). It 

has been argued that an interaction between the medial prefrontal cortex, which helps 

survey old memory traces and detect matches/mismatches with the new memories, and the 

medial temporal lobe - a core region for episodic memory encoding – enables congruent 

information with prior knowledge to fast-track strong encoding and memory consolidation. 

From the perspective of my broader interests in my project, schemas have been 

utilized in applied ways in many settings – for example, to aid learning such as languages. 
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For example, one study paired words with familiar pictures to enhance word learning 

(Havas et al., 2018). As highlighted in the background sections above, music is made up 

of tones and temporal intervals that follow strict and regular hierarchies and music has 

many of the schematic properties of language and semantic concepts, with a distinctive 

temporal component. Although virtually untested in the broader literature, I in this thesis 

hypothesized that music that followed predictable structure and hierarchies could therefore 

provide a temporal schema, that would – like other forms of schemas – confer a benefit to 

associating new temporal information. This study aimed to test if an association between 

familiar and regular music provided a sequential structure for encoding sequential 

associations of non-musical memory.  
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CHAPTER 3. METHOD 

3.1 Participants 

 Fifty-one participants were recruited from Georgia Institute of Technology 

volunteer pool. One participant quitted during the task and two participants were excluded 

due to lack of responses during the task, leaving 48 participants aged 18-24 years (25 

females, 23 males). Subjects were pre-screened so that no subject had any hearing 

problems, abnormal uncorrected vision, or basic music recognizing problems. No subject 

had learning disability, attention disability, history of other neurological or psychiatric 

disorder. Participants gave informed consent to the procedures approved by Institutional 

Review Board before they participated.  

3.2 Stimuli 

To address my research question, there were two levels of independent variables. 

The first was the familiarity of music. In the task, a half of the musical pieces (18 in total) 

were learned on the first day, with the specific compositions pseudo-randomly assigned for 

each participant (keep distribution of the second level variables even). Here, unfamiliar 

music could be the reference condition for whether familiarity in music modulates its effect 

on parallel sequence learning.  

 The second level of variables was the regularity of the music. To test the effects 

on visual sequence memory of music in which the tones and temporal intervals were 

arranged with different levels of regularity and hierarchy, I used three auditory conditions 
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in total for comparison. All music stimuli were composed manually based on following 

rules. The reference (control) condition had each piece of music/audio (12 in total) been 

simply composed of monotonic sound – a single note was played 8 times at a steady 

interval, once per second. This monotonic scale was an appropriate control condition for 

my research question because it was technically a simple type of music sequence, retaining 

regularity and predictivity, but lacks the musical hierarchical or harmonic features (Orio & 

Schwarz, 2001; Wedin, 1972) which I hypothesized above should modulate (benefit or 

disrupt) parallel encoding of information. To this end, in the experimental conditions the 

music was an 8-second melody (24 in total) each played by one instrument (flute, clarinet, 

or piano). Each piece of music contained 14 to 24 notes. Each piece of music had a tempo 

of 60 beats per minute. Resembling a brief piece of music as might be played in an 

advertisement paired with slogan, here each piece will be similarly composed – brief, but 

musical and memorable. In the first regularity condition (regular) half of the music 

compositions had an organized and predictable structure within a specific key. The root 

notes of each piece of regular music followed chord progression following western 

classical music tradition. Tones of the same piece of music were in octave relationship. To 

test the idea that the regularity of the sequence structure matters for schema learning 

effects, the second regularity condition (irregular) was made of regular pieces of music 

composed as above, but then transformed by pseudo-randomizing the sequence the notes 

and the temporal intervals between notes that occur – that was changing the occurrence of 

each notes and thus the root notes would not follow a chord progression and the temporal 

interval between notes were not proportional to each other. However, the keys belonging 

to one piece of irregular condition music were still in octave relationship and thus were not 
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dissonant. Because of this, the irregular music was not auditory “noise” - it did sound 

broadly like music and was still memorable, but critically it no longer retained the musical 

syntax: regular temporal structure and predictability characteristic of the regular/tonal 

condition.  

One potential concern is that I composed the regular music based on western 

classical music training, and not synthetically using an algorithm. Because of this, I 

conducted follow-up analyses of statistical properties of my stimuli to verify that these 

“naturalistic” music stimuli and their irregular condition variants differed in terms of my 

operationalization of music “regularity” (see Results). 

The critical test of my hypotheses came through differences in learning of visual 

sequences paired with the music stimuli described above. For the arbitrary visual 

sequences, all the shapes were novel, abstract, and irregular, made up of either lines or 

curves. There were 36 sequences of 4 shapes – 144 different shapes overall (example 

shapes in Figure 1).  

After the task, a brief questionnaire was given to each participant with questions 

relating to the amount and form of musical training experience and subjective ratings on 

how the regular and irregular music affected their emotion and attention during the task. 
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Figure 1 Example visual stimuli used in the experiment 

3.3 Experiment Procedures 

 This was a two-day study containing three parts: music learning, visual encoding, 

and retrieval. In brief, the participants learned some music (instrumental; no lyrics) during 

the music learning phase. The following day, during the visual encoding phase, they 

learned novel abstract shape sequences paired with music. In the end, during the retrieval 

phase, a test was given on the memory of the visual sequences without any auditory cues.  

3.3.1 Music Learning Phase 

The main goal for this phase was to implement my manipulation of music 

familiarity. Here, participants gained a solid memory of some music before visual sequence 

learning. This stage was accomplished the day before visual stimulus sequence learning so 

that the participants had a sleep cycle to help consolidate the memory of music. Subjects 

were asked to memorize 18 novel music stimuli explained above. The music learning task 

contained 2 parts – on the first part, the subjects listened passively to all 18 music 

sequences, each in a loop with an unlimited number of repetitions. Their job was to indicate 
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by pressing a key when they felt they had memorized each music composition. Once they 

finished passively learning all the music, they then proceeded to a music recognition task 

(procedure shown in Figure 2), which helped them to solidify their knowledge of the 

composition through retrieval/practice effects.  

In this retrieval/practice task (Figure 2), for each trial the subject first heard the first 

2 seconds of a piece of previously encountered audio, followed by five consecutive 

auditory recognition choice questions. The remaining 6-second music fragment was 

divided into 5 recognition pieces. For each of the 5 blanks, the correct music fragment was 

presented with a lure choice. The subject needed to re-compose the music by choosing the 

correct piece for each blank and filling all the five blanks for that music. This test 

effectively asked the participant to retrieve the music using provided optional musical 

pieces (an accommodation for the fact that we could not ask them to reproduce the music 

with, for example, a digital keyboard, particularly since they did not all have prior musical 

experience).  

When the subject made any mistake(s) on the retrieval/practice task, the subject 

would hear to the correct music again in a loop until they pressed a key indicating that they 

now knew the piece. The subject then was tested specifically on the previously-incorrect 

music compositions again in the following experimental run after all 18 compositions had 

been tested. Across runs, once the subject correctly reproduced a specific music 

composition on a retrieval task repetition with no mistakes, that music sequence would not 

be tested again in subsequent runs and was marked as ‘learned’.  
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As such, this music memory task was designed so that every one of the 18 pieces 

of music was practiced as many times as needed for a participant to reach an ability to 

perfectly re-compose them from a forced choice design. The memory task was therefore 

inherently self-paced. In practice, due to the individual differences in music sensitivity and 

perceptive ability that I was interested in (see Introduction), some participants did not learn 

all 18 music compositions to 100% accuracy on these re-composition retrieval/practice 

questions. Thus, for practical reasons I put a 2-hour threshold so that participants didn’t get 

trapped in the task forever. To facilitate analysis of the subsequent visual sequence learning 

data, I therefore marked the music sequences that were still re-composed with mistake(s) 

by the end of the encoding phase as ‘unlearned’. Importantly, failing to achieve perfect re-

composition was not equivalent to the music piece being unfamiliar, and so I therefore 

labelled all 18 pieces of audio present in the encoding phase as 'familiar' sequences for 

subsequent analysis. In summary, modulated by individual differences in ability, my music 

learning phase resulted in 18 “familiar” pieces of music, with a proportion depending on 

the individual being labeled as “learned” vs “unlearned”. 

