
Inertial Attitude and Position Reference System

Development for a Small UAV

Dongwon Jung∗ and Panagiotis Tsiotras†

Georgia Institute of Technology, Atlanta, GA, 30332-0150

This article presents an inexpensive inertial attitude and position reference system for a
small unmanned aerial vehicle (UAV) that utilizes low cost inertial sensors in conjunction
with a global positioning system (GPS) sensor. The attitude estimates are obtained from a
complementary filter and a Kalman filter by combining the measurements from the inertial
sensors with the supplementary attitude information from GPS. A method is proposed to
deal with the GPS data latency and momentary outages. The inertial position is estimated
from a separate Kalman filter that is cascaded after the attitude filters in order to reduce
the computational overhead. Numerical simulation results and hardware validation show
that this is a simple, yet effective method for attitude and position estimation, suitable for
real-time implementation on a small UAV.

I. Introduction

Control of unmanned aerial vehicles (UAVs) requires increased automation from the top level (trajectory
design and planning) to the bottom level (stabilization and tracking) of the control architecture hierarchy.
Most important in this hierarchy, is to know the correct states of the vehicle, such as orientation, absolute
position, and so on. Most UAVs are equipped with various sensors to correctly measure the state variables,
so state estimation has become indispensable in modern strapdown navigation systems.

A number of estimation filters has been proposed since 1970s. The basic idea is to blend several different
measurements to obtain the best approximation of the signals. Among these filters, the Kalman filter has
been widely used for attitude determination.1,2, 3 The Kalman filter provides the best estimates based on
the system dynamics and a priori knowledge of the noise characteristics of the signals. Major difficulties
when implementing a Kalman filter on a micro-controller arise from the complexity caused by the need of
inverting certain matrices. This problem is exacerbated by the need to implement an extended Kalman
filter (EKF) in case the system is nonlinear and with a large number of states. In contrast to the Kalman
filter, the complementary filter is simple, easy to implement, and has been successfully used for decades on
a low-performance micro-controllers.4,5

The strapdown attitude determination problem solves for the three-axis attitude of the vehicle by utiliz-
ing onboard inertial sensors such as rate gyros, accelerometers, and magnetometers. It is known that two
non-parallel vector measurements of an inertial fixed vector from strapdown sensors enable one to compute
the three-axis attitude by incorporating sophisticated numerical schemes.6,2, 7 Such algorithms approximate
the inertial angles from body-fixed measurements. On the other hand, since GPS can provide direct measure-
ments with respect to the inertial frame, several authors have proposed employing GPS sensors to extract
the attitude information from GPS measurements.8,9, 10 The GPS sensor provides unbiased measurements
at centimeter level accuracy, and the direct use of GPS in attitude estimation avoids complex computations.
This approach has been successfully applied to small UAVs.11

The GPS output has a low update rate compared to the update rate of other inertial sensors. As a result,
difficulties arise when one needs the absolute position at high rates for use within the navigation loop. For
a high rate navigation solution, the GPS should be supplemented by a set of inertial sensors. A complete
and very accurate navigation solution can be achieved by an estimation filter in which the attitude states
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and the navigation states are tightly coupled.12 This combination provides a complete navigation solution
for all ranges of operation, but it is not suitable for implementation on a micro-controller due to its high
filter dimension. In contrast, an appropriate combination of GPS and inertial sensors provides an alternative
choice for reducing the computational burden. In this configuration, the GPS serves as an independent
sensor suite providing position measurements to an estimation filter that also utilizes the attitude estimates
from a separate filter.13 It turns out that this approach is simple and straightforward to implement, but an
algorithm needs to handle spurious outputs owing to the measurement latency and, on certain occasions,
GPS outage.

