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SUMMARY

Internet security continues to be a complex and challenging problem. Security mech-

anisms such as authentication, data integrity, and data confidentiality along with intrusion

detection, intrusion prevention, and firewall systems have traditionally provided respectable

levels of protection. However, malicious actors and their associated attack technologies

have advanced significantly. Moreover, Internet-enabled platforms such as cyber-physical

infrastructures, advanced mobile voice communication systems, the mobile Internet, voice-

over-Internet Protocol (VoIP), cloud computing, the Internet-of-Things, vehicular networks,

aerospace networks, intelligent transportation systems, and smart-home environments will

provide countless new attack vectors and opportunities for malicious actors. Consequently,

advanced security mechanisms and defense methodologies are needed for the continual pro-

tection of traditional Internet systems along with these emerging Internet-enabled platforms.

However, existing security systems and architectures have a foundation based on the

concepts of topological perimeters, non-cooperative and isolated operation, reactive re-

configuration, and human advisory. Perimeter-based, isolated, non-cooperative, and ad-

ministratively reactive techniques are becoming ineffective, and this is especially true for

emergent platforms such as the mobile Internet and cloud computing in which the con-

stituent computational and networking resources reside outside of enterprise topologies and

perimeters. Isolated and non-cooperative security mechanisms operate within a confined

awareness domain, and knowledge related to new security occurrences are not shared out-

side of the awareness domain. Isolated is implied by confinement, and non-cooperative is

implied by not sharing knowledge with other awareness domains. This imposes a significant

impediment in terms of efficient, global-scale Internet security. Lastly, administratively

reactive relates to techniques whereby a human security administrator reacts to newly dis-

covered security events instead of automated, computer-driven reactions. Human reaction

and remediation times are far too slow to counter the impact of many classes of high-speed,
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large-scale cyberattacks.

According to the National Academy of Engineering (NAE), securing the Internet and

its associated cybersystems is one of the most complex engineering challenges ever faced by

the engineering community. The NAE claims that cybersecurity cannot be achieved with

traditional perimeter defenses, that new methods of authentication for hardware, software,

data, and users are needed, that new approaches to the design of secure software should be

considered, and that new methods are required for monitoring, detecting, and responding to

cyberattacks. Consequently, the NAE and its committee on Engineering Grand Challenges

has identified cyberspace security as one of fourteen Grand Challenges faced by engineers

in the 21st century.

This dissertation provides novel algorithms, theories, and supporting frameworks to

significantly improve the growing problem of Internet security. A premise forming a basis

for the objectives and contributions of this dissertation is that distributed, collaborative, and

autonomic defense methodologies are needed in order to achieve reliable Internet security

because the sheer volume of modern day cyberattacks, their permutation capabilities, their

sophistication, and their speed cause isolated, non-collaborative, administratively-reactive

response and remediation methods to be ineffective. Consequently, the objectives of this

dissertation research were (1) to study the characteristics needed for reliable distributed

Internet security architectures and infrastructures, (2) to design a modular, adaptive, and

integrable framework for distributed Internet security infrastructures, (3) to develop robust

solutions addressing the fundamental packet classification problem, and (4) to develop new

classification algorithms for advanced cyberattack detection systems.

As a result of these objectives, the contributions provided by this dissertation are the

following:

• A distributed firewall and active response architecture.

• A firewall-based blacklist classification and enforcement model.

• A theory of semantic association systems.
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• A semantic path merger packet classification algorithm and its hardware implemen-

tation.

• Advanced cyberattack detection algorithms based on computational intelligence sys-

tems.

The distributed firewall and active response architecture is a modular, adaptive, and inte-

grable distributed security framework that enables cyber devices within an organization’s

cyber infrastructure to participate in the detection of and response to cyberattacks. The

architecture is a supporting contribution that establishes the foundation upon which the

core contributions of this dissertation are framed. Particularly, the distributed firewall and

active response architecture requires (1) efficient packet classification algorithms to enable

its novel firewall-based blacklist classification and enforcement model and (2) effective clas-

sification algorithms for cyberattack detection. While studying packet classification and

cyberattack detection algorithms, the theory of semantic association systems was devised

and formulated. The theory of semantic association systems was inspired by the emerging

field of semantic computing. The theory defines a compositional model and a family of

graph theoretic constructs supporting the notion of merged conceptualization. From this

theory and the notion of merged conceptualization, the semantic path merger packet classi-

fication algorithm was derived along with its hardware-based implementation. The theory

of semantic association systems, the semantic path merger algorithm, and the hardware im-

plementation of the semantic path merger algorithm as a packet classification system are the

core contributions of this dissertation. Finally, two novel cyberattack detection algorithms

have been developed. The first detection algorithm is a hybridization of self-organizing

maps and naive Bayesian learning networks. The second detection algorithm is a neural

network ensemble coupled with a parametrically optimized neural network oracle that com-

bines ensemble classification results. The oracle’s network configuration is parametrically

optimized with genetic algorithms.
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CHAPTER I

INTRODUCTION

Internet security continues to be a complex and challenging problem. Security mechanisms

such as authentication, data integrity, and data confidentiality services along with intrusion

detection, intrusion prevention, and firewall systems have traditionally provided respectable

levels of protection. However, malicious actors and their associated attack technologies

have advanced significantly. Moreover, Internet-enabled platforms such as cyber-physical

infrastructures [30, 32, 40, 35, 168], advanced mobile voice communication systems [29], the

mobile Internet [109, 122], voice-over-Internet Protocol (VoIP) [22], cloud computing [34, 46,

126], the Internet-of-Things [44], vehicular networks [65, 78, 165], aerospace networks [91],

intelligent transportation systems [75], and smart-home environments [103, 169] will provide

countless new attack vectors and opportunities for malicious actors. Consequently, advanced

security mechanisms and defense methodologies are needed for the continual protection of

traditional Internet systems along with these emerging Internet-enabled platforms [24, 130,

23, 125, 163, 117, 160, 43].

In a recent study, Kim et al. [81] claim that modern day cyberattacks are increasingly

sophisticated, coordinated, and financially motivated. A report by Symantec [143] reveals

that attacks are increasingly targeting enterprises, are increasingly Web-based, and are

increasingly driven by financial gains available within the Internet underground economy.

Their report also reveals an increasing usage of openly available attack tools. According to

the Institute for Security Technologies Studies at Dartmouth college [66], over ten thousand

attack tools were freely available on the Internet in 2004. In a recent report provided by

the Georgia Tech Information Security Center [47], over 100,000 new malware samples are

discovered each day.

1



Designers of Internet security architectures suggest that security cannot be provided by

monolithic perimeter-based processes within a computational or networking system and ad-

vocate the incorporation of security mechanisms into each primary element contributing to a

computing and communication framework [110]. Moreover, utilization of highly coordinated

and cooperating security mechanisms are considered to be one of the most effective ways to

prevent large-scale, persistent, targeted attacks [129]. Further, the exchange of information

describing the attributes of attacks and malicious actors have been shown to significantly

enhance security defense mechanisms [124, 161]. Consequently, security architectures and

infrastructures that support methodologies for automatically detecting and responding to

cyberattacks are needed to enable effective defense-in-depth strategies and robust cyberse-

curity systems [9, 63, 72, 123, 132]. However, existing security systems and architectures

have a foundation based on the concepts of topological perimeters, non-cooperative and iso-

lated operation, reactive reconfiguration, and human advisory. Perimeter-based, isolated,

non-cooperative, and administratively reactive techniques are becoming ineffective, and this

is especially true for emergent platforms such as the mobile Internet and cloud computing

in which the constituent computational and networking resources reside outside of enter-

prise topologies and perimeters. Isolated and non-cooperative security mechanisms operate

within a confined awareness domain, and knowledge related to new security occurrences

are not shared outside of the awareness domain. Isolated is implied by confinement, and

non-cooperative is implied by not sharing knowledge with other awareness domains. This

imposes a significant impediment in terms of efficient, global-scale Internet security. Lastly,

administratively reactive relates to techniques whereby a human security administrator re-

acts to newly discovered security events instead of automated, computer-driven reactions.

Human reaction and remediation times are far too slow to counter the impact of many

classes of high-speed, large-scale cyberattacks.

According to the National Academy of Engineering (NAE), securing the Internet and its

associated cybersystems is one of the most complex engineering challenges ever faced by the

engineering community [106]. The NAE claims that cybersecurity cannot be achieved with

traditional perimeter defenses, that new methods of authentication for hardware, software,
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data, and users are needed, that new approaches to the design of secure software should be

considered, and that new methods are required for monitoring, detecting, and responding

to cyberattacks [106].

This dissertation provides novel algorithms, theories, and supporting frameworks to

significantly improve the growing problem of Internet security. A premise forming a basis

for the objectives and contributions of this dissertation is that distributed, collaborative, and

autonomic defense methodologies are needed in order to achieve reliable Internet security

because the sheer volume of modern day cyberattacks, their permutation capabilities, their

sophistication, and their speed cause isolated, non-collaborative, administratively-reactive

response and remediation methods to be ineffective. Consequently, the objectives of this

dissertation research were (1) to study the characteristics needed for reliable distributed

Internet security architectures and infrastructures, (2) to design a modular, adaptive, and

integrable framework for distributed Internet security infrastructures, (3) to develop robust

solutions addressing the fundamental packet classification problem, and (4) to develop new

classification algorithms for advanced cyberattack detection systems.

As a result of these objectives, the contributions provided by this dissertation are the

following:

• A distributed firewall and active response architecture.

• A firewall-based blacklist classification and enforcement model.

• A theory of semantic association systems.

• A semantic path merger packet classification algorithm and its hardware implemen-

tation.

• Advanced cyberattack detection algorithms based on computational intelligence sys-

tems.

The distributed firewall and active response architecture is a modular, adaptive, and inte-

grable distributed security framework that enables cyber devices within an organization’s

cyber infrastructure to participate in the detection of and response to cyberattacks. The
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architecture is a supporting contribution that establishes the foundation upon which the

core contributions of this dissertation are framed. Particularly, the distributed firewall and

active response architecture requires (1) efficient packet classification algorithms to enable

its novel firewall-based blacklist classification and enforcement model and (2) effective clas-

sification algorithms for cyberattack detection. While studying packet classification and

cyberattack detection algorithms, the theory of semantic association systems was devised

and formulated. The theory of semantic association systems was inspired by the emerging

field of semantic computing. The theory defines a compositional model and a family of

graph theoretic constructs supporting the notion of merged conceptualization. From this

theory and the notion of merged conceptualization, the semantic path merger packet classi-

fication algorithm was derived along with its hardware-based implementation. The theory

of semantic association systems, the semantic path merger algorithm, and the hardware

implementation of the semantic path merger algorithm as a packet classification system are

the core contributions of this dissertation. Finally, two novel cyberattack detection algo-

rithms have been developed. The first detection algorithm, which is referred to as HBSOM,

is a hybridization of self-organizing maps and naive Bayesian learning networks. The second

detection algorithm, which is called NNO, consists of a neural network ensemble coupled

with a parametrically optimized neural network oracle that combines ensemble classifica-

tion results. The oracle’s network configuration is parametrically optimized with genetic

algorithms.

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of the basic technological concepts underlying the primary research thrusts pre-

sented in this dissertation. Chapter 3 contains background material and discussion of re-

lated work in distributed Internet security architectures, packet classification algorithms,

and cyberattack detection with classification algorithms implemented by computation in-

telligence systems. In chapter 4, the distributed firewall and active response architecture

is presented. Chapter 5 introduces the novel theory of semantic association systems. In

chapter 6, a new packet classification algorithm based on semantic path merger is intro-

duced. Further, chapter 6 provides the implementation details of the semantic path merger
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algorithm as a hardware-based packet classification system. In Chapter 7, the HBSOM

and NNO algorithms are introduced as new classification algorithms for the cyberattack

detection problem. Finally, the dissertation concludes with chapter 8.
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CHAPTER II

CONCEPTS

In this chapter, the basic concepts underlying firewalls, intrusion detection, intrusion pre-

vention, and packet classification are introduced.

2.1 Terminology

The International Telecommunication Union (ITU) and its ITU-T X.1205 Overview of Cy-

bersecurity [67] provides the following definition of cybersecurity:

“Cybersecurity is the collection of tools, policies, security concepts, security safe-

guards, guidelines, risk management approaches, actions, training, best prac-

tices, assurance and technologies that can be used to protect the cyber environ-

ment and organization and user’s assets. Organization and user’s assets include

connected computing devices, personnel, infrastructure, applications, services,

telecommunications systems, and the totality of transmitted and/or stored infor-

mation in the cyber environment. Cybersecurity strives to ensure the attainment

and maintenance of the security properties of the organization and user’s assets

against relevant security risks in the cyber environment. The general security

objectives comprise the following: Availability, Integrity (which may include Au-

thenticity and Non-repudiation), and Confidentiality”

Three key concepts form the core of cybersecurity problems: vulnerabilities, threats, and

attacks. A vulnerability is any weakness contained within a computing or networking system

that can be exploited. A threat is defined as any process that can potentially violate

the security policies of a system. An attack is considered to be any active process that

deliberately seeks to violate the security polices of a system.

Organizations seek to protect their computational and networking infrastructures based

on defense-in-depth strategies. The objectives of this strategy are to reduce the impact of
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attacks that successfully exploit vulnerabilities within the system and to reduce the number

of threats within the system. The design of systems using defense-in-depth strategies should

be founded on the ideas of security architectures and security management infrastructures.

These two concepts have been defined by Shirey [135] as follows. A security architecture is

a plan and set of principles that describe (a) the security services that a system is required

to provide to meet the needs of its users, (b) the system elements required to implement

the services, and (c) the performance levels required in the elements to deal with the threat

environment. A security management infrastructure includes system elements and activities

that support security policy by monitoring and controlling security services and mechanisms,

distributing security information, and reporting security events.

2.2 Firewalls

Firewalls are security mechanisms that control the flow of network traffic, i.e., communi-

cation packets, into or out of a communication system [26]. The flow of network traffic

through a firewall is governed by security policies, which are defined by a collection of N

packet filters (or filters for short) written in the native language of a particular firewall

technology. Sometimes, packet filters are referred to as firewall rules.

Firewalls are dependent on network topology such that filters are assigned to the di-

rection of traffic flow relative to the orientation of the firewall with respect to the virtual

resources it protects. In particular, a firewall provides an interface between secure resources

and insecure resources. Secure resources reside behind an inside interface of the firewall,

whereas insecure resources reside beyond an outside interface of the firewall. Figure 1

illustrates the idea of a firewall and its inside-outside topology-dependent perspective.

Firewall designs are constructed by the Principle of Least Privilege, which is expressed

as follows:

All communication traffic attempting to traverse a firewall must be explicitly

permitted by a security policy. Otherwise, the traffic must be denied.

In other words, if a packet is processed by a firewall and does not match an explicitly de-

fined filter, then the firewall must deny the packet’s access into or out of the communication
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Figure 1: The inside-outside topology-dependent firewall perspective.

system. The filtering process provided by firewalls is demonstrated by the arrows of Figure

1, which represent packet flows entering and leaving the outbound and inbound filter collec-

tions. The arrows leaving out of the inbound/outbound filter collections represent packet

flows that matched one or more packet filters. Packet denial is represented by more arrows

entering a filter collection (inbound or outbound) than ones leaving. The suppressed arrows

represent packet flows that are denied by the firewall.

Figure 2 illustrates a simple perimeter firewall system. As can be seen in Figure 2, the

collection of packet filters assigned to the firewall state that packets from the ‘outside’ and

destined to the inside host named WWW with destination port 80 as well as those destined

to the inside host named Email with destination port 25 are explicitly permitted (allowed).

Further, the filter written as allow from inside to any port any provides unrestricted access

from inside users/resources to any external Internet resource. The last filter, deny from any

to any port any, is the default filter blocking any packets that do not match the first three

filters, which enforces the principle of least privilege.

Table 1 shows a snippet of packet filters from a real-world enterprize-class Cisco PIX
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WWW Email

Firewall

Firewall Filters for a 
Simple Security Policy

{
  allow from outside to WWW port 80;
  allow from outside to Email port 25;
  allow from inside to any port any;
  deny from any to any port any;
}

Outside Interface

Inside Interface

Figure 2: A simple network system with a firewall and its filter-set.

firewall. The filters shown in Table 1 have a structure based on the so-called 5-tuple firewall

filter, which includes header field specifications from the network and transport layers of

the TCP/IP protocol stack. In particular, the 5-tuple includes the (protocol type, source IP

address, destination IP address) from the network layer of the TCP/IP stack and the (source

port, destination port) from the transport layer of the TCP/IP stack. In general, firewall

packet filters can describe any value permissible by the specifications of the associated

TCP/IP headers. For example, IPv4 addresses are contained in the source/destination

IP headers in the network layer of the TCP/IP stack. Since IPv4 specifies 32 bits for IP

addresses, then any one or more of the possible 232 IP addresses can be used for the source

or destination IP addresses of a packet filter. In most cases, firewall filters specify the tuples

as a collection of points, prefixes, or ranges. A ‘point’ is a single numeric value, a prefix

is an expression based on the first x-bits of a value followed by wildcards in the remaining

w − x bits where w is the number of bits allocated to the particular header field in the
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Table 1: A real-world firewall filter-set.

Intf Action Proto SrcIP DestIP SrcPort DestPort
in permit gre 130.207.134.9 128.61.209.0/26 any any
in permit tcp 130.207.134.9 128.61.209.0/26 any eq pptp
in permit gre 130.207.134.9 128.61.209.128/26 any any
in permit tcp 130.207.134.9 128.61.209.128/26 any eq pptp
in permit tcp 128.61.252.110 143.215.254.64/29 any eq https
in permit tcp 128.61.252.110 143.215.254.64/29 any eq www
in permit tcp 128.61.252.110 143.215.254.64/29 any range 22 23
in permit tcp 128.61.5.0/24 143.215.254.64/29 any eq https
in permit tcp 128.61.5.0/24 143.215.254.64/29 any eq www
in permit tcp 128.61.5.0/24 143.215.254.64/29 any range 22 23
in deny ip any any any any

out permit ip 128.61.210.0/24 any any any
out permit ip 128.61.211.0/24 any any any
out permit ip 128.61.212.0/24 any any any
out permit ip 128.61.213.0/24 any any any
out permit ip 143.215.254.8/29 any any any
out permit ip 143.215.254.56/29 any any any
out permit ip 143.215.254.64/29 any any any
out deny ip any any any any

TCP/IP stack, and a range is of the form [L,U ] where L is the lower endpoint and U is

the upper endpoint of a range. Table 2 gives an example of each. Prefixes are specified

Table 2: An example of points, prefixes, and ranges used by packet filters.

Point Prefix Range
128.61.208.3 128.61.55.0/24 [20, 22]

TCP 01000* [000, 110]
http = 80 10.20.*.* > 1023

by a certain number of most significant bits and are always inherently tied to the number

of bits specified by a particular header field. For example, if the value 01000∗ from the

second row of Table 2 represents an IP address field, then an IP address where the first 5

bits equal 01000 will match the expression regardless of the remaining 32 − 5 = 27 bits.

In this case, the first 5 bits are the most significant bits of the filter specification 01000∗

and the remaining 27 bits are the least significant don’t care bits with respect to the filter
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expression. The range specification of the last row of Table 2 specifies any value greater than

1023. However, since the header fields of the TCP/IP stack are specified by a particular

number of w bits, the range specification > 1023 implies that the range is interpreted as

[1024, 2w− 1] = (1023, 2w− 1]. For instance, if the range is based on the 16 bits of the TCP

port number specification, then the range above is [1024, 65535].

2.3 Intrusion Detection

In general, cyberattack detection mechanisms are processes that collect data from within

the cyber environment and utilize classification algorithms to determine the legitimacy of

events associated with the data. A cyberattack detection system is a security mechanism

that utilizes one or more cyberattack detection algorithms. A cyberattack prevention mech-

anism seeks to apply countermeasures that prevent adverse impacts caused by cyberattacks.

A cyberattack prevention system employs one or more cyberattack detection mechanisms

along with the associated techniques required to implement countermeasures.

An intrusion is defined as any unauthorized attempt to access cyber resources. Intrusion

detection and intrusion detection systems are particular cases of the more general categories

of cyberattack detection and cyberattack detection systems. The same is true for intrusion

prevention and intrusion prevention systems. Consequently, intrusion detection/prevention

and cyberattack detection/prevention will be used interchangeably throughout this disser-

tation.

Intrusion detection is concerned with the discovery of intruders attempting to gain

unauthorized access to an organization’s computing, networking, and information resources

[8]. Intrusion detection is a process performed by an intrusion detection system (IDS) where

events within a cyber environment are analyzed via audit data and sequences of events that

indicate violations of an organization’s security policies trigger alerts that notify security

administrators of the abnormal system activities.

The fundamental premise underlying the design of an IDS is based on the idea of be-

havior. Understanding the behavior of computer users and processes is a central idea

underlying the design of detection algorithms for intrusion detection systems. Particularly,
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the behavior of an intruder (human or agent) is assumed to be significantly different from

the behaviors of legitimate users [142]. For example, in most cases, a legitimate user will

not attempt to read to the contents of a system’s password database. However, an intruder

will usually attempt to retrieve the contents of the password database. The terms ‘most’

and ‘usually’ are highlighted to illustrate the statistical nature that actually underlies the

behavioral premise of IDS design. But, the behaviors are not always different. In other

words, a behavioral overlap exists whereby activities of legitimate users versus intruders

(equivalently, legitimate cyber activities versus cyberattacks) cannot be perfectly differen-

tiated at all points in time. The aforementioned behavioral overlap is illustrated by Figure

3. The preceding arguments imply that an intrusion detection system and its detection

Figure 3: The behavioral overlap of legitimate users and intruders.

algorithm(s) must compensate for their inherent false negative and false positive detection

rates [12].

An IDS is commonly categorized by two types of algorithmic approaches, which include

anomaly detection and signature detection. Anomaly detection applies statistical analysis

to real-time data based on historical archives of data representing legitimate (normal) user

activity. Behavior deviating from the statistical profiles of normal activities is considered

abnormal (anomalous), and these deviations are used as the basis for detecting intrusions.

Signature detection utilizes a collection of rules derived from data and patterns related to

known profiles of particular types of intrusive behavior. Activities that generate content

with patterns matching one or more signatures within the rule-base are indicative of an

intrusion. A special case of signature detection is known as blacklisting. A blacklist is a
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collection of distinct identifiers associated with well-known malicious sources. Blacklists can

be composed of values such as IP addresses, application types, filenames, or transport layer

port numbers. The primary distinction between these two intrusion detection approaches is

the following. Anomaly detection is concerned with the behavioral (or activity) profiles of

legitimate users, whereas signature detection is based on the behavioral or activity patterns

(profiles) of intruders.

Intrusion detection systems require packet classification algorithms. For example, intru-

sion detection systems process data from TCP/IP header fields along with content belonging

to application payloads during the detection process. Table 3 contains three signature de-

tection rules similar to those found in the SNORT intrusion detection system [137]. The

Table 3: An example of SNORT detection rules (filters).

Action TCP/IP Header Filter Payload Filter
alert tcp any any − > any 7070 (msg:“IDS411/dos-realaudio”;

flags:AP;
content:“|fff4 fffd 06|”;
reference:arachnids,IDS411;)

alert tcp any any − > 128.61.14.57 21 (msg:“IDS287/ftp-wuftp260-linux”;
flags:AP;
content:“|31c0db 31c9b0 31c0db|”;
reference:cve,CAN-2000-1574;)

drop tcp any any − > any 80 (msg:“Unauthorized Access”;
flags:AP;
content: “|21daff 03cf1a0|”;
react: HTTP/1.1 403 Forbidden
Connection: close
Content-Type: text/html; charset=utf-8
<head>
<title>Access Denied</title>
</head> <body>
<h1>Access Denied</h1>
<p>Unauthorized Access</p>
</body> </html>; sid:4;)

first two rules shown in Table 3 are alert rules. The first rule will be triggered for packets

specified with TCP as the transport layer protocol and destined to any internal machine
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with a destination TCP port of 7070. Once the rule is triggered by a match on this partic-

ular TCP/IP header tuple, a second phase process will inspect the the TCP flag fields and

the payload data. If the TCP flags are set to ACK (A) or PUSH (P) and if the content

contains the hexadecimal string “fff4 fffd 06”, then the packet matches the entire rule and

an alert will be sent to a system administrator. The third rule is an active response rule.

If a packet matches the TCP/IP header specifications along with the flags and content

payload data as given in the third row of the table, then the IDS will actively terminate

the communication flow by dropping (i.e., blocking) the packet.

2.4 Intrusion Prevention

Intrusion prevention can be categorized by two primary security mechanisms related to

intrusion activities: (1) proactive mechanisms and (2) reactive mechanisms. Proactive in-

trusion prevention mechanisms enforce security policies with services such as authentication,

authorization, and access control. For example, password systems and firewalls are proac-

tive intrusion prevention systems. These systems implement security policies designed to

prevent unauthorized access to cyber resources. Reactive intrusion prevention mechanisms

function synergistically with intrusion detection systems and provide functionality that aims

to stop intrusion occurrences in real-time and/or to recover from any adverse effects caused

by a successful system penetration. Intrusion prevention systems capable of both detecting

intrusions and reacting with countermeasures to intrusion occurrences are referred to as

active response systems.

Collectively, intrusion detection and prevention systems are categorized as intrusion re-

sponse systems (IRS). In [141], Stakhanova et al. propose an intrusion response system

taxonomy, which is illustrated graphically by Figure 4. In their taxonomy, an IRS is clas-

sified by two top-level characteristics indicating the system’s degree of automation and the

system’s response activity. IRS automation is categorized by notification systems, manual

response systems, and automatic response systems, whereas response activity comprises

passive and active response. Passive response systems are notification-based systems. Ac-

tive response systems, as described above, provide real-time countermeasures to intrusions
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Figure 4: A taxonomy of intrusion response systems [141].

and attacks. Active response includes countermeasures such as disabling user accounts,

terminating system processes, and traffic filtering. Automatic response systems are fur-

ther partitioned by its adjustment ability, response time, cooperation ability, and response

selection method.

2.5 Packet Classification

Packet classification (PC) provides the basis for network functionality such as Internet pro-

tocol (IP) routing, virtual private networks, firewalls, access control lists, quality of service,

policy based routing, network traffic accounting, and network traffic billing. In essence, PC

is the process of mapping packets into network traffic flows. From a theoretical perspective,

PC is equivalent to the multidimensional point location problem from computational geom-

etry whereby the fields of a packet represent a point in d-dimensional space, and the packet

filters of a packet classifier represent d-dimensional hyperrectangles. Flows are defined by

hyperrectangles, and a packet matches a flow if it is contained within the boundaries of a

hyperrectangle. A flow is the set of all packets contained within a hyperrectangle.
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Packet classification is formally described by the following. Let P be the set of all

packets, R be a set of filters, and A be a collection of filter actions. A d-dimensional

packet classification system implements a multivalence mapping F defined by the following

relationship:

F : R× P → A (1)

A d-dimensional packet classifier F is specified by a set R = {R1, R2, . . . , RN} of N packet

filters where Ri is the ith packet filter of F . Each filter is specified over a set of d field

descriptors where Ri = {rij}, 1 ≤ i ≤ N , and 1 ≤ j ≤ d. Each field descriptor, rij , is

associated with a header field fj from an underlying network protocol stack, where each fj

is allocated wj bits based on its definition within the protocol stack. Further, each fj is

interpreted as a wj bit, unsigned, binary number. Therefore, each fj has a finite domain,

Dj , where Dj = [0, 2wj − 1]. In other words, a field’s domain is a finite range over the

positive integers. In turn, each field descriptor rij can be specified in Ri as a range such

that rij ⊆ Dj , where rij = [lij , uij ] and 0 ≤ lij ≤ uij ≤ 2wj − 1.

The semantics of packet classification can be described as follows. A packet classifier F

receives a packet P from the network and extracts the associated d fields from the packet,

and these d fields form the input field set p = {p1, p2, . . . , pd} ⊆ P . A packet matches the

filter Ri if and only if pj ∈ rij , ∀j, 1 ≤ j ≤ d. In other words, a packet matches the ith

filter if and only if lij ≤ pj ≤ uij , ∀j, 1 ≤ j ≤ d. If a packet matches a filter Ri, then an

associated action Ai shall be applied to the packet.

In general, a packet can match multiple filters specified by a packet classifier. In certain

applications such as multi-match packet classification, the packet classifier will perform a

set of actions on the packet for each of the matched filters. However, the semantics of most

packet classifiers is such that a priority is assigned to the packet filters. In these cases, the

packet classifier will perform the action of the highest priority matching filter. Priority,

denoted by Pri(x), is measured such that Pri(Ri) = i and i < j =⇒ Pri(Ri) > Pri(Rj).

