
Multiple Object Selection in Pattern Hierarchies

Justin Jang and Jarek Rossignac
School of Interactive Computing, Georgia Institute of Technology

justin.jang@gatech.edu, jarek@cc.gatech.edu

Abstract

Hierarchies of patterns of features, of sub-

assemblies, or of CSG sub-expressions are used in
architectural and mechanical CAD to eliminate labo-
rious repetitions from the design process. Yet, often the
placement, shape, or even existence of a selection of
the repeated occurrences in the pattern must be ad-
justed. The specification of a desired selection of oc-
currences in a hierarchy of patterns is often tedious
(involving repetitive steps) or difficult (requiring inter-
action with an abstract representation of the hierarchy
graph). The OCTOR system introduced here addresses
these two drawbacks simultaneously, offering an effec-
tive and intuitive solution, which requires only two
mouse-clicks to specify any one of a wide range of
possible selections. It does not require expanding the
graph or storing an explicit list of the selected occur-
rences and is simple to compute. It is hence well suited
for a variety of CAD applications, including CSG, fea-
ture-based design, assembly mock-up, and animation.
We discuss a novel representation of a selection, a
technology that makes it possible to use only two
mouse-clicks for each selection, and the persistence of
these selections when the hierarchy of patterns is ed-
ited.

Keywords: CAD, Patterns, Features, Hierarchy,
Naming, Persistence, Selection

1. Introduction

Hierarchies of patterns of features, of sub-
assemblies, or of CSG sub-expressions are used in
architectural and mechanical CAD to eliminate labori-
ous repetitions from the design process. For example, a
single CAD model is used for all of the occurrences of
a seat in the digital mock-up of an airplane. The corre-
sponding hierarchy of patterns may for instance define
a pattern of 42 rows, each being a pattern of 8 seats. A
simple translation is used to specify the relative posi-

tion of each occurrence of seat or row in the parent
pattern.

Often the placement, shape, or even existence of a
selection of the occurrences in the pattern must be ad-
justed. For example, the last two seats of each row
must be displaced to leave room for the aisle and the
last seat of row 12 should be deleted to clear the access
to an emergency exit. The specification of the desired
selection of occurrences in a hierarchy of patterns is
often tedious (involving repetitive steps) or difficult
(requiring interaction with an abstract representation of
the hierarchy graph).

The most common approaches for multiple object
selection (MOS) include serial selection techniques
that require the user to select objects one at a time, e.g.
the ubiquitous ctrl+click (or shift+click) approach, and
parallel selection techniques such as brushes, lassos,
and selection shapes. However as Lucas et al. [2005]
point out, each has certain limitations, especially in
3D. For instance, multiple objects may be difficult to
distinguish, isolate, or even see due to occlusion, ren-
dering size, environment clutter, and other display fac-
tors. Requiring the user to adjust the view can be tedi-
ous, cumbersome, and even burdensome, especially
when the number of objects to select is high, and may
still fail to make certain objects accessible. Systems
commonly address this issue with an indirect selection
technique, that is, by allowing the user to select using
an alternate representation such as a model tree or
component list. Some systems allow selection by
common attribute (e.g. [MSWord] for text) or provide
a more general selection query or search (e.g. [Auto-
CAD] and [Pro/ENGINEER] for geometry and [Miller
and Myers 2002] for text). Such indirect selection
techniques are useful, but are generally abstract and
less intuitive than direct manipulation techniques.

Oh et al. [2006] describe an approach for selecting
objects in groups. Their approach relies on dynami-
cally computing a group hierarchy based on the notion
of gravitational proximity using heuristics such as con-
tact or intersection and factors such as speed and direc-
tion of mouse drag. Their approach does not rely on

semantic or user specified information for structure
and is appropriate for dynamic environments or situa-
tions where flexibility is required. It is less appropriate
for rigid and exact specification of selections, particu-
larly when objects or components are frequently or
always in contact with or intersecting each other, e.g.
when modeling parts, assemblies, and structures, or
with csg and feature-based modeling.

The OCTOR system introduced here takes a direct
selection approach, yet does not require direct access
to more than just a small subset of the ob-
jects/occurrences to be selected. The general idea is to
have the user directly select a small number of occur-
rences and let the system guess the rest in a way that is
predictable and repeatable. At the same time, it is
flexible and interactive, allowing for iterative refine-
ment which can be guided or scaffolded. The aim is
not to replace other selection techniques but to give
users another option which is more intuitive, efficient,
and accurate in certain cases.

On the developer’s side, the octor representation
provides a compact encoding for multiple occurrence
selections and is easy to compute. It does not require
expanding the graph or storing an explicit list of the
selected occurrences and is simple enough to be exten-
sible and combinable. For instance, multiple octor se-
lections can be combined in a list or with Boolean op-
erations.

The rest of the paper is organized as follows. Sec-
tion 2 defines our terminology and reviews a simple
pattern hierarchy approach. Section 3 defines ex-
ceptions, and describes three approaches for obtaining
and representing sets of selections. Section 4 intro-
duces the octor representation for selections and sec-
tion 5 shows how the user can specify them. Section 6
describes an approach to handling transformation ex-
ceptions. In section 7 we discuss the persistence of
octor selections when the hierarchy is edited. Finally
we suggest some applications and extensions in section
8.

2. Hierarchy of patterns

In this section, we introduce our terminology and
review a simple approach for designing, representing,
and processing hierarchies of patterns.

