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Abstract

We identify a new restriction on Boolean circuits called bijectivity and prove that

bijective Boolean circuits require exponential size to compute the Boolean perma-

nent function. As consequences of this lower bound, we show exponential size lower

bounds for: (a) computing the Boolean permanent using monotone multilinear cir-

cuits; (b) computing the 0-1 permanent function using monotone arithmetic circuits;
and (c) computing the lexicographically first bipartite perfect matching function us-
ing circuits over (min, concat). The lower bound arguments for the Boolean perma-

nent function are adapted to prove an exponential lower bound for computing the

Hamiltonian cycle function using bijective circuits. We identify a class of monotone

functions such that if their counting version is §P-hard, then there are no polynomial

size bijective circuits for such functions unless PH collapses.
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1 Introduction

We identify a new restriction called bijectivity on Boolean circuits and prove an exponential size
lower bound for computing the Boolean permanent function in this model. As consequences
of this lower bound, we show exponential size lower bounds for: (a) computing the Boolean
permanent function using monotone multilinear circuits; (b) computing the 0-1 permanent func-
tion using monotone arithmetic circuits; and (c) computing the lexicographically first Boolean
permanent function using circuits over (min, concat).

Arithmetic circuits with {4, x} nodes have traditionally been defined as algebraic circuits
over a field. Several lower bounds are known on the size and depth of algebraic circuits over
positive reals that compute certain multilinear polynomials [6, 11, 16, 14]. Our interest is in
counting arithmetic circuits: those that compute functions of the form f : {0,1}* - A. One of
the main differences between counting arithmetic circuits and algebraic circuits over the positive
reals is that while computing a multilinear polynomial, the formal polynomial associated with
the circuit need not be multilinear in the former case whereas in the latter case it must. This
is because the inputs to a counting arithmetic circuit receive only 0-1 values and 0,1 are both
idempotent with respect to the X operator.

The reason for our interest in counting arithmetic circuits is that there are characterizations
of popular counting classes such as §P and 4LOGCF L in terms of these circuits [19, 20]. There-
fore, proving non-trivial lower bounds on the size of arithmetic circuits that compute natural
functions have implications for separating counting classes. For example, if one could prove
a super-polynomial size lower bound for computing the 0-1 permanent function using count-
ing arithmetic circuits, one would separate 4LOGCFL from §P. Moreover, it would also have
the more severe implication that the 0-1 permanent function is not in FP. Thus, the above
lower bound seems hard to prove. Instead, we consider the question of proving non-trivial size
lower bounds for computing the Boolean permanent function using Boolean circuits that are
restricted such that their arithmetization (that is, the arithmetic circuit obtained by replacing
the V nodes with + and A nodes with x) computes the 0-1 permanent function.

To this end, we identify a new restriction called bijectivity on Boolean circuits. Defining
a monomial to be consistent if it does not have both the positive literal and its complement
appearing in it, we say that a Boolean circuit is bijective if the number of consistent monomials in
the formal polynomial associated with the circuit is the same as the number of prime implicants
of the function it computes. We prove that bijective Boolean circuits require exponential size
to compute the Boolean permanent function.

Computing the Boolean permanent of a matrix is equivalent to deciding whether the bi-
partite graph represented by the matrix has a perfect matching. This problem can be solved
by polynomial size Boolean circuits since it is known to be in P [5]. But no non-trivial lower
bounds are known for the size or depth of general Boolean circuits that compute this function.
For monotone Boolean circuits computing this function, a super-polynomial size lower bound
[8] and a linear depth lower bound [7] are known. For constant depth unbounded fan-in circuits
an exponential size lower bound for this function follows since it is constant depth reducible to
PARITY [3].

The bijectivity restriction is interesting for the following reasons:

(a) Bijective circuits can compute all Boolean functions. This is because the circuit based
on the representation of a Boolean function f as a disjunction of its prime implicants, is
bijective.

(b) There are natural circuits that are bijective, such as an A'C* circuit for PARITY.



(c) Arithmetization of bijective circuits for a class of monotone functions, called suitable
functions, computes their counting version. Bipartite perfect matching is an example of
a suitable function, whose counting version is the 0-1 permanent function.

(d) Bijective circuits for suitable functions can be efficiently made monotone. It is worth
noting however that monotone circuits are not necessarily bijective. For example, the
arithmetization of a monotone circuit for the Boolean permanent function does not nec-
essarily compute the 0-1 permanent.

The proof of our lower bound is based on a combinatorial framework developed by Jerrum
and Snir [6] to obtain size lower bounds for computing polynomials using circuits defined over
semi-rings. In [6], Jerrum and Snir prove an exponential size lower bound for computing the
permanent polynomial using algebraic circuits over positive reals. The combinatorial framework
they develop uses restricted Boolean circuits that correspond to such algebraic circuits. We
observe that these Boolean circuits are monotone, multilinear and bijective. Because of our
interest in lower bounds for computing the 0-1 permanent function, we extend their framework
for Boolean circuits that are monotone and bijective.

The following are some noteworthy features of the results in this paper:

e The lower bound for computing the Boolean permanent function using bijective circuits is
obtained by a simple extension of the framework in [6]. As noted earlier, our lower bound
is for circuits whose formal polynomials need not be multilinear. This is not the case for
circuits considered in [6, 11]. As a consequence of our bound, we obtain an exponential
size lower bound for computing the 0-1 permanent function using monotone arithmetic
circuits.

e Razborov [8] showed a super-polynomial size lower bound for monotone circuits that
compute the Boolean permanent function. While the question as to whether matching
requires exponential size in the monotone Boolean circuit model remains open, using the
lower bound on bijective circuits we show that monotone circuits require exponential size
when further restricted with multilinearity or homogeneity.

e As another consequence of the bijectivity lower bound, we prove an exponential size lower
bound for computing the lexicographically first Boolean permanent function using circuits
over (min, concat).

e While Boolean permanent is known to be in P and Hamiltonian cycle is N'P-complete,
the counting versions of both functions are complete for §P. This suggests that both these
functions ought to be equally hard in some sense. By showing that both of them require
exponential size on bijective Boolean circuits, we exhibit one such setting and thereby
take a step in the direction of understanding the phenomenon of easy decision problems
having hard counting versions. In fact, we identify a class of monotone functions such that
if their counting version is §P-hard, then there are no polynomial size bijective circuits
for such functions unless PH collapses.