Particularly, Pri(R1) > Pri(R2) > . . . > Pri(RN ).

Table 4 provides an example of a d = 2 dimensional packet classifier F with N = 3

filter-action tuples. The number of bits for header fields f1 and f2 are specified as w1 = 3
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and w2 = 2. The last three rows of Table 4 are binary range representations of the first

Table 4: An example of a simple 2-dimensional packet classifier.

F f1 : w1 = 3 f2 : w2 = 2
R1 0* 01 A1

R2 1* 0* A2

R3 11* * A3

R1 [000,011] [01,01] A1

R2 [100,111] [00,01] A2

R3 [110,111] [00,11] A3

three rows, which are expressed with prefix notation.

In general, the field descriptors of a packet filter are ranges bound together over d

dimensions. As a result, filters can be viewed geometrically as hyperrectangles. Figure 5

illustrates the geometry described by the filters of Table 4. The fields (f1, f2) generate a

f1

f2

000 001 010 011 100 101 110 111

00

01

10

11

R1

R2

R3

Figure 5: The geometric perspective of packet classification.

two-dimensional plane given by [000, 111] × [00, 11]. Filter R1 represents a line, whereas

filters R1 and R2 are interpreted as rectangles. Observe that R2 and R3 overlap within the

region [110, 111]× [00, 01]. Regions with overlap encompass multi-match locations.
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2.6 Summary

In this chapter, the basic concepts underlying the three primary research thrusts of this

dissertation were discussed. In the next chapter, an overview of related works from within

these research areas will be provided.
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CHAPTER III

BACKGROUND

This chapter provides an overview of related works in distributed security architectures,

packet classification algorithms, and cyberattack detection techniques with computational

intelligence systems.

3.1 Distributed security architectures and defense systems

Bellovin [17, 64] introduced the concept of distributed firewalls. Perimeter firewalls enforce

security policies at the ingress/egress locations of a network. With Bellovin’s distributed

firewall, security policies are centrally defined by administrators. However, policy enforce-

ment is implemented by the local firewall of each host within an organization’s network.

Contrary to perimeter firewalls, distributed firewalls do not depend on network topology. As

a result, distributed firewalls alleviate issues such as insider threats, provide security to mo-

bile hosts that roam beyond organizational perimeters, and reduce configuration challenges

associated with complex communication protocols.

Meredith et al. [97, 94] developed the autonomic distributed firewall (ADF). ADF

is a distributed firewall architecture with independent (autonomic) firewalls residing at

each host of the network and implementing a centrally defined security policy. The design

objectives of ADF are similar to Bellovin’s distributed firewall. However, ADF implements

the firewall functionality within the host’s network interface card (NIC). Meredith et al.

claim that host-based firewalls controlled by operating systems software fail to meet the

security requirements as defined by the Trusted Computer System Evaluation Criteria [37].

Particularly, they claim that software-based firewalls do not satisfy the non-bypassable and

tamper-resistant properties of the trusted computer system criteria. To satisfy these criteria,

ADF detaches the host-based firewall from the host’s operating system and moves it to the

host’s NIC. The idea is to view the host-based firewall as an embedded firewall (EFW)

within the network interface card. Figure 6 illustrates the main components of the ADF
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architecture. ADF has a central management server (CMS) responsible for audit collection

Host OS

NIC: EFW

Central Management 
Interface

Audit 
Database

Policy 
Database

NIC: EFW

SNMP

Network

Figure 6: Primary functional components of the autonomous distributed firewall architec-
ture.

and security policy management. Security policy is defined by security administrators, and

the central management interface pushes the policy to the EFW. Each EFW has logging

capabilities, whereby the firewall filters can can be configured to trigger alerts for various

match conditions. For example, any packet attempting to traverse the firewall that gets

denied can be logged, and the log data can be subsequently delivered to the CMS to be

stored as security audit data.

In [102], Munz et al. present the DIADEM firewall architecture as a distributed approach

to integrating intrusion detection systems and firewalls. The DIADEM firewall architec-

ture, which is illustrated by Figure 7, is partitioned into three levels: the data level, the

element level, and the administrative level. The data level is composed of routers, network

monitors, and firewalls that are responsible for network monitoring and intrusion response.

The element level provides an abstraction layer between the data and administrative levels

and is composed of two components: monitoring elements and firewall elements. The ad-

ministrative level components communicate with the data level devices via an application
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Figure 7: The DIADEM firewall architecture.

programming interface provided by the monitoring and firewall elements. The administra-

tive level contains a violation detection unit and a system manager. The violation detection

unit receives Internet Protocol Flow Information Export (IPFIX) [128] data from the net-

work monitoring units, and it uses this data to perform intrusion detection analysis. Once

an intrusion is observed, event information is delivered to the system manager. Once events

are received by the system manager, it issues response policies to the network’s perimeter

firewalls. The response policies are firewall actions such as connection blocking, connection

redirection, or connection rate-limiting. Once the violation detection system determines

that an intrusion is no longer active, it sends new event information to the system manager.

The system manager then removes the response policies from the firewall units.

Zou et al. proposed a firewall network system for worm defense [170]. Their architecture

extends the classical perimeter firewall configuration whereby an enterprise network is di-

vided into sub-networks that are isolated and protected by internal firewalls. Their system

is designed for the purpose of defending against internal worm attacks and internal worm

propagation. The architecture has the following components:

• Perimeter Firewalls
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• Internal Network-Based Firewalls

• Internal Worm Detection System

• Vulnerability Assessment and Active Patching System

• Central Management Station

The authors realize that perimeter firewalls cannot protect internal hosts from an in-

ternal worm outbreak, and, therefore, recommend using internal firewalls to subdivide the

internal network into isolated sub-networks. All of the internal firewalls use the same set

of filtering rules, and these rules are defined, configured, and distributed with the central

management station. Hosts within the enterprise network are defined by the administrator

as clients or servers. The internal firewall rule base explicitly defines the clients, servers,

and services offered within the enterprise’s network. The authors posit that TCP and UDP

requests sent from internal hosts to other internal hosts not defined as servers indicate

worm propagation within the internal network. The central management station is respon-

sible for detecting internal worm infestation. Once the internal firewall filters a connection

that is targeted to a non-server host, it sends connection information to the internal worm

detection system. After a certain threshold, the internal worm detection system applies

quarantine methods and a vulnerability assessment and active patching system to fix the

host responsible for sending the illegitimate connection requests. Figure 8 illustrates the

firewall network system’s architecture.

The Cooperative Intrusion Traceback and Response Architecture (CITRA) was designed

to allow intrusion detection systems, firewalls, and network devices to cooperative with each

other so attack traceback and dynamic attack blocking could be achieved [133]. CITRA is

illustrated by Figure 9. CITRA environments are built from communities and neighbor-

hoods. A community is composed of neighborhoods interconnected by boundary controllers

(BC). Further, the community is a single administrative domain that is controlled by a

discovery coordinator (DC), which is a centralized management unit. Neighborhoods are

composed of CITRA devices within a perimeter formed by boundary controllers. Devices

within a neighborhood include hosts, routers, intrusion detection systems, and firewalls.
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The community structure allows for attack traceback. To enable traceback, CITRA devices

that detect intrusions create audit trails describing the event and send a traceback request

to its neighboring BC. If the BC determines that the intrusion has passed through its path,

it sends a traceback request to its neighboring BC. This process is repeated until the source

of the attack has been determined or until the perimeter of the CITRA community has

been reached. This process allows the system to determine the attack source or the entry

point of the attack within the community.

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD)

[115] is an intrusion detection and response architecture. The system uses distributed and

independent monitors that perform intrusion observation, analysis, and response. EMER-

ALD event analysis is performed with a layered approached. EMERALD service monitors

are deployed throughout an administrative domain as service-layer monitors, domain-layer

monitors, and enterprise-layer monitors. EMERALD’s three-layer event analysis framework
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is shown by Figure 10. The service-layer monitors are configured to use target-specific event

streams when making localized intrusion decisions and responses. The collection of moni-

tors within a single domain share information with a domain-layer monitor, and the domain

monitor correlates and analyzes the domain specific event information. Then, enterprise-

layer monitors correlate and analyze event information gathered by the domain monitors.

Service monitors are responsible for detecting attacks targeting local services, whereas do-

main and enterprise monitors are configured to detect system wide attacks such as worms

and denial of service. Service analysis covers the detection of network anomalies within a

single domain. The service monitors are designed to be independently tunable for specific

types of analysis. For example, the monitor might specialize in detecting anomalies that tar-

get an FTP server. Information is exchanged between monitors over a subscription-based,

client-server messaging system.

The EMERALD monitor contains a target specific event stream, a profiler engine, a

signature engine, a resolver, a resource object, and third party modules. Target specific

event streams are collected and generated by target specific event collectors. The collectors
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receive their data from audit trails, network packet capture, simple network management

protocol messages, log files, or results produced by other intrusion detection systems. The

event streams are sent to the profiler and signature engines for analysis. The profiler engine

performs statistical, profile-based anomaly detection where statistical scores are assigned to

observations of application activities. This score represents the degree to which observed

application behavior relates to established patterns of application behavior. The signature

engine performs rule-coding signature analysis where event streams are mapped to repre-

sentations of event sequences that are known to indicate malicious activity. The resolver

receives its input from the profiler engine, the signature engine, and third party analysis

engines. The resolver coordinates analysis results and implements the intrusion response

policy. The resolver can also send its results to third party security modules such as firewalls

that provide the final response.

3.2 Software-Based Packet Classification Algorithms

Packet classification provides capabilities for tasks such as packet forwarding (routing),

virtual private networking (VPN), implementing quality of service (QoS), traffic accounting

and billing, network monitoring and measuring, traffic analysis, security applications such

as intrusion detection/prevention systems, firewalls, and router access control lists. Packet
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classification and its associated notation was formally defined in chapter 2, section 2.5.

In this section, an overview of related works addressing the design of packet classification

algorithms is given.

3.2.1 One Dimensional Packet Classification Algorithms

Previous work on the one-dimensional packet classification problem consists largely of algo-

rithms seeking to provide efficient packet forwarding techniques for routers and addresses

the longest prefix match (LPM) route lookup problem arising from the introduction of CIDR

IP addressing. Considerable attention has been given to the LPM route lookup problem

with seminal results dating back to the early 1990’s.

Packet classification algorithms must strive to achieve wire-speed classification of pack-

ets while supporting search data structures (SDS) that consume reasonable amounts of

memory (space) and providing techniques for incremental (online) updates to the SDS

when changes to the classifier’s filters are needed. Achieving these goals simultaneously has

proven to be very challenging. For example, LPM lookup algorithms need to achieve classi-

fication rates at 100’s of millions of packets per second for routers with line rates of 10’s to

100’s of gigabits per second. Moreover, within the Internet core routing table updates can

potentially occur 10’s to 1000’s of times per second.

Algorithms based on tree-type data structures have been proposed for the one-dimensional

packet classification problem and for the LPM algorithm in particular. A trie is a tree-type

structure that encodes sequences of character strings from a given symbol family. The paths

through a trie represent strings of characters. Multibit Tries (MBT) are general purpose

data structures and provide efficient encoding and retrieval methods for sequences of binary

symbol patterns. Multibit tries are tree-type structures specified by a stride. The stride is

a bit grouping or bit chunking factor defining the number of bits to inspect at each level

of the trie. Given the parameter w specifying the number of bits in a symbol family, the

stride c partitions a w-bit word into w
c chunks, and each chunk generates up to 2c possible

bit patterns. A multibit trie with a single stride specification is also referred to as a fixed

stride trie (FST). Variable stride tries extend the concept to include sequences of strides.
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A unibit or binary trie is produced by assigning a stride of c = 1. Figure 11 illustrates a

unibit trie encoding the prefixes from Table 5.
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Figure 11: A unibit trie for the prefixes from Table 5.

Table 5: A one-dimensional routing table of prefixes.

F f1 : w1 = 6 Action
R1 0110* A1

R2 01* A2

R3 110* A3

R4 0* A4

From the figure, the top shaded node represents the root of the trie. Traversal of the

trie proceeds with the first inspected bit. An inspection bit equal to 0 causes a left branch

whereas a value of 1 causes a right branch. Nodes labeled with Ri indicate that the node

is a prefix node and has an association with the ith filter. The maximum height of a unibit

trie is w, and the height of the root is defined to be 0.

Locating a matching prefix is straightforward. For example, let p = 010001. The search

proceeds from the root. Since the first bit of p is 0, a left branch is taken to the node labeled

A. The second bit is 1, so a right branch is taken to the node labeled by B. The third bit
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is 0. However, there is no left branch below node B. Hence, the best matching prefix is R2

since node B is a prefix node and since it is the longest matching prefix in the trie for the

sequence given.

Consider the case where p = 011101. Traversal of the trie yields the node sequence

A,B,C. Since the 4th bit of p is 1 and node C does not contain a branch for 1, the search

can go no deeper into the trie. However, node C is an internal node that does not contain

a matching prefix. Hence, the search must backtrack to the last prefix node that was seen

along the path, which is node B. Backtracking in prefix tries is handled by recording the

prefix nodes during the traversal. For the one-dimensional PC problem, backtracking is

only a minor concern. However, backtracking prevents high-dimensional extensions, i.e.,

large values of d, to the basic one-dimensional prefix trie. The details of this problem will

be discussed in later sections.

For the one-dimensional case, algorithms implementing the basic unibit prefix trie have

an O(Nw) memory complexity and an O(w) search time complexity. As w grows large,

the unibit prefix trie becomes less appealing, especially for applications requiring wire-

speed packet classification. Particularly, route lookup algorithms using the unibit trie data

structure require O(32) memory accesses per lookup for IPv4 and O(128) memory accesses

per lookup for IPv6. Several techniques have been proposed seeking to pipeline unibit

and multibit tries for route lookup applications. These hardware-based algorithms will be

explored in later sections.

One method to reduce the search time complexity of the unibit trie is to utilize a multibit

trie. The stride chunks the bits of a w-bit word into groups of c bits. A multibit trie

provides the capability to perform multiple bit comparisons during each search operation,

which makes it more favorable as compared to the unibit trie. The multibit comparisons of

a multibit trie provide multiway branching decisions during a search. Specifically, a stride c

has a multiway branching factor of 2c whereby one of 2c possible paths can be determined

by inspection of c bits. A multibit trie with a fixed stride of c bits will contain a maximum

number of levels equal to w
c . In other words, the maximum height of a multibit trie with

stride c is w
c .
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Figure 12 shows the prefixes from Table 5 encoded by a trie with a stride c = 2. A few
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10 00 01

Figure 12: A multibit trie with stride of two for the prefixes from Table 5.

things should be observed from the trie in Figure 12. First, node B is shared by R2 and R4.

Since R4 has only the first bit specified with all others given as wildcards, the stride forces

the trie to replicate R4 across the two nodes labeled as A and B. Node B is associated with

both filters. However, since R2 has a longer prefix length given by the table, it is actually

the filter to be assigned to node B. The node was labeled with both filters in this example

in order to clarify this concept of prefix expansion that might be required by multibit prefix

tries. In particular, if a prefix is of length L and not a multiple of the stride, then it will

require an expansion. Observe that R3, which is specified by the first 3 bits, was expanded

into the second level of the trie since 3 is not a multiple of 2 (the stride). The search time

complexity for a multibit trie is O(wc ) and its memory complexity is O(N w
c 2c).

With a variable stride trie (VST), a sequence of strides Kc = {c1, c2, . . . , cm} is specified

for the w-bit binary symbol family. The VST has a height of m where m = |Kc|. The

search process is similar to fixed stride tries. The w-bit string is processed by inspecting

the first chunk of c1 bits followed by the second chunk of c2 bits and so on until the longest

prefix match is found or until it is determined that no matching prefix exists.

When designing a VST, a new question arises: “What is the best sequence of strides to
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select for Kc?” Srinivasan and Varghese [139] sought to answer this question and proposed

a dynamic programming approach coupled with their controlled prefix expansion algorithm.

Particularly, they use dynamic programming [31] to determine the optimal set of strides that

produce a guaranteed worse case number of lookups per classification (number of memory

accesses per classification) while minimizing memory consumption.

The controlled prefix expansion (CPE) algorithm proposed by Srinivasan and Varghese

[139] aims to transform prefixes with L distinct lengths to a new but equivalent set of prefixes

having a predefined set of lengths. Any particular prefix of length `i can be expanded into

an equivalent collection of prefixes with length `j > `i. Table 6 illustrates the basic concept

of prefix expansion. The first three rows of Table 6 have three distinct prefix lengths of

Table 6: An example of prefix expansion.

F f1 : w1 = 6 Action
R1 01* A1

R2 110* A2

R3 0* A3

R11 010* A1

R12 011* A1

R2 110* A2

R31 000* A3

R32 001* A3

R33 010* A3

R34 011* A3

2,3, and 1 respectively. The lower set of rows represents the result of prefix expansion

under the constraint that all prefixes must have length-3. Observe that R1 expands into

two equivalent prefixes and R3 expands into four sets of length-3 prefixes. Observe that R11

and R33 contain the same prefix, as do R12 and R34. In these cases, the prefixes are said

to be collisions. With the CPE algorithm, a process termed prefix capture locates colliding

prefixes and reassigns the filters accordingly. For example, prefix capture produces the

filter-set shown in Table 7. The filters R33 and R34 are removed in order to retain the

original filtering semantics defined by R1, R2, and R3. In particular, R1 from the original

filter-set has a longer prefix specification (i.e., ` = 2) than R3, which has length ` = 1.
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Table 7: Resolving prefix collisions with prefix capture.

F f1 : w1 = 6 Action
R1 01* A1

R2 110* A2

R3 0* A3

R11 010* A1

R12 011* A1

R2 110* A2

R31 000* A3

R32 001* A3

Another technique considered for trie-based packet classification algorithms is known

as leaf-pushing. The nodes of a trie are generally of the following types: the trie root,

prefix nodes, internal nodes, or leaf nodes. Prefix nodes are nodes that contain information

associated with a prescribed prefix and possibly pointers to child nodes at the next lower

level of the trie. Internal nodes do not contain information but are required to build a

path for one or more prefixes and their associated prefix nodes. Hence, internal nodes will

only contain pointers to child nodes at the next lower level. Leaf nodes are the bottom-

most nodes of any path in the trie. Leaf nodes will always be prefix nodes. However,

the converse is not necessarily true–prefix nodes are not necessarily leaf nodes. Table 8

provides a generic model for the data structure of a trie node. The idea of leaf-pushing

Table 8: Generic model for the data structure of a trie node.

Information Field [null if internal node]
Child Pointer Array [cp1, . . . cpj ]

is to push information fields from non-leaf prefix nodes to their associated leafs. Figure

13 illustrates the concept where the leafs are assumed to reside at level 2 of the trie.

The assumption of leaf-pushing is that no internal nodes will be prefix nodes and all leaf

nodes will be prefix nodes. As a result, the internal nodes will only require pointer fields

and, consequently, total memory consumption can be reduced in many cases. The CPE

algorithm of [139] uses leaf-pushing as another optimization technique seeking to further
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Figure 13: Pushing information fields to the leaf nodes in a trie.

reduce memory consumption. However, an algorithm based on a leaf-pushed trie requires

precomputation overhead and online modifications to the associated prefix database can

require changes to many of the nodes in the trie. Therefore, leaf-pushed trie schemes are

unfavorable for packet classification applications where the prefix database (i.e., the filter-

set) changes with high-frequency. As a result, algorithms utilizing a leaf-pushing scheme

are generally categorized as non-incrementally updatable.

Degermark et al. [33] introduced a data structure and associated encoding methods

designed for IPv4 route lookup algorithms. Their algorithm is commonly referred to as

the Lulea algorithm, and their primary objective is to use special encoding techniques such

that the entire data structure representing a routing table can fit into the high-speed cache

memory of central processing units. The Lulea algorithm employs a variable stride trie with

a stride sequence Kc = {16, 8, 8}. Further, the algorithm utilizes bitmaps to compress its

data structures. Since m = |Kc| = 3, the Lulea trie has a height of 3. The first level of

the trie covers prefixes of lengths 1-16, the second level covers lengths 17-24, and the third

level covers lengths 25-32. Degermark et al. claim that the Lulea algorithm can compress

an IPv4 routing table with 40,000 entries while only requiring 150-160 Kbytes. They claim,

further, that the algorithm can perform a lookup amongst the 40,000 routing table entries

with less than 100 instructions on an Alpha processor and only using 8 memory accesses.

However, the Lulea algorithm suffers from poor incremental update times because of the

amount of precomputation required to process and generate its compressed data structures.

Path compression is a technique seeking to eliminate one-way branches that may exist
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within prefix tries. A path compressed trie utilizes the notion of a skip field that circumvents

the need to encode paths containing long sequences of one-way branches. In particular, if

a prefix path within the trie contains an internal non-prefix node with only one child node,

then the internal node is removed. Further, the removal process occurs consecutively along

a prefix path containing a sequence of internal non-prefix one-child nodes. For the process

to work, a skip field is added to the parent of the removed node(s), which indicates the

number of inspection bits to skip during the traversal process. Figure 14 illustrates the

path compression concept.
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Figure 14: Illustration of the path compression concept.

Nilsson and Karlsson introduced the LC-trie algorithm for the LPM route lookup prob-

lem [107]. Their algorithm utilizes path compression along with a technique they refer

to as level compression. The idea behind level compression is to decrease the number of

memory accesses required for prefix lookups by means of reducing the length of prefixes

stored within a trie. The LC-trie algorithm starts with a binary unibit trie (UBT) repre-

sentation of routing table prefixes. Path compression is applied to the UBT followed by

level compression. The level compression procedure transforms a complete binary subtree

of depth δ into a subtree of depth 1. In particular, let a node ηi at level i of the trie be

the root of a complete binary tree (CBT) with depth δ. Since the binary subtree rooted
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by ηi must be complete, the number of nodes at a depth of δ below the root ηi is 2δ. The

LC-trie algorithm compresses the number of levels of the CBT from δ to 1 by assigning each

of the 2δ descendants of the root node ηi as its direct-children. The process is called level

compression because it reduces the depths of CBTs throughout the trie, which consequently

reduces the number of levels of the trie for dense regions satisfying the complete binary tree

constraint of the LC-trie algorithm. Figure 15 illustrates the level and path compression

ideas of the LC-trie algorithm.
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Figure 15: Level and path compression techniques of the LC-trie algorithm.

The algorithmic complexities of the LC-trie algorithm are similar to other multibit trie

methods. The worst case time complexity of the LC-trie depends on its height, i.e., the

longest prefix path encoded by the trie. However, the height will depend on the distribution

of prefixes. Nilsson and Karlsson claim the average depth of an LC-trie to be O(log∗N)

where log∗N is the iterated logarithm function.

A variant of the LC-trie algorithm was proposed by Cheung et al. [27]. Cheung et

al. transform a prefix database into an LC-trie and then seek to partition the trie into

a fixed set of equivalent table representations. The partitioning method is driven by an

optimization process that models the access times and storage capacities of hierarchical

memory architectures such as those in multi-level cache computer systems. The goal of

their optimization strategy is to take as input a complete binary prefix tree and transform

it into a level compressed trie such that when the elements of the LC-trie are stored across a

3-level memory hierarchy, the arrangement of the trie with respect to the hierarchy produces
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a structure that minimizes the average lookup time.

The prefixes of w-bit fields represent intervals within the domain [0, 2w−1]. One method

for encoding the prefixes of a one dimensional packet classifier is the interval binary search

(IBS) algorithm. Interval binary search is a general concept. For example, Berg et al. [18]

describe techniques for searching interval data in computational geometry applications, and

a data structure for an interval binary search tree (IBS-tree) for finding intervals overlapping

query points was described by Hanson and Chaabouni [53].

The basic IBS algorithm encodes non-overlapping disjoint ranges. However, prefix ranges

will in general have range overlap. Consequently, a preprocessing algorithm that disjoins

the prefix ranges of a filter-set is required for packet classifiers that implement IBS lookup

algorithms. Figure 16 will be used to illustrate the concept. The lines in the top portion of
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R4 R3

R3

R1
R2 R2

R4 R4

R2 R4

R4R4

Figure 16: Creating disjoint ranges from the filter-set of Table 5.

Figure 16 are range representations of the prefixes from Table 5. As shown in the figure,

the prefixes given by R1, R2, and R4 are overlapping. The overlaps can be understood

via inspection of the prefixes. The lower portion of the figure illustrates the collection of

disjoint ranges. Each of the disjoint subranges are labeled by the filters sharing common

overlaps. For example, filter R1 overlaps both R2 and R4. Once the overlaps are removed,

the original four ranges produce six disjoint ranges.

35



The disjoint subranges are called basic intervals. Once the basic intervals are precom-

puted from the filter-set, the filters associated with the overlapping regions (ranges) are

pruned such that a best matching prefix (BMP) is assigned to each basic interval. The

BMP is assigned according to the longest prefix length of the filters within an overlapping

region. Figure 17 shows the corresponding BMPs for the basic intervals of Figure 16. In

R1
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R4 R3

R3

R1
R2 R2

R4 R4

Figure 17: Assigning the best matching prefixes to the basic intervals from Table 5.

general, a collection of N overlapping ranges can be disjoined into a maximum of 2N − 1

disjoint ranges. As an example, the three ranges R1, R2, and R4 with overlap produce

2 ∗ 3− 1 = 5 disjoint ranges.

The IBS approach possesses the traditional O(lgN) time complexity and O(N) space

complexity of binary search algorithms. However, the difficulty of the IBS approach for

packet classification results from the precomputation time required to generate disjoint

ranges. Moreover, binary search methods do not easily extend into higher dimensions.

3.2.2 Multidimensional Packet Classification Algorithms

Cache-based packet classification techniques aim to bypass the classification process by

storing tuples of information that identify previously observed packets. A scheme similar

to caching is referred to as traffic aware packet classification. The objective of traffic aware

packet classification is to order packet filters such that the heavy hitter filters are processed

during the early stages of the classification process. Traffic aware classifiers are enabled via
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statistical analysis of filter sets along with associated network traffic characteristics.

Acharya et al. have proposed several techniques based on the notion of traffic aware

firewall optimization [5, 4, 3]. In [3], the OPTWALL firewall optimization framework is in-

troduced. OPTWALL is based on a hierachical design and uses an online traffic adaptation

scheme that monitors firewall log files in order to maintain optimal ordering of firewall fil-

ters. Hamed et al. [51, 50, 49] introduced algorithms for dynamic optimization and dynamic

ordering of packet filters for high-speed firewall applications. Their algorithms utilize Inter-

net traffic characteristics and statistical search trees to construct filter sequences that seek

to minimize the average time required to perform packet classification in firewalls. Traffic

aware packet classification techniques have the potential to increase packet classification

performance for environments that utilize smaller numbers of filters and that possess slowly

changing traffic characteristics. However, the performance of these systems suffer, similar

to cache-based classifiers, when traffic characteristics are extremely diverse.

Traffic aware packet classification systems are typically designed for linear search al-

gorithms, which is the underlying motivation for optimal placement of heavy hitter filters.

Although traffic aware schemes seek to achieve higher average case performance, these meth-

ods have O(N) worst case search time complexity. Moreover, Fulp has shown that finding

the optimal order of packet filters using traffic aware schemes is NP -hard [42].

Srinivasan et al. [140] introduced the Grid-of-Tries algorithm as a tree-based search

method for two dimensional packet classification with packet filters specified by source and

destination IP address prefixes. Grid-of-Tries (GoT) is constructed by allocating a single

destination trie for the destination prefixes and a grid of source tries representing the source

prefixes. The basic idea is to have each prefix node in the destination trie representing a

valid (specified) filter prefix contain a pointer interlinking the destination prefix node to

a source trie containing its associated source prefixes. This is a generalized methodology

for encoding multidimensional, i.e., d-dimensional, prefix strings using multidimensional

tries. In short, a multidimensional trie (MDT) is constructed such that the root node of

a sub-trie in the ith dimension is interlinked to its conjunctively-associated prefix node(s)

from the (i − 1)th dimension and the prefix nodes of the sub-trie in the ith dimension are
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interlinked to the root nodes of their corresponding sub-tries in the (i + 1)th dimension.

However, this method suffers from poor search time performance resulting from the well-

known backtracking dilemma.