  On the second day, prior to the Visual Encoding phase (see next section) the subject 

was first given a music memory recognition task for the 18 pieces of audio heard on the 

first day. This enabled me to identify “familiar learned” pieces that might nevertheless had 

been forgotten by subsequent day, given finer grained information on when music memory 

influences other sequence learning (if at all). To test retention of each piece in a reasonable 

time frame, the subject was given a forced choice between 3 complete 8s audio samples 

and asked to select the studied music composition from two lure versions of that sequence. 

The lures will be composed by replacing or shifting a few (1 to 3) notes in temporal 
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dimension from the original music. The subject got tested on each familiar music piece 

only once. I marked the correct trials as ‘retained’ sequences and incorrect trials as 

'forgotten' sequences. 

 

Figure 2 Musical sequence encoding task paradigm used in day 1 

3.3.2 Visual Encoding phase 

The critical test of my hypotheses came about in the Day 2 Visual Encoding phase. 

Once participants had been familiarized with the 18 pieces of music (and demonstrate 

varying degrees of retrieval and retention success as noted above), the main Visual 

Encoding (learning) phase of the experiment began. Figure 3 showed the paradigm of this 

learning phase. During this phase, participants learned 36 distinct sequences of four novel 

abstract and irregular shapes. Each shape sequence was paired with one piece of 8-second 
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music, making each shape correspond to 2 seconds of the music. The subject learned all 36 

sequences with randomized order within a run, with 5 runs total (therefore there were 5 

learning repetitions per visual sequence). For each trial, the testing screen successively 

present the 4 shapes in the correct order while the paired music was played. Then the 

participant saw a blank screen, holding the shapes in their mind, and listened to the music 

again, but played in a faster tempo of 6 second. Right after this 6s break, the subject would 

repeat the sequence he/she just learned by sequentially clicking keyboard bottoms that 

correspond to the shapes. Once each shape/bottom was clicked, the corresponding 2 

seconds of music to the selected shape would be played simultaneously. The subject would 

see feedback of whether he/she repeat correctly or not after submitting the answer. Critical 

for testing my predictions about music serving as a temporal schema – 18 of the 36 visual 

sequences were paired with the 18 familiar music sequences, and rest were paired with 18 

novel unfamiliar music compositions (with the same general properties). This enabled me 

to characterize arbitrary visual sequence learning curves in the Encoding phase as a 

function of having familiar/unfamiliar music as a backdrop, as well as whether the music 

was regular or irregular (scrambled and less predictable).  
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Figure 3 Visual sequence learning task paradigm used in day 2 

3.3.3 Retrieval Phase 

 The retrieval phase tested participants on their final memory of both the new visual 

sequences and the music sequences at the end of the experiment. In the visual sequence 

memory retrieval task, each subject was presented visual sequence shapes and needed to 

reorder the shuffled shapes into the correct temporal order (the hallmark of a sequence). In 

each trial, the screen showed 4 shapes aligned in a row in shuffled order. Participants had 

12 seconds to type in the corrected temporal order number for the shapes displayed. 

Without receiving feedback, they were allowed to change their answers within the 12s 

window. There was no music played this time, providing a “pure” test of the final memory 

for the visual sequence structure. Each sequence was only tested once.  
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The musical sequence memory task, on the other hand, was a form of error 

detection task. In each trial, the participant first heard a version of one piece of music (8 

seconds). Only regular and irregular music would be tested (24 in total). Because the 

control condition was monotonic sound lacking tonic harmony with steady temporal 

intervals, memory for the control condition was tested (in simple terms, there was no 

opportunity for an error in this condition). There was a potential difference (error) in each 

second of the regular and irregular music conditions played in this task compared to the 

original version. The difference could come from changes in both tones and temporal 

interval. The numbers of error varied across music because the goal was to test if the 

subjects could not only to detect the error but also to identify correctness: some music had 

no error while some has up to 8 errors. The music would be played twice, back-to-back, 

for each test trial – because the participants needed to respond extremely fast once they 

detected an error, they would hear the music twice so that they could be prepared to respond 

after first time’s detection. During the first repetition, the participants would not be asked 

to make a response, but simply to pay close attention to detect which second(s) of the piece 

contain(s) errors. During the second replay, the participants needed to click a button as 

soon as possible when the error occurred while the music was played. Each piece of music 

was tested once. The music memory task used a different probe from the re-ordering test 

for the visual sequence memory task because 1) ordering shuffled 4 parts of music might 

be easy due to humans comprehension sensitivity to music –for example, the syntax and 

learned schema for music that humans acquired over the course of lives could make putting 

a song in order too easy, and 2) this error detection task required faster reaction and can 

provide more precise measurement for music memory (score of 0 to 8 here). 
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3.4 Follow-Up Baseline Task 

 Based on the positive results of familiar and regular music’s effect on visual 

sequences learning (see Results), I further considered how visual sequence learning 

performance was influenced by listening variety levels of music when compared to not 

listening to any music at all. To achieve this, I ran a baseline version of the experiment by 

replacing the control (monotonic) condition with a no-sound condition. I recruited another 

20 participants for this follow-up task following the same recruitment procedures (11 

females, 9 males, aged 18-27 years). Analyses for this group were identical to the main 

task.   

3.5 Analyses and Hypotheses 

 The main question asked by the project was whether familiar music and regular 

music facilitates visual sequence learning compared to unlearned and/or irregular. If so, I 

would further aim to understand the features of music giving rise to music’s enhancing or 

impairing effects. Based on this goal, I analyzed visual memory retrieval performance and 

visual sequence encoding performance (learning speed) as a function of the experimenter-

created music conditions described above, as well as in a follow-up characterization of the 

specific regularities and properties unique to each regular and irregular composition. I 

further assessed the effects of music on visual memory as a function of individual 

differences in musical skills.  

Based on previous findings from the literature, I hypothesized that familiar and 

regular musical pairing could give rise to an improvement in learning arbitrary sequences 

of new information (here, abstract visual sequences), relative to novel and irregular music 
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(which were more limited in both the “learned” and “predicably-structured” properties of 

schemas). To be more specific, I hypothesized in both the final visual memory task and 

during visual sequence encoding, the participants would learn visual sequences the fastest 

and with stronger final memory when paired with learned and regular music and the worst 

when paired with unlearned and irregular music. Because the control condition was not 

memorable and not dynamically changed in its tones and temporal intervals – thus was 

matched to both in terms of providing background sound but was at the same time unable 

to provide cues about temporal position or order - it provided an ideal comparison condition 

for the different statistical and familiarity properties of my regular and irregular conditions. 

I specifically hypothesized that familiar and regular condition would show improvement 

compared to the control condition. In contrast, there was not a clear prediction in the 

literature for the effects of unfamiliar and irregular conditions compared to the control 

condition, although they could still show a benefit – due to retaining temporal order 

information (albeit less predictable), or they could provide distraction, interference, or a 

division of resources that might even have a negative impact on visual learning. I expected 

to see a stronger effect overall in people with music training history because they were 

more sensitive to music and could possibly gain more solid schema for music whereas it 

was easier for them to perceive the syntax error in irregular music.  

 To test these hypotheses, I conducted separate analyses on visual sequence retrieval 

and visual sequence learning curves from their encoding phase. Visual sequential memory 

retrieval performance was represented by both the averaged retrieval accuracy across trials 

and averaged reaction times – with faster correct-trial reaction times indicating a stronger 

memory strength. I predicted that the overall visual memory performance would be good 
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across participants due to repeated practice during the encoding phase, but that the visual 

sequence retrieval accuracy would be significantly higher in the well-learned music 

conditions than the unlearned conditions, reflecting a schema benefit. I further predicted 

higher visual sequence retrieval accuracy in the regular music group compared to both the 

control and irregular group, due to these compositions comparison conditions lacking the 

regular temporal structure important for music “schemas” and syntax. Moreover, I 

hypothesized that these effects to be moderated by the subjects’ musical skill level, such 

that participants with more musical training would be more strongly influenced by the 

properties of the music.   