We will use the term component to denote a solid,
a CSG primitive, a feature, a sub-assembly, or a CSG
expression. For simplicity, one may think of a compo-
nent as being a shape, such as a chair or table. Each
component is defined in a local coordinate system. The
size, position, and orientation of such a local coordi-
nate system in a given model is called its pose. The

pose of one component may be derived from another
pose by a transformation, which typically is the result
of a series of scalings, rotations, and translations and
can be represented as a 3×4 matrix. A given compo-
nent may appear in several places in a model. Each
appearance is called an occurrence of the component.
A pattern (Figure 1) is a series of occurrences of the
same component, such that the pose of each subse-
quent occurrence is obtained from the pose of the pre-
vious occurrence by the same transformation. The
unique component repeated by a pattern is called the
pattern-leader, the number of occurrences is called
the pattern-count, and the transformation between
successive occurrences is called the pattern-
transform.

Consider the small assembly (Figure 3 top left)
comprising a table T and a chair C transformed by a
transformation s2. We may create a dining set S com-
prising a pattern of 5 chairs (Figure 3 bottom left)
around the table by specifying the pattern-count (5)
and the pattern-transform (s3), which is a rotation
around the center of the table. To do so, the designer
would for instance type S=T+5C. The resulting model
is stored as a graph (Figure 3 right), where each circled
node n (Figure 2) indicates a pattern-count, n.o. Its left
link n.L leads to the component to be used in the pat-
tern. The associated pattern-transform is accessible as
n.l. When n.o=1, the pattern-transform n.l is not used.
(For example, the root node in Figure 3 has pattern-
count 1, hence s1 is not used.) The right link n.R may
be used to reference additional single-instance or mul-
tiple-instance patterns. The associated transform, n.r
specifies the pose of the relative transformation of
these additional patterns with respect to the previous

Figure 1. Definition of a pattern, pattern-
leader, pattern-count, pattern-transform, and
occurrences.

Figure 2. Hierarchy node.

5

pattern

leader
transform

count occurrences
(instances)

ones. Then, as proposed in [vanEmmerick 1993], the
designer may click on the “=” symbol to select s1, on
the “+” symbol to select s2, or on the pattern-count
(“5”) to select s2, and then proceed to edit the corre-
sponding transform either through direct manipulation
of graphically selected occurrences or by providing
precise scaling factors, rotation angles, or displacement
coordinates.

A more complex component (Figure 4 left) could
for example be defined by D=T+5C+6C, where d4 is a
translation which defines a second chair behind the
first one and where d5 is a rotation around the center of
T, but by a slightly smaller angle. The corresponding
graph (Figure 4 right) is not a tree, since two compo-
nents reference C. Note that the definition of this new
model did not require the use of a hierarchy of pat-
terns, but is simply an assembly of two different pat-
terns.

We will use a hierarchy of patterns to make a row
R=4S of 4 dinning sets S and then make a floor F=3R
of 3 such rows R, and finally a bar B=2F with two
identical floors F. The graph representation of the bar
is shown in Figure 5.

The designer could edit the hierarchy by altering its
text definition (for example to change the number of
occurrences in a pattern or to add a second row of
chairs behind each table) or any selected transforma-
tion.

To render such a model, or to simply access each
occurrence and its final pose, we propose to use a sim-
ple recursive traversal of the graph. It is illustrated by
the procedure eval(n), where n is a node in the graph.
(Note that not all nodes represent named components.

Figure 3. Table T and chair C (top left) with
graph representation (top right). T combined
with a pattern of chairs (bottom left). A graph
representation of the corresponding set,
specified as S=T+5C (bottom right). Transfor-
mation s1 is not applied since there is only
one occurrence of T. Transformation s2 is ap-
plied to the first occurrence of C. Transfor-
mation s3 is combined repeatedly with s2 to
obtain the transformation of each subsequent
occurrence of C. Hence, the five successive
occurrences of chair C will be transformed
respectively by s2, s3•s2, s3•s3•s2, s3•s3•s3•s2,
and s3•s3•s3•s3•s2. The mini axes represent the
poses for each occurrence resulting from the
corresponding sequence of transformations.

Figure 4. Table T and two patterns of chairs C
(left). The poses for some of the occurrences
are shown as mini axes. A graph representa-
tion of the corresponding set, specified as
D=T+5C+6C is shown right.

Figure 5. Graph representation of the bar de-
fined as B=2F, F=3R, R=4S, S=T+5C. We show
the names of the components and use the
corresponding lower-case letters with con-
secutive subscripts to denote the successive
transformations appearing in their definitions.

s2
d4

d5
d5 d5 d5

d5
1

5
T

s1
s2

s3
6

C

d4

d5

s2

1
1

T
s1

s2

C
s3

s2

s3
s3 s3

s3 1

5
T

s1
s2

C
s3

1
5

T

C

s1
s2

s3

4
r1

3
f1

2
b1

B

F

R

S R=4S

F=3R

B=2F

S=T+5C

5C

For example, S is defined in terms of a node that repre-
sents a pattern of 5 chairs but does not have a user-
given name.) We start the traversal at the root of the
graph, by invoking eval(B).

eval(n) {
 if (isPrimitive(n)) process(n);
 else {
 pushMatrix();
 for (int i=1; i<=n.o; i++) {
 eval(n.L);
 applyMatrix(n.l);
 }
 popMatrix();
 pushMatrix();
 applyMatrix(n.r);
 eval(n.R);
 popMatrix();
 }
}

The definitions of n.o, n.L, n.l, n.R, and n.r were

provided above.
Such hierarchies of patterns may be used to consid-

erably simplify the creation and editing of models of
assemblies or of solids constructed through CSG op-
erations. Figure 6 provides examples.

3. Exceptions

Often, the poses of some of the occurrences in a
pattern or in a hierarchy of patterns must be adjusted.
For example, a pillar may require that we remove the
same chair on each floor (Figure 7 left). Or one may
wish to move the last chair of each dining set so that it
faces the others (Figure 7 right).