This article presents a low cost inertial attitude and position reference system for a small UAV, which
is comprised of two separate estimation filters for attitude and position. The estimation algorithms are
simple, yet effective so that a micro-controller can execute these algorithms within a small time interval. In
the following, an algorithm that combines a complementary filter and a Kalman filter is developed for the
Euler attitude angles, and an inertial sensor suite is adopted to combine its output with the GPS output. A
straightforward and innovative way of handling the data latency and the outage of a GPS sensor is introduced.
Finally, a cascaded position estimation Kalman filter is designed utilizing the attitude estimates to lower
the computational burden with a small performance loss. The filters are tested in a hardware-in-the-loop
(HIL) environment to verify the feasibility of the algorithms, and are implemented on an autopilot which is
equipped with a micro-controller and sensors.

II. Attitude estimation

The sensors involved in a strapdown attitude and heading reference system are rate gyros, accelerometers
and magnetometers. These sensors measure the three-axis angular rates, three-axis apparent acceleration
(gravity minus inertial acceleration), and Earth’s magnetic field with respect to the body frame. In order
to obtain the best estimate of the attitude angles from the available sensors, it is imperative to blend these
measurements in a seamless manner by taking into account the different signal specifications for each sensor.

II.A. Complementary filter

Complementary filters have been widely used to combine two independent noisy measurements of the same
signal, where each measurement is corrupted by different types of spectral noise.4 The filter provides an
estimate of the true signal by employing two complementary high-pass and low-pass filters. Figure 1(a)
shows the case of a complementary filter to obtain an estimate x̂(t) of x(t) from the two measurements xm(t)
and ẋm(t). Notice that xm(t) is the measurement of the signal with predominantly high-frequency noise
n1(t), and ẋm(t) is the measurement of the rate of change of the signal with low-frequency noise n2(t) as
follows

xm(t) = x(t) + n1(t) and ẋm(t) = ẋ(t) + n2(t). (1)

From Fig. 1(a), it is apparent that the Laplace transform of the estimate of x(t) can be written as

X̂(s) =
1

τs + 1
X(s) +

τs

τs + 1
X(s)

︸ ︷︷ ︸

Signal terms

+
1

τs + 1
N1(s) +

τs

τs + 1

(1

s
N2(s)

)

︸ ︷︷ ︸

Noise terms

. (2)

The noise terms in both channels are effectively suppressed by the first order low- and high- pass filter with
the time constant τ . The frequency response plot shown in Fig. 1(c) illustrates the contribution of each
frequency channel to the output, where the cutoff frequency is chosen as 1 rad/sec. The time constant τ
is selected according to the noise characteristics of each channel such that the estimate x̂ is contributed by
integration of ẋm over frequencies ω À 1/τ , whereas for frequencies ω ¿ 1/τ , x̂ tracks xm. At frequencies
near 1/τ the estimated output x̂ is a combination of the two channels, which appears as a hump in Fig. 1(c).
The estimate approximates the true signal faithfully over most of the frequency range.

In order to implement a complementary filter on a micro-controller, a discrete version of the high-pass
and low-pass filters should be written in software by taking into consideration the sampling period of the
micro-controller. The filter coefficients for the discrete filters are related to the time constant τ , which
forces the user to recalculate the coefficients of both filters, if necessary. Instead, an alternative form of the
complementary filter can be used as depicted in Fig. 1(b). The filter transfer function remains the same as in
Eq. (2) but the feedback structure of the filter simplifies the filter implementation on a micro-controller. It
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ẋm

x̂1
s

1
τ

(b) Indirect complementary filter

10
−2

10
−1

10
0

10
1

10
2

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency [rad]

M
ag

ni
tu

de
 [d

B
]

 

 

Low pass
High pass
Combined

(c) Frequency magnitude plot of the complementary
filter

Figure 1. Two different schemes for the implementation of the complementary filter.

also allows easy tuning for acceptable performance when low cost sensors are used. In addition, this feedback
structure can be easily adapted to deal with multiple measurements. Figure 2 illustrates the case when using
two low frequency channels. A tuning parameter αk ∈ [0, 1] sets the relative weight between the signals xm1

and xm2
. In this manner the filter takes advantage of multiple measurements to obtain the best estimate.
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Figure 2. Multiple measurement augmentation in the indirect complementary filter.

