
Global Manipulation Planing in Robot
Joint Space with Task Constraints

Mike Stilman, Member, IEEE

Abstract— We explore global randomized joint space path planning
for articulated robots that are subject to task space constraints. This
paper describes a representation of constrained motion for joint space
planners and develops two simple and efficient methods for constrained
sampling of joint configurations: Tangent Space Sampling (TS) and
First-Order Retraction (FR). FR is formally proven to provide global
sampling for linear task space transformations. Constrained joint space
planning is important for many real world problems involving redundant
manipulators. On the one hand, tasks are designated in work space
coordinates: rotating doors about fixed axes, sliding drawers along fixed
trajectories or holding objects level during transport. On the other, joint
space planning gives alternative paths that use redundant degrees of
freedom to avoid obstacles or satisfy additional goals while performing
a task. We demonstrate that our methods are faster and more invariant
to parameter choices than existing techniques.

I. INTRODUCTION

In this paper we explore the application of randomized motion
planning algorithms to problems where the robot path is required to
obey workspace constraints. Task compliance or constrained motion
is critical in situations where the robot comes in contact with
constrained objects. Many real-world tasks ranging from opening
doors and pushing carts to helping align beams for construction
and removing rubble exhibit workspace constraints. In these circum-
stances, the robot must not only preserve the task constraint, but
also avoid collisions and joint limits throughout a planned motion.
Redundant robots, such as mobile manipulators and humanoids,
have the dexterity to accomplish both objectives. The challenge is
to efficiently explore alternative joint space paths that satisfy task
constraints without being trapped in local minima. An early version
of this work was presented in [1]. It is now expanded with a formal
proof of global sampling and further theoretical analysis.

II. RELATED WORK

In addition to finding a collision-free joint space path [2], our
problem requires that each configuration along the path satisfy
workspace constraints for the end-effector [3],[4]. We distinguish this
problem from specifying a single goal pose for the end-effector [5]
or a path that the end-effector must follow [6, 7, 8]. In our case, the
end-effector path is not predetermined and the constraints must be
satisfied throughout the path.

Even when the end-effector path is specified, handling robot
redundancy poses a difficult challenge. Typically, redundancy res-
olution is performed with local [9, 10] or global [11] techniques
for optimal control. These methods optimize configuration-dependent
criteria such as manipulability. Obstacle distance, a common criterion
for collision avoidance, has a highly non-linear relationship to joint
configurations and leads to the use of local optimization [12, 13, 14].
These methods require the generation of distance/potential functions
for obstacles. Moreover, they do not find solutions in the presence of
local minima that exist in all three of our examples.

For a more comprehensive exploration of the search space, motion
planning research has headed towards feasible solutions and proba-
bilistically complete algorithms such as PRM[15] and RRT [16][17].

M. Stilman is with Robotics and Intelligent Machines in the Department of
Interactive Computing, Georgia Institute of Technology, Atlanta, GA, 30332
USA e-mail: mstilman@cc.gatech.edu.

Manuscript received December 2, 2008; revised July 25, 2009.

Fig. 1. DOOR: Simulated motion plan to open the door. The robot must
avoid joint limits and the box fan to successfully complete the plan.

0 1
-2.5

-1.5

1.5

2.5

va
lu

e
(m

, r
ad

)

time

1 2 3 4 5 6 7 8 Door

 (1-2) meters (3-8, Door) radians

Fig. 2. DOOR (FR): Paths for robot joints and door rotation (about z-axis)
in Fig.1. Base translation (1,2) and rotation (3) diverge significantly from
straight paths to globally avoid obstacles and satisfy constraints.

These algorithms operate by generating random joint space displace-
ments. However, in the case of constrained motion, the probability
of randomly choosing configurations that satisfy the constraints is
not significant or zero. This is shown for problems involving closed
chains in [18] and [19].

To address this challenge, some approaches use domain-specific
attributes such as closed chain structure [18, 19, 20, 21, 22, 23].
Tang [21, 22] does not incorporate joint limits or constraints on end-
effector orientations. Likewise, dynamic filtering in [23] does not
consider kinematic constraints. These methods are not sufficiently
general to handle the most common types of geometric and kinematic
constraints. Other closed chain techniques such as [19, 20] are similar
to methods in task constrained planning such as [18, 24, 8] and
would require the overhead of translating task planning problems
into problems of closed chains. We restrict our discussion to existing
adaptations. Among these techniques, one algorithm, Randomized
Gradient Descent (RGD)[18] has been directly extended for use
with arbitrary constraints [24, 25]. RGD randomly shifts sampled
configurations in directions that minimize constraint error. However,
[24] applies this algorithm with general constraints on a case-by-case
basis. We propose to adapt the existing task frame formalism [3] to
unify the representation of constraints and initiate the comparison of
algorithms for constrained sampling.

Our investigation considered ATACE [24, 25] as well as the path-
following strategies from [7, 8]. In contrast to existing planners,
our strategies solve strictly larger classes of problems by satisfying
the conditions for global probabilistic completeness as shown in
Section IX. For instance, consider applying ATACE, which explores
task space motions with RRTs and locally follows them in joint space,
to the problem in Figure 3. To solve this problem, a PRR manipulator
must change to an elbow-up configuration prior to reaching the goal.
Both ATACE and our proposed strategies explore the space in 3(b).
Subsequently, whenever a sample is chosen close to the goal, ATACE
chooses the joint space configuration with a workspace distance that
is closest to the goal. This is always an elbow-down configuration.
In contrast, our methods respect the distinction between joint space
configurations that map to same workspace point. Given a joint space
sample with the elbow down, a planner using TS-RRT or FR-RRT
continues to make progress towards the goal by first straightening the
arm and then bending it in the opposite direction.