To specify an exception one must indicate which
components are to be adjusted and how to adjust them.
Thus we define an exception E=(S, T) to be a selection
plus an exception treatment. An exception selection is
the set of components to be modified and an exception
treatment is the modification information (e.g. dis-
placement, disappearance, color, etc.) to be applied to
that set.

3.1. Selections

In this section, we discuss the benefits and draw-

backs of three simple techniques for specifying and
representing exception selections in patterns of pat-
terns.

Approach 1: The first approach is to expand the
graph into a non-binary tree (Figure 8). The child-
nodes of nodes with pattern-count larger than one are
replicated, replacing the n.L link with n.o such links.
This expansion is performed recursively. In our exam-
ple of a bar, such an expansion would produce a tree
with 24 table leaves and 120 chair leaves. The designer
would then be able to select individual leaves one by
one and adjust their poses or attributes. This approach
has the drawback of increasing storage and of not pre-
serving the structure of the pattern hierarchy, which
represents the designer’s intent [Rossignac et al. 1988]
and should be preserved to facilitate further editing.
For example, the designer may later decide to add a
third floor or to squeeze in more chairs at each table.
Even with an approach based on partial graph expan-
sions, managing change can be challenging and main-
taining certain selections may still require an external
structure [Rappoport 1993]. Hence the remainder of
the paper is focused on approaches that do not require
such a graph expansion.

Figure 6. Examples designed using a hierar-
chy of patterns: A fence (left) defined as a pat-
tern F=4R of 4 rows, each defined as a combi-
nation R=30V+H of a pattern of 30 vertical
beams and one horizontal and a CSG model of
a fuselage plate (right) defined as F=P–5C, a
plate from which one has subtracted a pattern
of five arrangements C, each defined as a pat-
tern C=6H of 6 holes.

Figure 7. The same chair on each floor (in
green) needs to be removed due to a column
(in red) (left). The fifth chair (in blue) at each
table has been rotated to face the others and
tucked under the table (right).

Note that each leaf in the expanded graph is an oc-
currence of a component. Each leaf may be represented
by a path. The path is the concatenation of integers,
each specifying which link is followed from one node
to its child. The order of these integers corresponds to
the traversal of the expanded graph from the root to the
desired leaf. When the path follows link K from a node
n, we append “0” to the path when K=(n, n.R) (corre-
sponding to link number k=n.o+1) and “k” otherwise,
i.e. when K=(n, n.L) (corresponding to link number
k=1…n.o). For instance, the path “21304” corresponds
to following links 2, 1, 3, 2, and 4 in the expanded
graph of the bar scene (Figure 8).

Approach 2: The notion of a path suggests an al-
ternative approach where one represents each occur-
rence by its path in the non-expanded graph. For ex-
ample, the red chair in Figure 9 corresponds to path
“21304”.

The designer would manually select each chair that
should be treated as an exception and specify the asso-
ciated exceptional treatment. A list of exceptions (se-
lections plus treatments) is maintained separate from
the graph.

This approach avoids graph expansion while still al-
lowing arbitrary selections; however, it still has the
drawback of requiring a manual selection and explicit
storage of each occurrence in the exception selection
set. Hence, to further reduce the designer’s labor and
associated storage, we will develop an implicit ap-
proach where the designer will not, in general, need to
select each exception instance.

Approach 3: A third approach would be to ask the
designer to associate each exception with a node n in
the graph and to represent the set of target occurrences
by a partial path in n. For example, every occurrence
of the fourth chair of each set would be identified by
select(S,”04”) (Figure 10) and the every occurrence of
the fourth chair in the third sets of each row would be
specified by select(R,”304”) (Figure 11).

Figure 8. Expanded graph of the bar scene
with path “21304” highlighted in red.

Figure 9. The red chair is identified with path
“21304” (left). The path is illustrated on the
unexpanded tree (right).

Figure 10. The set of red chairs is selected
with the expression select(S,”04”) (left). The
partial path is shown on the graph (right).

1
5

T
C

4

3

22

1

3

4

0

1
5

T

C

4

3

2B
F

R

S

4

0

2

3

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

3

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

4

1

5

C C C C C

T

1

5

C C C C C

T

1

5

C C C C C

T

Even though this approach was successfully used
by Rossignac [Rossignac 1986] to specify a set of con-
straint-satisfying adjustments to features in CSG mod-
els, its limitations may require unnecessary replication
of the designer’s effort. For example, this approach
would not allow us to select the fourth chair of the
third set on each row of the first floor (Figure 12 left),
because select(R,”304”) does not let us differentiate
floors (Figure 11) and because select(B,”11304”), se-
lect(B,”12304”), and select(B,”13304”) would only
specify a single chair each. To obtain the desired selec-
tion would require the union of the three individual
selections (Figure 12 right).

4. OCTOR selections

Our Approach: Now we describe our solution,
which does not suffer from the limitations discussed
above of these three approaches, and which offers sev-
eral advantages: conciseness of representation, ele-
gance of the user interface and reduction of the re-
quired user actions and cognitive burden, and in-
creased generality. We begin by describing a concise
representation for selections based on wildcards and
show that it supports an elementary and essential set of
selections. Later we show how the approach simplifies
the user interaction required to make a selection.