Figure 18 will be used to illustrate the backtracking problem within the context of the

GoT algorithm. The figure assumes a two dimensional packet classifier where each field
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Figure 18: A two dimensional source/destination prefix trie.

is defined by w = 4 bits, and the tries have a stride of c = 2. From the figure, nodes

with black shading represent the trie root nodes, and nodes labeled with Ri represent

prefix nodes associated with the ith packet filter. The upper Dest Trie (DT) is the trie

for destination prefixes, and the Src Tries (ST) located in the lower region of the figure

represent source prefixes. Consider a packet with source and destination fields given by

p = (src, dst) = (1110, 0011). The search starts at the DT root. The first two bits of

the destination field equal 00, and the DT indicates that a partial match exists because of

the edge labeled 00, which leads to a prefix node labeled by R1 indicating that the filter

R1 is matched. However, the LPM algorithm dictates a continuation of the search since

a valid branch exists based on the next two bits with value 11. At this stage, the search
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has converged onto a terminal node in the DT, which has only one branching option that

leads to the rightmost source trie. The first two bits of the source field have a value of 11,

which indicates that the node labeled R3 in the rightmost ST matches the packet. However,

the final two bits 10 of the source field do not have a matching branch. At this point, the

search has failed to find a longest prefix match along this particular traversal. However,

other matches were observed along the way, and, hence, the search must backtrack to the

most recent longest matching prefix. In this case, the node R1 in the DT was the last node

matching the search. Node R1 is a level-one node and contains a pointer to the middle-

most ST. Hence, the node represents a destination field specification given by 00∗. Traversal

from R1 to the middle-most ST along with inspection of the first two bits of the source field

indicates a positive match leading to node R3 in the middle-most ST. However, inspection

of the last two bits of the source field with a value of 10 reveals that no match exists. At

this stage, the search has completed and the algorithm returns a no match condition.

Packet classification algorithms based on the MDT are appealing because these algo-

rithms naturally encode packet filter prefix specifications. However, the algorithmic com-

plexities of MDT-based techniques cause challenges. In particular, MDT algorithms suffer

from the backtracking problem. As a result, the time complexity for these algorithms is

O(wd). The space complexity is O(Ndw). Consequently, the baseline method behind the

GoT packet classification algorithm for the d = 2 dimensional case of source and destina-

tion prefixes has a search time in O(w2). As seen by these algorithmic complexities, the

backtracking problem can severely limit MDT-based algorithms when the magnitude of d

and/or w increases.

To alleviate the issues associated with the baseline MDT methods than underly their

GoT algorithm, Srinivasan et al. [140] consider set pruning trees to reduce GoT’s overall

memory consumption and utilize precomputation methods. The precomputation process

assigns switch pointers to nodes within the source tries that enable jumps between the

source trie nodes when traversals fail. Essentially, the switch pointers eliminate some back-

tracking operations but with a cost incurred by update time resulting from precomputation

of the packet filters to generate the switch pointers. Srinivasan et al. [140] claim that
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improvements made by set pruning and switch pointer modifications result in a memory

complexity that is O(Nw) while reducing the search complexity from O(w2) to O(2w).

Although the Grid-of-Tries algorithm extends packet classification with tries from one to

two dimensions while maintaining reasonable search and memory performance, it does not

easily extend into dimensions greater than d = 2. However, Baboescu et al. [14] introduced

the d-dimensional Extended Grid-of-Tries (EGoT) packet classification algorithm in an ef-

fort to increase the dimensional capabilities of the GoT algorithm. EGoT utilizes GoT for

its core functionality, but implements jump pointers between the nodes of longest matching

prefix paths within the source tries to linear lists of filters over the remaining d−2 fields as-

sociated with the jump node. For example, consider the GoT from Figure 18 and let a d = 4

dimensional filter be specified by R = (src, dst, protocol, port) = (1101, 0011, TCP, port =

25). Then, the rightmost Src Trie would have a jump pointer from its node labeled R2

to a list containing the filter residual (TCP, port = 25). The various paths of the source

and destination prefixes provide partitions of the overall list of N packet filters. However,

the search efficiency of the algorithm depends on both the total number of filters and the

amount of partitioning induced by the prefix paths.

Srinivasan et al. [140] proposed the Cross-Producting (CP) algorithm as a method

for multidimensional packet classification. The CP algorithm is based on the notion of

field decomposition whereby the d fields of a packet classifier are searched independently

of one another to produce an intermediate classification result. The result is intermediate

because the fields of a filter are conjunctively bound to one another. The general idea of field

decomposition is to encode the filter specifications of each field separately and independently

of the others using an efficient lookup method such as binary search. The result of this

phase-one search is a collection of filters matching the independent field criteria. Then,

each of the intermediate results are combined to find the matching filters common to all of

the intermediate results.

Gupta [48] introduced the recursive flow classification (RFC) algorithm, which is con-

sidered one of the fastest software-based packet classification algorithms. RFC uses the

idea of cross-products, similar to the scheme proposed by Srinivasan et al. [140]. However,
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RFC implements the cross-products throughout stages. Regardless of the number of filters,

RFC can classify a packet with a small number of memory lookup and comparison opera-

tions, thereby providing a near-constant O(k) classification time. However, the algorithm

has poor memory and update time characteristics. The worst case memory requirements is

O(Nd). The data structures generally require a complete re-build during an update, and,

consequently, RFC falls into the category of packet classification algorithms that are only

applicable to problems where filter updates occur infrequently.

3.3 Hardware-based Packet Classification

This section provides an overview of hardware-based packet classifiers based on content

addressable memories (CAM), ternary content addressable memories (TCAM), and SRAM-

based trie-pipelining systems.

Content addressable memories and ternary content addressable memories are associative

memory constructs that implement a fully parallelized linear search over a list of stored

patterns. The CAM can be viewed as an N × w matrix of cells where each cell stores a

single binary value from the set B = {0, 1} and each row of the CAM stores a w-bit binary

word. The primary functional components of a content addressable memory include the

N ×w matrix of binary cells consisting of N binary w-bit words W1,W2, . . . ,WN , an array

of w search line drivers, an array of N match line drivers and an N -to-lgN priority encoder.

Figure 19 provides a block diagram illustrating the basic CAM components. Typically, a
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Figure 19: Block diagram of a content addressable memory and its main functional com-
ponents.

CAM cell is comprised of a single SRAM cell, NMOS access transistors used by read/write
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operations from/to the SRAM cell, and transistor circuitry that provides bit comparison

logic. The primary function of content addressable memory is to store tables of binary

words and to provide parallelized linear search over the stored data. In general, the CAM

provides a one-to-one relationship between a stored binary word and its address. The

one-to-one content-to-address relationship is actually an indirect association between the

stored content and some other ancillary data. The stored words represent database content,

and the address of the content relates to the associated result needing to be returned by

the search. Consider the association (B,A). The content B is associated to the value A.

The CAM will store B at some internal location L, which forms the content-to-address

relationship (B,L). Then, the value A is stored within another memory M at address L

where M(L) = A. During the search procedure, a search key is submitted to the CAM. If a

match is found, the CAM returns the address of the matched word as the search response.

When the search word B, is submitted to the CAM, it returns CAM(B) = L. L is then used

to directly access the desired value associated with B as M(L) = A.

A CAM implements a fully-parallelized linear search over a collection of N binary w-

bit words. The parallelized search is enabled by broadcasting the values of a w-bit search

key throughout the entire matrix of N × w cells. The search line driver takes the search

word and distributes its bits across the array of searchlines. Each cell in the matrix is

connected to its appropriate searchline. When the cell receives its corresponding search

bit, a comparison is made between the value stored in the cell and the value received on

the searchline. Each stored word in the CAM has an associated matchline that provides

indicator functionality. A match exists when each of the search bits received by the cells

of a word equal the bits stored by the respective cells. A match is indicated by sending

a logical-high (truth) value from the word’s matchline to a priority encoder. A no-match

condition is indicated by sending a logical-low (false) value from the associated matchline

to the priority encoder. In most search applications that utilize CAMs, a prioritized list of

words are assumed. Consequently, when a search key matches multiple content locations,

the highest priority match is selected via the priority encoder. However, other multi-match

decision resolver strategies can be employed.
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The ternary content addressable memory provides similar search operations as the CAM.

However, TCAMs are able to store elements in the cells that represent the ternary set

T = {0, 1, ∗} where ∗ is the canonical wildcard symbol. A word stored in a TCAM that

contains the wildcard symbol for the ith cell implies that the cell matches any search bit

submitted to the cell. TCAM cells are similar to CAM cells, but TCAMs require two SRAM

cells for its ternary logic as well as a slight variation in its transistor-based comparision logic.

However, the overall operations provided by the searchlines and matchlines are the same–

search keys that match all of the cells of a stored word result in a positive match indication

and if one or more characters of the search key do not match the contents of its associated

cell, a negative match indicator is generated.

The ternary encoding capabilities of TCAMs are directly suited to encode packet fil-

ter prefixes. The fully parallelized linear search enabled by TCAMs reduces the O(N)

search complexity to O(1). However, TCAMs suffer from significant amounts of power con-

sumption [108]. During a search, every circuit element of the TCAM is actively processing

information. According to Taylor [147], a TCAM chip performs significantly worse than a

comparative SRAM chip. Taylor provides the following comparisons between TCAMs and

SRAMs (statistics based on data collected circa 2002):

• TCAM access times can be on the order of three times slower than SRAMS.

• TCAMs per bit power consumption is approximately 150 times the per bit power

consumption of SRAMs

Research approaches investigating methods to reduce TCAM power consumption is

generally categorized as architectural-level and circuit-level approaches. Circuit-level ap-

proaches seek to modify the transistor-based structures and the various interconnect mecha-

nisms to reduce effective capacitance and resistance associated with the power consumption

of the device. Circuit-level techniques that have been suggested for CAM/TCAM power

reduction include: low-swing matchline voltage [74], selective precharging [171], sensing

current races [10], and pipelined matchlines. Architectural-level techniques consider algo-

rithms and precomputation methods seeking to reduce the width of encoded words and/or
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the total number of words.

The negative performance impacts resulting from the high power consumption of TCAMs

has inspired the design of new hardware-based packet classification algorithms that utilize

pipelined packet processing constructs. The majority of these SRAM-based pipelined packet

processors are concerned with mapping the nodes of prefix tries to pipelined processing

stages.

Binary words, which are sequences of bits over some specified width w defined by a

given hardware architecture, can be stored within binary trie data structures. Binary tries

are specified by a stride factor, c, constrained as 1 ≤ c ≤ w. The stride groups the bits of a

binary word into chunks, which determine the branching width of the trie’s tree structure.

Chunks are used at each level of the trie for determining the appropriate branch to take

during the traversal of the tree during a search.

A unibit trie (UBT) is given by c = 1, and multibit tries (MBT) result from 1 < c < w.

For c = w, a single-level tree is formed and represents a direct table lookup implementation.

However, direct lookup tables require 2w unique addresses and memory consumption grows

as O(2w). Consequently, direct table lookup is constrained by the memory capacity of its

hardware architecture. Strides are not required to be fixed and can be specified by stride

sequences C = (c1, c2, . . . , cd) where w = c1 + c2 + . . .+ cd. However, the assumption in this

discussion is that multibit tries are used where 1 < c < w and c|w. Further, it is assumed

that both c and w are powers of 2.

In general, tries are effective data structure pipelining constructs [16, 55]. A straightfor-

ward methodology to map MBTs to hardware is to allocate each level of the its tree structure

into the memory subsystem of a pipelined hardware system. Each stage of the pipeline has

local processing elements and memory storage for the binary words of its corresponding

tree level. The hardware algorithm directly implements the trie traversal algorithm during

a search. Figure 20 illustrates a generic trie-to-hardware (TTH) mapping scheme (Table 9

contains data represented by the trie of Figure 20.)

The left portion of Figure 20 contains a three-level trie representing binary words with

w = 4 and a stride of c = 2. The right portion of the figure reveals a 3-stage hardware
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Figure 20: Generic trie-to-hardware mapping techniques.

Table 9: Data represented by the trie of Figure 20.

Encoded Words Binary Prefix Reference Label Node Sequence
0000 00* R1 (A)
0001
0010
0011
0110 0110 R2 (B,D)
1100 110* R3 {(C,E), (C,F )}
1101
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pipeline. During each clock cycle, each stage Si processes the ith level of the trie. Each

stage is processing in parallel, and a search result is returned in time proportional to the

number of stages.

Pipelined trie data structures can significantly reduce the amount of time required to

search memory for a stored binary word, i.e., the prefixes of a firewall or router. The pipeline

architecture amortizes memory access times when performing extensive search operations

(back to back search processes). The goal is to increase search throughput such that one

search result per clock cycle is achieved. The latency of a particular search is related to the

depth of the pipeline and the average memory access time of each pipeline stage. Although

tries are effective pipeline data structures, a number of challenges must be addressed when

employing these data structures and their associated search algorithms. Two particular

challenges faced by these hardware algorithms include uniform memory distribution over

the pipeline stages and power consumption [57, 70, 69]. The uniform memory distribution

problem requires solutions that map the trie nodes to pipeline stages with an approximately

even distribution of memory consumption. According to Basu and Narlikar [16], the uniform

memory distribution problem is the dominating issue for trie-based pipelined architectures.

Another issue faced by these algorithms is the backtracking problem associated with MBTs

over multiple dimensions. TTH algorithms use the same search logic as their software-based

MBT counterparts. Pipelining does not address the backtracking problem. Therefore, these

algorithms must provide methods to mitigate the adverse performance effects caused by

backtracking.

3.4 Cyberattack Detection Algorithms with Intelligent Systems

In this section, an overview of related work addressing the cyberattack detection problem

with computational intelligence systems is provided.

Lichodzijewski et al. [89, 88] developed a host-based anomaly detection system using

a hierarchical SOM. Their system uses a first-level SOM that provides feature detection

based on six variables extracted from TCP connections. The second-level SOM acts as a

feature integrator by combining the feature detections generated by the first-level SOM. The
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second-level SOM combines the detected features of the level-one SOM and the topological

clustering aspects of the SOM algorithm provide visual indicators that can be utilized by a

security administrator to make final detection decisions. Jirapummin et al. [71] introduced

a network-based intrusion detection system utilizing a hybrid neural network. Their system

employs a SOM along with a resilient propagation neural network (RPN). Their system

uses the SOM to cluster and visualize audit data. Moreover, weight vectors of the SOM

nodes are supplied as input to an RPN for detection purposes. The RPN uses the weight

vector components from the SOM nodes as its input, and the output nodes of the RPN

provide a multi-class classification decision. Rhodes et al. [119] proposed a multi-layer SOM

for network-based intrusion detection. Their algorithm assigns individual SOMs to various

protocols within the TCP/IP stack. Their goal was to categorize and classify attacks that

target specific vulnerabilities within the TCP/IP protocol layers. Their results indicate that

a layered SOM performs better than a single SOM classifier.

Bankovic et al. [15] developed an intrusion detection system using self-organizing maps

and reputation systems for wireless sensor networks. They use the SOM to assign reputa-

tion scores to the sensor nodes of a wireless sensor network. Moya et al. [98] describe a

technique similar to [15] for protecting supervisory control and data acquisition (SCADA)

sensor systems for industrial control applications. Industrial control systems such as SCADA

networks and infrastructure systems such as the smart grid have not received much atten-

tion in terms of cybersecurity as compared to traditional computer and network systems.

Venayagamoorthy [156] argues that advanced computational intelligence systems will be

required to enable intelligence functionalities and security of smart grids and cyberphysical

infrastructures. Moreover, recent events such as the outbreak of the stuxnet worm, which

specifically targeted industrial SCADA systems, have shown the importance for securing

these critical systems [24]. Moya et al. [98] along with others such as [168, 35, 40, 32]

have shown the importance of protecting existing and emergent cyberphysical systems and

infrastructures with advanced detection and cybersecurity methodologies.

Amini et al. [6] compare self-organizing maps and adaptive resonance theory neural

networks for network-based intrusion detection. Their results showed that neural networks
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based on learning methods from adaptive resonance theory can achieve better intrusion de-

tection classification performance than networks based on single-layer self-organizing maps.

Artificial neural networks (ANNs) have configuration parameters for specifying network

properties such as its topology, learning rates, learning algorithms, and activation func-

tions. This selection process is usually manual and requires trial-and-error to find the best

alternatives. In [101], Mukkamala and Sung use the CUP99 dataset to evaluate the classifi-

cation performance of ANNs constructed with twelve types of learning methods. From their

experiments, networks trained with the resilient back propagation algorithm provided the

best classification accuracy. In another series of studies, Mukkamala et al. [99, 100] com-

pare the classification performance of neural networks and support vector machines (SVM)

for misuse detection. In their experiments, neural networks and support vector machines

produced classification accuracies and detection rates that were not significantly different.

However, they also compared the time required for each algorithm to be trained, and it was

shown that the SVM learned within orders of seconds whereas the neural networks required

learning time on the order of hours. Horng et al. [60] proposed an intrusion detection sys-

tem based on SVM, hierarchical clustering, and feature selection. They use a hierarchical

clustering approach to reduce the number of audit data features. Once the features have

been selected with their clustering algorithm, a reduced dataset is constructed from the

selected features. This reduced dataset is then used to train four separate SVMs, which

function as the classification mechanism for intrusion detection.

Engen [39] proposed several machine learning methodologies to enable robust network-

based intrusion detection. Engen explores the idea of evolutionary neural networks (ENN)

in an effort to minimize classification errors of intrusion detection systems. Engen’s study

considers the effect of different fitness functions when evolving neural network weight vectors

with genetic algorithms. His investigation shows that an ENN can achieve good classifi-

cation performance, even when faced with highly imbalanced training data. Others have

considered ENNs as classifiers for intrusion detection. Han and Cho [52] implement an

anomaly detection system based on ENNs. They use a genetic algorithm to evolve artificial

neural networks with audit data extracted from sequences of operating system calls. In [59],
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a network-based intrusion detection system is proposed by Hofmann et al. where genetic

algorithms evolve radial basis function (RBF) neural networks.

Didaci et al. [36] consider neural network ensembles for intrusion detection. They design

their system by categorizing the training data and assigning a neural network to each cate-

gory. To evaluate their system, they use the CUP99 dataset and assign categories based on

the basic TCP features, content features, and network-based traffic features of the dataset.

Moreover, Didaci et al. only evaluate their classifier against the FTP service connections

contained within the dataset. In their approach, majority voting, averaging, and belief

functions were considered for generating the output decision of the neural network ensem-

ble. Belief functions were claimed to provide the best results from their experimentation.

Engen [39] also studies various ensemble methods for intrusion detection. His investigation

considers the effects of multi-objective genetic algorithms and how they can be used to

evolve a collection of ensembles. Engen’s goal is to evolve ensembles where each has its own

classification criteria and performance trade-offs.

In [114], Perdisci et al. introduce an anomaly detection system with SVM ensembles

for payload-based attacks. An ensemble of one-class SVMs classify packet payloads and

a majority voting rule combines the ensemble outputs. Perdisci et al. [113] extend the

methods of [114] and focus their attention on attacks with packet payloads containing shell

code as well as attacks that utilize polymorphism, blending, [28] and polymorphic-blending

[41]. They use a method based on 2-grams to extract payload features for an SVM ensemble

and experiment with different methods such as averages, products, maximums, minimums,

and majority voting to combine the output results of their ensemble. Their algorithms

had higher classification performance when ensemble outputs were combined with averages,

products, and minimums.

Abraham and Thomas [1] study the efficacy of ensemble systems as applied to intrusion

detection systems. Their algorithm uses a decision tree classifier to perform feature selection.

After the feature selection process, multi-class audit data is partitioned into groups of single-

class audit data, and each single class is assigned to a classifier that performs optimally for

the given class. During runtime, data is fed to the ensemble and results are combined with
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methods such as majority vote.

Kumar and Selvakumar [84] propose a neural network ensemble to detect distributed

denial of service attacks (DDoS). Their classification algorithm, referred to as RBPBoost,

uses an ensemble of resilient back propagation (RBP) networks along with a hierarchical

collection of methods to combine the ensemble outputs. They view the DDoS attack problem

as a two-class classification problem consisting of attack classes and normal classes. They

partition the training data into these two classes and then create subsets of data for the

partitioned classes. RBP neural networks are assigned to each data subset during training.

The outputs of the neural network ensembles are first combined via weighted majority

vote, which generates a vector of decision results containing a majority vote for each neural

network ensemble. The weighted majority votes for the attack class and the normal class

are then combined with a weighted product rule. The output of the weighted product rule

procedure is then processed by a Neyman-Pearson cost minimization method to determine

the final classification result.

3.5 Summary

In this chapter, an overview of related works in distributed security architectures, packet

classification algorithms, and computational intelligence systems as classifiers for cyberat-

tack detection systems was presented. In the next chapter, a distributed firewall and active

response architecture are introduced.
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CHAPTER IV

CYBERATTACK DEFENSE WITH THE DISTRIBUTED FIREWALL

AND ACTIVE RESPONSE ARCHITECTURE

Current cybersecurity architectures and infrastructures continue to be dominated by quasi-

monolithic and perimeter-based security mechanisms that aim to provide security services

for elements comprising an organization’s overall cyber environment. For example, perime-

ter firewalls and intrusion detection systems provide network access control and detection

services for resources contained within the network boundaries of an organization. Although

individual hosts within the organization typically employ host-based firewalls and other ser-

vices such as virus scanning software, these systems very seldom operate as collaborative

and coordinated mechanisms. A modern framework is needed that guides the design of

highly modular, adaptable, and integrable security architectures where any cyber device is

capable of actively participating within the organization’s overall security infrastructure. In

this chapter, a distributed firewall and active response architecture is proposed that strives

to alleviate various difficulties faced by existing cybersecurity systems.

4.1 Motivation

Although a number of security architectures have been proposed for various distributed

security aspects, several problems remain and need to be addressed. An urgent need is

the design of security architectures and corresponding security infrastructures that enable

the participation of cyberattack detection and prevention for each cyber device within the

cyber environment. Auxiliary needs to support such a distribute security system include

the means for seamless exchange of cybersecurity information and modular, adaptive, and

integrable frameworks that allow the overall system to be scalable to the growing needs of the

cybersecurity problem and to provide the flexibility to incorporate the security mechanisms

most appropriate for the particular cyber devices within the system.

51



The design of most distributed security systems proposed thus far are based on perimeter-

type defense mechanisms. However, the Internet landscape is undergoing a transformation

whereby a vast majority of Internet-connected devices, infrastructures, services, and data

are characterized by dynamic properties. Dynamic properties such as mobility whereby cy-

ber resources travel through varying and disparate networks render organizational perimeter

defenses less effective. For example, entire information technology infrastructures can be de-

ployed across any number of cloud computing data centers, and these infrastructures can be

relocated seamlessly, elastically, on-demand, and non-disruptively. New solutions addressing

the security challenges associated with these emergent Internet dynamics and dynamical sys-

tems are needed. In particular, the canonical methods associated with topology-dependent

perimeter defenses will soon reach a point of diminishing returns as Internet-connected

cyber resources become less stationary and more dynamic.

Traditional cybersecurity systems such as firewalls and attack detection systems are

commonly implemented as perimeter mechanisms operating independently with no shar-

ing and coordination of new information describing attacks and requiring configuration to

counter new attacks by human administrators. Although these traditional technologies and

associated security-best-practices are still necessary, they are no longer sufficient [129, 161].

Traditional security technologies are characterized by defense-in-depth, isolated, non-

cooperative, and administratively-reactive strategies. Defense-in-depth provides a sound

defense methodology where many forms of defense mechanisms are deployed concurrently

by an organization in order to increase the security and reliability of the cyber environment.

However, isolated, non-cooperative, and administratively-reactive techniques have become

ineffective [68, 92, 2, 43]. Isolated and non-cooperative implies that security mechanisms

operate within a confined awareness domain, and knowledge related to new security occur-

rences are not shared outside of the awareness domain. Isolated is implied by confinement,

and non-cooperative is implied by not sharing knowledge with other awareness domains.

This imposes a significant impediment in terms of efficient, global-scale Internet security

[133, 7]. Lastly, administratively-reactive relates to techniques whereby human security
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administrators react to newly discovered security events instead of automated, computer-

driven attack response systems. Human reaction and remediation times are far too slow to

counter the impact of many classes of cyberattacks [141]. The sheer volume of modern day

attacks, their permutation capabilities, their sophistication, and their speed cause isolated,

non-collaborative, administratively-reactive response and remediation methods to be futile.

The distributed security mechanism proposed in this chapter is centered on the idea

of providing globalized Internet security with preemptive protection methodologies using

a modular, adaptive, and integrable distributed firewall and active response architecture

along with an associated security management infrastructure. Preemptive protection is a

process whereby an entity within a network is protected from future attacks based on obser-

vations made by other entities within the network. It is inherently a collaborative process

of collecting and sharing information related to observations of attack events. Preemptive

protection is achieved by way of observing attack events, dynamically creating a blocking

enforcement filter, distributing blocking enforcement filters to entities within a collabora-

tive awareness domain, and applying the blocking enforcement filter at each entity in the

collaborative domain. This collaborative methodology is referred to as the global preemp-

tive protection process, and it is described by the following set of generic steps: Measure,

Detect, Classify, Locally Isolate, Disseminate, and Globally Isolate.

In the global preemptive protection (GPP) process, an entity within the collaboration

domain observes attack events via measurements, detection, and classification. Once an

event is classified as an attack, a blocking enforcement filter (BEF) is created. Local isolation

of the attack at the observing entity is achieved via activation of the BEF within its blocking

enforcement point (BEP). In the context of GPP, local isolation can be viewed as a form of

self-preservation. The entity observing an attack must protect itself first. Then, it proceeds

with helping to protect the remaining entities belonging to the collaboration domain. Once

local isolation of the attack is complete, the entity disseminates the BEF to other entities

within the collaborative domain, who in turn implement local isolation (self-preservation)

via activation of the new BEF. Once all entities of the collaborative domain receive and

activate the BEF, global isolation of the event has been achieved for the domain.
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4.2 Functional Characteristics of Distributed Network Defense Mech-
anisms

Firewalls are effective mechanisms that secure computers and networks. A firewall is a

device that processes packets flowing between communication interfaces and makes security

decisions based on content extracted from packet header fields along with filters defined by

a security policy. A firewall can be implemented as software running on a host computer

or as a dedicated hardware device within a computer network.

Firewalls are common systems belonging to many modern security implementations.

Indeed, firewalls have become ubiquitous. Firewall ubiquity is actually the main factor

contributing to the selection of firewalls as the blocking enforcement point for the distributed

security architecture proposed in this chapter. However, the firewall alone will not suffice.

An active defense mechanism requires more than just blocking enforcement. It requires an

entire collection of diversified technologies working in unison to achieve a common objective.

In this section, a firewall collaboration framework [149] is presented. The firewall col-

laboration framework is a generic framework that enumerates the basic functionality and

desirable characteristics needed by distributed and collaborative defense mechanisms that

utilize firewalls as blocking enforcement points.

4.2.1 The Firewall Collaboration Framework

The firewall collaboration framework (FCF) is a collection of basic building blocks seeking

to categorize and describe the desirable and functional characteristics of distributed network

defense mechanisms. The framework seeks to combine the common threads and ideas that

have been published within the field of distributed network defense into a taxonomy of

functional characteristics that should be considered during the design stages of distributed

and collaborative firewall systems.

The framework is founded on the notion of independent firewall systems that join to-

gether and form a unified federation. The federation of firewalls collaborate with each other

and share information related to newly observed attacks. Key to observing new attacks is

the capability to measure, detect, and classify audit data. Moreover, the framework only
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considers cyberattacks that occur over a network, i.e., network-based cyberattacks. As

a result, the framework assumes that firewalls within the federation have computational

resources capable of basic functionality such as the following:

1. Reading (capturing) packets from the network.

2. Extracting audit event data from captured packets.

3. Processing audit event data with attack classification systems.

4. Associating IP addresses of attack sources with audit event data and classification

results.

5. Inserting and/or removing firewall filters that deny all traffic to or from the IP address

of a known attack source.

The global pool of information shared within the federation may contain data such as

attack signatures, malicious activity profiles, firewall rules, access control lists, IP address

blacklists, and other types of security information. Once new information regarding ma-

licious activity is obtained either in real time with an attack detection system or by an

administrator that learns of new attacks, the new information is distributed to firewall

units belonging to the federation. The collaborating firewalls can then update their rule

bases and policies to incorporate this new information.

Conceptually, firewall members of the federation can be viewed as distributed cyber-

attack sensors that measure, detect, and classify traffic belonging to cyberattack sources.

As more firewall nodes join the federation, the usefulness or utility of the system increases

because a larger number of members distributed across the Internet increases the proba-

bility of observing attack activities, which increases the probability that a member can be

protected from attacks via the sharing of event information.
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Figure 21 illustrates the six functional components of the FCF, and these components

are described as follows.