II.B. Pitch and heading angle estimation

The low frequency dominant pitch angle is directly calculated from the accelerometer output because the
accelerometer is able to measure the gravity vector minus the inertial acceleration (the apparent acceleration,
~g − ~aI) with respect to the body axes. In a steady state flight condition, specifically at a constant altitude
level flight, the accelerometers yield mostly the gravity vector since the inertial acceleration is negligible in
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this case. Then the pitch angle is calculated from the acclerometer output a = [ax ay az]
T as follows

θL = − sin−1

(
ax

g

)

. (3)

The low frequency dominant heading angle is determined by two different sources: the GPS sensor and the
magnetometer. The GPS sensor used in this work provides an absolute heading information ψGPS at a low
rate (1 Hz), whereas the output of the three-axis magnetometer m = [mx my mz]

T with respect to the body
axes provides a heading measurement ψL at a much higher rate according to the following relationship14

ψL =







π − tan−1(m̄y/m̄x) if m̄x < 0,

2π − tan−1(m̄y/m̄x) if m̄x > 0, m̄y > 0,

− tan−1(m̄y/m̄x) if m̄x > 0, m̄y < 0,

π/2 if m̄x = 0, m̄y < 0,

3π/2 if m̄x = 0, m̄y > 0,

(4)

where m̄x and m̄y are the projected magnetic field components on the horizontal plane that can be calculated

by transforming m through the rotation matrix C(φ, θ) ,
(
C1(φ)C2(θ)

)T

. If the pitch angle θ and the roll

angle φ are not available, their estimates θ̂ and φ̂ can be used instead, to yield

m̄x = mx cos θ̂ + my sin φ̂ sin θ̂ + mz cos φ̂ sin θ̂,

m̄y = my cos φ̂ − mz sin φ̂.
(5)

The high frequency dominant pitch and heading angles are inferred from the attitude kinematics equations,

θ̇ = q cos φ̂ − r sin φ̂,

ψ̇ = (q sin φ̂ + r cos φ̂)/ cos θ̂,
(6)

where ω = [p q r]T is the onboard rate gyro measurement.
Figure 3 illustrates the block diagram of the combined complementary filters for pitch and heading angle

estimation. As discussed earlier, the filters can be tuned for acceptable performance via the parameters
τθ and τψ for pitch and heading angle, respectively. The relative weight between the heading angles from
either the magnetometer or the GPS sensor is imposed by a parameter αψ ∈ [0 , 1] in order to put more
emphasis on the measurement that seems to be close to the true heading. A detailed description regarding
the adaptive tuning of αψ is given later in the paper.
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Figure 3. Entire complementary filter setup for pitch and heading angles.
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II.C. Roll angle estimation

The roll angle can also be estimated from a complementary filter using high frequency dominant information
from φ̇ via the attitude kinematics and low frequency dominant information from the kinematic relationship
of the airplane at a banked condition. As illustrated in Fig. 4, if an airplane is in a purely banked, coordinated

ψ̇

L
φ

φ

yb

zb

as = VT ψ̇

~g

−~g

Figure 4. Kinematic relationship at a truly banked turn condition.

turn condition (no side acceleration along body y-axis), then the roll angle is approximately computed by
the following equation assuming no wind,15

sin φ =
ψ̇VT

g
, (7)

where VT is the flight speed and g is the gravitational acceleration. This equation can be further approximated
using sinφ ≈ φ and ψ̇ ≈ r as

φ =
rVT

g
. (8)

Then the low frequency dominant roll angle is approximated from Eq. (8) with the yaw rate from the yaw
gyro and the flight speed from a pitot tube. In practice, the estimate of Eq. (8) tends to be biased since it
utilizes directly the gyro output r which is vulnerable to drift. Over a long period of time the estimate will
deviate owing to this yaw rate bias.5 To compensate for this bias, a Kalman filter was designed as follows.

In general, the fast roll dynamics of the airplane allows us to use a linear approximation for the roll
kinematics φ̇ = p. The roll rate gyro measurement pm is assumed to be corrupted by the roll rate bias pb as
well as measurement noise ηp,

pm = p + pb + ηp.