4.1. Wildcards

As discussed earlier, we do not want to represent

the group of selected occurrences by a list of paths and
may not be able to represent important sub-patterns by
a single node name and partial path. Instead we pro-
pose to represent a selection by a path to any one of the
selected occurrences (the one clicked by the designer)
and by a mask string of bits, one for each link on the
path. A ‘0’ in the mask corresponding to link (n, n.L)
indicates that the subsequent selection should be ap-
plied to all occurrences of n.L. A ‘1’ indicates that it
should be restricted to the occurrence of n.L specified
by the path. For example, a ‘0’ bit would let us inter-
pret the second field in the paths (B, “11304”), (B,
“12304”), and (B, “13304”) as a wildcard and let us
interpret this path as “1*304” (using path “1i304” with
mask “10111”), hence producing the selection in
Figure 12. Note that only mask fields that correspond
to left links (pattern links) are allowed to contain a
wildcard ‘0’. Mask fields corresponding to right links
(group links) should always be a constraint ‘1’ to re-
spect the unique identity of all the occurrences.

4.2. Exception Culling

We may modify eval() to incorporate this additional

flexibility. We use a depth-first traversal where the left
node is visited first, though in general the right node
could be visited first. As we traverse, we follow the
path with respect to the exception selection. If we walk
off the selection path, mark that exception as inactive,
visit the rest of the path recursively, and then mark it
back active. When we reach a primitive (leaf), if the
exception is active then its treatment is applicable to
that occurrence. For a single selection, there is no need
to continue traversing a path for which the selection is
already marked inactive; however, the idea of excep-
tion culling can be applied to a whole list of excep-
tions, not just one as is listed in eval2(). Furthermore,
exception culling also supports exceptions that are not

Figure 11. The set of red chairs is selected
with the expression select(R,”304”) (left). The
partial path is shown on the graph (right).

Figure 12. The set of red chairs (left) cannot
be specified using a single partial path but
requires the union of three partial path selec-
tions (right).

1
5

T
C

4

3

2B
F

R

S

4

0
3

(B,”11304”)

(B,”12304”)

(B,”13304”)

applied at leaf nodes. All active exceptions are poten-
tially valid at any given node and a simple node id
check is needed to confirm that it is applicable to the
node.

eval2(n, r, selected) {
 boolean deactivated = false;
 if (isPrimitive(n)) process(n, selected);
 else {
 pushMatrix();
 for (int i=1; i<=n.o; i++) {
 cullX(i, &selected, &deactivated);
 eval2(n.L, r+1, selected);
 restoreX(&selected, deactivated);
 applyMatrix(n.l);
 }
 popMatrix();
 pushMatrix();
 applyMatrix(n.r);
 cullX(0, &selected, &deactivated);
 eval2(n.R, r+1, selected);
 restoreX(&selected, deactivated);
 popMatrix();
 }
}
cullX(i, *selected, *deactivated) {
 if (*selected && (mask[r] == 1) &&
 (path[r] != i)) *deactivated = true;
 if (*deactivated) selected = false;
}
restoreX(*selected, deactivated) {
 if (deactivated) selected = true;
}

A selected group of k occurrences may be repre-

sented in octor in k different ways, each one compris-
ing a path to a different occurrence and the associated
mask. Since the mask only requires one bit per link, we
can incorporate it into the path string by using the sign
bit. Practically, we can adopt an even simpler encoding
such that path[j]=-1 when mask==0, thus the path
value is -1 for wildcards, 0 for going right, and 1…n.o
for going left. We trivially modify cullX() to incorpo-
rate this simplification.

cullX(i, *selected, *deactivated) {
 if (*selected && (path[r] >= 0) &&
 (path[r] != i)) *deactivated = true;
 if (deactivated) selected = false;
}

4.3. Equivalence

One may think of the octor selections as represent-

ing all the axially-aligned slices of 0…p dimensions
through discrete p-dimensional space, where p is the
number of pattern links (i.e. left links) and thus repre-
sents the pattern nesting depth. Because each possible
bit mask represents an equivalence class of slices
(Figure 13), it may be convenient to keep the bit mask
and the path string separate for certain applications.
For example, the user can make complex selections on

components that are obscured or difficult to visualize
by specifying the selection pattern (slice) on more ac-
cessible occurrences, on an alternate representation, or
on another model and then applying the slice some-
where else using one click (a single pick) or in an ex-
ploratory fashion.

Only a small subset of the 2r (where r is the total
number of occurrences) possible selections can be rep-
resented with octor. For example, the selection shown
in Figure 14 cannot be specified by a single octor path
string.

Figure 13. The 8 equivalence classes of selec-
tions for one floor of the bar are shown. The
green chairs are selected using path “1304”
with 8 masks “bb1b” where b is a binary digit
‘1’ or ‘0’ starting with “1111” (first row left)
and ending with “0010” (bottom row right).

Figure 14. The selection cannot be specified
by a single octor path string. Using Boolean
operations, it can be specified in 2 strings
with the expression “12*03” minus “12103” as
opposed to 3 strings using a list of paths.

1304 130*

1*04 1*0*

*304 *30*

**04 **0*

Nevertheless, we feel that the selections directly ac-
cessible through octor provide a valuable extension to
other mechanisms discussed above. It allows us to
make generalizations (using wildcards) and constraints
(path position with no wildcard) directly correspond-
ing to the pattern hierarchy which represents the de-
signer intent. Of course several octor selections may be
combined (union) to produce more elaborate sets. Fur-
thermore, one may envision more a general scheme
offering Boolean operations on selected sets, where the
selections directly accessible through octor provide an
elementary set of selections which can be combined to
form all others.

5. GUI for specifying a selection

A basic approach for specifying a selection is to ob-

tain the path from the first click (the first pick) and to
obtain the mask from subsequent interaction such as
additional clicks (picks).

To support a graphical user interface for octor, we
have four challenges.

