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Abstract 

 
Hierarchies of patterns of features, of sub-

assemblies, or of CSG sub-expressions are used in 
architectural and mechanical CAD to eliminate labo-
rious repetitions from the design process. Yet, often the 
placement, shape, or even existence of a selection of 
the repeated occurrences in the pattern must be ad-
justed. The specification of a desired selection of oc-
currences in a hierarchy of patterns is often tedious 
(involving repetitive steps) or difficult (requiring inter-
action with an abstract representation of the hierarchy 
graph). The OCTOR system introduced here addresses 
these two drawbacks simultaneously, offering an effec-
tive and intuitive solution, which requires only two 
mouse-clicks to specify any one of a wide range of 
possible selections. It does not require expanding the 
graph or storing an explicit list of the selected occur-
rences and is simple to compute. It is hence well suited 
for a variety of CAD applications, including CSG, fea-
ture-based design, assembly mock-up, and animation. 
We discuss a novel representation of a selection, a 
technology that makes it possible to use only two 
mouse-clicks for each selection, and the persistence of 
these selections when the hierarchy of patterns is ed-
ited. 

Keywords: CAD, Patterns, Features, Hierarchy, 
Naming, Persistence, Selection 
 
1. Introduction 
 

Hierarchies of patterns of features, of sub-
assemblies, or of CSG sub-expressions are used in 
architectural and mechanical CAD to eliminate labori-
ous repetitions from the design process. For example, a 
single CAD model is used for all of the occurrences of 
a seat in the digital mock-up of an airplane. The corre-
sponding hierarchy of patterns may for instance define 
a pattern of 42 rows, each being a pattern of 8 seats. A 
simple translation is used to specify the relative posi-

tion of each occurrence of seat or row in the parent 
pattern. 

Often the placement, shape, or even existence of a 
selection of the occurrences in the pattern must be ad-
justed. For example, the last two seats of each row 
must be displaced to leave room for the aisle and the 
last seat of row 12 should be deleted to clear the access 
to an emergency exit. The specification of the desired 
selection of occurrences in a hierarchy of patterns is 
often tedious (involving repetitive steps) or difficult 
(requiring interaction with an abstract representation of 
the hierarchy graph). 

The most common approaches for multiple object 
selection (MOS) include serial selection techniques 
that require the user to select objects one at a time, e.g. 
the ubiquitous ctrl+click (or shift+click) approach, and 
parallel selection techniques such as brushes, lassos, 
and selection shapes. However as Lucas et al. [2005] 
point out, each has certain limitations, especially in 
3D. For instance, multiple objects may be difficult to 
distinguish, isolate, or even see due to occlusion, ren-
dering size, environment clutter, and other display fac-
tors. Requiring the user to adjust the view can be tedi-
ous, cumbersome, and even burdensome, especially 
when the number of objects to select is high, and may 
still fail to make certain objects accessible. Systems 
commonly address this issue with an indirect selection 
technique, that is, by allowing the user to select using 
an alternate representation such as a model tree or 
component list. Some systems allow selection by 
common attribute (e.g. [MSWord] for text) or provide 
a more general selection query or search (e.g. [Auto-
CAD] and [Pro/ENGINEER] for geometry and [Miller 
and Myers 2002] for text). Such indirect selection 
techniques are useful, but are generally abstract and 
less intuitive than direct manipulation techniques. 

Oh et al. [2006] describe an approach for selecting 
objects in groups. Their approach relies on dynami-
cally computing a group hierarchy based on the notion 
of gravitational proximity using heuristics such as con-
tact or intersection and factors such as speed and direc-
tion of mouse drag. Their approach does not rely on 



semantic or user specified information for structure 
and is appropriate for dynamic environments or situa-
tions where flexibility is required. It is less appropriate 
for rigid and exact specification of selections, particu-
larly when objects or components are frequently or 
always in contact with or intersecting each other, e.g. 
when modeling parts, assemblies, and structures, or 
with csg and feature-based modeling. 

The OCTOR system introduced here takes a direct 
selection approach, yet does not require direct access 
to more than just a small subset of the ob-
jects/occurrences to be selected. The general idea is to 
have the user directly select a small number of occur-
rences and let the system guess the rest in a way that is 
predictable and repeatable. At the same time, it is 
flexible and interactive, allowing for iterative refine-
ment which can be guided or scaffolded. The aim is 
not to replace other selection techniques but to give 
users another option which is more intuitive, efficient, 
and accurate in certain cases. 

On the developer’s side, the octor representation 
provides a compact encoding for multiple occurrence 
selections and is easy to compute. It does not require 
expanding the graph or storing an explicit list of the 
selected occurrences and is simple enough to be exten-
sible and combinable. For instance, multiple octor se-
lections can be combined in a list or with Boolean op-
erations. 

The rest of the paper is organized as follows. Sec-
tion 2 defines our terminology and reviews a simple 
pattern hierarchy approach. Section 3 defines ex-
ceptions, and describes three approaches for obtaining 
and representing sets of selections. Section 4 intro-
duces the octor representation for selections and sec-
tion 5 shows how the user can specify them. Section 6 
describes an approach to handling transformation ex-
ceptions. In section 7 we discuss the persistence of 
octor selections when the hierarchy is edited. Finally 
we suggest some applications and extensions in section 
8. 
 