 Given the design of long encoding period, I predicted the potent schema benefits 

would also be reflected in the learning curves of the encoding phase leading up to the 

retrieval test. During the encoding phase, because participants retrieved the visual 

sequences at the end of each trial, I used their performance (either correct or incorrect per 

each trial) to derive learning rates. To measure the learning speed, I included an additional 

measurement of learning speed – at what learning stage each individual visual sequence 

was successfully learned (defined as the participant always correctly re-ordering the 

sequence in the following runs after that learning stage), called successful acquisition 

phase. For this, I expected to see that participants learned visual sequences paired with 

well-learned and regular music in the earlier stages of the learning phase than novel and 

unpredictable irregular music. Because this effect depended on learning a composition-

specific “schema” above and beyond learned rules about music from our lives in general, 

and on processing the music composition’s regularity/statistics, I predicted that this effect 

differed across individuals with different musical training experiences and music. 
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CHAPTER 4. RESULTS 

4.1 Music Familiarity Validation – Final Music Memory Task 

 First of all, I tested participants' memory for all regular and irregular music at the 

end of the task in order to verify that participants in general did have better familiarity for 

old music that was shown on Day1. Figure 4 showed the distribution of task score in each 

condition. For all pieces of old music, the average score of the error detection task was 6.2 

out of 8 and the new pieces had an average score of 4.8 and expected significant difference 

from old music (tdf=1222 = -3.917, p <0.001), given that these were novel (or still being 

learned) on Day 2. There was also significant difference between memory performance for 

regular and irregular pieces in both new and old condition (new: tdf=609.2 = -3.824, p<0.001, 

old: tdf = 609.2 = -2.345, p <0.01). These were an important result because 1) the result of 

better score for old music validated the design of training participants to memorize half of 

novel music stimuli in order to develop two levels of music familiarity. 2) the result showed 

that old regular music gained better score than old irregular music. It was as I anticipated 

that regular compositions could be learned more precisely because of their syntactic 

structure. However, this study aimed to test regularity’s influence via a form of schema 

effect, thus there was a need to equate the visual sequence learning conditions such that 

they did not differ in background music familiarity but only in the intended 

perceptual/sequential structure differences of those compositions. I further explained and 

targeted this problem in the next section. 3) although participants never intentionally 

learned Day2’s music – the only chance they listened to the music was during the visual 

learning and supposedly their attention was on learning the visual sequences, the 
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participants still gained partial memory for the new music. It again suggested that humans 

were able to encode music unintentionally.  

 

Figure 4 Musical retrieval task accuracy distribution 

This is the final music memory test results. The task was an error detection task giving back a score 

from 0-8 where 8 represented no mistakes and 0 represented zero correctness. The plot shows the 

accuracy distribution for each music group (excluding the control condition, which cannot have 

errors/be tested). Y-axis represented the proportion of music pieces distributed at the corresponding 

accuracy score.   

 

4.2 Music Learning Skill and Music Training History 

People vary a lot in their music skills and numerous studies have provided evidence 

for an association between music training and other cognitive abilities such as visual 

processing speed and attention (Degé et al., 2011; Rainey & Larsen, 2002; Roden et al., 

2014). As a result, individual differences in music skills should be considered in this study, 

and should be tested particularly in two aspects: 1) how music training affected Day 1 

music learning task and resulted in different levels of music memory. 2) in the following 
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analyses of visual memory, how music’s effect on parallel task was mediated by music 

training.    

As predicted, subjects’ music learning performance on the first day varied 

considerably. 25 out of 48 subjects finished perfectly learning all 18 pieces of musical 

sequences (re-composed the music by filling the five blanks perfectly), although the 

majority of participants learned most of the pieces (minimum: 6 pieces perfectly learned, 

mean: 15.4 pieces perfectly learned). The numbers of pieces of music learned perfectly on 

the first day across subjects had a standard deviation of 3.37. This variability again 

indicated individual differences in levels of music learning skill and provided me with an 

opportunity to distinguish, at least for some people, visual sequence learning when paired 

with ‘familiar unlearned’ vs novel music conditions in the learning phase. To further 

explain this variability, I looked at the correlation between training history and music 

learning performance on Day1. Each subject’s performance (r) on Day1’s re-composition 

task was defined as the ratio of perfectly learned pieces of music out of 18 minus total time 

used to finish the whole task z-scored across subjects (r = n/18 – z-score(t)). Each subject’s 

music training history was defined as cumulative years of training in playing instruments 

or/and singing. I found a significant positive correlation between years of training and 

music learning performance on Day1 (Pearson’s r = 0.49, p <0.001), indicating people with 

less music training spent more time on music learning and ended up retrieving the music 

with less accuracy. In the following analyses having individual differences in music skill 

as a factor, I grouped the participants into Experienced and Less Trained (in music) using 

7 years, the median music training length as dividing point.  
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I also compared the Day 1’s learning performance between regular and irregular 

music. It turned out that subjects in general significantly learned more regular music than 

irregular music with perfect performance (F = 12.06, p < 0.001). Because participants 

learned less irregular music perfectly, in order to compare how schematic regular and 

irregular music affected visual memory with the factor of regularity being the only 

difference instead having difference levels of knowledge, I decided to selected music as 

the schematic music (learned music) using a strict criteria – the music, no matter regular 

or irregular, needed to be perfectly learned on Day 1 so that the subject memorized and 

were able to retrieve each small details of the piece.   

When all Day 1’s music was tested again on the second day (excluding monotonic 

sequences), the accuracy percentage ranged from 33.3% to 100% with a mean accuracy of 

85.1%. There was no significant difference between accuracy of regular musical sequence 

versus irregular musical sequence across subjects (repeated measures t-test: F=0.816, p = 

0.367), indicating that the participants retained memory of most music after a day and the 

deliberate training on both music types kept these conditions well-matched on the second 

day and before the visual sequence learning task.  

In the following analyses, in summary, I labeled musical sequences as ‘(well) 

learned’ stimuli if the participants successfully acquired that piece on the first day and 

successfully recognized it on the second day. Again, strict criterion was used because the 

hypothesis asked how schema (music here) could affect new memory formation and thus 

only music with good memory were included in schematic group. I collapsed across the 

rest of the music pieces from Day 1 and all 18 other sequences that were not present on the 

first day into ‘unlearned’ music. All control (monotonic) music appeared on Day 1 were 
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marked as ‘learned’ and ‘unlearned’ if not appeared on Day 1, for better control and 

comparison. Other than regularity of music, learned vs. unlearned music made up the 

second independent variable, level of music familiarity.  

4.3 Visual Memory Retrieval Test 

  Participants scored either correct or incorrect for each trial during the visual 

memory retrieval task depending on whether they successfully re-ordered each sequence’s 

4 shapes into the correct order. Overall visual task accuracy percentage across subjects 

ranged from 58.3% to 100% and 90% on average. I expected this high level of performance 

(on average) because participants practiced the relatively brief sequences during learning 

for almost two hours. To test whether the visual learning results differed across conditions, 

I used repeated-measures ANOVA on the memory accuracy affected by level of music 

familiarity, the regularity condition, and the subject music training. Results showed a 

significant interaction between music familiarity and regularity (F = 4.168, p = 0.0156, see 

all other ANOVA results in Appendix. Table 2 Repeated measures ANOVA results). Pair-

wise simple effect comparisons using Tukey’s HSD showed that learned irregular music 

condition had significantly less visual retrieval accuracy than unlearned irregular/regular 

condition, plus there was a trend that learned-irregular music had less accuracy than 

learned-regular music (Figure 5.a, learned irregular < learned regular: p<0.01, learned 

irregular < unlearned regular: p<0.05, learned irregular <learned regular : p =0.0631), 

indicating a disruptive effect of learned irregular music on pairing visual sequences 

learning (see Appendix. Table 3).  
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Next, I analyzed the reaction time differences among conditions. Many studies have 

shown that reaction time (RT) in memory retrieval tasks can potentially represent the 

strength of memory (Gimbel & Brewer, 2011; Raab, 1962; Robinson et al., 1997), 

especially for correct trials – with a faster reaction or response in successful retrieval 

implying a better memory and a higher confidence. Thus, I measured the length of reaction 

time (time taken for participant to place the shapes in temporal sequence) for correctly 

retrieved trials only (shown in Figure 5.b). Using the same statistical test, I found a 

significant effect of regularity (F = 7.828, p < 0.001) and an interaction between regularity 

and music familiarity (F = 11.743, p < 0.0001). The remaining ANOVA test results were 

shown in Appendix. Table 2. Comparing the simple effects between pairs, interestingly, I 

found that within the unlearned condition, the irregular conditions had significantly faster 

reaction times than regular condition for correct trials and it was trending that irregular 

condition had faster RT than control condition (unlearned irregular RT<unlearned control 

RT: p = 0.06, unlearned irregular RT < unlearned regular RT: p <0.001). For visual 

sequences encoded with learned musical sequences, the regular condition had a 

significantly faster rection time than the control (learned regular RT < learned control RT: 

p < 0.05). Refer to Appendix. Table 4 for all between condition comparison on their 

reaction time for correctly retrieved sequences. In addition to interactive effect between 

regularity and familiarity, I also found significant differences in the above ANOVA as a 

function of music experience (my experienced vs less-trained factor) (F = 7.13, p < 0.01). 