The rest of the paper is organized as follows. We begin by deriving a canonical form for
the formal polynomial of a general Boolean circuit computing a monotone function (section
2.1). After motivating the bijectivity restriction in section 2.2 and 2.3, we show that bijective



circuits for computing a class of monotone functions, that includes Boolean permanent and
Hamiltonian cycle, must be monotone (section 3). In section 4, we adapt the Jerrum and Snir
[6] lower bound framework to bijective circuits to obtain an exponential size lower bound for
the Boolean permanent function. The three consequences of this lower bound are discussed in
section 5. Section 6 concludes the paper.

2 Preliminaries

A Boolean circuit B, is a rooted, directed, acyclic graph with interior nodes labeled from {Vv, A}
and the leaf nodes labeled from {z;,z;,0,1|1 < ¢ < n}. B, is monotone if the leaves are labeled
only from {z;,0,1|1 < ¢ < n}. Without loss of generality, we will assume all A-nodes have
fanin 2. The size of a Boolean circuit is the number of non-leaf nodes in it, and its depth is
the length of the longest path from any leaf to the root. Each B,, computes a unique Boolean
function f:{0,1}” — {0, 1}.

With every B,,, we can associate an algebraic expression £(B,) defined inductively in a
natural fashion.

Definition 2.1 If v is a leaf in B,, let F, be its label. If v is a V-node with children
U1, 02, ..., 0, let By =370 Ey, and if v is a A-node with children vy, vq, let B, = E,, - E,,.
Then, £(B,,) = E,, where r is the root of B,.

Definition 2.2 The formal polynomial P(B,,) associated with a Boolean circuit B,, is obtained
by only applying distributivity of A over V in £(B,,).

Definition 2.3 A parse-graph GG in B, is defined inductively as follows: G includes the root of
B,,; for any V-node v included in GG, exactly one immediate predecessor of v in B, is included
as its only predecessor in G5 and for any A-node v included in G, all the immediate predecessors
of v in B, are included as its predecessors in G.

Parse-graphs are a generalization of the notion of parse-trees in [6]. Every node of a parse-
graph G computes a formal multivariate monomial, defined in the obvious way. The monomial
computed at the root of G is a monomial of P(B,,). Thus, each monomial of P(B,,) corresponds
to a parse-graph in B,,.

Definition 2.4 A Boolean circuit B, is said to be multilinear if P(B,) is multilinear.

Definition 2.5 Each element in the set {z; |1 < ¢ < n} is a variable. A literal is a variable
x in positive form z or negative form z. A term is a conjunction of literals, both positive and
negative. Each term ¢ can be expressed as t4.t_, where each literal in ¢4 is positive and each
literal in ¢_ is negative. For any term ¢, {4 is the positive term of ¢ and {_ is its negative term.
var(t4) denotes the set of variables in ¢4 and var(f_) is the analogous set for ¢_.

Definition 2.6 A term ¢ is said to be consistent if var(t;) Nwvar(t_) = . A parse-graph is
consistent if the term it computes is consistent.

Definition 2.7 Each Boolean function f can be represented as a disjunction of its prime
implicants, where each prime implicant is a term such that the set PI(f) of prime implicants
satisfy the following properties: (i) for all ¢ € PI(f), ¢ is consistent and each literal appears



at most once in ¢; (ii) PI(f) contains all terms ¢ = ¢4.t_, such that setting the variables in
var(ty) to 1 and those in var(t_) to 0 causes f to evaluate to 1, regardless of the values of the
other variables; (iii) there do not exist terms ¢,¢' € PI(f) such that both var(ty) C var(t,)
and var(t_) C var(t"_); (iv) when f is monotone, the terms in PI(f) do not contain negative
literals.

Throughout this paper, we shall use the following functions:

Definition 2.8 The 0-1 permanent function PERM : {0, 1}”2 — N takes as input an n x n 0-1
matrix and outputs its permanent. The bipartite perfect matching function BPM : {0, 1}”2 —
{0, 1}, takes as input the standard n x n adjacency matrix representation of a bipartite graph
G and outputs 1 if and only if G has a perfect matching. Note that BPM computes the Boolean
permanent of the input matrix.

2.1 The Canonical Formal Polynomial

Given a general Boolean circuit B,, computing a monotone function f, we can establish some
relationships between the consistent monomials of P(B,) and the terms of PI(f) leading to
a canonical form for P(B,,). The proofs of the following lemmas are based on the idea that
P(B,) and f must agree on every input assignment, since B,, computes f.

Lemma 2.1 For each consistent monomial p of P(B,,), there exists a term ¢ € PI(f) such that
var(t) C var(p4).

Proof: Suppose there is a consistent monomial p for which this claim is not true. On the
input assignment that sets the variables in var(py) to 1 and all the rest to 0, B, evaluates to
1 but f is 0, leading to a contradiction. O

In the other direction, we have the following lemma.

Lemma 2.2 For all terms ¢ € PI(f), there exists a consistent monomial p of P(B,,), such that
var(t) = var(ps4).