2. Hierarchy of patterns 
 

In this section, we introduce our terminology and 
review a simple approach for designing, representing, 
and processing hierarchies of patterns.  

We will use the term component to denote a solid, 
a CSG primitive, a feature, a sub-assembly, or a CSG 
expression. For simplicity, one may think of a compo-
nent as being a shape, such as a chair or table. Each 
component is defined in a local coordinate system. The 
size, position, and orientation of such a local coordi-
nate system in a given model is called its pose. The 

pose of one component may be derived from another 
pose by a transformation, which typically is the result 
of a series of scalings, rotations, and translations and 
can be represented as a 3×4 matrix. A given compo-
nent may appear in several places in a model. Each 
appearance is called an occurrence of the component. 
A pattern (Figure 1) is a series of occurrences of the 
same component, such that the pose of each subse-
quent occurrence is obtained from the pose of the pre-
vious occurrence by the same transformation. The 
unique component repeated by a pattern is called the 
pattern-leader, the number of occurrences is called 
the pattern-count, and the transformation between 
successive occurrences is called the pattern-
transform. 

 

 

 

Consider the small assembly (Figure 3 top left) 
comprising a table T and a chair C transformed by a 
transformation s2. We may create a dining set S com-
prising a pattern of 5 chairs (Figure 3 bottom left) 
around the table by specifying the pattern-count (5) 
and the pattern-transform (s3), which is a rotation 
around the center of the table. To do so, the designer 
would for instance type S=T+5C. The resulting model 
is stored as a graph (Figure 3 right), where each circled 
node n (Figure 2) indicates a pattern-count, n.o. Its left 
link n.L leads to the component to be used in the pat-
tern. The associated pattern-transform is accessible as 
n.l. When n.o=1, the pattern-transform n.l is not used. 
(For example, the root node in Figure 3 has pattern-
count 1, hence s1 is not used.) The right link n.R may 
be used to reference additional single-instance or mul-
tiple-instance patterns. The associated transform, n.r 
specifies the pose of the relative transformation of 
these additional patterns with respect to the previous 

Figure 1. Definition of a pattern, pattern-
leader, pattern-count, pattern-transform, and 
occurrences. 

Figure 2. Hierarchy node. 
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ones. Then, as proposed in [vanEmmerick 1993], the 
designer may click on the “=” symbol to select s1, on 
the “+” symbol to select s2, or on the pattern-count 
(“5”) to select s2, and then proceed to edit the corre-
sponding transform either through direct manipulation 
of graphically selected occurrences or by providing 
precise scaling factors, rotation angles, or displacement 
coordinates. 

 

A more complex component (Figure 4 left) could 
for example be defined by D=T+5C+6C, where d4 is a 
translation which defines a second chair behind the 
first one and where d5 is a rotation around the center of 
T, but by a slightly smaller angle. The corresponding 
graph (Figure 4 right) is not a tree, since two compo-
nents reference C. Note that the definition of this new 
model did not require the use of a hierarchy of pat-
terns, but is simply an assembly of two different pat-
terns. 

 

 

We will use a hierarchy of patterns to make a row 
R=4S of 4 dinning sets S and then make a floor F=3R 
of 3 such rows R, and finally a bar B=2F with two 
identical floors F. The graph representation of the bar 
is shown in Figure 5. 

 

 

The designer could edit the hierarchy by altering its 
text definition (for example to change the number of 
occurrences in a pattern or to add a second row of 
chairs behind each table) or any selected transforma-
tion. 

To render such a model, or to simply access each 
occurrence and its final pose, we propose to use a sim-
ple recursive traversal of the graph. It is illustrated by 
the procedure eval(n), where n is a node in the graph. 
(Note that not all nodes represent named components. 

Figure 3. Table T and chair C (top left) with 
graph representation (top right). T combined 
with a pattern of chairs (bottom left). A graph 
representation of the corresponding set, 
specified as S=T+5C (bottom right). Transfor-
mation s1 is not applied since there is only 
one occurrence of T. Transformation s2 is ap-
plied to the first occurrence of C. Transfor-
mation s3 is combined repeatedly with s2 to 
obtain the transformation of each subsequent 
occurrence of C. Hence, the five successive 
occurrences of chair C will be transformed 
respectively by s2, s3•s2, s3•s3•s2, s3•s3•s3•s2, 
and s3•s3•s3•s3•s2. The mini axes represent the 
poses for each occurrence resulting from the 
corresponding sequence of transformations.  

Figure 4. Table T and two patterns of chairs C 
(left). The poses for some of the occurrences 
are shown as mini axes. A graph representa-
tion of the corresponding set, specified as 
D=T+5C+6C is shown right. 

Figure 5. Graph representation of the bar de-
fined as B=2F, F=3R, R=4S, S=T+5C. We show 
the names of the components and use the 
corresponding lower-case letters with con-
secutive subscripts to denote the successive 
transformations appearing in their definitions.
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For example, S is defined in terms of a node that repre-
sents a pattern of 5 chairs but does not have a user-
given name.) We start the traversal at the root of the 
graph, by invoking eval(B). 

 
eval(n) { 
  if (isPrimitive(n)) process(n); 
  else { 
    pushMatrix(); 
    for (int i=1; i<=n.o; i++) { 
      eval(n.L); 
      applyMatrix(n.l); 
    } 
    popMatrix(); 
    pushMatrix(); 
    applyMatrix(n.r); 
    eval(n.R); 
    popMatrix(); 
  } 
} 

 
The definitions of n.o, n.L, n.l, n.R, and n.r were 

provided above.  
Such hierarchies of patterns may be used to consid-

erably simplify the creation and editing of models of 
assemblies or of solids constructed through CSG op-
erations. Figure 6 provides examples.  