It showed that experienced subjects generally retrieved remembered(correct) visual 

sequences with less reaction time than less-trained subjects (less trained vs. experienced, 



 40 

tdf=1760.6 = -2.66, p<0.01), implying that more music training might be associated with a 

stronger learning progress in this setting across conditions.  

 

Figure 5 Final visual sequences memory test results. a) Visual sequences memory 

test results. b) Reaction time for correct trials 

a) this bar plot represents average retrieval accuracy for visual sequences for each group comparing 

learned vs. unlearned, three regularity conditions. The repeated measures ANOVA revealed a 

significant effect of music familiarity and interactive effect of music familiarity and regularity. The 

pair-wise comparison indicated the difference came from the learned-irregular group.  b) this 

similar bar plot represents average reaction time for correctly retrieved trials only for visual 

sequences of each group comparing learned vs. unlearned, three regularity conditions. The repeated 

measures ANOVA showed significant effect of regularity and the interactive effect between it and 

music familiarity. Pairwise comparison results: unlearned irregular correct trails had quicker 

reaction time than unlearned control and unlearned regular conditions, whereas learned regular 

condition had quicker reaction than learned control and unlearned regular condition.  (p<0.001: 

***, p<0.01: **, p <0.05: *, 0.05< p<0.1: ·) 

 

Summary of findings relevant to hypotheses: Together, the average accuracy and RT 

results indicated two results consistent with my predictions: 1) when visual sequences were 

encoded with learned music stimuli, their subsequent sequence retrieval accuracy was 

disrupted by learned irregular music at encoding, while reaction times for correct trials (a 

proxy for sequence memory strength in this task) significantly benefitted from learned 
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regular music. Unexpected for my theoretical framework, unfamiliar irregular was also 

associated with improved subsequent visual sequence RT.  

4.4 Visual Sequential Learning Curves 

 Having the participants practice sequence retrieval during each trial of the visual 

encoding phase enabled investigation of visual sequence learning qualities such as learning 

speed as a function of the music conditions. Following my proposed analyses, I computed 

the successful acquisition phase (the run number between 0-5 runs) separately for each 

visual sequence (when the participant for the last time made an error on retrieving that 

visual sequence). This value represented when the participant had learned each sequence, 

and the cumulative acquired sequence count for each encoding phase for each condition 

(e.g., Learned_Irregular) provided insight into visual sequence learning rate. I ran a 

repeated measures ANOVA on participants’ sequence acquisition learning rates to test 

whether this phase value was affected by the familiarity, regularity, and music experience. 

Consistent with the average performance results in the prior section, there were significant 

effects by music familiarity and regularity (music familiarity: F = 5.181, p <0.05; 

regularity: F=6.244, p<0.01). There was also a highly significant interaction between music 

familiarity and regularity (F=9.901, p<0.001). Interestingly, there was no difference 

between Experienced and Less Trained groups (Appendix. Table 2). I therefore collapsed 

across the two music training factor levels and visualized this result by plotting out the 

learning curve using the cumulative proportion of acquired visual sequences for each 

condition (Figure 6). To simplify the visualization, I combined learned control with 

unlearned control condition performance for each phase because 1) there were no 

statistically significant differences between them (TukeyHSD: p = 0.9113, refer to 
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Appendix. Table 5) plus 2) conceptually, the monotonic sequences, without dynamics 

changes in notes and temporal intervals, could not be learned and schematized thus were 

identical in both familiar and unfamiliar conditions. As shown in the Figure 6 and 

consistent with the average performance analysis in the preceding section, pairwise 

comparisons indicated that learned irregular music paired shapes sequences were learned 

the slowest – beginning and maintaining a significant deficit from the other conditions until 

the 5th encoding phase (see detailed between condition t-test results in Appendix Table 6). 

Critically for this thesis, it was important to stress that these findings revealed that the 

disruptive properties of irregular music on parallel sequence learning were driven, on 

average, by the temporally-irregularly structured music being familiar and well-learned, 

suggesting irregular music is not simply “distracting audio”. There were no other 

statistically significant differences between the rest of the curves (see Appendix. Table 5 

and Table 6).   

Summary of findings relevant to hypotheses: Together, the learning-curve analysis of 

correct visual sequencing rates over encoding events generally corroborated the average 

accuracy results detailed in the prior section. Namely across all subjects when the visual 

sequences were learned when listening to paired learned irregular music, the visual 

sequences would be encoded the slowest and the worst.  
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Figure 6 Learning Curve, Cumulative Distribution 

This figure represented the cumulative learning curve during visual encoding. The plot visualized 

the average proportion of visual sequences already learned so far at each stage as a function of each 

music condition (e.g., the very left bottom dot – participants on average learned 48% of the visual 

sequences when paired with music from the learned irregular condition after the first phase 0. The 

repeated measures ANOVA test revealed the significantly slowest learning happened in the 

learned-irregular condition.  

 

4.5 Clustering Analysis on Visual Learning Behaviors 

Interestingly, contrary to my predictions, the group-level analyses above 

emphasized effects on visual sequence learning for the learned irregular condition (with 

benefits of the learned regular condition manifesting in superior RT for (otherwise 

comparable to control condition) correct sequencing test trials). One possibility was that 

the average effects encompassed multiple meaningful clusters of distinct individual 

behavior/learning profiles. Indeed, in the visual learning task I predicted divergent learning 

behaviors depending on music experience, and although I did not observe evidence of this 
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at a broad level, I considered the possibility that this could still be a factor for the profile 

of how someone’s visual learning responds to the different music conditions.  

To test this idea, I ran a clustering analysis by using a K-means nearest neighbors 

algorithm, and the ‘elbow method’ (Kodinariya & Makwana, 2013) to select the most 

meaningful number of clusters. The features of each sample used were participant’s 

average visual sequence accuracies for all conditions (learn regular, learned irregular, 

unlearned regular, unlearned irregular, control) during the visual sequence encoding 

phases. Because five participants finished the task on Day 1 with 0 perfectly recomposed 

irregular music, they lacked features for the learned irregular condition and thus the 

algorithm automatically dropped these five samples, leaving 43 samples in this analysis.  

The KNN analysis uncovered 3 clusters of the learning profiles during visual 

sequence encoding. To visualize the similarity between clusters, I ran PCA (principal 

components analysis), a dimension reduction analysis and plotted out the clusters 

according to the first and the second component representing the data, which explained 

42.75% variability of samples (Figure 7.a). This plot revealed that one participant learning 

profile group (cluster 2) represented a more divergent behavior from the other two types of 

learning participant (cluster 1 and 3 shared more similarity). The important thing for this 

thesis was what behavioral profiles in my task these different clusters represented. I plotted 

out each cluster’s average learning curve. The divergent cluster was quite small (#2, n=3, 

Figure 7.c) and therefore difficult to interpret or assess with inferential statistics. Focusing 

on the larger-sample Cluster #1 and #3, broad similarities between the learning profiles 

were marked be several important differences. In cluster #1 (n = 18; Figure 7.b), differences 

from music conditions were restricted to the early stage of learning (run 1) and participants 
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from this cluster showed a trend that they learned the visual sequences paired with learned-

regular the best and those paired with unlearned-regular the worst (learned regular > 

unlearned regular, p = 0.025, all t-test comparisons shown in Appendix. Table 7). In cluster 

#3 (n = 22) on the other hand (Figure 7.d), the most clear differences were between learned 

regular and learned irregular (resembling the group average results in Figure 6) – 

participants in this cluster learned the visual sequences with learned irregular music the 

slowest and with the lowest accuracy across run1-4 (refer to Appendix. Table 8 for all 

comparisons results), while there was trending that they learned sequences with learned 

regular music better than the other group especially in the middle stage of learning (run 2-

3) (Appendix. Table 8).  