The biases for both roll and yaw gyros are modelled as random walk processes driven by Gaussian white
noise processes. It follows that the equations of the filter dynamics are given by

φ̇ = pm − pb − ηp,

ṗb = εp,

ṙb = εr.

(9)

The measurement model of the Kalman filter includes the yaw gyro output and the rate of heading angle
change related to the heading angle measurement from the GPS sensor. The yaw rate gyro measurement rm

contains a bias rb and measurement noise ηr,

rm = r + rb + ηr. (10)

Here the yaw rate measurement can be related to the roll angle, using Eq. (8), as follows

rm =
g

VT

φ + rb + ηr. (11)
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On the other hand, because the GPS sensor provides the heading angle at one second intervals, the rate of
the heading angle change ψ̇ is calculated through numerical differentiation. It follows from Eq. (7) that

ψ̇m =
g cos φ̂

V ∗
T

φ + ηψ̇, (12)

where V ∗
T is the flight speed obtained from the GPS sensor and ηψ̇ is the measurement noise. Equations (11)

and (12) become the measurement model for the roll angle Kalman filter. The Kalman filter is implemented
in a discrete format on the micro-controller using a sampling period ∆t:

• Time update

– Project ahead

x̂−

k = Φkx̂k−1 + [ ∆tpk
m 0 0 ]T,

P−

k = ΦkPk−1Φ
T

k + Qk,
(13)

where,

Φk =






1 −∆t 0

0 1 0

0 0 1




 , x̂k =






φ̂k

p̂bk

r̂bk




 .

• Measurement update

– Compute Kalman gain

Kk = P−

k H?
k
T
(
H?

kP
−

k H?
k
T + R?

k

)−1
, (14)

– Update estimate with measurements

x̂k = x̂−

k + Kk(z?
k − H?

kx̂
−

k ), (15)

– Compute error covariance for updated estimate

Pk = (I − KkH
?
k)P−

k , (16)

where, ? = s, f .

Note that the measurement update for GPS is done once every second, when the new ψ̇m becomes available,
whereas the measurement update for the yaw rate gyro takes places at a high update rate. These two
measurement updates are coordinated such that each update is completed whenever the corresponding
measurement becomes available: a fast update for rmk

and a slow update for ψ̇mk
, as follows

• Fast update

z
f
k = rmk

, H
f
k =

[ g

VT

0 1
]

, (17)

• Slow update

zs
k = ψ̇mk

, Hs
k =

[ g

VT

cos φ̂−

k 0 1
]

. (18)

The process noise covariance matrix Qk and measurement noise covariance matrix Rk are determined
from the noise characteristic of each signal, as follows

Qk = diag
(

E
[

η̄2
p ε̄2p ε̄2r

])

,

R
f
k = E

[
η̄2

r

]
, Rs

k = E
[
η̄2

ψ̇

]
,

(19)

where the overbar variables represent the discrete noise sequences at the sampling period of ∆t such that
they have equal noise strength as the continuous noise processes, and E[·] calculates the mean-square noise
strength. The noise covariance matrices Qk and Rk are computed from the noise characteristic of each
sensor assuming that the noise processes are uncorrelated to each other.
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II.D. Dealing with GPS latency and GPS lock

The GPS sensor employed in this research has an inherent data latency, which causes the output of the GPS
sensor to be delayed by a certain amount of time. The position and velocity output from the GPS sensor
at the kth time step are calculated internally based on the satellite range measurements at the epoch of the
(k−1)th time step. Combining the latency due to the internal data processing along with the communication
latency, the time delay of the position output is observed to be about 0.1 sec and the delay of the velocity
output about 1.1 sec.16 The GPS sensor provides the heading angle based on the velocity output, so the
measurement of ψGPS is also delayed by 1.1 sec. Unless this delay is properly compensated, substantial
errors will arise during the estimation process.