Mike
Typewritten Text
IEEE Transactions on Robotics June 2010 Volume:26, Issue:3 Pages: 576 - 584

Mike
Typewritten Text

Mike
Typewritten Text

Mike
Typewritten Text

Mike
Typewritten Text

Mike
Typewritten Text

Mike
Typewritten Text

G G G G
2 1

(a) (b) (c) (d)
xs qsATACE FR-RRTqs1 qs2

Fig. 3. (a) A PRR manipulator, end-effector constraint line and goal. (b)
Space explored by both the proposed planners and ATACE. (c) ATACE selects
the nearest neighbor in task space, always choosing elbow-down. (d) Our
planners distinguish between joint space configurations to find the solution.

The three examples given in this paper require the robot to
explore multiple joint space paths along a single path in task space.
Although [7, 8] also consider alternatives in joint space, they pre-
specify the end-effector path itself. Our method does not ask for
an initial workspace path. Furthermore, these methods depend on
a partition of the robot into ”base” and ”redundant” joints. Error
due to perturbations of redundant joints is compensated by inverse
kinematics of the base joints. Such algorithms rely on significant
freedom for base joints, since obstacle and joint limit constraints will
prevent error compensation even when redundancy in the remaining
joints is available. Our strategies find both joint space and end-
effector paths with no initialization. They perform equally well
regardless of which joint motions are constrained.

This paper presents three significant contributions in the domain
of constrained joint space planning. First, we propose two new
global sampling schemes that exploit joint redundancy to explore
the entire configuration space of the robot subject to constraints.
These are the first such techniques that promise globally resolution
complete planning under the assumption of local linearity. Second,
we introduce the intuitive formulation of task space constraints to the
sampling based motion planning community. Finally, we evaluate our
new sampling strategies in comparison with existing methods. Our
strategies are shown to be experimentally successful in comparison
to RGD with regard to different tasks and parameter choices.

III. REPRESENTATION OF CONSTRAINTS

A task constraint is a restriction on the freedom of motion of a
robot end-effector.[3][4]. We use three spaces of coordinates:

qi Joint space coordinates refer to a vector of single-axis transla-
tions and rotations of the robot joints.

TA
B Work space homogeneous matrices represent the rigid transfor-

mation of frame FB with respect to frame FA.
xi Task space coordinates will be used for computing error with

respect to the task frame (Section III).

Note that task space is equivalent to work space by rigid transforma-
tion. The distinction allows for a simple formulation of constraints.
We also employ RA

B for rotations of FB with respect to FA.
Likewise, pA and zA are vectors in frame A.

The degrees of freedom for a rigid body are defined by translations
and rotations in a given coordinate frame. The task frame, F t, is
derived from the world frame, F0, by a rigid transformation of the
world axes. The matrix T0

t specifies the position and orientation of
F t with respect to the world frame.

In the task frame we have various options for quantifying end-
effector error. For instance, translations may be in Cartesian or
Spherical coordinates, while rotations could be described by Euler
Angles or Quaternions. The choice of coordinates will affect the types
of constraints that we can represent. [4] For any representation we
define C, the motion constraint vector. C is a vector of binary values
for each of the coordinates. A value of one indicates that the end-
effector motion may not change the coordinate.

(a) Fixed C =
[0 1 1 1 1 1]T

(b) Fixed C =
[1 1 1 1 1 0]T

(c) Para. C =
[0 0 0 1 1 0]T

(d) Para. C =
[1 1 1 1 1 0]T

Fig. 4. Examples of constraints implemented with a roll/pitch/yaw
specification of task coordinates. The task frames in (c) and (d) are
parameterized by the configuration of the robot.

We can also represent C as a diagonal selection matrix [3]:

C =

 c1
· · ·
cn

 C =

 c1
· · ·

cn

 (1)

We use C and C interchangeably. Without loss of generality, this
paper focuses on Cartesian translations and roll/pitch/yaw fixed axis
rotations. Rotations are defined about the xt, yt and zt axes of F t:

Rt
B = R(zt, φ)R(yt, θ)R(xt, ψ) (2)

Coordinates determine permitted translations and rotations about the
task frame axes. For instance, our C is six dimensional:

CRPY = [cx cy cz cψ cθ cφ]T (3)

The complete representation of a task constraint consists of the task
frame Ft, the coordinate system and the motion constraint vector Ct.
The description may be constant throughout the motion plan, or it
could vary in accordance with the robot configuration or the state of
a higher-level planner.

IV. SPECIFYING CONSTRAINTS

The definition given in Section III generalizes to many common
constraint definitions. This section shows a spectrum of possibilities.

A. Fixed Frames

The simplest task defines a single frame Ft and Ct for the entire
path plan. Fixed frame constraints occur when manipulating objects
that are kinematically linked to the environment (Fig. 1, 9). F t is
any frame in which the axes align with the directions of constrained
motion. Usually the transformation describing F t, T0

t is the position
and orientation of the object. Ct indicates which axes of Ft permit
valid displacements.

In constrained manipulation, assume that the object is rigidly
attached to the end effector after grasp. At the time of grasp, let
T0
A and T0

e represent the position of object A and the end-effector
respectively. The grasp transform TG is given as follows.

TG = Te
A = Te

0T
0
A = (T0

e)
−1T0

A (4)

During manipulation, the kinematics of the end-effector are extended
to include the manipulated object:

T0
e′(q) = T0

e(q)TG (5)

In (5), C directly specifies the permitted displacements of the object.