Summary of findings relevant to hypotheses: participants in cluster 1 learned visual 

sequences differently only for the regular condition, with opposite patterns relative to the 

other conditions (i.e., control and irregular) for learned vs. unlearned regular music. Cluster 

3 participants showed the predicted effect for my thesis: an opposite pattern for regular vs. 

irregular condition that was driven by the structure of each condition being learned.  
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Figure 7 Clustering analysis results: a) Dimension reduction results. b) Cumulative 

learning curve (Cluster 1). c) Cumulative learning curve (Cluster 2) d) Cumulative 

learning curve (Cluster 3) 

a) after running PCA on features, two most important components were found and this dot plot 

represent these two components value of each sample. b-d) Learning curve for averaged cumulative 

proportion of acquired sequences at each stage during visual sequence learning for each cluster. 

Sample size of each cluster were 18 ,3, 22. 

 

4.6 Applying Clusters From Encoding Phase to Retrieval Results 

 In addition to comparing clusters on their averaged learning curves, I also wondered 

whether clusters associated with different memory retrieval performance, especially 

between cluster 1 and cluster 3. Answering this question could be insightful for whether a 

specific learning pattern in during encoding correlated to a better or worse final sequential 
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memory performance. Figure 8 showed separate plots of visual retrieval accuracy and 

reaction time for correctly retrieved sequences for subjects from cluster 1 and cluster 3. 

First of all, I found that across conditions, cluster 1 subjects achieved visual sequence 

retrieval with better accuracy than cluster 3 subjects (t df=1431.9 = 2.994, p < 0.01). When 

focusing on reaction time for correct trials, I found cluster 1 subjects generally retrieved 

these trials with shorter reaction time across conditions (t df=1204= -4.4179,  p<0.001). Both 

results suggested that cluster 1 subjects gained better visual sequence memory than those 

from cluster 3. Secondly, I ran pair-wise comparison between conditions regarding to their 

visual sequences retrieval accuracy and RT for correct trials. Due to small sample size 

within clusters, I utilized unadjusted pair-wise t-test to reveal the trending patterns in 

clusters differences that could be explored further in future work. The significant results 

for all between-condition comparisons were shown in Appendix Table 9. All significant or 

trending differences were highlighted in Figure 8. When comparing between clusters as 

well as referencing back to Figure 5 (my whole-sample result), I found similar patterns in 

both clusters – learned irregular condition showed the worst retrieval accuracy while 

learned regular condition showed a tendency for improved accuracy (it is difficult to 

interpret significance levels  due to small sample size). RT for correct trials plot also 

showed similar patterns to overall dataset – unlearned irregular music condition had 

shorter response times than control, implying a stronger memory on correct trials than 

control.  
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Figure 8 Comparing retrieval results between Cluster 1 and Cluster 3: a) Visual 

sequences memory test results for Cluster 1vs3. b) Reaction time for correct trials 

for Cluster 1 vs 3. 

(a) visual sequences retrieval accuracy: this bar plot represents average retrieval accuracy for visual 

sequences for each group comparing learned vs. unlearned, three regularity conditions for cluster 

1 vs cluster 3. (b) reaction time for correctly retrieved sequences: this bar plot represents average 

reaction time for correctly retrieved trials only for visual sequences of each group comparing 

learned vs. unlearned, three regularity conditions, comparing cluster 1 and cluster 3. Pairwise t-test 

was conducted on all possible pairs conditions and on both retrieval accuracy and RT, the detailed 

results were presented in Appendix. Table 9. All significant and trending differences were marked 

in the plots using asterisks. (p<0.001: ***, p<0.01: **, p <0.05: *, 0.05< p<0.1: ·) 

 

4.7 Why did people show variant learning behaviors? 

 The clustering analysis revealed three distinct patterns of visual learning that were 

affected by my paired music manipulation. The critical question was “why?” Based on 

schema theory, I had predicted that music familiarity (having a memory for the music 

composition’s structure) and the qualities of the music composition’s structure (its 

regularity and predictability) would both be factors the influence “schema-like” effects of 

music on parallel visual learning. The visual learning analysis showed that for most of the 

participants (cluster 1 and 3) there was a trending improving effect from learned regular 

music on visual encoding - corroborating a benefit of music familiarity and regularity (seen 

at least the group level with indicators of stronger correct sequence memory; Figure 5.b). 
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However, comparing cluster 1 and cluster 3 revealed an important distinction - for some 

participants learning was impaired by a lack of familiarity (cluster 1: the unlearned regular 

music was learned the worst) while other participants appeared more vulnerable to familiar 

but irregular music. In order to investigate the reasons behind this, I compared key 

participant variables for these two cluster distributions. In particular, I revisited my 

theoretical interest in how music training may influence participant sensitivity to music 

structure and familiarity effects on learning. 

Whereas there was absolutely no evidence that gender affected the way participants 

learned the visual sequences under different music conditions (identical cluster distribution 

between females and males (Figure 8)), there was a clear effect of different levels of music 

training. As shown in Figure 8, the more instruments the subjects had learned, the less 

likely they exhibited a cluster 3 learning profile. I ran a Pearson’s chi-squared test with a 

Yate’s continuity correction to establish significance and tested whether people with 

different music training history were distributed equally across cluster 1 and 3. Subjects 

with experience with 0-1 instrument (combined for statistical power considerations) 

exhibited significantly different cluster membership than those who had learned more than 

one instrument (chi-squared = 3.90, df=1, p = 0.049).  Though the figure showed that 

musically experienced group showed less cluster 3 behaviors (Figure 9), the years of 

experience as a musician did not exhibit the same statistical effect (chi-squared = 0.94, 

df=1, p = 0.33), noting this could due to small sample size but also this median-split 

approach would be expected to be less sensitive than the other measure since the “less-

trained” group could still have up to 7 years of music training.  



 50 

Summary of findings relevant to hypotheses: this individual difference analysis 

reveals that music training matters - more training with music was associated with a greater 

sensitivity to whether regular music in the background was learned or unlearned, and a 

lower likelihood that learned irregular music would be disruptive to parallel learning. One 

speculation in relation to my theoretical framework was that the subject who gained more 

music training would be more efficient at processing the music so that the retrieval of what 

tones, plus the paired shape, was coming next in learned music (even if irregular) was more 

automatic. I examined these ideas further in the next section, which formally quantified the 

structural differences between regular and irregular music.  

 

Figure 9 Cluster distribution by different individual factors 

This figure compared Cluster 1 vs. Cluster distribution in different groups. Left) cluster distribution 

on subjects grouped by number of instruments learned. 2 subjects who learned 4 instruments were 

not shown due to small sample size. It showed that more proportion of cluster 3 behaviors was 

associated with less music training. Middle) cluster distribution on subjects grouped by years of 

music training, 7 years as the dividing point. No statistical difference was found (chi-squared = 

0.94, df = 1, p = 0.33) Right) cluster 1 and 3 were equally distributed among females and males 

(chi-squared = 0, df = 1, p = 1).   
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4.8 What is different between regular and irregular music? 

 In the previous analyses, the noteworthy observation was the opposing effects of 

learned regular and learned irregular music on visual sequence encoding– I observed an 

improving effect from learned regular music (RT analysis in Figure 5.b and visual retrieval 

accuracy among partial subjects in Figure 8.a) but hindering effect from unlearned 

irregular music (shown across analyses in Figure 5 and Figure 6). Both conditions being 

well-learned used a strict criterion (Method) so that the music from both learned conditions 

were of high level of familiarity - however, they had divergent influences on parallel visual 

memory encoding. This result indicated the importance of regularity in determining 

music’s effects. Moreover, my individual differences analysis revealed that music training 

experience influenced the effect of my music conditions. However, as noted in the 

Methods, I composed my so-termed “regular” music stimuli from the standpoint of a 

western classical musician, and not synthetically based on some specific parameters 

provided to an algorithm, and I generated my irregular music by scrambling the temporal 

order. Because of this, it was important to verify whether key properties related to tonality 

and hierarchical structure did differ between my conditions. In this section, I computed 

statistical properties of the music and validated the intended structural differences of the 

regular and irregular stimuli used in this study using quantitative means.  