Figure 5 illustrates graphically the issue of delay. Assume that the measurement is delayed by N sam-
ples. Then the measurement z∗k at t = tk represents the states of the N prior sample z∗k = Hs

k−Nxk−N .
Several arrangements to incorporate delays into the Kalman filter framework have been suggested in the lit-
erature.17,18 One approach is to simply recalculate the complete time-trajectory of the filter throughout the
delayed period when a delayed measurement is received. The large memory cost for storing the intermediate
states over the delayed period and the associated increased computational cost forbid delayed measurements
to be incorporated directly in a real-time estimation algorithm. Another approach to account for delayed

System
states

Filter
states

xk−N

N · ∆t

xk

x̂k−N x̂k

z∗k

Hk−N x̂k−N
tktk−N

Figure 5. System with a delayed measurement due to sensor latency.

measurements is to make use of the state estimate corresponding to the delayed measurement at t = tk−N ,
i.e., x̂k−N in a buffer. When the delayed measurement z∗k becomes available at the time t = tk, an innovation
that is calculated from the delayed measurement and the delayed state estimate in the buffer is blended with
the current estimate state in the standard Kalman measurement update as follows

x̂k = x̂−

k + Kk(z∗k − Hs
k−N x̂k−N ). (20)

Compared to the case of a wrong innovation calculated from the delayed measurement and the current
state estimate x̂−

k (no delay compensation), this approach forces the correct innovation to be used in the
measurement update and then yields a better estimate. Nonetheless, this is a sub-optimal solution.18

The estimation filters presented in the previous section assumed that the GPS measurement is always
available. However, the GPS output is locked when a GPS outage occurs, failing to provide continuous
information. The situation gets even worse if the UAV performs aggressive motions such as a sharp turn at
high speed. During such an outage, the GPS output is held at the last valid output. Figure 6 demonstrates
the real measured GPS data when the UAV performs a sharp turn by a remote pilot. The plot shows
that at t = 2711.2 sec the GPS heading angle is held to the previous value of -90 deg. The value is kept
until t = 2714.2 sec when a new (possibly valid) heading angle is provided by the GPS sensor. Because
the attitude estimation algorithm presented earlier utilizes the heading angle measurement from the GPS
sensor, an incorrect heading information from the GPS sensor due to a GPS outage would result in a
wrong estimation of the heading angle from the complementary filter. Moreover, this would lead to a wrong
estimation of the roll angle from the Kalman filter.

One possible remedy to this is to use intermittently the heading information from the magnetic compass
for a short time period (i.e., during GPS outage). Even though any local magnetic distortion due to existence
of ferrous materials near the magnetic compass yields a small offset in the magnetic heading information,
the magnetic heading information can provide continuous heading measurement to the filtering algorithm
even when a GPS outage occurs. Whenever the complementary filter detects the GPS heading angle being
held constant, it first modifies the weight parameter αψ to put more emphasis on the magnetic heading
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Figure 6. GPS momentary outage during an aggressive maneuver.

information. As the αψ approaches one, the magnetic heading information is used more exclusively in the
complementary filter, while the GPS heading information is ignored. The adaptive tuning of αψ is done by

α∗
ψ = αψ + (1 − αψ)λ (21)

where, λ ≥ 1 controls the rate of change of weight parameter. Once the GPS is back to normal operation,
the weight parameter will restore the specified value for a normal operation. After the complementary filter
computes the heading estimate during a GPS outage, the Kalman filter can make use of the heading estimate
from the complementary filter in order to obtain the rate of change of the heading angle in Eq. (18). Figure 6
describes the use of heading estimate from the complementary filter to compute the rate of change of the
heading angle during a GPS outage. Notice that at t = 2711.2 sec, a GPS outage occurs and the heading
angle is held fixed. Then the Kalman filter switches to using the heading estimate ψ̂k instead of the false
heading ψGPSk

to calculate

ψ̇∗
k = (ψ̂k − ψGPSk−1

). (22)

The use of the estimated heading continues until the GPS sensor gives correct heading information at
t = 2714.2 sec.

II.E. Attitude filter validation

The previous algorithm was written in C code and implemented as an S-function in the Matlab/Simulinkr

environment. This enables the C code to be validated for any errors and tuned before using it on the
autopilot. A complete non-linear 6-DOF Simulink model19 is used to simulate the full dynamics of the UAV.
The inertial sensor measurements are emulated to have close correlation to the real sensors used in the UAV
in terms of signal specification and noise characteristics. The gain parameters for the pitch and heading
complementary filters were chosen as

τθ = 2, τψ = 0.5, αψ = 0.4.