Proof: Lett be any prime implicant of f. Consider the input that assigns 1 to the variables in
t and 0 to all the rest. On this input, f evaluates to 1. Since B,, computes f, P(B,,) must have
a monomial p such that var(py) C var(t), because otherwise B, would evaluate to 0 on this
input. Now, there cannot be any other t' € PI(f) such that var(t’) C var(p4), for otherwise
var(t') C var(t) which is impossible by fact 2.1 since ¢,¢ € PI(f). It follows from lemma 2.1
that var(py) = var(t). O

Since each parse-graph in B,, computes a monomial in P(B,), by the above lemmas there
is a term in PI(f) associated with each consistent parse-graph of B,,. By ordering the terms
of PI(f), we associate a unique prime implicant with each consistent parse-graph of B,,. This
allows us to partition the set of consistent parse-graphs of B,, into parse-classes, PCy, ..., PCl,
where s = |PI(f)|. By lemma 2.2, each parse-class has at least one parse-graph whose positive
variables correspond exactly with those of the prime implicant associated with the parse-class.
We shall refer to one such parse-graph as a representalive of the parse-class.

Thus, for any B, computing a monotone f, we can put P(B,) in the following normal
form: the consistent monomials of P(B,,) can be partitioned into |PI(f)| parse-classes; in each



parse-class, there are one or more monomials whose positive variable set coincides with that
of the prime-implicant corresponding to the class and each of the rest of the monomials in the
parse-class contains this set as a subset of its positive variable set.

Example 2.1 Consider the Boolean function f = ziz9 4+ z923. The following is the formal
polynomial of a possible circuit Bs computing f: P(Bs) = Jc%xﬁg—l—xlw%wg—l— x%xgil—l—xgxgw:{—}—
wlwgfg.

2.2 Arithmetic Circuits that Count

Arithmetic circuits with {+, x} nodes have traditionally been defined as algebraic circuits over
the field of reals. Valiant [16] studied the power of negations in this setting and showed that
a single subtraction can lead to an exponential gain in size for counting the number of perfect
matchings in triangular grid graphs. [11, 6] proved non-trivial lower bounds on the size and
depth of arithmetic circuits that compute certain multilinear polynomials with non-negative
0-1 coeflicients.

In this work, we are interested in a special type of arithmetic circuit, namely, those that
compute functions of the form f : {0,1}* — N. We define a counting arithmetic circuit A,
similarly to a Boolean circuit except that the interior nodes are labeled nodes labeled from
{+, x} and the leaf nodes labeled from {z;, (1 — z;),0,1|1 < ¢ < n}, where each z; € {0, 1}.
We say that A, is monotone if the leaves are labeled only from {z;,0,1|1 < i < n}. Each 4,
computes a unique function g : {0,1}" — N. The size and depth of A,, is defined as before. As
in the case of Boolean circuits, we can associate a formal polynomial P(A,,) with an arithmetic
circuit A,,. We define the degree of A,, to be the degree of P(A,).

The reason for our interest in counting arithmetic circuits is that there are characterizations
of popular counting classes such as P and 4LOGCF L in terms of these circuits [19, 20], summa-
rized in the theorem below. The uniformity condition used below is the notion of Up-uniformity

defined by Ruzzo [9].

Theorem 2.1 [18, 19] 4P is the class of functions computable by uniform families of counting
arithmetic circuits within polynomial depth and polynomial degree. $LOGCFL is the class
of functions computable by uniform families of arithmetic circuits within polynomial size and
polynomial degree.

Therefore, proving non-trivial lower bounds on the size of counting arithmetic circuits that
compute natural functions may have implications in separation of counting classes.

Unlike algebraic circuits over reals, counting arithmetic circuits cannot compute polynomials
with negative coefficients since —1 is not available as a constant and the circuit receives 0-1
inputs. Further, for computing a function represented by a multilinear polynomial, the formal
polynomial associated with a counting arithmetic circuit need not be multilinear, since 0 and 1
are the only input values and are both idempotent with respect to the x operator.

We would like to be able to prove the following result:

Conjecture 2.1 PERM cannot be computed by polynomial size arithmetic circuits.

We expect this to be true because if there were polynomial size arithmetic circuits for
PERM, then Toda’s result that PH C P’ [13] would lead to the collapse of PH. Proving
this conjecture seems hard since in conjunction with theorem 2.1, it would imply that PERM



€ 4LOGCF L. This is turn would imply that §LOGCF L is properly contained in P, since PERM
is known to be in 4P [15]. Moreover, it would also have the more severe implication that PERM
¢ FP. So, we prove a weaker version of this statement which is motivated in the next two
sections.

2.8 Arithmetic Circuits as Restricted Boolean Circuits

In this section, we consider Boolean circuits that are restricted just enough that they behave
like arithmetic circuits.

For a given Boolean function f, let us define the function 4/ : {0,1}* — A such that 4f(z)
is the number of prime implicants of f satisfied on input x.

Let A, be an arithmetic circuit computing ff. Consider the Boolean circuit B,, obtained by
replacing each +-node of A, with an V-node, each x-node with a A-nodde and the (1—z;) leaves
with z;. It is easily verified that B,, computes f. But conversely, if we start with a Boolean
circuit B,, computing f and generate an arithmetic circuit A,, by doing the reverse replacements,
then on input x, A, does not necessarily count the number of prime implicants of f that are
satisfied on z. This is primarily due to the additive idempotence and absorption axioms of
a Boolean algebra. Therefore, for the converse to hold, we need to restrict a Boolean circuit
such that its arithmetization computes ff. We call such circuits parsimonious. More precisely,
a parsimonious Boolean circuit computes f if and only if its arithmetization computes §f.
Thus, instead of studying arithmetic circuits for §f, one could equivalently study parsimonious
Boolean circuits for f.

Since PERM is the counting version of BPM, the analogue of conjecture 2.1 is,

Conjecture 2.2 BPM cannot be computed by polynomial size parsimonious Boolean circuits.