 

 

 
3. Exceptions 
 

Often, the poses of some of the occurrences in a 
pattern or in a hierarchy of patterns must be adjusted. 
For example, a pillar may require that we remove the 
same chair on each floor (Figure 7 left). Or one may 
wish to move the last chair of each dining set so that it 
faces the others (Figure 7 right). 

 

 

To specify an exception one must indicate which 
components are to be adjusted and how to adjust them. 
Thus we define an exception E=(S, T) to be a selection 
plus an exception treatment. An exception selection is 
the set of components to be modified and an exception 
treatment is the modification information (e.g. dis-
placement, disappearance, color, etc.) to be applied to 
that set. 

 
3.1. Selections 

 
In this section, we discuss the benefits and draw-

backs of three simple techniques for specifying and 
representing exception selections in patterns of pat-
terns. 

Approach 1: The first approach is to expand the 
graph into a non-binary tree (Figure 8). The child-
nodes of nodes with pattern-count larger than one are 
replicated, replacing the n.L link with n.o such links. 
This expansion is performed recursively. In our exam-
ple of a bar, such an expansion would produce a tree 
with 24 table leaves and 120 chair leaves. The designer 
would then be able to select individual leaves one by 
one and adjust their poses or attributes. This approach 
has the drawback of increasing storage and of not pre-
serving the structure of the pattern hierarchy, which 
represents the designer’s intent [Rossignac et al. 1988] 
and should be preserved to facilitate further editing. 
For example, the designer may later decide to add a 
third floor or to squeeze in more chairs at each table. 
Even with an approach based on partial graph expan-
sions, managing change can be challenging and main-
taining certain selections may still require an external 
structure [Rappoport 1993]. Hence the remainder of 
the paper is focused on approaches that do not require 
such a graph expansion. 

Figure 6. Examples designed using a hierar-
chy of patterns: A fence (left) defined as a pat-
tern F=4R of 4 rows, each defined as a combi-
nation R=30V+H of a pattern of 30 vertical 
beams and one horizontal and a CSG model of 
a fuselage plate (right) defined as F=P–5C, a 
plate from which one has subtracted a pattern 
of five arrangements C, each defined as a pat-
tern C=6H of 6 holes. 

Figure 7. The same chair on each floor (in 
green) needs to be removed due to a column 
(in red) (left). The fifth chair (in blue) at each 
table has been rotated to face the others and 
tucked under the table (right). 



 

Note that each leaf in the expanded graph is an oc-
currence of a component. Each leaf may be represented 
by a path. The path is the concatenation of integers, 
each specifying which link is followed from one node 
to its child. The order of these integers corresponds to 
the traversal of the expanded graph from the root to the 
desired leaf. When the path follows link K from a node 
n, we append “0” to the path when K=(n, n.R) (corre-
sponding to link number k=n.o+1) and “k” otherwise, 
i.e. when K=(n, n.L) (corresponding to link number 
k=1…n.o). For instance, the path “21304” corresponds 
to following links 2, 1, 3, 2, and 4 in the expanded 
graph of the bar scene (Figure 8). 

Approach 2: The notion of a path suggests an al-
ternative approach where one represents each occur-
rence by its path in the non-expanded graph. For ex-
ample, the red chair in Figure 9 corresponds to path 
“21304”. 

 

 

The designer would manually select each chair that 
should be treated as an exception and specify the asso-
ciated exceptional treatment. A list of exceptions (se-
lections plus treatments) is maintained separate from 
the graph. 

This approach avoids graph expansion while still al-
lowing arbitrary selections; however, it still has the 
drawback of requiring a manual selection and explicit 
storage of each occurrence in the exception selection 
set. Hence, to further reduce the designer’s labor and 
associated storage, we will develop an implicit ap-
proach where the designer will not, in general, need to 
select each exception instance. 

Approach 3: A third approach would be to ask the 
designer to associate each exception with a node n in 
the graph and to represent the set of target occurrences 
by a partial path in n. For example, every occurrence 
of the fourth chair of each set would be identified by 
select(S,”04”) (Figure 10) and the every occurrence of 
the fourth chair in the third sets of each row would be 
specified by select(R,”304”) (Figure 11). 

 

Figure 8. Expanded graph of the bar scene 
with path “21304” highlighted in red. 

Figure 9. The red chair is identified with path 
“21304” (left). The path is illustrated on the 
unexpanded tree (right). 

Figure 10. The set of red chairs is selected 
with the expression select(S,”04”) (left). The 
partial path is shown on the graph (right). 
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Even though this approach was successfully used 
by Rossignac [Rossignac 1986] to specify a set of con-
straint-satisfying adjustments to features in CSG mod-
els, its limitations may require unnecessary replication 
of the designer’s effort. For example, this approach 
would not allow us to select the fourth chair of the 
third set on each row of the first floor (Figure 12 left), 
because select(R,”304”) does not let us differentiate 
floors (Figure 11) and because select(B,”11304”), se-
lect(B,”12304”), and select(B,”13304”) would only 
specify a single chair each. To obtain the desired selec-
tion would require the union of the three individual 
selections (Figure 12 right). 
 