B. Simple Frame Parameters

Section IV-A described a universal constraint on the robot end-
effector. Suppose the constraint is defined locally with respect to
the position of the end-effector or another function of the planner
state. For instance, a task may consist of manipulating a sequence of
constrained objects.[26] Each object is assigned a distinct task frame
and constraint vector. The planner selects the task frame based on
the object with which it is in contact.

Alternatively, the constraint for a single object may be defined
locally with respect to the configuration of the robot. For example,
a local constraint on rotation is meaningful for transporting open
containers of liquid such as paint (Figure 10). In this case, the task
frame orientation is designated by the world frame and the position
is determined by the end-effector configuration. The constraint vector
remains a specification of the directions of permissible motion.

C. Kinematic Closure Constraints

An important constraint for multi-arm manipulation and recon-
figurable robots is a linkage with a closed kinematic chain. One
approach to specifying kinematic closure is to break the chain at
an arbitrary joint jk. The linkage becomes an open chain with a
constraint defined by the freedoms of the detached joint jk.

We formulate closure as a special case of parameterized task frame
constraints. For any open chain joint configuration, q, the kinematic
expression for jk along each chain yields a work space transform
T(q) describing jk with respect to F0. One of these transforms
can be specified as the task frame, T0

t (q) while the others are end-
effectors T0

e(q). As with previous examples, the constraint vector
intuitively specifies the degrees of freedom for the joint jk.

D. Constraint Paths and Surfaces

Some constraints may require the end-effector to remain on a non-
linear path or maintain contact with a complex surface. One may:

1) Parameterize the task frame by the nearest position on the path
or surface to the sampled configuration.

2) Define a surface by a subset of standard orthogonal coordinates
and constrain the remaining coordinates to the surface.

3) Define a coordinate system that implicitly encodes distance
from the surface as a change to the coordinates.

Notice that in the case where a path is parameterized by time,
the end-effector trajectory is a continuous sequence of task frame
parameters. Extending the search space with time, the frame of a
sampled configuration is decided by time.

V. INTRODUCING CONSTRAINED SAMPLING

Each subsection of Section IV introduced a subspace of constraints
for the end-effector. These are task space coordinates x in F t such
that xi = 0 when ci = 1. In robot joint space, they map to a non-
linear manifold. Randomized joint space planners select samples that
lie outside the constraint manifold. Our methods use a distance metric
in task space to project samples within ε-tolerance of the constraint.
A. Computing Distance

Having identified a sampled configuration qs, we compute the the
forward kinematics. Typically, the end-effector frame, Fe, is found
in SE(3) as the transformation T0

e(qs). We also identify Fe with
respect to the task frame F t:

Tt
e(qs) = Tt

0T
0
e(qs) = (T0

t)
−1T0

e(qs) (6)

We can now find the relationship between the end-effector and the
task frame as follows. More detail is given in Appendix I.

∆x ≡ Tt
e(qs) (7)

TASK CONSTRAINED RRT(qinit,∆t)
1 T .init(qinit);
2 for a = 1 to A
3 do qrand ← RANDOM CONFIG;
4 qnear ← NEAREST NEIGHBOR(qrand, T);
5 qdir ← (qrand − qnear)/|qrand − qnear|;
6 qs = qnear + qdir ∆t;
7 if *CONSTRAINED* NEW CONFIG(qs,qnear)
8 then T . add vertex (qs);
9 T . add edge (qnear,qs);

10 return T

COMPUTE TASK ERROR(qs,qnear)
1 (C,Tt

0)← RETRIEVE CONSTRAINT(qs,qnear);
2 T0

e ← FORWARD KINEMATICS(qs);
3 Tt

e ← Tt
0T

0
e;

4 ∆x← TASK COORDINATES(Tt
e);

5 ∆xerr ← C∆x
6 return ∆xerr;

Fig. 5. Pseudo-code for the Task-Constrained RRT (TC-RRT) construction
algorithm. The word *CONSTRAINED* represents either RGD, TS or FR.
COMPUTE TASK ERROR is common among all three subroutines.

The task space error is found simply by the product in Eq. 8. This
product has the effect of selection presented in Eq. 9.

∆xerr =
[
e1 . . . en

]
= C∆x (8)

ei =

{
0 ci = 0
∆xi ci = 1

(9)

B. Baseline: Randomized Gradient Descent

The proposed distance metric detects when a configuration satisfies
the constraint tolerance. Furthermore, it can be used to identify task
space motions that reduce error. Our algorithms use this information
to construct constrained samples.

The three methods we compare are Randomized Gradient Descent
(RGD) [18][24], Tangent-Space Sapmling (TS), and First-Order Re-
traction (FR). For simplicity, we will describe each approach as a
modification to the basic RRT algorithm summarized in Figure 5.
The algorithm samples a random configuration qrand and finds its
nearest neighbor in the tree qnear . The sampled configuration qs is
placed at a fixed distance ∆t along the vector from qnear to qrand.

As a baseline, consider the RGD algorithm detailed in Figure 6.
After computing the task space error of qs, RGD continues to
uniformly sample the neighborhood of the configuration within a
radius dmax. The error of each new configuration q′s is compared
with qs. If the error is less, q′s replaces qs. The procedure terminates
after a maximum number of iterations or an error less than ε.

VI. RELATING JOINT MOTION TO CONSTRAINT ERROR

Due to random selection, the RGD algorithm will typically evaluate
forward kinematics for a large number of configurations that result in
greater task space error. To avoid this computation, we identify the
relationship between task space error and joint space motion. Since
the relationship is nonlinear, we use a first-order approximation.