Razborov’s super-polynomial size lower bound [8] for monotone Boolean circuits computing
BPM implies that there are no polynomial size monotone parsimonious circuits for BPM and
therefore no polynomial size monotone arithmetic circuits for PERM. But the above result has
the exact same consequences as before and therefore is hard to prove. So we consider a weaker
restriction on Boolean circuits for BPM whose arithmetization computes PERM, for which we
can prove an exponential size lower bound.

3 Bijective Boolean Circuits

By lemma 2.2 above, the formal polynomial of a general Boolean circuit computing a monotone
function must contain at least |PI( f)| consistent monomials. Thus, requiring a bijection to exist
between the set of consistent formal monomials and the set of prime implicants restricts the
Boolean model of computation. This suggests the following restriction on Boolean circuits.

Definition 3.1 A Boolean circuit B, computing the function f is said to be bijective if the
number of consistent monomials in P(B,,) equals |PI(f)].

Bijective circuits are in general powerful enough to compute all Boolean functions. This
is because the circuit based on the representation of a Boolean function as a sum of its prime
implicants is bijective. A natural question about bijective circuits is whether they can compute
all Boolean functions within the same resources as general Boolean circuits. In section 4.1,
we answer this in the negative by showing that bijective circuits require exponential size to



compute bipartite perfect matching. This function is known to be in P and therefore can be
computed within polynomial size using general Boolean circuits. Thus, there are functions for
which the bijectivity restriction leads to an exponential blowup in size. However, there also
are functions that bijective circuits can compute within the same resources as general Boolean
circuits. For example, it can be checked that the N'C! circuit for PARITY is bijective.

If B,, is a bijective circuit that computes a monotone function f, then by lemmas 2.1
and 2.2, every consistent monomial p of P(B,,) corresponds to a term ¢ € PI(f) such that
var(py) = var(t). It is then natural to ask whether negations are useful for bijective circuits
computing a monotone function. We begin by showing that for any bijective circuit computing
a certain class of monotone functions, that includes BPM, there is an equivalent monotone
Boolean circuit of the same size.

Definition 3.2 A Boolean function f is defined to be suitable if it is monotone and for any
pair of terms ¢,t' € PI(f), | var(t') — var(t) | > 2.

Consider the monotone function BPM. Let .S, be the set of all permutation functions on n
elements and for each 7 € S, let pr = Al_; ; »(;)- Then, PI(BPM) is exactly {p. |7 € S,}. We
shall refer to the set of variables in p, as var(p,). It is easy to verify that for any 7,0 € S,
| var(pr) — var(p,) | > 2, showing that BPM is a suitable function.

A natural example of a non-suitable function is UCONN, which takes as input the adjacency
matrix of a graph G and outputs a 1 if and only if G is connected.

Lemma 3.1 If B, is a bijective Boolean circuit computing a suitable function f, then for all
consistent monomials p in P(B,,), var(p-) = 0.

Proof: Let p be a consistent monomial in P(B,) with a negative literal z. Consider the
assignment 7 that sets all the variables in var(py) U {2z} to 1 and all the rest to 0. Since B,
is bijective and f is monotone, there exists a term ¢ in PI(f), such that var(t) = var(p4).
Therefore, f evaluates to 1 on input Z. But clearly, p evaluates to 0.

Since B, computes f, there must be another consistent monomial p’ in P(B,,), such that p’
evaluates to 1 on input Z. Since B, is bijective, it follows from lemma 2.2 that there exists a
term ¢ in PI(f) distinct from ¢, such that var(t') = var(p’ ). In order for p’ to evaluate to 1,
the variables in var(t’) must be set to 1 on input Z. This implies that var(t') C var(t) U {z},
which is impossible since by definition of suitability, | var(t') — var(t) | > 2. This gives the
desired contradiction. O

Given a bijective circuit B, computing a suitable function f, lemmas 2.1, 2.2 and 3.1
completely determine the variable sets of each consistent monomial in P(B,,). Moreover, since
all consistent monomials of P(B,,) must be monotone, given B, we can produce a monotone
bijective circuit for f of the same size by simply tying all the {z;} inputs of B,, to the constant
0. Therefore, we have

Theorem 3.1 If B, is a bijective Boolean circuit of size s that computes a suitable function
f, then there is an equivalent monotone Boolean circuit B! of size s such that,

PByY= "\ (A )

tePI(f) zi€var(t)

where each k; is a natural number.



It is worth noting that monotone circuits for suitable functions need not be bijective. It
follows from theorem 3.1 that bijective circuits for suitable functions must be parsimonious.
Therefore, we have

Corollary 3.1 Given a bijective circuit B,, computing a suitable function f, the arithmetiza-
tion of B,, computes ff.

Consider a suitable function f such that 4f is §P-hard. A polynomial size bijective circuit

for f would imply a polynomial size arithmetic circuit for 4f. This in turn would lead to the
collapse of PH due to Toda’s result that PH C PP [13].

Corollary 3.2 Given a suitable function f such that §f is fP-hard, there is no polynomial size
bijective circuit for f unless PH collapses.

In particular, since BPM is a suitable function and since PERM is f§P-hard, there is no
polynomial size bijective circuit for BPM unless PH collapses. We make this lower bound
unconditional in the next section.

4 A Lower Bound for Bipartite Perfect Matching

In this section, we prove an exponential size lower bound for computing the bipartite perfect
matching function BPM using bijective circuits.

Let m = n? and let B,, be a bijective Boolean circuit with 2m + 2 input nodes labeled from
the set {z;;,%;;,0,1]1<4,j <n}, computing BPM. By theorem 3.1 and the fact that BPM is
a suitable function, we have,

Proposition 4.1 For any bijective circuit computing BPM, there is a monotone bijective circuit
for BPM of the same size.

