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Abstract - We approach the problem of a chaser satellite circumnavigating a target object in a
relative orbit. The objective is to obtain a map of the scenario and to measure the reciprocal
position of the chaser-target pair, in order to subsequently perform proximity operations
(active debris removal, rendezvous, servicing, etc.) more reliably. This work analyzes the case
of a target-chaser scenario in a closed Clohessy-Wiltshire relative orbit. The chaser satellite has
a vision sensor and observes a set of landmarks on the target satellite: the control acts on the
yaw-rotation of the detector. By defining a probability distribution over a set of feasible control
trajectories, we perform a search for a near-optimal solution. At the core of this approach
lies the cross entropy minimization technique for estimating rare-event probabilities, which
iteratively approximates the sampling distribution towards regions of progressively lower cost
until converging to the optimum. We present simulations of a tracking scenario, demonstrating
the validity of the proposed control technique. Performance of the proposed policy is compared
with the case of a non controlled sensor by evaluating the time spent under observation and the
residual uncertainty bounds on the landmarks. Results confirm the validity of the proposed
approach.

I. Introduction

Vision-based navigation has been already demon-
strated in several space missions that involved ren-
dezvous and docking operations between satellites.
While maneuvers between cooperative targets have
been tested in orbit, limited experience is available
for the case of non-cooperative objects, such as de-
bris or malfunctioning spacecraft. The possibility of
repairing and refurbishing out-of-order satellites with
unmanned vehicles might give rise to a multi-million
business opportunity:1 nowadays, several space agen-
cies and private companies are pushing in this di-
rection, and are triggering the interest in research-
ing close approach maneuvers and On-Orbit Service
(OOS) operations.

In this paper we integrate planning and stochas-
tic optimization with agent localization in order to
control a vision sensor mounted on an autonomous
spacecraft in orbit. Control here translates in the ro-
tation of spacecraft or sensor about one of its axes so
that it points to the location of the landmarks previ-
ously detected on the target satellite. The estimation
accuracy of the detected features drives which fea-
ture should be selected next, and hence also drives
the corresponding control action. The control and

estimation steps are therefore coupled. This active
localization approach, when coupled with a mapping
step of the initially unknown environment, is known
in the terrestrial robotics community as Active SLAM
(Simultaneous Localization and Mapping) and it has
been studied extensively in the past.2,3

In order to capture estimation uncertainty in the
optimization step, we construct a cost function which
includes a term encapsulating the uncertainty of
the state, provided by an Extended Kalman Filter
(EKF). Since the resulting optimization problem is
difficult to solve, we resort to the method of cross-
entropy (CE) minimization to find the optimal con-
trol strategy. The CE strategy iteratively selects the
best attitude trajectories to minimize the aforemen-
tioned cost. The method provides a framework to ob-
tain near-optimal solutions for the orbital circumnav-
igation problem by jointly considering control, plan-
ning and estimation.

This paper is divided as follows: first, in Section II
we introduce the Cross Entropy minimization math-
ematical preliminaries; in Sections III and IV we de-
scribe the problem under analysis and derive the state
and measurement model; in Section V we proceed to
the design of the algorithm and of the Extend Kalman
Filter application; in Section VI we finally present the
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simulation results.

II. Mathematical Preliminaries

Cross Entropy Minimization

In this section we present the Cross Entropy min-
imization algorithm and show how it can be used
to solve a certain class of stochastic optimal control
problems. Assume the following stochastic dynamic
system:

dx = f(x,u)δt+ g(x)dw [1]

in which x ∈ Rn is the state of the system, u ∈
Rp is the control input, and w ∈ Rl is a zero-mean
Gaussian process with covariance Σw. We want to
minimize a cost function as

minEp[L(x,u)] [2]

where the expectation in [2] is with respect to the
trajectories of [1]. If u(t) depends on a parameter
vector λ ∈ Rm, we can rewrite the control input as
u(t;λ). The result of this parametrization is that we
will minimize the cost function with respect to the
finite dimensional parameters vector λ. According to
the CE minimization method,4 the cost function can
be rewritten as follows:

J(λ) = Ep [L(λ)] =
∫
p(λ) L(λ)dλ [3]

where p(λ) is the probability density function cor-
responding to sampling trajectories based on [1].
By performing importance sampling from a proposal
probability density q(λ), the cost function is

Ĵ(λ) ≈ 1

Ns

Ns∑
i=1

[
p(λi;µ)

q(λi)
L(λi)

]
[4]

in which Ns samples were drawn. The probability
density that minimizes the variance of the estimator
Ĵ is:

q∗(λ) = argmin
q

Var

[
p(λ;µ)

q(λ)
L(λ)

]
=

[
p(λ;µ)L(λ)

J(λ)