The basic Jacobian, J0, is a matrix of partial derivatives relating
joint space velocities to end-effector linear and angular velocities. We
compute the task frame Jacobian, Jt, and use its inverse to find joint
space displacements that resolve task space error.

RGD NEW CONFIG(qs,qnear)
1 i← 0; j ← 0;
2 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
3 while i < I and j < J and |∆xerr| > ε
4 do i← i+ 1; j ← j + 1;
5 q′s = qs + RANDOM DISPLACEMENT(dmax);
6 ∆x′err ← COMPUTE TASK ERROR(qs,qnear);
7 if ∆x′err < ∆xerr
8 then j ← 0; qs = q′s; ∆xerr = ∆x′err;
9 if ∆xerr ≤ ε

10 then if IN COLLISION(qs)
11 then return false;
12 else return true;
13 return false;

TS NEW CONFIG(qs,qnear)
1 (C,Tt

0)← RETRIEVE CONSTRAINT(qs,qnear);
2 J← JACOBIAN(qnear);
3 ∆q = qs − qnear;
4 ∆q′ = ∆q− J†CJ∆q;
5 qs ← qnear + ∆q′;
6 return RGD NEW CONFIG(qs,qnear);

Fig. 6. Pseudo-code for the Randomized Gradient Descent and Tangent
Space Sampling strategies. Both methods constrain sampled configurations.

A. Task Frame Jacobian

The manipulator Jacobian, J0, is computed analytically given the
kinematics of each joint in configuration qs. [27] Each column Ji
represents the contribution of joint i.

J0 =
[
J1 . . . Jn

]
(10)

[
Ji
]

=


[

zi−1

0

]
(prismatic joint)[

zi−1 × (p− pi−1)
zi−1

]
(revolute joint)

(11)

This computation is performed in the world frame F0. We transform
the Jacobian into the task frame F t as follows:

Jt =

[
Rt

0 0
0 Rt

0

]
J0 (12)

The lower three rows of Jt map to angular velocities which are not
necessarily equivalent to changes in task parameters. In configuration
qs, instantaneous velocities are linearly related by E(qs) to the time
derivatives of task parameters as given in the Appendix. [4]

J(qs) = E(qs)J
t(qs) (13)

B. Jacobian Inverse

Given an instantaneous mapping between joint and task space we
invert this relationship. For redundant manipulators, many joint dis-
placements map to a single task space displacement. Our algorithms
use the right pseudo-inverse, J† to map instantaneous error in frame
F t to the least-norm joint space velocities that correct it.

J† = JT (JJT)−1 (14)

While there are many algorithms for computing the pseudo-inverse,
we have used LU decomposition (O(n3)) for speed. LU is faster than
iterative SVD and more common than the Greville method [28].

VII. TANGENTIAL AND ORTHOGONAL TECHNIQUES

The differential mapping between joint space and task space yields
two techniques for constrained sampling. Tangent Space Sampling
(TS) projects each joint space sample into the linear tangent space
of its nearest neighbor. First-Order Retraction (FR) iteratively applies
the minimal displacement that removes task space error.

A. Tangent Space Sampling

First, observe that any existing qnear in the RRT is within
tolerance of the constraint manifold. For closed chains, [29] finds
that small joint displacements from qnear tangent to the constraint
manifold have a higher probability of also being within tolerance. In
our case, these displacements have no instantaneous component in the
direction of task error. For displacement ∆q and Jacobian J(qnear),

CJ∆q = 0. (15)

To apply this principle during RRT search, let qs be a sampled
configuration at a small displacement ∆q from qnear and project
it into the null space of the task constraint.

∆q′ = (I− J†CJ)∆q (16)

Since C is idempotent, C2 = C and Eq. 15 can be verified:

CJ∆q′ = (CJ−CCJJ†J)∆q = (CJ−CJ)∆q = 0 (17)

Eq. 16 represents the least-norm change to ∆q that places it in the
tangent space. Notice that ∆q′ is distinct from the minimal joint
motion that achieves an equivalent task space displacement J∆q′.

The projected sample is q′s = qnear + ∆q′. Due to the non-
linearity of the constraint manifold, q′s is still unlikely to be within
error tolerance. RGD is applied to further reduce task space error.

B. First-Order Retraction

Although similar in form to TS, First-Order Retraction behaves
more like RGD in that it iteratively displaces the sample towards the
constraint manifold. Unlike RGD, the displacement is not random but
directed towards removing constraint error. Unlike TS, the Jacobian
is computed at the sampled configuration qs rather than qnear .

Consider the retraction of a single configuration qs. First, we
find the task space error, ∆xerr , according to Section V-A. If error
exceeds tolerance, we compute ∆qerr , the least-norm joint space
displacement that compensates for error and adjust the sample to q′s:

∆qerr = J†∆xerr (18)

q′s = qs −∆qerr (19)

Since the Jacobian is a first-order approximation, task space changes
do not linearly map to changes in the joint space. Locally, we apply
gradient descent as shown in Figure 8.

Close to singularities, the pseudo-inverse may become unstable.
To resolve this, we discard samples when the magnitude of adjust-
ment exceeds the original displacement. This choice may lead to
inefficiency when sampling around singular configurations and future
improvements should consider early detection of such conditions.

VIII. RESULTS

We evaluated the sampling strategies on three sets of simulated
experiments: DOOR, DRAWER and PAINT. The task is to plan a path
for a PUMA 560 manipulator on a holonomic mobile base. The base
adds two redundant degrees of freedom (dof) to the six-dof PUMA.

In each example, the robot is given an initial grasping configuration
from which we grow an RRT according to each constraint method.

Fig. 7. Joint space samples for a 3D task space are retracted to the plane.