Thus B,, is monotone and P(B,,) has exactly n! monomials of the form A, xf

each m € 5, where each k; is an integer. We shall loosely refer to each consistent monomial
in P(B,,) as a permutation. Since BPM is a suitable function and its counting version PERM is
known to be §P-complete [15], by corollary 3.2 we have a conditional lower bound on the size
of bijective circuits for BPM. But since bijective circuits for BPM are monotone, Razborov’s
super-polynomial size lower bound [8] for monotone Boolean circuits computing the Boolean
permanent applies and we have,

7
w(i)? One for

Fact 4.1 Bijective circuits for BPM require super-polynomial size.

In the next section, we improve this size lower bound to exponential by extending the lower
bound arguments of [6] to hold for bijective circuits.

4.1 Adaptation of Jerrum and Snir’s Framework

The main difference between this model and that used in [6] is that the circuits used here
need not be multilinear. Throughout this section, we shall use the fact that B,, has exactly n!
parse-graphs, each computing a permutation.



Definition 4.1 For an A-node «, let m(a) be the number of parse-graphs of B,, in which «
appears.

Definition 4.2 An A-node is said to be (r,d)-significantfor 1 <r < nand 0 < d < | 3], if it
participates in a parse-graph with a term that has r variables, d of which are contributed by
one of its immediate predecessors alone.

We note that if an A-node « is not (r, d)-significant for any (r, d), then m(a) = 0. Moreover,
as a part of the proof of lemma 4.1 below, we show that a cannot be (r, d)-significant for more
than one (r, d) pair.

Definition 4.3 Let H be a subgraph of a parse-graph . Define the weight of H as follows:
W(H) = 3 aen—nodes(H) ﬁ, where A-nodes(H) denotes the set of A-nodes in H.

A lemma similar to the one below was proven in [6] for their model. To prove it for bijective
circuits, we need to take into account the fact that the parse-graphs are not necessarily trees.

Lemma 4.1 If « is an (r, d)-significant A-node of B,,, then m(a) < d!(r — d)!(n —r)!.

Proof: Let g and v be the immediate predecessors of o in B,,. Let G be a parse-graph in
which « appears with an r-variable term. Let @ be the term formed at § and b be the term
formed at v such that @ - b has r > 1 variables and @ has 0 < d < |r/2] variables that are not
in b (see figure 1). Let ¢ be a term such that a-b- ¢ is the n-variable term formed at the root of
G. Clearly, ¢ has n — r variables that are not in @ or b. Note that the sets var(a), var(b) and
var(c) may have non-empty intersections since G is a parse-graph as opposed to a parse-tree.

Let « participate in another parse-graph G’. Since a is an A-node, 8 and 7 participate in
G" as well. In G, let @’ be the term formed at 8 and & be the term formed at v. Let a’ - b’ - ¢/
be the term formed at the root of G’. Now since B,, is bijective, the term computed by G’
must be different from that computed by G. Moreover, since « is an A node, there must be
parse-graphs in B,, that compute the rest of the terms in the product (a + a')(b+ b')(c+ ).
But every term computed by a parse-graph of B,, must be a permutation. Thus, the number
of parse-graphs in which « participates is the product of the number of distinct a’s, b’s and ¢’s,
where @ is a term formed at 3, b is a term formed at v and ¢ is a term such that ¢ -b-cis a
permutation.

We first show that for a fixed r and d, m(a) cannot exceed d!(r — d)!(n — r)!. Let

A = war(a) — {var(b) Uvar(c)}
B var(b) — {var(a) Uvar(c)}
C = war(c) — {var(a) Uvar(b)}

It is easy to see that a can participate in any parse-graph that computes the term o’ -’ - ¢/,
where the variables in @’ are obtainable by permuting within the indices of the variables in A
and b, ¢’ are obtainable similarly from B and C, respectively. Therefore, o can participate in
|A|!|B|'|C|! parse-graphs. Clearly, |A|!|B|'|C|! < d!'(r —d)! (n — r)!.

Suppose « participates in a parse-graph G’ different from the |A|!|B|! |C|! parse-graphs
described above such that in G’, 8 computes the term a’, ¥ computes the term &' and the
output node computes the term a’-b'-¢’. Now, by choice of G’ and bijectivity of B,,, a’-b'- ¢’
must be a permutation different from the |A|!|B|! |C|! permutations above. Thus, the indices



abe

Figure 1: (r,d)-significant node @ embedded in bijective circuit B, with output node p.

of the variables in at least one of a’, b’ or ¢’ are not obtainable by permuting within the indices
of the variables in A, B or C, respectively. Without loss of generality, suppose this is true for
a' (the argument is symmetrical for b’ or ¢/). Then, there must be a variable z;; in var(a’)
such that either 7 is not the row index of any variable in A, or j is not the column index of any
variable in A or both. But then, the term a' - b - ¢ is not a permutation and hence cannot be a
monomial of P(B,, ), by theorem 3.1. Therefore, G’ cannot exist. Note that we did not make any
assumptions about @’ or &’ other than that a’-5'-¢’ is a permutation different from those counted
earlier. Therefore, this argument holds even if |var(a’ - 0')| = r' and |var(a’) — var(d')| =
where ' # r and d’ # d. Since this means that the node a contributes to m(«) only for a single
value of r and a single value of d, m(«) is bounded above by d!(r — d)!(n —r)!. O

The lemma below is motivated by theorem 3.3 in [6], where {G; |1 < ¢ < n!}, are the
parse-graphs of B,,. Let A = {A-node o | m(a) > 1}.

Lemma 4.2 Y%, W(G;) =| Al

Proof: By definition,

i}w«m:i ) m(la).