 

4. OCTOR selections 
 

Our Approach: Now we describe our solution, 
which does not suffer from the limitations discussed 
above of these three approaches, and which offers sev-
eral advantages: conciseness of representation, ele-
gance of the user interface and reduction of the re-
quired user actions and cognitive burden, and in-
creased generality. We begin by describing a concise 
representation for selections based on wildcards and 
show that it supports an elementary and essential set of 
selections. Later we show how the approach simplifies 
the user interaction required to make a selection. 

 
4.1. Wildcards 

 
As discussed earlier, we do not want to represent 

the group of selected occurrences by a list of paths and 
may not be able to represent important sub-patterns by 
a single node name and partial path. Instead we pro-
pose to represent a selection by a path to any one of the 
selected occurrences (the one clicked by the designer) 
and by a mask string of bits, one for each link on the 
path. A ‘0’ in the mask corresponding to link (n, n.L) 
indicates that the subsequent selection should be ap-
plied to all occurrences of n.L. A ‘1’ indicates that it 
should be restricted to the occurrence of n.L specified 
by the path. For example, a ‘0’ bit would let us inter-
pret the second field in the paths (B, “11304”), (B, 
“12304”), and (B, “13304”) as a wildcard and let us 
interpret this path as “1*304” (using path “1i304” with 
mask “10111”), hence producing the selection in 
Figure 12. Note that only mask fields that correspond 
to left links (pattern links) are allowed to contain a 
wildcard ‘0’. Mask fields corresponding to right links 
(group links) should always be a constraint ‘1’ to re-
spect the unique identity of all the occurrences. 

 
4.2. Exception Culling 

 
We may modify eval() to incorporate this additional 

flexibility. We use a depth-first traversal where the left 
node is visited first, though in general the right node 
could be visited first. As we traverse, we follow the 
path with respect to the exception selection. If we walk 
off the selection path, mark that exception as inactive, 
visit the rest of the path recursively, and then mark it 
back active. When we reach a primitive (leaf), if the 
exception is active then its treatment is applicable to 
that occurrence. For a single selection, there is no need 
to continue traversing a path for which the selection is 
already marked inactive; however, the idea of excep-
tion culling can be applied to a whole list of excep-
tions, not just one as is listed in eval2(). Furthermore, 
exception culling also supports exceptions that are not 

Figure 11. The set of red chairs is selected 
with the expression select(R,”304”) (left). The 
partial path is shown on the graph (right). 

Figure 12. The set of red chairs (left) cannot 
be specified using a single partial path but 
requires the union of three partial path selec-
tions (right). 
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applied at leaf nodes. All active exceptions are poten-
tially valid at any given node and a simple node id 
check is needed to confirm that it is applicable to the 
node. 

 
eval2(n, r, selected) { 
  boolean deactivated = false; 
  if (isPrimitive(n)) process(n, selected); 
  else { 
    pushMatrix(); 
    for (int i=1; i<=n.o; i++) { 
      cullX(i, &selected, &deactivated); 
      eval2(n.L, r+1, selected); 
      restoreX(&selected, deactivated); 
      applyMatrix(n.l); 
    } 
    popMatrix(); 
    pushMatrix(); 
    applyMatrix(n.r); 
    cullX(0, &selected, &deactivated); 
    eval2(n.R, r+1, selected); 
    restoreX(&selected, deactivated); 
    popMatrix(); 
  } 
} 
cullX(i, *selected, *deactivated) { 
  if (*selected && (mask[r] == 1) && 
     (path[r] != i)) *deactivated = true; 
  if (*deactivated) selected = false; 
} 
restoreX(*selected, deactivated) { 
  if (deactivated) selected = true; 
} 

 
A selected group of k occurrences may be repre-

sented in octor in k different ways, each one compris-
ing a path to a different occurrence and the associated 
mask. Since the mask only requires one bit per link, we 
can incorporate it into the path string by using the sign 
bit. Practically, we can adopt an even simpler encoding 
such that path[j]=-1 when mask==0, thus the path 
value is -1 for wildcards, 0 for going right, and 1…n.o 
for going left. We trivially modify cullX() to incorpo-
rate this simplification. 

 
cullX(i, *selected, *deactivated) { 
  if (*selected && (path[r] >= 0) && 
     (path[r] != i)) *deactivated = true; 
  if (deactivated) selected = false; 
} 

 
4.3. Equivalence 

 
One may think of the octor selections as represent-

ing all the axially-aligned slices of 0…p dimensions 
through discrete p-dimensional space, where p is the 
number of pattern links (i.e. left links) and thus repre-
sents the pattern nesting depth. Because each possible 
bit mask represents an equivalence class of slices 
(Figure 13), it may be convenient to keep the bit mask 
and the path string separate for certain applications. 
For example, the user can make complex selections on 

components that are obscured or difficult to visualize 
by specifying the selection pattern (slice) on more ac-
cessible occurrences, on an alternate representation, or 
on another model and then applying the slice some-
where else using one click (a single pick) or in an ex-
ploratory fashion. 
 

 

Only a small subset of the 2r (where r is the total 
number of occurrences) possible selections can be rep-
resented with octor. For example, the selection shown 
in Figure 14 cannot be specified by a single octor path 
string. 
 