The process noise covariance matrix and the noise covariance matrix for the Kalman filter were carefully
chosen in consideration of the noise characteristics of the sensors as follows

Qk = diag
([

0.022 0.0012 0.012
])

,

R
f
k = 0.022, Rs

k = 0.052.
(23)

Two internal PID controller loops were designed for roll angle control and pitch angle control with
the associated stability augmentation dampers. The filter outputs are fed back to the corresponding PID
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controllers and validated in the closed loop. Figure 7 shows the comparison between true values and estimated
values. In Figs. 7(a) and 7(c) a doublet roll angle reference command was used to excite the lateral motion of
the airplane, while the pitch angle is held constant at zero. Both the complementary filter and the Kalman
filter function appropriately. Nonetheless, a transient time lag in the estimation process is observed when
the UAV changes its orientation quickly, and this aspect leads to the increased estimation error shown in the
right side of Figure 7 during the transients. The low bandwidth output of the GPS sensor causes the latency
of the estimation with respect to the fast motion, however, the filter converges to the correct angle after
the UAV comes into steady state. Figure 7(b) shows the pitch angle estimation when a doublet pitch angle
reference command was used to excite the longitudinal motion of the UAV, while the roll angle is controlled
to zero.

III. Position Estimation

In this section a filter for estimating the absolute position of the UAV in the north-east-down (NED)
inertial reference frame is developed. A typical attitude heading reference system/inertial navigation system
(AHRS/INS) makes use of the accelerometer output in conjunction with the full equations of motion to
propagate the inertial position and velocity from acceleration measurements using a Kalman filter. However,
the dimension of the Kalman filter is too large to be implemented on a micro-controller and execute in
real-time. Instead of using the full equations of motion, the navigation equations are used to propagate
the position from flight speed measurements. The position filter is cascaded to the attitude filters so as to
allow separate filter tuning and at the same time to reduce the computational cost with minimal loss of
performance.

III.A. Filter formulation

The navigation equations of a 6-DOF airplane20 are used to obtain the position filter equation. Using the
transformation matrix from the body axes (B) to the inertial frame (N ),






ṗN

ṗE

ṗD




 =






vN

vE

vD




 =

[

BCN

]T






U

V

W




 , (24)

where BCN is the rotation matrix using 3(ψ)-2(θ)-1(φ) Euler angles. Assume that the angle of attack and
side slip angle are small, the velocity components expressed in body axes are approximated by

U ≈ VT , V,W ≈ 0. (25)

The flight speed VT , if it is measured from a pitot tube, includes the inertial speed (relative ground speed)
and the wind speed. The relative ground speed is only to be integrated to propagate the inertial position.
The wind speed is dependent on the flight condition, so is added to the position filter as an extra state to
account for the pitot speed measurement. A random walk model for the wind speed variation is assumed,
driven by a Gaussian white noise process as follows

V̇w = εw. (26)

The speed measurement VTm
from the pitot tube contains the inertial speed, the wind speed, and the

measurement noise ηw,
VTm

= VT + Vw + ηw. (27)

The attitude angle information used in Eq. (24) is provided separately by the attitude filters. This cascaded
configuration of the attitude and position filters reduces the complexity arising from the coupling of the
variables. It therefore yields a simple position estimation filter with minimal order. It follows from Eq. (24),
(25), and (27) , that the equations of filter dynamics are given by








ṗN

ṗE

ṗD

V̇w








=








cos θ cos ψ

cos θ sin ψ

− sin θ

0








(VTm
− Vw) +








νN

νE

νD

εw








(28)
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Figure 7. Attitude filter validation.
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where, [νN νE νD]T is the process noise vector of ηw being projected onto the NED frame.
The measurement model for the position estimation filter is described as follows. The North position pN

m

and the East position measurements pE
m are provided by the GPS sensor at an update rate of 1 Hz,

pN
m = pN + ηN ,

pE
m = pE + ηE ,

(29)

where ηN and ηE are the measurement noise for the North and East directions, which are assumed to be the
Gaussian.