Federation Management: The purpose of federation management is to control mem-

Federation Management

Trust Relationship Management

Policy Management

Network Traffic Classification

Information Management

Resource Management

FCF Components

Management of Firewall Members

Trust Establishment and Maintenance

Management of Security Policies—Local vs 
Global

Detection of Anomalous Traffic

Distribution and Management of 
Information

Management of Federation Resources

Purpose

Figure 21: The FCF functional components.

bership of new firewall elements to the federation. This component is responsible for es-

tablishing an initial trust between the firewall and the federation. If membership is not

carefully controlled, denial of service attacks would be easy to orchestrate. For example,

a rogue firewall could join the federation and inject falsified policies into the system. This

could be used to deny service to members of the federation and their respective networks.

Further, it could be used to allow unauthorized access to federation networks.

Trust Relationship Management: Once firewall elements have been allowed to join the

federation by establishing the initial trust between firewall element and the federation, the

Trust Relationship Management (TRM) component will be used to maintain the member

relationships. TRM should address issues such as information authentication and credential

management. Information authentication is needed to prevent denial of service. Credential

management is needed because of the possibility that members could become rogue after

being allowed to join the federation. TRM and federation management components are

tightly coupled with each other.
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Policy Management: In most organizations that follow security best-practices, security

policies are designed based on business and end-user needs. These policies will differ from

organization to organization. For this system to operate effectively there is a need to dif-

ferentiate local policy from global policy. The local policy refers to rules and specifications

that are specific to an organization. For example, allowing organizational users to browse

the web. Global policies will be those that are distributed to the collaborating elements

in the federation. Policy management is also concerned with issues such as policy decay

(removing stale policies) and decision management (should a newly created policy be in-

stantiated immediately or after some delay).

Network Traffic Classification: Network traffic classification is concerned with the when,

where, how, and why of processes and systems implemented by federation members that

measure, detect, and classify attacks. Systems that implement the measure, detect, and

classify functionality in an automated and autonomic fashion are desired. As stated earlier,

network administrators can update the rules and policies of a collaborating firewall. But,

the time interval between the start of an attack and the human detection (using network

analysis tools or security bulletins) of the attack is usually too large.

Information Management: The information management component should govern the

way in which information is transported throughout the federation. This mechanism should

address issues such as centralized versus peer-to-peer information distribution. The infor-

mation management component should address issues such as data caching and staleness.

This component should also address information confidentiality and integrity. This will be

accomplished with encryption mechanisms, and this component will govern the types of

encryption techniques that are used throughout the federation.

Resource Management: The resource management component should govern how cyber

resources are deployed and utilized within a federation such that an effective and efficient

outcome is achieved by the overall system.
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4.3 The Distributed Firewall and Active Response Architecture

In this section, the distributed firewall and active response architecture (DFAR) [150, 151]

is presented.

4.3.1 High-level Description

DFAR’s design was guided by the components and characteristics outlined by the firewall

collaboration framework. DFAR is founded on the idea of hosts within a trusted domain of

administration (TDA) that detect cyberattacks and create firewall blocking filters against

attacking sources. Blocking filters are shared with federation members belonging to the

trusted domain of administration. The TDA is defined to be the set Σ = {S1, S2, · · · , SM}

of hosts under the control of a single administrative authority. Once a blocking filter (i.e.,

security policy) is created by a local TDA host or received by a local TDA host from a

TDA neighbor, the policy is translated into a firewall filter that denies access to or from

the anomalous host.

The fundamental design principle of the architecture is guided by the following edict:

Once a source IP address has been classified by a cyberattack detection mechanism as being

untrustworthy, deny all access to or from the attacking host for all members belonging to

the trusted domain of administration.

Some key points of this edict should be understood. First, the design principle states that

DFAR is based on the notion of firewall blacklist enforcement. Untrustworthy IP addresses,

which can be enumerated via cyberattack detection systems or retrieved from global blacklist

repositories, are encoded as blocking enforcement filters within the local firewalls residing on

TDA members. Second, blocking enforcement filters should be implemented at the inbound

and outbound interfaces of the firewall. This ensures that packets sent by attack sources

are blocked at the firewall’s inbound interface. Moreover, it ensures that TDA hosts cannot

initiate communication with the attack source as outbound traffic destined to the source

will be blocked.

In essence, a new firewall filtering model is defined by the DFAR architecture. In partic-

ular, DFAR defines a firewall-based blacklist enforcement mechanism, which is illustrated
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by Figure 22. The blacklist classification module of the figure represents, conceptually, the

Local Policy
Inbound ACL

Local Policy
Outbound ACL

Inbound
Interface

Outbound
Interface

O(m)

O(n)

Blacklist 
Classification

Firewall-based Blacklisting Model

Firewall

Outside Interface Inside Interface

Figure 22: The DFAR firewall-based blacklist enforcement model.

location of blacklist blocking enforcement for TDA hosts. Inbound packets received by the

outside interface are delivered to the blacklist classification module where the source IP

address is compared with the encoded blacklist. If a match is found, then by definition the

packet must be denied (blocked) by the firewall. Otherwise, the packet is delivered to the

firewall’s local policy inbound access control list (ACL) classification module. Outbound

packet processing proceeds in a similar fashion. First, packets generated by the local host

are delivered to the blacklist classification module. The destination IP address of an out-

bound packet is compared with the encoded blacklist. If a match is found, then the packet

must be blocked by the firewall. Otherwise, the packet is delivered to the firewall’s local

policy outbound ACL classification module.

Figure 23 will be used to facilitate a discussion describing the behavior of the proposed

distributed firewall and active response architecture. From Figure 23, the TDA is composed

of Σ = {S1, S2, S3, S4, S5} where each Si is a TDA host possibly offering network services

to external Internet clients. Further, it is assumed that each host has a host-based firewall,

attack detection software, and procedures that dynamically generate and install new firewall

filters once attack detectors classify cyberattack sources.

59



Internet

S2 S3S1 S4S5

Trusted Domain of Administration

LAN-1 LAN-2 LAN-3

Figure 23: A trusted domain of administration.

As seen in Figure 23, the TDA can span across multiple networks (i.e., LANs). The only

requirement is for TDA hosts to be administered by a single administrative authority. There

is a purpose for this requirement and the definition of the TDA. Trust is a critical aspect of

the architecture. If trust is neglected, there exists a non-zero probability that false policies

can be injected into the system such that denial of service could be issued on random hosts,

i.e., injecting blocking enforcement filters that deny access to/from a non-malicious source.

A simple description of the behavior of the distributed firewall and active response archi-

tecture follows. Each Si has a detection process monitoring for network-based cyberattacks.

Once an attack is detected, the offending IP source address is added to a security policy

database and a filtering rule is created within its local host-based firewall that denies all

access to or from the offending IP address. Then, the host sends this information to each

of its neighbors within the TDA so that they can also add a deny rule for the offending

address. This process is an act of distributed active response that implements preemptive

protection. Consider the case where a malicious node performs a Secure Shell (SSH) dic-

tionary attack that targets S1. Once S1 has detected the attack, a blocking rule will be
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created for the offending IP address, and after distribution the other neighbors will have

a blocking rule too. At some time in the near future, the same malicious node initiates a

sequence of attacks (not necessarily the SSH dictionary attack) against S5. However, S5

had previously added a blocking enforcement filter based on the distributed security policy

received from S1. Therefore, S5 will not be impacted by the attacks. Hence, S5 has been

preemptively protected.

The behavior of DFAR is similar to a quarantine process. The deny to/from edict of

DFAR’s design principle induces quasi-quarantine whereby cyberattack sources are isolated

from TDA members at the network interface for each member, i.e., isolation occurs at the

host-based firewalls of TDA members. Moreover, isolation can occur for administratively

disjoint TDAs that form collaboration federations via the establishment of inter-TDA rela-

tionships.

The behavior described thus far can be regarded as intra-TDA operations. However,

similar processes can be established such that inter-TDA operations can be achieved. Figure

24 illustrates the inter-TDA concept. From this figure, it is assumed that a TDA controller
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Internet
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LAN
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TDC-LAN

TDC-ISP

ISP

LAN

TDA Member

Internet

Attacker: IP_a

TDC-ISP

TDC-LAN

Firewall Filter
{
   Deny FROM any TO IP_a;
   Deny FROM IP_a TO any;
}

Firewall Filter
{
   Deny FROM any TO IP_a;
   Deny FROM IP_a TO any;
}

Pre-GPP Process Post-GPP Process

Figure 24: Quasi-quarantine process with DFAR.

(TDC) is responsible for inter-TDA transfer of information. In the example implied by the

figure, the source address IPa is actively attacking a TDA member controlled/administrated

61



by the machine named TDC-LAN. The left side of the figure represents a point in time

before the GPP process occurs. However, at some time after IPa begins its attack, a

detection mechanism observes the attack event and firewalls throughout the TDA controlled

by TDC-LAN implement a blocking filter for IPa. Moreover, the example assumes that a

trust relation has been established between TDC-LAN and TDC-ISP, which happens to

be the Internet service provider for the attack source. Information describing the attack

is transferred to TDC-ISP via TDC-LAN, and, as a result, blocking enforcement filters

are instantiated throughout the ISP’s network. In this example, the ISP firewalls block

all outbound traffic generated by IPa and all inbound traffic destined to IPa at the ISP’s

Internet point of presence, thereby completely isolating the entire Internet from the attack

source.

4.3.2 Architectural Description

Figure 25 provides a block diagram of the proposed distributed firewall and active response

architecture. DFAR is a distributed system of nodes that implement the TDA host architec-
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Figure 25: The distributed firewall and active response architecture.
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ture (THA). The TDA is viewed as a distributed infrastructure with centralized interfacing

and management. In other words, the TDA is a distributed system with centralized control.

The TDA Delegate (TDAD) is responsible for centralized interfacing and security manage-

ment of the overall system. DFAR centralized interfacing and security management seeks

to solve various challenges that prevent large-scale distributed systems integration and in-

formation exchange for systems having large numbers dynamic cyber resources, i.e., mobile

(roaming) hosts.

The TDA host architecture is designed to be modular with communication between

THA modules as well as between the end host and the TDAD occurring via communication

interfaces. The THA is comprised of three primary modules and four inter/intra process

communication interfaces. The primary THA modules are the following:

• Autonomous Detection Module

• Policy Management Module

• Firewall Management Module

The THA communication interfaces include the following:

• Audit Export Interface

• Filter Specification Interface

• Policy Description Specification Interface

• Distributed Infrastructure Management Interface

Two terms are used extensively throughout the description of the distributed firewall

and active response architecture and its associated behaviors. These two terms are host and

local, and the precise semantics of these terms are defined as follows with respect to DFAR.

A DFAR host is any cyber entity implementing an instance of the TDA host architecture

(as illustrated by Figure 25 and described below). For example, a host can be a complete

physical computing system such as a desktop computer, a server, or a laptop, or it can be

a virtual system such as a software process running within a physical computing system.
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The term local refers to cyber resources such as TDA hosts or cyber components protected

by TDA hosts that are invariant to network topology.

4.3.2.1 Autonomous Detection Module

The autonomous detection module (ADM) is a collection of independent autonomous cy-

berattack detection modules (DM) that are active on the local system and the collection

of rules that define how the ADM must interact with the policy management module. The

autonomous detection module (ADM) contains zero or more independent cyberattack de-

tection modules DMi that are responsible for monitoring audit data collected by the local

host and/or collected from collaborating audit data collection systems. These detection

modules are responsible for real-time detection of cyberattack events.

ADM detection modules implement the measure, detect, and classify functionalities of

the global preemptive protection process. The ADM can provide network-based audit event

data to the various detection modules via (1) packet capture processes that directly interact

with the network interface of the local host, (2) via audit event data collected by the firewall

management module and delivered over the policy description specification interface, or (3)

via audit event data provided by the TDAD over the distributed infrastructure management

interface.

The DM can be as simple as a process monitoring the local host for failed login attempts

to as complex as a full scale IDS deployment. Regardless, the ADM was designed to be

modular and extensible. Cyberattacks are dynamic and continuously evolving. As a result,

detection modules should be capable of adapting themselves in an autonomic fashion in

order to adjust their detection behaviors. Computational intelligence systems are well

suited for the emergent and adaptive changes that are required of detection applications. In

a subsequent chapter, several computational intelligence systems are evaluated as detection

modules that can be employed within the ADM.

Because cyberattacks are significantly diverse, it is not feasible to have a single, mono-

lithic detection module capable of reliable classification for all possible attack scenarios. As

a result, the ADM is designed to be modular such that many different detection modules
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operate, independently if needed, on a given host. The goal is to enable different types of

independent, target-specific, autonomous attack detectors to reside on a single host, thereby

providing a more robust defense in depth strategy for the local host and the overall TDA.

4.3.2.2 Policy Description Specification Interface

The policy description specification interface (PDSI) provides local communication inter-

facing between the policy management module, the attack detection module, and the audit

export interface of the firewall management module. The PDSI delivers new blocking en-

forcement filters generated by the ADM to the policy management module. Moreover, it

receives audit event data from the audit event interface and delivers audit event data to the

attack detection module.

The PDSI defines a globally recognized policy description that all members of the TDA

interpret with the same meaning, i.e. it is a formal syntax describing a policy. The following

policy description specification (PDS) is defined by the PDSI:

PDS := ( IPx, Px, Si )

The syntax describes a 3-tuple containing the IP address of the attacking host (IPx) dis-

covered by the ADM, the policy action to take by the TDA against the attacking host (Px),

and the host identifier (Si). The host identifier is some value that uniquely identifies the

host that generates the PDS. Px is a policy action construct defined as Px := DENY TO -

FROM. As an example, the PDS given as (10.1.2.3, DENY TO FROM, 128.61.209.23) can

be interpreted as the following. The TDA member 128.61.209.23 observed network attacks

generated by the source 10.1.2.3 and has initiated a blocking enforcement policy stating to

deny all traffic to or from the attack source. The PDSI is responsible for delivering the PDS

to the policy management module associated with the local host and also delivers the PDS

to the TDAD via the DIMI.

4.3.2.3 Policy Management Module

The policy management module (PMM) is responsible for management of global and local

security policies (GSP, LSP) for the local host. The PMM also manages the archival of

global security audits (GSA) received from the TDA via the DIMI along with archival of
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local security audits (LSA) generated by the firewall management module and the autonomic

detection module.

Global security policies and audits provide information representing views from dis-

tributed hosts comprising the TDA. This global perspective can be used by the host to

make, in conjunction with outputs received by the ADM and the AEI, more informed de-

cisions when new cyberattacks are discovered.

4.3.2.4 Filter Specification Interface

The filter specification interface (FSI) provides a communication mechanism that translates

new PDSs received from the PMM into the filtering language of the blocking enforcement

point (BEP) that implements the firewall functionality for the local TDA host. The FSI

creates a blocking enforcement filter (BEF) for the outbound intefaces (outbound filters,

OF) and the inbound interfaces (inbound filters, IF). This interface allows for heterogeneous

firewall systems whereby (1) the local host may implement multiple firewall instances if

multi-firewall functionality is needed and (2) the TDA is not required to implement any

particular type of firewall.

4.3.2.5 Firewall Management Module

The firewall management module (FMM) is responsible for dynamically configuring fire-

wall filters when rule structures are received from the FSI. In DFAR, firewalls residing on

local hosts implement the local isolation functionality of the global preemptive protection

process. The FMM inserts new inbound filters and outbound filters based on information

provided by the FSI. The FMM also collects audit data based on traffic flowing through the

outbound/inbound interfaces and delivers the audit data to the PMM and/or the PDSI via

the audit export interface (AEI). This audit data is archived via the LSA functionality of

the PMM and can be delivered to the ADM detection modules by the PDSI.

4.3.2.6 Distributed Infrastructure Management Interface

The distributed infrastructure management interface (DIMI) is the key communication in-

terface that integrates the host members of the TDA into the overall system. It provides
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direct communication between THA elements and the TDAD, thereby providing collabora-

tion capabilities for the system. The DIMI will be explained further in conjunction with a

description of the TDAD.

4.3.2.7 TDA Delegate

The TDA delegate (TDAD) is responsible for centralized interfacing and security manage-

ment of the overall system. It provides generic centralized security services such as man-

agement of encryption mechanisms, security compliance management, and configuration

management for TDA hosts.

The TDAD is also responsible for information exchange services for the overall system.

Recall that the goal is to distribute information based on newly discovered cyberattacks to

each member of the TDA. However, this goal can be challenging for large systems containing

many mobile hosts and other dynamic cyber resources. Reachability issues in terms of

maintaining the IP addresses of dynamic nodes as well as dynamic nodes located behind

perimeter firewalls belonging to foreign networks roamed by mobile nodes causes challenges

with seamless information distribution.

In order to solve these problems, the TDAD provides a virtual hub-and-spoke commu-

nication mechanism based on connection-oriented command and control (C2) protocols. As

such, the TDAD serves as a centralized interfacing system for each TDA member, whereby

information exchange describing the sources of new cyberattacks are distributed to TDA

members via the TDA delegate and its C2 protocol. When a TDA member detects a new

cyberattack, the PDS is delivered to the TDAD via the DIMI. The TDAD, in turn, initi-

ates a command via its C2 channels bound to the remaining hosts within the system. The

TDAD reverse-connects to each member’s PDSI with a connection oriented C2 protocol.

Once each member receives the PDS from the TDAD via its DIMI, the PDS is processed

by its PMM and then delivered to its firewall management module.

Central to DFAR is the dynamic creation of blacklists via the distributed detection

modules residing on TDA hosts. Once a detection module operating on a TDA host detects

a network-based attack, a blocking enforcement filter that denies traffic to or from the IP
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address of the attack source is instantiated and implemented within the firewall of the host.

Moreover, the new blocking enforcement filter is distributed to each other entity of the TDA

via the DIMI and the TDAD. Upon convergence, all hosts comprising the TDA are aware

of the attack source and are isolated from the attack source via the implementation of its

blocking enforcement filter. Consequently, the complete list of TDA blocking enforcement

filters is a blacklist.

Although detection modules are core mechanisms for the creation of TDA blacklists, ex-

ternal blacklists that are maintained by Internet security organizations can be implemented

as blocking enforcement filters within the TDA. Particularly, another feature enabled by the

TDAD and DFAR is the idea of enforcing blacklists extracted from well-established global

blacklists such as SPAM blacklist databases and other centralized blacklist repositories such

as DSHIELD [162].

In DFAR, the TDAD is responsible for establishing relationships with external secu-

rity organizations who provide global repositories of blacklisted IP addresses. The TDAD

retrieves blacklist entries from global repositories, creates corresponding PDSs that are

configured to filter traffic to/from the blacklist entries, and distributes these PDSs to TDA

members. These ideas are illustrated abstractly by Figure 26.

4.3.3 Firewalls, Blacklisting, and the Packet Classification Problem

Several investigations have recently considered the use of global blacklisting techniques for

the preemptive prevention of cyberattacks, with all of the studies indicating a positive secu-

rity impact resulting from the use of such filtering techniques. For example, Chen et al. [25]

studied the spatial-temporal characteristics of cyberattack sources using data collected by

DSHIELD and found that one out of 27 hosts connected to the Internet are potentially ma-

licious sources and that information obtained from global blacklist repositories can provide

protection from many sources of cyberattacks.

Other works have shown that blacklisting techniques can significantly enhance the over-

all stature of an organization’s cybersecurity architecture. Yegneswaran et al. [161] show
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Figure 26: Distributed blacklisting systems with DFAR.

that IP address blacklisting significantly increases the performance of their distributed-

collaborative intrusion detection system. Yegneswaran et al. claim (1) that IP address

blacklists enable efficient classification of attack packets into well defined attack categories,

(2) that on any given day (based on analysis of DSHIELD log files) a small number of attack

sources are responsible for the largest fraction of attack volume, (3) that IP addresses of

many attack sources are persistent (i.e., these sources are seen over and over for extended

periods of time), (4) there is greater benefit to creating longer blacklists (i.e., limited black-

list pruning), and (5) that significant security benefits can be realized via blacklisting even

when the blacklist becomes old.

Zhang et al. [166] introduced the idea of highly predictive blacklisting (HPB). The goal

of HPB is to extract a blacklist subset from some globally accessible blacklist based on the

idea of relevancy. In particular, a blacklist containing information with global-perspective

will contain information more relevant to some organizations than others. The idea is to

select the information from the blacklist whereby the likelihood of blacklisting a malicious
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source is maximized with respect to a given destination such as an organization’s network.

The HPB algorithm is similar to the relevance ranking system of the Google PageRank

[20] algorithm. Soldo et al. [138] provide algorithmic techniques, with a goal similar to

[166], to extract the most relevant blacklist members from a global blacklist. In [138], the

authors realize that blacklist firewall filtering is limited because of the O(N) search time

complexity of many firewall implementations. Their paper introduces a family of algorithms

that provide the most relevant blacklist members when there is a constraint on the total

number of rules that can be implemented in a firewall. Kim et al. [77] provide the results

of a study that measures the effectiveness of blacklisting to counter denial of service and

scanning (probing) attacks. Their analysis is based on the idea of filtering Martian addresses

along with unallocated IP addresses. Kim et al. use trace-based simulations to show that

blacklisting Martian and unallocated IP addresses can significantly improve the security

performance of systems when faced with denial of service and probing attacks.

Firewalls and attack detection systems require packet classification algorithms. Un-

fortunately, the packet classification problem is a theoretically challenging problem and

fast packet classification algorithms are typically available only for high-end computational

systems. Consequently, most host-based firewalls and detection systems use packet clas-

sification algorithms constructed by linear search engines to process the set of associated

packet filters. However, TDA hosts will implement blacklist blocking enforcement within

their firewalls and these blacklists will contain tens to hundreds of thousands of entries. As

a result, efficient packet classification algorithms are required for the blacklist classification

process used by DFAR’s firewall-based blacklist enforcement model (i.e., Figure 22).

As an example, Figure 27 provides the results of an experiment performed on a produc-

tion email server where the service time of its host-based firewall is measured versus the

number of implemented packet filters. The filters range from N = 1 to N = 7404. As seen

by the plot of Figure 27, the firewall service time for this server consistently increases with

increasing numbers of filters (N). With N = 1, the firewall service time is less than 0.1ms,

whereas with N = 7404 the service time is on the order of 1.2ms. Since the firewalls of

TDA members will likely contain large numbers of filters, excessive communication delays
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Figure 27: Experimental results of firewall service time versus N for an enterprise-class
email server.

will occur as a result of increased firewall processing time. Therefore, an efficient packet

classification algorithm is desired for firewall-based blacklist classification in TDA firewalls.

4.4 Summary

In this chapter, the distributed firewall and active response architecture has been proposed.

The architecture provides a modular, adaptable, and integrable framework that explicitly

supports the active participation of attack prevention and detection for each cyber device

within an organization’s environment. However, the packet classification problem faced by

firewalls prevents the implementation of large numbers of blocking enforcement filters. As

a result, the packet classification problem will be addressed by subsequent chapters.
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CHAPTER V

A NOVEL THEORY OF SEMANTIC ASSOCIATION SYSTEMS

This chapter introduces a theory of semantic association systems inspired by the emerging

paradigm of semantic computing. The constructs provided by this theory enabled the

development of a new packet classification algorithm based on the notion of semantic path

merger. After introducing the formal definitions and ideas of the semantic association

system in this chapter, the semantic path merger packet classification algorithm along with

the implementation details of its hardware realization will be given by the following chapter.

Semantic computing research seeks to establish a foundation for the derivation of se-

mantics from content and to connect these semantics into knowledge [148]. Content, in this

view of semantic computing, is any resource within the domain of Information Systems.

This includes the World-Wide-Web , the Semantic Web (a vision of the future Web), and

general information systems. Interest in semantic computing has emerged as a result of the

research efforts of Semantic Web development [19, 164], but its foundations are rooted in

the general field and study of semantics and the integration of the theory of semantics with

computer science and computational semantics. Formally, semantics involves the study of

meaning. In essence, it is the study of symbols, the relationships between symbols, and

the representation thereof. The study of semantics in the non-computing sense is focused

on understanding how humans interact with symbols such as the interpretation of words

and sentences. Within the scope of semantic computing, the study of semantics includes

fields such as program language specification, natural language processing [118], artificial

intelligence [85], and intelligent information retrieval. The field has a strong foundation

in terms of intelligent systems [54, 86]. However, the applications of semantic computing

are growing with new research in diverse areas such as geodesics [121], team interactions

[155], random walker algorithms [120], semantic filesystems [131, 38], and computer security

[95, 154, 134, 127, 158].
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5.1 A Compositional Computing Model of Semantic Association Sys-
tems

Perspective is a state of understanding, which is a time varying point-of-view attached to

a collection of knowledge. Knowledge is a product of the comprehension, awareness, and

understanding of information. Information is a key element of knowledge, but information

in and of itself is not knowledge. Instead, information is a collection of data representing

qualitative and/or quantitative characteristics of objects. When information is compre-

hended via synthesis and analysis of its data, an awareness of the inter-relationships and

associations of diverse objects characterized by the data emerges. As a result, an under-

standing of the relational and associative aspects of diverse objects produced by awareness

that emerges from the comprehension of information leads to either the creation of new

knowledge and/or the modification of previous knowledge. Consequently, knowledge varies

with both time and context (point-of-view). Hence, perspective is a time-dependent and

context-dependent state of understanding affiliated with a collection of archived knowledge.

Concept, a construct representing an artifact of thought, forms the basic foundation of

the compositional computing model of semantic association systems (SAS). In a semantic

association system, a concept is defined to be the assignment of meaning to a collection of

components under a given perspective. The meaning (semantics) of a concept, therefore,

depends on a current state of understanding. A concept is a compositional bundle where

component collections are bound under a perspective-constraint to a collection of one or

more semantics (i.e., meanings). A conceptualization is a semantic family formed by a

domain perspective and a knowledge system comprised of a collection of concepts.

Table 10 will be used to clarify the ideas presented thus far. Three values are provided

as data representing temperature, location, and weather. When the data are combined

into a compositional bundle, information is obtained whereby upon further comprehension

and understanding, entities create knowledge. Perspective P1 assigns the knowledge ‘A hot

sunny day in Atlanta, GA’ to the information bundle whereas perspective P2 prescribes

‘Good swimming conditions’ to the bundle. Either perspective may or may not be correct
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Table 10: The ideas of data, information, semantics, knowledge, and perspectives.

Data

Temperature = 90◦F
Location = Atlanta, GA

Weather = Sunny

Information

(90◦F , ‘Atlanta, GA’, Sunny)

Knowledge

P1: ‘A hot sunny day in Atlanta, GA’
P2: ‘Good swimming conditions’

Semantics

I(x, y, z)⇒ ‘WaterSportCriteria′

(Knowledge | Information, Semantics)

(90◦F , ‘Atlanta, GA’, Sunny) ⇒ P2: ‘Good swimming conditions’

relative to a particular ground truth. However, when semantics are associated with infor-

mation bundles, more precise knowledge with respect to the ground truth dictated by the

semantics can be obtained. With the semantics I(x, y, z) ⇒ ‘WaterSportCriteria′ along

with the given information bundle, perspective P2 becomes the best alternative compared

to P1.

In the semantic association system, concepts are represented as the binding of semantics

to component bundles. The meta-language defining the semantic data structure of the SAS

is shown in Table 11.

The meta-language is interpreted as follows. Concepts are bindings between component

bundles and semantics, in which the semantics are prescribed meanings for the component

bundles within some domain of understanding. Collections of concepts are assumed to

belong to a particular domain perspective. Components and semantics are compositions of

one or more atoms. An atom is a object composed of a single label, zero or more properties,

and zero or more operators. A label is a typed element that can be any well-known or
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Table 11: The meta-language of the semantic data structure.

〈Concept〉 ::= 〈components〉 7−→ 〈semantics〉
〈components〉 ::= {atom}[1, ∗]
〈semantics〉 ::= {atom}[1, ∗]
〈atom〉 ::= (label L, property P[0, ∗], operator Θ[0, ∗])
〈label〉 ::= typedV ar t
〈property〉 ::= (attribute = value)
〈operator〉 ::= Y ← Θ(X, · · · )
〈attribute〉 ::= identifier
〈value〉 ::= identifier
〈identifier〉 ::= Concept c | typedV ar t
〈typedV ar〉 ::= (integer|float|char|string|boolean| · · · )

application specific type such as integers, floats, and strings. A property is an attribute-

value pair where attributes and values are identifiers, and an identifier can be either a

concept or a typed element. The structure allows concepts to specify properties of other

concepts, which provides a high-degree of flexibility and expressibility. Finally, the operator

is assumed to be a process or functionality that binds some set of inputs with some set of

outputs relative to a particular concept.

5.2 Formal Model of the Semantic Association System

Let Σ be a universe of discourse. Given a set of labels L ⊂ Σ, a set of properties P ⊂ Σ,

and a set of operators Θ ⊂ Σ, let V = (L × P ×Θ) be an ordered collection of atoms.