 

Figure 13. The 8 equivalence classes of selec-
tions for one floor of the bar are shown. The 
green chairs are selected using path “1304” 
with 8 masks “bb1b” where b is a binary digit 
‘1’ or ‘0’ starting with “1111” (first row left) 
and ending with “0010” (bottom row right). 

Figure 14. The selection cannot be specified 
by a single octor path string. Using Boolean 
operations, it can be specified in 2 strings 
with the expression “12*03” minus “12103” as 
opposed to 3 strings using a list of paths. 

1304 130* 

1*04 1*0* 

*304 *30* 

**04 **0* 



Nevertheless, we feel that the selections directly ac-
cessible through octor provide a valuable extension to 
other mechanisms discussed above. It allows us to 
make generalizations (using wildcards) and constraints 
(path position with no wildcard) directly correspond-
ing to the pattern hierarchy which represents the de-
signer intent. Of course several octor selections may be 
combined (union) to produce more elaborate sets. Fur-
thermore, one may envision more a general scheme 
offering Boolean operations on selected sets, where the 
selections directly accessible through octor provide an 
elementary set of selections which can be combined to 
form all others. 

 
5. GUI for specifying a selection 

 
A basic approach for specifying a selection is to ob-

tain the path from the first click (the first pick) and to 
obtain the mask from subsequent interaction such as 
additional clicks (picks). 

To support a graphical user interface for octor, we 
have four challenges. 

1. Allow the user to pick individual occurrences. 
2. Compute the path of a selected occurrence 

from a user click. 
3. Produce a candidate set for further refinement. 
4. Use these three tools to let the user interac-

tively build a selection mask. 
 
5.1. Computing the path 

 
To compute a path, we simply use eval(n) while 

tracking the path as follows: 
 

eval(n, path, r) { 
  if (isPrimitive(n)) process(n); 
  else { 
    pushMatrix(); 
    for (int i=1; i<=n.o; i++) { 
      path[r]=i; 
      eval(n.L, path, r+1); 
      applyMatrix(n.l); 
    } 
    popMatrix(); 
    pushMatrix(); 
    path[r]=0; 
    applyMatrix(n.r); 
    eval(n.R, path, r+1); 
    popMatrix(); 
  } 
} 

 
5.2. Picking components from a user click 

 
In process() we need to decide if the user click posi-

tion corresponds to the current occurrence. There are 
various solutions to this basic problem [Lucas et al. 
2005] including ray-casting which works even for oc-

cluded objects. However in this case, the intended tar-
get needs to be resolved. Though reasonable solutions 
exist for determining or specifying the intended target, 
the fact that the target needs any disambiguation at all 
makes it undesirable for MOS. 

Our MOS approach has the advantage that it only 
requires a single pick to be disambiguated since subse-
quent picks are on occurrences of the same pattern 
component. After resolving a single pick, these related 
occurrences can be isolated, for instance, by hiding all 
other objects. If none of the desired occurrences are 
visible, the designer may select the primitive in the text 
representation (or a component list, tree, or graph) to 
temporarily hide all others. For example, a subtracted 
CSG component located inside of another may require 
indirect selection of the first click. After that, the other 
instances are made visible and other components made 
invisible or diminished. Subsequent clicking can occur 
directly on the scene. 

 
5.3. Building a selection mask 

 
When the user makes the first pick, this defines a 

path of length d. The user now needs a way to specify 
a wildcard mask of length d. 

A naïve approach is to specify the d bits using d 
clicks. Each time we ask 1 question by proposing a 
candidate set. The user would choose Y or N to decide 
if they wish to toggle that bit resulting in the selection 
of the candidate set. 

A more direct approach is to allow the user to di-
rectly click on additional occurrences, i.e. a second, 
third, etc., and have the system guess or infer the selec-
tion from the cumulative set of picks. For example, 
when the designer selects chair “11304” and “12304”, 
the system generates mask “10111” producing the se-
lection in Figure 12. Adding a third chair “21304” re-
sults in a mask of “00111” (Figure 11) and adding a 
fourth chair “11204” results in a mask of “00011” 
(Figure 10). 

Observe that path fields that differ indicate gener-
alizations and fields which are identical indicate con-
straints. Thus we see that only the latest pick along 
with the first is necessary for specifying a path plus 
mask. In fact, any selection supported by octor can be 
specified with only two clicks. For example, to specify 
“**304” (Figure 11) the user can select chairs “12304” 
and “23304”, which results in path “12304” with mask 
“00111”. 

Another advantage of this approach is that it is in-
tuitive. The user directly clicks the occurrences in the 
desired selection set and the system updates the high-
lighted set. Thus the user may interactively refine their 
selection by selecting alternative occurrences. 



 
5.4. Refinement set 

 
A direct clicking approach requires the user to find 

the right occurrence to click. While the user can inter-
actively sample the selection space by trial and error, 
the system may be able to help the user by identifying 
a small set of occurrences to click. For example, after 
the user clicks one chair in the bar scene there are only 
16 octor selections possible which use the path of the 
picked chair. (These correspond to the 16 possible 
masks which correspond to the 16 different equiva-
lence classes of selections.) Yet the user can click any 
of the 120 chairs to make one of these 16 selections. 
The system can help lessen the user burden of identi-
fying occurrences to click by presenting just one op-
tion for each of the 16 equivalence classes. Fortu-
nately, this is straightforward to compute. For each 
possible bit mask, construct a path string which is the 
same as the path of the first pick in all fields except 
wildcard fields. Any variation of the field value within 
the pattern-count range corresponding to that field is 
acceptable. For instance, on may use the next or previ-
ous value as a simple heuristic. This has the benefit of 
near access to far selections. That is, the user can select 
occurrences located far apart by picking occurrences 
close together (i.e. close to the first pick). For example, 
on the airplane seating example, the user can make any 
octor selection (i.e. single, row, column, all) by click-
ing on 2 of 4 seats (Figure 15). 

