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SUMMARY 

 

 

To better understand the optical and electronic properties of thiophene- and 

pyrrole-based organic compounds on a molecular level, several aromatic compounds and 

their corresponding monocations were analyzed by a variety of solution-based 

spectroscopic techniques.  The derivatives were initially synthesized using palladium-

catalyzed amination reactions, condensation reactions, Horner-Emmons reactions, and 

Stille coupling reactions.  Once isolated, the neutral compounds were analyzed by UV-

visible-NIR absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and 

/ or differential pulse voltammetry.  Monocations were generated by chemical oxidation 

and were analyzed by visible-NIR absorption spectroscopy and electron paramagnetic 

resonance spectroscopy.  By quantifying the extent of the electron-donor abilities of some 

chromophores and the electron delocalization of positive charge in the monocations, a 

more thorough understanding of the optical and electronic properties of the compounds 

was obtained. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Mixed-Valent Species 

 Mixed valency is a term that is used to describe a chemical species with two or 

more redox centers that have different formal oxidation states. Mixed-valence (MV) 

species can be in the form of two atoms of the same element, in a molecule, or in a 

lattice.  The concept of mixed valency, once called “oscillating valency,” was described 

in 1915 by Hofmann and Hoeschele.1  

 Mixed valence compounds were recognized over one hundred years ago because 

of their unusual colors and stoichiometries.  MV species are often highly colored because 

of unique electronic transitions associated with intervalence electron transfer (ET) (see 

later discussion in Section 1.3.2) that may occur in the visible region.  For example, 

Prussian blue, a pigment discovered in 1710,2 is a MV species containing Fe(II)-Fe(III) 

centers with a cyanide bridge.  Several other inorganic MV compounds were used as dyes 

and pigments because of the unique colors, including Wells’ Salt and Wolfram’s Red 

Salt.  It was in 1896 that Alfred Werner recognized3 and in 1924 when Zintl and Rausch 

explicitly stated4 that: “To produce colors…which are not given by the sum of the 

individual colors of the components…it is necessary that the distribution of oxidation 

states within the molecule can exchange under the influence of light so as to produce this 

light absorption and hence the color.  This situation occurs most frequently in inorganic 

chemistry when the same element is present in different valence states in the same 

molecule.” 
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The first designed MV species, prepared by Creutz and Taube in the 1970s, was a 

pyrazine-bridged ruthenium dimer (Figure 1.1).5,6 Assignment of this compound as a 

delocalized or localized system has proven problematic despite an abundance of 

analytical data; the consensus now leans toward a delocalized species.  In the same 

decade, Cowan and coworkers also synthesized biferrocenyl monocation (Figure 1.1).7,8 

Many inorganic and organometallic MV species have been synthesized since then, 

including several analogs of the Creutz-Taube ion and several derivatives incorporating 

biferrocenyl monocations.  This thesis will focus more on the properties of organic-based 

MV species, which have attracted attention more recently.   

 

N N RuRu NH3

NH3

NH3

H3N

NH3

NH3
H3N H3N

NH3 NH3

5+
Fe

Fe

+

 
Figure 1.1.  Creutze-Taube ion)5,6 (left) and biferrocenyl monocation7,8 (right).  
 
 
 Organic MV systems have been studied because they often exhibit stronger 

coupling and often also larger reorganizaton energies than analogs based on transition 

metals,9 and because of their potential relevance to organic electronics.  For anionic 

organic MV species, some of the redox groups that have been investigated include 

quinones and imides,10,11 diketones,12,13 dioxaborines,14 nitro groups,15,16 and 

perchlorotriphenylmethyl centers,17 some of which are shown in Figure 1.2. 
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Figure 1.2.  Some examples of anionic organic mixed-valent species. 
 
 

Among cationic organic MV species, 1,4-dialkoxybenzenes,18,19 hydrazines,20,21 

and alkylamines and arylamines22-31 have been investigated, some of which are shown in 

Figure 1.3. 
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Figure 1.3.  Some examples of cationic organic mixed-valent species. 
 
 

The study of MV species aids in developing an understanding of ET and 

delocalization, which is relevant to systems in biochemistry, including the processes that 

control mechanisms ranging from photosynthesis and respiration to electrochemical 

energy systems and corrosion.32-35 ET and delocalization is also relevant in organic 

electronics in which the active charge carriers in organic hole- and electron-transporting 

semiconductors are often MV cation and anionic species, respectively.36 ET is also 

relevant to classic reactions in organic chemistry, including the SET (single electron 

transfer) reaction and in exciplexes.  By studying MV species, it is sometimes possible to 

measure rate constants and activation barriers for intramolecular ET, which is usually 

difficult to study.  Nelsen’s studies on bis(hydrazine) monocations37-39 and Elliot’s study 
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of polypyridyl-linked Fe(II)-Fe(III) centers are among the few studies involving MV 

species.40   

 

1.2 Electron Transfer and Delocalization in Mixed-Valent Species 

 In the 1940s, the principles of ET were described with transition state theory41 and 

Kramers theory,42 that described reaction rates on a microscopic basis.  In the 1950s, 

Rudy Marcus developed an empirical concept for understanding the dependence of rate 

constants on thermodynamic and molecular dynamics parameters for outer-sphere ET, 

including subsequent justification by derivation from basic principles.43-45  In the 1960s, 

two groups of scientists independently summarized MV species.  Robin and Day 

proposed a classification of MV species based on electronic coupling.46  Allen and Hush 

modified Marcus theory to include inner-sphere ET, thus developing a theory to explain 

the electronic transition unique to MV species, the intervalence charge transfer (IVCT) 

band.47  The next section discusses Robin and Day’s classification system of MV species. 

 

1.2.1 Robin-Day Classification of Mixed-Valent Species 

In 1967 Robin and Day presented a classification of MV species based on the 

electronic coupling between the redox centers.46 Robin and Day divided MV species into 

three classes.  In Class I, there is no electronic coupling between redox centers.  In Class 

II, there are localized valences with measurable electronic coupling, which gives rise to 

an invervalence charge transfer (IVCT) band and a thermal barrier to electron exchange.  

In Class III, the redox centers – having non-integral valence – are indistinguishable, and 

the lone electron / hole is delocalized equally over both redox sites. 
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Representations of the potential energy surfaces for the ET reaction coordinates 

are shown in Figure 1.4.  In Class I species (Figure 1.4a), two parabolae represent the 

potential energy wells of two redox centers.  Because there is no electronic coupling, 

there is no mixing of the two parabolae; the redox centers remain isolated from one 

another.  The distance between the centers of the redox sites and is equivalent to the 

diabatic ET distance, which is the distance between two redox centers when there is no 

electronic coupling.  In Class II species (Figure 1.4b), when electronic coupling is 

present, the two parabolae representing the diabatic potential surfaces mix, creating two 

adiabatic potential energy surfaces.  In this case, the distance between the two minima of 

the merged parabolae – now equivalent to the adiabatic ET distance, the real distance the 

electron moves – is smaller than that of the diabatic ET distance in Class I species.  For 

Class II species, ET can occur both by photoexcitation with energy equivalent to the 

reorganization energy between the geometries of the two MV states (λ) or by overcoming 

the barrier to thermal ET (ΔG‡).  Lastly, in Class III MV species (Figure 1.4c), the 

electronic coupling is so large that there is one minimum to the potential energy surface, 

and the redox centers are equivalent and non-integral in oxidation state.  The adiabatic 

ET distance is zero, and the energy absorbed upon photoexcitation is equivalent to that of 

twice the electronic coupling (2V). 
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Figure 1.4.  Potential energy surfaces of Class I (a), II (b), and III (c) MV species 
containing two equivalent redox centers with different formal oxidation states. 
 
 
 The next section focuses on the various experimental techniques that are used to 

determine the electronic coupling (V) in MV species, how Class II or III assignment is 

determined, and – for Class II MV species – how the rate of intramolecular ET is 

measured.  

 

1.3 Experimental Techniques for Analyzing Mixed-Valent Species 

 MV species have been analyzed by numerous techniques to determine the 

electronic coupling (V), Class II or III assignment, and the rate of ET in Class II species.  

Electronic coupling has been estimated by electrochemical experiments such as cyclic 

voltammetry (CV) and differential pulse voltammetry (DPV),17,26,27,48-54 analysis of the 

intervalence charge transfer (IVCT) band,26-28,47,55-60 and indirectly from the activation 

barrier to ET (∆G‡).61-63 Class II or III assignment is based on electronic spectroscopy; the 

broadness and line shape of the IVCT transition is analyzed in this case.  IR and Raman 

spectroscopies can be used in some cases to distinguish Class II and III systems.64-69 

Mössbauer spectroscopy is useful in determining class assignment in MV species 

containing iron and a few other elements.70-73   Electron paramagnetic resonance (EPR) 
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spectroscopy can be used to determine whether a MV species appears localized or 

delocalized on the EPR time scale.28,73-77   X-ray crystallography can be used to examine 

bond symmetry within a redox center and from one redox center to another as well as 

bond order within a bridge. 7,28,67,78  Solvatochromism and Stark spectroscopy have been 

used to determine whether a MV species belongs to Class II or III.27,79-82  Rates of ET can 

be determined from rate-dependent experiments such as IR/Raman,64,65 Mössbauer,70-73 

and EPR28,73-77 spectroscopy.  By varying the temperatures at which spectra are recorded, 

rates can be extracted if the spectra change with temperature. 

 

1.3.1 Electrochemical Techniques 

CV and DPV are useful for obtaining a general idea of how stable one ionic 

species will be with respect to disproportionation, using the comproportionation constant 

(Kc).  For example, when studying MV species, it is relevant to know how easy it will be 

to form a monocation rather than a mixture of neutral species, monocation, and dication.  

A large comproportionation constant – meaning a substantial difference between redox 

potentials – is necessary for the isolation of MV species separately of other oxidation 

states of the species.54  

If a MV species is a monocation of a neutral species, then the difference between 

first and second oxidation potentials (ΔE1/2) can be used to calculate the 

comproportionation constant (Kc), which has been used to estimate the electronic 

interaction between electron-transfer sites. 52,60,83  Kc is defined as 

  Kc = exp[(ΔE1/2n1n2F)/RT]      (1.1) 
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where n1 and n2 are the numbers of electrons transferred in each redox process, F is the 

Faraday constant, R is the gas constant, and T is temperature in Kelvin.  When n1 = n2 = 

1, the equation simplifies to  

  Kc = exp( ΔE1/2/25.69)       (1.2) 

at 298 K when ΔE1/2 is given in mV.84 As an example, the cyclic voltammogram of a 

bis(ruthenium) complex is shown below (Figure 1.5), which displays two reversible 

oxidations and one reversible reduction.  The difference between the oxidation potentials 

(0.34 V) gave a Kc of ca. 6 × 105.85 

 
Figure 1.5.  A dinuclear Ru(II) complex with the dianion of 2,5-dihydroxy-1,4-
benzoquinone as bridging ligand (left) and its cyclic voltammogram (right).85 

 

Kc has often been used to quantify “communication” between redox centers, 

although often not specifying exactly what is meant.  While it is true that V should 

contribute to Kc, and in fact 

 ∆GV = V2 / λ (for Class II) = V / 2 (for Class III) 

the factors leading to the free energy associated with the comproportionation constant 

(∆Gc) can outweigh those from ∆GV, especially those from electrostatic forces in Class II 

systems, and also from ion-pairing, antiferromagnetic exchange, inductive effects, and 

entropy.  Numerous examples have shown a discrepancy between correlating V and Kc.54  

Sutton and Taube found that for a series of Class II bis(ruthenium) derivatives, the 
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resonance (electronic coupling) contribution to ΔGc is less than 10% of the total.50  

However, it should be noted that within some series of Class III systems, ∆E1/2 does seem 

to be a good measure of V.56 

 It should also be noted that values for Kc are determined in solvents with 

electrolyte when many other measurements are conducted in solvents without electrolyte, 

which can also affect Kc.  Different electrolytes can also affect the value of Kc.  Geiger 

demonstrated this with a tetra(ferrocenyl)-nickel dithiolene complex, showing how the 

separation between the four oxidations changed depending on electrolyte used (Figure 

1.6).86 

 

Figure 1.6.  Tetra(ferrocenyl)nickel dithiolane complex (left) and differential pulse 
voltammograms in tetra(n-butyl)ammonium hexafluorophosphate (left, top), tetra(n-
butylammonium) tetra(pentaphenyl)borate (left, middle), and sodium tetra[3,5-
di(trifluoromethyl)phenyl]borate in dichloromethane86 
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1.3.2 Marcus-Hush Theory for Inner-Sphere Electron Transfer 

 In 1967, Hush provided a theoretical model for linking the activation barriers for 

ET derived from Marcus theory with the parameters of the IVCT absorption bands in the 

equation 

   νmax = hν = λi + λo +ΔE0 + ΔE’    (1.3) 

where λi + λo are the Franck-Condon factors that correspond to inner- and outer-sphere 

reorganization energies, ΔE0 is the difference in energy between the vibrationally relaxed 

initial and final states in the absence of electronic coupling, and ΔE reflects additional 

contributions due to electronic coupling.47 

 In Class I MV species, when the redox centers are not electronically coupled, 

IVCT transitions are not possible due to a zero transition dipole moment associated with 

the transition because the donor wave function is entirely based on one redox center, and 

the acceptor wave function is entirely based on the other redox center, with no overlap of 

the two orbitals.  In Class II MV species, where electronic coupling is present, IVCT 

bands occur due to the vertical transition between the adiabatic states of the redox 

centers, corresponding to λ in Figure 1.5b.  For Gaussian-shaped IVCT bands, the 

electronic coupling (V) is given by 

! 

V =
µge" max

eRab

      (1.4) 

in which µge is the transition dipole moment, νmax is energy of maximum absorption, e is 

the charge of one electron, and Rab is the diabatic ET distance, i.e, the distance between 

redox centers in the absence of electronic coupling.  In metal-based systems, Rab is often 

taken as the metal-metal distance.  In many organic systems where the redox center is a 

group, Rab is less clear-cut., e.g with nitro groups, dioxaborines, and quinones, the redox 
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center is a group rather than an atom.  Moreover, in both organic and inorganic systems 

with strong electronic coupling, the redox sites may be somewhat displaced onto the 

bridges, making Rab even more difficult to estimate.  It has previously been noted that the 

Hush equation may underestimate values of V because values of Rab are often 

overestimated.87 

 It should be noted that, while Rab is difficult to determine in organic MV species 

and in strongly coupled MV species, it is possible to measure experimentally.  The 

diabatic ET distance is defined by 

! 

Rab =
"µ

12

2 + "µge

2

e
     (1.5) 

where µ12 is the adiabatic dipole moment shift and can be determined from 

solvatochromism in Stark spectroscopy and quantum-mechanical calculations,88 and µge is 

the transition dipole moment, which can be calculated from analysis of the IVCT band. 

For class III systems, V can also be calculated by equation 1.6 and is simply half 

the energy of the absorption energy of the so-called IVCT band 

! 

V =" 
max
/2       (1.6) 

although a true Class III system no longer has a mixture of valency because each redox 

center is identical; the adiabatic ET distance is zero, so there is no redistribution of the 

symmetry of the electron from one redox center to another as happens in Class II species.  

Comparison of the values of V from equations 1.4 and 1.6 for Class III systems can be 

used to estimate the error in Rab, thus providing a better indication of the true value of Rab. 
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 Hush theory also predicts the thermal barrier to ET based on analysis of the IVCT 

band in Class II species.  In a conventional semi-classical model, the barrier (ΔG‡) to 

thermal intramolecular ET is defined as 

  

! 

"G
m =

# $ 2V( )
2

4#
       (1.7) 

for which V can be obtained from equation 1.4, and λ is the value the energy of 

maximum absorption of the IVCT band.  If ΔG‡ is known from another method, such as a 

variable temperature rate-dependent spectroscopy (specifics for which will be discussed 

in later sections) and if the reorganization energy (λ) is known from the energy of 

maximum absorption of the IVCT band (νmax), then it is possible to indirectly calculate V 

using equation 1.7. 

 Analysis of the line broadness and line shape of the IVCT band is also used to 

determine whether a MV species belongs to Class II or III.  Hush theory provides a 

simple relationship between the reorganization energy and the band width in class II MV 

species 

! 

"1/ 2 = 16RT ln2(#)        (1.8) 

where ν1/2 is the band width at half height, R is the gas constant, and T is the temperature 

in Kelvin.  This equation simplifies to 

! 

"
1/ 2

= 2310# = 2310"
max

      (1.9) 

at 298 K when νmax is given in cm-1.  If a Gaussian-shaped band has a ν1/2 larger than that 

predicted by equation 1.9, this result is suggestive that the IVCT band belongs to a Class 

II species.  If the band is narrower than that predicted by equation 1.9, this result is 

suggestive of a Class III species.    
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 It should be noted that in many metal-based systems, the IVCT bands are narrow 

and fairly symmetric.  In organic systems, the IVCT bands of Class III systems often 

exhibit well-marked vibrational structure, as has been seen in bis(dialkylamino)benzene 

monocations, dinitrobenzene monoanions, and bis(dioxaborine) monocations.14-16,25 

 

1.3.3 Solvatochromism and Stark Spectroscopy 

 Solvatochromism is a common technique used to determine if a MV species 

belongs to Class II or III.  Usually the IVCT band is analyzed.  While solvatochromism 

can be very useful in determining class assignment, a drawback of solvatochromism is 

that it requires the species of interest to be soluble in a range of solvents.  In a Class II 

MV species, the change in dipole moment is non-zero, and, therefore, the IVCT bands of 

Class II MV species should be solvatochromic. In a Class II MV species, the dipoles of 

the solvent molecules in polar solvents will organize around each redox center because of 

the asymmetric charge distribution in the MV species.  Upon photoexcitation, the excited 

state of the MV species will be destabilized because of having a different dipole moment 

to the ground state, resulting in blue shift of IVCT bands in more polar solvents (Figure 

1.7).  Class III MV species are expected to be much less solvatochromic than Class II 

species. 
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Figure 1.7.  Solvatochromic effect in Class II MV species. 

 

An example of the solvatochromism of a biferrocenyl MV species is shown in 

Figure 1.8.89 

Fe Fe

.  
Figure 1.8.  A biferrocenium monocation (left) and solvatochromism of the IVCT band 
(right).89 
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 Solvatochromism can also be used in Stark spectroscopy to determine the 

adiabatic dipole moment shift.79,82  Stark spectroscopy, which is an electroabsorption 

technique, measures the effect of an externally applied electric field on the molar 

extinction absorptivity and absorption energy of a sample.  In many cases, Stark 

spectroscopy has yielded quantitative measurements about the changes in permanent 

electric dipole moment and polarizability between two states involved in an optical 

transition.  Additionally, Stark spectroscopy provides the susceptibility of the transition 

dipole moment to an electric field.  This experiment provides an experimental approach 

for the assignment of charge-transfer bands and for quantifying the degree of electronic 

delocalization. 

 
 

1.3.4 X-ray Crystallography 

 X-ray crystallography is another technique employed to analyzed MV species.  In 

this technique, the bond lengths and angles from one redox center to another are 

compared to examine the symmetry (or lack thereof) between and within the redox 

centers as well as patterns of bond lengths.  X-ray crystallography can be a difficult 

technique to employ for such studies because it first requires the ability to grow a suitable 

crystal of the MV species, and it is also necessary to have a sample that is pure from 

other oxidation states of the compound, which is especially difficult for organic MV 

species.  Once a crystal structure is obtained, conclusive data to support a Class III 

species is often difficult to obtain because sometimes a species that is symmetric in 

solution may be unsymmetric in the crystal due to position of a counterion or other 

packing forces.  Additionally, if a structure is poorly resolved due to static or dynamic 
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crystallographic disorder, asymmetric bonds may appear symmetric due to the error in 

atom placement.  The crystal structure of 4,4’-bis(dianisylamino)stilbene monocation–

hexachloroantimate salt, which was assigned as a Class III monocation, is shown in 

Figure 1.9.28  Bond lengths between redox centers were compared, some of which are 

listed in the figure below.  The authors found little difference in bond lengths from one 

redox center to another but observed a difference in the C-N bond lengths to the anisyl 

rings (red) compared to the central stilbene bridge (blue), which suggested that the 

monocation is not localized on one triarylamine center, for which one would expect all of 

the C-N bond lengths within a triarylamine moiety to be of similar length. 