FR NEW CONFIG(qs,qnear)
1 qr ← qs
2 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
3 while |∆xerr| > ε
4 do RETRACT CONFIG(qs,∆xerr);
5 if |qs − qr| > |qr − qnear|
6 then return false;
7 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
8 if IN COLLISION(qs)
9 then return false;

10 return true;

RETRACT CONFIG(qs,∆xerr)
1 J← JACOBIAN(qs);
2 ∆qerr ← J†∆xerr;
3 qs ← (qs −∆qerr);

Fig. 8. Pseudo-code for First-Order Retraction of sampled configurations.
RETRACT CONFIG is shown separately for clarity.

The robot must maintain the task constraint and achieve a goal that
satisfies a workspace criterion:

DOOR - Open the door past 0.6 rad.
DRAWER - Extend the drawer 0.3 m.
PAINT - Move the paint 6.0 m to the right.

Once a configuration is found that satisfies the constraint, the search
is considered successful. During the search, the door only rotates
at the hinge, the drawer only slides and the paint is not allowed to
pitch or roll. Figures 1-10 show successful solutions where the robot
employs redundancy to avoid obstacles and joint limits.

To show the relative stability of our methods, we conducted
experiments with different choices for step size, ∆t, and error
tolerance, ε. Each trial was performed 10 times and terminated when
it was unsuccessful after 10 minutes. Both FR and TS required no
additional parameter choices. For RGD, we set I = 1000, J = 100,
dmax = ∆t/10.0. These parameters resulted in the highest overall
performance on the three examples in our preliminary testing.

For efficiency, the RRTs in all experiments used the VCol-
lide collision checking package and the kd-tree nearest neighbor
approximation.[30] For simplicity, the basic RRT algorithm was used
without goal biasing of the samples. Computation was performed on
an Intel T2600 2.16GHz processor, with an average memory load of
40MB. Final trajectories were smoothed with cubic splines.

Tables I-III summarize the average computation time when all 10
trials succeeded. When at least one trial failed, the tables show the
percentage of successful trials. The tables are blank when all 10 trials
did not result in a solution within the allocated 10 minutes per trial.

Experiments DOOR and DRAWER favor FR in terms of both

Fig. 9. DRAWER: A simulated experiment that requires the robot to open
the drawer. The robot must first move around the footstool to allow sufficient
space for the end-effector trajectory.

TABLE I
RUNTIMES FOR EXPERIMENT 1: DOOR

∆t (Step Size)
ε(m, r) .04 .02 .01 .005 .0025

R
G

D 10−4 107.16 50.16 69.56 130.57 256.0
10−5 60%
10−6

T
S

10−4 22.60 11.35 18.33 25.03 62.22
10−5 90% 114.77
10−6

FR

10−4 4.46 10.28 14.64 36.92 139.25
10−5 12.70 20.28 15.21 44.74 89.49
10−6 5.56 8.82 19.50 63.86 108.8

computation time and stability. In these examples, we see that RGD
and TS perform optimally with the largest error tolerance and a step
size of approximately .02. Lower performance when ∆t = .04 is
most likely caused by the distance of the sample from the constraint
manifold. For RGD, this distance implies a larger number of iterations
to reach tolerance. In the case of TS, a linear approximation to the
constraint manifold is less accurate for larger displacements.

For large tolerances, TS and RGD outperform FR in Experiment
PAINT. This is likely due to two factors: the significantly larger space
of valid configurations and its linearity. Since only two coordinates
are constrained, random samples have a higher probability of being
within tolerance. Furthermore, translations of the base joints map
directly to unconstrained coordinates. Observe that even in a lightly
constrained setting, only FR succeeds for lower tolerances.

Overall, we found that Jacobian based algorithms required less
computation and performed comparably with RGD in the worst
conditions. FR showed significantly more invariance with respect to
error tolerance. We also observed an approximately linear relationship
between computation time and time step. This increase is unavoidable
since smaller time-steps increase the length of the motion plan.

IX. ANALYSIS

Section VIII showed the efficiency of FR and Section II demon-
strated that FR solves a broader class of problems than existing meth-
ods. We now prove that underlying planners such as RRT or PRM
retain probabilistic completeness under FR retraction, ensuring the
global planning when using FR. Typically probabilistic completeness
requires that any valid ε-neighborhood of any joint configuration q
have a non-zero probability of being sampled. [15, 31] We show that
joint space sampling followed by FR retraction yields the desired
nontrivial probability for all ε-neighborhoods of valid configurations
on the constraint manifold. We conclude that FR planner considers
all redundant joint space paths when solving for a task space goal.

First, assume that the transformation between robot joint coordi-
nates and end-effector coordinates is locally linear. This assumption is
reasonable since we apply retraction in a small neighborhood of joint
displacements. The Jacobian, a matrix of partial derivatives of x with
respect to q, is then constant for all joint configurations, resulting in
the linear relationship: x = Jq.

TABLE II
RUNTIMES FOR EXPERIMENT 2: DRAWER

∆t (Step Size)
ε(m, r) .04 .02 .01 .005 .0025

R
G

D 10−4 21.42 13.98 19.49 40.09 96.91
10−5 282.98 90%
10−6

T
S

10−4 7.81 5.38 9.92 21.24 43.37
10−5 153.65 68.62
10−6

FR

10−4 1.58 4.53 6.05 19.52 34.44
10−5 2.50 3.40 6.18 16.84 33.72
10−6 1.64 4.65 8.18 17.21 32.45

Fig. 10. PAINT: A simulated experiment where the PUMA must transport
a can of paint. The plan is required to satisfy a parameterized constraint,
C = [0 0 0 1 1 0], prohibiting rotations about the x and y axes.