]
[5]

and it is the optimal, with respect to the variance, im-
portance sampling density. As explained earlier, the
goal of CE is to find the parameters ψ ∈ Ψ within
the parametric class of pdfs p(λ;ψ), such that the
probability distribution p(λ;ψ) is close to the optimal
distribution q∗(λ) given in [5]. Using the Kullback-
Leibler divergence as the distance metric between

q∗(λ) and p(λ;ψ), the optimal parameters can be ap-
proximated numerically as:

ψ∗ ≈ argmax
ψ

1

Ns

∑
L(λ) ln[p(λ;ψ)]. [6]

Our goal is to compute λ that satisfies the following
equation:

P(L ≤ ϵ) = Ep(λ;µ)[I{L≤ϵ}] [7]

where ϵ is a small constant and I is the indicator func-
tion. Using [4], this probability can be numerically
approximated:

P̂(L ≤ ϵ) ≈ 1

Ns

∑[
p(λi;µ)

p(λi;ψ)
I{L(λi)≤ϵ}

]
where λi are i.i.d samples drawn from p(λ;ψ). Based
on [6], the goal is to find the optimal ψ∗, which is
defined as:

ψ∗ ≈ argmax
ψ

1

Ns

∑
I{L(λi)≤ϵ} ln[p(λi;ψ)] [8]

in which the samples λi are generated according to
probability density p(λ;µ). In order to estimate the
above probability, it would be computationally ex-
pensive to use a brute force method, such as Monte-
Carlo5 due to the rarity of the event {L ≤ ϵ}. A
solution is to start with ϵ1 > ϵ for which the proba-
bility of the event {L ≤ ϵ1} is equal to some ρ > 0.
Then, the value ϵ1 is set to the ρ-th quantile of L(λ)
which means that ϵ1 is the largest number for which:

P(L(λ) ≤ ϵ1) = ρ.

The parameter ϵ1 can be found by sorting the samples
according to their cost in increasing order and setting
ϵ1 = LρN . The optimal parameter ψ1 for the level ϵ1
is calculated according to [8] using the value ϵ1. This
iterative procedure terminates when ϵk ≤ ϵ, in which
case the corresponding parameter ψk is the optimal
one and thus ψ∗ = ψk.

In order to find the optimal trajectory λ∗ and the
corresponding optimal parameters ψk, the process is
iterated until ϵ→ ϵ∗, where ϵ∗ = minL(ϵ). Since ϵ∗ is
not known a-priori, we choose as ϵ∗ the value of ϵ for
which no further improvement within a predefined
tolerance in the iterative process is observed. The
overall algorithm is summarized in the table below.

III. Problem Formulation

III.i Relative Navigation in Orbit

In reference,6 the CE approach was applied to the
problem of a two-dimensional circular orbit. In this

IAC–16–A6 Page 2 of 12



67th International Astronautical Congress, Guadalajara, Mexico. Copyright c⃝ 2016 by the authors. All rights reserved.

Fig. 1: Problem set up and simulated sensing scenario.

Cross Entropy Algorithm

1: Draw N samples for λ from a probability dis-
tribution p(λ, ξ), e.g. a Gaussian distribution
N (µξ,Σξ).

2: Compute the cost L(λ) for each λ and sort them
in ascending order.

3: Select the best performing ρ-th percentile and
find the optimal parameters (µ∗

ξ ,Σ
∗
ξ) which max-

imize

(µ∗
ξ ,Σ

∗
ξ) = argmax

µξ,Σξ

1

|E|

|E|∑
e=1

ln p(λ, ξ)

4: Set (µξ,Σξ) = (µ∗
ξ ,Σ

∗
ξ)

5: Repeat from (1) until the variation of (µξ,Σξ) is
smaller than a predefined threshold.

paper, we wish to extend that work to the general
case of a target and a chaser satellite in a 3D orbital
scenario. The relative orbit will be described by Clo-
hessy Wiltshire’s equations (CW).

The objective of the chaser is to obtain a map
of a set of landmarks located on the target satel-
lite. These can be features such as edges, patches,
arrays of LEDs, etc. For the sake of simulations, we
consider the landmarks as single 3D points randomly
located in a bounded box inside the relative orbit.
The process of gathering information about the land-
marks positions is achieved through the application
of a Simultaneous Localization and Mapping (SLAM)
algorithm, which also allows for a simultaneous im-
provement of the chaser localization.

The satellite has an onboard sensor, which is free
to rotate around the axis normal to the orbital plane.

Frame {G} denotes the Global frame∗, {R} the Local
non Rotating Frame attached to the chaser and {S}
the Local Rotating Frame attached to the satellite
sensor. In addition, we define the angles ϕ and θ,
which respectively represent the heading direction of
the satellite and the sensor bearing. Note that in our
setup, frame {S} has a positive π/2 angular offset
with respect to {R}.