N

N

H3CO

H3CO

OCH3

OCH3

SbF6
-

.  
Figure 1.9. 4,4’-bis(dianisylamino)stilbene monocation SbCl6

- salt (left) and a view of the 
crystal structure (right).  Selected bond lengths (Å) for N1 center: N1-C5: 1.377(4); N1-
C8: 1.424(4); N1-C14: 1.427(4) and N2 center: N2-C26: 1.361 (4); N2-C29: 1.434(4); 
N2-C35: 1.437(4).28 
 
 

1.3.5 Infrared and Raman Spectroscopies 

 Infrared (IR) and Raman spectroscopies, which provide information on molecular 

vibrations, can also be used to determine delocalization in MV species.  When a species 

appears delocalized on the time scale of IR and Raman spectroscopy, the intramolecular 

ET rate is faster than 1011–1012 s-1.  IR and Raman spectroscopies can be used to 
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determine differences in symmetry within the bonds of multiple redox centers and within 

bridges.  In the example shown below (Figure 1.10), the substitutents in bridging and 

ancillary ligands in dimers of ruthenium trinuclear clusters with pyrazine-based bridges 

were systematically varied.  The carbonyl stretching frequencies were examined by IR 

spectroscopy.  Weaker electronic coupling between the redox centers resulted in greater 

separations of the energies at which the carbonyl stretching vibration occurred.90 

 

 
Figure 1.10.  A Bis(triruthenium) complex with variations in the pyrazine-based bridging 
ligand (blue) and ancillary ligands (green) (left) and IR spectra of the carbonyl (yellow) 
stretches of some of the derivatives (right).90 
 
 
 IR spectroscopy can also be used to determine rates of intramolecular ET.  

Coalescence and line broadening have been used in NMR spectroscopy to determine the 

rates of dynamic chemical-exchange processes.91 Using vibrational spectroscopies for the 

same purposes have been much less wide spread, and the time scale is much shorter than 

in NMR spectroscopy, ranging from femtoseconds to picoseconds.  In addition to probing 

intramolecular ET, other processes can occur on this time scale, including environmental 

relaxation, fast intramolecular structural changes, dephasing of high-frequency 
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vibrational modes, and rapid self-exchange proton transfer.  The combination of these 

possibilities leads to difficulty in interpreting variable temperature IR (VT-IR) 

spectroscopy.  VT-IR spectroscopy was first reported for a MV system by Wu and 

coworkers,92 although not quantitatively.  More recently, Kubiak and coworkers have 

examined the rates of intramolecular ET by examination of the carbonyl stretching 

frequencies for bis(triruthenium) complexes using different solvents.65 An example of the 

carbonyl stretching frequencies measured in multiple solvents is shown below (Figure 

1.11) for a derivative with structure the same as that shown in Figure 1.10 where BL = 

pyrazine and the ancillary ligand = 4-N,N’-dimethylaminopyridine.  The carbonyl 

stretching frequencies occur at with different separations depending on the solvent used. 

 

Figure 1.11.  Carbonyl stretching frequencies shown for bis(triruthenium) complex (BL = 
pyrazine, ancillary ligand = 4-N,N’-dimethylaminopyridine) in different solvents.65 
 

 The authors showed that the coalescence observed for the two peaks could be 

simulated with different rates of intramolecular ET between the two ruthenium redox 

centers.  Simulations at different rates are shown in Figure 1.12, along with an 

experimental spectrum that matches the rate of one simulation. 
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Figure 1.12.  An observed IR spectrum for the carbonyl stretching frequencies of a 
bis(triruthenium) complex (right) and spectra simulated at different rates of 
intramolecular ET (right).65 
 
 
 

 
1.3.6 EPR Spectroscopy 

 EPR spectroscopy is a time-dependent technique that is useful for analyzing MV 

species with spin-active nuclei.  Analysis of EPR spectra can indicate whether a MV 

species is either a localized or is in a delocalized or fast-exchange regime, i.e. with 

intramolecular ET rates greater than ca. 107 s-1.   When hyperfine coupling is present in an 

EPR spectrum, the spectrum can be simulated to determine to what types of nuclei and 

how many nuclei a lone electron is coupled.  In a two-site MV species, if the electron is 

coupled to the spin-active nuclei of one redox center only, for example, this result implies 

that the MV species is localized, so is a Class II species.  If the electron is coupled to the 

nuclei of two redox centers, then the electron is either delocalized over multiple redox 
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centers and is therefore a Class III MV species, or the electron may be in a fast-exchange 

regime between the redox centers, overcoming the barrier to ET on the time scale of the 

EPR experiment, which result from a Class II species.  In the example shown below 

(Figure 1.13), the EPR spectrum of the monoanion of a complex is shown.93  The 11-line 

spectrum of anion of a bismanganese complex, which was assigned to Class III based on 

analysis of the IVCT band, is consistent with coupling to two 55Mn centers (I = 5/2). 

Mn

OC
CO

CO

Mn

CO
OC

OC

.  
 

Figure 1.13.  An anionic bimanganese complex (left) and its EPR spectrum (right).93 
 
 
 Variable temperature EPR (VT-EPR) spectroscopy can be used to determine rates 

of ET and barriers to intramolecular ET because, in some cases, the rate of ET is in the 

fast regime at higher temperatures and in the slow regime at lower temperatures on the 

EPR time scale.  In the example shown in Figure 1.14, VT-EPR spectra were recorded for 

an anionic bis(CpMn(CO)2) moietyl with pyrazolate bridge.94 The 11-line room 

temperature spectrum was assigned to a delocalized species, with coupling to two 55Mn 

nuclei.  The spectrum at 123 K was described as typical of other [CpMn(II)(CO)2L] 

compounds, indicating coupling to a single 55Mn nucleus. 



 21 

 
Figure 1.14.  An anionic bis(CpMn(CO)2) moiety with pyrazolate bridge (right) and its 
VT-EPR spectra (right).94 
 

From this data, the authors provided a rough estimate for the activation energy 

(ΔG‡) based on a coalescence temperature of 185 K, estimating the barrier to electron 

transfer to be 13.6 kJ mol-1 with a rate of ET of 2.6 × 1010s-1 at 298 K using Gagne’s 

approximation 

 kTH = (kT/h)exp(-ΔG‡/RT)       (1.6) 

in which kTH is taken to be equal to the EPR lifetime (5.5 × 108 s-1), h is Plank’s constant, 

R is the gas constant, T is the temperature in Kelvin, and k is the Boltzmann constant.95  

 
 

In some cases it is possible for VT-EPR spectra to be obtained from simulations 

with different exchange rates, and from this data, the slope of the plot of the natural log 

of the rate of ET versus the inverse of temperature can be used to determine the barrier to 

ET.  In one example, VT-EPR spectra of a bis(donor)biphenylene monocation were 

recorded and were simulated with different rates of ET.19  The spectra and simulations at 

select temperatures are shown in Figure 1.15. 
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Figure 1.15.  A bis(donor)-substituted biphenylene monocation (left) and VT-EPR 
spectra with simulations at different rates (right).19 
 
 
 

1.3.7 Mössbauer Spectroscopy 

 Mössbauer spectroscopy is a time-dependent technique used for the analysis the 

nuclear transitions of atoms, often of 57Fe-containing systems.  In Mössbauer 

spectroscopy, a solid sample is exposed to a beam of gamma radiation; atoms absorb 

gamma rays and re-emit them, and the transmittance of gamma rays is measured.  Other 

atoms such as 119Sn, 129I, and 121Sb can also be analyzed given the appropriate source of 

gamma rays.  Mössbauer spectra show two peaks for each 57Fe environment, the 

separation between which is called the quadrupolar splitting, the magnitude of which 

depends on changes in the quadrupolar moment of the nucleus between the ground and 

excited state and in changes in the electric field gradient at the nucleus.  If the ET rate in 

multiple 57Fe environments is slower than 107 s-1, it is possible to spectroscopically 

observe the different 57Fe environments.  For example, the Mössbauer spectra of two 

biferrocenium salts at 4.2 K are shown below (Figure 1.16).73  In dibromobiferrocenium 
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triiodide, there is one doublet, which suggests that both iron atoms are equivalent on the 

time scale of the Mössbauer experiment.  For dichlorobiferrocenium octaiodide, there are 

two sets of doublets, indicating two different iron environments, suggesting two different 

iron environments. 
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Figure 1.16.  Biferrocenium salts (left) and their Mössbauer spectra at 4.2 K (right).73 
 
 
 Variable temperature Mössbauer spectroscopy can also be used to analyze the 

change in delocalization with temperature in MV species.   The “break” temperature (the 

localized-to-delocalized transition) is obtained from a plot of the natural log of the area of 

each Mössbauer spectrum versus the temperature at which the spectrum was recorded.  In 

the example shown below for microcrystalline samples of diethylbiferrocenium triiodide 

(Figure 1.17), there is an assigned “break” at approximately 220 K.72  
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Figure 1.17.  Diethylbiferrocenium triiodide (left) and its VT Mössbauer spectra (right).72  
 
 
 

1.3.8 Photoelectron Spectroscopy 

 Gas phase ultraviolet photoelectron spectroscopy (UPS) has been shown to be a 

reasonable probe for understanding electronic coupling in MV species.  In a recent study 

by Coropceanu and coworkers, UPS results on bis(dialkyl)- and bis(diaryl)-amines, the 

monocations of which had previously been assigned as Class III and Class II/Class III 

borderline MV species.96  The difference between the second and third ionization 

potentials should be roughly equivalent to twice the value of the electronic coupling of in 

the equivalent monocationic MV species, as shown in Figure 1.18 for a Class II MV 

species (note: the same data for a Class III MV species should also give twice the 

electronic coupling). 
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Figure 1.18.  Typical adiabatic potential energy surfaces for a Class II MV system with 
ionization potentials (IP) noted.96 
 
 

In the study by Coropceanu, the results of comparing the various diamino 

derivatives showed a correlation with the difference in the first and second ionizations 

with the electronic coupling calculated from the Hush analysis of the IVCT band.96  As an 

example, the low energy portion of the UPS spectrum of 1,4-bis(dianisylamino)benzene, 

for which the monocation is a Class III MV species, is shown below for one of the 

derivatives (Figure 1.19). 
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Figure 1.19.  1,4-Bis(dianisylamino)benzene (left) and the low energy region of its UV-
PES spectrum (right).96 
 
 
 X-ray photoelectron spectroscopy (XPS) also provides a method for measuring 

the electronic coupling in MV species, operating on the same principles as UPS but at 

different energies.  XPS has been used to distinguish between Classes II, II/III and III in 

several MV species with metal-based redox centers,97-100 although it has been noted that 

interpretation of the data can sometimes be difficult.101,102 

 

 
1.4 Triarylamine-based Mixed-Valent Species 

 Organic MV species are receiving increasing attention as MV species because of 

their relevance in understanding ET phenomena and because of their relevance to organic 

electronic materials.  Triarylamine-based monocations have been among the MV species 

studied.  For example, bis(diarylamino)biphenyl derivatives are commonly incorporated 

as hole-transporting organic semiconductors in organic light-emitting diodes36 in which 

the active charge transport material is the monocation of the bis(diarylamino) derivative, 

which is a MV species.  Additionally, MV species based on organic compounds have 

been proposed as switching devices.103-105 
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Triarylamine derivatives are particularly attractive to study as MV species 

because they are generally straightforward to synthesize and often have stable 

monocations, making them relatively easy MV species to study.  Triarylamine 

monocations have absorption spectra that usually span the visible region, leaving most 

the near-infrared (NIR) window open to the observation of transitions due to potential 

IVCT bands.  This section will focus on electronic properties of some monocations of 

bis- and tris-(diarylamino) derivatives. 

 

1.4.1 Monocations of Bis(diarylamino)-substituted Derivatives 

 Several studies have investigated the electronic coupling of the monocations of 

bis(diarylamino) derivatives.  Many of these studies have included analysis of the IVCT 

band.  In addition to analysis of the IVCT bands based on Hush theory, some 

monocations of bis(diarylamino) derivatives have also been studied by IR and Raman 

spectroscopy, x-ray crystallography, and EPR spectroscopy.  This section will describe 

MV species in which the two (or three) redox centers are identical in the neutral versions 

of the triarylamine derivatives. 

 

1.4.1.1 Bis(diarylamino) Derivatives Studied by Low 

 Several examples of the monocations of bis(triarylamine)s have been reported as 

MV species.  Low and coworkers studied a series of bis(diarylamino)biphenyl derivatives 

(I–III, Figure 1.20) and their monocations.106  In addition to CV experiments, the IVCT 

bands of the monocations were measured, and for some of monocations, their solid state 

structures were investigated by x-ray crystallography.  The first oxidation potentials of 
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the derivatives ranged from 0.09 – 0.29 V versus ferrocenium / ferrocene.  The IVCT 

bands, which had a minimal solvatochromic response, had absorption maxima ranging 

from 6360–7380 cm-1, and the monocations were assigned as Class II/III with electronic 

coupling values ranging from 2800 – 3300 cm-1. 
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Figure 1.20.  Bis(diarylamino)biphenyl derivatives studied by Low and coworkers.106 
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 The data obtained from analysis of the IVCT bands of the monocations of 

compounds I–III is summarized in Table 1.1.  The barrier to intramolecular ET was also 

calculated for these monocations.  The electronic coupling is presumably lower in III+ 

than in the other monocations because there of the decrease in ionization potential of the 

alkoxyphenyl end groups in comparison to the alkylphenyl end groups, which should 

result in more electron density on the end groups in III+, which should increase the 

distance between the redox centers. 

 

Table 1.1.  Electronic coupling (V), barrier to electron transfer (ΔG‡), and class 
assignment for monocations studied by Low and coworkers.106 
 

Compound Veqn 1.6  
/ cm-1 

ΔG‡  
/ cm-1 

Class 
Assignment 

I 3200 50 II/III 
II 3300 50 II/III 
III 2800 60 II/III 

 

 

1.4.1.2 Bis(diarylamino) Derivatives Studied by Lambert and Nöll 

Lambert and Nöll have studied the properties of bis(triarylamine) monocations 

with methoxy substitutents at the para positions of the terminal aryl groups.  The bridges 

incorporated into these derivatives include phenylene, biphenyl, and phenylene-

ethynylene groups (Figure 1.21).24,26,107  The monocations of these bis(diarylamino)-

substituted monocations had electronic coupling values ranging from 500 – 3250 cm-1 and 

thermal barriers to ET ranging from 1900 – 240 cm-1.  Lambert and Nöll assigned these 

monocations as class II or Class II/III borderline MV species, based on the values of V 

obtained from equation 1.4 and from line shape analyses, in which some of the IVCT 
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bands were asymmetric.26 The asymmetric line shapes were interpreted as a narrowing of 

the bandwidths on the low-energy side due to cut-off of the of the Gaussian-shaped 

absorption upon increase of V.26   This was later interpreted by Coropceanu to be due to 

coupling of Class III transitions to symmetric vibrations,108 and some the monocations 

were reassigned to new classes. 
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Figure 1.21.  Bis(diarylamino) derivatives studied by Lambert and Nöll.26 
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 Table 1.2 summarizes the values for electronic coupling, the barriers to thermal 

ET, and the class assignment (and re-assignment by Coropceanu and coworkers in some 

cases) of the MV monocations studied by Lambert and Nöll.  It was observed that the 

monocations with shorter bridge lengths generally exhibited stronger electronic coupling, 

the change bridge length resulting in a change in classification from Class II to Class III 

in some cases. 

 
 
Table 1.2.  Electronic coupling, barrier to thermal ET, and class assignment of 
monocations of MV bis(diarylamino) derivatives III–VIII studied by Lambert and Nöll. 
 

Compound Veqn 1.4 / cm-1 Veqn 1.6 / cm-1 ΔG‡ / cm-1 Class 
Assignment 

III 1550 3180 420 II/III  III 
IV 500 – 1900 II 
V 710 – 1280 II 
VI 1200 – 580 II 
VII 2250 3810 320 II/III* 
VIII 3250 4765 240 II/III  III 

*not examined by Coropceanu and coworkers 
 
 

 
1.4.1.3 Bis(diarylamino) Derivatives Studied by Barlow and Coropceanu 

Barlow and coworkers have reported bis(di(4-alkoxyphenyl)amino)-substituted 

analogs with stilbene and extended phenylene-ethylene bridges to determine the effect on 

the electronic coupling in comparison to the alkyne-based equivalents.27,28  Barlow and 

coworkers synthesized derivatives with multiple bridge lengths, which are shown below 

(Figure 1.22). 
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Figure 1.22.  Bis(diarylamino) derivatives studied by Barlow and coworkers.27,28 
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 Barlow found that, in comparison to the equivalent alkene-based monocation 

(VI+), the alkene-based monocation (XII+) exhibited stronger electronic coupling, 

resulting in Class III assignment for XII+ (VI+ was assigned to Class II) (Table 1.2).  In 

comparison of the longer alkyne-based monocation (IV+) in which V = 500 cm-1, the 

electronic coupling in the alkene-based derivative (XI+) increased to 700 cm-1, though it 

remained a Class II MV species (Table 1.3).  From the comparison of these derivatives 

with each other and with those studied by Lambert and Nöll, one can see that generally 

when the bridge length is increased, the electronic coupling decreases.  Also, when 

alkene- and alkyne-based derivatives are compared, the derivative with the alkene has 

stronger electronic coupling. 

 
Table 1.3.  Electronic coupling and class assignment of monocations of MV 
bis(diarylamino) derivatives IX–XII studied by Barlow.27,28 
 

Compound Veqn 1.4 
/ cm-1 

Veqn 1.6 
/ cm-1 

Class 
Assignment 

IX * – II 
X * – II 
XI 700 – II 
XII 1400 3020 III 

*not provided using Hush analysis of the experimental parameters 
 
 
 EPR studies of monocations III+ and XII+ gave spectra that were both consistent 

with coupling to two nitrogen atoms.28  Recall that coupling to two redox centers does not 

guarantee delocalization; although it can be consistent with delocalization, this result 

implies that the monocation is either delocalized or that the rate of intramolecular ET is 

faster than the time scale of the EPR experiment.  Analysis of the crystal structure of the 

monocation salt of XII (crystal structure previously shown in Figure 1.7) is also 

consistent with assignment to Class III.  The C–N bond lengths were compared among 
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the carbon atoms of the stilbene and anisyl moieties.  If the monocation were localized, it 

was assumed that the C–N bond lengths would be similar within each redox center, so the 

difference in C–N bond lengths (0.050 Å) supports delocalization.  Additionally the C–C 

bond lengths in the stilbene bridge show a quinoidal pattern of bond-length alternation, 

which also supports delocalization.28   

More recently, Barlow and coworkers analyzed the properties of bis[di(4-

alkoxyphenyl)aminostyryl]arene derivatives and their monocations in which the central 

arene ring was modified to vary the ionization potentials of the bridges relative to that of 

the di(alkoxyphenyl)amino end groups.109  Specifically, the central phenylene group was 

either substituted with cyano groups (XIII), was unsubstituted (XIV), or was replaced 

with a  3,4-di(n-butoxy)thiophene group (XV) (Figure 1.23).  
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Figure 1.23.  Bis[di(4-alkoxyphenyl)aminostyryl]arene derivatives studied by Barlow.109 
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 The oxidation potentials of the bis(diarylaminostyryl)arene derivatives were 

investigated by CV; the first oxidation potentials of the derivatives decreased as the cores 

became more easily ionizable (Table 1.4).109  Additionally, as the central arene group 

became more easily ionizable, resulting in the frontier molecular orbital energy 

approaching that of the di(alkoxyphenyl)amino end groups, the electronic coupling in the 

monocations increased – as determined by Hush analysis of the IVCT bands (Table 

1.3).109 The monocations varied from Class II to Class III by changing the core 

substitution alone. 