The constraint manifold, M is the solution to a set of linear
equations in q of the form a1q1 + a2q2 + . . . anqn = 0. These
equations define a hyperplane in Rn, where Rn is the n-dimensional
robot joint space. The constraint hyperplane has no volume in Rn
and the probability of sampling a constrained configuration is zero.

We define FR with the function f that maps any joint sample p
to its retraction q on the hyperplane: f : Rn →M. To define f , we
first compute task space error: ∆xerr = CJp. In the linear case, the
definition of FR (Eq. 18) is reduced to the following map.

q = f(p) = p− J†CJp = (I− J†CJ)p (20)

Notice that a constant J implies J† = JT (JJT)−1 is also a constant
matrix. Iteration is not required since f results in configurations with
zero task space error. Eq. 21 shows that the task space configuration
x of a retracted q must be zero in each of the error components as
represented by ones on the diagonal of C.

xq = Jq = Jf(p) = Jp− JJ†CJp

= Jp−CJp = (I−C)Jp (21)

This proves that f is a mapping from Rn to the constraint manifold
M. To demonstrate that any ε-neighborhood of any q on M has
a non-zero probability of being sampled we first show that f is
surjective and continuous.

Lemma 9.1: The FR function f is surjective.
Proof: Any configuration q on the manifold M is itself an

element of Rn. Since q has no task space error, CJq = 0. Hence
f(q) maps q to itself as follows: f(q) = q−J†CJq = q−0 = q.

In fact, there exists an entire subspace U = {p} of Rn such that
f(p) = q. This subspace is defined as U = {p ∈ Rn|p = q +
J†C∆x} where ∆x is any vector in task space.

Lemma 9.2: The FR function f is continuous.
Proof: Eq. 20 defines f(p) = Ap where A = (I− J†CJ) is

a constant matrix. Hence f satisfies the conditions for a linear map:
1) f(p+ p’) = A(p+ p’) = Ap+ Ap’ = f(p) + f(p’)
2) f(c p) = A(c p) = c A p= c f(p)

Since f is a linear map with a finite dimensional domain, Rn, and
range, M, we conclude that f is continuous. [32]

0 1
-3

0

3

an
gl

e
(r

ad
ia

ns
)

time

2(meters) 3 4 5 6 7 8

Fig. 11. PAINT (FR): Paths for joints 2-8 in Paint experiment. (2,3) are base
translation/rotation. Joint 4 raises the arm to avoid debris, then lowers under
the ladder. Joint 7 moves accordingly, maintaining the constraint.

TABLE III
RUNTIMES FOR EXPERIMENT 3: PAINT

∆t (Step Size)
ε(m, r) .08 .04 .02 .01 .005 .0025

R
G

D 10−4 18.88 80% 119.19 80% 50% 10%
10−5 50% 80% 70% 50% 60% 10%
10−6

T
S

10−4 10.78 28.67 57.69 131.61 80% 10%
10−5 60% 293.88 186.94 209.14 90% 1%
10−6

FR
10−4 20.21 45.08 127.24 288.47 60% 20%
10−5 20.42 60.51 137.53 90% 70% 10%
10−6 22.36 42.95 126.94 80% 30%

Theorem 9.3: For any ε, let Q be the m-dimensional ε-
neighborhood of any configuration q in M s.t. 0 < |q′−q| < ε for
all q′ ∈ Q. Then for some p in Rn there exists P , an n-dimensional
δ-neighborhood of p in Rn, such that 0 < |p′ − p| < δ and
f(p′) ∈ Q for all p′ ∈ P .

Proof: This conclusion follows directly from Lemma 9.1 and
9.2. Surjectivity of f ensures the existence of p for any choice of
q. The rest of the theorem follows from the Cauchy definition of a
continuous function.

Theorem 9.3 distinguishes the proposed sampling strategy from local
gradient planning methods. Under the assumption of local linearity
between joint and task coordinates, it ensures that uniform joint space
sampling followed by FR retraction yields a non-zero probability of
sampling any patch Q on the constraint manifold. Probabilistically
complete joint space planners retain their global planning properties
when using FR retraction.

Our result is particularly important for robots with redundant joints.
Consider the prismatic robot in Figure 12(a,b) with three joints
q1,q2 and q3. The task space has two degrees of freedom, x and
y for the end-effector and a constraint, x = 0, indicated by the
dashed lines. This robot may use the redundancy in q1 and q3 to
avoid obstacles. Figure 12(c) shows that sampling q followed by FR
retraction maps distinct lines in the space of q1 and q3 to distinct
valid configurations in robot joint space. Furthermore, for any ε-
neighborhood of configurations on the dashed line there exists a
volume of configurations in joint space that maps to it, yielding a
nontrivial probability that the planner would detect the solution. Our
proof generalizes this intuition to robots in n-dimensions.

X. EXTENSIONS

The previous sections introduced and analyzed a set of algorithms
for joint space planning with workspace constraints. Not only are
these methods efficient and theoretically sound, but also they are
easily extended to common robotics challenges.

(a)

q1

q3

q1

q3

q1

q3

(a) (b) (c)

q1

q2

q3

(b)

q1

q3
b

(c)

a

Fig. 12. The dashed vertical line is a constraint on end-effector position.
(a,b) Redundant joint configurations that yield equivalent task configurations.
(c) FR maps distinct hyperplanes in joint space that are orthogonal to the
constraint to distinct valid configuration on the constraint manifold.