1. Allow the user to pick individual occurrences.
2. Compute the path of a selected occurrence

from a user click.
3. Produce a candidate set for further refinement.
4. Use these three tools to let the user interac-

tively build a selection mask.

5.1. Computing the path

To compute a path, we simply use eval(n) while

tracking the path as follows:

eval(n, path, r) {
 if (isPrimitive(n)) process(n);
 else {
 pushMatrix();
 for (int i=1; i<=n.o; i++) {
 path[r]=i;
 eval(n.L, path, r+1);
 applyMatrix(n.l);
 }
 popMatrix();
 pushMatrix();
 path[r]=0;
 applyMatrix(n.r);
 eval(n.R, path, r+1);
 popMatrix();
 }
}

5.2. Picking components from a user click

In process() we need to decide if the user click posi-

tion corresponds to the current occurrence. There are
various solutions to this basic problem [Lucas et al.
2005] including ray-casting which works even for oc-

cluded objects. However in this case, the intended tar-
get needs to be resolved. Though reasonable solutions
exist for determining or specifying the intended target,
the fact that the target needs any disambiguation at all
makes it undesirable for MOS.

Our MOS approach has the advantage that it only
requires a single pick to be disambiguated since subse-
quent picks are on occurrences of the same pattern
component. After resolving a single pick, these related
occurrences can be isolated, for instance, by hiding all
other objects. If none of the desired occurrences are
visible, the designer may select the primitive in the text
representation (or a component list, tree, or graph) to
temporarily hide all others. For example, a subtracted
CSG component located inside of another may require
indirect selection of the first click. After that, the other
instances are made visible and other components made
invisible or diminished. Subsequent clicking can occur
directly on the scene.

5.3. Building a selection mask

When the user makes the first pick, this defines a

path of length d. The user now needs a way to specify
a wildcard mask of length d.

A naïve approach is to specify the d bits using d
clicks. Each time we ask 1 question by proposing a
candidate set. The user would choose Y or N to decide
if they wish to toggle that bit resulting in the selection
of the candidate set.

A more direct approach is to allow the user to di-
rectly click on additional occurrences, i.e. a second,
third, etc., and have the system guess or infer the selec-
tion from the cumulative set of picks. For example,
when the designer selects chair “11304” and “12304”,
the system generates mask “10111” producing the se-
lection in Figure 12. Adding a third chair “21304” re-
sults in a mask of “00111” (Figure 11) and adding a
fourth chair “11204” results in a mask of “00011”
(Figure 10).

Observe that path fields that differ indicate gener-
alizations and fields which are identical indicate con-
straints. Thus we see that only the latest pick along
with the first is necessary for specifying a path plus
mask. In fact, any selection supported by octor can be
specified with only two clicks. For example, to specify
“**304” (Figure 11) the user can select chairs “12304”
and “23304”, which results in path “12304” with mask
“00111”.

Another advantage of this approach is that it is in-
tuitive. The user directly clicks the occurrences in the
desired selection set and the system updates the high-
lighted set. Thus the user may interactively refine their
selection by selecting alternative occurrences.

5.4. Refinement set

A direct clicking approach requires the user to find

the right occurrence to click. While the user can inter-
actively sample the selection space by trial and error,
the system may be able to help the user by identifying
a small set of occurrences to click. For example, after
the user clicks one chair in the bar scene there are only
16 octor selections possible which use the path of the
picked chair. (These correspond to the 16 possible
masks which correspond to the 16 different equiva-
lence classes of selections.) Yet the user can click any
of the 120 chairs to make one of these 16 selections.
The system can help lessen the user burden of identi-
fying occurrences to click by presenting just one op-
tion for each of the 16 equivalence classes. Fortu-
nately, this is straightforward to compute. For each
possible bit mask, construct a path string which is the
same as the path of the first pick in all fields except
wildcard fields. Any variation of the field value within
the pattern-count range corresponding to that field is
acceptable. For instance, on may use the next or previ-
ous value as a simple heuristic. This has the benefit of
near access to far selections. That is, the user can select
occurrences located far apart by picking occurrences
close together (i.e. close to the first pick). For example,
on the airplane seating example, the user can make any
octor selection (i.e. single, row, column, all) by click-
ing on 2 of 4 seats (Figure 15).

An alternative refinement guide is to highlight one
or all occurrences that vary in only one field in the
path. This visual guide helps the user choose and main-
tain generalizations or constraints when endeavoring to

expand or refine the selection. For example, to specify
selection “***04” (Figure 10), the user first selects
chair “12304” and then needs to find a chair that is on
a different floor, row, and set. This guide makes it
clear which chairs are on the same floor, row, and set
and thus helps the user find one that differs.

5.5. Consistent interaction

One notion of consistency is that octor selections

are repeatable. The computed selection corresponding
to any two picks is completely deterministic and un-
ambiguous.

Now assume that we are given the bar scene as a
model without the scene graph and assume that we are
able to extract and determine a hierarchical structure to
describe it [Thompson et al. 1999, Langbein et al.
2001]. There likely exist alternate hierarchies which
generate equivalent scenes. For example, the tables
could be separated from the chairs at a high level in-
stead of the dining set. Perhaps the first chairs at each
table become a row by themselves, and so on. In the
alternate hierarchies, octor will still behave the same
for making selections of components at the leaf if and
only if the alternate hierarchy is a re-sequencing of the
same pattern dimensions. In these cases, the fact that
the paths will be different is transparent to the user.
However, selecting non-leaf components and selecting
leaf components on a hierarchy with different dimen-
sional structure results in different behavior since dif-
ferent non-leaf components exist in alternate represen-
tations and the dimensional structure affects the extent
of the generalizations. Here the unexpected selections
are a reflection of the ability of the reverse engineering
process to extract designer intent and not of the consis-
tency of the selection mechanism of octor. In fact,
making octor selections can serve to reveal the hidden
scene structure and aid the process of fixing it.