Definition 1. A semantic family is a perspective-dependent conceptualization represented

by a directed acyclic graph G = (V,E,R) where the vertex set

V = {V1, . . . , Vm, Vm+1, . . . , Vd} ⊆ V

is a semantically disjoint partitioned set of atoms comprising a group of components and a

group of semantics. Without loss of generality, V can be rewritten as V = (Vρ, Vσ) where

Vρ = {V1, V2, . . . , Vm} ⊂ V is the collection of atoms categorized under perspective to be

components and Vσ = {Vm+1, Vm+2, . . . , Vd} ⊂ V is the collection of atoms categorized

under perspective to be semantics. The vertex set of components and semantics are defined

to be semantically disjoint partitions. Therefore, V must satisfy the following conditions.
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1. Vi = {vij} ∈ V, 1 ≤ i ≤ d, 1 ≤ j ≤ |Vi|

2. ∀ (i 6= j) : Vi ∩ Vj = ∅

3. V =
d⋃
i=1

Vi

A collection Vi ∈ V is a semantic-equivalence class within the semantic family G. For

example, let Vi be the semantic-equivalence class representing Integers, then vij = 9 and

vik = 256 are semantically-equivalent elements of the class Integers. Moreover, let V =

{V1, V2, V3} where V1 = Integers, V2 = Binary Operators, V3 = Mathematical Entities

and let Vρ = {V1, V2}, Vσ = {V3}. Then, the concept (V1,+) 7−→ Abelian Group is the

assignment of the semantic ‘Abelian Group’ to the component bundle (algebraic structure)

(V1,+) where V1 = Z is the set of ‘Integers’ and + ∈ V2 is the ‘addition operator’ from the

class of ‘Binary Operators’. Similarly, the concept ({x, y},+) 7−→ Integer Addition is the

assignment of ‘Integer Addition’ to mean x+ y.

Definition 2. The semantic associations of a semantic family are defined to be the set

of edges E ∈ G where E = {e : e = (u, v)⇒ (u ∈ Vi) ∧ (v ∈ Vj) ∧ (i 6= j)}.

Definition 3. The semantic relations bound to a semantic family G are defined to be

the collection of concepts R = {ri} where ri = (ρ, σ)i such that:

1. u ∈ ρ⇒ (u ∈ Vj) ∧ (Vj ∈ Vρ)

2. v ∈ σ ⇒ (v ∈ Vk) ∧ (Vk ∈ Vσ)

3. r = (ρ, σ) is an s− t relational path in G such that r = (vs, . . . , vj , . . . , vt). vs is the

source node and by definition belongs to ρ, and vt is the target node and by definition

belongs to σ.

By convention, the existence of an s− t relational path r in G implies that:

∀ (v ∈ r) : (vm = r (k) , vn = r (k + 1)) ⇒ (vm, vn) ∈ E where r(k) is the kth atom of the

s− t relational path.

In terms of the semantic data structure defined by the SAS, observe that ρ is a compo-

nent bundle, σ is the set of semantics bound to the component bundle, the semantic relation
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r = (ρ, σ) is a concept within the semantic family G, the s− t path r in G represents the se-

mantic binding of ρ with σ, and the set of semantic relations R represents a knowledge base

of concepts within the semantic family G. In other words, R is a conceptualization defined

by an underlying perspective, and G is a graph structure representing the conceptualization.

Definition 4. A semantic space is defined to be a merged conceptualization. A se-

mantic space is constructed by the structure Sσ = [Gσ, Γ] where Gσ = {G1, G2, . . . , GN}

is a collection of N unique semantic families, and Γ = 〈ΓV ,ΓE ,ΓR〉 is a system of coloring

operators.

The structure Sσ is a conceptual typing construct defined by the production rules of

Table 12. The production rules state that [Gσ, Γ] assigns a type defined by color to each

Table 12: Conceptual typing production rules of the semantic space.

[Gσ, Γ] ` G = (V,E,R) ← Λ
Γ ` Λ ← uniqueIdentifier
Λ ` λi ← indexPseudonym
λi ` i ← {Z+, String}

semantic family. The coloring operator Γ produces a set of unique colors Λ = {λi}. The

elements of the color class, in this treatment, are specified to be either an element of the

positive integers Z+ = {0, 1, . . . } or an element of the class String. The system of coloring

operators are defined by the following color maps:

Γ = 〈ΓV ,ΓE ,ΓR〉 : (V,E,R) ← Λ

ΓV (V ) = λ

ΓE(E) = λ

ΓR(R) = λ

The system of coloring operators assigns the same color to a semantic family and all of

its constituents. The underlying idea is that applying a unique color to each semantic

family within a semantic space induces a uniqueness property such that after the merged

conceptualization process has occurred, one can still distinguish the features of the original

semantic families.
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Merged conceptualization is produced by superimposing the N color-mapped semantic

families of Gσ onto a single graph structure. The resultant graph structure is referred to as

the semantic association network.

Definition 5. The semantic association network, denoted by Gφ, is a superimposed,

semantic-preserving structure that encodes a semantic space. The semantic association

network (SAN) is an edge-colored multi-digraph

Gφ = (Vφ, Eφ, Rφ,Λφ)

where Rφ is the set of colored semantic relations, Λφ is the set of colors produced by Γ over

the semantic space Gσ, Vφ = {V1, V2, . . . , Vδ} is the set of colored vertices where δ ≥ d,

and Eφ is a set of colored edges.

The semantic association network is a structure representing the merged conceptualiza-

tions of a semantic space, and its construction is specified by the graph superimposition

Gφ =
⋃N
i=1Gi produced by the following:

1. ∀ Vi ∈ Gσ : Vφ =
⋃
Vi

2. ∀ Ei ∈ Gσ : Eφ =
⋃
Ei

3. ∀ Ri ∈ Gσ : Rφ =
⋃
Ri

4. ∀ λi ∈ [Gσ,Γ] : Λφ =
⋃
λi

In general, a component v ∈ Vφ will belong to one or more colored semantic relations

or, equivalently, it will belong to one or more semantic families. The coloring operator

associates a unique color to each element of a semantic family. Hence, the construction of

a semantic association network implies that vertices and edges contained in Gφ will have

multiple colors.

Definition 6. The prism is defined to be a mapping ψ : Vφ → Λφ such that ψ (v) = Λv

where Λv = {λi} ⊆ Λφ is the spectrum of vertex v.

Definition 7. The spectral intensity of an atom v is defined to be the mapping Ψ : Vφ →

(0, 1] where Ψ (v) = |Λv |
|Λφ| = |ψ(v)|

N .
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In essence, the spectrum is a membership function indicationg the set of semantic rela-

tions to which a vertex belongs within the semantic space, and spectral intensity provides

a measure of the vertex’s semantic affiliation within the semantic association network.

The superimposition of a semantic space onto a semantic association network implies

that an edge e = (u, v) will belong to one or more edge-sets from Ei ∈ Gi ∈ Gσ. As

stated above, the coloring operator assigns a color to each component of a semantic family.

The edge-color association can be written as (e, λi) where e = (u, v) ∈ Ei. In terms of

applying the color to an edge, the following convention will be used. The edges in the

semantic association network are written as (u, λ, v) such that Eφ = {e = (u, λ, v) : ∀λk ∈

(Λu ∩ Λv) , ∃e = (u, λk, v)}. Figure 28 illustrates the edge-colored multi-digraph of a simple

semantic association network.

V1 V2 V3

V4

V5

V6 V7

Figure 28: A simple edge-colored multi-digraph.
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5.3 Hypergraph Representation of the Semantic Association Network

A hypergraph is defined by the graph G = (V,E) where V is a set of vertices and E is

a set of hyperedges. A hyperedge can connect more than two vertices. Particularly, a

hyperedge is an element of the power set P(V ) of the vertex set V . From a graphical point-

of-view, a hyperedge supports containment of more than two vertices. Figure 29 illustrates

a hyperedge enclosing multiple vertices.

e

vi

vj

vk

vm

e = { vi, vj, vk, vm}

Figure 29: A hyperedge enclosing three vertices.

Definition 8. The colored path hypergraph (CPHG) of the semantic association network

is defined to be the graph GΦ = (Vφ, Eλ) where Vφ ∈ Gφ and:

Eλ = {em = (vi, vj , . . . , vk) : λm ∈
(
Λvi
⋂

Λvj
⋂
· · ·
⋂

Λvk
)
}.

The CPHG is constructed by grouping the colored edges of Gφ. The set of hyperedges,

therefore, represent equivalence classes with respect to the vertices and colors of the SAN

such that em := [v]λm . Figure 30 provides a visualization of the CPHG representing the

SAN of Figure 28. From Figure 30, the following constituents of the CPHG can be observed

with respect to the definitions of the SAS.

Vφ = {v1, v2, v3, v4, v5, v6, v7}

Eλ = {e1, e2, e3}

Λφ = {λ1, λ2, λ3} ≡ {red, green, blue} ≡ {r, g, b}

λ1 : e1 = {v1, v2, v4, v5, v6}

λ2 : e2 = {v1, v2, v4, v5, v6, v7}

λ3 : e3 = {v3, v4, v5, v7}
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V1 V2 V3

V4

V5

V6 V7

Figure 30: A colored path hypergraph.

A hypergraph can be represented by an incidence matrix that relates the edges of a graph

to the vertices of a graph. The incidence matrix of a graph is the zero-one matrix M = [mij ]

such that mij = 1 if and only if edge ei is incident to vertex vj . The incidence matrix of a

hypergraph is defined similarly.

Definition 9. The incidence matrix of the colored path hypergraph GΦ of a semantic asso-

ciation network Gφ is defined to be the zero-one matrix denoted by Φ such that:

Φ = [φij ] and

φij = 1 if and only if ei ∈ Eλ, vj ∈ Vφ, vj ∈ ei, and λi ∈ Λvj .

The incidence matrix Φ is called the Path Matrix of the semantic association network.

The incidence matrix Φ is referred to as the path matrix (PM) because it provides a

unique encoding of the semantic relations Rφ of the semantic association network. Recall

that the semantic relations are s−t paths representing concepts, which are by definition the

bindings of conceptual components to conceptual semantics. These s− t paths are encoded

by the incidence matrix of the CPHG. Hence, this incidence matrix is denoted as the path
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matrix. Table 13 contains the PM for the CPHG of Figure 30. Given the path matrix Φ and

Table 13: The path matrix for the CPHG from Figure 30.

v1 v2 v3 v4 v5 v6 v7

e1 1 1 0 1 1 1 0
e2 1 1 0 1 1 1 1
e3 0 0 1 1 1 0 1

its associated CPHG GΦ and since the hyperedges ei ∈ Eλ represent color-wise groupings

of vertices in Vφ, a correspondence between Φ and Λφ can be observed, which is illustrated

by Figure 31. The correspondence relationship shown in Figure 31 is represented by the

v1   …       vδ

e1

eN

…

ΛφΦ

λ1

λN

……

Figure 31: A correspondence relationship between the vertices and edges of the CPHG
and the semantic colors.

following:

Φ : Eλ × Vφ ↔ Λφ

such that given Φ = [φij ], then ∀φij = 1, ∃(ei ∈ Eλ, vj ∈ Vφ, λi ∈ Λφ) where Φ(ei, vj)↔

λi. The subscript indices for the hyperedges and the colors are not to be neglected. In other

words, (ei → λi) ∧ (ej → λi) ⇒ (i = j). Based on the formulations introduced thus far,

the following general relationships are observed. First, there is a one-to-one relationship

between Eλ and Λφ. Second, there is a many-to-one relationship between Vφ and Λφ for a

particular ei ∈ Eλ. Third, there is a many-to-many (multivalence) relationship between Vφ
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and Λφ when considering all of Eλ. These relationships are illustrated by Figure 32 and

enumerated below.

e1

e2

e3

λ1

λ2

λ3

λ1

e1

vi

vj

vk

λ1

λ2

vi

vj

vk

(e, λ)

(v, λ) : e = ei (v, λ) : Eλ

Figure 32: General m-to-n relationships between the vertices, edges, and colors of the
CPHG.

1. For the system (e, λ) :

(e1, λ1)

(e2, λ2)

(e3, λ3)

2. For the system (v, λ) : e = e1 :

(vi, λ1)

(vj , λ1)

(vk, λ1)

e1 = {vi, vj , vk} ↔ λ1
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3. For the system (v, λ) : Eλ :

(vi, λ1)

(vj , {λ1, λ2})

(vk, {λ1, λ2})

e1 = {vi, vj , vk} ↔ λ1

e2 = {vj , vk} ↔ λ2

5.4 Characteristics and other Transformations of the Semantic Asso-
ciation System

As described in the previous section, vertices of an SAS can belong, in general, to more

than one semantic family. Hence, a particular vertex will belong to one or more CPHG

hyperedges. The multivalence associative property of the vertex set Vφ is explored further

in this section.

Definition 10. A multivalence vertex query (MVQ) is defined to be the graph query:

Q : Vφ → (Eλ × Λφ)

such that

Q(vj) = 〈(e, λ)〉 = 〈(ei1 , λi1), (ei2 , λi2), . . . , (eim , λim)〉

where 〈(e, λ)〉 is a 2-tuple hypervector of length m and ∀e ∈ Eλ, vj ∈ e⇒ (e, λ) ∈ Q(vj).

The prism was defined by ψ(vj) = Λvj where Λvj ⊆ Λφ is the spectrum of a vertex

(atom) vj . The spectrum enumerates a vertex’s semantic colors, and, by extension, to which

semantic families it belongs. Consequently, the prism and the multivalence vertex query are

closely related. The prism produces the set of colors associated with a vertex, whereas the

MVQ produces the set of associated hyperedges and the set of associated colors. An MVQ

produces a 2-tuple hypervector of length m. Since Q(vj) enumerates the m unique (e, λ)

tuples associated with vj , then the prism must produce a spectrum Λvj where m = |Λvj |.

Consequently, ∀λi ∈ Q(vj), ∃λi ∈ Λvj . A straightforward implementation of these maps

can be achieved via the path matrix of the CPHG.
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Definition 11. Given a path matrix Φ = [φij ] where φij = 1 if and only if vj ∈ ei, the bit

vectors φ = (φi∗, φ∗j) are defined by the following basis:

φi∗ := {0, 1}ω := (b1, b2, . . . , bω)

φ∗j := {0, 1}N := (b1, b2, . . . , bN )

where bk ∈ {0, 1}, φi∗ is a binary bit vector of length ω, and φ∗j is a binary bit vector of

length N . Further, ω and N are given by:

N = |Eλ| = |Λφ|

ω =
δ∑
i=1
|Vi|, Vi ∈ Vφ

The formal definitions of the bit vectors are given by the following:

φi∗ : Eλ → {0, 1}ω such that φi∗(ei) = Φ[i, ∗]

φ∗j : Vφ → {0, 1}N such that φ∗j(vj) = Φ[∗, j]

The notation Φ[i, ∗] represents the extraction of all the columns of Φ over the row indexed

by i, and Φ[∗, j] represents the extraction of all the rows of Φ over the column indexed by

j. The symbol ∗ has similar meaning to the wildcard symbol of most regular expression

languages whereby an expression containing ∗ at some position x within a lexicographically

ordered word represents all possible lexicons for the symbol substituted by ∗. For example,

Φ[i, ∗] ≡ (Φ[i, 1],Φ[i, 2], . . . ,Φ[i, ω]) and Φ[∗, j] ≡ (Φ[1, j],Φ[2, j], . . . ,Φ[N, j]).

The interpretation of φi∗ and φ∗j can be viewed from the characteristic perspective.

In particular, φi∗ is the zero-one characteristic vector of ei with respect to Vφ, and φ∗j is

the zero-one characteristic vector of vj with respect to Eλ. The relationship between Eλ

and Λφ is a bijection (one-to-one correspondence). The bijection can be observed by the

illustration shown previously in Figure 31.

Definition 12. Given a semantic association system, there exists a colored path bijection

from the set of CPHG hyperedges to the set of semantic colors. The colored path bijection

(CPB) is defined by the following map:

H : Eλ → Λφ where

H(ei) = λi
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Definition 12 is a direct consequence of the construction of the colored path hyper-

graph. In particular, the hyperedges of the CPHG are color-wise groupings of vertices from

the semantic association network such that all vertices in a particular hyperedge share a

common color. In essence, the CPHG is a λ-composition or, similarly, a vertex-color

composition of the semantic association network.

The characteristic interpretation of φi∗ and φ∗j can now be extended. φi∗ is the ith

row of Φ, which is the characteristic vector of ei with respect to the complete vertex set

Vφ. Moreover, the colored path bijection formally describes the one-to-one correspondence

between the hyperedges of GΦ and the set of semantic colors Λφ. Consequently, the binary

column φ∗j representing vj can be viewed as a spectrum vector since it is equivalent via the

CPB to the binary encoding of semantic colors to which vj belongs. In other words, φ∗j

has an equivalent representation as being the characteristic vector of vj with respect to the

complete set of semantic colors.

Because the CPB is a bijection, the mapping H(e) implies that H has a bipartite graph.

Further, ∀(ei, λi), H(ei) = λi and H−1(λi) = ei. For clarity, let H2 be the bipartite

graph of H. By definition, a graph G = (V,E) is bipartite if V can be partitioned by two

disjoint sets V = {V1, V2} where V1 ∩ V2 = ∅ and ∀e ∈ E, e = (u, v) ⇒ (u ∈ V1 ∧ v ∈

V2) ∨ (u ∈ V2 ∧ v ∈ V1). A bijection guarantees that its graph is bipartite. However, a

bipartite graph does not guarantee the existence of bijection. In short, the bipartite-ness

of a graph does not require injectivity. Hence, a many-to-one non-injective mapping can be

represented by a bipartite graph if the mapping satisfies the bi-partitioning property and

edge constraints defined by graph bipartite-ness. A single hyperedge of the CPHG is, by

definition, a collection of two or more vertices in Vφ such that the vertices are associated

by semantic color. Consequently, a single hyperedge represents a many-to-one relationship

from Vφ to Λφ, which was explained previously and illustrated by the system (v, λ) : e = e1

shown in Figure 32. With the bijection H and its bipartite graph H2, the bipartite graph

of the tuple (Vφ,Λφ) can be constructed. The CPHG GΦ or, similarly, its incidence matrix

Φ represent a collection of N many-to-one associations from Vφ to Eλ. Further, the colored

path bijection H and its bipartite graph H2 represent one-to-one correspondences from Eλ
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to Λφ. Therefore, a bipartite graph representing the N different many-to-one relationships

from Vφ to Λφ can be constructed.

Definition 13. Let the colored path bijection H be given along with its bipartite graph

H2 = (Hv, He) such that the vertex set Hv = {Eλ
⋃

Λφ} where Eλ is the domain of H, Λφ

is the codomain of H, and the edge set He = {h : ∀H(ei) = λi, ∃h = (ei, λi)}. The semantic-

preserving vertex-color decomposition of the colored path bijection is the bipartite graph

H∆ defined by:

H∆ = (V∆, E∆)

V∆ = { b{v ∈ Eλ}c
⋃

Λφ }

E∆ = {eα : ∀h = (em, λm) = ({vi, vj , . . . , vk}, λm) ∈ He,∃eα1 = (vi, λm), eα2 =

(vj , λm), . . . , eαn = (vk, λm)}

Since Eλ may have many hyperedges that contain a particular vertex v, the notation

b{v ∈ Eλ}c is introduced and interpreted as the set of all distinct vertices extracted from

Eλ. The definition of E∆ can be interpreted as a color-preserving hyperedge introspection

whereby a hyperedge is decomposed into its constituent vertices and a λ-matching from each

of the decomposed vertices in ei to its associated λi is used to construct H∆. Thus, the

transformation from H2 to H∆ is referred to as a vertex-color decomposition. The mappings

and transformations presented in this section are now clarified. Recall the following systems

shown in Figure 32. The system (v, λ) : e = ei represents a single hyperedge in GΦ and

reveals the one-to-one mapping from e1 to λ1 along with the many-to-one mapping from

{vi, vj , vk} ∈ e1 to λ1. The system given by (e, λ) represents the bipartite graph H2 of

the colored path bijection H(e) = λ. Lastly, the system (v, λ) : Eλ is the many-to-many

bipartite graph H∆. Figure 33 illustrates the entire family of graph transformations of the

semantic association system.

5.5 Summary

The novel theory of semantic association systems was presented in this chapter. The the-

ory is founded on a compositional computing model based on concepts, components, and

semantics. A formal description of a semantic data structure provides a basis to which the
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Figure 33: The family of graph transformations of the semantic association system.

elements of an SAS are constructed. Particularly, a concept is defined to be the result of

binding (semantic binding) component bundles with semantics. A collection of semantically

bound concepts forms a semantic family, which is also referred to as a conceptualization.

Merged conceptualization is a process that superimposes a collection of semantic families

onto a common graph structure that yields a semantic association network Gφ. In order to

preserve the underlying meanings of concepts across different conceptualization domains, a

semantic-preserving operation is provided by the conceptual typing structure Sσ = [Gσ,Γ]

where Gσ is the collection of N semantic families and Γ is the system of semantic coloring

operators. During superimposition, each constituent of a semantic family is given a com-

mon color, and the coloring operator abides by the color uniqueness property such that each

semantic family and its associated constituents are assigned a unique color. The uniqueness

property assures that if a particular constituent exists in multiple conceptualizations, it can

be decomposed with its spectrum such that an inverse mapping to its associated semantic

families can be achieved. The colored path hypergraph GΦ is a color-wise vertex-grouping

graph transformation of the semantic association network. The incidence matrix of GΦ
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encodes the λ-paths between the semantically disjoint vertex classes Vφ of the semantic as-

sociation network. As a result, this incidence matrix is referred to as the path matrix Φ. The

colored path bijection H and its bipartite graph H2 are simple representations of the one-

to-one correspondence between the hyperedges of GΦ and the set of semantic colors Λφ. A

vertex-color decomposition produced by hyperedge introspection and λ-matching produces

the bipartite graph H∆, which is a many-to-many vertex-to-color graph that represents the

matching between vertices of Vφ and Λφ.
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CHAPTER VI

HARDWARE-BASED MULTIDIMENSIONAL PACKET

CLASSIFICATION WITH THE SEMANTIC PATH MERGER

ALGORITHM

Research by the packet classification community over recent years suggests that hardware-

based packet classifiers are much desired because software-based packet classification solu-

tions cannot satisfy the stringent constraints of modern-day IP networks, especially within

the core of the Internet’s routing infrastructure [69, 70, 16, 57, 79]. Others suggest that

future packet classification systems will likely be hybrids comprised of software components

coupled with hardware acceleration components [147, 56].

Three key issues drive the need for hardware-based packet classification:

• Algorithmic complexity

• Scale

• Speed

The algorithmic complexity of packet classification can be seen by the theoretical bounds of

its space-time tradeoffs. These tradeoffs are shown in Table 14. Recall that N is the

number of filters and d is the number of dimensions (the number of header fields per

filter). The tradeoffs show that a packet classification algorithm can achieve logarithmic

Table 14: Theoretical space-time bounds for packet classification algorithms.

Space Time
O(Nd) O(lgN)
O(N) O((lgN)d−1 )

time if memory can grow exponentially with dimension. On the other hand, reducing

memory consumption to linear complexity requires a time penalty that does not favor high
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Table 15: Line rates, packets per second, and classification rates.

OC-n λ λpc τpc
(bps) (pps) (spp)

OC-1 51.8M 162K 6.2u
OC-3 155.5M 486K 2.1u

OC-12 622.1M 1.94M 514.4n
OC-24 1.2G 3.89M 257.2n
OC-48 2.5G 7.78M 128.6n

OC-192 10G 31.25M 32n
OC-256 13.3G 41.47M 24.1n
OC-768 40G 125M 8n

dimensionality. Obviously, these tradeoffs affect scale and speed. However, packet classifiers

must support both.

In terms of scale, packet classifiers need to support large numbers of filters in high

dimension. For example, firewalls require d = 5 dimensions just for the basic filter speci-

fications defined by the tuple (protocol, source IP, destination IP, source port, destination

port). Detection systems require these five tuples along with others such as payload content

fields. Consequently, an algorithm that supports these applications can achieve logarithmic

time complexity only if the system supports memory consumption in O(N5).

In terms of speed, even the best time complexity of O(lgN) is not sufficient when the

wire-speed packet classification constraint must be met. Wire-speed packet classification

states that a packet classification algorithm must classify packets at speeds such that buffer-

ing is not required at the input/output interface. These speeds can be calculated if the line

rate of the interface is known along with the expected size of a packet. When calculating

these speeds, network engineers assume worst case packet streams consisting of 40B TCP

acknowledgment packets. Table 15 lists a sequence of OC-n line rates along with the asso-

ciated classification rates. The line rate (λ) has units of bits per second (bps), λpc is the

associated packets per second (pps) classification rate, and τpc is the associated amount of

time required in units of seconds per packet (spp).

Consider a line rate of 10Gbps corresponding to an OC-192 network. The packet classi-

fier must process 31.25 million packets per second. To achieve this rate, the classifier must

classify a packet in time less than or equal to 32ns. Now, consider a packet classifier with

N = 210 filters and assume the algorithm has an O(lgN) worst case time complexity. Then,
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the classifier has a worst case number of memory accesses that is O(10). Assume further

that the algorithm has a memory subsystem such as SRAM with a 10ns access time. In this

example, the classifier must process each packet within 32ns. With a 10ns memory access

time, a maximum of 3 memory accesses must be met in order to meet the time require-

ment. However, the worst case for this system requires 10 memory accesses. Hence, the

system cannot guarantee wire-speed classification, even for an algorithm with logarithmic

time complexity.

In summary, memory access times coupled with high-speed line rates and wire-speed

classification constraints limit the applicability of software-based packet classification algo-

rithms. In order to address these issues, hardware-based packet classification algorithms

that support various levels of parallelism and/or pipelining are needed. Currently, two pri-

mary types of hardware-based systems exist for this problem: content addressable memory

(CAM/TCAM) and SRAM-based trie pipelines. Content addressable memories scale with

both N and d but suffer significantly from extreme amounts of power consumption result-

ing from their massive parallelism. On the other hand, SRAM-based trie pipelines consume

less power because they use embedded SRAM memory and amortize memory accesses over

pipeline stages. However, these systems do not scale with dimension because they imple-

ment the same trie traversal algorithm that software-based algorithms use and, therefore,

suffer from the backtracking problem.

In an effort to advance the state-of-art in high speed packet classification, this chap-

ter introduces a novel hardware-based packet classification algorithm called semantic path

merger. In a previous chapter, the formal mathematics, definitions, and construction meth-

ods of the semantic association system (SAS) were introduced. In this chapter, the semantic

path merger algorithm, which employs the constructs provided by the SAS, is introduced

along with its realization as a hardware-based packet classification system.

The colored path hypergraph (CPHG) of the semantic association network is of partic-

ular interest and importance. The SAS can be viewed as an associative system, and the

incidence matrix of the SAS’s colored path hypergraph (CPHG) provides a straight-forward

hardware realization of the associative system. In particular, the hardware realization of
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the CPHG is an associative memory . The goal is to formulate a methodology such that

the header field specifications of a packet filter can be encoded by a directed acyclic graph,

which will then be viewed as a semantic family. Each filter will be defined as a unique

semantic family, and, consequently, the merged conceptualization process will be applied to

the collection of packet filters, which are equivalent to the system of semantic families when

viewed in the context of the semantic association system. In short, the packet classification

system proposed in this dissertation implements the set of packet filters as the hyperedges

of a graph, the individual points (header fields extracted from a packet based on the field

specifications of a packet filter) are the vertices of a hyperedge, and the actions associated

with each filter are represented by semantic colors.

The objective of this chapter is to introduce the algorithmic methods and the generic

hardware design of the proposed SPM packet classification system. The chapter will also

provide details of the simulation methodology that was used to compare SPM performance

metrics versus content addressable memory.

6.1 The SPM multidimensional packet classification algorithm

The fundamental idea underlying SPM is notion of merged prefix paths. When using a

multibit trie (MBT) to encode the prefixes of a packet filter, the stride c determines the

number of bit inspections required to traverse the levels of the MBT. Given a stride c, there

are 2c possible bit combinations at each level, and these combinations lie within the integer

range [0, 2c − 1]. These bit combinations are fixed at each level, but the tree structure

of the MBT provides a unique path through the trie. Tree structures in general possess

the property of providing unique paths, and any encoding within a tree structure can be

uniquely decoded. As the length of word encodings increases, both the height of the tree and

the width of the tree’s base increases. Previous efforts seeking to map trie data structures

to pipelined hardware have been mostly concerned with balancing the number of trie nodes

that are mapped to each pipeline stage, and the need for node balancing is caused by growth

patterns of the trie’s base width. A tree’s base width increases as a consequence of path

uniqueness whereby multiple tree nodes that have the equivalent semantics (meanings) are

93



replicated along the unique paths of the tree.