Unilateral Constraints: The motion constraint vector C represents
bilateral constraints, prohibiting positive and negative coordinate
change. Suppose a constraint requires a coordinate to remain within
an interval or to change monotonically. These cases can be treated
as either obstacles or parameterized constraints.

In the case of the former, samples that violate the constraint will be
discarded. The latter option specifies ci = 1 or ci = 0 for coordinate
i based on whether or not the sampled configuration violates the
boundary. This choice will generate more valid samples, yet it may
bias these samples towards the constraint bounds.

Alternatively, methods such as [33, 34] can direct robot motion
and prevent close interaction with the unilateral constraint bound.

Alternative Planning Strategies: The algorithms evaluated in Sec-
tion VIII were all based on the single-query RRT algorithm. However,
both RGD and FR are well suited for use in PRMs among other
multi-query algorithms. As long as the constraint distance metric is
well-defined throughout the space, arbitrary configurations can be
displaced towards the constraint manifold. All three algorithms can
be used to connect PRM samples.

The generality of our methods extends to the use of heuristics such
as RRT-Connect during search [31]. Since the only modification to
the RRT algorithm is in the NEW CONFIG method, variants of
RRT are trivially extended to include the proposed strategies.

Multiple Constraints: For simplicity, this paper has focused on a
single task constraint for the end-effector. However, some tasks
require multiple end-effector constraints, more general specifications
of end-effectors or multiple kinematic closure constraints. We address
generalized end-effectors in Section X. For multiple task constraints,
we simply form a composite constraint vector CM . Let Ci represent
the constraint vector for task i. Then we have:

CM = [CT1 CT2 · · · CTn]T (22)

For the TS and FR algorithms, we also construct a generalized
Jacobian matrix composed of the individual task Jacobians:

JM =
[
J1 · · · Jn

]T (23)

The computational methods for sampling remain unchanged.

Abstract End-Effectors : The generalization of task definitions also
extends to abstract end effectors. Section IV-A displaced the end-
effector frame to the grasped object. In fact, any coordinate defined
as a function of one or more robot links can be constrained. An
important example is the robot center of mass (COM). The COM
position is a linear combination of the positions pmi of the individual
link masses, mi. For a total mass M ,

pcom = 1
M

∑
imipmi. (24)

This definition is sufficient to compute task space error. For TS and

FR we also define the COM Jacobian as follows:

J0
com =

[
JP1 . . . JPn

]
(25)

JPi =

{
(1
M

∑n
j=imj)zi−1 (prismatic)

1
M

∑n
j=imj(zi−1 × (pmj − pi−1)) (revolute)

In the case where the end-effector is a non-linear function of the
joints, the Jacobian can be approximated numerically by computing
kinematics for small displacements in each joint.

XI. CONCLUSION

We have presented a unified representation for task space con-
straints in the context of joint space motion planning. We described
three algorithms for task constrained sampling in joint space. Our
comparison of the algorithms indicated that First-Order Retraction
is typically faster and significantly more invariant to step size and
error tolerance than alternative techniques. Finally, we generalized
our approach to various constraint definitions and algorithms.

Our experimental findings regarding the efficiency of Jacobian
based algorithms also contribute to plan execution. Computing the
Jacobian during planning allows us to measure the manipulability of
sampled configurations: det(JJT)1/2 [35]. Maintaining a manipula-
bility threshold permits stable use of local compliance or impedance
control and allows for error while following a computed path.

Many facets of task constrained planning remain for future inves-
tigation. For instance, Section X applies our method with multiple
hard constraints. Soft constraints may lead to results in biasing motion
plans towards desirable robot postures. Task projection into the null
space of J† could be used to prioritize constraints. [36, 37]

APPENDIX

Many common constraints including the examples in this paper
can be expressed with a C vector in a coordinate system composed
of translation and fixed axis (roll/pitch/yaw) rotation. The use of any
coordinate system requires us to derive translations of displacements.

Here, we provide a transformation from error in homogeneous
coordinates to error in fixed axis coordinates. First, we map homoge-
neous transformation matrices to fixed axis coordinates. Translation
is equivalent to the last column of the matrix. For Ta,b representing
the value at row a, column b of T ,

ψ = atan2(T3,2, T3,3), θ = −asin(T3,1), φ = atan2(T2,1, T1,1).

In order to apply TS or FR, we also need to map velocities in
workspace to velocities in task space. The angular velocity vector
ω is found by summing fixed axis velocities in a common frame:

ω =

 0
0

φ̇

+Rz(φ)

 0

θ̇
0

+Rz(φ)Ry(θ)

 ψ̇
0
0

 (26)

This relationship is rearranged as a single matrix, E−1
ω (q):

ω = E−1
ω (q)

[
ψ̇ θ̇ φ̇

]T
(27)

Inverting E−1
ω (q) we find Eω(q), a matrix that maps angular veloc-

ities to fixed axis velocities. Adjoining the identity matrix for linear
velocities Eq. 28 specifies E(q).

Erpy(q) =


I3×3 · · · 0 · · ·

... cφ/cθ sφ/cθ 0
0 −sφ cφ 0
... cφsθ/cθ sφsθ/cθ 1

 (28)

REFERENCES

[1] M. Stilman. Task constrained motion planning in robot joint space. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
pages 3074–3081, 2007.

[2] J.C. Latombe. Robot Motion Planning. Kluwer, 1991.
[3] M. T. Mason. Compliance and force control for computer controlled

manipulators. Trans. on Systems, Man, and Cybernetics,, 11(6), 1981.
[4] O. Khatib. A unified approach for motion and force control of robot

manipulators: The operational space formulation. International Journal
of Robotics Research, 3(1), 1987.