 
Table 1.4.  Electronic coupling, barrier to thermal ET, and class assignment of 
monocations of MV bis(diarylamino) monocations XIII–XV studied by Barlow.109 
 

Compound E1/2
+/0 

/ V 
Veqn 

 / cm-1
1.4 

Veqn 1.6 
/ cm-1 

Class 
Assignment 

XIII +0.26 480 – II 
XIV +0.20 700 – II 
XV +0.05 960 2830 III 

 
 
 

 Barlow and coworkers also studied a similar series of bis(diarylaminostyryl)arene 

derivatives in which the end groups were either diphenylamino or had an occasional alkyl 

group at the meta position of the terminal phenyl groups.109 The ionization potentials of 

the central arene ring was again varied, including dicyanophenylene (XVI), 

dibromophenylene (XVII), phenylene (XVIII), di(n-dodecyloxy)phenylene (XIX), and 

3,4-di(n-butoxy)thiophene (XX) derivatives (Figure 1.19). 
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Figure 1.24.  Bis(diarylaminostyryl)arene derivatives recently studied by Barlow and 
coworkers.109 
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Again the first oxidation potential of these derivatives occurred at lower potentials 

when the cores were more easily ionizable (Table 1.4).109  Hush analysis of the IVCT 

bands of the monocations indicated that the electronic coupling increased as the 

ionization potentials of the cores increased (Table 1.4).109  By comparing the values for V 

for Class III systems calculated from equations 1.4 and 1.5, one can see that the 

difference in values of V is quite large, which suggests that the use of the nitrogen-

nitrogen distance as Rab in equation 1.4 becomes increasingly erroneous as the electronic 

coupling increases. 

 
Table 1.5.  Electronic coupling, barrier to thermal ET, and class assignment of 
monocations of MV bis(diarylamino) monocations XVI–XX studied by Barlow.109 
 

Compound E1/2
+/0 

/ V 
Veqn 1.4 
/ cm-1 

Veqn 1.6 
/ cm-1

 

Class 
Assignment 

XVI +0.51 480 – II 
XVII +0.44 670 – II 
XVIII +0.31 640 – II 
XIX +0.24 810 2700 III 
XX +0.15 1000 3200 III 

 
 
 From the studies by Barlow and coworkers, one can see that when a more 

electron-rich aryl group is incorporated into the conjugated bridge – thus raising the 

energies of the frontier molecular orbitals of the bridge closer to the energies of the 

diarylamine end groups – the electronic coupling is increased with increasing ease in 

oxidation of the bridges, i.e. when the energies of the frontier molecular orbitals of the 

bridges become closer to the energies of the end groups.  

 

1.4.1.4 Bis(diarylamino) Derivative with Thiophene-based Bridges Studied by 
Hartmann and Navarrete 
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 The monocations of some bis(diarylamino) derivatives with thiophene-based 

cores have been studied experimentally and computationally.  The visible-NIR absorption 

spectrum was reported for monocation XXI-2 (n = 2, Figure 1.25), for which the energy 

of maximum absorption of the IVCT band was ca. 900 cm-1, but this band was not 

analyzed in the context of Hush theory.110  Additionally, the EPR spectra were reported 

for monocations in this series where n = 1 – 7.  Of the monocations, the spectra for n = 1 

– 4 showed hyperfine coupling (when n = 5 – 7, the spectra were featureless), consistent 

with coupling to nitrogen and hydrogen nuclei; the hyperfine coupling constant to 

nitrogen decreased as the bridge length was increased.     

 

N
S N

n

XXI-n  

Figure 1.25.  Bis(diphenylamino)oligothiophene derivatives studied by Hartmann and 
coworkers.110 
 
 

The visible-NIR absorption spectra for monocations XXII and XXIII (Figure 

1.26) have been reported.  The absorption maxima of the IVCT bands were 1323 and 

1420 cm-1, respectively, but again the IVCT bands were not analyzed by Hush theory.111 
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Figure 1.26.  Bis(dianisylaminophenyl)oligothiphene derivatives studied by Navarrete 
and coworkers.111 
 
 

1.4.1.5 Bis(diarylamino) Derivative Studied by Hirao and Tanaka 

 Hirao and Tanaka studied the monocation of a spiro-fused bis(triarylamine) 

(XXIV). EPR spectra of a spiro-fused bis(triarylamine).  EPR spectra of the monocation 

were recorded at multiple temperatures (Figure 1.27).62  The spectra showed changes 

upon cooling; the intensity of the peaks in the central portion of the spectrum – originally 

approximately a 5-line spectrum – decreased upon cooling.  The spectra were simulated 

with an EPR-EXN program using optimization of rate constants for ET between two 

nitrogen nuclei (Figure 1.20).62 

 
 



 43 

 
 

Figure 1.27.  A spiro-fused bis(triarylamine) derivative (left) and experimental and 
simulated VT-EPR spectra of its monocation (right).62 
 
 
 By plotting the natural log of the rate constants versus the inverse of the 

temperature at which each spectrum was recorded, the authors obtained a linear fit of the 

data and were able to extract information relevant to the barriers to ET in this species.62  

Unfortunately, the monocation showed no IVCT band in the region probed by the authors 

(450 – 2000 nm), so the kinetic data obtained from the thermally varied EPR experiment 

could not be compared to the same terms that could potentially have been extracted from 

IVCT band analysis. 

 

1.4.2 Monocations of Tris(diarylamino)-substituted Derivatives 

 Relatively few examples of monocations of three-site triarylamine-based 

monocations have been studied in the literature.  Bonviosin and coworkers reported two 

studies of the monocation (and di- and tri-cations) of 1,3,5-tris(bis(4-

ethylphenyl)amino)phenyl)benzene (XV, Figure 1.28).23,112 Additionally, related three-

site and two-site molecules have been studied for comparison (Figure 1.27).23 
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Figure 1.28. 1,3,5-Tris(bis(4-ethylphenyl)amino)phenyl)benzene.112 
 
 
 In the case of the 3-fold symmetric monocation, CV experiments were consistent 

with three non-separable one-electron oxidations, and the analysis of the monocation 

indicated a class II MV species with weak electronic coupling (V = ca. 200 cm-1).112  The 

IVCT band overlapped somewhat with the absorption bands of triarylamine monocation 

moiety, preventing observation of the band on its own, requiring Gaussian fits to analyze 

the band shape.  The weak coupling presumably results from the meta substitution around 

the central benzene ring.   

 The monocation of 1,3,5-tris(di(4-methoxyphenyl)amino)benzene (XVI, Figure 

1.28) was reported.113  One might expect this monocation to be more strongly coupled 

than the analog with phenylene bridges in Figure 1.29 because of the decrease in 

nitrogen-nitrogen distance.   
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Figure 1.29.  1,3,5-tris[di(4-methoxyphenyl)amino]benzene. 
 
 

Unfortunately, the monocation could not be studied at room temperature because 

of its instability.  The EPR spectrum was reported at -65 ºC, which was consistent with 

coupling to three nitrogen (3.4 G) and three hydrogen (2.6 G) nuclei. This result means 

that the monocation is either delocalized or has a rate of intramolecular ET faster than 

that of the EPR time scale.  No visible-NIR spectra were reported for this monocation, so 

the electronic coupling could not be determined from IVCT band analysis. 

 

 

1.5 Thesis Overview 

 The goals of this thesis were to study ET and electron delocalization in bis- and 

tris-(diarylamino) substituted MV monocations in order to determine the degree of 

electronic coupling in the various series of derivatives (Figure 1.30).  One study 

investigates the extent to which strongly coupled monocations of bis(diarylamino) 

derivatives can still be considered MV species.  Another study focuses on the 

incorporation of electron-rich bridges into a series of bis(diarylamino) monocations in 

which the energies of the frontier molecular orbitals of the bridges versus end groups 

have been systematically varied, to determine if continuing to increase the bridge group 
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energy changes the trends observed in IVCT absorption bands.  Another study sought to 

correlate the energy barrier to ET in Class II MV monocations, based both on thermal ET 

data and optical data of the IVCT bands.  The last study focuses on analysis of three-site 

MV monocations with more electron-rich bridges than previously reported examples of 

weakly coupled tris(diarylamino) derivatives, in hopes of obtaining clearly defined IVCT 

bands, in order to better understand the nature of  in three-site MV species. 
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Figure 1.30.  Overview of thesis projects. 
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 Specifically, Chapter 2 describes the analysis of some thiophene-based small 

molecules that will later be studied as bridges in the monocations of bis(diarylamino) 

derivatives.  The electron donating properties of various thiophene-based bridges and 

their derivatives were explored in order to determine, among other properties, the ease of 

oxidation of the bridges upon modifications such as ring fusion and incorporation of 

different atoms into the fused rings.  These bridges are incorporated into bis(diarylamino) 

derivatives, which are discussed in Chapter 3.  In this chapter, the monocations of the 

bis(diarylamino) derivatives are all strongly coupled class III MV species based on Hush 

analysis of the IVCT bands.   Of interest in this chapter is to what extent the monocations 

can still be considered MV species, or if the bridges have become so electron rich that the 

monocations become bridge-based.   

 In Chapter 4, a series of bis(diarylaminostyryl)arene derivatives are presented 

with variation in the relative energies of the frontier molecular orbitals of the 

bis(styryl)arene bridges versus the diarylamino end groups.  The objectives of this 

chapter include determining how the relative energies of the bridges versus end groups 

effects the electronic coupling in the monocations of these derivatives, and if a bridge 

that is easily ionizable continues to follow the trends of the main series or becomes a 

bridge-based monocation.   

 The second part of Chapter 4 focuses on using an alternate method to analysis of 

the IVCT band – in this case VT-EPR spectroscopy – to determine the rate constants and, 

thus, the activation barrier to ET in class II bis(diarylamino) monocations.  The resultant 

barriers to ET obtained from the VT-EPR experiments were compared with those 
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obtained from Hush analysis of the IVCT band, thus shedding more light into the true 

diabatic ET distance in these monocations. 

 Finally, in Chapter 5, the properties of new symmetrical three-site diarylamino 

derivatives were studied in comparison to the monocation presented in Figure 1.21.  In 

attempt to increase the electronic coupling in comparison to the weakly coupled Class II 

tris(triarylamino) derivative with phenylene-based bridges, derivatives with thiophene-

based bridges were synthesized, which was based in part on the results from Chapter 3.  

The goal of this chapter was to increase the electronic coupling and, therefore, the 

intensity of the IVCT band, making it easier to analyze a symmetric three-site MV 

species.  

 
 
 

Enjoy! 
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CHAPTER 2 

A COMPARISON OF 2,2’-BITHIOPHENE, DITHIENO[3,2-b:2,3-d]THIOPHENE 

AND DITHIENO[3,2-b:2,3-d]PYRROLE AS ELECTRON DONORS 

 

2.1. Introduction 

This chapter focuses on the properties of 2,2’-bithiophene, dithieno[3,2-b;2,3-

d]thiophene, and dithieno[3,2-b;2,3-d]pyrrole derivatives, including dialkyl- and bis(5-

alkylthien-2-yl)-substituted derivatives.  Properties of the neutral compounds were 

investigated including UV-visible absorption spectroscopy, fluorescence spectroscopy, 

and cyclic voltammetry (CV).  Additionally, monocations of the derivatives were 

generated and were analyzed by visible-NIR absorption and electron paramagnetic 

resonance (EPR) spectroscopies. 

 

2.1.1  Applications of Oligothiophene Derivatives 

 Thiophene has been incorporated into many small molecule and polymer 

derivatives as materials for use as organic semiconductors.1-6  The simplest 

oligothiophene is 2,2’-bithiophene (BIT).  Many examples of longer oligothiophenes of 

defined length have been explored, including up to a 48-mer7 and 96-mer.8   Because of 

their properties, oligothiphenes and their derivatives have been incorporated into several 

optical and electronic devices.  For example, oligothiophenes and poly(3-

alkylthiophene)s have been used as hole-transporting semiconductors in organic field 

effect transistors.1,2 Polythiophenes have been employed as chemical sensors.9  Perylene-

oligothiophene-perylene triads have been reported for photovoltaic applications. 3   
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Oligomeric thiophene-ethynylenes terminated with terminal p-phenylisocyanide groups 

have been reported for use as molecular wires.4 

 

2.1.2 Properties of Oligothiophenes 

The ideal optical and electronic properties for oligothiophene derivatives vary 

depending on the application for which an oligothiophene derivative is being used.  There 

are several ways in which oligothiophenes can be modified to change their optical and 

electronic properties.  Increasing the number of repeat units in an oligothiophene lowers 

the energy of maximum absorption and lowers the oxidation potential, which is relevant 

to having the appropriate ionization potential (IP) and electron affinity (EA) for 

incorporation into devices such as organic field-effect transistors, photovoltaics, and 

light-emitting diodes among others.7,8 Optical and electronic properties can also be 

modified by changing the IP and EA of the parent oligothiophene; several derivatives of 

oligothiophenes have been reported with substitutents at the 3- and 4-positions of the 

thiophene ring, which have been shown to modify the properties – i.e. the absorption 

maxima, oxidation potentials, solid-state order – of the parent chromophores.10-12 Forcing 

the thiophene rings into planarity by fusing them into an acene-like systems is yet another 

way of modification of optoelectronic properties: examples include dithieno[3,2-b;2,3-

d]thiophene (DTT)13 and dithieno[3,2-b;2,3-d]pyrrole (DTP),14 which have been reported 

as fused-ring derivatives of 2,2’-bithiophene (BIT).  

It is important to understand how the modification of an oligothiophene – whether 

by chain length, introduction of substitutents, and flexibility of the thiophene rings with 

respect to one another – affects the optical and electronic properties of the oligothiophene 
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derivative so that an oligothiophene with certain desired properties can be designed for a 

specific application.  With a thorough understanding of the basic properties of various 

oligothiophene derivatives, an appropriate derivative can be designed and/or selected to 

meet the needs of a given application.  BIT (I), DTT (II), DTP (III) (Figure 2.1) have 

been synthesized and characterized by standard techniques.15,16 13,17,18 However, additional 

insight into the electronic structure and properties of these aromatic moieties will be 

useful for the rational design of organic compounds for organic electronic applications.   
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Figure 2.1. BIT (I), DTT (II) and DTP (III), shown with numbering of carbon atoms. 
 

In order to design chromophores for optoelectronic devices that incorporate BIT, DTT, 

and/or DTP derivatives, it is beneficial to know both the electron-donor strength of each 

chromophore, which is defined both by their IP, as well as their π-donating abilities, which is 

also influenced by the strength of coupling to an external π-accepting system, which will 

depend on position of substitution, i.e, for a disubstitued system, the donor strength of the 

cores with 2,6-disubstitution could be different from 3,5-disubstitution (or 5,5’- versus 4,4’-

disubsstitution in the case of BIT).  This chapter focuses on the basic electronic properties of 

new DTT and DTP derivatives, also in comparison to similar BIT derivatives, in order to 

determine the influence of the ring fusion and of the specific atoms used to link the ring 
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systems – where BIT is linked by sulfur or nitrogen – in the oligothiophene dimers and 

tetramers on their properties. 

 

2.1.3 Reported Properties of BIT, DTT, and DTP 

 Various optical and electronic properties of I, II, and III have been reported in the 

literature.13,15,17,18   For example, the UV-visible absorption spectra of BIT,15 DTT,13 and N-

functionalized-DTP derivatives17,18 have been reported.  The absorption spectra of I, II, and 

IIIa (N-phenyl-DTP) in dichloromethane are shown below (Figure 2.2).  Compared to non-

fused BIT, both DTT and N-phenyl-DTP exhibit more vibronic structure, which is expected 

for rigid fused systems compared to their flexible counterparts, as has been shown in previous 

studies of fused and non-fused oligothiophenes.19  The blue shift of II and IIIa compared to I 

is presumably do to a destabilizing of the LUMOS of II and IIIa due to the central 

heteroatoms. 
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Figure 2.2.  UV-visible absorption spectra of I, II, and IIIa in dichloromethane. 
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CV experiments have been reported for II and some N-functionalized derivatives 

of III.16,20-22   However, these simple aromatic molecules were not substituted at their 

most reactive 2- and 6-positions.  These unsubstituted positions lead to the possibility of 

subsequent reactions upon oxidation in the CV experiments.  Specifically, polymerization 

reaction have been shown to occur at the 2- and 5-positions of 3-alkylthiophenes upon 

oxidation, either using chemical or electrochemical oxidative conditions.20-22 In fact, 

electrochemical polymerizations have been used to obtain polymers of N-functionalized 

derivatives of III.23 Shown below (Figure 2.3) is an example of the irreversible oxidation 

observed in a CV experiment for N-phenyl-DTP (IIIa). 
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Figure 2.3.  Cyclic voltammogram of IIIa in 0.1 M Bu4NPF6 in dichloromethane at 50 
mV/s.  
 
 

A reliable oxidation potential cannot be determined from the CV experiment 

when oxidations are irreversible, such as the one shown above (Figure 2.3).  In order to 

obtain a reliable oxidation (or reduction) potential, it is necessary to observe both the 

forward and reverse waves of the electron transfer event, then to take the average 

potential of the forward and reverse peaks.  Blocking the presumably most reactive 5,5’-
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positions of BIT and the 2- and 6-positions of DTT and N-substituted DTP could give 

rise to reversible oxidations in the CV experiments, because this would block the 

positions at which the polymerization reactions are presumably occurring. 

To determine the oxidation potentials of the DTT and N-functionalized-DTP 

cores, and to compare the values to less complex aromatic moieties such as BIT, it is 

necessary to have simple derivatives that are functionalized in such a way as to not 

significantly affect the electronic properties of the aromatic moiety, and which are placed 

at the reactive positions of the aromatic core so that irreversible chemical reactions do not 

follow the removal of an electron.  To determine the oxidation potentials, and, therefore, 

a measure of the electron-donating abilities of BIT, DTT, and N-functionalized DTP 

derivatives, the most reasonable targets are 2,6-di(alkyl)-functionalized derivatives (1–4, 

Figure 2.4).  In addition to the derivatives functionalized with n-butyl (nBu) groups 

including DTT (2, R = nBu) and DTP (3 and 4, R = nBu) targets, a commercially available 

2,2’-bithiophene derivative (1, R = n-C6H13) was studied for comparison.   
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Figure 2.4.  2,6-Di(alkyl)-functionalized BIT, DTT, and DTP derivatives. 
 

 In addition to determining the oxidation potentials of simple dialkyl-substituted-

BIT, -DTT and -DTP derivatives, it is also of interest to analyze the properties of 
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derivatives in which conjugation is extended with two additional thiophene rings, leading 

to oligothiophene tetramers and derivatives thereof.  Previous reports of oligothiophene 

tetramers include quarterthiophene (IV), 2,6-bis(3-n-hexyl-thien-2-yl)-DTT (V)24 and N-

(n-octyl)-2,6-bis(thien-2-yl)-DTP (VI)25 (Figure 2.5). 
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Figure 2.5.  Prevoiusly published compounds: quarterthiophene (IV), 2,6-bis(3-n-hexyl-
thien-2-yl)-DTT (V),24 and N-(n-octyl)-2,6-bis(thien-2-yl)-DTP (VI). 
 