In order to describe the relative motion between
the chaser and the target, we start by analyzing Hill’s
equations.

III.ii Clohessy-Wiltshire Reference Frame

The Clohessy-Wiltshire framework allows for the
description of orbital relative motion, in which the
target is in a circular orbit, and the chaser is in an
elliptical (or circular) orbit. This model is a first-
order approximation of the actual chaser’s motion in
a target-centered coordinate system.

Hill’s differential equations in Cartesian coordi-
nates and in the non homogeneous form can be writ-
ten as follows:7,8 ẍ− 3n2x− 2nẏ = fx

ÿ + 2nẋ = fy
z̈ + n2z = fz

The CW equations can be obtained solving Hill’s
differential unforced equations with the standard

∗For example, {G} could represent the base frame of a
Clohessy-Wilthshire transformation for a relative navigation
problem.
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Laplace transform, which yields:

x(t) = x0[4− 3 cos(nt)] +
sin(nt)

n
ẋ0 +

2ẏ0
n

[1− cos(nt)]

y(t) = y0 −
2ẋ0

n
− 3(2nx0 + ẏ0)t+ 2(3x0 +

2ẏ0
n

) sin(nt)

+
2ẋ0

n
cos(nt)

z(t) = z0 cos(nt) +
ż0
n

sin(nt)

One interesting property of these equations is that,
although the equations describing the in-plane mo-
tion are coupled, the out-of-plane motion is decou-
pled.

Even though the chaser does not actually orbit
around the target satellite, the instantaneous motion
is somewhat elliptical.9 The term (2nx0+ ẏ0)t in the
y-equation represents the secular drift between the
chaser and the target due to differences in the orbital
periods. If this term is set to zero by choosing the ap-
propriate initial conditions, ẏ0 + 2nx0 = 0, then the
linearized relative orbit will have a bounded motion.

Assuming this constraint is satisfied, then the
HCW equations can be rewritten as follows:10 x(t) = α sin(nt+ ϕ1)

y(t) = 2α cos(nt+ ϕ1) + ∆y
z(t) = β sin(nt+ ϕ2)

where the parameters α, β, ∆y, ϕ1 and ϕ2 are deter-
mined through the relative orbit initial conditions:

α =

√
x20 +

ẋ20
n2
, β =

√
z20 +

ż20
n2

[9]

∆y = y0 − 2
ẋ0
n

[10]

ϕ1 = tan−1

(
nx0
ẋ0

)
, ϕ2 = tan−1

(
nz0
ż0

)
[11]

In order to simplify the analysis, we may impose a
target-centered orbit by driving ∆y to zero, that is
let y0 = 2(ẋ0/n). The case ∆y ̸= 0 is trivial and does
not add any significant novelty. One finally obtains: x(t) = α sin(nt+ ϕ1)

y(t) = 2α cos(nt+ ϕ1)
z(t) = β sin(nt+ ϕ2) ẋ(t) = α cos(nt+ ϕ1)n
ẏ(t) = −2α sin(nt+ ϕ1)n
ż(t) = β cos(nt+ ϕ2)n

The unit vector normal to the osculating plane can
be derived as the unity momentum:

n̂ =
x× ẋ

∥x× ẋ∥
[12]

A new frame of reference attached to the Hill’s
orbit is defined, {H}, with the x -axis and y-axis lying
on the osculating plane and directed towards the apsis
and periapasis respectively. The direction is chosen
to form a right-handed frame {̂iH , ĵH , k̂H} with the
z -axis, represented by n̂. Frames {G} and {H} have
the same null origin by definition since y0 = 2(ẋ0/n).

III.iii State Model

The state model of the orbiting satellite, aug-
mented with the position of the landmarks, can then
be written in differential form as:



dx(t)
dy(t)
dz(t)
dϕ(t)
dθ(t)
dp1(t)

...
dpN (t)


=



α cos(ϕ+ ϕ1)n
−2α sin(ϕ+ ϕ1)n
β cos(ϕ+ ϕ2)n

ωϕ(t)dt
ωθ(t)dt

0
...
0


+

[
I5

03N×5

]
dw(t) [13]

where x, y, z indicate the position of the chaser satel-
lite in the {G} frame, and the angles ϕ and θ are
the rotation of the chaser and the sensor expressed in
frames {H} and {R} respectively; note that ϕ(t) = nt
is the cumulative angle: that is, we suppose that in
the baseline case (with no control applied), the chaser
rotates with an angular velocity vector perpendicu-
lar to the relative orbital plane and with magnitude
equal to the mean motion (ωϕk

= n).
The landmark positions p1, . . .pN are expressed

in the global frame, and yield an augmented state
x ∈ R3N+5.