One method to control the width of a tree base is to fix the labels with a structured

graph and to superimpose the paths onto this fixed graph structure. However, this technique

collapses the path uniqueness property of trees. In particular, path superimposition can

induce phantom paths that do not exist within the tree. However, this problem can be

solved with the semantic association system. A simple example will be given to illustrate

the underlying ideas.

Consider the two dimensional packet filters shown in Table 16. These packet filters

can be encoded with a two dimensional MBT. Figure 34 illustrates one particular MBT

Table 16: Two dimensional packet filters.

F f1 : w1 = 4 f2 : w2 = 4
R1 001* 110* A1

R2 [0001, 0010] [0101, 0110] A2

encoding of these filters where a stride of c = 2 is used for the tries of each field. The

upper trie in the figure encodes the prefixes for field f1, and the lower tries represent the

prefixes for the second field of the packet filter specifications. A dotted line represents the

interconnection between the f1 and f2 tries. The leaf nodes of the f2 tries point to their

associated action information containers.

In the following, two scenarios consisting of a non-matching and matching classification

process will be considered with respect to Table 16 and Figure 34. For the first scenario,

let the (f1, f2) fields of a packet P be given by p = (p1, p2) = (0010, 0100). The packet

classification process starts at the root of the f1 trie. The binary sequence for p1 yields a

traversal that leads to a leaf node with f2-pointers to both of the lower f2 tries. Inspection

of the first two bits of the binary sequence for p2 = (0100) indicates that the traversal should

continue through the left-most f2 trie. However, the final two bits of p2 are not encoded

within this trie. Hence, a packet with fields p = (0010, 0100) do not match the packet filter

specifications from Table 16, and, by definition, the default filter action will be applied to

the packet.
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Figure 34: Two dimensional MBT representation of the packet filters from Table 16.

For the second scenario, let the packet header fields be given by p = (p1, p2) where

p = (0011, 1100). The process begins by inspecting the first two bits of p1 followed by the

last two bits of p1, which leads to the right-most leaf node of the f1 trie. This leaf node has

a single pointer to its associated f2 trie, and traversal of this trie in accordance with the bit

values of p2 reveals that the packet matches the field specifications of the first packet filter

(R1). Therefore, the actions specified by A1 will be applied to the packet.

The SPM algorithm begins by viewing the set of d-dimensional packet filters R =

{R1, R2, . . . , RN} as a collection of N unique multibit tries. Let these unique MBTs be

referred to as filter tries. Each filter Ri is represented by a filter trie, and each filter trie is

a collection of d interconnected MBTs that encode the prefixes for each of the header field

specifications. Figure 35 illustrates the idea of independent MBT filter encoding. The tries

for filter R1 are shown on the left side of the figure, whereas the tries for R2 are shown on

the right side. Further, the tries for the f1 fields are located at the upper half of the figure,

and the f2 tries are located at the bottom half of the figure. The dotted lines represent the
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Figure 35: Independent MBT encodings of the packet filters from Table 16 with each filter
having its own collection of prefix tries.

interconnections between the f1 and f2 tries.

Next, each unique filter trie is transformed to a directed acyclic graph (DAG), which will

be referred to as a filter DAG (FDAG). During the transformation, the binary sequences

defining the multiway branching (traversal) criteria of the trie are concatenated with unique

symbols corresponding to the levels of the trie. The concatenated sequences produce unique

labels for the vertices of the FDAGs. The following symbol-to-level correspondence will be

used for this example:

A ⇐⇒ Level 1

B ⇐⇒ Level 2

C ⇐⇒ Level 3

D ⇐⇒ Level 4

Figure 36 shows the graphs produced when applying this transformation to the MBTs of

Figure 35. The graphs G1 and G2 represent the filter tries for R1 and R2, respectively. For

example, the node labeled A00 represents the branching criteria for the first two bits of the

f1 trie and the symbol A indicates that the branch leads to level 1 of the trie. Essentially, the
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Figure 36: Labeled directed acyclic graph transformation of the MBTs from Figure 35.

transformation converts an edge-labeled trie traversal to a vertex-labeled DAG traversal.

To illustrate the DAG traversal and packet matching process, consider the packet fields

p = (p1, p2) = (0011, 1100). The stride was chosen to be c = 2 for each field trie. As such,

the bit fields of p are tokenized as follows: (A00, B11, C11, D00). Inspection of G1 in Figure

36 reveals the existence of the vertex path (A00, B11, C11, D00). Hence, these packet fields

match filter R1.

After transformation of the filter tries, the resultant collection of FDAGs are superim-

posed onto a common graph structure. In other words, a new graph G∗ is constructed by

merging the collection of filter DAGs:

G∗ =
N⋃
i=1

Gi

G∗ is denoted as the path-merged DAG (PMDAG). The PMDAG shown in Figure 37

represents the merger of G1 and G2 from Figure 36.
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Figure 37: The directed acyclic graph produced by merging the filter graphs of Figure 36.

An individual FDAG represents (encodes) a particular packet filter. Specifically, the ith

FDAG, Gi, is a vertex-labeled graph and encodes the ith packet filter Ri. The vertex-labeled

paths (VLPs) in Gi correspond to the edge-labeled prefix paths of the ith filter trie. Conse-

quently, the path merged graph G∗ encodes the set of packet filters R = {R1, R2, . . . , RN}.

However, the path merging process as described thus far has an issue that must be ad-

dressed: Induced Transitive Relations

Definition 14. Given two vertex-labeled s − t paths Vs−t = (vs, vj , . . . , vk, vt) and Us−t =

(us, uj , . . . , uk, ut), Vs−t and Us−t are s− t equivalent, denoted by Vs−t ≡s−t Us−t, if and

only if ∀v ∈ Vs−t, u ∈ Us−t : (vi = Vs−t(i) ∧ ui = Us−t(i) ∧ vi = ui).

Thus far, usage of the term ’vertex-label’ was to emphasize the vertex labeling process

of the trie-to-DAG transformation. Henceforth, vertices and vertex-labels will be used

synonymously. Merged paths that share one or more vertices are said to be correlated

vertex-label paths.
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Definition 15. Given two vertex-labeled s − t paths Vs−t = (vs, vj , . . . , vk, vt) and Us−t =

(us, uj , . . . , uk, ut), Vs−t and Us−t are correlated vertex-label paths, denoted by Vs−t ∼s−t

Us−t, if ∃v ∈ Vs−t, u ∈ Us−t such that v = u. A vertex satisfying this equality criteria is

called a locus of correlation. If Vs−t ≡s−t Us−t, then Vs−t and Us−t are fully correlated

vertex-labeled paths. Otherwise,the paths are said to be partially correlated.

Induced transitive relationships (ITR) result from the merger of two or more vertex-

labeled paths that are not s − t equivalent but share one or more vertex-labels. In other

words, a partially correlated vertex path produced by the path merger process induces

transitivity.

An example will be given to explain ITR. Let the graphs G1 and G2 be constructed by

the following:

G1 = (V1, E1) : V1 = {A,C,D}, E1 = {(A,C), (C,D)}

G2 = (V2, E2) : V2 = {B,C,E}, E2 = {(B,C), (C,E)}

G1 contains the s− t path (A,C,D), and G2 contains the path (B,C,E). Figure 38 illus-

trates the construction of G∗ from these two graphs, which yields the following constituents.

G∗ = (V ∗, E∗) = G1
⋃
G2

V ∗ = {A,B,C,D,E}

E∗ = {(A,C), (B,C), (C,D), (C,E)}

R∗ = {R1, R2, R3, R4}

R1 = (A,C,D)

R2 = (B,C,E)

R3 = (A,C,E)

R4 = (B,C,D)

The path merger process induces two new paths in G∗ that do not exist in G1 or G2.
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Figure 38: A path-merged DAG containing induced transitivity.

Namely, the paths R3 and R4 are phantom paths with respect to G1 and G2, and these phan-

tom paths are established via induced transitive relationships, which result from merging

the partially correlated paths R1 and R2. In this case, vertex C is the locus of correlation.

The methodologies provided by the theory of semantic association systems can eliminate

the problems caused by induced transitive relationships. The solution can be realized by

reformulating the FDAG path merger processes (PMP) within the context of a semantic

association system. The connection can be observed with the correspondences listed in

Table 17. A filter DAG is equivalent to a semantic family, a vertex-labeled path is viewed

Table 17: Correspondences between the path merger processes and the semantic associa-
tion network.

FDAG ⇐⇒ Semantic Family
VLP ⇐⇒ Semantic Relations
PMP ⇐⇒ Semantic Space (merged conceptualization)

as a semantic relationship, the set of VLPs encoded by a particular FDAG form a collec-

tion of semantic relationships, and the path merger process is considered to be a merged

conceptualization that produces a semantic space.

The construction of a path-merged DAG, as described above, can potentially generate a
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set of one or more phantom paths. Phantom paths are formed when a collection of two or

more VLPs, which belong to different FDAGs and possess a locus of correlation, are merged

onto a common PMDAG. The correlation loci created by the path merger process destroys

the path uniqueness property possessed by the individual FDAGs to diminish. Consequently,

the question becomes: “How can path uniqueness be maintained?” The answer is semantic

coloring, and the result is semantic path merger. In other words, the semantics of a path

are conserved by coloring them during the merger process.

The SPM algorithm starts by constructing a common hypergrid upon which the FDAGs

will be superimposed. Given a collection of d-dimensional packet filters R, select the strides

ci for the MBTs of each dimension 1 ≤ i ≤ d. In general, the stride of an MBT can

be variable. For the remainder of this discussion, however, and with respect to the SPM

algorithm, fixed stride tries will be assumed. Further, it is assumed that ci | wi and by

definition, 1 ≤ ci ≤ wi.

Each wi for the ith field is associated with a stride ci. Let this association be denoted

by Wc = (wi, ci). Let D = [0, 2c − 1] ⊂ Z+ denote the subinterval domain of positive

integers generated by stride c. The number of subinterval domains generated by Wc can

be calculated as δi = wi
ci

. Equivalently, δi corresponds to the number of levels of an MBT

with wi bits and stride ci. The total number of levels (subinterval domains) is denoted as

δ∗ where δ∗ =
d∑
i=1

δi

For each ci, construct the collection of subinterval domains {Dij = [0, 2ci − 1]} for

1 ≤ j ≤ δi. The cross-product of the subinterval domains generated by Wc represents

the complete domain spanned by wi. This equivalence is shown by Equation 2 and states

that the δi-dimensional hyperbox generated by the cross-product of the collection {Dij} is

equivalent to the 1-dimensional line generated by D̂.

(Di1 ×Di2 × . . .×Diδi) ≡ (D̂ = [0, 2wi − 1]) (2)

Equation 2 suggests the notion of dimensional folding and is illustrated by Figure 39 for

the case of w = 4 and c = 2. Observe that D̂ = [0, 24 − 1] = [0, 15], D1 = [0, 3], D2 = [0, 3],

and D1 ×D2 = [0, 3]× [0, 3].
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Figure 39: Dimensional folding as the cross-product of subinterval domains generated by
Wc = (w, c).

Given the subinterval domains, the hypergrid vertex sets are created as follows. Let

V ∗ = {Vij} be the collection of hypergrid vertex sets where 1 ≤ i ≤ d and 1 ≤ j ≤ δi. For

each Vij and Dij , let k ∈ Dij and for 0 ≤ k ≤ 2ci − 1, define Vij(k) = k. In other words,

labels are assigned to the vertex sets such that a one-to-one correspondence is established

between vertex labels and the integers belonging to the subinterval domains.

To illustrate these concepts, let the field parameters for a d = 3 dimensional packet

classifier be given as in Table 18. The parameters from Table 18 yield the following con-

Table 18: Parameters for a 3-dimensional packet classifier illustrating the construction of
the SPM hypergrid.

Field wi ci δi
f1 4 2 2
f2 2 1 2
f3 4 2 2

stituents.

D11 = [0, 3]
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D12 = [0, 3]

D21 = [0, 1]

D22 = [0, 1]

D31 = [0, 3]

D32 = [0, 3]

V11 = {0, 1, 2, 3} = {00, 01, 10, 11}

V12 = {0, 1, 2, 3} = {00, 01, 10, 11}

V21 = {0, 1} = {0, 1}

V22 = {0, 1} = {0, 1}

V31 = {0, 1, 2, 3} = {00, 01, 10, 11}

V32 = {0, 1, 2, 3} = {00, 01, 10, 11}

V ∗ = {V11, V12, V21, V22, V31, V32}

The elements of each Vij are enumerated in both decimal and binary format.The resultant

hypergrid with δ∗ = 6 levels is shown in Figure 40. The level indicators, i.e., A,B, . . . , F ,

are not applied to the vertices and are implied based on the levels of the hypergrid. Further,

a dashed line has been applied to the grid to illustrate the grid regions corresponding to

each field.

Once the hypergrid has been constructed, the independent filter tries for each of the Ri

packet filters are generated, a unique semantic color is assigned to each filter trie, and the

resultant colored filter tries are superimposed onto the hypergrid. In terms of the semantic

association system, the final graph produced by this procedure is the semantic association

network Gφ. Moreover, the set of vertices of the hypergrid and Gφ are the same: V ∗ = Vφ.

Let a set of packet filters corresponding to the parameters of Table 18 be specified by

Table 19. The semantic association network generated by these filters in conjunction with

the stride parameters of Table 18 is shown in Figure 41.

An interesting interpretation of the semantic association network from Figure 41 can

be made. The colored paths represent the complete set of cross-products defined by the
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Figure 40: The hypergrid generated from the parameters in Table 18.

Table 19: A set of packet filters with parameters given by Table 18.

Filter f1 f2 f3 Action Semantic Color
R1 0000 0∗ 000∗ A1 λ1 = red
R2 0101 11 0101 A2 λ2 = blue
R3 111∗ 1∗ 111∗ A3 λ3 = green
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Figure 41: The semantic association network encoding the filters from Table 19.

subinterval domains over the fields of the packet filters. Let πi denote the cross-products

of the subinterval domains for the ith packet filter Ri. The cross-products defined by the

filters of Table 19 and encoded by the SAN of Figure 41 are listed below:

π1 = {00} × {00} × {0} × {0, 1} × {00} × {00, 01}

π2 = {01} × {01} × {1} × {1} × {01} × {01}

π3 = {11} × {10, 11} × {1} × {0, 1} × {11} × {10, 11}

Let π∗i denote the expansion of cross-product πi. The expansion of π1 yields the following

collection:

π∗1 = {{00, 00, 0, 0, 00, 00}, {00, 00, 0, 0, 00, 01}, {00, 00, 0, 1, 00, 00}, {00, 00, 0, 1, 00, 01}}

Given a collection of sets S = {Si} where each Si = {sij}, a transversal of S is the set TS

that contains exactly one element from each of the Si ∈ S. Consequently, the colored paths

in Gφ correspond to the space of allowable transversals defined by Ri and represented by

π∗i . Given a packet with header fields p = (p1, p2, . . . , pd), each pi with wi bits is partitioned
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into δi groups of ci bits, which produces the chunked header fields p = (pij). Observe that

if p is a transversal of the cross-product expansion π∗k, then p matches packet filter Rk.

At this point, all that remains is the construction of the colored-path hypergraph GΦ

and its path matrix (incidence matrix). The CPHG groups the vertices of the SAN by color

where each hyperedge of GΦ is the collection of vertices belonging to a common semantic

color. The path matrix is the zero-one incidence matrix of the CPHG, whereby Φ[ei, vj ] = 1

if vj ∈ ei. Otherwise, Φ[ei, vj ] = 0. Given that the vertices have been partitioned as

Vφ = {Vij}, let the path matrix be partitioned in a similar fashion such that Φ = {Φij}

where for each v ∈ Vij a corresponding column exists in Φij . The partitioned path matrix

corresponding to the semantic association network from Figure 41 is given by Table 20.

Table 20: Partitioned path matrix corresponding to the colored paths from the semantic
association network of Figure 41.

Φ11 v = 00 v = 01 v = 10 v = 11
e1 1 0 0 0
e2 0 1 0 0
e3 0 0 0 1
Φ12 v = 00 v = 01 v = 10 v = 11
e1 1 0 0 0
e2 0 1 0 0
e3 0 0 1 1
Φ21 v = 0 v = 1
e1 1 0
e2 0 1
e3 0 1
Φ22 v = 0 v = 1
e1 1 1
e2 0 1
e3 1 1
Φ31 v = 00 v = 01 v = 10 v = 11
e1 1 0 0 0
e2 0 1 0 0
e3 0 0 0 1
Φ32 v = 00 v = 01 v = 10 v = 11
e1 1 1 0 0
e2 0 1 0 0
e3 0 0 1 1

106



Once the packet filters have been encoded by the path matrix, packet classification

can be performed with simple bit vector operations. Given a packet with chunked header

fields p = (pij), the objective is to find the set of valid transversals defined by π∗i that are

matched with p. From the set of matched transversals, the algorithm returns the semantic

color associated with the highest priority matching transversal. Let Φij(pij) be the column-

wise bit vector of Φij indexed by the header chunk value pij and let φp be the transversal

resolution vector defined by:

φp =
⊙
∀pij∈p Φij(pij)

The transversal resolution vector results from the bit-wise conjunction of the path matrix

columns, which are indexed by the corresponding partitioned values of the chunked packet

header fields. The resolution vector is a characteristic vector representing the set of filters

matched by p. In other words, if φp(k) = 1, then p matches the kth packet filter Rk. If φp

is the zero-vector, then the packet has no matching packet filter.

As an example, let the packet header fields be given by p = (p1, p2, p3) = (1110, 10, 1110).

Based on the parameters given by Table 18, the chunked header fields are given by p =

(p11, p12, p21, p22, p31, p32) = (11, 10, 1, 0, 11, 10). Let < x >T denote the transpose of the

vector < x >. The bit vectors extracted by this particular set of chunked header fields from

the path matrix given in Table 20 are the following:

Φ11(p11 = 11) =< 0, 0, 1 >T

Φ12(p12 = 10) =< 0, 0, 1 >T

Φ21(p21 = 1) =< 0, 1, 1 >T

Φ22(p22 = 0) =< 1, 0, 1 >T

Φ31(p31 = 11) =< 0, 1, 1 >T

Φ32(p32 = 10) =< 0, 1, 1 >T

Bitwise conjunction of these vectors produces a transversal resolution vector given by φp =<

0, 0, 1 >T , which implies that a packet with header fields p = (1110, 10, 1110) corresponds

to semantic color λ3 = green and, therefore, the packet matches filter R3 from Table 19.

Figure 42 provides a block diagram illustrating a hardware-based implementation of the

SPM algorithm. In essence, the hardware design of the SPM algorithm can be viewed as
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Figure 42: Block diagram illustrating a hardware-based implementation of the SPM al-
gorithm.

a variant of the traditional m-way set-associative cache architecture. The δi path matrix

partitions correspond to the ways of a cache. The sets of the architecture correspond

to the 2ci columns for each partitioned path matrix. The hardware design consists of

a simple top-level packet processing unit for extraction of packet header fields. These

fields are then delivered to a header chunking module that extracts bit-chunks based on

the stride values ci. The values of each chunk are then used as direct indexes into their

corresponding memory partitions. The indexes activate the wordline drivers (WLD) for

each corresponding column and the N -bit words addressed by the chunks are accessed

via traditional bitline driver (BLD) read operations. The N bits from each partition are

accessed in parallel and delivered to the decision resolver module. In general, resolution will

depend on the application. For priority-based packet classification, the decision resolver will

perform bitwise AND operations across the δi bit vectors. The output of this conjunction

will be delivered to a priority encoder that translates the result and delivers a lgN bit

result the to action module. This value is used by the action module to process the packet
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according to the action associated with the highest priority filter that matched.

The complexity analysis of the SPM algorithm is the following. The SPM algorithm

can be implemented in either hardware or software. Let M be the length of a machine

word. For each of d dimensions with 1 ≤ i ≤ d, the path matrix has wi
ci

partitions with 2ci

columns having a length of N bits. Therefore, the space complexity of SPM is O(dN w
c 2c).

For the general case where M bits are read per operation, the algorithm requires N
M memory

accesses for each of the w
c partitions over each of the d dimensions. Therefore, the time

complexity of the SPM algorithm is O(dNM
w
c ).

For the hardware design presented above, it is assumed that the N bits of each column

are read in parallel and that each partition is operating concurrently. In this case, M = N

and concurrent operation of the dwc partitions gives the hardware implementation of the

algorithm an O(1) time complexity.

6.2 Simulation Methodology

Power consumption is a key design parameter of modern computing architectures and digital

systems [80]. Consequently, the designs underlying hardware-based packet classification

algorithms should consider the various trade-offs in terms of energy, delay, and power. In

this section, simulation results and comparative analysis of the performance metrics for the

hardware-based SPM algorithm versus content addressable memory (CAM) are given.

6.2.1 The Cacti Integrated Memory Simulator

CACTI is an integrated memory simulation tool used by computer architects [58] to evalu-

ate diverse memory architectures and configurations along with the associated performance

trade-offs such as area, delay, and power [159, 116, 136, 144, 153, 104]. CACTI has been

incorporated into several simulation frameworks such as the Structural Simulation Toolkit

(SST) [62], Orion [157, 73], McPat [87], Waatch [21], and eCACTI [93]. According to Mural-

imanohar et al. [105], CACTI has been cited by over 1000 published research papers. These

observations show how important CACTI has become throughout the years for modeling

and analysis of computer architectures.
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CACTI version 6.5 (CACTI6.5) was used to evaluate the energy, time, and power com-

ponents of the proposed hardware-based implementation of the SPM algorithm. The source

code for the numerous versions of CACTI along with the associated technical reports can

be retrieved from [61]. Appendix A provides a sample configuration listing for CACTI6.5

along with comments describing the options that are available.

McPat [87] is an architectural-level simulator for multicore and manycore computer

architectures. It incorporates a modified version of CACTI6.5. Specifically, McPat extends

the functionality of CACTI6.5 and provides designers with the capability to model stand-

alone CAMs. Appendix C provides a sample configuration listing for the modified version

of CACTI6.5 included with McPat along with comments describing the options that are

available. For the remaining discussion, usage of the term CACTI will be in reference to

version 6.5.

6.2.2 Simulation performance metrics and parameters

Computer architects have a plethora of design alternatives that must be considered during

the initial stages of memory system design. Some of these alternatives include transis-

tor type, wire type, signaling methods, banking strategies, and access methods, just to

name a few. Particular combinations of these alternatives lead to different performance

characteristics. These performance characteristics must be coupled with other design con-

straints dictated by a given problem such as total memory capacity, timing requirements,

and power budgets. Consequently, a great deal of effort is needed in order to find an appro-

priate combination of alternatives that satisfy the design constraints. CACTI was created

as a simulation framework seeking to provide computer architects and memory designers

with an integrated tool that takes high-level design configurations as input and performs

an exhaustive design space exploration in order to find an optimal configuration in terms

of power, area, and time constraints.

Table 21 lists the main performance metrics used for the analysis of the hardware-based

SPM algorithm and comparisons with content addressable memories. For the SPM and

CAM implementations, energy per operation (EPO) is the amount of energy consumed to

110



Table 21: Metrics used to evaluate the performance of the SPM hardware algorithm.

Symbol Description Units
EPO Energy per Operation nJ (nano-Joule)
TPO Time per Operation ns (nano-seconds)
EDP Energy Delay Product nJ*ns
Power Power Consumption W (Watts)

classify a single packet. Time per operation (TPO) is the amount of time required by the

hardware to classify a single packet. The total amount of power consumption consists of the

device’s dynamic power used during an operation and static power results from transistor

leakage current.

6.3 Simulation Results

The experimental results produced by CACTI simulations are given in this section. The

design constraints for the SPM algorithm and the CAM are a function of the number of

filters N and the header field width w. Further, the stride c is also used as a design

parameter for the SPM algorithm. The stride determines the total number of path matrix

partitions as well as the number of columns contained in each partition. Particularly, given

a stride of c, the total number of partitions is given by δ = w
c and the number of columns

in each partition is given by 2c. Therefore, the total number of bits Nb required for each

partition is given as:

Nb = N2c

and the total number of bits used by the partitioned path matrices is given as:

NΦ = N w
c 2c.

The selection of stride c along with design constraints N and w determine the overall

performance of the SPM algorithm.

The raw data presented by the plots of this chapter are located in Appendix E. In

the following figures, data are presented as panel plots. The x-axis varies N from 1024 to

262,144 in powers of 2. The x-axis is partitioned into panels for each value of the variable

w. The values selected for w were 16, 32, 64, and 128. The SPM algorithm was configured
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over three different stride values, including c = 2, c = 4, and c = 8. The curves for the

SPM algorithm were labeled by SPM-c2 (blue curves), SPM-c4 (red curves), and SPM-c8

(green curves) for the strides 2, 4, and 8, respectively.

Figures 43, 44, and 45 plot simulation results comparing EPO, TPO, and EDP, respec-

tively. As seen in Figure 43, the EPO for each algorithm increases with both N and w. For

small values of N and w, SPM and CAM perform similarly. However, as N or w increases,

the CAM’s EPO becomes significantly larger than SPM. SPM with stride values 2 and 4

give similar EPO. However, a stride of 8 reveals larger increases in EPO versus N and w.

10

100

1000

EP
O
 ( 
nJ
 )

SPM‐c2 SPM‐c4 SPM‐c8 CAM

0.1

1

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

w=16 w=32 w=64 w=128

N

Figure 43: Comparing EPO versus (N,w, c) for the SPM algorithm and the content
addressable memory.

Figure 44 plots simulation results for TPO. The TPO results are interesting and re-

quire several explanations. Similar to EPO, SPM and CAM show increases in TPO as N

increases. TPO is a measure of memory access delay. It is the amount of time required to

access the contents of memory. Access time and energy consumption depend on hardware

configurations such as memory layout and aspect ratios. CACTI performs layout optimiza-

tion, which can vary for different devices and different memory sizes. These optimizations

can be seen in Figure 44 where the CAM has some cases such that a larger value of N
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Figure 44: Comparing TPO versus (N,w, c) for the SPM algorithm and the content
addressable memory.

performs better than a smaller value of N .

Another observation from the TPO plots is how the parameter w affects TPO. Both

SPM and CAM have EPO that increases with N and w. However, TPO does not change

with w for SPM. The reason is that w is not a direct factor for a single SPM path matrix

partition. For a given value of w and c, SPM requires w
c partitions. Each partition has 2c

columns containing N bits per column. The memory consumption is exactly N2c bits for

a single partition. In other words, the TPO for a single partition is impacted by N and c,

and the complete SPM system operates w
c partitions in parallel. The dependence on c for

SPM’s TPO is clearly obvious from the TPO plots. For larger c, SPM requires more time.

Moreover, SPM’s TPO increases faster for larger values of c.

Figure 46 reveals the dynamic power consumed by each design. The dynamic power

of the systems appear to be comparable with each other. However, dynamic power results

alone do not give a complete picture of the overall performance of the algorithms. For

example, the dynamic power consumption of the four algorithms for w = 128 indicate

very little preference over each other. However, when these metrics are coupled with their
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Figure 45: Comparing EDP versus (N,w, c) for the SPM algorithm and the content
addressable memory.

associated energy-delay-products, as given by Figure 45, appropriate preference becomes

obvious. Particularly, EDP for the CAM can be orders of magnitudes larger than SPM for

any value of c. The result when coupled with dynamic power is that for a similar dynamic

power budget, the SPM algorithm can process a much larger number of packets per second.

Conversely, the SPM algorithm can process packets at speeds comparable to the CAM but

with significantly less power.

The total static power of each algorithm is provided in Figure 47. Static power is a

result of transistor leakage current. For w = 16 and w = 32, the static power of the CAM

coincides closely with the SPM algorithm with stride c = 8. The total number of bits used

by the SPM algorithm grows exponentially with c. Hence, for larger values of c, the SPM

algorithm will suffer from greater amounts of static power consumption.

Figure 48 provides the total power consumption (static + dynamic) of the four algo-

rithms. For c = 8 and w = 16, very little difference exists between SPM and CAM. Similar

to the other performance metrics, SPM with c = 2 and c = 4 perform comparable to each

other. Further, as w increases, the total power of the CAM increases faster that SPM.
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Figure 47: Comparing static power versus (N,w, c) for the SPM algorithm and the content
addressable memory.
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Figure 48: Comparing total power versus (N,w, c) for the SPM algorithm and the content
addressable memory.

Based on the simulations results presented in this section, it can be seen that, excluding

a few configurations with small N and w, the SPM algorithm significantly outperforms the

CAM. Moreover, the performance difference between the two systems grows faster as w

increases. Based on these results, the SPM algorithm appears to perform more optimally

with stride values of c = 2 and c = 4.

6.4 Summary

In this chapter, the SPM hardware-based packet classification algorithm was introduced.