 To quantify the structural regularity of music stimuli excluding monotonic 

condition, I used the MIRtoolbox (Music Information Retrieval) from MATLAB (Lartillot 

& Toiviainen, 2007). Many music studies have tested this toolbox in its ability to 

distinguish and analyze instrumental regular and irregular music, with these studies 

highlighting the key clarity and pulse clarity functions (quantifying the clarity and 
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distinctness of the main key and pulse pattern of the music) as critical properties for 

regularity (Lartillot et al., 2008; Mencke et al., 2019). For example, Figure 10 represented 

the envelopes and waveforms of one regular music composition selected from my stimuli 

and the irregular music transferred from that regular music. The regular music had a clearer 

pulse pattern because the onset of each note was almost equally distanced with each other 

while the irregular music showed more various and scrambled tonal distances. Also, in the 

regular music waveform, a clear accent (larger amplitude) happened about every 1.5s 

following a few “lighter” notes with similar patterns. This example demonstrated a regular 

pulse sequence. This figure could not reveal differences between key clarity because in this 

task, the music stimuli were composed in pairs – each pair of regular and irregular music 

contained the same notes. As a result in Figure 10 both regular music and irregular shared 

similar amplitudes of notes. I used MIRtoolbox and computed the key clarity and pulse 

clarity of all music (excluding control) and ran pair-wise comparison. As shown in Figure 

11, I demonstrated that the pulse clarity in regular music was significantly greater than in 

irregular music (t(11) = -2.1, p<0.05), on average across pairs. There were no significant 

difference between the key clarity of regular and irregular music (t = -1.4, p = 0.095), which 

was less surprising because both music compositions shared the same notes and even in 

the irregular music notes were still correlated with each other across time and belonged to 

the same key. As a result, the greater difference between the regular and irregular stimuli 

laid in the regularity of the order of the tones and the associated quantifiable clarity of the 

temporal interval sequence. In language the analog was the words of a sentence being put 

in an order that didn’t follow a syntax and thus would not make sense – each word was 
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clear and comprehensible, but a meaningful structural relationship between them was 

lacking for higher-level linguistic meaning.   

Above, my behavioral data verified the irregular music was memorable, while at 

the same time this analysis verified it successfully violated the syntax of ordering of tones, 

and was thus degraded in the hierarchical, predictable features of music.  

Summary of findings relevant to hypotheses: Combining it with the previous 

results, this analysis supported the idea that manipulating the hierarchical feature of the 

music through pulse clarity was a determinant for the main effects and music-experience-

related outcomes on how listening to music altered sequence memory formation.  

 

Figure 10 Music envelope and waveform for example regular music stimulus and 

the paired irregular music stimulus 

6s version of the stimuli was used to extract the waveform. Note that the tempo did not change 
either plots because they showed the amplitude changes over time (simply stretch the above plots 

horizontally to get 8s version plots of the envelopes and waveforms for the music) 
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Figure 11 Pair Wise Comparison on Regularity Features: a) Pulse clarity b) Key 

clarity 

pulse clarity and key clarity were measured using MIRtoolbox from MATLAB on both regular and 

irregular stimuli. Pairwise comparison (t test) was conducted to compare between regular and 

irregular music in these two features. This figure showed error bar plots of a) pulse clarity and b) 

key clarity of each regularity condition and each point represented one music. Each pair of regular 

and irregular music were connected using lines. T-test showed a significant higher pulse clarity in 

regular music but no difference in clarity. 

 

4.9 Follow-up Baseline Task 

 The current results showed that familiar/learned regular music could result in 

stronger visual sequence memory encoding, and a familiar/learned irregular music could 

clearly interfere, when compared to the monotonic control condition. One question was 

how the monotonic control fits into the mechanistic framework I laid out. The monotonic 

control was the simplest version of musical input: it had no hierarchical structural dynamics 

that could be harmonic nor memorable – and could thus not be “familiar” either, from the 

perspective that music schema effects are dependent on the existence of the regularity and 
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familiarity. However, the monotonic control condition did provide a steady one-

dimensional metric, akin to a metronome. Although I provided important evidence overall 

(RT analysis) and some hints in terms of individual differences (music experience effects 

on learning clusters) for regular benefits relative to this control, one obvious follow-up 

question was whether the monotonic condition was identical to a no-sound condition as a 

learning baseline. To address this, I conducted a follow-up experiment with a no-sound 

baseline task.  

 In this new participant sample (N=20), the visual retrieval accuracy per condition 

showed similar pattern to the previous data (Figure 12.a vs. Figure 5.a). Because no-sound 

control condition could not be learned or unlearned, for each participant, I randomly 

assigned half of the control condition into ‘learned’ and another half into ‘unlearned’ for 

easier comparison. This baseline study clearly suggested that the new no-sound control 

condition did not show better memory retrieval performance than learned regular 

condition. When comparing the reaction time for correct trials (Figure 12.b), there was a 

marginal familiarity*regularity interaction and corresponding trend (also mirroring the 

results in the main study) that in learned regular condition participants retrieved the 

sequences correctly with faster RT compared to a no-sound control condition (t = -1.876, 

p =0.0602 unadjusted).  

Summary of findings relevant to hypotheses: Overall, despite the smaller sample 

size these results were consistent with the pattern in the main data, and importantly suggest 

that the benefits/detriments of regular/irregular relative to baseline observed in my study 

were not in fact both collectively worse than no-sound (as one might expect if all music 

conditions were is simply distracting relative to silence).  
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Figure 12 Follow-up baseline task results: a) Visual sequences retrieval results. b) 

Reaction time for correct trials. 

a) this bar plot showed averaged visual retrieval accuracy per conditions with error bar. No 

statistical differences between conditions were found. b) this bar plot showed averaged reaction 

time for successfully retrieved sequences per conditions with error bar. Learned regular condition 

(yellow on the right) showed marginally faster reaction time than learned control condition (blue 

on the right). 
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CHAPTER 5. DISCUSSION 

  In broad terms, this study aimed to understand how prior memory and new learning 

interacted, even across different modalities. Based on the evidence in the literature showing 

that some music memory was strongly schematized, and that schemas could improve 

learning efficiency of associated new information (Leman, 2012; Van Kesteren et al., 

2012), the study specifically tested how listening to music with different level of regularity 

and familiarity, which were theoretically important features for music serving as 

“schemas” and providing stable sequential templates, during visual sequences learning 

would affect learning results. The results of the study provided insights to applied 

researches of utilizing music as aids to non-auditory cognitive function such as memory. 

A concrete real-world example, targeted by my study, was whether listening to our favorite 

music while studying associative materials from school influenced the learning outcome.  

 My results suggested yes – and that “familiarity” and “regularity” of the music were 

both factors deciding the types of influence music had on learning visual associative 

information. By looking at the final visual sequence retrieval accuracy, I found participants 

learned the shape sequences with the least accuracy when listening to well-learned 

irregular music compared to other conditions, indicating a significant hindering effect 

from this type of music. In addition, the reaction time analysis of the final retrieval test 

revealed two opposite memory outcomes – for the shape sequences successfully learned 

with familiar music, participants retrieved them faster if the sequences had been learned 

with regular music. Yet for shape sequences learned with unfamiliar music, participants 

retrieved them fastest if they had been learned with irregular music. The observations from 
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the visual retrieval task were partly consistent with my hypotheses: that pairing with 

familiar and regular music was beneficial to learning the associations and the order of new 

information (novel visual shapes). Partially different from my hypothesis that music 

conditions with no pre-existing knowledge or structural regularity should show the worst 

visual sequence learning: the results actually showed that irregular music was clearly 

detrimental specifically when it was well-learned.  

 Similar patterns were found from the learning curve results during visual sequence 

encoding. During the encoding period, I focused on the changes of participants’ retrieval 

accuracy of the shape sequences per trial across time/run, which revealed their progress of 

long-term memory encoding. Across subjects, I observed shapes sequences were learned 

slowest and with least accuracy when paired with learned irregular music, consistent with 

the final retrieval task results. A clustering algorithm revealed there were distinct patterns 

of these learning curves - I observed three clusters of learning behaviors affected by 

different types of music (although one was very rare and thus not amenable to inferential 

statistics). Comparing the learning patterns of the two dominant clusters, I found that most 

of the participants showed a trend that they performed the best when listening to learned 

regular music during visual sequences learning, either during the early stage or the later 

stages depending on the cluster. This again suggested that familiar and regular music might 

aid parallel visual sequence memory formation. Conversely, one group of them showed 

degraded visual sequence learning while listening to unlearned regular music, while the 

other group was negatively affected by the learned irregular music (consistent with the 

overall sample average). Statistical comparisons between musical conditions for the two 

clusters (Appendix. Table 7and Table 8) suggested that one cluster of subjects showed 
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more statistically-different learning trajectories affected by different levels of music 

(cluster 3) while the other cluster showed more similar learning progress across conditions 

(cluster 1). My results of comparing cluster distributions across subjects revealed that 

music training (how many instruments the participant learned) was an important factor for 

these clusters in learning differences when music is in the background. 