[5] J. Ahuactzin and K. Gupta. The kinematic roadmap: A motion planning
based global approach for inverse kinematics of redundant robots. IEEE
Trans. on Robotics and Automation, 15:653–669, 1999.

[6] Z. Guo and T. Hsia. Joint trajectory generation for redundant robots
in an environment with obstacles. In IEEE Int. Conf. on Robotics and
Automation, pages 157–162, 1990.

[7] G. Oriolo, M. Ottavi, and M. Vendittelli. Probabilistic motion planning
for redundant robots along given end-effector paths. In IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, 2002.

[8] G. Oriolo and C. Mongillo. Motion planning for mobile manipulators
along given end-effector paths. In IEEE Int’l Conf. on Robotics and
Automation (ICRA’05), 2005.

[9] D. P. Martin, J. Baillieul, and J. M. Hollerbach. Resolution of kienmatic
redundancy using opetimization techniques. IEEE Trans. on Robotics
and Automation, 5(4):529–533, 1989.

[10] B. Siciliano. Kinematic control of redundant robot manipulators: A
tutorial. Journal of Intelligent and Robotic Systems, 3:201–212, 1990.

[11] S. Seereeram and J. T. Wen. A global approach to path planning for
redundant manipulators. IEEE Trans. on Robotics and Automation,
11(1), 1995.

[12] A. McLean and S. Cameron. The virtual springs method: Path planning
and collision avoidance for redundant manipulators. 15, 1996.

[13] Oliver Brock, Oussama Khatib, and Sriram Viji. Task-consistent obstacle
avoidance and motion behavior for mobile manipulation. In IEEE Int’l
Conf. on Robotics and Automation, 2002.

[14] O. Khatib, L. Sentis, J. Park, and J. Warren. Whole body dynamic
behavior and control of human-like robots. International Journal of
Humanoid Robotics, pages 29–44, 2004.

[15] L. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning high-dimensional configuration spaces.
IEEE Trans. on Robotics and Automation, 12(4), 1996.

[16] S.M.LaValle. Rapidly-exploring random trees: A new tool for path
planning. Technical report, Iowa State University, 1998.

[17] S.M. LaValle and J.J. Kuffner. Rapidly exploring random trees: Progress
and prospects. In WAFR, 2000.

[18] S. M. LaValle, J. Yakey, and L. E. Kavraki. A probabilistic roadmap
approach for systems with closed kinematic chains. In In Proc. IEEE
Int’l Conf. on Robotics and Automation, 1999.

[19] L. Han and N. Amato. A kinematics-based probabilistic roadmap method
for closed chain systems. In Workshop on Algorithmic Foundations of
Robotics (WAFR), 2000.

[20] J. Cortes T. Simeon and J.P. Laumond. A random loop generator for
planning the motions of closed kinematic chains with prm methods. In
IEEE Int. Conf. on Robotics and Automation, 2002.

[21] X. Tang, S. Thomas, and NM Amato. Planning with reachable distances:
Fast enforcement of closure constraints. In 2007 IEEE International
Conference on Robotics and Automation, pages 2694–2699, 2007.

[22] X. Tang, S. Thomas, and NM Amato. Planning with Reachable
Distances. In Int. Wkshp. on Alg. Found. of Rob. (WAFR), 2008.

[23] J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion
planning for humanoid robots under obstacle and dynamic balance
constraints. In IEEE Int’l Conf. on Robotics and Automation (ICRA’01),
pages 692–698, 2001.

[24] Z. Yao and K. Gupta. Path planning with general end-effector con-
straints: Using task space to guide configuration space search. In
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 2005.

[25] Z. Yao and K. Gupta. Path planning with general end-effector con-
straints. Robotics and Autonomous Systems, 55(4):316–327, 2007.

[26] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour. Manipulation
planning among movable obstacles. In IEEE Int’l Conf. on Robotics
and Automation (ICRA’07), 2007.

[27] L. Sciaviccio and B. Siciliano. Modeling and control of robot manipu-
lators. McGraw-Hill Co., 1996.

[28] T. N. E. Greville. Some applications of the pseudoinverse of a matrix.
SIAM Review, 2:15–22, 1960.

[29] J. Yakey, S.M. LaValle, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematic chains. IEEE Transactions on Robotics
and Automation, 17(7), 2001.

[30] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching
for motion planning. In IEEE Int’l Conf. on Robotics and Automation
(ICRA’02), 2002.

[31] J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Workshop on the Algorithmic Foundations
of Robotics, pages 995–1001.

[32] P.R. Halmos. Finite-Dimensional Vector Spaces. Springer, 1974.
[33] B. Faverjon and P. Tournassoud. A local based approach for path

planning of manipulators with a high number of degrees of freedom.
In 1987 IEEE International Conference on Robotics and Automation.
Proceedings, volume 4, 1987.

[34] F. Kanehiro, F. Lamiraux, O. Kanoun, E. Yoshida, and JP Laumond. A
Local Collision Avoidance Method for Non-strictly Convex Objects. In
2008 Robotics: Science and Systems Conference, 2008.

[35] T. Yoshikawa. Manipulability of robotic mechanisms. Int. Journal of
Robotics Research, 4:3–9, 1985.

[36] H. Hanafusa, T. Yoshikawa, and Y. Nakamura. Analaysis and control
of articulated robot with redundancy. In IFAC, 8th Triennal World
Congress, volume 4, pages 1927–1932, 1981.

[37] R. Boulic P. Baerlocher. Task-priority formulations for the kinematic
control of highly redundant atriculated structures. In Int. Conf. on
Intelligent Robots and Systems, 1998.