Although the authors of the papers describing compounds V and VI suggested the 

incorporation of these derivatives into organic electronic devices, no characterization by 

CV experiments was provided.  Additionally, the published derivatives lacked functional 

groups at the 5-positions of the external thiophene rings, potentially leaving these 

compounds open to chemical reactions upon oxidation.  As a result, new targets were 

designed in which the 5-positions of the thiophene rings were functionalized with alkyl 

chains, in this case n-heptyl groups (5–7, Figure 2.6).  n-Heptyl groups were chosen 

because of the convenience of having starting materials with that specific chain length. 
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Figure 2.6.  2,6-Bis(5-n-heptylthien-2-yl)-BIT (5), 2,6-Bis(5-n-heptylthien-2-yl)-DTT 
(6),  and 2,6-Bis(5-n-heptylthien-2-yl)-N-(1,3,5-tri(n-dodecyloxy)phenyl)DTP (7). 
 
 
 The next sections will focus on the synthesis of compounds 2–7 and their relevant 

precursors. 

 

2.2.  Synthesis of BIT, DTT, and DTP Derivatives 

2.2.1 Previous Reports for the Synthesis of DTT and DTP Derivatives 

 The synthesis of DTT has been reported by a variety of methods.13,24,26,27 For this study, 

the route reported by Holmes et al. (Scheme 2.1)24 was used for the synthesis of DTT.  

Initially 2,3,4,5-tetrabromothiophene underwent a double halogen-metal exchange reaction at 

the 2- and 5-positions, and the lithiated species was quenched with 1-formylpiperidine, the 

aqueous work-up of which gave a 2,5-dialdehyde.  Reaction of ethyl-2-mercaptoacetate in 

basic solution gave a 2,6-diester-functionalized DTT core.  Reaction with lithium hydroxide 

gave the 2,6-dicarboxylic acid, which was decarboxylated in the presence of copper to give 

DTT (II). 
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Scheme 2.1.  Synthesis of DTT using Holmes’ route.24 

 

DTP derivatives have been reported by two basic routes. 14,17  The first published route 

is the palladium-catalyzed amination of 3,3’-bromo-2,2’-bithiophene with a primary amine 

(Scheme 2.2).  This route has the advantage of incorporating the specific amine in the last step 

of the synthesis, allowing for the synthesis of a variety of N-functionalized DTP derivatives 

using one common intermediate.  The initial report using this route described the reaction of 

3,3’-dibromo-2,2’-bithiophene with aniline, giving N-phenyl-DTP (IIIa) in 38% yield over 50 

hours.14  In more recent reports, n-alkylamines have been reacted 3,3’-dibromo-2,2’-

bithiophene in reasonable yields (65–80%) in palladium-catalyzed reactions.28   
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Scheme 2.2.  Nozaki’s synthesis of N-phenyl-DTP.14 
 
 

The second reported route involved the palladium-catalyzed amination of two 

equivalents of 3-bromothiophene with one equivalent of a primary amine, which was followed 
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by an in situ bromination with N-bromosuccinimide (NBS) and a copper-catalyzed carbon-

carbon bond-formation (Scheme 2.3).17  This route requires fewer steps to obtain the N-

substituted DTP derivative from commercially available materials and gives both N-alkyl- and 

N-aryl-substituted DTP derivatives in reasonable yields (65-82%).  However, this route has 

the disadvantage of requiring that each unique DTP derivative be synthesized using the entire 

synthetic route, because it requires that the specific amine substitutent be incorporated in the 

first step of the synthesis.   
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Scheme 2.3.  Rasmussen’s synthesis of N-alkyl- and N-aryl-DTP derivatives.17 
 

Although the literature yields using Nozaki’s route were low, it seemed worthwhile to 

optimize this reaction (Scheme 2.1) in order to be able to incorporate the amine in the last 

step, rather than using the second route, which required repetitive synthetic steps to obtain 

multiple DTP derivatives.  For the optimization of the synthesis of N-substituted DTP 

derivatives, 3,3’-dibromo-2,2’-bithiophene29 and aniline were chosen as the starting materials.   

 

 

2.2.2 Optimization of the Synthesis of N-Substituted DTP Derivatives 

For the synthesis of N-substituted-DTP derivatives, the same catalyst, base, and 

solvent as were reported for first route (Scheme 2.2) were used in the optimization trials 
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(Scheme 2.4).  Conventional heating and microwave irradiation were compared as heating 

sources to determine if either was advantageous.  The only report available at that time gave a 

38% yield for N-phenyl-DTP when reacted for 50 hours at 80 ºC.14 Initially the reaction 

mixture was simply heated to reflux in toluene (boiling point 110 ºC), otherwise under the 

same conditions, and the reaction was complete within one hour.  Additionally, the yields of 

N-functionalized-DTP derivatives were usually good (28-94%).  By simply refluxing the 

reaction mixture, the reaction yield was improved and the reaction time significantly 

decreased.   

Using microwave irradiation sometimes resulted in high yields in short reaction times, 

but it was difficult to control the progress of the reaction, and often the reaction yield was low 

due to the formation of dark red or purple byproducts, the analysis of which (by 1H NMR and 

mass spectrometry) could not be correlated with specific DTP-based chemical structures, such 

as a homopolymer of the DTP derivative.  As a result of the difficulty in controlling the 

reaction yields conducted under microwave irradiation, further reactions to synthesize N-

functionalized-DTP derivatives used conventional heating. 
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Scheme 2.4.  Various substituted aniline derivatives and reactions with 3,3’-dibromo-
2,2’-bithiophene. 
 
 

The outcomes of the attempted syntheses of various N-functionalized-DTP derivatives 

are summarized in Table 2.1.  While the reaction with amines bearing some functional groups 

occurred without difficulty (giving products IIIb and IIIe), the presence of some other 
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functional groups resulted in the reaction not leading to the desired product.  In one cases 

decomposition of the starting amine occurred (attempt to synthesize IIIg).  In another case the 

presumed homo-polymerization of the primary amine with its functional group (attempt to 

synthesize IIIf, IIIi, and IIIj) hindered DTP formation.  In one case, presumed catalyst 

poisoning by the functional group (attempt to synthesize IIIh) occurred.  In the cases of 

reaction failure due to presumed reaction of the starting aniline derivative with itself, control 

reactions were conducted in the absence of 3,3’-dibromo-2,2’-bithiophene, and in these 

reactions, the starting aniline derivative was consumed, supporting the hypothesis of self-

polymerization under the amination conditions.  
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Table 2.1.  Result of reaction of various primary amines with 3,3’-dibromo-2,2’-
bithiophene. 
 

Product  R-group Yield of desired 
product or description 

of outcome 
IIIaa 

H2N

 
94% 

IIIb 
H2N

O Si

 

28% 

IIIca 
H2N n-C6H13

 
75% 

IIId 
H2N

t
Bu

 
84% 

IIIe 

O-n-C12H25

O-n-C12H25

O-n-C12H25

H2N

 

59% 

IIIf 
H2N CO2Me

 
Amine homo-
polymerized with esterb 

IIIg 
H2N

O

O

 

Starting amine itself 
was unstable in 
ambient conditions, 
decomposed during 
reaction 

IIIh 
H2N

S

S

 

Amine failed to react 

IIIi 
H2N CN

 
Amine homo-
polymerized with 
cyano groupb 

IIIj 
H2N Br

 
62% was best yield, 
competition with 
homo-polymerization 
limited the yields in 
most casesb 

IIIk t
BuH2N  75% 

a DTP derivative has been previously reported14,17   

b As a control, the reaction was also run without 3,3’-dibromo-2,2’-bithiophene. 
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2.2.3 Synthesis of 2,6-Dialkylated-DTT and –DTP Derivatives 

 Alkylation of DTT and DTP may provide derivatives that have reversible 

oxidations in CV experiments, due to blocking the presumably most reactive position in 

these aromatic moieties.  Many examples have been reported for the alkylation of 

thiophene derivatives at the 2-position by lithiation with n-butyllithium, followed by 

quenching with an alkylhalide.30,31  Similarly, to obtain the 2,6-dialkylated derivatives of 

DTT (2) and DTP (3 and 4), the parent compound was doubly lithiated, then reacted with 

1-iodobutane (Scheme 2.5).  The crude product, which was often a mixture of the 

dialkylated and monoalkylated species as well as the starting material, were purified 

using column chromatography, recrystallization, and/or bulb-to-bulb distillation under 

vacuum.   
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2. 1-iodobutane
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3, 39%

4, 15%  

Scheme 2.5.  Synthesis of the 2,6-di(n-butyl)-DTT (2), N-(tert-butyl)-2,6-di(n-butyl)-
DTP (3), and N-(4-tert-butylphenyl)-2,6-di(n-butyl)-DTP (4). 
 
 
 

2.2.4 Synthesis of Bis(alkylthien-2-yl)-BIT, -DTT, and –DTP 

 The bis(5-alkylthien-2-yl)-substituted derivatives were synthesized using 

palladium-catalyzed Stille reactions32 from the dibromo- or diiodo-substituted derivative 

of the core with 2-n-heptyl-5-[tri(n-butyl)stannyl]thiophene.  The halogenated cores were 

obtained by reaction with NBS or N-iodosuccinimde (NIS) (Scheme 2.8).  The 
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bromination of DTT has been reported with NBS in DMF,33 although in this case, a 

combination of acetic acid and chloroform was used as the solvent instead of DMF.  

Similarly, whether the N-position of the DTP housed an aryl or tertiary alkyl group, the 

DTP derivative was brominated with NBS selectively at the 2- and 6-positions without 

brominating the N-substituent.  However, when the N-substituent is an n-alkyl chain, 

bromination with NBS results in decomposition of the DTP moiety, as determined by 

monitoring with TLC, GCMS, and 1H NMR spectroscopy. 
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Scheme 2.6.  Bromination of DTT and N-functionalized DTP derivatives with NBS.  
 

 Iodination of DTT and N-functionalized DTP was accomplished by reaction with 

NIS in chloroform/acetic acid (Scheme 2.9).  For DTT and N-aryl-DTP derivatives, the 

iodination proceeded in high yields.  For N-(n-alkyl)-substituted-DTP derivatives, 

however – as was the case in bromination reactions with NBS – the reactions resulted in 

decomposition of the DTP starting material and desired products, as monitored by TLC 

and GCMS.  In this case, the reaction has not been tested with a tertiary alkyl group at the 

N-position of DTP. 
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Scheme 2.7.  Iodination of DTT and an N-[1,3,5-tri(n-dodecyloxy)]DTP with NIS. 
 

In order to characterize the properties of BIT, DTT, and DTP derivatives with 

extended conjugation, 2,6-bis(n-heptylthien-2-yl)substituted derivatives were designed as 

simple derivatives with substitutents at the most reactive positions of the external 

thiophene rings.  These derivatives of quarterthiophene were synthesized by palladium-

catalyzed Stille coupling reactions, reacting the 5,5’-dibromo-BIT, 2,6-dibromo-DTT, or 

the 2,6-diiodide of the DTP derivative with 2-n-heptyl-5-(tri(n-butyl)stannyl)thiophene.   

All compounds were isolated as bright yellow solids.  The DTT- and DTP-based 

derivatives were heated under microwave irradiation for 5 minutes at 80 W, while the 

BIT-based derivative was allowed to react at room temperature for two hours, giving 

yields from 29–66%. 
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Scheme 2.8.  Synthesis of bis(5-n-heptylthien-2-yl)-BIT (5), -DTT (6) and -N-(3,4,5-
tri(n-dodecyloxy)phenyl)DTP (7).   
 
 
 The next sections describe the characterization of compounds 1-7.  

Characterization of the neutral compounds includes CV and UV-visible absorption 

spectra.  Characterization of the monocations includes visible-NIR absorption and EPR 

spectra.   

 
 

2.3 Characterization of the Properties of BIT, DTT, and DTP Derivatives 
 

2.3.1.  Molecular Orbital Pictures for BIT, DTT, and DTP Derivatives 
 

To better understand the properties reported in later sections, the molecular 

orbitals were calculated for versions of compounds 1–7 in which the alkyl chains were 

replaced with methyl groups.  In all cases, the geometries were minimized before 

calculating orbital structure and energies.  In the case of the BIT derivatives, this lack of 

restriction on the dihedral angle yielded a geometry minima with the central thiophene 
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rings facing opposite directions.  The orbitals shown below include the highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-

1.  In addition to the molecular orbital pictures, energies for these orbitals were also 

calculated, which are relevant to CV experiments and to the optical gap determined by 

the energy of the intersection of UV-visible absorption and emission spectra.  Also, the 

calculation of the transition energies with relevant orbitals and of the transition dipole 

moments, which were calculated using TD-DFT, is relevant in predicting which orbitals 

give rise to transitions in the UV-visible absorption spectra in the neutral molecules and 

in the monocations.  The HOMO-1, HOMO, and LUMO pictures for versions of 

compounds 1, 2, 3, and 4 with methyl groups replacing the alkyl chains are shown in 

Table 2.2.  The HOMOs can be regarded as out-of-phase combinations of two thiophene 

HOMOs and are consistent with the pattern of single and double bonds implied by 

valence-bond representations of the structures.  The LUMOs are similar to an in-phase 

pair of thiophene LUMOs with an out-of-phase contribution from the bridging 

heteroatoms.  The origin of the HOMO-1 orbitals is less clear but have some relation to 

in-phase combinations of two thiophene HOMOs.  The molecular orbital pictures for the 

SOMOs of the monocations (not shown) are similar to those computed for the HOMO of 

the neutral compounds.  
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Table 2.2.  HOMO-1s, HOMOs and LUMOs 1, 2, 3, and 4 from gas-phase DFT 
calculations. 
 

 1 2 3 4 
LUMO 

    
HOMO 

    
HOMO-1 

    
 

 

The HOMO-1, HOMO, and LUMO for methyl versions of bis(5-alkylthien-2-yl) 

derivatives 5, 6, and 7 are shown in Table 2.3.  As was the case for the dialkylated 

derivatives, the HOMOs are again consistent with the pattern of single and double bonds 

implied by valence-bond representations of the structures, and essentially appear to be the 

in-phase combination of four thiophene HOMOs.  The BIT, DTT, and DTP cores of the 

LUMOs are very similar to those observed for the LUMOs of 1–4, with outer thiophene 

rings in an out-of-phase combination with the cores.  The cores of the HOMO-1 orbitals 

have essentially the same character as is observed in the HOMO-1 orbitals of 1–4, with 

in-phase orbitals of the HOMOs of two thiophene rings.  As was the case in compounds 3 
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and 4, in compound 7, there is also little orbital density at nitrogen and the aryl group in 

the HOMO and HOMO-1. 

 
Table 2.3.  HOMO-1s, HOMOs and LUMOs for 5, 6, and 7 from gas-phase DFT 
calculations. 
 

 5 6 7 
LUMO 

   
HOMO 

   
HOMO-1 

   
 

 

 The calculated energies for the HOMO-1s, HOMOs, and LUMOs for the methyl 

versions of compounds 1–7 are shown in Figure 2.7.  When each dialkylated derivative is 

compared to its relevant bis(5-alkylthien-2-yl) derivative, (1 to 5, 2 to 6, and 3 & 4 to 7), 

one can see that the bis(5alkylthien-2-yl)-substituted derivative has a higher HOMO 

energy and a lower LUMO energy than its dialkylated equivalent.  This drop in HOMO-

LUMO gap is consistent with the increase in conjugation length in the bis(5-alkylthien-2-

yl) derivatives in comparison to the dialkylated derivatives.  From the HOMO energies 

determined from the calculations, it is expected that the DTP derivatives (3, 4, and 7) 

should be the easiest to oxidize for each set of compounds.  
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Figure 2.7.  HOMO-1, HOMO, and LUMO energies calculated in the gas phase DFT 
calculations for versions of compounds 1–7 in which the alkyl chains were replaced with 
methyl groups. 

 
 

When comparing BIT derivatives to DTT derivatives, the energy gap is larger in 

the case of DTT derivatives, with the HOMO being lower energy and the LUMO being 

higher energy for DTT than for BIT.  One would expect that the incorporation of the 

additional sulfur atom in DTT would result in a stabilization of the orbitals due to the σ-

electron withdrawing effects of the electronegative atom, which should lower the 

energies of the HOMO and LUMO of DTT relative to BIT.  In the LUMO of DTT, 

however, there is significant molecular orbital density on sulfur, so in this case, the π-

donation can raise the energy of the orbital more than the σ-electron withdrawing 

stabilizes it.  An additional factor to take into account would be the dihedral angle of the 

two outer thiophene rings, which freely rotate in BIT and are fused in DTT.  The 
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calculation used the minimum energy geometry for BIT, so the this question is currently 

unanswered.  If the same calculations were performed on a BIT geometry where the rings 

were locked in the same plane with a C2V-type symmetery, calculations based on this 

geometry could better answer the question of how ring geometry affects the orbital 

energies.   

 

2.3.2 Cyclic Voltammetry of the BIT, DTT, and DTP Derivatives 

 CV experiments were performed on compounds 1–4 in order to determine their 

half-wave potentials for oxidation and, therefore, which correlates with the electron-

donor strengths.  All CV experiments were run in 0.1 M nBu4NPF6 in dichloromethane 

using ferrocenium / ferrocene (Cp2Fe+/0 at 0 V) or decamethylferrocenium / 

decamethylferrocene (Cp2Fe+/0, at -0.55 V versus Cp2Fe+/0) as an internal reference, 

referencing the potentials to Cp2Fe+/0.  All CV experiments were run at scan rates of 50 

mV/s. 

The cyclic voltammograms of compounds 1–4 are shown in Figure 2.8.  For the 

oxidations of 1 and 2, the ratios of the current of the reverse and forward waves (Ired/Iox), 

were ca. 0.2 and 0.3, respectively, indicative of an electrochemical-type process, which 

gives the irreversible character to the oxidation.  The cyclic voltammograms of 3 and 4 

have Ired/Iox values of ca. 1, indicating reversible oxidations.  Of the dialkylated 

derivatives, compounds 1 and 2 were oxidized at similar energies.  As expected from the 

DFT calculations of the HOMO energies, both 3 and 4 were easier to oxidize than 1 and 

2, with 3 being slightly easier to oxidize than 4.   
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Figure 2.8.  Cyclic voltammograms for compounds 1–4 in 0.1 M nBu4NPF6 in 
dichloromethane, all shown with Cp*2Fe+/0 at –0.55 V as an internal reference, potentials 
referenced to Cp2Fe+/0 at 0 V. 
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The half-wave [oxidation] potentials of 1–4 and related derivatives are 

summarized in Table 2.4.  The half-wave potentials for compounds 1 and 2 are not as 

reliable as the potentials for compounds 3 and 4 because of the irreversibility of the 

oxidations for 1 and 2. 

 

Table 2.4.  Half-wave potentials (E1/2
+/0, V) of compounds 1–4 in 0.1 M nBu4NPF6 in 

dichloromethane, referenced to Cp2Fe+/0 at 0 V. 
 

Compound E1/2
+/0 / V 

1 0.69 
2 0.66 
3 0.23 
4 0.38 

 
  

 
 CV experiments were also performed for compounds 5–7. The cyclic 

voltammograms for compounds 5–7 are shown in Figure 2.9.  The CV experiments 

indicate that compound 7 is the easiest to oxidize of the series, which was expected since 

the oxidation potentials of the fused aromatic cores have the same trend (3 and 4 being 

easier to oxidize than 1 and 2).  As was the case for the dialkylated BIT and DTT 

derivatives (1 and 2), 5 had a similar oxidation potential to that of 6.  
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Figure 2.9.  Cyclic voltammograms of 5 (top) shown with Cp*2Fe+/0 as the internal 
reference at -0.55 V; 6 (middle) and 7 (bottom) both shown with Cp2Fe+/0 as the internal 
reference, all potentials referenced to Cp2Fe+/0 at 0 V. 
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A summary of the oxidation potentials of compounds 5–7 is shown in Table 2.5.  