 When I used the clustering results from encoding to select and divide subjects into 

2 groups, and looked back at their retrieval results, I found similar patterns of these 

subgroups in both their retrieval accuracy and RT results compared to the overall main 

dataset. Interestingly, I found that subjects with cluster 1 encoding behaviors retrieved 

visual sequences with a higher accuracy and faster reaction time (for correct trials) than the 

other group of subjects across conditions, while the visual sequence performance 

difference between music conditions remained similar for the two clusters.   

 Collectively, my results showed an interactive effect of familiarity and regularity – 

1) familiar music impaired new visual sequences (association) learning if it was irregular 

(reflected by poor retrieval accuracy and slow learning progress during encoding), and 

improved new sequential learning if it was regular (supported by marginally improved 

accuracy and stronger memory of learned trials indicated by reaction time). 2) Unfamiliar 

music was a surprising outcome and it showed that unfamiliar irregular music actually 

benefited visual sequences learning (reflected by RT analyses and partially by stronger 

retrieval accuracy among cluster 3 participants). My study was the first of this kind, to the 

best of my knowledge, so more work was needed – but below I considered why.  
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First of all, the group-level learned regular benefits (trending accuracy and 

significant correct RT benefit) suggested that in order to be schematic and informative to 

parallel visual learning, the music needed to have both regularity and familiarity. This was 

also suggested by my individual differences clustering analysis, where the majority of 

participants across the two dominant clusters were disrupted by music lacked either 

regularity or familiarity, and marginally favored familiar regular music, regardless of music 

training. One combined benefit of regularity and familiarity was predictability – these 

songs had a known and more easily understood structure (which I discussed further below). 

Secondly, the diverse learning profiles I found between clusters implied that lack of one 

feature, either familiarity or regularity (e.g., with familiarity but lack of regularity) in the 

music might distract people from learning the visual sequences, depending on a subject’s 

music training experiences – subjects with more music training were more likely to learn 

visual sequences the worst if the music was regularity-structured but lacking familiarity, 

while subjects with less music training were more impacted by the (irr)regularity 

dimension of music. Thirdly, the surprising outcome was that in the final retrieval test, 

memory for sequences learned with unfamiliar music was actually strongest (fastest correct 

RT) if the unlearned music was irregular (lacking both familiarity and regularity). The first 

two classes of results summarized above have strong consistency with schema theory – 

that new temporal associations might be better acquired if they could be interwoven with 

prior and well-structured sequence structures. But this latter outcome highlighted at least 

one result that was likely due to a different learning-enhancement mechanism. The general 

pattern of the above results are summarized in Table 1.  
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Table 1 Results summary of music's effects on visual sequences encoding 

performances affected by the two music features. 

Music’s Effect Familiar Unfamiliar 

Regular Beneficial Distractive 

Irregular Distractive Beneficial 

 

 Some important insights into the underlying factors for why music influenced 

parallel visual sequence learning in the manner that it did came about when I asked what 

subject features contributed to the split of clusters. The fact that the visual learning clusters 

diverged according to music training was striking – participants with less music training 

tended to be the group driving the main effect of unlearned irregular music harming parallel 

sequence encoding (cluster 3). By contrast, while more exhaustively musically trained 

participants also showed a qualitative benefit from familiar regular music, their visual 

sequence learning suffered from that same regular music being unlearned (cluster 1). Both 

outcomes could highlight how individual training/experience interacted with the properties 

of the stimuli themselves. Relating back to what has been suggested in “schema theory”, 

old-memory-congruent information could be learned better and faster (Van Kesteren et al., 

2012, 2018). This could explain the latter observation which learned and unlearned regular 

music had opposite effects. Conceivably, because the music was unfamiliar, it failed to 

provide a schematic template for benefiting learning new sequence information. But there 

wasn’t just no benefit – there was a detriment. The fact that this was skewed towards more 
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musically-proficient individuals could reflect partial attention being taken from visual 

information encoding by the coherent “syntax” of the unfamiliar regular music. Musically-

trained individuals might be more drawn towards processing the novel regular music than 

less-trained individuals (a bit akin to trying to study something while someone is speaking 

a sentence to you in your language). Some evidence from prior studies was consistent with 

this view, in which participants listened to background music during work, and the results 

suggested listening to some music could distract attention and caused worse cognitive 

performance (Chou, 2010; Roden et al., 2014). However, that framework alone doesn’t 

explain the observations in cluster 3, where it was instead the case that, at least in less-

musically-trained people, the visual sequences were encoded significantly worse with 

learned irregular music than the other conditions. Both familiar regular and familiar 

irregular music were memorized equally well within-subject (as shown in the Day 1 and 2 

music memory tests) and thus both were able to provide temporal sequence schema to the 

new memory, and therefore unequal learning could not account for this effect.  

 One way I sought to understand why learned regular and learned irregular music 

showed opposite effects (overall, but particularly in the less-musically-trained subset 

identified by their distinct learning profile in the clustering analysis) was to run a structural 

analysis on the music stimuli and I tested what was indeed different between these two 

types of music. The result showed each pair of regular and irregular music differed in their 

pulse clarity – this verified that irregular music, although it shared the same notes from its 

regular music counterpart, lacked a regular temporal structural of the notes. One reason 

this was relevant was that prior music studies have shown that humans not only have a 

preference for specific sequences of temporal intervals between notes and regular rhythm 
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patterns, but this had also been shown to be necessary for music’s syntax - the hierarchy of 

high level relationships between music elements which make music “musical” and 

consistent with its language (Krumhansl, 2000; Krumhansl & Shepard, 1979). Prior 

literature has emphasized the lack of hierarchy as being characteristic of irregular music 

compared to regular music (Butler, 1989; Dibben, 1994). An analog to language was that 

when an English learner tried to read a sonnet, he/she might be able to guess the contents 

of the sentence by understanding each word, however it might be hard to extract the exact 

meaning because the unfamiliar grammar failed to provide a clear hierarchical relationship 

between the words. It led me to speculate that – by being less predictable and interpretable  

- the lack of hierarchy in irregular music which led to violations of music syntax might 

affect parallel sequence learning. Studies suggested that neural signatures of processing 

syntactic relations in both language and music shared similarity, and violations of syntax 

in language were known to not only fail to produce semantic meaning but also result in 

neural “prediction error” related indicators in signals like the N400 and MNN (Hagoort, 

2003; Koelsch et al., 2013; Patel et al., 1998; Pulvermüller & Assadollahi, 2007). Based 

on these prior findings, one possible explanation of the hindering effect of the learned 

irregular music was that with each violation of normal musical syntax, the irregular music 

elicited a prediction error that drew attentional and mnemonic resources towards the 

“oddity” in the composition, as the brain attempted to process the conflict between known 

the structure and what should flow from “correct” music syntax. Cognitively, the conflict 

in memory of temporal sequences between what was learned (the music) and what should 

be happening (proper music syntax) might have interfered with the participants’ ability of 

the memory system to encode some other sequence structure in parallel. And the reason 



 64 

why less-trained musicians were affected more by learned irregular music might relate to 

their ability of processing complex musical sequence structures. Similar to the same 

language analog that people who were trained in ancient literatures and language would 

find it easier to understand sonnets, although all humans appear to be generally sensitive 

to music syntax according to the broader literature, training might enable someone with 

more skills to be able to bridge the tonal and timing structures of a less-regular music and 

thus process the above mentioned conflicts with less efforts. In this way, learned irregular 

music in my task might become more of a ‘neutral’ condition in participants with more 

music training (cluster 1). Still, it was difficult to use the current behavioral study setting 

to test these possibilities, and therefore I presented them as hypotheses born out of my data 

and to be tested further with future works. Thus, this Master’s thesis set up interesting 

future directions for my research program: in the next step, I would utilize neuroimaging 

methods such as fMRI to test the neural mechanisms behind retrieving the music of each 

condition during parallel visual sequence learning and the respective costs and benefits of 

those conditions.  