 

 

An alternative refinement guide is to highlight one 
or all occurrences that vary in only one field in the 
path. This visual guide helps the user choose and main-
tain generalizations or constraints when endeavoring to 

expand or refine the selection. For example, to specify 
selection “***04” (Figure 10), the user first selects 
chair “12304” and then needs to find a chair that is on 
a different floor, row, and set. This guide makes it 
clear which chairs are on the same floor, row, and set 
and thus helps the user find one that differs. 

 
5.5. Consistent interaction 

 
One notion of consistency is that octor selections 

are repeatable. The computed selection corresponding 
to any two picks is completely deterministic and un-
ambiguous. 

Now assume that we are given the bar scene as a 
model without the scene graph and assume that we are 
able to extract and determine a hierarchical structure to 
describe it [Thompson et al. 1999, Langbein et al. 
2001]. There likely exist alternate hierarchies which 
generate equivalent scenes. For example, the tables 
could be separated from the chairs at a high level in-
stead of the dining set. Perhaps the first chairs at each 
table become a row by themselves, and so on. In the 
alternate hierarchies, octor will still behave the same 
for making selections of components at the leaf if and 
only if the alternate hierarchy is a re-sequencing of the 
same pattern dimensions. In these cases, the fact that 
the paths will be different is transparent to the user. 
However, selecting non-leaf components and selecting 
leaf components on a hierarchy with different dimen-
sional structure results in different behavior since dif-
ferent non-leaf components exist in alternate represen-
tations and the dimensional structure affects the extent 
of the generalizations. Here the unexpected selections 
are a reflection of the ability of the reverse engineering 
process to extract designer intent and not of the consis-
tency of the selection mechanism of octor. In fact, 
making octor selections can serve to reveal the hidden 
scene structure and aid the process of fixing it. 

 
6. Exception treatments 

 
Given an exception selection, the exception treat-

ment determines the effect of the exception on the se-
lected occurrence set (SoS). An exception treatment 
can be simply defined as a treatment type along with 
parameters: T=(type, params). 

In our approach, treatments may be applied to com-
ponents at a leaf before rendering, e.g. in procedure 
process(), or to components not at a leaf before evalu-
ating the subtree, e.g. calling eval(). The basic proce-
dure for rendering is to: 1) save state (e.g. push ma-
trix), 2) apply active exceptions, 3) render or evaluate, 
and 4) restore state (e.g. pop matrix). 

Figure 15. Clicks on just 2 of only 4 seats (left) 
are required to select a single seat (Y, Y), a 
row (Y, R), a column (Y, G), or all seats (Y, B). 
In fact, after clicking seat Y first, a second 
click on any other seat in the same row se-
lects the row, any other seat in the column 
selects the column, and the rest of the seats 
select all (right). This selection principle ex-
tends to n-dimensions. 

R 

G B 

Y 



The eval2() recursive procedure may be trivially 
adapted to change the rendering attributes of the SoS. 
For example: 

 
process(n, selected) { 
  if (selected) color(red) else color(n.col); 
  render(n); 
} 

 
Now let us consider applying a transformation M to 

the selected occurrences. There are two issues: 1) how 
to apply M to each occurrence and 2) in which refer-
ence frame to define M for each occurrence. 

 
6.1. Applying transformations 

 
Transformation exceptions are applied at the leaf 

immediately before processing (e.g. rendering) the 
occurrence. For example, the pose for chair “22202” is 
defined by p0=s3s2r1f1b1. Applying an exception trans-
form e1 results in pose pe1=e1s3s2r1f1b1=e1p0. Like the 
rendering attributes, this functionality is easily adapted 
into the procedure. For example: 

 
process(n, selected) { 
  pushMatrix(); 
  if (selected) applyMatrix(e1); 
  render(n); 
  popMatrix(); 
} 

 
Transformation exceptions applied at non-leaf 

nodes use the same procedure: push the matrix stack 
and apply M, process the node (recursive call), and 
pop the matrix stack. This has the effect of inserting 
the new transformation in the stack of the relevant 
components. For example, applying e2 to the second 
row on the second floor, i.e. row “22”, causes the pose 
for chair “22202” to become pe2=s3s2r1e2f1b1. In fact, 
since all sub-components in that row are transformed 
by e2, we can design our selection approach as if it 
applies to just leaf nodes without loss of generality. 
For components not at an actual leaf, e.g. a dining set 
or row, first select the component as part of selecting 
the first pick. Then we may treat the chosen compo-
nent node as a leaf both algorithmically and in what is 
presented to the user. For instance, a dining set be-
comes the smallest selectable unit. 