6. Exception treatments

Given an exception selection, the exception treat-

ment determines the effect of the exception on the se-
lected occurrence set (SoS). An exception treatment
can be simply defined as a treatment type along with
parameters: T=(type, params).

In our approach, treatments may be applied to com-
ponents at a leaf before rendering, e.g. in procedure
process(), or to components not at a leaf before evalu-
ating the subtree, e.g. calling eval(). The basic proce-
dure for rendering is to: 1) save state (e.g. push ma-
trix), 2) apply active exceptions, 3) render or evaluate,
and 4) restore state (e.g. pop matrix).

Figure 15. Clicks on just 2 of only 4 seats (left)
are required to select a single seat (Y, Y), a
row (Y, R), a column (Y, G), or all seats (Y, B).
In fact, after clicking seat Y first, a second
click on any other seat in the same row se-
lects the row, any other seat in the column
selects the column, and the rest of the seats
select all (right). This selection principle ex-
tends to n-dimensions.

R

G B

Y

The eval2() recursive procedure may be trivially
adapted to change the rendering attributes of the SoS.
For example:

process(n, selected) {
 if (selected) color(red) else color(n.col);
 render(n);
}

Now let us consider applying a transformation M to

the selected occurrences. There are two issues: 1) how
to apply M to each occurrence and 2) in which refer-
ence frame to define M for each occurrence.

6.1. Applying transformations

Transformation exceptions are applied at the leaf

immediately before processing (e.g. rendering) the
occurrence. For example, the pose for chair “22202” is
defined by p0=s3s2r1f1b1. Applying an exception trans-
form e1 results in pose pe1=e1s3s2r1f1b1=e1p0. Like the
rendering attributes, this functionality is easily adapted
into the procedure. For example:

process(n, selected) {
 pushMatrix();
 if (selected) applyMatrix(e1);
 render(n);
 popMatrix();
}

Transformation exceptions applied at non-leaf

nodes use the same procedure: push the matrix stack
and apply M, process the node (recursive call), and
pop the matrix stack. This has the effect of inserting
the new transformation in the stack of the relevant
components. For example, applying e2 to the second
row on the second floor, i.e. row “22”, causes the pose
for chair “22202” to become pe2=s3s2r1e2f1b1. In fact,
since all sub-components in that row are transformed
by e2, we can design our selection approach as if it
applies to just leaf nodes without loss of generality.
For components not at an actual leaf, e.g. a dining set
or row, first select the component as part of selecting
the first pick. Then we may treat the chosen compo-
nent node as a leaf both algorithmically and in what is
presented to the user. For instance, a dining set be-
comes the smallest selectable unit.

6.2. Defining transformations

In the hierarchy, each successive transformation on

the links in the path is effectively defined with respect
to the cumulative transformation at its parent or previ-
ous node in the graph. However, suppose we define a
second row of chairs around the table as in Figure 2 to

be the regular form for the dining set. Or suppose we
want to move some of the chairs closer to the table or
slide them around the table. Or instead, suppose we
want to move them up the row or with respect to the
balcony. This indicates that for modeling the basic
scene or for specifying exceptions, we may want to
define transformations with respect to a reference
frame other than the global frame or the one defined at
the parent.

The traditional way to define M is to build the ma-
trix from user-specified or default rotation (including
center of rotation and rotation axes), translation, and
scaling values [vanEmmerik et al. 1993]. We take a
similar approach but define M with respect to a local
frame of reference R which consists of a fixed point
and axes directions. The fixed point is the center of
rotation and the axes directions give the axes of rota-
tions as well as the directions of the translations. Ros-
signac [Rossignac et al. 1991] proposes to define the
reference frame R by combining the translation ele-
ments from a center frame C with the rotation elements
from an axis frame A. That is, for 3x3 rotation matri-
ces RC and RA and 3x1 translation vectors TC and TA,
define 4x4 matrices C, A, and R:

⎥
⎦

⎤
⎢
⎣

⎡
=

10
CC TR

C , ⎥
⎦

⎤
⎢
⎣

⎡
=

10
AA TR

A ,

⎥
⎦

⎤
⎢
⎣

⎡
=

10
CA TR

R

We allow both C and A to be chosen independently

from among any of the existing frames in the scene or
newly defined by the designer (i.e. the traditional
way). Thus we may rotate the chairs around the rota-
tion frame of the table while still translating them in
their own frames to, for example, push them under the
table. While both methods can be used to specify
equivalent transformations, the expectation is that the
alternative method can provide a more natural coordi-
nate system for the designer in certain cases and that it
can make the specification more efficient. Here we
may point out that in order to use existing poses as
frames for specifying transformations, we need to
specify which components to get the poses from. Thus,
not only can we use octor to select the occurrences to
transform, but we can also use octor to specify the oc-
currences or the components from which we obtain C
and A, or alternatively R directly by having C=A. This
idea also makes it possible to optimize other poten-
tially tedious tasks such as specifying reference com-

ponents for modeling constraints and any other task
requiring the specification of multiple selection sets.

7. Persistence

7.1. Persistent naming

After specifying one or more exceptions, the user

may continue to make modifications to the model. For
example, the entire bar could be patterned (e.g. mall
M=7B), more items could be placed on the table as
part of the standard dining set (e.g. a lamp with
S=T+5C+L), or a design pattern could be placed on the
standard chair (e.g. H=C+10P, S=T+5H). Even the
pattern counts may be adjusted (e.g. S=T+8C) or pat-
terns removed completely (e.g. flatten B=2F and F=3R
into B=3R). The challenge is deciding how to update
octor selections when the model is edited such that
they continue to identify or name the same compo-
nents.