In the model, dw ∈ R5 represents a Wiener process
with covariance matrix Σw = diag(σ2

1 , σ
2
2 , σ

2
3 , σ

2
4 , σ

2
5).

In discrete form, the model becomes:

xk+1

yk+1

zk+1

ϕk+1

θk+1

p1k+1

...
pNk+1


=



xk + α cos(ϕk + ϕ1)nδt
yk − 2α sin(ϕk + ϕ1)nδt
zk + β cos(ϕk + ϕ2)nδt

ϕk + ωϕkδt
θk + ωθkδt

p1k

...
pNk


+

[
I5

03N×5

]
w(tk)

[14]

III.iv Measurement Model

Detection of the landmarks occurs only if they are
within the field of view and range of the sensor, de-
picted as the yellow truncated pyramid in Fig. 1.
When a feature is detected, the sensor outputs the
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Fig. 2: Measurement model definition.

vector z = (r, α, β), where r is the range and the tu-
ple (α, β) are the azimuth and elevation angles (see
Fig. 2).

The measurement model, expressed in continuous
form, is the following:

z(t) = S
RR(θ(t))RHR(ϕ(t))HGR(pi(t)− pR(t)) + v(t) [15]

where pi = (pxi
, pyi , pzi) and pR = (x, y, z) are the

position of the landmarks and the observer satellite,
respectively, expressed in the base frame. The term
v(t) corresponds to the observation noise of the sen-
sor which is considered zero-mean Gaussian with co-
variance matrix Σv = diag(σ2

I , σ
2
II, σ

2
III). The matri-

ces H
GR, S

RR(θ(t)) and R
HR(ϕ(t)) express rotational

transformations from the base frame {G} to the orbit
{H}, from {H} to the observer frame {R} and from
{R} to the sensor frame {S}, respectively. In compact
form, the observation model is then written as:

z(t) = h(x(t)) + v(t) [16]

In a real scenario, however, measurements will be
taken discretely, according to the sampling strategy
adopted. The measurement model, in discrete time
form, can then by written as:

zk = h(xk) + vk [17]

Referring to Fig. 2, the measurement model mapping

function can be described as:

h(x) =


√

(xL − x)2 + (yL − y)2 + (zL − z)2

tan−1

(
y∗L − yG
x∗L − xG

)
− ϕ− θ

tan−1

(
sgn((xL − x∗

L) · n) ∥xL − x∗
L∥

∥x∗
L − x∥

)

[18]

The projected vector x∗
L can be further expressed

as a function of the state by knowing the transfor-
mation map between frames {G} and {H}, which re-
mains constant throughout the simulation:

x∗
L = xL − (xL · n)n [19]

The measurement model can then be written as:

h(x) =



√
(xL − x)2 + (yL − y)2 + (zL − z)2

tan−1

(
(xL − (xL · n)n− x) · jH
(xL − (xL · n)n− x) · iH

)
− ϕ− θ

tan−1

(
sgn(((xL · n)n) · n) ∥(xL · n)n∥

∥xL − (xL · n)n− x∥

)


[20]

IV. Main problem

The problem is to estimate the position of the
landmarks by properly evaluating the measurements
taken by the sensor. To perform this task, we control
the rotation of the sensor along the orbital plane’s
normal to maximize the performances in a finite time
horizon. That is, we want to minimize a cost function
containing both the final uncertainty of the estimate
and the actuation cost. Such a function is of the form:

L(x,u) = ∥e2(tN )∥+
∫ tN

0

(
Q(x) +

1

2
uTRu

)
dt

[21]
where ∥e2(tN )∥ is the terminal cost at a certain time
horizon setpoint T = tN . Unfortunately, this error is
not known and a strategy for its approximation needs
to be introduced.

To do this, we approximate the error with a mea-
sure of the estimation uncertainty. We introduce two
main cost strategies based on a) the covariance ma-
trix trace and on b) the time under observation of
the landmarks. Both strategies evaluate the terminal
performances of the piecewise control trajectory and
the actuation cost needed to achieve it.

CE minimization is utilized to iteratively select
attitude trajectories minimizing the afore-mentioned
cost. The result is a near-optimal path, in terms of
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achieving a predefined goal in the state space, while
reducing the localization error and the total uncer-
tainty. With this method, we are able to obtain near-
optimal solutions to the orbital navigation problem
by jointly considering control, planning and estima-
tion.

After the first reconnaissance turn has been com-
pleted, and the state vector x has been augmented to
dimension R 5+3×N through landmark observations†,
the CE routine is implemented.

Since the trajectory simulated in the EFK predic-
tion routine is dependent on the intrinsic uncertainty
of the sensor, a long time horizon will induce a build
up of errors and uncertainties. The CE routine is then
applied to a finite time horizon, equal to a fraction of
the orbital period.