Altitude information with good accuracy is attainable using a barometric altimeter. The one used in
our UAV platform has minimum three-meter resolution and a higher update rate. The down position
measurement pD

m with a corresponding Gaussian noise is obtained by,

pD
m = −h + ηh. (30)

Having multiple measurements at different update rates, the discrete position Kalman filter implementation
at a specified sampling period ∆t on a micro-controller is given as follows

• Time update

– Project ahead

x̂−

k = Φkx̂k−1 + Vw[ ∆t sin θ̂k cos ψ̂k ∆t cos θ̂k sin ψ̂k −∆t sin θ̂k 0 ]T,

P−

k = ΦkPk−1Φ
T

k + Qk,
(31)

where,

Φk =








1 0 0 −∆t cos θ̂k cos ψ̂k

0 1 0 −∆t cos θ̂k sin ψ̂k

0 0 1 ∆t sin θ̂k

0 0 0 1








, x̂k =








p̂N
k

p̂E
k

p̂D
k

V̂wk








.

• Measurement update

– Compute Kalman gain

Kk = P−

k H?
k
T
(
H?

kP
−

k H?
k
T + R?

k

)−1
, (32)

– Update estimate with measurements

x̂k = x̂−

k + Kk(z?
k − H?

kx̂
−

k ), (33)

– Compute error covariance for updated estimate

Pk = (I − KkH
?
k)P−

k , (34)

where, ? = s, f .

Each update is performed whenever the corresponding measurement becomes available: a fast update
and a slow update.

• Fast update

z
f
k = −hk, H

f
k =

[

0 0 1 0
]
, (35)

• Slow update

zs
k =

[

pN
mk

pE
mk

]

, Hs
k =

[

1 0 0 0

0 1 0 0

]

. (36)
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The process noise covariance matrix QN and measurement noise covariance matrix RN are determined from
the noise characteristics of each signal,

QN = diag
(

E
[

ν̄2
N ν̄2

E ν̄2
h ε̄2w

])

,

R
f
N = E

[
η̄2

h

]
, Rs

N = diag
(

E
[

η̄2
N η̄2

E

])

,
(37)

where the overbar variables represent the discrete noise sequences at a sampling period of ∆t having equal
noise strength as the continuous noise process, and E[·] calculates the mean-square noise strength.

III.B. Navigation filter validation

The navigation filter was written in C code as an S-function of the Matlab/Simulinkr environment, as
described in Sec. II.E. The process covariance matrix and the noise covariance matrix for the navigation
filter were carefully chosen based on the noise characteristic of the sensors as follows

QN = diag
([

22 22 22 0.012
])

,

R
f
N = 22, Rs

N = diag
([

32 32
])

.
(38)

An open loop steering command for the UAV to perform an eight-shape maneuver was used, which in turn
results in a doublet bank angle command as a reference to the roll PID controller. Figure 8 shows the
performance of the navigation filter. Overall, the navigation filter works very well by providing a series of
estimation values for the main control loop at a high rate (20 Hz) despite the low update rate of the GPS
sensor (1 Hz). The North and East position estimates appear to have certain corrections periodically, which
can be explained by the fact that during no GPS output update, the heading estimation from the attitude
filters is used to propagate the position estimation. However, the time lag of the heading output from the
attitude filters causes the navigation filter to use non ideal heading information during propagation of the
states. This results in a drifted position estimate after one second has elapsed when a new GPS measurement
becomes available. The navigation Kalman filter works to update the filter states according to the new GPS
measurement in order to dump out the drift and to provide the best estimate of position at all times. In
addition, the altitude of the UAV is controlled by the altitude PID controller loop along with the doublet
reference command, which enables the position filter to be validated with respect to the down position.
The Kalman filter works properly at estimating the vertical position despite the noisy barometric altitude
measurement.