The persistent naming problem for parametric, fea-
ture, and history based modeling has been well studied
[Marcheix and Pierra 2002]. Fortunately, our version
of the problem is less complicated since we directly
name the occurrences and their existence or location in
the hierarchy is explicit, whereas the structure of topo-
logical features may be implicit depending on where
and how they are combined.

Now we list some basic modification scenarios and
the effect of each on a path. (Targets of the paths are
underlined.) Note that this is only a subset of the pos-
sible scenarios and that every possible graph modifica-
tion does not necessarily correspond to actual model-
ing operations.

1. Insert/delete branch not in path – no change.

S=3A+4B S=3A+4B+5C
2. Insert/delete right branch in the path – insert ‘0’ (go
right) or delete field in all affected path strings.
 S=3A+5C S=3A+4B+5C
3. Insert/delete left branch in path – insert ‘-1’ (wild-
card) or delete field in all affected path strings.
 R=4S R=4G, G=3S
4. Delete component – a deleted leaf means all associ-
ated exceptions can be deleted.
5. Change occurrence count – no change.

The different scenarios are implicitly identified by
running a path-following traversal with modified ex-
ception culling. Instead of maintaining the ac-
tive/inactive status of each exception we only need to
keep track of whether we are still on the path. When
the node location for the modification is reached, we

can determine what to do to each octor path based on
the modification information and the on/off state. If the
component at the path destination target is being de-
leted, we can delete the exception. If we are off the
path or changing the occurrence count, the path does
not need to be changed. If we are deleting a node, the
path field corresponding to this node (actually, its link)
is deleted. If we are inserting a node, we insert ‘0’
when the octor path will be nested to the right and ‘-1’
(wildcard) when the path will be nested to the left.

Inserting a wildcard for left branch insertions is rea-
sonable because for the user to insert a left branch is to
take a sub-expression in the hierarchy and make it the
leader of a new pattern to be nested at the same loca-
tion in the hierarchy. Thus, inserting a wildcard pre-
serves this intent as opposed to the less likely intent of
making it an exception and taking the original struc-
ture, which is not currently manifested in the design, as
the leader.

7.2. Updating existing exceptions explicitly

Another notion of persistence is updating the de-

scriptions of existing exceptions. For instance, the user
specifies an exception E1=(A, “transform”, M1), i.e. a
selection A to be transformed by M1. Now the user
wants to transform the occurrences in selection A by
M2 and so specifies E2=(A, “transform”, M2). Now
there is the option of creating a new exception E2, or
alternatively the system recognizes that the selection is
the same and the treatment type is the same (in this
case a transformation) and updates the existing excep-
tion E1=(A, “transform”, M2M1).

The user may also want to modify the selection set
of an existing exception. For instance, in the previous
example the user modifies E1 resulting in E1=(B,
“transform”, M1). The challenge here is identifying
which exception to update since multiple exceptions
may have the same treatment. Thus the problem can be
more generally stated: modify the selection set of one
or more exceptions given a particular treatment. This is
a complex discussion which involves many possible
approaches and is left to future work.

8. Applications and extensions

The octor representation and approach described

has been illustrated using scene graphs, a general de-
scription for geometric compositions with widespread
application including geometric modeling approaches
such as CSG, BReps, and parametric models. For in-
stance, it can be used to support modeling (e.g. repre-
sentation, identification, and selection) of CSG primi-

tives (e.g. a pattern of holes) and features in BRep
models (e.g. features in features) and parametric mod-
els. It can also be used for specifying and handling
exceptions in animation design (e.g. choreography)
and specifying reference sets for constraint satisfying
transforms.

We identify several opportunities for future work.
(1) The approach can be extended to handle recursive
structures. For instance, a recursive pattern refers to
itself as the leader (i.e. n.L points to n). A straightfor-
ward approach would be to maintain a node access
count within a recursion limit. (2) Ranges can be sup-
ported by using two octor strings. Explore approaches
for specifying ranges. (3) A variant of octor can be
used to select arbitrary levels in object group hierar-
chies. For example, compute the selection as the small-
est group containing both picks. (4) Develop a way to
specify, represent, and compute Boolean combinations
of octor selections.

9. Contributions and conclusions

We have presented an approach for modeling ex-

ceptions in regular pattern hierarchies. In particular,
octor provides a representation for a subset of occur-
rences of modeling components and support for a user
to graphically specify such sets. The representation
based on a path and wildcards is more compact than a
list of paths and is more general than a node with par-
tial path. The GUI support is flexible and offers several
facilities for specifying selection sets. A 2-click
method for making any octor selection is described,
but other methods including 1-click plus guided set of
Y/N queries could be used. Refinement sets or other
highlighting guides were also proposed. While the
approach is well suited and intuitive for direct
manipulation (direct picking), it also supports indirect
picking of components. Octor provides a selection
method that is less laborious than clicking each
occurrence and less demanding than node and path.

10. References

[AutoCAD] AutoCAD 2007. Autodesk, Inc.
http://www.autodesk.com/autocad.
 [Langbein et al. 2001] F. C. Langbein, B. I. Mills, A. D.
Marshall, R. R. Martin. Recognizing Geometric Patterns for
Beautification of Reconstructed Solid Models. In Proc. Inter-
national Conference on Shape Modelling and Applications,
pp. 10-19, 2001.
[Lucas et al. 2005] Lucas, J.F., Bowman, D.A., Chen, J., and
Wingrave, C.A., "Design and Evaluation of 3D Multiple
Object Selection Techniques" Proc. of the ACM I3D, March
2005.