The separation between the oxidation potentials (ΔE) is the largest in the case of the DTP 

derivative and smallest for the BIT derivative.   

 

Table 2.5.  Half-wave oxidation potentials (V) and separation of first and second 
oxidation potentials (ΔE) of 5, 6, and 7 in 0.1 M Bu4NPF6 in dichloromethane, referenced 
to Cp2Fe+/0 at 0 V. 
  

Compound E1/2
2+/ / V E1/2

+/0 / V ΔE / V 
5 0.71 0.47 0.24 
6 0.79 0.40 0.39 
7 0.68 0.20 0.48 

 
 

 The values computed for the energies of the HOMOs of the compounds 5–7 

correlate with energies of the first oxidation potentials (Figure 2.10).  In each series of 

compounds (1–4 and 5–7), there is a correlation with the calculated HOMO energies and 

the first oxidation potential. 
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Figure 2.10.  Half-wave oxidation potentials from CV experiment versus HOMO 
energies from DFT calculations for compounds 1–7.  
 
 
 

2.3.3 UV-Visible Absorption Spectra of BIT, DTT, and DTP Derivatives 
 
 UV-visible absorption spectra of compounds 1–4 were recorded in 

dichloromethane (Figure 2.11).  All of the cores have similar energies of absorption 

maxima, although the fused-ring systems have more vibronic structure than does the BIT 

system (1).  This is consistent with the increased vibrational freedom in 1, which doesn’t 

have the central atom (sulfur or nitrogen) locking the rings in a more planar conformation 

as is the case for 2, 3, and 4.  These results are also consistent with previous studies of the 

absorption spectra of fused and non-fused oligothiophenes.19 
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 Figure 2.11.  UV-visible absorption spectra of compounds 1–4 in dichloromethane.   
 

UV-visible absorption spectra of compounds 5–7 were recorded in 

dichloromethane (Figure 2.12).   The absorption spectrum of 5 is less intense and has less 

vibronic structure than that of 6 and 7; this is not surprising because the central ring 

system in 5 is not fused.  The absorption spectra of 6 and 7 are nearly identically shaped 

spectra and extinction coefficients are on the same order of magnitude; the wavelengths 

of maximum absorption of 6 and 7 are few nanometers apart.  The absorption maxima of 

compounds 5 and 7 are red-shifted compared to related quarterthiophene (IV) and 2,6-N-

(n-octyl)bis(thien-2-yl)DTP (VI),25 consistent with the dialkyl-substitution in 5 and 7.   

The absorption spectrum of 2,6-bis(3-n-hexylthien-2-yl)DTT (V) has not been reported. 
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Figure 2.12.  UV-visible absorption spectra of compounds 5, 6, and 7 in dichloromethane. 
 
 

 The absorption maxima for each compound are shown in the Table 2.6, as well as 

the value for the transition dipole moments.  TD-DFT calculations predict that – for all of 

the compounds – the lowest energy absorption in the visible region corresponds to a 

HOMO-to-LUMO transition.  TD-DFT values for the transition energies and transition 

dipole moments are also shown in the same table, and although the values are similar to 

what was measured experimentally, the trends do not match those of the experimental 

values for all cases. 
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Table 2.6.  Absorption maxima (νmax), molar absorptivity (ε), and transition dipole 
moments (µge) for compounds 1–7 in dichloromethane with TD-DFT values in 
parentheses.  
 

Compound νmax / nm νmax / cm-1 ε / M-1cm-1 µge / D 
1 319 (317) 31300 (31500) 15900 5.1 (6.1) 
2 305 (301) 32800 (33200) 20600 5.4 (5.7) 
3 307 (296) 32600 (33800) 24500 6.0 (6.0) 
4 305 (321) 32800 (31200) 33100 6.9 (3.3) 
5 403 (436) 24800 (22900) 36000 6.7 (11.1) 
6 409 (422) 24500 (23700) 51000 9.3 (11.1) 
7 398 (430) 25100 (23300) 50100 8.9 (11.3) 

 

 

2.3.4 Emission Spectra of Bis(5-alkylthien-2-yl)-BIT, -DTT, and –DTP Derivatives 

 The energy of the relaxed excited state relative to the ground state in solution – 

sometimes called the solution HOMO-LUMO gap – was measured from the intersection 

of the normalized absorption and emission spectra of compounds 5–7.  The emission 

spectra, recorded in dichloromethane, were very similar, showing vibronic structure in all 

cases.  Interestingly there is more vibronic structure in the emission than in the absorption 

spectra, which may be due to planarization in the relaxed excited state, which is similar to 

spectra obtained for other fused and non-fused oligothiophene derivatives.19 The emission 

maxima for compounds 5 and 7 are red-shifted by ca. 15 – 20 nm compared that 

published for related compounds IV and VI,25 which is consistent with the effects of 

alkylation in compounds 5 and 7.  Emission data for V has not been published.   

Normalized emission spectra for 5–7 are shown in Figure 2.13, with normalized 

absorption spectra to show the intersection of the absorption and emission spectra. 
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Figure 2.13.  Normalized absorption and emission spectra for 5–7 in dichloromethane. 
 
 
 Table 2.7 summarizes the absorption and emission spectral features for the 

emission spectra of compounds 5–7, as well as those of related published compounds IV 

and VI for comparison.25 

 
Table 2.7.  Summary of features from emission spectra of compounds 5-7 in 
dichloromethane, with related data for published compounds IV and VI.25 
 

Compound 
Emission 
Maxima 

/ nm 

Related 
Compound 

Emission 
Maxima  

/ nm 

5 
464 
494 
532 

IV 
437 
478 
510 

6 
443 
470 
505 

– – 

7 
456 
484 
525 

VI 
444 
470 
506 
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 From the intersection of the absorption and emission spectra, the solution HOMO-

LUMO gap was calculated for compounds 5–7.  The results are similar for each 

compound and are shown in Table 2.8.   

 

Table 2.8.  Intersection of normalized absorption and fluorescence spectra for compounds 
5–7, estimated solution HOMO-LUMO gap from intersection of absorption and emission 
spectra. 
 

Compound 
Intersection of 
absorption and 

emission spectra / nm 

Estimate of  
HOMO-LUMO  

gap / eV 
5 448 2.77 
6 435 2.85 
7 438 2.83 

 

 

2.3.5 Visible-NIR Absorption Spectra of Monocations  

 If the BIT, DTT, and DTP derivatives were to be used as hole-transporting 

organic semiconductors, the active charge carrier were these compounds would be the 

monocations. In order to better understand the properties of the monocations of 

compounds 3–7, the visible-NIR absorption spectra of monocations 3+–7+ were recorded 

in dichloromethane (Figures 2.12 and 2.13).  The monocations were generated in solution 

by adding a 10-fold excess of neutral compound to a solution of tris(4-

bromophenyl)aminium hexachloroantimonate in dry dichloromethane.  Multiple scans of 

the solutions in the visible-NIR region showed that the monocations were relatively 

stable in solution over time.  Attempts at acquiring absorption spectra for monocations 1+ 

and 2+ resulted in spectra that changed dramatically over time, consistent with 

expectations – from the irreversibility of the oxidations in CV experiments – that these 
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monocations were unstable; the data for the absorption spectra of 1+ and 2+ are therefore 

not included. 

The absorption spectra of 3+ and 4+ are shown in Figure 2.14.  Although the 

spectra are plotted from 400–800 nm, the data was collected from 400–2500 nm, and no 

absorption bands were observed lower than 800 nm. The monocation absorption spectra 

were relatively stable over a period of ca. 20 minutes, although a band at ca. 725 nm grew 

within a few minutes, so is expected not to be from the monocations themselves but 

instead were due to a decomposition product.  TD-DFT calculations predicted a HOMO-

1 to HOMO transition at similar energies to where the lowest energy transition (before 

decomposition) was observed.   The shapes and energies of the lowest energy absorption 

features in 3+ and 4+ are similar, which was expected based on the similarities of the 

HOMO-1 and HOMO orbitals for these monocations (the MOs for the monocations are 

not shown but are similar to those for the neutral molecules). When plotted in energy 

(cm-1), the spacing between peaks of each spectrum is ca 1300 cm-1 and 1380 cm-1 for 3+ 

and 4+, respectively. 
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Figure 2.14.  Visible-NIR absorption spectra for monocations 3+ and 4+ in 
dichloromethane. 
 

The absorption spectra of monocations 5+–7+ are shown in Figure 2.15.  The 

monocations show absorption bands at similar energies and with similar features, 

although the transitions for the 7+ are slightly less intense and occur at higher energy than 

those for 5+ and 6+.  The energy of the lowest energy transition of bis(5-alkylthien-2-yl)-

substituted DTP-based monocation 7+ is red-shifted by ca. 350 nm compared to the 

lowest energy transitions in dialkyl-substitued DTP-based monocations 3+ and 4+.  As 

was the case for 3+ and 4+, the lowest energy absorption features for the monocations 

show evidence of vibronic structure; when the absorption spectra of 5+–7+ are plotted in 

energy (cm-1), the spacing between the lowest energy absorption and next highest energy 
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feature are ca. 1400–1500 cm-1.  The transition dipole moments are similar for 5+, 6+ and 

7+, despite the difference in transition energies in 7+ compared to 5+ and 6+.   
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Figure 2.15.  Visible-NIR absorption spectra of monocations 5+, 6+, and 7+ in 
dichloromethane.  
 
 

 TD-DFT calculations predict that the intense low energy transition occurs from 

the SOMO-1 to SOMO in all three monocations.  Table 2.9 summarizes the experimental 

and theoretical data for the lowest energy feature in the monocation absorption spectra, 

including absorption maxima (νmax), extinction coefficients(ε), and transition dipole 

moments (µge).  Also included are values from TD-DFT calculations, for which the trends 

in the predictions for the energies of lowest absorbtion transition follow those of the 

experimental data.   
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Table 2.9.  Absorption maxima (νmax), extinction coefficients (ε), and transition dipole 
moments (µge) for compounds 4–7 in dichloromethane, both from experimental data and 
predicted from TD-DFT calculations (in parentheses).   
 

Compound νmax / nm νmax / cm-1 ε/ M-1cm-1 µge / D 
1 –* (566) –* (17700) –* –* (2.5) 
2 –* (542) –* (18500) –* –* (3.0) 
3 577 (506) 17300 (19800) 7960 3.7 (2.7) 
4 581 (506) 17200 (19800) 6560  3.1 (2.7) 
5 1140 (995) 8770 (10100) 46000 6.3 (6.3) 
6 1095 (954) 9130 (10500) 35000 7.7 (6.6) 
7 943 (877) 10600 (11400) 23300 6.6 (5.7)  
* reliable experimental data could not be obtained for this value 

 

2.3.6  EPR Spectra of Mono of BIT, DTT, and DTP Derivatives 

 In order to study the spin distribution in the monocations, and ultimately to 

determine which of the monocations of BIT, DTT, and DTP is a better electron acceptor, 

EPR spectra were acquired for monocations 5+–7+.   Initially, it was planned that the EPR 

spectra of 5+–7+ would be compared to those of monocations 1+–4+, but since 

monocations 1+ and 2+ are presumably unstable – as indicated by the irreversible 

oxidations in the CV experiments – it is possible that the EPR spectra may not represent 

the monocations themselves (at least for 1+ and 2+) but rather could be a mixture of the 

desired monocation and other byproduct(s) or completely of byproduct(s).  For this 

reason, multiple scans of all monocations were recorded to determine if the spectra 

changed significantly over time, and, if they did change, the spectra would be deemed 

less reliable.  As was the case for the visible-NIR absorption spectra, the monocations 

were generated by chemical oxidation with tris(4-bromophenyl)aminium 

hexachloroantimonate in dichloromethane and were recorded at concentrations of ca. 5 × 

10-4 M in monocation.  
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 The EPR spectra at room temperature for 3+ and 4+ are shown in Figure 2.16.  As 

expected, the EPR spectra of 1+ and 2+ changed over time; the spectra could not be 

simulated with WinSim, and thus the seemingly unreliable spectra are not shown here. 

However, monocations 3+ and 4+ were stable over time, so their EPR spectra were 

considered reliable.  It is interesting that although the SOMOs for 3+ and 4+ look nearly 

the same, the EPR spectra are very different.  From the simulations of the EPR spectra of 

3+ and 4+ using WinSim, which are overlaid with the experimental spectra, it was 

determined that the values of the hyperfine coupling constants (HFCCs, Table 2.10) for 

3+ and 4+ are very similar despite the spectral differences.  

 

 
 

     
 

Figure 2.16.  EPR of the monocations 3+ (left) and 4+ (right) in dichloromethane, shown 
with simulations overlaid with experimental spectra.   
 
  

The HFCCs were predicted from DFT calculations of the spin densities of the 

monocations.  A labeling scheme for the nuclei used in Table 2.10 is shown in Figure 

2.17. 
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Figure 2.17.  Labeling scheme for nuclei for which HFCCs were obtained from DFT 
calculations. 
 
 

The HFCCs from the simulations of the experimental spectra are summarized in 

Table 2.10 for 3+ and 4+.   The HFCCs to nitrogen (AN) and to hydrogen (AH) nuclei were 

similar for both monocations.   The large HFCCs to hydrogen nuclei were predicted by 

DFT calculations to be the four hydrogen nuclei on the benzylic position of the alkyl 

chain. 

 

Table 2.10. Absolute values for the HFCCs (Ax) for 3+ and 4+ obtained from simulations 
of the experimental data and from DFT calculations (in parentheses). 
 

compound AN / G AHa/ G AHb / G 

3+
 1.83 (1.80) 7.50 (9.93) –* (0.84) 

4+
 1.93 (1.79) 7.08 (9.89) –* (0.92) 

            *coupling to these atoms was not necessary to give a good fit with WinSim 

 

The EPR spectra of monocations of 5+–7+ were recorded in dichloromethane and 

were simulated with WinSim.  The EPR spectral shapes stayed constant over time, so the 

EPR spectra were considered reliable for simulation.  The spectra are shown in Figure 

2.18, overlaid with simulations, which are nearly identical to the experimental spectra.   
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Figure 2.18.  EPR spectra monocations 5+, 6+, and 7+ in dichloromethane, shown with 
simulations overlaid. 
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 The HFCCs to various nuclei were extracted from the simulations of the EPR 

spectra of 5+–7+. All three sets are shown in Table 2.11.  For 5+, the simulation is fitted 

with one set of four and another set of two hydrogen nuclei.  Another set of two hydrogen 

nuclei could be added without changing the simulation shape significantly. The 

simulation of 6+ was fitted using three sets of two equivalent hydrogen nuclei.  The 

simulation for the 7+ was fitted using three sets of two equivalent hydrogen nuclei and 

one nitrogen atom.   In the case of 7+, the HFCC to nitrogen was smaller (AN = 1.46 G) 

than in the case of 3+ (AN = 1.83 G and 4+ (AN = 1.93 G), which suggests that some 

electron spin density has moved away from the core.  Additionally, because there is 

coupling to the multiple sets of hydrogen nuclei, this fit is more supportive that the spin 

density has moved onto the to alkylthienyl rings.  A diagram showing the labeling of the 

relevant nuclei for HFCCs in Table 2.11 is shown in Figure 2.19. 

 

X
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Hd Hd

 

Figure 2.19.  Labeling scheme for HFCCs for monocations 5+, 6+, and 7+. 
 
 

Table 2.11 shows the HFCCs obtained from simulations of the experimental 

spectra of monocations 5+, 6+, and 7+.  Note that in the case of 5+, where there are two sets 

of two hydrogen nuclei, it cannot be certain that the experimental HFCCs were assigned 

to the correct hydrogen nuclei from Figure 2.19. 
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Table 2.11. HFCCs (in units of Gauss) for monocations 5+, 6+, and 7+ obtained from 
simulations of the experimental EPR spectra.  
 

compound N Ha Hb Hc Hd 

5*
 – 2.36 (4.38) –* (1.06) 3.43, 2.43 0.78, (2.86) 

6 – 2.63 (4.60) –* (0.47) –*, (–) 3.30 (2.99) 
7 1.46 (1.20) 2.79 (4.31) –* (0.29) –*, (–) 2.56 (3.19) 

*too small to be detected beyond the error of the fit 
 
 
 DFT calculations were used to estimate the percent of electron spin density for the 

monocations and were divided into various portions throughout the monocation: 1) the 

core (i.e. BIT, DTT, or DTP only), 2) both thiophene rings, and 3) the alkyl groups 

attached to each thiophene as shown in Figure 2.20. 
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Figure 2.20.  Division of monocation into core (red), thiophene rings (orange), and alkyl 
chains (blue). 
 

Table 2.12 shows the percent of radical distribution over these three portions of 

the radical cations.  The monocations of the bis(alkylthienyl)-substituted derivatives have 

lower percentages of spin density on their cores than do the dialkylated derivatives, 

which was expected because the positive charge can be more delocalized over the two 

additional thiophene rings in monocations 5+–7+, giving less spin density to the cores of 

those monocations.  The spin densities on the alkyl chains have little variation, which was 

expected since the alkyl chains are not aromatic.  The DTP-based monocation (7+) shows 

a slightly higher percentage of radical cation density on the core compared to the DTT-
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based monocation (6+), which suggests that DTP can better accept the positive charge 

than can DTT.  The BIT monocation (5+) has a percent spin density between the 

equivalent DTT and DTP cores, which is not obvious.   

 

Table 2.12.  Percent spin density calculated for the different portions of monocations 1+–
7+ predicted from DFT calculations. 
 

Compound core thiophene 
rings 

alkyl 
chains 

1 98 – 2 
2 97 – 3 
3 99 – 1 
4 98 – 2 
5 57 43 1 
6 55 44 1 
7 59 40 1 

 

 

2.4.  Conclusions about BIT, DTT, and DTP Derivatives 

 The oxidation potentials of various BIT, DTT, and DTP derivatives have been 

determined by the synthesis of simple derivatives with modification of the presumably 

most reactive 2- and 6-positions of the aromatic cores.  While BIT and DTT derivatives 

display similar electronic properties, the equivalent DTP derivatives are easier to oxidize.  

UV-visible absorption spectra of both sets of derivatives show that the transitions in the 

DTT and DTP derivatives have more similar characteristics, while the freely rotating BIT 

core tends to limit the detail of vibronic structure in the absorption spectra.  Visible-NIR 

absorption spectra of the bis(5-alkylthien-2-yl)-substituted derivatives indicate that the 

presumably SOMO-to-SOMO-1 transition occurs at similar energy for the BIT and DTT 

derivatives, while the DTP derivative has similar characteristics at different energies; all 
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three compounds were stable as monocations, as evidenced by this experiment and by 

EPR experiments.  EPR spectra of the monocations of some of the derivatives led to 

reasonable assignment of HFCCs, while others that showed partially reversible 

oxidations in CV experiments proved to be unstable in the EPR experiments.   

Ultimately the bis(5-alkylthien-2-yl)-substituted derivatives are reasonably stable 

as monocations, at least on the time scale for recording spectroscopic measurements, such 

that it is possible that these derivatives could be – with the appropriate substitution –

potential hole-transporting semiconductors.  In this set of compounds, the specific 

derivative chosen would ultimately depend on the desired oxidation potential such that it 

was at the appropriate energy to match those in other semiconductors within an organic 

electronic device.  To continue to explore the electronic properties of BIT, DTT, and 

DTP derivatives, and to compare the π-donor strengths of the cores, another system to 

study may be one in which simple π-acceptors are attached to the cores.  Currently the 

purification of 2,6-bis(4-nitrostyryl)-substituted derivatives is underway.  If the 

compounds are isolated and purified, CV measurements may better determine which core 

is a stronger π-donor by comparing the difference in oxidation potentials of the new 

derivatives to that of their parent cores. 
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2.5 Experimental Section for Chapter 2 

2.5.1 DFT and TD-DFT Calculations 

 DFT and TD-DFT calculations were completed by Kelly Lancaster and Dr. 