In this simulation, the orbit has been divided in
s sectors: each sector will then be further divided in
m sampling boxes, where m is the size of the control
action vector λ. Depending on the implemented dis-
cretization, each box will consist of k iterations. That
is, for each box mi, constant control parameters λi
are applied for k number of iterations inside the box.

Once the aforementioned parameters have been se-
lected, Ntraj random control laws are drawn by us-
ing the starting distribution parameters v0. An EKF
simulation is then run for each of the Ntraj control
laws, leading to different trajectories; these are or-
dered according to their respective cost and a quan-
tile q−th is selected. The best q−th quantile provides
the new parameters vi from which the next Ntraj con-
trol laws are drawn. The process iterates for the NCE
cross-entropy optimization steps. The output of the
algorithm is the near-optimal control law λ ∈ Rm
with m being the number of boxes in which the si
sector is divided.

We introduce two cost functions that are feasible
in for the CE minimization strategy.

IV.i Trace of the covariance matrix (TCM)

Using a cost function that includes a measure of
estimation uncertainty can lead to trajectories that
reduce the overall uncertainty of a map:11 hence, a
first cost strategy implements the trace of the co-
variance matrix as a measure of uncertainty for the
state estimate provided by an Extended Kalman Fil-
ter (EKF). Such a function will be of the form:

L(x,u) = ψ(xtN )+

N∑
k=0

(
Q(xtN ) +

1

2
u(tk)

T
Ru(tk)

)
[22]

†N ≤ N

with the terminal cost being:

ψ1(xtN ) = trace(Σ(tN )) [23]

Letting for simplicity Q(x) = 0, we have:

Ltcm = trace(Σ(tN )) +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
[24]

IV.ii Time under observation (TUO)

In this second strategy, the cost is defined as the
time under observation of the landmarks by the sen-
sor. For each trajectory obtained from the sampling,
the number of landmarks seen by the sensor at each
iteration is stored (Ti).

For each trajectory the total number of observed
landmarks is then summed:

ψ2(xtN ) =
∑
i

Ti [25]

The complete function, taking into account the actu-
ation cost, is then:

Ltuo =
∑
i

Ti +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
[26]

V. Design of the Algorithm

In order to treat the minimization problem with
the cross entropy approach, we divide the problem in
two parts. First, the chaser satellite performs a so
called recognition orbit, which is needed to obtain a
rough estimate of the landmarks’ location. In this
part, no control input is applied, ωθ = 0.

In order to proceed, we consider the discretized
version of the dynamics in Eq. [14]. The dimension
of the state is initially x ∈ R5 and changes according
to the number of landmarks detected. The proposed
algorithm consists on the two phases:

• the recognition phase, during which the measure-
ments taken by the chaser provide a first estima-
tion of the visible landmarks

• the incremental estimation phase, during which
the chaser keeps taking measurements in order
to improve the overall state estimation.

The recognition phase is necessary since the chaser
does not know the number and the position of the
landmarks and, in turn, the dimension of the over-
all system state. During the recognition phase the
chaser runs an EKF algorithm whose state is aug-
mented whenever a measurement related to a new
landmark is collected.12

IAC–16–A6 Page 6 of 12



67th International Astronautical Congress, Guadalajara, Mexico. Copyright c⃝ 2016 by the authors. All rights reserved.

V.i Recognition Phase

Let Ñ be the number of landmarks recognized up
to the time instant k so the current state of the EKF

x
(Ñ)
k =

[
xk yk zk ϕk θk p

(1)
k p

(2)
k . . . p

(Ñ)
k

]T
.

We divide the design of the EKF into prediction and
update steps.

Prediction step

The update equation is

x̂k+1|k
ŷk+1|k
ẑk+1|k

ϕ̂k+1|k

θ̂k+1|k

p̂
(1)

k+1|k

p̂
(2)

k+1|k
...

p̂
(Ñ)

k+1|k


=



x̂k|k
ŷk|k
ẑk|k
ϕ̂k|k

θ̂k|k
p̂
(1)

k|k

p̂
(2)

k|k
...

p̂
(Ñ)

k|k


+



α cos(ϕk|k + ϕ1)nδt
−2α sin(ϕk|k + ϕ1)nδt
β cos(ϕk|k + ϕ2)nδt

ωϕkδt
ωθkδt
0
0
...
0


or in a more compact form

x̂
(Ñ)
k+1|k = f(x̂

(Ñ)
k|k , ωϕk

, ωθk).