IV. Experimental Test-bed

The previous attitude and navigation algorithms were implemented on the UAV autopilot described
in Ref. 21. The autopilot is built around the Rabbit Semiconductor RCM-3400 micro-controller and it is
equipped three single-chip rate gyros, three two-axis accelerometers, a three-axis magnetometer, two pressure
sensors, and a GPS receiver. The micro-controller, sensors and associated electronics are integrated on a
custom-designed and fabricated four-layer 5” by 3” printed circuit board (PCB), shown in Figure 9.

The micro-controller, a RCM-3400 module from Rabbit semiconductors, features a total of 1 MB code
and data memory space and the maximum clock speed at 54 MHz. The memory space allows C programs
with over 50,000+ lines of code, and the advanced C compiler with a tightly coded floating-point library
is used to generate the executable program that is capable of handling floating-point arithmetic with 7
µsec for floating-point addition and multiplication at the maximum clock speed, which is 20 times faster
than other comparable processor unit such as the Intel 386exr microprocessor.22 The attitude filter and
the navigation filter are cascaded to reduce the computation overhead. Having the minimal dimension of
respective filters in conjunction with an explicit formula for matrix inversion, the attitude estimation filters
require a computation time of about 10 msec for each sampling period and the navigation Kalman filter
requires a computation time of about 3 msec.

Table 1 summarizes the specifications, operational range, resolution, and noise characteristics of the
autopilot sensors. Details for the autopilot hardware components and the subsystem integration process
can be found in Ref. 21. The autopilot and the corresponding estimation algorithms were tested in a
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Figure 8. Navigation filter validation.
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Table 1. Sensor specifications of autopilot sensors.

Sensors Range Resolution 1-σ noise

Accelerometer ±2 g 0.004 g 0.025 g

Rate gyro ±150 ◦/sec 0.1 ◦/sec 0.4 ◦/sec

Magnetometer ±2 gauss 1.22 mgauss 4 mgauss

Absolute pressure Above sea level 2.75 m 3 m

Differential pressure 79.2 m/sec 1.40 m/sec 1.5 m/sec

Servo Position ±60 deg 0.5 deg

hardware-in-the-loop (HIL) environment developed specifically for this purpose. Figure. 10 illustrates the
hardware-in-the-loop simulation environment. In the HIL configuration the complete 6-DOF model outputs

Computer

Wireless RF Modem

HIL Bridge
(RS232)
BinaryStates

Control

autopilot

Visualization
(UDP)

Flight 
Dynamics 
Simulator

Flight 
Dynamics

Visualization
RC to 
USB 

Adpator

900MHz 
Wireless
Binary

Ground 
Station

;FlightGear v1.9
;Cockpit view

;Matlab/Simulink
;6DOF nonlinear model
;Real-time simulation
;Remote pilot switching

;Flight control executable
- Inner/Outer loop controller
;Sensor data processing (20Hz)
;Communication to GS ;Ground station GUI

;Communication to autopilot
;Data logging / monitoring
;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Figure 10. High fidelity hardware-in-the-loop simulation (HILS) environment.

from the simulator are processed to emulate real sensors accounting for sensor latency, random walk bias, and
measurement noise. After digitized according to the word size of the micro-controller (12 bit, 4096 steps),
the sensor values are transmitted to the autopilot and serve as substitutions for the real sensor measurement.
The results from the hardware-in-the-loop validation of the estimation algorithms are similar to the ones
shown in Figs. 7-8, which further reveals the fact that the estimation algorithms are suitable for real-time

control of autonomous small UAVs.

V. Conclusion

A simple, yet effective attitude and position estimation algorithm has been developed for use with a
low-cost UAV autopilot. Utilizing a complementary filter for estimating the pitch and heading angles,
dramatically reduces the computational burden. A minimal dimension Kalman filter estimates the roll angle.
An algorithm for handling GPS lock is given and is tested to show the feasibility of real-time implementation
with delayed GPS measurements. A cascaded position filter is also derived, and it is shown to be effective
at incorporating the slow GPS output in order to provide a high update rate position solution. Results from
both simulation and hardware validation show that this low cost inertial attitude and position reference
system is suitable for control of autonomous small UAVs.
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