 
6.2. Defining transformations 

 
In the hierarchy, each successive transformation on 

the links in the path is effectively defined with respect 
to the cumulative transformation at its parent or previ-
ous node in the graph. However, suppose we define a 
second row of chairs around the table as in Figure 2 to 

be the regular form for the dining set. Or suppose we 
want to move some of the chairs closer to the table or 
slide them around the table. Or instead, suppose we 
want to move them up the row or with respect to the 
balcony. This indicates that for modeling the basic 
scene or for specifying exceptions, we may want to 
define transformations with respect to a reference 
frame other than the global frame or the one defined at 
the parent. 

The traditional way to define M is to build the ma-
trix from user-specified or default rotation (including 
center of rotation and rotation axes), translation, and 
scaling values [vanEmmerik et al. 1993]. We take a 
similar approach but define M with respect to a local 
frame of reference R which consists of a fixed point 
and axes directions. The fixed point is the center of 
rotation and the axes directions give the axes of rota-
tions as well as the directions of the translations. Ros-
signac [Rossignac et al. 1991] proposes to define the 
reference frame R by combining the translation ele-
ments from a center frame C with the rotation elements 
from an axis frame A. That is, for 3x3 rotation matri-
ces RC and RA and 3x1 translation vectors TC and TA, 
define 4x4 matrices C, A, and R: 
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We allow both C and A to be chosen independently 

from among any of the existing frames in the scene or 
newly defined by the designer (i.e. the traditional 
way). Thus we may rotate the chairs around the rota-
tion frame of the table while still translating them in 
their own frames to, for example, push them under the 
table. While both methods can be used to specify 
equivalent transformations, the expectation is that the 
alternative method can provide a more natural coordi-
nate system for the designer in certain cases and that it 
can make the specification more efficient. Here we 
may point out that in order to use existing poses as 
frames for specifying transformations, we need to 
specify which components to get the poses from. Thus, 
not only can we use octor to select the occurrences to 
transform, but we can also use octor to specify the oc-
currences or the components from which we obtain C 
and A, or alternatively R directly by having C=A. This 
idea also makes it possible to optimize other poten-
tially tedious tasks such as specifying reference com-



ponents for modeling constraints and any other task 
requiring the specification of multiple selection sets. 

 
7. Persistence 
 
7.1. Persistent naming 

 
After specifying one or more exceptions, the user 

may continue to make modifications to the model. For 
example, the entire bar could be patterned (e.g. mall 
M=7B), more items could be placed on the table as 
part of the standard dining set (e.g. a lamp with 
S=T+5C+L), or a design pattern could be placed on the 
standard chair (e.g. H=C+10P, S=T+5H). Even the 
pattern counts may be adjusted (e.g. S=T+8C) or pat-
terns removed completely (e.g. flatten B=2F and F=3R 
into B=3R). The challenge is deciding how to update 
octor selections when the model is edited such that 
they continue to identify or name the same compo-
nents. 

The persistent naming problem for parametric, fea-
ture, and history based modeling has been well studied 
[Marcheix and Pierra 2002]. Fortunately, our version 
of the problem is less complicated since we directly 
name the occurrences and their existence or location in 
the hierarchy is explicit, whereas the structure of topo-
logical features may be implicit depending on where 
and how they are combined. 

Now we list some basic modification scenarios and 
the effect of each on a path. (Targets of the paths are 
underlined.) Note that this is only a subset of the pos-
sible scenarios and that every possible graph modifica-
tion does not necessarily correspond to actual model-
ing operations. 

 
1. Insert/delete branch not in path – no change. 

S=3A+4B  S=3A+4B+5C 
2. Insert/delete right branch in the path – insert ‘0’ (go 
right) or delete field in all affected path strings. 
 S=3A+5C  S=3A+4B+5C 
3. Insert/delete left branch in path – insert ‘-1’ (wild-
card) or delete field in all affected path strings. 
 R=4S  R=4G, G=3S 
4. Delete component – a deleted leaf means all associ-
ated exceptions can be deleted. 
5. Change occurrence count – no change. 
 

The different scenarios are implicitly identified by 
running a path-following traversal with modified ex-
ception culling. Instead of maintaining the ac-
tive/inactive status of each exception we only need to 
keep track of whether we are still on the path. When 
the node location for the modification is reached, we 

can determine what to do to each octor path based on 
the modification information and the on/off state. If the 
component at the path destination target is being de-
leted, we can delete the exception. If we are off the 
path or changing the occurrence count, the path does 
not need to be changed. If we are deleting a node, the 
path field corresponding to this node (actually, its link) 
is deleted. If we are inserting a node, we insert ‘0’ 
when the octor path will be nested to the right and ‘-1’ 
(wildcard) when the path will be nested to the left. 

Inserting a wildcard for left branch insertions is rea-
sonable because for the user to insert a left branch is to 
take a sub-expression in the hierarchy and make it the 
leader of a new pattern to be nested at the same loca-
tion in the hierarchy. Thus, inserting a wildcard pre-
serves this intent as opposed to the less likely intent of 
making it an exception and taking the original struc-
ture, which is not currently manifested in the design, as 
the leader. 

 
7.2. Updating existing exceptions explicitly 

 
Another notion of persistence is updating the de-

scriptions of existing exceptions. For instance, the user 
specifies an exception E1=(A, “transform”, M1), i.e. a 
selection A to be transformed by M1. Now the user 
wants to transform the occurrences in selection A by 
M2 and so specifies E2=(A, “transform”, M2). Now 
there is the option of creating a new exception E2, or 
alternatively the system recognizes that the selection is 
the same and the treatment type is the same (in this 
case a transformation) and updates the existing excep-
tion E1=(A, “transform”, M2M1). 