The update of the covariance matrix is given by

P
(Ñ)
k+1|k = FkP

(Ñ)
k|k F

T
k +Qk, [27]

where

Fk =
∂f

∂x
. [28]

The matrix Fk has the following structure

F =

[
Fmot
k 0
0 IÑ

]
, [29]

where Fmot
k is given by the following

Fmot
k =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂ϕ

∂f1
∂θ

. . . . . . . . . . . . . . .
∂f5
∂x

∂f5
∂y

∂f5
∂z

∂f5
∂ϕ

∂f5
∂θ



=


1 0 0 −α sin(ϕk|k + ϕ1)nδt 0
0 1 0 −2α cos(ϕk|k + ϕ1)nδt 0
0 0 1 −β sin(ϕk|k + ϕ2)nδt 0
0 0 0 1 0
0 0 0 0 1

 .
[30]

where 0N is a null matrix of dimension N .

Fig. 3: Discretization strategy for cross-entropy algo-
rithm

Update step

We assume to have the information provided by
the range and bearing sensor z = [r, α, β]. Further-
more, we assume that we collect multiple measure-
ments at the same time instant k+1, e.g. z̄k+1. This
vector can be divided in two components, the first

component z
(1)
k+1 which is given by all the measure-

ments associated to already seen landmarks and the

second component z
(2)
k+1 which represents measure-

ments associated to new landmarks. The measure-
ment model can be written as

z̄k+1 =

[
z
(1)
k+1

z
(2)
k+1

]
=

[
h(1)(x̂k+1) + v

(1)
k+1

h(2)(x̂k+1) + v
(2)
k+1

]
.

We proceed with the computation of the Jacobian of
the observation model with respect to the robot pose
and the observed landmark coordinates. At iteration
k + 1 we get

Hk+1 =
∂h

(1)
k+1

∂x(Ñ)

∣∣∣∣∣
x̂k+1|k

[31]

By having the output matrixHk+1 we can update the
state related to all chaser attitude and all the already
seen landmarks

Kk+1 = P
(Ñ)
k+1|kH

T
k+1

(
Hk+1P

(Ñ)
k+1|kH

T
k+1 +Rk+1

)−1

x
(Ñ)
k+1|k+1 = x

(Ñ)
k+1|k +Kk+1z

(1)
k+1

P
(Ñ)
k+1|k+1 = (I−Kk+1Hk+1)P

(Ñ)
k+1|k
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e)d)

b)a) c)

f)

Fig. 4: Reconnaissance orbit: the sensor is fixed with respect to the satellite (ωθ = 0).

Without loss of generality, suppose that z
(2)
k+1 refers

to just one new landmark p(Ñ+1), then we have that

p̂
(Ñ+1)
k+1|k+1 =

x̂k+1|k
ŷk+1|k
ẑk+1|k


+ R
HR

r cos(β) cos(α+ ϕ̂k+1|k + θ̂k+1|k)

r cos(β) sin(α+ ϕ̂k+1|k + θ̂k+1|k)
r sin(β)

 .
Then we can extend the state

x
(Ñ+1)
k+1|k+1 =

x(Ñ)
k+1|k+1

p̂
(Ñ+1)
k+1|k+1

 ,
and the covariance matrix

P
(Ñ+1)
k+1|k+1 =

[
P

(Ñ)
k+1|k+1 P (Ñ,Ñ+1)

P (Ñ+1,Ñ) P (Ñ+1)

]
,

where

P (Ñ+1,Ñ) =
(
P (Ñ,Ñ+1)

)T
=



∂p̂
(Ñ+1)

k+1|k+1

∂xk

∂p̂
(Ñ+1)

k+1|k+1

∂yk
∂p̂

(Ñ+1)

k+1|k+1

∂ϕk

∂p̂
(Ñ+1)

k+1|k+1

∂θk



∣∣∣∣∣∣∣∣∣∣∣∣∣
(x̂k+1|k,z̄k+1)

.

and

P (Ñ+1) =
∂p̂

(Ñ+1)
k+1|k+1

∂zk+1

∣∣∣∣∣∣
(x̂k+1|k,z̄k+1)

.

V.ii Incremental Estimation Phase

After the recognition phase an initial guess of the
landmark’ position is stored in the state of the sys-
tem. At this point the core of the algorithm runs to
improve the estimate of the state, and this informa-
tion is exploited to control the vision sensor.
Specifically, for any orbit all the following steps are
repated:

1. We draw Ntraj random possible acceleration tra-
jectories for the sensor, λ = {λ1, λ2, . . . , λNtraj

},
from a Gaussian distribution with parameter vi
(the particular controller used in this paper will
be explained in Section V.iii).

2. For all λ we simulate the behavior of the camera
running an Extended Kalman filter as explained
in Section V.i.

3. Once the state has been estimated at any time
instant we can evaluate one of the cost function
presented in Section IV and perform the CE al-
gorithm. Basically we have to select the ρ − th
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best performing percentile, i.e. the trajectories
with an associated lower cost.

4. From these reduced subset of samples the new
parameters for the distribution are inferred. The
aforementioned procedure is repeated up to the
convergence of the cross entropy method and
then the optimal solution is applied.