[Marcheix and Pierra 2002] Marcheix, D. and Pierra, G. A
survey of the persistent naming problem. In Proceedings of
the Seventh ACM Symposium on Solid Modeling and Appli-
cations, Saarbrücken, Germany, June 17-21, 2002.
[MSWord] Microsoft Office Word 2007. Microsoft Corpora-
tion. http://office.microsoft.com/word/.
 [Miller and Myers 2002] Robert C. Miller and Brad A.
Myers. "Multiple Selections in Smart Text Editing." Pro-
ceedings of the 6th International Conference on Intelligent
User Interfaces (IUI 2002), San Francisco, CA, January
2002, pp 103-110.
[Oh et al. 2006] Oh, Ji-Young, Stuerzlinger, W., Dadgari, D.
Group Selection Techniques for Efficient 3D Modeling.
IEEE Symposium on 3D User Interfaces (3DUI 2006), Uni-
versity of Arizona, Tucson, March 25-29, pp 95-102, 2006.
[Pro/ENGINEER] Pro/ENGINEER Wildfire 3.0. Parametric
Technology Corporation. http://www.ptc.com/.
[Rappoport 1993] Rappoport Ari. A scheme for single in-
stance representation in hierarchical assembly graphs. Fal-
cidieno, B., Kunii T.L. (eds), Geometric Modeling in Com-
puter Graphics, pp. 213-224, 1993.
 [Rossignac 1986] Jarek Rossignac. Constraints in Construc-
tive Solid Geometry. Proc. ACM Workshop on Interactive
3D Graphics, ACM Press, pp. 93-110, Chapel Hill, 1986.
[Rossignac et al. 1991] Jarek Rossignac, Paul Borrel, J. Mas-
trogiulio, Jai Kim. BIERPAC: Basic Interactive Editing for
the Relative Positions of Assembly Components. IBM Re-
search Report RC 17339, 1991.
 [Rossignac et al. 1988] Jarek Rossignac, Paul Borrel, and
Lee Nackman. Interactive Design with Sequences of Param-
eterized Transformations. Proc. 2nd Eurographics Workshop
on Intelligent CAD Systems: Implementation Issues, April
11-15, Veldhoven, The Netherlands, pp. 95-127, 1988.
[Thompson et al. 1999] Thompson, W.B.; Owen, J.C.; de St.
Germain, H.J.; Stark, S.R., Jr.; Henderson, T.C. Feature-
based reverse engineering of mechanical parts. IEEE Trans-
actions on Robotics and Automation, 15(1), pp. 57-66. 1999.
[vanEmmerik et al. 1993] Martin van Emmerik, Ari Rap-
poport, and Jarek Rossignac. Simplifying interactive design
of solid models: A hypertext approach. The Visual Com-
puter, vol. 9, No. 5, pp. 239-254, March 1993.

11. Appendix

Here we give expressions for the number of selec-
tions and equivalence classes of selections that the
discussed approaches support. While the list of paths
approach appears to have the advantage by supporting
every possible selection, this is achieved as the union
of individual selections. Its base selection unit is a sin-
gle occurrence whereas the other approaches are able
to select a single occurrence along with larger selec-
tions as a base selection unit. In general, all of these
approaches are able to specify any selection by com-
bining one or more base selection unit.

Approach 1 (expanded tree) and Approach 2
(list of paths): These approaches can be used to spec-

ify completely arbitrary selection sets numbering q0=2r
where r is the total number of occurrences of the com-
ponent. For a tree or subtree rooted at na and given a
component represented by node nk:

∏
=

=
d

i
ia onnr

1

.)(

where d is the depth of the path from root node na to
node nk and ni is the i-th node on this path. In the bar
scene, r=2*3*4*5=120 chairs, so q0=2120 combinations
of chair selections in the bar scene. There is only c=1
equivalence class for kinds of selections (arbitrary) and
it contains q0 selections.

Approach 3 (partial path): In the partial path ap-
proach, the number of selections is:

∑
=

=
p

j
jnrq

1
3)(

where p is the number of pattern links (left links) on
the path to the leaf, nj is the parent node associated
with link j, and r(n) gives the total number of occur-
rences for the subgraph rooted at n. For the chairs in
the bar scene, q3=2*3*4*5+3*4*5+4*5+5=205 in
c=p=4 equivalence classes: the same chair in each din-
ing set (5), row (4*5), floor (3*4*5), or bar (2*3*4*5).

Octor (path with wildcards): Out of the 2120 pos-
sible selections of a subset of chairs in our bar, octor
can select:

∏
=

+=
p

i
i onq

1
4)1.(

of them in c=2p different equivalence classes. For ex-
ample, in the bar scene example we have
r=2*3*4*5=120 paths and c=24=16 different masks.
Since different path-mask combinations may define the
same selection due to the wildcards, the number of
unique selections is q4=3*4*5*6=360 out of the possi-
ble 2120.

Note that q4≥q3. Proof. Rewrite q3={tp: t0=0, ti=oi(ti-

1+1), 1≤i≤p} and q4={fp: f0=1, fi=(oi+1)fi-1, 1≤i≤p},
where oi=ni.o and oi≥1. Expand the expressions for f
and t, then divide by op and subtract 1, divide by op-1
and subtract 1, etc. Since oi≥1, we can reduce these
expressions such that fp≥tp iff 1+1/(o1o2…op) ≥1,
which is true by the same assumption oi≥1. Therefore
q4≥q3. This makes sense since the set of masks for par-
tial paths is the subset of masks of length p with only
leading zeros whereas the set of masks for octor paths
is the set of all binary masks of length p.