The user may also want to modify the selection set 
of an existing exception. For instance, in the previous 
example the user modifies E1 resulting in E1=(B, 
“transform”, M1). The challenge here is identifying 
which exception to update since multiple exceptions 
may have the same treatment. Thus the problem can be 
more generally stated: modify the selection set of one 
or more exceptions given a particular treatment. This is 
a complex discussion which involves many possible 
approaches and is left to future work. 

 
8. Applications and extensions 

 
The octor representation and approach described 

has been illustrated using scene graphs, a general de-
scription for geometric compositions with widespread 
application including geometric modeling approaches 
such as CSG, BReps, and parametric models. For in-
stance, it can be used to support modeling (e.g. repre-
sentation, identification, and selection) of CSG primi-



tives (e.g. a pattern of holes) and features in BRep 
models (e.g. features in features) and parametric mod-
els. It can also be used for specifying and handling 
exceptions in animation design (e.g. choreography) 
and specifying reference sets for constraint satisfying 
transforms. 

We identify several opportunities for future work. 
(1) The approach can be extended to handle recursive 
structures. For instance, a recursive pattern refers to 
itself as the leader (i.e. n.L points to n). A straightfor-
ward approach would be to maintain a node access 
count within a recursion limit. (2) Ranges can be sup-
ported by using two octor strings. Explore approaches 
for specifying ranges. (3) A variant of octor can be 
used to select arbitrary levels in object group hierar-
chies. For example, compute the selection as the small-
est group containing both picks. (4) Develop a way to 
specify, represent, and compute Boolean combinations 
of octor selections. 

 
9. Contributions and conclusions  

 
We have presented an approach for modeling ex-

ceptions in regular pattern hierarchies. In particular, 
octor provides a representation for a subset of occur-
rences of modeling components and support for a user 
to graphically specify such sets. The representation 
based on a path and wildcards is more compact than a 
list of paths and is more general than a node with par-
tial path. The GUI support is flexible and offers several 
facilities for specifying selection sets. A 2-click 
method for making any octor selection is described, 
but other methods including 1-click plus guided set of 
Y/N queries could be used. Refinement sets or other 
highlighting guides were also proposed. While the 
approach is well suited and intuitive for direct 
manipulation (direct picking), it also supports indirect 
picking of components. Octor provides a selection 
method that is less laborious than clicking each 
occurrence and less demanding than node and path. 
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11. Appendix 
 

Here we give expressions for the number of selec-
tions and equivalence classes of selections that the 
discussed approaches support. While the list of paths 
approach appears to have the advantage by supporting 
every possible selection, this is achieved as the union 
of individual selections. Its base selection unit is a sin-
gle occurrence whereas the other approaches are able 
to select a single occurrence along with larger selec-
tions as a base selection unit. In general, all of these 
approaches are able to specify any selection by com-
bining one or more base selection unit. 

Approach 1 (expanded tree) and Approach 2 
(list of paths): These approaches can be used to spec-



ify completely arbitrary selection sets numbering q0=2r 
where r is the total number of occurrences of the com-
ponent. For a tree or subtree rooted at na and given a 
component represented by node nk: 
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where d is the depth of the path from root node na to 
node nk and ni is the i-th node on this path. In the bar 
scene, r=2*3*4*5=120 chairs, so q0=2120 combinations 
of chair selections in the bar scene. There is only c=1 
equivalence class for kinds of selections (arbitrary) and 
it contains q0 selections. 

Approach 3 (partial path): In the partial path ap-
proach, the number of selections is: 
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where p is the number of pattern links (left links) on 
the path to the leaf, nj is the parent node associated 
with link j, and r(n) gives the total number of occur-
rences for the subgraph rooted at n. For the chairs in 
the bar scene, q3=2*3*4*5+3*4*5+4*5+5=205 in 
c=p=4 equivalence classes: the same chair in each din-
ing set (5), row (4*5), floor (3*4*5), or bar (2*3*4*5). 

Octor (path with wildcards): Out of the 2120 pos-
sible selections of a subset of chairs in our bar, octor 
can select: 
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of them in c=2p different equivalence classes. For ex-
ample, in the bar scene example we have 
r=2*3*4*5=120 paths and c=24=16 different masks. 
Since different path-mask combinations may define the 
same selection due to the wildcards, the number of 
unique selections is q4=3*4*5*6=360 out of the possi-
ble 2120. 

Note that q4≥q3. Proof. Rewrite q3={tp: t0=0, ti=oi(ti-

1+1), 1≤i≤p} and q4={fp: f0=1, fi=(oi+1)fi-1, 1≤i≤p}, 
where oi=ni.o and oi≥1. Expand the expressions for f 
and t, then divide by op and subtract 1, divide by op-1 
and subtract 1, etc. Since oi≥1, we can reduce these 
expressions such that fp≥tp iff 1+1/(o1o2…op) ≥1, 
which is true by the same assumption oi≥1. Therefore 
q4≥q3. This makes sense since the set of masks for par-
tial paths is the subset of masks of length p with only 
leading zeros whereas the set of masks for octor paths 
is the set of all binary masks of length p. 

 
 