V.iii Cross Entropy optimization in the Case of
Orbital Self-Localization

The controller acts on the angular velocity of the
sensor, ωθ. Recalling Eq. [21], we can rewrite the
discrete cost as:

L̂(x,u) ≈ ψ(xtN ) +

N∑
k=0

(
1

2
u(tk)

T
Ru(tk)

)
, [32]

where in Eq. [22] we let Q(x) = 0 and ψ(xtN ) =
∥e2(tN )∥. The control law is parametrized as follows:

ωθ(tk) = u(ωθ(tk−1), η(tk−1;λ)) [33]

ωθ(tk) = ωθ(tk−1) + η(tk−1;λ)δt, [34]

where η(tk−1;λ) is the rotational acceleration, which
is parameterized as a piecewise trajectory composed
by m constant pieces. The choice of parameterizing
the acceleration allows to have smooth (at least of
class C1) angular trajectories.

Each constant acceleration ηm is being applied for
a constant δti, where tsect =

∑m
i=1 δti. The sum of all

time intervals is fixed and is equal to the time horizon
corresponding to the duration of each sector s (refer
to the table in Section VI). The parameter vector λ
is defined as λT = (t1, η1, . . . , tm, ηm) ∈ R2m.

Each parameter vector λ corresponds to a unique
control vector u, which generates a trajectory x =
[x1,x2, . . . ,xtN ]

In the simulation, and without loss of generality,
we mantain the controller timestep constant δti =
δtm = tsect/m. The accelerations ηi are initially ob-
tained from a uniform distribution U([ηmin, ηmax]),
where the bounds are dictated by the specifics of the
sensor.

V.iv Algorithm Set Up

Control in this scenario means that the active ro-
tation of the spacecraft about one of its axes is such
that the sensor points to the landmarks detected in
a previous time step. A certain cost function (e.g.
the estimation accuracy of the detected features or
the cumulative number of features seen) drives which
feature(s) to be observed next, and hence also drives

Problem Algorithm

1: for s = 1 to total sectors per turn do
2: Select initial distribution parameters v0

3: for i = 1 to total CE optimization steps do
4: Draw Ntraj random acceleration vectors λ ∈

Rm from distribution with parameters vi
5: for j = 1 to Ntraj do

6: Run a simulated EKF with the input N j
traj

7: Evaluate the cost function [22] and store
the value

8: end for
9: Sort all the cost function values in ascending

order
10: Extract the ρ-th quantile
11: Run the cross entropy optimization [8] and

extract the new distribution parameters vi+1

12: end for
13: Apply the obtained near optimal control law

λ ∈ Rm to sector s.
14: end for

the control action. The control and estimation steps
are therefore coupled. On the contrary, existing work
in proximity operations solve the problem of control
and estimation independently.13,14

VI. Simulation Results

The proposed algorithm has been used to simulate
the acquisition and tracking of a set of landmarks on
a virtual object located in the centroid of the closed
Hill orbit.

In both cases, in order not to lose generality,
landmarks are randomly placed according to a uni-
form distribution, so that the presence of particular
geometrical properties/simmetries will not affect
performance. The landmarks are thus generated
according to the following distribution:

p = U(0, [α, β, γ])

The distribution coefficient can be chosen to mim-
ick the primitive shape a particular object. In this
case, we chose α = β = γ = 0.2 dmin, with dmin be-
ing the semi-minor axis of the relative CW orbit. In
Table 1 we report the characteristics of the simulated
scenario. We treat the case of a single reconnaissance
orbit followed by a single optimization orbit.

The first orbit allows for the recognition of all the
landmarks that fall in the field of view of the sen-
sor: they are stored in the state and they are as-
signed a progessive number. The first orbit, during
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e)d)

b)a) c)

f)

Fig. 5: Controlled orbit through CE optimization: the uncontrolled sensor is represented as the ghost dashed
shape.

Table 1: Simulation parameters‡

Orbit
Semi-M axis dmax 29.2
Semi-m axis dmin 15.7
Mean motion n 0.38

Set up

Sectors per turn s 6
Boxes per sector m 5
Iterations per box k 10

Number of landmarks Nlnd 30

Sensor

Range r 31.4
Bearing α 10◦

Max acceleration amax 0.8
Max angular span θmax 60◦

Noise
Model σω 0.005

Measurement σv 0.005

which no control is applied (ωθ = 0), is represented in
Fig. 4. The sensor rotates together with the space-
craft, whose angular velocity is equal to the mean
motion of the relative orbit. That is, the satellite
completes a full revolution around its axis for each
orbit.