Veaceslav Coropceanu of the research group of Prof. Jean-Luc Brédas at Georgia 

Institute of Technology. 

The geometries of the BIT, DTT, and DTP derivatives for the neutral and radical 

cation ground and first excited states were optimized at the DFT level.  The excitation 

energies and transition dipole moments of the low-lying excited states were calculated at 

the TD-DFT level. All DFT and TD-DFT calculations are performed using with the 6-

31G(d,p) split valence plus double polarization basis set34-37  and with the B3LYP 

functional.38,39 All calculations were carried out using the Gaussian 03 suite of 

programs.40  

Simulations of EPR experiments were accomplished using WinSim, a simulation 

program for Windows, which is currently provided for free download at the National 

Institutes for Environmental Health Sciences of the National Institutes of Health website 

at http://www.niehs.nih.gov/research/resources/software/tools/index.cfm. 

 

2.5.2 Cyclic Voltammetry Experiments 

Electrochemical measurements were carried out under nitrogen in dry 

deoxygenated dichloromethane solutions ca. 10–4 M in analyte and 0.1 M in tetra-n-

butylammonium hexafluorophosphate using a BAS 100 B/W Potentiostat, a glassy 

carbon working electrode, a platinum auxiliary electrode, and, as a pseudo-reference 

electrode, a silver wire anodized in 1 M aqueous potassium chloride. Potentials were 
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referenced to ferrocenium / ferrocene by using cobaltocenium hexafluorophosphate (–

1.32 V in dichloromethane) as an internal reference (since many of the redox events of 

interest were at similar potentials to that of ferrocene). Cyclic voltammograms were 

recorded at a scan rate of 50 mVs–1. 

 

2.5.3 UV-visible-NIR Absorption and Emission Spectra 

UV-visible-NIR spectra were recorded in 1 cm cells using a Varian Cary 5E 

spectrometer. Monocation solutions (ca. 5 × 10–4 M) were generated by addition of < 0.1 

eq. tris(4-bromophenyl)aminium hexafluoroantimonate (Aldrich) in dry CH2Cl2.  

Monocation absorptivities were calculated assuming all of the oxidizing agent added 

resulted in formation of monocation and that disproportionation is negligible at these 

concentration ratios.  Emission spectra in dichloromethane were recorded on solutions for 

which the maximum absorbance had an absorbance less than 0.1 in 1 cm cells on a 

Horiba Jobin Yvon Fluorolog 3 fluorimeter. 

 

2.5.4 EPR Experimental Details 

Room-temperature EPR spectra were acquired using a Bruker EMX spectrometer. 

Monocation solutions (ca. 5 × 10–4 M) were generated by addition of less than 0.1 

equivalents of tris(4-bromophenyl)aminium hexafluoroantimonate (Aldrich) in dry 

dichloromethane. 
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2.5.6 Synthetic Details  

Dr. Yulia Getmanenko, of the research group of Prof. Seth R. Marder at Georgia 

Institute of Technology, synthesized compounds 5 and 6.  Daniel Sweat, also of the same 

research group, assisted with the synthesis of IIIe and 12.   

Starting materials were reagent grade and were used without further purification 

unless otherwise indicated.  Starting materials were purchased from Acros Chemical Co. 

except for tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3) and tri(tert-

butyl)phosphine solution in hexane, both of which were purchased from Strem.  Solvents 

were dried by passing through columns of activated alumina in a manner similar to that 

described in the literature (tetrahydrofuran, toluene, dichloromethane)41 or by distillation 

from CaH2 (acetonitrile), or were obtained as anhydrous grade from Acros Organics. 

Chromatographic separations were performed using standard flash column 

chromatography methods using silica gel purchased from Sorbent Technologies (60 Å, 

32-63 µm) or basic alumina purchased from Aldrich Chemical Company.  Elemental 

analyses were performed by Atlantic Microlabs. The microwave used was a CEM 

Discover Labmate. Mass spec FAB was performed on a VG Instruments 70SE.  GCMS 

data were acquired on an Agilent 5790 GC/ 6850 MS.  

 

Dithieno[3,2-b:2',3'-d]dithiophene (II) was prepared as described by Holmes et al.24  1H 

NMR (300 MHz, CDCl3) δ 7.37 (d, J = 5.4 Hz, 2 H), 7.29 (d, J = 5.4 Hz, 2 H).    

 

2,6-Dibromodithieno[3,2-b;2',3'-d]thiophene (8). Characterization data for the title 

compound has been reported, as synthesized from bromination with N-bromosuccinimide 
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in N,N-dimethylformamide.33 Dithieno[3,2-b;2',3'-d]thiophene (0.81 g, 4.1 mmol), 

chloroform (45 mL), and acetic acid (45 mL) were combined in a 250 mL round-

bottomed flask wrapped with aluminum foil, which was cooled to 0 °C. N-

Bromosuccinimide (1.63 g, 9.1 mmol) was added, and the reaction mixture was stirred at 

0 °C for one hour after which it was stirred at room temperature for 1 h. Dichloromethane 

(200 mL) was added, and the organic layer was washed with water and aqueous sodium 

bicarbonate, then was dried with anhydrous magnesium sulfate. The solution of crude 

product was run through a pad of silica gel, eluting with dichloromethane. The solvent 

was removed by rotary evaporation, yielding an off-white solid (1.29 g, 88%).  1H NMR 

(300 MHz, CDCl3) δ 7.28 (s, 2H).  13C{1H} NMR (75 MHz, CDCl3) δ 138.9, 130.7, 

123.1, 112.3.  MS-EI (m/z): 353.8.  Anal. calcd. for C8H2Br2S3: C, 27.13; H, 0.57.  Found: 

C, 27.10; H, 0.57. 

 

2,6-Diiododithieno[3,2-b:2',3'-d]thiophene (11).  In a 100 mL round-bottomed flask, 

acetic acid (10 mL) and chloroform (10 mL) were added, and the reaction vessel was 

wrapped with aluminum foil and immersed in an ice water bath.  Dithieno[3,2-b:2',3'-

d]thiophene (0.20 g, 1.0 mmol) was added followed by N-iodosuccinimide (0.45 g, 2.0 

mmol).  After an hour of stirring, the reaction flask was removed from the cold bath.  An 

hour later, dichloromethane (200 mL) was added, and the organic layer was washed with 

aqueous sodium carbonate (1 × 200 mL), then water (1 × 200 mL), and was then dried 

with anhydrous magnesium sulfate and was concentrated by rotary evaporation to obtain 

a white solid, which was recrystallized from toluene to obtain olive-colored crystals, 0.36 

g (80%).  IH NMR (300 MHz, C6D6) δ 6.64 (s, 2H).   IH NMR (300 MHz, CD2Cl2) δ 7.46 
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(s, 2H).  I3C{1H} NMR (125 MHz, C6D6) δ 141.0, 135.2, 129.4, 73.2.  MS-EI (m/z): 

447.7.  Anal. calcd. for C8H2I2S2: C, 21.44; H, 0.45.  Found: C, 21.54; H, 0.41. 

 

2,6-Di(n-butyl)dithieno[3,2-b:2',3'-d]thiophene (2).  To an oven-dried Schlenk flask 

cooled under nitrogen was added dithieno[3,2-b;2’,3’-d]thiophene (0.050 g, 2.56 mmol) 

and tetrahydrofuran (25 mL, freshly distilled from sodium/benzophenone).  The reaction 

flask was immersed in a dry ice/acetone bath after which n-butyllithium (2.3 mL, 2.5 M 

solution in hexane) was added.  The reaction flask was removed from the cold bath and 

was allowed to warm to room temperature.  After 30 minutes, the reaction flask was 

returned to the dry ice / acetone bath, and 1-iodobutane (0.71 g, 3.8 mmol) was added.  

The reaction was removed from the cold bath again, and after two hours, water (3 mL) 

was added.  The reaction mixture was concentrated by rotary evaporation, and the crude 

product was purified by column chromatography (silica gel, 3% ethyl acetate in hexanes) 

and Kugelrohr distillation, producing 0.30 g (38%) of the title compound as a colorless 

oil.  1H NMR (300 MHz, CDCl3) δ 6.94 (s, 2 H), 2.89 (t, J = 7.2 Hz, 4 H), 1.72 (quintet, J 

= 7.4 Hz, 4H), 1.43 (sextet, J = 7.5 Hz, 4H), 0.97 (t, J = 7.4 H, 6H).  13C{1H} NMR (75 

MHz, CDCl3) δ 146.2, 139.1, 129.0, 117.4, 33.7, 30.8, 22.1, 13.8.  GC-MS m/z (% 

relative intensity): 308 (95), 265 (100), 222 (90), 190 (88), 145 (60).  Anal. calcd. for 

C16H20S3: C, 62.29; H, 6.53.  Found: C, 62.52; H, 6.56.  UV-visible absorption 

(dichloromethane) λmax, nm (ε): 305 nm (2.06 × 104) M-1cm-1.  Cyclic voltammetry in 0.1 

M Bu4NPF6 in dichloromethane: E1/2
+/0: 0.69 V versus Cp2Fe+/0 at 0 V. 
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5,5-Dibromo-2,2-bithiophene.  This compound was prepared as previously described in 

the literature.29  1H NMR (CDCl3, 300 MHz) δ 7.79 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.4 

Hz, 2H).  13C{1H} NMR (CDCl3, 75 MHz) δ 146.0, 135.1, 130.0, 127.1.  GC-MS m/z (% 

relative intensity): 326 (45), 324 (100), 322 (45), 245 (20), 201 (20), 164 (70), 119 (18), 

93 (10).   

 

N-Phenyl-dithieno[3,2-b:2',3'-d]pyrrole (IIIa).  The characterization for this compound 

has been previously published using a different method (although the reagents are 

similar) for synthesis.14  Anhydrous deoxygenated toluene (35 mL) was added to a tube-

shaped Schlenk flask after which  3,3’-dibromo-2,2’-bithiophene (1.95 g, 6.05 mmol) and 

Tris(dibenzylideneacetone)dipalladium(0)  (0.23 g, 0.25 mmol) were added.  In a 

separate flask, anhydrous deoxygenated toluene (15 mL) was combined with tri(tert-

butyl)phosphine (2 mL, 10% wt. solution in hexane) and aniline (0.60 g, 6.5 mmol), and 

the solution was cannulated into the Schlenk flask.  Sodium tert-butoxide (1.15 g, 12.0 

mmol) was added, and the reaction mixture was heated to reflux.  After heating for 2 

hours, the reaction flask was removed from the oil bath, and the reaction mixture was 

concentrated by rotary evaporation.  The crude product was run through a pad of silica 

gel, eluting with hexanes / dichloromethane (9:1, then 4:1), yielding 1.44 g of product 

(94%).   1H NMR (300 MHz, acetone-d6) δ 7.72 (d, J = 7.5 Hz, 2H), 7.63 (dd, J = 7.5 Hz, 

2H), 7.41 (t, J = 8.5 Hz, 1H), 7.40 (d, J = 5.5 Hz, 2H), 7.31 (d, J = 5.5 Hz, 2H). 13C{1H} 

NMR (75 MHz, CDCl3) δ 143.8, 139.7, 129.7, 125.9, 123.3, 122.5, 116.8, 112.2.  GC-

MS m/z (% relative intensity): 266 (95), 238 (85), 223 (100), 195 (88), 151 (90), 125 

(15), 93 (30). 
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N-(4-n-Hexylphenyl)-dithieno[3,2-b:2',3'-d]pyrrole (IIIc).  The synthesis and 

characterization of this molecule has been published, using a different method for 

synthesis.17    

To an oven-dried Schlenk flask cooled under nitrogen was added anhydrous 

deoxygenated toluene (20 mL), tris(dibenzylideneacetone)dipalladium(0)  (0.078 g, 0.085 

mmol) and tri(tert-butyl)phosphine (Strem, 1.0 mL, 10% wt. solution in hexanes).  After 

the reaction mixture stirred for 20 minutes, 4-n-hexylaniline (0.90 g,  5.1 mmol), 3,3’-

dibromo-2,2’-bithiophene (1.5 g, 4.8 mmol), and sodium tert-butoxide (2.07 g, 21.6 

mmol) were added.  A reflux condenser was attached, and the reaction mixture was 

heated to reflux under a slight flow of nitrogen.  After heating for 50 minutes, the 

reaction flask was removed from the oil bath.  The crude product was run first through a 

short pad of silica gel, eluting with 3% ethyl acetate in hexanes, then through a column of 

silica gel, eluting with 1% ethyl acetate in hexanes.  After concentration by rotary 

evaporation, 1.23 g (75%) of an off-white semicrystalline solid was isolated.  1H NMR 

(CD2Cl2, 300 MHz) δ 7.50 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 5.1 

Hz, 2H), 7.18 (d, J = 5.1 Hz, 2H), 2.69 (t, 7.8 Hz, 2H), 1.67 (quintet, J = 7.5 Hz, 2H), 

1.27 (m, 6H), 0.92 (t, J = 5.4 Hz, 3H).  GC-MS m/z (% relative intensity): 339 (100), 268 

(90), 253 (10), 223 (10), 178 (8), 152 (7), 134 (10).  Anal. calcd. for C20H21NS2: C, 70.75; 

H, 6.23; N, 4.12.  Found: C, 70.83; H, 6.36; N, 4.15.   

 

N-(tert-Butylphenyl)dithieno[3,2-b:2',3'-d]pyrrole (IIId).  To a 100 mL round-

bottomed flask was added anhydrous deoxygenated toluene (Acroseal, 20 mL), 



 104 

tris(dibenzylideneacetone)dipalladium(0)  (0.075 g, 0.082 mmol), and tri(tert-

butyl)phosphine (10% wt. solution in hexanes, 0.4 mmol) under nitrogen atmosphere.  

After the reaction mixture stirred for 20 minutes, 4-(tert-butyl)aniline (0.75 g,  5.1 

mmol), 3,3’-dibromo-2,2’-bithiophene (1.5 g, 4.8 mmol), and sodium tert-butoxide (2.1 

g, 22 mmol) were added.  A reflux condenser was attached, and the reaction mixture was 

heated to reflux under slight flow of nitrogen.  After 40 minutes, the reaction mixture was 

removed from the oil bath and was run through a pad of silica gel, eluting with 1% ethyl 

acetate in hexanes.  After concentration by rotary evaporation, the crude product was run 

through a column of silica gel, eluting with hexanes/dichloromethane (9:1), yielding1.25 

g (84%) of the desired product was isolated as a pale yellow solid.  1H NMR (500 MHz, 

CDCl3) δ 7.59 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 5.5 Hz, 2H), 7.19 

(d, J = 5.0 Hz, 2H), 1.48 (s, 9H).  1H NMR (300 MHz, C6D6) 7.24 (d, J = 9 Hz, 2 H), 

7.20 (d, J = 9 Hz, 2 H), 6.88 (d, J = 5.4 Hz, 2 H), 6.72 (d, J = 5.4 Hz, 2 H), 1.20 (s, 9 H).  

13C{1H} NMR (75 MHz, CDCl3) δ 148.8, 143.9, 137.2, 126.5, 123.1, 122.1, 116.5, 

122.3, 34.7, 31.5.  GC-MS m/z (percent relative intensity) 311 (100), 296 (98), 281 (35), 

268 (20), 254 (16), 223 (10), 178 (36), 134 (37). Anal. calcd. for C18H17NS2: C, 69.41; H, 

5.50; N, 4.50. Found: C, 69.65; H, 5.69; N, 4.45. 

 
4-(tert-Butyldimethylsilyloxymethyl)aniline.  This compound was prepared as 

previously described.42  1H NMR (300 MH, C6D6) d 7.09 (d, J = 8.4 Hz, 2H), 6.31 (J = 

7.8 Hz, 2H), 4.54 (s, 2H), 2.83 (broad s, 2H), 0.93 (s, 9H), 0.03 (s, 6H). 

 

N-(4-tert-Butyldimethylsilyloxymethylphenyl)-dithieno[3,2-b:2',3'-d]pyrrole (IIIb).  

In an oven-dried 20 mL vial with stir bar cooled under nitrogen, anhydrous deoxygenated 
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toluene (4 mL), tri(tert-butyl)phosphine (1 mL, 10% weight solution in hexane), and 

tris(dibenzylideneacetone)dipalladium(0)  (0.18 g, 0.17 mmol) were combined and stirred 

at room temperature under nitrogen.  In a 100 mL oven-dried round-bottomed flask 

cooled under nitrogen, anhydrous deoxygenated toluene (35 mL), N-(4-tert-

butyldimethylsilyloxymethyl)aniline (1.0 g, 4.2 mmol), 3,3’-dibromo-2,2’-bithiophene 

(1.42 g, 4.4 mmol), and sodium tert-butoxide (1.0 g, 10 mmol) were combined.  Then the 

slurry from the 20 mL vial was added to the 100 mL flask, which was then assembled in 

a microwave reactor.  The reaction was irradiated for 20 minutes at 75 W, 20 minutes at 

85 W, and 20 minutes at 95 W.  The reaction mixture was concentrated by rotary 

evaporation, and the crude product was redissolved in hexanes and ethyl acetate.  The 

solution was run through a pad of silica gel, eluting with hexanes, 10% ethyl acetate in 

hexanes, then 20% ethyl acetate in hexanes.  The crude product was concentrated and 

was then run through a second column, eluting with 2% ethyl acetate in hexanes.  The 

resulting solid was recrystallized from hexanes and methanol, yielding a semicrystalline 

white solid, mass 0.47 g, 28%.  IH NMR (300 MHz, C6D6) δ 7.23 (s, 4H), 6.83  (d, J = 

5.1 Hz, 2H), 6.72 (d, J = 5.1 Hz, 2H), 4.58 (s, 2H), 1.01 (s, 9H), 0.85 (s, 6H).  I3C{1H} 

NMR (75 MHz, C6D6) δ 144.4, 139.4, 139.0, 127.6, 123.6, 122.7, 117.5, 112.4, 64.8, 

26.3, 18.7, -5.0.  GC-MS m/z (% relative intensity): 399 (50, M+), 283 (15), 268 (100).    

 
 
 
N-(4-Bromophenyl)-dithieno[3,2-b:2',3'-d]pyrrole (17). Note: this reaction was 

difficult to reproduce, and this procedure represents the best yield.  To a 100 mL round-

bottomed flask dried in the oven and cooled under nitrogen was added toluene (approx. 4 

mL, solvent purification system).  3,3’-dibromo-2,2’-bithiophene (0.21 g, 0.65 mmol), 4-
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bromoaniline (0.12 g, 0.7 mmol),  and sodium tert-butoxide (0.15 g, 1.56 mmol) were 

added followed by a slurry of tri(tert-butyl)phosphine (0.27 mL, 10% wt. in hexane) and 

tris(dibenzylideneacetone)dipalladium(0)  (0.030 g, 0.026 mmol) in anhydrous 

deoxygenated toluene (2 mL).  The reaction was heated using microwave heating at 95 W 

for 10 minutes, 100 W for 10 minutes, then 110 W for an additional 20 minutes, 

monitoring the reaction progress by GCMS and TLC.  Chloroform was added, and the 

crude reaction mixture was run through a pad of silica gel, eluting with dichloromethane.  