SPM is based on the idea of merging the prefixes defined by filter specifications onto a

common graph structure. The constructs of the semantic association system are applied

to the prefix merger process, and the path matrix generated by the process is used as a

straightforward mechanism that can be constructed with slight modifications to the tra-

ditional set-associative cache architecture. Simulation results produced by the well-known

CACTI memory simulation framework have revealed that the SPM algorithm can signifi-

cantly outperform content addressable memories in terms of energy per operation, time per
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operation, energy delay product, dynamic power, static power, and total power.
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CHAPTER VII

ADVANCED CYBERATTACK DETECTION WITH

COMPUTATIONAL INTELLIGENCE SYSTEMS

Traditional cybersecurity architectures incorporate security mechanisms that provide ser-

vices such as confidentiality, authenticity, integrity, access control, and non-repudiation.

These services are used extensively to prevent computer and network intrusions and at-

tacks. For instance, access control services prevent unauthorized access to cyberresources

such as computers, networks, and data. However, the modern Internet security landscape

is characterized by attacks that are voluminous, constantly evolving, extremely fast, persis-

tent, and highly sophisticated [132, 9]. These characteristics impose significant challenges

on preventive security services. Consequently, methodologies that enable autonomic de-

tection and response to cyberattacks should be employed synergistically with prevention

techniques in order to achieve effective defense-in-depth strategies and robust cybersecurity

systems [63, 72, 123].

Cyberattack detection systems require algorithms that collect and analyze data gener-

ated by various events occurring within a cyber environment. The objective of a detection

algorithm is to accurately discover suspicious activities based on the analysis of event data.

This objective is fundamentally important as it forms the core of any attack detection sys-

tem. However, the objective is hard to achieve, especially in terms of accuracy. A detection

algorithm that generates inaccurate results can negatively impact the performance of the

entire system. Axelsson [12] claims that the performance of an intrusion detection system,

in terms of effectiveness, is limited by its false alarm rate. This performance limit is a conse-

quence of the base-rate fallacy. For example, inaccurate detection algorithms generate large

volumes of false alarms, which can lead to issues such as collateral damage, unnoticed de-

tection of live attacks or intrusions, and unmanageable numbers of alarm notifications that

overwhelm security administrators. Consequently, research has explored new algorithms
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and methodologies aiming to increase the performance and accuracy of detection systems

[13, 45, 8, 167, 76].

The study of computational intelligence systems (CIS) is concerned with the theory and

design of evolutionary and adaptive systems that possess emergent behavior and intelligent

decision making capabilities and that operate within complex and dynamic environments

[156]. These systems are generally designed to cope with high dimensional and noisy data

during their decision making processes. Since cyberattack detection systems are faced with

large volumes of high dimensional data along with continuously evolving attack charac-

teristics, computational intelligence systems have become logical choices to consider when

designing new classification algorithms for detection systems.

Computational intelligence algorithms based on new hybridization and ensemble method-

ologies are presented in this chapter. The algorithms are constructed as generalized systems

with no underlying domain-specific assumptions influencing the design. However, the sys-

tems are evaluated as classification frameworks for cyberattack and intrusion detection.

7.1 Datasets and Performance Metrics for Evaluating Cyberattack De-
tection Systems

Appropriate datasets for training and testing classification algorithms along with reliable

metrics to evaluate classification performance are needed for the design of effective cyber-

attack detection systems. This section discusses the datasets and performance metrics used

to evaluate the classification algorithms proposed in this chapter.

7.1.1 Datasets

Datasets containing relevant features that characterize cyberattacks are needed for the de-

sign, evaluation, and comparative analysis of new classification algorithms for attack detec-

tion systems. However, datasets and testing environments for evaluating attack detection

systems are rare [11]. Of the few datasets publicly available, the ones most frequently used

by researchers were produced by the DARPA intrusion detection evaluation program [146].

The objective of the DARPA intrusion detection evaluation program was to produce a col-

lection of standardized datasets that could be used to formally evaluate and objectively
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compare the performance of intrusion detection systems [90]. The datasets have played a

critical role in the advancement of intrusion detection systems along with the development

of new attack detection and classification algorithms. The DARPA datasets were collected

at MIT Lincoln Laboratories during the years 1998, 1999, and 2000. These datasets contain

various types of audit data with features representing normal and attack traffic.

The KDD CUP99 dataset, which was used as a benchmark for the Third International

Knowledge Discovery and Data (KDD) Mining Tools Competition, is frequently used to

evaluate intrusion and attack detection algorithms. The CUP99 dataset is a derivative

of the 1998 DARPA dataset (DARPA98). DARPA98 contains audit data generated by

simulated background traffic representing normal packet flows between a military network

and the Internet along with traffic representing attack packet flows.

The CUP99 data are viewed as sequences of connection records representing unique

packet flows. A flow can be defined, similar to the packet filters of a firewall, by specifying

a matching criteria over some set of header fields. The canonical flow is specified by a

5-tuple containing source IP address, destination IP address, source port, destination port,

and protocol type. The records are classified by two types of flows: attack flows or normal

flows. The attack flows are further categorized by 24 unique attack types.

Each record of the CUP99 dataset contains 42 fields. One field provides a label specify-

ing the record’s flow type, i.e., normal or attack type. The remaining 41 fields are comprised

of features representing data extracted from the flow. The features are categorized as ba-

sic TCP features, content features, network-based traffic features, and host-based traffic

features. The features are encoded numerically or symbolically. The goal of the KDD com-

petition was to use the CUP99 dataset as a benchmark for evaluating attack classification

algorithms produced by the various competitors of the KDD mining tools competition.

The DARPA and CUP99 datasets are out of date. Further, these datasets have been

criticized by several whose investigations have discovered various limitations and deficiencies

of the data [96, 145]. However, the datasets remain widely used for testing and evaluation

of attack detection and classification algorithms because there are no suitable alternatives

currently available [113, 39].
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In this chapter, classification algorithms for the cyberattack detection problem are intro-

duced. Each algorithm was evaluated with the CUP99 dataset. Particularly, the well-known

10% CUP99 dataset was employed.

7.1.2 Performance Metrics

The accuracy of a classification algorithm is a key performance indicator that determines

the algorithm’s suitability for solving a particular problem. However, other performance

indicators are commonly measured in conjunction with accuracy. For example, true positive

rates and true negative rates measure a classifier’s capability to correctly distinguish pos-

itive cases from negative cases. Classification problems based on two-class decision spaces

can use positive and negative rates as performance measures. However, the positive and

negative classes must be defined when designing the classifier. Many researchers who design

algorithms for intrusion and attack detection problems define attack instances as the pos-

itive class and normal instances as the negative class. This is especially true for classifiers

implementing anomaly detection. Anomaly detection is based on audit data that represents

normal instances and instances deviating from the characteristics underlying the audit data

are assumed to be anomalous and, by definition, indicative of an attack. Deviations indicate

‘positively’ that the instance is an anomaly. Hence, classification of an anomaly is defined

to be positive whereas classification of a normal instance is defined to be negative, i.e., not

anomaly.

The new classification algorithms proposed in this chapter for the attack detection prob-

lem were trained and tested with the CUP99 dataset. CUP99 contains records representing

audit data that characterize both normal instances (normal traffic flows) and attack in-

stances (attack traffic flows). Moreover, the dataset is comprised of a multiplicity of attack

types. Consequently, CUP99 can be used to evaluate detection systems based on two-

class or multi-class classification algorithms. The algorithms proposed in this chapter are

designed as two-class classification systems.

Since CUP99 contains audit data characterizing normal and attack instances, several

design scenarios can be considered. The data can be partitioned into normal classes for the
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design of anomaly detection, into attack classes for misuse detection, or the data can remain

un-partitioned for mixed detection. The classification algorithms presented in this chapter

were trained and tested as two-class mixed detection (non-partitioned) methodologies.

The mixed detection approach with two-class (binary) classification enables two per-

spectives for defining the positive and negative classes. These perspectives are illustrated

by Table 22. The perspective defining the normal class to be positive and the attack class

to be negative was chosen for the work described in this chapter.

Table 22: Perspectives of the positive and negative classes for mixed detection binary
classification.

Positive Negative
Normal Attack (NOT Normal)
Attack Normal (NOT Attack)

Several metrics are commonly used when evaluating the performance of classification

algorithms. Classification accuracy is a key performance indicator of classification systems.

However, accuracy measurements alone do not provide complete information for compara-

tive analysis and optimization purposes. Other key performance indicators include metrics

such as error rates, true/false positive/negative rates, and predictive rates.

Evaluations of the new algorithms introduced in this chapter where made with the basis

parameters shown in Table 23 and the performance metrics shown in Table 24.

Table 23: Basis parameters of the performance metrics defined in Table 24.

Symbol Description
TP Total number of true positives
TN Total number of true negatives
FP Total number of false positives
FN Total number of false negatives

7.2 Cyberattack Detection with Hybrid Intelligent Systems

Classification systems, in general, attempt to map the features of an input space to classes

of an output space. For this to be accomplished reliably, the classification algorithm needs a
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Table 24: Definitions and nomenclature of the performance metrics used to evaluate the
proposed classification algorithms.

Name Symbol Calculation

Accuracy ACC ACC = TP+TN
TP+TN+FP+FN

Positive Prediction Rate PPR PPR = TP
TP+FP

Negative Prediction Rate NPR NPR = TN
TN+FN

False Discovery Rate FDR FDR = FP
TP+FP

False Positive Rate FPR FPR = FP
TN+FP

False Negative Rate FNR FNR = FN
TP+FN

collection of data that appropriately characterizes the input-output mappings and a learning

algorithm that teaches the classifier how to assign the mappings.

In this section, a hybrid intelligent system based on self-organizing maps and Bayesian

learning networks is proposed [152]. The details of the algorithm are provided along with its

classification performance derived from simulation results obtained with the CUP99 dataset.

7.2.1 The HBSOM Classification Algorithm

The Bayesian Learning Network (BLN) is a graphical computation approach to learning and

reasoning with domain specific data [111, 112]. The general construct of a BLN includes the

representation of features from a given knowledge domain as the nodes of a directed acyclic

graph (DAG). Directed edges between the nodes of a BLN represent feature space depen-

dencies. Let Xi and Xj be two features (i.e., random variables) from a knowledge domain

having an n+ 1 dimensional feature space described by a collection of domain specific data

D = {(X1, . . . , Xn, Y )}. A directed edge e = (Xi, Xj) in the BLN indicates a dependency

between the features Xi and Xj , and the significance of a dependency is measured as a con-

ditional probability. Particulary, the data D contains prior knowledge related to a specific

domain. The BLN encodes this prior knowledge as a directed acyclic graph. The graph
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represents joint distributions of the complete feature space with a collection of conditional

probabilities implied by edges of the DAG.

When viewed in the context of classification, a BLN seeks to provide answers to queries

regarding existential questions of particular instances described by the feature space. The

general objective of classification is to answer queries of the form given by Equation 3 where

the collection X1, . . . , Xn are features and Y is a class variable (or target class).

Q : X1 ×X2 × . . . ×Xn −→ Y (3)

Bayes theorem provides the quantitative foundation for answering queries such as Equa-

tion 3 over the feature space represented by a BLN. Given two events A and B, Bayes

theorem states the following:

P (A|B) = P (B|A)
P (B) P (A)

An answer to the query y = Q(x1, . . . , xn) submitted to a BLN is given by P (y|x1, . . . , xn).

More specifically, the most appropriate answer to the query Q(·) given by the BLN should

be the most probable value of y ∈ Y given that ((x1 ∈ X1) ∧ (x2 ∈ X2) ∧ . . . ∧ (xn ∈ Xn)).

Let this most probable value be denoted by y∗. The representative data D contains a col-

lection of known instances (x1 ∈ X1, . . . , xn ∈ Xn, y ∈ Y ) from which the joint probability

distributions can be calculated, and Bayes theorem provides the quantitative machinery

that enables the determination of y∗. Specifically, y∗ is the value of y ∈ Y that maximizes

P (Y |x1, . . . , xn) as illustrated by Equation 4.

y∗ = arg max
y∈Y

P (y|x1, . . . , xn) = arg max
y∈Y

P (x1, . . . , xn|y)
P (x1, . . . , xn)

P (y) (4)

The term P (x1, . . . , xn) is independent of Y and, therefore, the arg max functionality from

Equation 5 is independent of P (x1, . . . , xn), which simplifies to Equation 5.

y∗ = arg max
y∈Y

P (x1, . . . , xn|y)P (y) (5)

A special case of Bayesian learning networks occurs if the features are conditionally

independent. When the features are conditionally independent, the BLN is a bipartite

graph with edges directed from the features Xi to the target class Y and no edges between

the collection of features. This special case is known as the naive Bayesian learning network
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(NBLN). Conditional independence of the feature space allows Equation 4 to be rewritten

as shown by Equation 6.

y∗ = arg max
y∈Y

P (x1, . . . , xn|y)
P (x1, . . . , xn)

P (y) = arg max
y∈Y

P (y)
∏

P (xi|y) (6)

Self-Organizing Maps (SOM) belong to the class of unsupervised artificial neural net-

works (ANNs). The SOM transforms a high dimensional input domain to elements of a

low dimensional array of neurons [82, 83]. The SOM is a grid of nodes indexed by grid

coordinates g = (i, j), and each node ηij represents a neuron having a weight vector ωij of

length n, where ωij is an element of the n-dimensional space of real vectors: ωij ∈ Rn. The

SOM is a clustering algorithm. Given a set of training data X = {xk} where xk ∈ Rn, the

goal of the SOM algorithm is to modify the weight vectors of the underlying neural grid

in such a way to represent the set of training data X. To achieve this objective, the SOM

employs a clustering algorithm based on the concept of elastic interconnections between the

nodes of the neural grid.

The training algorithm of the SOM is described by the following. Let d(xk, ωij) be a

function describing the distance between an input vector xk and a weight vector ωij . Let

the best matching unit (BMU) of the grid be described by the index g∗ = (i∗, j∗) that

minimizes the distance function:

g∗ = arg min(d(xk, ωij))

The SOM employs a weight update rule that modifies each weight vector based on the input

vector and the distance of each node in the grid from the BMU. Equation 7 describes the

SOM weight update rule.

ωij(t) = ωij(t− 1) + α(t)[xk(t)− ωij(t)]H(g∗) (7)

From Equation 7, α(t) is the learning rate of the training algorithm, normally chosen to be

a monotonically decreasing function of the training epoch t, and H(g∗) is referred to as the

neighborhood function, which decreases with distance from the BMU and models elastic

interconnections between the neural nodes of the grid. Equation 8 illustrates a particular

neighborhood function.

H(g∗) = H(i∗, j∗) = e[(i∗−i)2+(j∗−j)2]1/2 (8)
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According to the theory of self-organizing maps given by Kohonen [82], the weight update

rule given by Equation 7 produces a collection of weights representing the training data

such that upon convergence ωij(t) ≈ ωij(t− 1).

Figure 49 will be used to illustrate this weight training process. A single neuron is

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 0

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 10

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 20

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 30

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 40

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 50

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 60

0 0.5 1
0

0.5

1

W
i

T
i

Weights versus Targets at t = 70

0 0.5 1
0

0.5

1
W

i

T
i

Weights versus Targets at t = 80

Figure 49: Learning weights.

simulated that is initiated with a weight vector consisting of a randomly generated set of

1000 values. A single target vector with 1000 elements is used as the training data. The

algorithm employs a constant learning rate of α = 0.5. Figure 49 plots the target vector

versus the weight vector as the training epoch is increased from t = 0 to t = 80. The

emergence of a straight line indicates how the weight vector successfully converges towards

the target vector with increasing training epochs.

The HBSOM algorithm is a hybrid intelligent system that hybridizes naive Bayesian

learning networks with self-organizing maps. HBSOM augments the theory of self-organizing
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maps. In particular, an attribute variable is assigned to each node of the SOM grid. Dur-

ing training, the class label of the training data is assigned to the attribute of the BMU.

After training, the augmented SOM classifies input data by way of locating the BMU and

responding with its attribute value. This augmented SOM implements the following classi-

fication query:

ysom = Q(x1, x2, . . . , xn) = SOM.BMU(x1, x2, . . . , xn).attribute

The NBLN of the HBSOM algorithm classifies data by augmenting the input data with

the output of the augmented SOM. In particular, the HBSOM implements an NBLN that

responds to queries as follows:

ynbln = Q(x1, x2, . . . , xn, ysom)

In short, the HBSOM algorithm uses an augmented SOM that classifies input data, and

the SOM output is provided along with the input data to the NBLN that performs a final

classification decision.

The HBSOM algorithm is trained as follows. First, the SOM learns from the associated

training data representing the particular classification problem. Once the SOM has been

trained, a modified collection of training data is created where the input space is augmented

with the output of the trained SOM. The NBLN, in turn, learns from this modified collection

of training data. Once the NBLN has been trained, classification of data proceeds as follows.

The input data vector is submitted to the SOM. The SOM’s output is then appended to the

input vector and submitted to the NBLN. The NBLN receives the appended input vector,

classifies it, and produces the final output for the system.

7.2.2 Simulation Results

The CUP99 dataset was used to evaluate the performance of the HBSOM algorithm. The

simulations compared the performance of a non-hybrid NBLN to the performance of HB-

SOM. The classifiers were trained and tested with host-based and network-based features

from the CUP99 dataset. A training data subset was selected randomly from the overall

dataset. Likewise, a testing data subset was selected randomly for testing the associated

algorithms. The classification results produced by the simulations are given by Table 25.
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The columns of the table are labeled by NBLN −HN,NBLN −N,HBSOM −HN, and

HBSOM − N , which represent the results of the NBLN using host and network based

features (HN) along with just network based features (N). Similarly, the column labeled

HBSOM-HN represent the results of the HBSOM algorithm using host and network based

features while the column labeled HBSOM-N represents the results of the HBSOM algo-

rithm using just network based features. The results shown in Table 25 reveal that both

Table 25: Classification results produced by simulations of the HBSOM and NBLN algo-
rithms.

NBLN-HN NBLN-N HBSOM-HN HBSOM-N
Total Test Cases 65505 62047 65505 62407
Cases Correctly Classified 65019 59734 65238 61631
Cases Incorrectly Classified 486 2313 267 416
Percent Accuracy 99.26% 96.27% 99.59% 99.33%

approaches to classifying the types of traffic flows contained within the CUP99 dataset

produce respectable accuracies. However, HBSOM had a noticeable gain in classification

accuracy compared to the non-hybrid NBLN when only network-based features were used

for training and testing.

7.3 Cyberattack Detection with Ensembles of Computational Intelli-
gence Systems

The performance of an artificial neural network is sensitive to the selection of parame-

ters that define its overall configuration. Some of these parameters include the transfer

function used within each layer, the total number of layers, the total number of units per

layer, the learning rate, the training algorithm, and the number of training epochs to use.

Furthermore, these parameters are not generalized to any given network and depend on

characteristics of the classification data. Appropriate selection of neural network parame-

ters is typically a trial-and-error process whereby the designer seeks the set of parameters

that minimize classification error produced by the network. Optimization algorithms that

autonomically tune the parameters of artificial neural networks can alleviate the trial-and-

error parameter selection process and can lead to neural networks with better classification
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accuracy.

In this section, a classification algorithm for attack detection based on ensembles of

neural networks is proposed. The novelty of the algorithm stems from the methodology

employed for combining outputs of neural network ensembles. Particularly, a neural network

oracle is utilized to combine the ensemble outputs. The neural network oracle is constructed

with a genetic algorithm that finds a set of configuration parameters that produce high

classification accuracy and low classification error.

7.3.1 The NNO Classification Algorithm

The proposed algorithm referred to as NNO employs a genetic algorithm to find an optimal

selection of configuration parameters for a neural network oracle, which is responsible for

combining the outputs of an ensemble of neural networks that classify features belonging to

audit data for the cyberattack detection problem. The overall idea is described as follows.

A set of artificial neural networks η = {ηi} is assigned to features of the collection of labeled

audit data that describe a classification domain. The collection of ANNs are trained with

standard procedures. Once the collection has been trained, the training data is used to

generate a secondary set of training data. The secondary set of training data contains the

output of each ANN along with the actual output defined by the baseline training data.

The secondary training data is then used to train the neural network oracle. However, the

oracle uses a genetic algorithm to find the set of configuration parameters that minimizes

its error.

The algorithm consists of two primary phases. During phase 1, a GA is constructed that

contains a population of chromosomes that are numerical representations of ANN configu-

ration parameters. At each evolution time epoch, t, the chromosome for each population

member is submitted to the ANN. The ANN maps the chromosome’s numerical values to

their respective parameter types, implements a self-configuration based on these values, and

then learns from a training set. Once the ANN has been trained, a set of labeled valida-

tion data from the input-output space is used to evaluate the ANN’s post-training error

response. This error response is then used to evaluate the fitness of the population member
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whose chromosome was submitted to the ANN for configuration and training. Since the

goal is to find an ANN with minimal error, the error response, which is given by Equation

9, is used as input to the fitness function of the genetic algorithm.

Ei =

√√√√ N∑
j=1

(f(xj)− fa(xj))2 (9)

In Equation 9, Ei is the error of the ANN configured and trained based on the chromo-

some hi of the ith population member. f(x) is the value of the target function for input x,

whereas fa(x) is the approximation of f(x) produced by the ANN. The error is calculated

over a total of N evaluations from a validation dataset. The fitness function for the system

is given by Equation 10.

F (hi;Ei) =
1
Ei

(10)

The fitness function is inversely proportional to the error of the ANN configured by param-

eters represented by the ith chromosome (i.e., the ith hypothesis hi) of the GA’s population.

With the fitness function of Equation 10, a decrease in error produced by an ANN configured

via hi produces an increase in fitness, which is the underlying objective of the algorithm.

The steps described above are performed for each member of the GA’s population. Once

each member in the population has been evaluated for fitness, the GA performs selection,

crossover, and mutation operations and then proceeds to the next evolution epoch, t+1.

This entire process proceeds until the evolution process terminates.

During phase 2, which proceeds after the simulated evolution process terminates, the

GA submits the chromosome from the terminal population’s best fit individual to the ANN.

The ANN uses this chromosome to configure its parameters and then trains from a set of

phase-2 training data. Once this training is complete, the system is ready to be deployed

for its target application.

7.3.2 Simulation Results

The NNO ensemble methodology investigated for the cyberattack detection problem used a

neural network oracle parametrically optimized with genetic algorithms as described above.

Although several parameters can be considered for the optimal response of the NNO, the
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evaluations described in this section were based on an NNO configured with two hidden

layers of nodes. The optimal parameters that were determined with the genetic algorithm

included the number of neural units (nodes) to use for the first and second hidden layers,

the type of transfer functions to use in the hidden layers, and the type of transfer function

to use for the output layer.

The CUP99 dataset was used to evaluate the performance of the proposed system. An

ensemble of 41 neural networks was created. Each feature of the CUP99 dataset was as-

signed to a single member of the ensemble. A subset of the CUP99 dataset was extracted

for training. Each neural network was trained with respect to its corresponding feature.

After the ensemble components were trained, a secondary training set was produced by

collecting the output of each neural network in the ensemble over the phase-1 testing data

and augmenting these outputs with the target class associated with each corresponding

training vector. This secondary set of training data was then used to train the NNO. The

NNO was parametrically optimized with a genetic algorithm as described above. Once the

genetic algorithm converged to a best fit candidate representing the configuration parame-

ters that minimized the NNO’s error response with respect to the training data, the NNO

was configured and trained via these parameters.

The simulation methodology is described as follows. The CUP99 dataset was partitioned

into two disjoint sets comprising training data and testing data. The training procedure

was described above. For evaluation, testing proceeded as follows. A total of 500 trials

was performed. For each trial, a random selection of records were selected from the test

data, and performance metrics of the algorithm were computed and stored as average values.

Moreover, the performance of the proposed algorithm was compared to that of the weighted

majority vote (WMV) algorithm.

Figure 50 plots the average accuracy over 500 trials for each of the 41 neural networks of

the ensemble along with the accuracy of the NNO. The accuracy of the NNO is highlighted

by the thick black line towards the top of the figure. Two things should be noted from

Figure 50. First, the range of accuracies reveals that the system has diversity, which is a

fundamental requirement for the design of ensemble systems. The accuracies indicate that
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Figure 50: Accuracies of the individual ensemble members and the neural network oracle
over the 500 trials.

some of the networks are poor classifiers, some are decent classifiers, and some are good

classifiers. Second, the NNO performs consistently better than any given member of the

ensemble.

Figure 51 provides a bar chart showing the average of the accuracies produced over the

500 trials for each neural network of the ensemble along with the NNO and WMV. As seen

from the figure, the NNO outperforms each of the ensemble members as well as the WMV

algorithm.

The frequency distributions of the various metrics calculated over the 500 trials for

the ensemble components, the NNO method, and the WMV method were generated in

order to provide a finer-grained perspective of the performance of each system. A bin

width of 0.01 was used to calculate the frequency distributions. Each of the following

figures provide metrics for ensemble members, NNO, and WMV. The ensemble results are

provide for completeness and for illustrating diversity of the system. However, comparing

the performance of NNO versus WMV is the main objective.
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Figure 51: Bar chart revealing the average accuracies produced over the 500 trials.

Figure 52 plots the frequency distributions for classification accuracies. As seen by

the lower right plot, NNO has better accuracy than WMV. Figure 53 plots the frequency

distributions for positive prediction rates (PPR) for each classification algorithm. PPR

measures how well a classification algorithm predicts the positive class correctly. As seen

in the figure, NNO has a better PPR than WMV.

Figure 54 plots the negative prediction rate (NPR) of the algorithms. NPR measures

how well a classification algorithm correctly classifies negative instances. For NPR, NNO

and WMV both perform well and similarly. Figure 55 provides the false discovery rates

(FDR) produced by the simulations for the classification algorithms. FDR should be small

for good classification algorithms. As seen in the figure, NNO has better FDR performance

than WMV.
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Figure 52: Frequency distribution of the accuracies for each system over 500 simulation
trials.
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Figure 53: Frequency distribution of the PPR for each system over 500 simulation trials.
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Figure 54: Frequency distribution of the NPR for each system over 500 simulation trials.
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Figure 55: Frequency distribution of the FDR for each system over 500 simulation trials.
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Figures 56 and 57 plot the frequency distributions for the false positive rates (FPR) and

false negative rates (FNR), respectively. Similar to FDR, a good classification algorithm

should have small FPR and FNR. As seen in Figure 56, NNO has better FPR performance

than WMV. However, NNO and WMV perform comparably for FNR.
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Figure 56: Frequency distribution of the FPR for each system over 500 simulation trials.

Based on the results obtained from simulations along with analysis of its performance

metrics, the proposed ensemble methodology using a parametrically optimized neural net-

work oracle provides good performance as a classification system for the cyberattack detec-

tion problem.

7.4 Summary

In this chapter, two classification algorithms for the cyberattack detection problem were in-

troduced. The HBSOM algorithm is based on the notion of hybrid intelligent systems. HB-

SOM utilizes a modified version of self-organizing maps in conjunction with naive Bayesian

learning algorithms. The second algorithm employs an ensemble of neural networks along
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Figure 57: Frequency distribution of the FNR for each system over 500 simulation trials.

with a neural network oracle with its configuration parameters optimized by genetic algo-

rithms using a fitness function evaluated with neural network error responses. The perfor-

mance evaluation of the proposed algorithms were based on the CUP99 intrusion detection

dataset. According to the simulation results obtained, both algorithms were shown to pro-

vide good classification performance when trained and tested with the CUP99 intrusion

detection dataset.
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CHAPTER VIII

CONCLUSION

Current cybersecurity architectures and infrastructures continue to be dominated by quasi-

monolithic and perimeter-based security mechanisms that aim to provide security services

for elements comprising an organization’s overall cyber environment. For example, perime-

ter firewalls and intrusion detection systems provide network access control and detection

services for resources contained within the network boundaries of an organization. How-

ever, perimeter-based, isolated, non-cooperative, and administratively reactive techniques

are becoming ineffective, and this is especially true for emergent platforms such as the

mobile Internet and cloud computing in which the constituent computational and network-

ing resources reside outside of enterprise topologies and perimeters. Although individual

hosts within the organization typically employ host-based firewalls and other services such

as virus scanning software, these systems very seldom operate as collaborative and co-

ordinated mechanisms. A modern framework is needed that guides the design of highly

modular, adaptable, and integrable security architectures where any cyber device within

a security infrastructure is capable of detecting and responding to attacks. To address this

need, the distributed firewall and active response architecture was introduced in this dis-

sertation. The architecture is based on trusted domains of administration whereby cyber

entities implement the trusted domain of administration host architecture. The disserta-

tion also introduced a new firewall-based blacklist classification and enforcement model the

describes how blacklists should be implemented by firewall systems.