1=1 aEA—nodes(G;)

Fix an A-node a. For each parse-graph G;, the contribution by « to the sum on the right-

hand side of the above equation is either 0 (if & does not occur in it) or @ Thus, the total

contribution by « is m(oz)ﬁ = 1 and therefore the right-hand side is the number of A-nodes
in A. O

To obtain a lower bound on the weight of a parse-graph G, we consider the number of input
variables covered by G, instead of the notion of degree used in [6]. This is primarily because
P(B,,) is not necessarily multilinear in our model.
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For any subgraph H of a parse-graph of B,,, let v(H) denote the number of variables in
the term associated with H. Let ¢(r,d) = d!(r — d)!(n — r)!. The lemma below is adapted from
theorem 3.4 in [6].

Lemma 4.3 Let H be a subgraph of any parse-graph GG. Then, W (H) > ZZJS;I) C(il).
Proof: The proof is by induction on the number of nodes in H. For the base case, H has a
single node. Since it must be a leaf, v(H) = 1, and since H has no A-nodes, W (H) = 0. Thus,
the lemma holds.

For the induction step, let a be the root node of H and let v(H) = r. Without loss of
generality, we assume that « is an A-node. Since « appears in G, it must be (r, d)-significant
for some d, 0 < d < [5]. Let o have immediate predecessors 3 and 7, with 8 contributing d
variables alone (see figure 1). Let H., be the subgraph of H rooted at . Clearly, v(H,) = (r—d).
Now, there is a subgraph f{ﬁ rooted at @ such that v(ffﬁ) = d. For each leaf z in the set of
d leaves in figure 1, there is a path P, from z to g that is disjoint from H,. Let f{g be the
edge-induced subgraph of Hg defined on the union of the edge sets of P, for all z. We have,

- 1
W) 2 W () + W (H) + oo

Note that m(a) > 1 since a appears in (. Applying the induction hypothesis to the

subgraphs f{g and H, and using lemma 4.1, we get:

d (r—d
W(H) > ;C(i, 5t Z_; 1) end)

The expression on the right is shown in [6] to be minimum at d = 1in the range 1 < d < |3].

In the range 0 < d < |%], this expression attains its minimum value at d = 1 as well, since

1 2
WZOD

The above lemmas lead to the lower bound for BPM using bijective circuits.

Theorem 4.1 Any bijective Boolean circuit B,, requires size > n(2"~! — 1) to decide whether
a bipartite graph has a perfect matching.

Proof: From lemmas 4.2 and 4.3 it follows that the size of any bijective Boolean circuit for this

problem is at least Z?':l Z;}i(;]) c(ill)' But v(G;) = n since every parse-graph of B,, computes
a permutation. Therefore, the above expression is equivalent to n!3 1, ﬁ Substituting for

c(i,1)in 320, c(le) we get, > i, m which is exactly %, from which the theorem
follows.O

4.2 Notes on the Lower Bound

A few points are worth noting:

Upper Bound The Boolean circuit based on the permanent analogue of Laplace’s expansion
rule for determinants computes BPM within size O(n(2"~! — 1)) [6]. This circuit happens to be
bijective. Therefore, the lower bound presented above is tight.
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Depth Lower Bound The above size lower bound immediately implies a linear depth lower
bound for computing the Boolean permanent function with bijective Boolean circuits. This
depth bound also follows from proposition 4.1 and a linear depth bound for this function using
monotone Boolean circuits proven by Raz and Wigderson [7].

Lower Bound for Hamiltonian Cycle The Hamiltonian cycle function HC : {0, 1}7"‘2 —
{0,1} takes as input the standard n x n adjacency matrix representation of a graph G and
outputs 1 if and only if G has a Hamiltonian cycle. HC is a monotone function and each of
its prime implicants corresponds to a Hamiltonian cycle of the complete graph on n vertices.
Let C,, be the set of all cyclic permutation functions on n elements and for each # € C,, let
Pr = N1 % x(i)- Then, PI(HC) is exactly {p, |7 € C),}. Asin the case of BPM, HC is a suitable
function.

Since HC is a monotone function, lemmas 2.1 and 2.2 hold and since it is also suitable, lemma
3.1 and theorem 3.1 hold. The arguments used in section 4 can then be easily adapted to obtain
an exponential size lower bound for computing HC using bijective Boolean circuits, by simply
considering cyclic permutations in place of all permutations. Since HC is a suitable function,
this lower bound also follows from the fact that bijective circuits for HC must be monotone
(theorem 3.1) and the exponential size lower bound for computing HC using monotone Boolean
circuits [1].

4.3 Generalizing the Lower Bound

We now show that the lower bound presented above holds for a model that is slightly more
general than bijective circuits.

Definition 4.4 A Boolean circuit B, is said to be homogeneous if all the consistent monomials
of P(B,) have the same number of positive variables.

Let B,, be a monotone homogeneous circuit for BPM. Recall the canonical formal polynomial
of a general Boolean circuit computing a monotone function (section 2.1). The monotonicity
restriction rids it of negative literals and the homogeneity restriction allows only those mono-
mials to survive whose variable sets correspond exactly to that of some prime implicant. Thus,
whereas a bijective circuit for BPM has exactly n! parse-graphs, a monotone homogeneous cir-
cuit could have more than one parse-graph in each parse-class although each of them cover the
same set of variables. In this sense, bijective circuits for BPM are a special case of monotone
homogeneous circuits for BPM.

The lower bound is proved using a set of representatives {G;|1 < i < n!}, one from each
parse-class, instead of the n! parse-graphs used in section 4.1. Definitions 4.1, 4.2, 4.3, the
statement of lemma 4.3 and the proofs of lemmas 4.1, 4.2 and 4.3 are appropriately altered for
representative parse-graphs.

Theorem 4.2 Monotone homogeneous circuits require size > n(2"~! — 1) to compute BPM.