The crude product was concentrated by rotary evaporation and was run through a column 

of silica gel, eluting with hexanes/dichloromethane (9:1).  The desired product was 

obtained as a white solid in 62% yield (0.13 g). 1H NMR (CDCl3) δ 7.67 (d, J = 8.7 Hz, 

2H), 4.89 (d, J = 9 Hz, 2H), 7.22 (d, J = 5.1 Hz, 2H), 7.16 (d, J = 5.1 Hz, 2H). 13C{1H} 

NMR (CDCl3) δ 143.92, 139.11, 133.08, 124.31, 124.06, 119.15, 117.41.  MS-EI (m/z): 

334.9.  Elemental analysis was not obtained for this derivative because it could not be 

synthesized again, and the material synthesized in this batch was consumed in attempts to 

make another compound. 

 

N-(4-tert-Butylphenyl)-2,6-dibromodithieno[3,2-b;2',3'-d]pyrrole (10).  To a 250 mL 

round-bottomed flask were added N-(4-tert-butylphenyl)dithieno[3,2-b;2',3'-d]pyrrole 

(1.25 g, 4.0 mmol), chloroform (50 mL) and acetic acid (50 mL).  The flask was wrapped 

with aluminum foil and immersed in an ice-water bath.  N-Bromosuccinimide (1.44 g, 8.1 

mmol) was added, and the reaction mixture was stirred for 1 hour, after which it was 

removed from the bath and was stirred for another hour.  Dichloromethane (100 mL) was 

then added to the reaction mixture, and the resulting mixture was washed with water (2 × 



 107 

150 mL) and saturated aqueous sodium bicarbonate (2 × 150 mL), and the organic layer 

was dried over MgSO4. The solution was diluted by 50% with hexanes and was run 

through a short pad of silica gel, eluting with hexanes / dichloromethane (1:1). After 

recrystallization from boiling hexanes, the product was obtained as tan-yellow needle-

like crystals (1.14 g, 95%).  1H NMR (300 MHz, C6D6) δ 7.16 (d, J = 8 Hz, 2 H), 6.90 (d, 

J = 8 Hz, 2H), 6.78 (s, 2H), 1.23 (s, 9H).  13C{1H} NMR (75 MHz, C6D6) δ 149.6, 141.1, 

136.6, 126.8, 122.7, 117.0, 115.8, 110.6, 34.5, 31.3.  GC-MS m/z (%): 469 (100, M+), 

454 (46), 336 (26), 278 (11), 212 (12), 125 (14), 102 (10), 77 (8), 57 (6).  Anal. calcd. for 

for C18H15NS2Br2 (468.9): C, 46.07; H, 3.22; N, 2.98.  Found: C, 45.79; H, 3.19; N, 2.95. 

 

 

N-4-tert-Butylphenyl-2,6-di(n-butyl)dithieno[3,2-b:2',3'-d]pyrrole (4).  To an oven-

dried Schlenk flask cooled under nitrogen was added anhydrous deoxygenated 

tetrahydrofuran (20 mL), N-(4-(tert-butyl)phenyl)-2,6-dibromo-dithieno[3,2-b:2',3'-

d]pyrrole (0.40 g, 0.86 mmol).  The reaction mixture was immersed in a dry ice / acetone 

bath after which tert-butyllithium (2.1 mL, 1.7 M in pentane) was added.  The bright 

yellow reaction mixture was stirred for 15 minutes after which 1-bromobutane (1.50 g, 

10.8 mmol) was added.  The reaction was removed from the cold bath, and after warming 

to room temperature, water (100 mL) was added followed by dichloromethane (100 mL).  

The organic layer was separated and dried with anhydrous magnesium sulfate.  After 

filtration and concentration, the product was redissolved in hexanes and was run through 

a column of silica gel, eluting with hexanes followed by hexanes / ethyl acetate (99:1).  

The product was isolated as a mixture with the monoalkylated product, as determined by 
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GCMS.  The product was further purified by recrystallization from hexanes, collecting 

0.055 g (15%) of the desired product as an off-white crystalline solid.   1H NMR (400 

MHz, C6D6) δ 7.48 (dd, J = 6.4, 1.6 Hz, 2 H), 7.36 (dd, J = 6.4, 1.6 Hz, 2 H), 6.92 (s, 2 

H), 2.76 (t, J = 8 Hz, 4 H), 1.65 (quintet, J = 8 Hz, 4 H), 1.35 (sextet, J = 8 Hz, 4 H), 1.33 

(s, 9 H), 0.93 (t, J = 7.2 Hz, 6 H).  13C{1H} NMR (125 MHz, CD2Cl2) δ 149.2, 144.1, 

142.1, 137.8, 126.9, 122.3, 114.8, 110.0, 34.9, 34.3, 31.5, 31.4, 22.5, 14.0.  GCMS m/z 

(percent relative intensity): 423 (95), 331 (100), 364 (90), 350 (40), 337 (90), 321 (80), 

307 (30), 294 (40), 380 (35), 204 (25), 182 (45), 168 (75).  Anal. calcd. for C26H33NS2: C, 

73.71; H, 7.85; N, 3.31. Found: C, 73.71; H, 7.87; N, 3.29. UV-visible absorption 

(dichloromethane) λmax, nm (ε): 305 nm (3.3 × 104) M-1cm-1.  Cyclic voltammetry in 0.1 

M Bu4NPF6 in dichloromethane: E1/2
+/0: 0.38 V versus Cp2Fe+/0 at 0 V. 

 

N-tert-Butyl-dithieno[3,2-b;2',3'-d]pyrrole (IIIk).  The synthesis and characterization 

of this compound was previously reported, using a different method for synthesis. 17   

To a 100 mL round-bottomed flask was added anhydrous deoxygenated toluene (20 mL), 

tris(dibenzylideneacetone)dipalladium(0)  (0.050 g, 0.043 mmol), tri(tert-butyl)phosphine 

(10% wt. solution in hexanes, 2.0 mL) under nitrogen. After stirring for 20 min, 4-tert-

butylamine (0.59 g, 7.0 mmol), 3,3'-dibromo-2,2'-bithiophene (2.0 g, 6.2 mmol), and 

sodium tert-butoxide (1.8 g, 19 mmol) were added. A reflux condenser was attached, and 

the reaction mixture was heated to reflux under nitrogen. After 4 hours, the reaction 

appeared complete by TLC, and the reaction mixture was run through a pad of silica gel, 

eluting with 2%, then 5%, ethyl acetate in hexanes to give the desired product as a pale 

yellow solid (1.05 g, 75%). 1H NMR (500 MHz, C6D6) δ 6.86 (d, J = 5.5 Hz, 2H), 6.74 
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(d, J = 5.5 Hz, 2H), 1.36 (s, 9H).  13C{1H} NMR (125 MHz, C6D6) δ 143.8, 122.1, 116.6, 

115.0, 57.5, 30.3.  MS (GC-MS) m/z (%): 311 (100), 296 (100), 26 (35), 178 (55), 134 

(65). Anal. calcd. for C12H13NS2 : C, 61.24; H, 5.57; N, 5.95.  Found: C, 61.14; H, 5.47; 

N, 5.83. 

 

N-tert-Butyl-2,6-dibromodithieno[3,2-b;2',3'-d]pyrrole (9). N-(tert-Butyl)-

dithieno[3,2-b;2',3'-d]pyrrole (0.25 g, 1.1 mmol), chloroform (25 mL) and acetic acid (25 

mL) were added to a 250 mL round-bottomed flask, which was wrapped with aluminum 

foil and immersed in an ice-water bath.  N-Bromosuccinimide (0.45 g, 2.5 mmol) was 

added and the reaction mixture was stirred for 1 hour.  Ethyl acetate (100 mL) was added 

to the reaction mixture, and the resulting organic phase was washed with water (2 × 150 

mL) and saturated aqueous sodium bicarbonate (2 × 150 mL). The organic layer was then 

dried over anhydrous magnesium sulfate, was concentrated under reduced pressure, and 

was run through a pad of basic alumina, eluting with hexanes / ethyl acetate (9:1). The 

product was recrystallized from boiling hexanes to give the desired product as tan 

crystals (0.27 g, 50%). 1H NMR (500 MHz, C6D6) δ 6.97 (s, 2H), 1.07 (s, 9H). 13C{1H} 

NMR (125 MHz, C6D6) δ 140.3, 118.3, 116.5, 109.4, 58.0, 30.0. GC-MS m/z (% relative 

intensity): 393 (60, M+), 337 (100), 258 (35), 207 (5), 176 (5), 125 (30).  Anal. calcd. for 

C12H11NS2Br2: C, 36.66; H, 2.82; N, 3.56.  Found: C, 36.93; H, 2.84; N, 3.58. 

 

N-tert-Butyl-2,6-di(n-butyl)-dithieno[3,2-b;2',3'-d]pyrrole (3).  To an oven-dried 

Schlenk flask cooled under nitrogen was added N-tert-butyldithieno[3,2-b;2’,3’-d]pyrrole 

and tetrahydrofuran (freshly distilled from sodium/benzophenone).  The reaction flask 



 110 

was immersed in a dry ice/acetone bath after which n-butyllithium (2.5 M solution in 

hexane) was added.  The reaction flask was removed from the cold bath, and the reaction 

mixture was allowed to warm to room temperature.  After 35 minutes, the reaction flask 

was returned to the dry ice / acetone bath, and 1-iodobutane was added.  The reaction 

flask was removed from the cold bath again, and after 2 hours, water (3 mL) was added.  

The reaction mixture was concentrated by rotary evaporation, and the crude product was 

purified by column chromatography (silica gel, 3% ethyl acetate in hexanes), producing 

the title compound (0.17 g, 39%) as a colorless oil.  1H NMR (300 MHz, C6D6) δ 6.85 (s, 

2H), 2.72 (t, J = 7.5 Hz, 4H), 1.59 (quintet, J = 7.8 Hz, 4H), 1.44 (s, 9H), 1.30 (sextet, J = 

7.5 Hz, 4H), 0.85 (t, J = 7.5 Hz, 6H).  13C{1H} NMR (75 MHz, C6D6) δ 142.0, 141.6, 

115.0, 112.7, 57.3, 34.4, 31.6, 30.4, 22.5, 14.0.  GCMS m/z (% relative intensity): 347 

(90, M+), 304 (85), 248 (90), 205 (95), 57 (100).  Anal. calcd. for C20H27S2N: C, 69.11; H, 

8.41; N, 4.03.  Found: C, 69.33; H, 8.41, N, 4.09.  Cyclic voltammetry in 0.1 M nBu4NPF6 

in dichloromethane: E1/2
+/0: 0.23 V versus Cp2Fe+/0 at 0 V.  UV-visible absorption 

(dichloromethane) λmax, nm (ε): 307 nm (2.45 × 104) M-1cm-1. 

 

N-(3,4,5-Tri(n-dodecyloxy)phenyl)[3,2-b:2',3'-d]pyrrole (IIIe).  To an oven-dried 100 

mL round-bottomed flask cooled under nitrogen was added dry deoxygenated toluene (4 

mL), 3,3’-dibromo-2,2’-bithiophene (0.21 g, 0.65 mmol), and 3,4,5-tri(n-

dodecyloxyphenyl)aniline (0.45 g, 0.70 mmol).  A solution of 

tris(dibenzylideneacetone)dipalladium(0) (0.030 g, 0.26 mmol) and tri(tert-

butyl)phosphine (0.3 mL, 10% solution in hexane) in dry deoxygenated toluene (2 mL) 

was added to the reaction mixture, followed by sodium tert-butoxide (0.175 g, 1.82 
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mmol).  The reaction flask was assembled in a microwave reactor with a reflux condenser 

and was heated at 90 W for 6 minutes (Tmax = 57 ºC), then for 19 minutes at 95 W (Tmax = 

82 ºC), which was followed by an additional round of heating at 100 W for 20 minutes 

(Tmax = 110 ºC).  The reaction mixture was run through a short pad of silica gel, eluting 

with hexanes / dichloromethane (9:1, then 4:1), and after concentration by rotary 

evaporation, the product was further purified by column chromatography on silica gel 

using hexanes / dichloromethane (9:1 gradually increasing the ration to 1:1) as the eluent.  

After concentration by rotary evaporation, a pale yellow oil was obtained, which was 

precipitated from acetone to give the title compound as an off-white powder (0.38 g, 

59%).  1H NMR (500 MHz, CD2Cl2) δ 7.20 (d, J = 5.0 Hz, 2H), 7.18 (d, J  = 5.0 Hz, 2H), 

6.76 (s, 2H), 3.98 (m, 6H), 1.84 (quintet, J = 7.0 Hz, 4H), 1.75 (quintet, J = 7.0 Hz, 2H), 

1.49 (m, 6H), 1.28 (m, 24H), 0.89 (m, 9H). 13C{1H} NMR (75 MHz, CD2Cl2) δ 154.1, 

144.4, 136.5, 135.4, 123.7, 116.7, 112.6, 101.7, 73.9, 69.6, 32.5, 32.1, 30.9, 30.3, 30.2 (2 

peaks, 0.6 ppm apart), 29.9 (2 peaks, 0.04 ppm apart), 26.7, 26.6, 23.2 (2 peaks, 0.05 ppm 

apart), 14.4, 9 peaks missing in alkyl region, presumably due to overlap.  EI-MS (m/z): 

807.6.  Anal. calcd. for C50H81NS2O3: C, 74.29; H, 10.10; N, 1.73.  Found: C, 74.51; H, 

10.19; N, 1.80.  

 

N-(3,4,5-Tri(n-dodecyloxy)phenyl)-2,6-diiododithieno[3,2-b:2',3'-d]pyrrole (12).  To 

a 250 mL round-bottomed flask was added chloroform and acetic acid, then N-

(tri(dodecyloxy)phenyl)-dithienopyrrole (0.50 g, 0.62 mmol).  The reaction flask was 

immersed in an ice water bath, and N-iodosuccinimde was added.  After stirring for 2 

hours from 0 ºC to room temperature, sodium bicarbonate (saturated solution in water) 
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was added.  Dichloromethane was added, and the organic layer was washed with aqueous 

sodium bicarbonate, then with water.  The organic layer was dried with anhydrous 

magnesium sulfate.  The crude product was concentrated by rotary evaporation and was 

recrystallized from dichloromethane/methanol, giving 0.52 g (81%) of the desired 

product as an off-white solid.  1H NMR (500 MHz, CD2Cl2) δ 7.31 (s, 2 H), 6.65 (s, 2 H), 

3.98 (m, 6 H), 1.82 (quintet, J = 7.5 Hz, 4 H), 1.75 (quintet, J = 7.5 Hz, 2 H), 1.49 

(quintet, J = 6.5 Hz, 6 H), 1.22 – 1.42 (m, 48 H), 0.88 (m, 9 H). 1H NMR (500 MHz, 

CD6C6) δ 7.13 (s, 2 H), 6.50 (s, 2 H), 4.28 (t, J = 6.5 Hz, 2 H), 3.62 (t, J = 6.5 Hz, 4 H), 

1.98 (quintet, J = 7.5 Hz, 2 H), 1.67 (m, 6 H), 1.20 – 1.45 (m, 52 H), 0.92 (m, 9 H).  1H 

NMR (500 MHz, C6D6) δ 6.99 (s, 2 H), 6.50 (s, 2 H), 4.28 (t, J = 6.5 Hz, 2 H), 3.62 (t, J = 

6.5 Hz, 4 H), 1.98 (quintet, J = 6.4 Hz, 2 H), 1.67 (quintet, J = 6.5 Hz, 4 H), 1.20 – 1.50 

(m, 54 H), 0.93 (m, 9 H).  13C{1H} NMR (125 MHz, C6D6) δ 154.6, 143.9, 138.1, 134.6, 

128.5, 121.6, 121.1, 102.8, 73.7, 72.0, 69.3, 32.3, 31.1, 30.3, 30.2, 30.1, 29.87, 29.85, 

29.82, 29.7, 26.8, 26.5, 23.1, 14.4.  MS-EI (m/z): 1059.3 Anal. calcd. for C50H79I2NO3S2: 

C, 56.65; H, 7.51; N, 1.32.  Found: C, 57.09; H, 7.56; N, 1.40. 

 

5,5’-Bis(5-n-heptylthien-2-yl)-2,2’-bithiophene (5).  5,5’-Dibromo-2,2’-bithiophene 

(0.324 g, 1.0 mmol) and tri-n-butyl-(5-heptyl-thiophen-2-yl)-stannane (1.04 g, 2.2 mmol) 

were mixed in an oven-dried flask.  Tetrakis(triphenylphosphino)palladium(0) (0.012 g, 

0.01 mmol) and anhydrous DMF (10 mL) were added under nitrogen atmosphere, and the 

reaction mixture was stirred for 1.5 hours at room temperature.  An orange precipitate 

formed, and the reaction mixture was stirred for another 3 hours, was treated with 30 mL 

of ice water, and the orange solid was isolated by vacuum filtration, rinsed with ethanol, 
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hexanes and dried under vacuum.  The crude material was isolated in 63.9% yield (0.337 

g).  Additional amount of solid that formed in the mother liquor after evaporation of 

hexanes was vacuum filtered, combined with the crude material and chromatographed 

(250 ml of silica gel, hexanes / dichloromethane (5:2) as eluant).  The solvents were 

removed from the combined fractions and the residue was recrystallized from hexanes.  

Purified material was obtained as orange-yellow solid (0.153 g, 29% purified yield).  This 

material was combined with the 2nd crop of crystals and further purified by column 

chromatography (100 mL of basic alumina, hexanes, then hexanes / dichloromethane 

(1:1) as the eluants).  The solvent was removed from combined fractions and the residue 

was recrystallized from hexanes (~50 mL) to give dark yellow polycrystalline material, 

which was further purified by column chromatography on silica gel and recrystallization 

from hexanes, and analytically pure compound was obtained as bright yellow solid (0.15 

g, 29%).  1H NMR (CDCl3, 400 MHz) δ  7.03 (d, J = 3.8 Hz, 2H), 6.97 (m, 4H), 6.68 (d, 

J = 3.5 Hz, 2H), 2.79 (t, J = 7.6 Hz, 4H), 1.68 (m, 4H), 1.40-1.20 (m, 16H), 0.89 (t, J = 

6.8 Hz, 6H).  13C{1H} NMR (CDCl3, 100 MHz) δ  145.5, 136.6, 135.2, 134.3, 124.7, 

123.8, 123.4, 123.2, 31.6, 31.5, 30.0, 28.9, 22.5, 14.0.  HRMS (EI) calculated for 

C30H38S4: 526.1856; found: 526.1848.  Anal. calcd. for C30H38S4: C, 68.39; H, 7.27.  

Found: C, 68.41; H, 7.16. UV-visible absorption (dichloromethane) λmax, nm (ε): 403 nm 

(3.6 × 104) M-1cm-1.  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: 

0.47; E1/2
2+/+: 0.71 V versus Cp2Fe+/0 at 0 V.   