Due to the elliptical shape of the orbit, the uncon-
trolled sensor spends a substantial amount of the or-
bit without acquiring any landmarks, even though its
range would allow for potential observations (Fig. 4).
In the figures, the observed landmarks are repre-
sented as green circles: note that, since the landmarks
are positioned in 3D space, some of them are not de-

tected even if they appear in the 2D projection of the
sensor’s field of view in Fig. 4. After the first orbit
is completed, the Cross-Entropy routine is applied,
starting from the first sector. In reference,6 an opti-
mization strategy based on the trace of the covariance
matrix was presented and successfully simulated; in
this paper, we present the results obtained by apply-
ing the cost function based on the time under obser-
vation, introduced in Section IV.

Although the CE routine can be computationally
expensive if a fine trajectory quantization is seeked,
the nature of this method allows for parallelization.
The optimization algorithm, in fact, can be run as
soon as the satellite has completed the acquisition of
first sector’s landmarks (beginning of the first orbit),
in parallel with the acquisition of the upcoming sec-
tors.

Since the time required for the CE algorithm to
minimize the objective cost can be tailored by tuning
the discretization step, the number of trial trajecto-
ries, CE iteration, etc., the optimized orbit can run
in real time, keeping the sensor under control at all
times. That is, by the time the satellite enters the sec-
ond orbit, the optimized parameter vector pertaining
the first sector, λ1, is readily available.

The behavior of the satellite in the CE controlled
orbit is shown in Fig. 5. The controlled sensor’s FOV
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Fig. 6: Controlled orbit through CE optimization: ordered cost vectors Li plotted against the CE progressive
optimization steps.
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Fig. 7: Cost performances for the CE progressive op-
timization.

is the green triangular projection, whereas the dashed
triangle represents the sensor’s behavior when no con-
trolled is applied. It is clearly noted that the con-
trolled sensor is kept pointing at the landmarks at all
times, maximizing the time under observation.

Apart from being limited in the acceleration pro-
file, the sensor has to be also limited in terms of an-
gular displacement. A switching control has been de-
signed to avoid unrealistic trajectories: the param-
eters vectors λi drawn from the normal distribution
are screened and discarded if the control vector gen-
erates a trajectory such that |max(θi)|≤ θmax.

A policy to limit the actuation cost has been used
in order to prevent unnecessary control. At the be-
ginning of each CE optimization, the null cost L0,s

is computed for sector s. This is the cost in the case
no control is being applied, i.e., the sensor kinemat-
ics is governed merely by the angular velocity at the
previous timestep ωs−1,m.

The null cost is used as a reference to compare with
the performance of the optimization routine. The
plots in Fig. 6 represent the cost vector optimization
process.

For each CE iteration (in this case NCE = 15),
the cost vector LNCE

is computed and ordered as
described in the algorithm in Section II. The stack-
ing of the subsequent cost vectors creates the three-
dimensional surfaces in the figures. The horizontal
red plane depicts the null cost performance: when
the surface is above the plane, the CE performances
are superior than the non controlled case.

As can be seen from these results, even the low-
est L-vector percentiles are risen above the null-cost
plane in the first two-to-three CE iterations. In all
cases, the top percentiles are always above the null
cost starting from the initial CE iteration.6

In general, the CE optimization allows conver-
gence to the optimal solution by progressively reduc-
ing the difference between the lower and upper per-
centiles of the cost vectors L.

In Fig. 7, the maximum and minimum cost for each
CE optimization step is represented: the strategy is
capable of finding the maximum cost very early in the
process (red lines). Then, the method takes 7-to-10
iterations to even out (in most cases monotonically)
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the range between the minimum and maximum cost
vectors (blu lines). The solid black lines represent the
null cost case, which is substantially outperformed in
each of the orbital sectors.

VII. Conclusions

This paper presents a novel approach for solving
the active self-localization problem during relative
navigation in orbit using Cross Entropy (CE) mini-
mization, expanding the previous work in a 2D frame-
work.6 Using the Clohessy-Wiltshire model, a real
case chaser-target orbital scenario was presented.

By jointly considering the planning, control and
estimation problems it was possible to balance the
control actuation costs and the obtainable localiza-
tion uncertainty: this has been obtained by incorpo-
rating an uncertainty measure in the cost functions,
which is then utilized to select near-optimal trajec-
tories in terms of estimation uncertainty. Results for
the cost function based on the time under observation
confirmed the validity of the method.

It is well known15 that the main drawback of Cross
Entropy implementation in control design is due to
the substantial computational efforts required during
optimization: to overcome this issue, by discretizing
the orbit in a finite time horizon sectors, it was possi-
ble to use parallelization and to hence design a real-
time controller. In our approach, the optimization
is run in parallel with landmark acquisition and no
hold-time is needed for computation.

Future work will focus on the validation of the pre-
sented method through the aid of experimental data,
and high-fidelity simulation using a satellite simula-
tor and a realistic orbital scenario.
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