For any monotone Boolean circuit B,, computing BPM, P(B,,) can be simplified into the
form Vyes, pr by applying a sequence of semi-ring axioms and axioms of Boolean algebra such
as, idempotence (z.z = x; z + & = z) and absorption (z +zy = z). Now the absorption axiom
is used in the simplification if and only if P(B,,) has one or more monomials that have more
than n variables. This is because none of these monomials appear in the final reduced form
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and therefore must be absorbed. Thus, monotone homogeneous Boolean circuits correspond
in some sense to the restricted model of Boolean computation obtained by taking away the
absorption axiom.

5 Consequences

In this section, we present consequences of the lower bound result in three models of computa-
tion.

5.1 Monotone Arithmetic Circuits

We establish a close connection between monotone arithmetic circuits for 0-1 permanent and
bijective Boolean circuits for BPM. The lower bound result for bijective circuits in section 4
then implies an exponential size lower bound for monotone arithmetic circuits that compute
the 0-1 permanent function.

Let m = n? and let A,, be a monotone arithmetic circuit that computes PERM : {0,1}™ —
N. Since A,, is monotone, the monomials of P(A,,) are trivially consistent.

Now, let B,, be the monotone Boolean circuit obtained by “Booleanizing” A,,, that is,
replacing each X node with an A-node and each + node with an V node. It is easy to verify that
B,, computes BPM. By the analogues of lemmas 2.1 and 2.2, P(A,,) has at least n! monomials.
If it had any more, then on the input that assigns all variables to 1, PERM evaluates to n! but
A,, would compute a value strictly greater than n!. Thus, P(A,,) has exactly n! monomials.
Now, since P(B,,) is formally identical to P(A,,) by construction, it follows that B,, must be
bijective. The lower bound below now follows from theorem 4.1.

Theorem 5.1 Any monotone arithmetic circuit A,, requires size > n(2(”_1) — 1) to compute
PERM.

Proof: Suppose A, had smaller size. Then, the bijective Boolean circuit obtained by Booleaniz-
ing A,,, would compute BPM within size smaller than n(2(”_1) —1). But by theorem 4.1, this
is impossible. O

We note that this lower bound on monotone arithmetic circuits computing PERM extends
that obtained by [6] to the 0-1 permanent function. It is also worth noting that this bound
does not follow from the work of Valiant [16].

5.2 Monotone Multilinear Circuits

Let B,, be a monotone multilinear Boolean circuit for BPM. In this section, we show that given
such a B,, it is possible to construct a circuit B!/, computing BPM, while at most squaring
the size, such that B!/ is monotone homogeneous. An exponential lower bound on the size of
monotone multilinear circuits for BPM then follows from the arguments in section 4.3.

Recall the canonical formal polynomial of a general Boolean circuit for a monotone function
(section 2.1). Monotonicity rids it of negative literals and multilinearity rids each monomial of
its degree. Thus, each parse-class has one or more monomials that look exactly like the prime
implicant corresponding to the class. We now provide a construction that takes a monotone
multilinear circuit and produces one in which only these monomials survive. Thus, the resulting
circuit is monotone, homogeneous, multilinear and computes the same function as the original
circuit.
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Lemma 5.1 Given a monotone multilinear circuit B, of size s computing a homogeneous
function f with p variables, there is a monotone, multilinear, homogeneous circuit B!, that
computes f within size O(s?).

Proof: Given B, we first construct an equivalent circuit ), that has the following normal
form: (i) C), has alternating V and A layers; (ii) the output node is an V node and all circuit
inputs are inputs to V nodes; and (iii) each A node has fan-in two. It is easily verified that the
size of (), is at most twice that of B,,.

Given (), we construct an equivalent circuit B}, such that each monomial of P(B]) has
exactly p variables. This is achieved by essentially keeping a count of the number of variables
covered at a node.

e For every leaf node A in C), create a leaf node A in Bj,.
e For every V-node A in C,, create the V-nodes [A,,0],0 < ¢ < p,in B].
e For every A-node A in C,, create the V-nodes [A,¢,1],0 < ¢ < p,in B].

e For all 0 < i < p, the inputs to an V-node of the form [A,, 1] are A-nodes [A, ¢, j, k], for
all j,k such that 0 < j,k <pand 7+ k =1¢.

e Lor all ¢, 7, k, inputs to the A-node [A, 1, j, k] are the V-nodes [B, 7,0] and [C, k, 0], where
B and C are the inputs of the A-node A in C,.

e For all 0 < i < p, the inputs to an V-node of the form [A, 1, 0] are set as follows: for each
input B of the V-node A in C,, (a) if B is an A-node, make [B,¢,1] an input of [4,1,0],
for all 0 < ¢ < p; (b) if B is a leaf node labeled with a variable z, [A4,1,0] has z as its
input, and for all ¢ # 1, [A, 7, 0] gets the constant 0 as an input; and (c) if B is a leaf node
labeled with a constant ¢, [A,0,0] has ¢ as its input, and for all 1 < i < p, [A,1,0] gets
the constant 0 as an input.

The size of B! is at most a square of that of C,,. It is also easily verified that the formal
monomials of B, are those of B, that have exactly p variables. Since the construction preserves
monotonicity and multilinearity, B}, is a monotone, multilinear and homogeneous circuit that
computes f. O

Using lemma 5.1 and theorem 4.2, we have

Theorem 5.2 Monotone multilinear circuits require size Q(y/n(27~! — 1)) to compute BPM.

Note that since the construction above essentially pulls out the monomials of P(B,,) that
have algebraic degree n, the lower bound in theorem 5.2 also holds for monotone Boolean
circuits in which not all formal monomials are multilinear but there is at least one multilinear
formal monomial in each parse-class whose variable set is exactly that of the prime implicant
corresponding to the class. Let us call such circuits nearly-multilinear. Then we have,

Theorem 5.3 Monotone nearly-multilinear circuits require size Q(y/n(27~! — 1)) to compute
BPM.
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5.3 Circuits Over (min, concat)

We consider the semiring MIN = (¥*U{L}, 4, X), where X is any alphabet, x denotes concate-
nation ( Lxz = ax L = L, forall ) and 4 denotes lexicographic minimum (z4+L1 = L4z = =z,
for all z).