 In summary, in this thesis I raised a theory that using background music during 

episodic memory-like learning (here, abstract novel shape sequences) could modulate the 

new sequence memory strength and learning speed via the psychological schema 

framework - where the temporal structure from old memories was able to provide a 

template for better binding new, paired temporal associations. Several key results 

supported my hypothesis that in order to give facilitating effects to parallel visual 

sequential learning, the music needed to be familiar and regular/predictive. The results 

provided rare evidence for schema theory of memory acting cross-modally – such that 
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auditory music sequences influence visual object sequences. This finding can be used to 

help motivate more future studies examining how schemas can act across other modalities 

as well (e.g. how motion sequences in dance can provide a schema that modulates learning 

of other sequences (e.g., visual, as I tested here), or of true episodic memory or even 

semantic memories). Moreover, speaking to my specific experiment, because sequential 

memory is an important component of episodic memory – in which humans typically 

combine separate modalities of information (sights, sounds, emotions) in sequence using a 

memory system optimized for forming huge networks and associations between events 

(Eichenbaum, 2013; Eichenbaum & Fortin, 2003; Kesner et al., 2002) – one prediction 

from my visual sequence study is that other elements of episodic memories may be 

influenced similarly by music varying the properties that I manipulated. This study, using 

a simple design (targeting simple shape sequences) provided insight into an applied 

research question: whether there is a possibility of using music to help people encode the 

temporal associations components of episodic memory. Future studies could consider 

utilizing similar task structure and test whether music could modulate more complex 

associative memory, such as true episodic sequences or spatial navigational sequence 

learning.  

My results also uncovered several surprising complexities in how music schemas 

affect new learning and partially answered the important question raised in the 

Introduction. about how different types of real-world music might have modulate memory 

differently in prior studies. In particular, this study showed an interactive effect of music 

familiarity and regularity on visual sequence memory encoding, where music could be 

beneficial when the music paired with the new learning featured both familiarity and 
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regularity (as predicted) but also if it exhibited neither of these traits (not as predicted). 

Moreover, in scenarios where music only lacked familiarity (unlearned regular) or only 

lacked regularity (learned irregular), the music could disrupt new sequence learning. Which 

of these two scenarios was disruptive to learning depended on the participants’ music 

training. As such, this study provides novel insight to the question of whether background 

music (a common feature in our lives!) influences learning. Prior literature on this question 

has been inconsistent, and most of existing evidence only suggested that music was helpful 

during retrieval as contextual cues. The current study used a unique design where music 

was played only during encoding but not during recall and thus provided insight into 

features of participants and the music itself that could underly that variability in the 

literature. My results implied that not all types of music were beneficial to parallel learning, 

with music familiarity and regularity emphasized as key features that influence how 

building associations between music and sequence memory affects the learning process. 

Moreover, on the individual level, the study suggested that the pattern in how different 

types of music influenced sequence learning was shaped by whether subjects had more or 

less music training. Such perspective might also help provide an explanation for past 

literature showing different results when testing music’s effect on various types of memory 

– the individual music listener’s traits might matter. In the future studies, researchers might 

consider individual characters of music sensitivity, training history or even music 

background (cultural style) and music preference as factors. This thesis suggested music 

could successfully be used to help memory encoding – or hinder it - and identified how 

music traits and music training alike could push that influence around. These new insights 
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set me and others up for future studies on how we might using music as a memory aid, 

especially in clinical settings.  
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APPENDIX A. SUPPLEMENTORY STATISTICAL RESULTS 

Table 2 Repeated measures ANOVA results 

 

Three main ANOVA tests were conducted for the main dataset. The tables showed the statistical 

results of the effects of music regularity, level of music familiarity and subject music training level 

on 1) visual sequences retrieval accuracy during retrieval task 2) reaction time for correct retrieved 

trials during retrieval task 3) successful encoding phase of each sequence during visual 

encoding/learning with subject as repeated measures. (p<0.001: ***, p<0.01: **, p <0.05: *, 0.05< 

p<0.1: ·) 
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Table 3 Post-hoc Tukey HSD test on visual retrieval accuracy 

 

The interactive effect between music regularity and level of familiarity on visual sequence retrieval 

accuracy was found to be significant. Thus, post-hoc pairwise comparison was conducted on all 

possible pairs of conditions. The table showed all statistical results from the Tukey HSD test 

comparing the mean retrieval accuracy between each pair of conditions. P value was adjusted and 

all significant pairs were highlighted. (p<0.001: ***, p<0.01: **, p <0.05: *, 0.05< p<0.1: ·) 
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Table 4 Post-hoc Tukey HSD test on retrieval RT 

 

The interactive effect between music regularity and level of familiarity on reaction time of correctly 

retrieved sequences was found to be significant. Thus, post-hoc pairwise comparison was 

conducted on all possible pairs of conditions. The table showed all statistical results from the Tukey 

HSD test comparing the mean retrieval accuracy between each pair of conditions. P value was 

adjusted and all significant pairs were highlighted. (p<0.001: ***, p<0.01: **, p <0.05: *, 0.05< 

p<0.1: ·) 
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Table 5 Post-hoc Tukey HSD test on successful encoding phase 

 

The interactive effect between music regularity and level of familiarity on successful encoding 

phases of visual sequences during learning was found to be significant. Thus, post-hoc pairwise 

comparison was conducted on all possible pairs of conditions. The table showed all statistical 

results from the Tukey HSD test comparing the mean retrieval accuracy between each pair of 

conditions. P value was adjusted and all significant pairs were highlighted. (p<0.001: ***, p<0.01: 

**, p <0.05: *, 0.05< p<0.1: ·) 
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Table 6 Pairwise comparison between conditions on amount of acquired sequences 

during each run of encoding phase (all subjects) 

 

Use this table as reference to Figure 6, here I compared all possible pairs of conditions across 

subjects on their mean of acquired visual sequences during each stage/run of encoding using t-test. 

The table showed all the p values of each t test between pairs. Due to small sample size after 

dividing data into conditions and because of the intention to investigate the trending patterns of 

effects, p-value was not adjusted.  
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Table 7 Pairwise comparison within Cluster 1 between conditions on amount of 

acquired sequences during each run of encoding phase 

 

In order to compare cluster 1 and cluster 3 learning behaviors and to detect the timing of the 

differences between conditions occurred, here I compared all possible pairs of conditions across 

subjects within Cluster 1 on their mean of acquired visual sequences during each stage/run of 

encoding using t-test. The table showed all the p values of each t test between pairs. Due to small 

sample size after dividing data into conditions plus clusters and because here my intention was to 

investigate the trending of effects, p-value was not adjusted.  
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Table 8 Pairwise comparison within Cluster 3 between conditions on amount of 

acquired sequences during each run of encoding phase 

 

In order to compare cluster 1 and cluster 3 learning behaviors and to detect the timing of the 

differences between conditions occurred, here I compared all possible pairs of conditions across 

subjects within Cluster 3 on their mean of acquired visual sequences during each stage/run of 

encoding using t-test. The table showed all the p values of each t test between pairs. Due to small 

sample size after dividing data into conditions plus clusters and because here my intention was to 

investigate the trending of effects, p-value was not adjusted.  
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Table 9 Pairwise comparison between conditions on retrieval task results (retrieval 

accuracy + RT for correct trials) within each cluster 

 

In order to apply the clustering results from encoding to retrieval phase and compare cluster1 and 

cluster3’s retrieval performance, here I separately ran t-test and compared all possible pairs of 

conditions across subjects within each cluster on their mean retrieval accuracy and RT for correct 

trials. The table showed all the p values of each t test between pairs unadjusted. Significant and 

trending differences were highlighted. 
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Table 10 Repeated measures ANOVA results for follow-up baseline task 

 

Same ANOVA tests to the main task were conducted for the follow-up dataset. Due to the small 

sample size, dividing subjects into groups with different music training will lead to less test power, 

I only tested the effects of music regularity and level of music familiarity and their interactive 

effects on 1) visual sequences retrieval accuracy during retrieval task 2) reaction time for correct 

retrieved trials during retrieval task 3) successful encoding phase of each sequence during visual 

encoding/learning with subject as repeated measures. (p<0.001: ***, p<0.01: **, p <0.05: *, 0.05< 

p<0.1: ·) 
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