Research by the packet classification community over recent years suggests that hardware-

based packet classifiers are much desired because software-based packet classification solu-

tions cannot satisfy the stringent constraints of modern-day IP networks, especially within

the core of the Internet’s routing infrastructure. Others suggest that future packet clas-

sification systems will likely be hybrids comprised of software components coupled with
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hardware acceleration components. In an effort to address the fundamental packet clas-

sification problem, the theory of semantic association systems was developed from which

the semantic path merger (SPM) algorithm was derived. The semantic path merger al-

gorithm and its hardware implementation are core contributions of this dissertation that

significantly advance the state-of-art in packet classification algorithms. Simulation results

of the hardware implementation revealed significant performance improvements over the de

facto content addressable memory.

The modern Internet security landscape is characterized by attacks that are voluminous,

constantly evolving, extremely fast, persistent, and highly sophisticated. Consequently,

security researchers must continuously strive to find new classification algorithms that are

capable of detecting cyberattacks. In an effort to address this challenge, the HBSOM and

NNO algorithms were introduced as new classification algorithms for cyberattack detection

systems. HBSOM hybridizes Bayesian learning networks with self-organizing maps. NNO

uses a genetic algorithm to parametrically optimize a neural network oracle that combines

the output results generated by an ensemble of neural networks. Simulation results showed

that these algorithms perform robustly when classifying cyberattacks.

In conclusion, this dissertation provided novel algorithms, theories, and supporting

frameworks to significantly improve the growing problem of Internet security. The ob-

jectives of this dissertation research were (1) to study the characteristics needed for reliable

distributed Internet security architectures and infrastructures, (2) to design a modular,

adaptive, and integrable framework for distributed Internet security infrastructures, (3) to

develop robust solutions addressing the fundamental packet classification problem, and (4)

to develop new classification algorithms for advanced cyberattack detection systems.

As a result of these objectives, the contributions provided by this dissertation are the

following:

• The distributed firewall and active response architecture.

• A firewall-based blacklist classification and enforcement model.

• The theory of semantic association systems.

139



• The semantic path merger packet classification algorithm and its hardware implemen-

tation.

• Advanced cyberattack detection algorithms based on computational intelligence sys-

tems.

The distributed firewall and active response architecture is a modular, adaptive, and inte-

grable distributed security framework that enables cyber devices within an organization’s

cyber infrastructure to participate in the detection of and response to cyberattacks. The

architecture is a supporting contribution that establishes the foundation upon which the

core contributions of this dissertation are framed. Particularly, the distributed firewall and

active response architecture requires (1) efficient packet classification algorithms to enable

its novel firewall-based blacklist classification and enforcement model and (2) effective clas-

sification algorithms for cyberattack detection. While studying packet classification and

cyberattack detection algorithms, the theory of semantic association systems was devised

and formulated. The theory of semantic association systems was inspired by the emerging

field of semantic computing. The theory defines a compositional model and a family of

graph theoretic constructs supporting the notion of merged conceptualization. From this

theory and the notion of merged conceptualization, the semantic path merger packet classi-

fication algorithm was derived along with its hardware-based implementation. The theory

of semantic association systems, the semantic path merger algorithm, and the hardware im-

plementation of the semantic path merger algorithm as a packet classification system are the

core contributions of this dissertation. Finally, two novel cyberattack detection algorithms

have been developed. The first detection algorithm is a hybridization of self-organizing

maps and naive Bayesian learning networks. The second detection algorithm is a neural

network ensemble coupled with a parametrically optimized neural network oracle that com-

bines ensemble classification results. The oracle’s network configuration is parametrically

optimized with genetic algorithms.
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APPENDIX A

CACTI 6.5 CONFIGURATION EXAMPLE

The following provides an example of a configuration file for the Cacti 6.5 cache/memory
simulator.
########### CACTI 6.5 Configuration File ##########################

# A basic Cacti 6.5 Configuration File Example.

#

# NOTES:

# 1. Lines beginning with # or // are comments.

#

# 2. Parameters and their arguments are used based on the

# type of memory being simulated. Various memory structures

# will not utilize all of these parameters.

#

# 3. Reference technical reports for Cacti versions 1.0, 2.0, 3.2,

# 4.1, 5.3, and 6.5 for specific details of the simulator as

# well as detailed explanations of the configuration parameters

# below. Technical reports available from HP Research Labs located

# at http://www.hpl.hp.com/research/cacti/.

####################################################################

# Cache size

//-size (bytes) 4096

-size (bytes) 524288

//-size (bytes) 1048576

//-size (bytes) 2097152

//-size (bytes) 4194304

//-size (bytes) 8388608

//-size (bytes) 16777216

//-size (bytes) 33554432

//-size (bytes) 134217728

//-size (bytes) 67108864

//-size (bytes) 1073741824

# Line size

//-block size (bytes) 8

//-block size (bytes) 128

-block size (bytes) 32768

# To model Fully Associative cache, set associativity to zero

#

# Fully Associative

//-associativity 0

# Direct Mapped

-associativity 1

# m-way set associative: m := 2|4|8|16

//-associativity 2

//-associativity 4

//-associativity 8

//-associativity 16

-read-write port 1

-exclusive read port 0

-exclusive write port 0

-single ended read ports 0

# Multiple banks connected using a bus

-UCA bank count 1
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# Technology Node

//-technology (u) 0.032

//-technology (u) 0.045

//-technology (u) 0.068

-technology (u) 0.090

# Main memory parameters

-page size (bits) 8192

-burst length 8

-internal prefetch width 8

# The following parameter can have one of five values:

# (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)

//-Data array cell type - "comm-dram"

//-Data array cell type - "itrs-hp"

//-Data array cell type - "itrs-lstp"

-Data array cell type - "itrs-lop"

# The following parameter can have one of three values:

# (itrs-hp, itrs-lstp, itrs-lop)

//-Data array peripheral type - "itrs-hp"

//-Data array peripheral type - "itrs-lstp"

-Data array peripheral type - "itrs-lop"

# The following parameter can have one of five values:

# (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)

-Tag array cell type - "itrs-lop"

//-Tag array cell type - "itrs-lstp"

# The following parameter can have one of three values:

# (itrs-hp, itrs-lstp, itrs-lop)

-Tag array peripheral type - "itrs-lop"

//-Tag array peripheral type - "itrs-lstp"

# Bus width include data bits and address bits required by the decoder

-output/input bus width 256

//-output/input bus width 256

// Temperature range 300-400 in steps of 10

-operating temperature (K) 350

# Type of memory - cache (with a tag array),

# or ram (scratch ram similar to a register file),

# or cam,

# or main memory (no tag array and every access will happen

# at a page granularity Ref: CACTI 5.3 report)

#

//-cache type "cache"

-cache type "ram"

//-cache type "main memory"

# To model special structure like branch target buffers, directory, etc.

# change the tag size parameter

# if you want cacti to calculate the tagbits, set the tag size to "default"

-tag size (b) "default"

//-tag size (b) 45

# fast - data and tag access happen in parallel

# sequential - data array is accessed after accessing the tag array

# normal - data array lookup and tag access happen in parallel

# final data block is broadcasted in data array h-tree

# after getting the signal from the tag array

//-access mode (normal, sequential, fast) - "fast"

-access mode (normal, sequential, fast) - "normal"

//-access mode (normal, sequential, fast) - "sequential"

# DESIGN OBJECTIVE for UCA (Uniform Cache Access)
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# or banks in NUCA (Non Uniform Cache Access

-design objective (weight delay, dynamic power, leakage power, cycle time, area) 0:100:0:0:0

# Percentage deviation from the minimum value

# Ex: A deviation value of 10:1000:1000:1000:1000 will try to find an organization

# that compromises at most 10% delay.

# NOTE: Try reasonable values for % deviation. Inconsistent deviation

# percentage values will not produce any valid organizations. For example,

# 0:0:100:100:100 will try to identify an organization that has both

# least delay and dynamic power. Since such an organization is not possible, CACTI will

# throw an error. Refer CACTI-6 Technical report for more details

-deviate (delay, dynamic power, leakage power, cycle time, area) 60:100000:100000:100000:1000000

# Objective for NUCA

-NUCAdesign objective (weight delay, dynamic power, leakage power, cycle time, area) 100:100:0:0:100

-NUCAdeviate (delay, dynamic power, leakage power, cycle time, area) 10:10000:10000:10000:10000

# Set optimize tag to ED or ED^2 to obtain a cache configuration optimized for

# energy-delay or energy-delay sq. product

# Note: Optimize tag will disable weight or deviate values mentioned above

# Set it to NONE to let weight and deviate values determine the

# appropriate cache configuration

//-Optimize ED or ED^2 (ED, ED^2, NONE): "ED"

//-Optimize ED or ED^2 (ED, ED^2, NONE): "ED^2"

-Optimize ED or ED^2 (ED, ED^2, NONE): "ED"

-Cache model (NUCA, UCA) - "UCA"

//-Cache model (NUCA, UCA) - "NUCA"

# In order for CACTI to find the optimal NUCA bank value the following

# variable should be assigned 0.

-NUCA bank count 0

# NOTE: for nuca network frequency is set to a default value of

# 5GHz in time.c. CACTI automatically

# calculates the maximum possible frequency and downgrades this value if necessary

# By default CACTI considers both full-swing and low-swing

# wires to find an optimal configuration. However, it is possible to

# restrict the search space by changing the signalling from "default" to

# "fullswing" or "lowswing" type.

//-Wire signalling (fullswing, lowswing, default) - "Global_10"

-Wire signalling (fullswing, lowswing, default) - "default"

//-Wire signalling (fullswing, lowswing, default) - "lowswing"

-Wire inside mat - "global"

//-Wire inside mat - "semi-global"

-Wire outside mat - "global"

-Interconnect projection - "conservative"

//-Interconnect projection - "aggressive"

# Contention in network (which is a function of core count and cache level) is one of

# the critical factor used for deciding the optimal bank count value

# core count can be 4, 8, or 16

//-Core count 4

-Core count 8

//-Core count 16

-Cache level (L2/L3) - "L3"

-Add ECC - "false"

//-Print level (DETAILED, CONCISE) - "CONCISE"

-Print level (DETAILED, CONCISE) - "DETAILED"

# for debugging

-Print input parameters - "true"

//-Print input parameters - "false"
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# force CACTI to model the cache with the

# following Ndbl, Ndwl, Nspd, Ndsam,

# and Ndcm values

//-Force cache config - "true"

-Force cache config - "false"

-Ndwl 64

-Ndbl 64

-Nspd 64

-Ndcm 1

-Ndsam1 4

-Ndsam2 1
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APPENDIX B

CACTI 6.5 SIMULATION OUTPUT

The following data results from running Cacti 6.5 using the configuration file presented in
Appendix A.
####

# Cacti 6.5 Output for RAM of size 512KB with a Block size (length of the bitline)

# of 32768 Bytes = 256K bits.

Cache size : 524288

Block size : 32768

Associativity : 1

Read only ports : 0

Write only ports : 0

Read write ports : 1

Single ended read ports : 0

Cache banks (UCA) : 1

Technology : 0.09

Temperature : 350

Tag size : 42

cache type : Scratch RAM

Model as memory : 0

Access mode : 0

Data array cell type : 2

Data array peripheral type : 2

Tag array cell type : 2

Tag array peripheral type : 2

Design objective (UCA wt) : 0 100 0 0 0

Design objective (UCA dev) : 60 100000 100000 100000 1000000

Design objective (NUCA wt) : 100 100 0 0 100

Design objective (NUCA dev) : 10 10000 10000 10000 10000

Cache model : 0

Nuca bank : 0

Wire inside mat : 2

Wire outside mat : 2

Interconnect projection : 1

Wire signalling : 0

Cores : 8

Print level : 1

ECC overhead : 0

Page size : 8192

Burst length : 8

Internal prefetch width : 8

Force cache config : 0

---------- CACTI version 6.5, Uniform Cache Access SRAM Model ----------

Cache Parameters:

Total cache size (bytes): 524288

Number of banks: 1

Associativity: direct mapped

Block size (bytes): 32768

Read/write Ports: 1

Read ports: 0

Write ports: 0

Technology size (nm): 90

Access time (ns): 5.51156

Cycle time (ns): 9.97772
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Total dynamic read energy per access (nJ): 0.427615

Total leakage power of a bank (mW): 161.701

Cache height x width (mm): 1.82573 x 4.28617

Best Ndwl : 2

Best Ndbl : 4

Best Nspd : 0.015625

Best Ndcm : 32

Best Ndsam L1 : 1

Best Ndsam L2 : 1

Data array, H-tree wire type: Delay optimized global wires

Time Components:

Data side (with Output driver) (ns): 5.51156

H-tree input delay (ns): 0.143935

Decoder + wordline delay (ns): 2.51244

Bitline delay (ns): 1.55724

Sense Amplifier delay (ns): 0.0149121

H-tree output delay (ns): 1.28302

Power Components:

Data array: Total dynamic read energy/access (nJ): 0.427615

Total leakage read/write power of a bank (mW): 161.701

Total energy in H-tree (that includes both address and data transfer) (nJ): 0.147739

Output Htree Energy (nJ): 0.13871

Decoder (nJ): 0.000607173

Wordline (nJ): 0.00400229

Bitline mux & associated drivers (nJ): 3.78242e-05

Sense amp mux & associated drivers (nJ): 0

Bitlines (nJ): 0.157832

Sense amplifier energy (nJ): 0.000997449

Sub-array output driver (nJ): 0.0756909

Area Components:

Data array: Area (mm2): 7.8254

Height (mm): 1.82573

Width (mm): 4.28617

Area efficiency (Memory cell area/Total area) - 63.3857 %

MAT Height (mm): 0.907826

MAT Length (mm): 3.90673

Subarray Height (mm): 0.336384

Subarray Length (mm): 1.9296

Wire Properties:

Delay Optimal

Repeater size - 363.803

Repeater spacing - 2.10262 (mm)

Delay - 0.0562903 (ns/mm)

PowerD - 0.000625057 (nJ/mm)

PowerL - 0.00307724 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

5% Overhead

Repeater size - 220.803

Repeater spacing - 2.70262 (mm)

Delay - 0.0590965 (ns/mm)

PowerD - 0.000431745 (nJ/mm)

PowerL - 0.00145303 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns
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10% Overhead

Repeater size - 195.803

Repeater spacing - 3.10262 (mm)

Delay - 0.0619085 (ns/mm)

PowerD - 0.000399725 (nJ/mm)

PowerL - 0.0011224 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

20% Overhead

Repeater size - 154.803

Repeater spacing - 3.40262 (mm)

Delay - 0.0675259 (ns/mm)

PowerD - 0.000359491 (nJ/mm)

PowerL - 0.000809136 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

30% Overhead

Repeater size - 133.803

Repeater spacing - 3.80262 (mm)

Delay - 0.0730296 (ns/mm)

PowerD - 0.000339637 (nJ/mm)

PowerL - 0.000625804 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

Low-swing wire (1 mm) - Note: Unlike repeated wires,

delay and power values of low-swing wires do not

have a linear relationship with length.

delay - 1.9649 (ns)

powerD - 8.30606e-05 (nJ)

PowerL - 1.39416e-06 (mW)

Wire width - 7.2e-07 microns

Wire spacing - 7.2e-07 microns
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APPENDIX C

CACTI 6.5 CONFIGURATION EXAMPLE WITH MCPAT

The following provides an example of a configuration file for the Cacti 6.5 cache/memory

simulator used with McPat.

########### CACTI 6.5 Configuration File ##########################

# A basic Cacti 6.5 Configuration File Example used with McPat

#

# NOTES:

# 1. Lines beginning with # or // are comments.

#

# 2. Parameters and their arguments are used based on the

# type of memory being simulated. Various memory structures

# will not utilize all of these parameters.

#

# 3. Reference technical reports for Cacti versions 1.0, 2.0, 3.2,

# 4.1, 5.3, and 6.5 for specific details of the simulator as

# well as detailed explanations of the configuration parameters

# below. Technical reports available from HP Research Labs located

# at http://www.hpl.hp.com/research/cacti/.

####################################################################

# Cache size

//-size (bytes) 528

//-size (bytes) 4096

//-size (bytes) 262144

//-size (bytes) 1048576

//-size (bytes) 2097152

-size (bytes) 4194304

//-size (bytes) 8388608

//-size (bytes) 16777216

//-size (bytes) 33554432

//-size (bytes) 134217728

//-size (bytes) 67108864

//-size (bytes) 1073741824

# Line size

//-block size (bytes) 8

//-block size (bytes) 32

-block size (bytes) 32768

############# McPat Specific ############################

#

# McPat adds functionality to the Cacti 6.5 Codebase that

# allows one to model a pure binary CAM. The following

# parameter specifies ’w’ in terms of packet classification,

# but in general it is the width of the word pattern stored

# in the CAM.

#

##########################################################

//cam search width

//-search port 32

//-search port 64

-search port 128

# To model Fully Associative cache, set associativity to zero

#
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# Fully Associative

//-associativity 0

# Direct Mapped

-associativity 1

# m-way set associative: m := 2|4|8|16

//-associativity 2

//-associativity 4

//-associativity 8

//-associativity 16

-read-write port 1

-exclusive read port 0

-exclusive write port 0

-single ended read ports 0

# Multiple banks connected using a bus

-UCA bank count 1

# Technology Node

//-technology (u) 0.032

//-technology (u) 0.045

//-technology (u) 0.068

-technology (u) 0.090

# Main memory parameters

-page size (bits) 8192

-burst length 8

-internal prefetch width 8

# The following parameter can have one of five values:

# (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)

//-Data array cell type - "comm-dram"

//-Data array cell type - "itrs-hp"

//-Data array cell type - "itrs-lstp"

-Data array cell type - "itrs-lop"

# The following parameter can have one of three values:

# (itrs-hp, itrs-lstp, itrs-lop)

//-Data array peripheral type - "itrs-hp"

//-Data array peripheral type - "itrs-lstp"

-Data array peripheral type - "itrs-lop"

# The following parameter can have one of five values:

# (itrs-hp, itrs-lstp, itrs-lop, lp-dram, comm-dram)

-Tag array cell type - "itrs-lop"

//-Tag array cell type - "itrs-lstp"

# The following parameter can have one of three values:

# (itrs-hp, itrs-lstp, itrs-lop)

-Tag array peripheral type - "itrs-lop"

//-Tag array peripheral type - "itrs-lstp"

# Bus width include data bits and address bits required by the decoder

-output/input bus width 256

//-output/input bus width 256

// Temperature range 300-400 in steps of 10

-operating temperature (K) 350

############# McPat Specific ############################

#

# McPat adds functionality to the Cacti 6.5 Codebase that

# allows one to model a pure binary CAM. The following

# parameter specifies the cache type to be cam. Note that

# some of the parameter terminology used in the Cacti

# configuration is based on ’legacy’ ideas, i.e., Cacti

# originally started as a basic cache model but has since

# evolved to model different types of SRAM/DRAM memory
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# structures. For example, the cam specification below

# does not imply the CAM within a fully associative

# cache. Instead, it means that the structure to be simulated

# will be a pure cam.

#

##########################################################

#

# Type of memory - cache (with a tag array),

# or ram (scratch ram similar to a register file),

# or cam,

# or main memory (no tag array and every access will happen

# at a page granularity Ref: CACTI 5.3 report)

#

//-cache type "cache"

//-cache type "ram"

//-cache type "main memory"

-cache type "cam"

# To model special structure like branch target buffers, directory, etc.

# change the tag size parameter

# if you want cacti to calculate the tagbits, set the tag size to "default"

-tag size (b) "default"

//-tag size (b) 45

# fast - data and tag access happen in parallel

# sequential - data array is accessed after accessing the tag array

# normal - data array lookup and tag access happen in parallel

# final data block is broadcasted in data array h-tree

# after getting the signal from the tag array

//-access mode (normal, sequential, fast) - "fast"

-access mode (normal, sequential, fast) - "normal"

//-access mode (normal, sequential, fast) - "sequential"

# DESIGN OBJECTIVE for UCA (Uniform Cache Access)

# or banks in NUCA (Non Uniform Cache Access

-design objective (weight delay, dynamic power, leakage power, cycle time, area) 0:100:0:0:0

# Percentage deviation from the minimum value

# Ex: A deviation value of 10:1000:1000:1000:1000 will try to find an organization

# that compromises at most 10% delay.

# NOTE: Try reasonable values for % deviation. Inconsistent deviation

# percentage values will not produce any valid organizations. For example,

# 0:0:100:100:100 will try to identify an organization that has both

# least delay and dynamic power. Since such an organization is not possible, CACTI will

# throw an error. Refer CACTI-6 Technical report for more details

-deviate (delay, dynamic power, leakage power, cycle time, area) 60:100000:100000:100000:1000000

# Objective for NUCA

-NUCAdesign objective (weight delay, dynamic power, leakage power, cycle time, area) 100:100:0:0:100

-NUCAdeviate (delay, dynamic power, leakage power, cycle time, area) 10:10000:10000:10000:10000

# Set optimize tag to ED or ED^2 to obtain a cache configuration optimized for

# energy-delay or energy-delay sq. product

# Note: Optimize tag will disable weight or deviate values mentioned above

# Set it to NONE to let weight and deviate values determine the

# appropriate cache configuration

//-Optimize ED or ED^2 (ED, ED^2, NONE): "ED"

//-Optimize ED or ED^2 (ED, ED^2, NONE): "ED^2"

-Optimize ED or ED^2 (ED, ED^2, NONE): "ED"

-Cache model (NUCA, UCA) - "UCA"

//-Cache model (NUCA, UCA) - "NUCA"

# In order for CACTI to find the optimal NUCA bank value the following

# variable should be assigned 0.

-NUCA bank count 0

# NOTE: for nuca network frequency is set to a default value of
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# 5GHz in time.c. CACTI automatically

# calculates the maximum possible frequency and downgrades this value if necessary

# By default CACTI considers both full-swing and low-swing

# wires to find an optimal configuration. However, it is possible to

# restrict the search space by changing the signalling from "default" to

# "fullswing" or "lowswing" type.

//-Wire signalling (fullswing, lowswing, default) - "Global_10"

-Wire signalling (fullswing, lowswing, default) - "default"

//-Wire signalling (fullswing, lowswing, default) - "lowswing"

-Wire inside mat - "global"

//-Wire inside mat - "semi-global"

-Wire outside mat - "global"

-Interconnect projection - "conservative"

//-Interconnect projection - "aggressive"

# Contention in network (which is a function of core count and cache level) is one of

# the critical factor used for deciding the optimal bank count value

# core count can be 4, 8, or 16

//-Core count 4

-Core count 8

//-Core count 16

-Cache level (L2/L3) - "L3"

-Add ECC - "false"

//-Print level (DETAILED, CONCISE) - "CONCISE"

-Print level (DETAILED, CONCISE) - "DETAILED"

# for debugging

-Print input parameters - "true"

//-Print input parameters - "false"

# force CACTI to model the cache with the

# following Ndbl, Ndwl, Nspd, Ndsam,

# and Ndcm values

//-Force cache config - "true"

-Force cache config - "false"

-Ndwl 64

-Ndbl 64

-Nspd 64

-Ndcm 1

-Ndsam1 4

-Ndsam2 1
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APPENDIX D

CACTI 6.5 SIMULATION OUTPUT WITH MCPAT

The following data results from running Cacti 6.5 using the configuration file presented in

Appendix C.

###############################################################

Cacti 6.5 Output for CAM Simulation: Parameters (N=256K, w=128)

Cache size : 4194304

Block size : 32768

Associativity : 0

Read only ports : 0

Write only ports : 0

Read write ports : 1

Single ended read ports : 0

Search ports : 128

Cache banks (UCA) : 1

Technology : 0.09

Temperature : 350

Tag size : 42

array type : CAM

Model as memory : 0

Access mode : 0

Data array cell type : 2

Data array peripheral type : 2

Tag array cell type : 2

Tag array peripheral type : 2

Design objective (UCA wt) : 0 0 0 100 0

Design objective (UCA dev) : 20 100000 100000 100000 1000000

Cache model : 0

Nuca bank : 0

Wire inside mat : 2

Wire outside mat : 2

Interconnect projection : 1

Wire signalling : 0

Print level : 1

ECC overhead : 0

Page size : 8192

Burst length : 8

Internal prefetch width : 8

Force cache config : 0

---------- CACTI version 6.5, Uniform Cache Access SRAM Model ----------

Cache Parameters:

Total cache size (bytes): 4194304

Number of banks: 1

Associativity: fully associative

Block size (bytes): 32768

Read/write Ports: 1

Read ports: 0

Write ports: 0

search ports: 128

Technology size (nm): 90

Access time (ns): 453.324

Cycle time (ns): 225.248

152



Total dynamic associative search energy per access (nJ): 1121.21

Total dynamic read energy per access (nJ): 46.2443

Total dynamic write energy per access (nJ): 47.9503

Total leakage power of a bank (mW): 760105

Total gate leakage power of a bank (mW): 396225

Cache height x width (mm): 2146.2 x 125.571

Best Ndwl : 1

Best Ndbl : 512

Best Nspd : 1

Best Ndcm : 1

Best Ndsam L1 : 1

Best Ndsam L2 : 1

Data array, H-tree wire type: Delay optimized global wires

Time Components:

Data side (with Output driver) (ns): 453.324

H-tree input delay (ns): 58.407

CAM search delay (ns): 956.629

Bitline delay (ns): 220.103

Sense Amplifier delay (ns): 0.0149121

H-tree output delay (ns): 94.3026

H-tree output delay (ns): 94.3026

Power Components:

CAM array:

Total dynamic associative search energy/access (nJ): 1121.21

Total energy in H-tree (that includes both match key and data transfer) (nJ): 127.082

Keyword input and result output Htrees inside bank Energy (nJ): 127.082

Searchlines (nJ): 458.16

Matchlines (nJ): 534.875

Sub-array output driver (nJ): 1.09099

Total dynamic read energy/access (nJ): 46.2443

Total energy in H-tree (that includes both address and data transfer) (nJ): 43.4164

Output Htree inside bank Energy (nJ): 31.5676

Decoder (nJ): 0.0420707

Wordline (nJ): 0.000758249

Bitline mux & associated drivers (nJ): 0

Sense amp mux & associated drivers (nJ): 0

Bitlines (nJ): 0.166502

Sense amplifier energy (nJ): 0.000187022

Sub-array output driver (nJ): 2.61838

Total leakage read/write power of a bank (mW): 760105

Area Components:

CAM array: Area (mm2): 269501

Height (mm): 2146.2

Width (mm): 125.571

Area efficiency (Memory cell area/Total area) - 43.2577 %

MAT Height (mm): 189.382

MAT Length (mm): 5.68774

Subarray Height (mm): 81.7165

Subarray Length (mm): 2.82082

Wire Properties:

Delay Optimal

Repeater size - 372.495

Repeater spacing - 2.15134 (mm)

Delay - 0.0550154 (ns/mm)
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PowerD - 0.000625495 (nJ/mm)

PowerL - 0.0030794 (mW/mm)

PowerLgate - 0.00160486 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

5% Overhead

Repeater size - 225.495

Repeater spacing - 2.75134 (mm)

Delay - 0.057753 (ns/mm)

PowerD - 0.000431832 (nJ/mm)

PowerL - 0.00145763 (mW/mm)

PowerLgate - 0.000759659 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

10% Overhead

Repeater size - 199.495

Repeater spacing - 3.15134 (mm)

Delay - 0.0605024 (ns/mm)

PowerD - 0.000399415 (nJ/mm)

PowerL - 0.00112588 (mW/mm)

PowerLgate - 0.000586763 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

20% Overhead

Repeater size - 160.495

Repeater spacing - 3.55134 (mm)

Delay - 0.0659862 (ns/mm)

PowerD - 0.000361002 (nJ/mm)

PowerL - 0.000803755 (mW/mm)

PowerLgate - 0.000418885 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

30% Overhead

Repeater size - 138.495

Repeater spacing - 3.95134 (mm)

Delay - 0.0713336 (ns/mm)

PowerD - 0.000340961 (nJ/mm)

PowerL - 0.000623367 (mW/mm)

PowerLgate - 0.000324874 (mW/mm)

Wire width - 0.36 microns

Wire spacing - 0.36 microns

Low-swing wire (1 mm) - Note: Unlike repeated wires,

delay and power values of low-swing wires do not

have a linear relationship with length.

delay - 1.02882 (ns)

powerD - 2.14911e-05 (nJ)

PowerL - 1.75338e-07 (mW)

PowerLgate - 1.69667e-07 (mW)

Wire width - 7.2e-07 microns

Wire spacing - 7.2e-07 microns
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APPENDIX E

RAW CACTI SIMULATION DATA

This appendix contains the raw data that was generated by the Cacti 6.5 memory simulator

for configurations defined by the SPM algorithm and content addressable memory.
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