A circuit M,, over MIN is a rooted, acyclic, digraph with interior nodes labeled with + or
X. The leaf nodes of the circuit are labeled either with an input variable z;, 1 < ¢ < n, or
with some element of ¥ U {L}. The size and depth of M,, and the formal polynomial P(M,,)
associated with M, are defined as before.

Consider the function LMBPM: {SU L} — YmU{L}, which takes as input an n x n matrix
X = [z;;] with z;; € ¥U{L}. The input encodes a bipartite graph G such that if z;; € ¥, then
the value of z;; denotes the order on the edge (¢, j) in G} if z;; = L, then there is no edge (¢, )
in G. On this input, if G has a perfect matching, LMBPM outputs a string of length n over the
alphabet 3., that encodes the lexicographically minimum perfect matching. If G does not have
a perfect matching, the function outputs L.

The algorithm below computes LMBPM, where BPM(G) decides whether G has a perfect
matching and X denotes concatenation. Since there is a polynomial time algorithm for BPM
[5], LMBPM is therefore in P. We will now show that circuits over MIN require exponential size
to compute this function.

begin
1. res = 1;
2. for i =1, |F(G)| do
/* Each edge in G is visited in order */
2.1 if BPM(G — ¢;) then
/* G — ¢; is the graph obtained from G by deleting the vertices
of e; and all incident edges */
2.1.1 res = res x{e;};
212G =G — ¢
end-if

end-for

3. return(res);
end
Figure 2: LMBPM is in P.

Let m = n?. Let M,, be a circuit over MIN that computes LMBPM. Let B,, be the Boolean
circuit obtained from M,, by replacing each +-node with an V-node and each x-node with an
A-node. Moreover, if M,, has the matrix X = [z;;] as input, then Y = [y;;], the input to B,,,
is derived as follows : if z;; € X, then y;; = 1, otherwise y;; = 0. Clearly, B,, is a monotone
Boolean circuit. We now show that B,, is also nearly-multilinear and computes BPM. This is
primarily because the elements of 3 are not idempotent with respect to the x operator.

Lemma 5.2 If M,, computes LMBPM on input X, then B,, is a monotone nearly-multilinear
circuit that computes BPM on input Y.

Proof : The bipartite graph G encoded by X is simply the one encoded by Y, with a total
order on its edges. Let P(M,,) and P(B,,) be the formal polynomials associated with M,, and
B,,, respectively. There is clearly a bijection between the monomials of P(M,,) and those of
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P(B,;). Now, if G has a perfect matching, then there is at least one monomial in P(M,,) all of
whose variables receive values from .. By construction, all the variables in the corresponding
monomial in P(B,,) receive the value 1 on input Y. Therefore, B,, evaluates to 1. Conversely,
if G doesn’t have a perfect matching, then for every monomial in P(M,,), there is at least one
variable that receives the value L. Therefore, for every monomial in P(B,,), there is at least
one variable that gets a 0 value on input Y, causing B,, to evaluate to 0. Thus, B,, computes
BPM.

To show that B,, is nearly-multilinear, we need to show that for all # € S,,, the monomial
Pr = NZ1Yix(i) appears in P(B,,). Suppose for some 7, p, does not appear in P(B,,). By
construction, ¢r = Aj_;%; (;) does not appear in P(M,,). On the input to M,, for which ¢,
is the lexicographically first bipartite perfect matching in the input graph, the output of M,,
disagrees with that of the function LMBPM thereby giving the desired contradiction. O

By theorem 5.3 we have,

Corollary 5.1 Circuits over MIN require size > n(2"~! — 1) to compute LMBPM.

A linear depth lower bound immediately follows for circuits over MIN computing LMBPM.

6 Concluding Remarks

In this paper we introduce the notion of bijective Boolean circuits and show that such circuits
require exponential size to compute the perfect matching function for bipartite graphs. Since
this function is known to be in P, it follows that general Boolean circuits are exponentially more
powerful than bijective circuits and that the polynomial size circuit for this function cannot
be bijective. This size bound also implies a linear depth lower bound in this model, which
in turn implies that if an N'C circuit for BPM exists, it cannot be bijective. We also showed
some interesting consequences of this size bound for computations using monotone multilinear
circuits, monotone arithmetic circuits and circuits over (min, concat). While bipartite perfect
matching is known to be in P and Hamiltonian cycle is NP-complete, the counting versions of
both functions are complete for §P. This suggests that both these functions ought to be equally
hard in some sense. By showing that both of them require exponential size on bijective Boolean
circuits, we exhibit one such setting and thereby take a step in the direction of understanding
the phenomenon of easy decision problems having hard counting versions. In fact, we identify
a class of monotone functions such that if their counting version is §P-hard, then there are no
polynomial size bijective circuits for such functions unless PH collapses.
We conclude with a few open questions that this work raises:

e Are there other functions for which the approach presented here can be used to derive non-
trivial lower bounds in the bijective circuit model? The functions BPM and HC considered
in this paper are both monotone. What about non-monotone functions?

e What can be said about the class of natural decision versions of §P-complete functions
that require exponential size bijective circuits?

e In all the examples of natural restricted circuits that we have looked at, bijectivity seems
to appear only in conjunction with multilinearity. Are there natural circuits that are
bijective but not multilinear?

e What would be an appropriate notion of reducibility for the bijective circuit model?
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e Are there other interesting restrictions on Boolean circuits for which lower bounds for
natural functions can be obtained?

e Can one obtain a super-polynomial size lower bound on parsimonious circuits for BPM?
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