 

2,6-Bis(5-n-heptylthien-2-yl)dithieno[3,2-b:2’,3’-d]thiophene (6).  2,6-

Dibromodithieno[3,2-b:2’,3’-d]thiophene (0.10 g, 0.28 mmol), 2-n-heptyl-5-tri-n-
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butylstannylthiophene (0.29 g, 0.62 mmol), tetrakis(triphenylphosphino)palladium(0) 

(0.006 g, 0.007 mmol), and N,N’-dimethylformamide (Acroseal, 1 mL) were mixed in a 

oven-dried 10 mL microwave reaction vessel cooled under nitrogen.  The reaction vessel 

was sealed, and the reaction mixture was heated for 5 minutes at 80 W, reaching a 

maximum temperature of 130 ºC.  Yellow-orange needles formed on cooling of the 

reaction vessel.  The reaction mixture was transferred to a 50 mL Erlenmeyer flask, and 

dichloromethane (20 mL) was added.  The resulting mixture was heated and the orange 

slightly cloudy solution was purified by column chromatography on basic alumina, 

eluting with dichloromethane.  The solvent was removed, and the crude material was 

recrystallized from 1,4-dioxane.  A bright yellow solid (0.12 g, 76%) was isolated from 

filtration.  1H NMR (CDCl3, 500 MHz) δ 7.25 (s, 2H), 7.02 (d, J = 3.5 Hz, 2H), 6.70 (d, J 

= 3.5 Hz, 2H), 2.81 (t, J = 7.5 Hz, 4H), 1.70 (quintet, J = 7.5 Hz, 4H), 1.20-1.40 (m, 

16H), 0.95 (t, J = 7.5 Hz, 6H).  13C{1H} NMR (125 MHz, CDCl3) δ 146.0, 141.2, 138.5, 

134.8, 129.1, 124.9, 123.6, 116.1, 31.8, 31.6, 30.2, 29.1, 29.0, 22.6, 14.1. MS-EI (m/z): 

556.14622.  Anal. calcd. for C30H36S5: C, 64.70; H, 6.52; S, 28.79.  Found: C, 64.53; H, 

6.80; N, 28.46. UV-visible absorption (dichloromethane) λmax, nm (ε): 409 nm (5.1 × 104) 

M-1cm-1.  Cyclic Voltammetry in 0.1 M Bu4NPF6 in dichloromethane: E1/2
+/0: 0.40; E1/2

2+/+: 

0.79 V versus Cp2Fe+/0 at 0 V. 

 

N-(3,4,5-Tri(n-dodecyloxy)phenyl)-2,6-bis(5-n-heptylthien-2-yl)dithieno[3,2-b:2',3'-

d]pyrrole (7).   N-(3,4,5-tri(n-dodecyloxy)phenyl)-2,6-diiododithieno[3,2-b:2',3'-

d]pyrrole (0.55 g, 0.53 mmol), 2-n-heptyl-5-(tri-n-butylstannyl)thiophene (0.67 g, 1.1 

mmol), tetrakis(triphenylphosphine)palladium(0) (0.005 g, 0.004 mmol), and N,N’-
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dimethylformamide (Acroseal, 1 mL) were added to a microwave reaction vessel under 

nitrogen, which was sealed.  The reaction vessel was assembled in a microwave reactor 

and was heated for 5 minutes at 80 W, reaching a maximum temperature of 148 ºC.  The 

reaction mixture was poured into aqueous potassium fluoride, and the product was 

extracted with hexanes, washing the organic layer with hydrochloric acid (2 M in water, 1 

× 200 mL), then with water (1 × 200 mL).  The organic layer was dried with anhydrous 

magnesium sulfate, was filtered, and concentrated by rotary evaporation to give the crude 

product as a dark red solid.  The product was run through a column of silica gel, eluting 

with hexanes/toluene (4:1), giving the desired product as a yellow oil.  The crude product 

was run through a size exclusion column (1% cross-linked polystyrene beads in 

tetrahydrofuran, Biorad S-X1 biobeads), and then was precipitated from 

dichloromethane/methanol, giving 0.21 g (33%) of the pure product as a bright yellow 

solid.  1H NMR (300 MHz, C6D6) δ 7.35 (s, 2 H), 7.01 (d, J = 4.8 Hz, 2 H), 6.75 (s, 2 H), 

6.51 (d, J = 3.6 Hz, 2 H), 4.27 (t, J = 6.6 Hz, 2 H), 3.73 (t, J = 6.0 Hz, 4 H), 2.57 (t, J = 

7.2 Hz, 4 H), 1.97 (quintet, J = 7.8 Hz, 2 H), 1.71 (m, 4 H), 1.2-1.6 (m, 79 H), 0.92 (m, 

15 H). 13C{1H}  NMR (125 MHz, C6D6) δ 154.6, 145.2, 144.7, 138.0, 136.7, 136.6, 135.2, 

125.3, 123.4, 115.8, 108.3, 102.9, 73.7, 69.3, 32.3, 32.1, 31.9, 31.1, 30.4, 30.3, 30.24, 

30.19, 30.1, 30.0, 29.84, 29.76, 29.39, 29.3, 26.8, 26.5, 23.1, 23.0, 14.4, 14.3.  MS (EI): 

1166.9.  Anal. calcd. for C72H113NO3S4: C, 73.98; H, 9.74; N, 1.20; found: C, 73.92; H, 

9.90; N, 1.24.  UV-visible absorption (dichloromethane) λmax, nm (ε): 398 nm (5.0 × 104) 

M-1cm-1.  Cyclic voltammetry in 0.1 M Bu4NPF6 in dichloromethane: E1/2
+/0: 0.20; E1/2

2+/+: 

0.68 V versus Cp2Fe+/0 at 0 V. 
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CHAPTER 3 

BIS(DIARYLAMINO) DERIVATIVES WITH THIOPHENE-BASED BRIDGES 

AND MIXED-VALENCE CHARACTER OF THEIR RADICAL CATIONS  

 

3.1 Introduction 

This chapter focuses on the properties of bis(di(4-alkoxyphenyl)amino) 

derivatives with thiophene-based bridges.  In addition to synthesis and characterization of 

the compounds by UV-visible absorption spectroscopy and cyclic voltammetry, the 

properties of the radical cations of the bis(diarylamine)s were studied by visible-NIR 

absorption and ESR spectroscopy. 

 

3.1.1  Relevance of Diarylamines to Optoelectronic Applications 

Diarylamino donor groups are important building blocks in a wide range of 

molecules with interesting nonlinear optical (NLO) and electronic properties.  

Quadrupolar1,2 and octupolar3  chromophores in which two or three triarylamines are 

linked by a conjugated bridge have been shown to exhibit high two-photon absorption 

cross-sections.  Such octupolar species have also been studied as second-order NLO 

chromophores.4  Dipolar chromophores with 4-(diarylamino)phenyl or 5-(diarylamino)-2-

thienyl donors are promising for second-order NLO applications.  In this context, 4-

(diarylamino)phenyl-based chromophores have been shown to be more stable than their 

dialkylamino analogues.5-8 Dipolar compounds of this type have also been used for third-

order NLO applications9,10 and as two-photon absorbing chromophores.11 Triarylamines, 

in particular 4,4'-bis(diarylamino)biphenyl derivatives, have been widely studied  as hole-
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transport materials for xerography, organic light-emitting diodes, and in photorfefractive 

polymers.12  The strong visible and NIR absorptions of radical cations and dications of 

bis(triarylamine)s can be potentially exploited in optical pulse suppression applications.13 

Additionally, compounds containing two or more diarylamino redox groups have 

been employed in studies of electronic coupling and delocalization.  

NIR intervalence charge-transfer (IVCT) absorptions have been analyzed in the 

framework of Marcus-Hush theory for mixed-valence (MV) radical cations of species in 

which diarylamino groups are linked by bridging groups based on benzene and other 

arenes,14-17 biphenyl,14,18 phenylene-ethynylene,14,19-21 phenylene-ethenylene,22,23 

cyclophane-based,24 organoplatinum,25 and phosphonium26 moieties.  Some examples of 

bis(diarylamine)s with various end groups and conjugated bridges are shown in Figure 

3.1 and are used for comparisons later in this chapter.  
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S
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Ar2N NAr2

IIIa, Ar = 4-MeOC6H4

IIIb, Ar = Ph
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IVb, n = 1, Ar = Ph

IIa, Ar = Ar' = 4-MeOC6H4

IIb, Ar = Ph, Ar' = 2,4-Me2C6H3

n

 

 

Figure 3.1.  Some examples of previously synthesized bis(diarylamine) compounds. 
 
 
 

3.1.2  Motivation for Studying Bis(diarylamine) Derivatives with Thiophene-based 
Bridges 

 
Replacement of phenylene with thienylene has been found to lead to stronger 

donor-acceptor coupling in dipolar chromophores, as shown, for example, in first 

hyperpolarizability data,27  due to the reduced aromaticity of thiophene relative to that of 



 120 

benzene.  Since thiophene also has a lower ionization potential than benzene, replacement 

of phenylene with less aromatic and more easily ionized thienylene groups might lead to 

more effective mediation of coupling between two diarylamino groups (as has been 

shown for the case where phenylene groups are replaced by donor-substituted phenylene 

groups19,20).  Although the NIR absorption spectra of the radical cations of 5,5'-

bis(diphenylamino)[2,2']bithiophene28  (IVb+, Figure 3.1) and of 5,5"-bis[4-(di-4-

tolylamino)phenyl]-[2,2';5',2"]terthiophene29 have been reported, and the radical cations 

of bis{(di-(4-methoxyphenyl)amino}oligothiophenes have been studied 

computationally,30  no detailed experimental investigation from the standpoint of mixed 

valency of a bis(diarylamino) system with a thiophene-based bridge has been published 

before this work. 

This chapter focuses on the synthesis of new bis(diarylamine) systems  with 

thiophene-containing bridges (Figure 3.2): E-1,2-bis(5-{di[4-(n-butoxy)phenyl]amino}-

2-thienyl)ethylene (1), 2,6-bis{di[4-(n-methoxy)phenyl]amino}-2,2’-bithiophene (2), 2,6-

bis{di[4-(n-butoxy)phenyl]amino}dithieno[3,2-b:2',3'-d]thiophene (3), N-(4-tert-

butylphenyl)-2,6-bis{di[4-methoxyphenyl]amino}dithieno[3,2-b:2',3'-d]pyrrole (4a), and 

N-tert-butyl-2,6-bis{di[4-methoxyphenyl]amino}dithieno[3,2-b:2',3'-d]pyrrole (4b).  

Also included is analysis of the neutral compounds by UV-visible absorption 

spectroscopy and cyclic voltammetry (CV) experiments; characterization of the 

corresponding radical cations by visible-NIR and ESR spectroscopies; analysis of the 

radical cation visible-NIR spectra in the framework of Hush theory;31 and comparison to 

other bis(diarylamine) radical cations.  
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Figure 3.2.  Bis(di(alkoxyphenyl)amine) derivatives with thiophene-based bridges. 
 
 

 
3.1.2 Synthesis of Bis(di(4-alkoxyphenyl)amine) Derivatives 

The syntheses of compounds 1-4 (Schemes 3.1 – 3.6) makes extensive use of 

palladium-catalyzed amination reactions.32,33 Di[4-(n-butoxy)phenyl]amine (7a), an 

intermediate common to the synthesis of both compounds 1 and 3, was obtained from the 

reaction of 1-bromo-4-(n-butoxy)benzene (5) and 4-(n-butoxy)aniline (6) using coupling 

conditions similar to those reported for the synthesis of bis(4-methoxyphenyl)amine 

(7b).34  The reaction was complete after 1 hour of conventional heating.  The product was 

obtained in good yield after recrystallization: 73% versus the yield of 89% yield reported 

for bis(4-methoxyphenyl)amine (7b) after 3 hours of heating.34  The synthesis of 

compound 7a was also carried out using single-mode microwave irradition.  However, 

this offered no particular advantage over conventional heating, giving a slightly lower 

yield and only a slightly reduced reaction time. 
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Scheme 3.1.  Synthesis of di(n-butoxyphenyl)amine. 
 
 

Although 2-(diarylamino)-3,4-diarylthiophenes have also been obtained from the 

reaction of N,N-2-triarylthioacetamides and 1-aryl-2-bromoethanones,35  most published 

syntheses of 2-(diarylamino)thiophene derivatives have involved coupling of a 

diarylamine with a 2-halothiophene. Diphenylamine has been coupled with 2-

halothiophenes, using a palladium source (Pd(OAc)2
36,37 or Pd2dba3 {dba = 

dibenzylideneacetone}}36) in conjunction with PtBu3 (36-78% from 2-bromothiophene36-

38),  or by using copper(I) iodide-mediated modified Ulmann conditions (40% yield from 

2-iodothiophene).39 Various other diarylamines including (4-alkoxyphenyl)amines have 

been coupled with α,α’-dibromo oligothiophenes and with 1,3-bis(5-bromothien-2-

yl)benzo[c]thiophene in moderate yields using Pd(OAc)2 / PtBu3
40 or Pd(dppf)Cl2 / dppf41  

(dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst systems.  

Initially the coupling of di(4-n-butoxyphenyl)amine (7a) with 2-bromothiophene 

(8) was attempted using Pd2dba3 / dppf  as the catalyst system.  Analysis of the reaction 

showed no evidence for the formation of desired 2-bis(4-n-butoxyphenyl)aminothiophene 

(9).  However, compound 9 was successfully obtained after changing the catalyst system 

to Pd2dba3 / PtBu3. The reaction was carried out both under conventional heating and in a 
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microwave reactor.  After a few attempts in optimization of the conditions, analysis of the 

reaction mixtures showed that microwave heating could produce the desired product (9) 

in higher yields (95%) than conventional heating (73%).  Moreover, under microwave 

conditions, fewer byproducts were obtained, which facilitated chromatographic isolation 

of the desired product (an oil).  Consequently, microwave irradiation was used as the 

heating source for most of the subsequent reactions with 2-bromothiophene derivatives.  
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Scheme 3.2.  Synthesis of 2-bis(4-n-butoxyphenyl)aminothiphene. 
 
 

From compound 9, the corresponding aldehyde (10) was readily obtained in good 

yield under Vilsmeier conditions, affording the pure product in 71% yield.  Compound 10 

can also be synthesized directly from the coupling of compound 7a with 2-bromo-5-

formylthiophene using Pd2dba3 / PtBu3 as a catalyst system.  However, the formation of 

the desired aldehyde (10) was accompanied by a significant amount of the decarbonyated 

product (9).  Compound 10 was reductively coupled under McMurry conditions to give 

the desired product (1) in moderate yield. 
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Scheme 3.3.  Synthesis of bis(di(4-n-butoxyphenyl)amino-5-thien-2-yl)ethane. 
 

 
In addition to its role as an intermediate in the synthesis of compound 1, 

compound 10 is also of interest as a potential π-donor for dipolar chromophores, such as 

those used for electrooptic applications.  Diarylamino-based donors would be expected to 

show superior thermal and photochemical stability to their dialkylamino analogues, 5-8  

calculations suggest that di(4-alkoxyphenyl)amino-based donors show comparable π-

donor strength to dialkylamino-based analogues,42 and experimental27  and theoretical42 

work suggests that the presence of the thienylene ring should lead to stronger donor-

acceptor coupling than in phenylene analogues.  

The same reagents were used to synthesize the previously reported40  compound 2, 

a yellow-orange solid, from 5,5'-dibromo-2,2'-bithiophene (11) and di(4-

methoxyphenyl)amine (7b) in better yield (76% vs. 27%) than previously reported using 

Pd(OAc)2 / PtBu3. 
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Scheme 3.4.  Synthesis of bis(di(4-methoxyphenyl)amino)bithiophene. 
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Compound 3 was obtained in good yield as a glassy solid from the microwave-

assisted palladium-catalyzed coupling of compound 7a with 2,6-dibromodithieno[3,2-

b:2',3'-d]thiophene (12), 43  which was prepared from bromination of the parent 

dithieno[3,2-b:2',3'-d]thiophene44 with N-bromosuccinimide in chloroform / acetic acid.    

Additionally, the synthesis of bis(di(4-methoxyphenyl)amino[3,2-b:2',3'-d]thiophene (3b, 

not shown) was carried out using the same reagents with conventional heating, which is 

described in the experimental section. 
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Scheme 3.5.  Synthesis of 2,6-bis(di(4-n-butoxyphenyl)amino)dithienothiophene. 
 
 
N-Substituted-dithieno[3,2-b:2',3'-d]pyrroles (13a and 13b) were synthesized as 

described in Chapter 2.  Treatment of compounds 13a and 13b with N-bromosuccinimide 

gave dibromides 14a and 14b, respectively, which were the first reported examples of 

2,6-dibromo-dithieno[3,2-b:2',3'-d]pyrrole derivatives.  As noted in Chapter 2, while the 

reaction was successful for N-aryl and N-tert-butyl species, analogues of 13b with n-alkyl 

N-substitution decomposed under these conditions with no dibromo derivative isolable.  

Compounds 14a and 14b were converted to compounds 4a and 4b, respectively, using 

the same reagents used to form compounds 2 and 3.  However, in the synthesis of 

compounds 4a and 4b, microwave irradiation was not used due to the instability of the 

products. 
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Scheme 3.6.  Synthesis of 2,6-bis(di(4-methoxyphenyl)amino)dithienopyrrole 
derivatives. 

 

 

3.1.2.  Electronic Spectra of the Neutral Species 

The UV-visible absorption spectra for the neutral species 1, 2, 3, and 4a are 

compared in Figure 3.3 (4b shows a very similar spectrum to 4a, so it is shown 

separately).  

 

 

Figure 3.3.  Molar absorptivities of bis(di(alkoxyphenyl)amine) derivatives 1-4a in 
dichloromethane. 
 
 



 127 

 The UV-visible absorption spectra of compounds 4a and 4b in dichloromethane 

are very similar, which indicates that there is little effect of the N-substituent on the 

energy difference between the relevant orbitals associated with the visible absorption 

when the N-substituent is changed.  The normalized spectra of both dithienopyrrole 

derivatives are shown below in Figure 3.4. 
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Figure 3.4.  Normalized UV-visible absorption spectra of compounds 4a and 4b in 
dichloromethane. 
 
 

The data for the lowest energy transitions are summarized in Table 3.1 along with 

transition dipole moments, µge, estimated from the spectra.  Data for the previously 

reported E-4,4'-bis{di-[4-(methoxy)phenyl]amino}stilbene (I)23  are also included for 

comparison. Table 3.1 also includes absorption maxima and transition dipole moments 

obtained using time-dependent density functional theory (TD-DFT) for gas-phase 1, 2, 3, 

4a and I (n-butyl groups were replaced by methyl for compounds 1 and 3). 
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Table 3.1. Absorption maxima, absorptivities and transition dipole moments for the 
lowest-energy absorptions of the neutral compounds 1, 2, 3, 4a, and I in dichloromethane 
with TD-DFT gas-phase valuesa in italics.  
 

Compound λmax (

! 

" max) / nm (cm-1) εmax / M–1cm–1 µge / D 

1 442 (22600) 488 (20500) 41400 8.58 11.9 
2 407 (24600) 446 (22400) 25800 6.57 9.03 
3 388 (25800) 420 (23800) 32100 7.31 8.79 

4a 382 (26200) 412 (24300) 34100 7.62 8.31 
I 398 (25100b) 433 (23100) 54900b 10.0b 12.2 

a Computed with TD-DFT at the B3LYP/6-31G(d,p) level. b Data from reference.23 
 

 
The calculated energies compare well with the experimental data, although are 

systematically underestimated by about 2000 cm-1 (this corresponds to less than 10% of 

the actual transition energy). The lowest energy transitions are seen for compound 1, 

consistent with the expected effect of extending conjugation.  Compounds 3 and 4a show 

very similar transition energies, which are blue-shifted to that of compound 2.   This shift 

is presumably partly attributable to the destabilization of LUMOs of compounds 3 and 4a 

from the central heteroatoms of the bridges.  Both theory and experiment show larger 

transition dipole moments in the species with more extended conjugation, the vinylene-

bridged compounds 1 and I, than in compounds 2, 3 and 4a, consistent with polarization 

of the transition along the long axis between the two amine groups. 

The TD-DFT calculations show that that the lowest energy transition for each 

system is predominately a direct HOMO to LUMO excitation. The molecular orbitals 

involved in the transition are shown for each molecule in Figure 3.5, along with the 

HOMO–1, which is important in the spectra of the radical cations. In each case the 

HOMO and HOMO–1 are of opposite parity and can be regarded as an in- or out-of-

phase linear combination of two diarylamine-based orbitals (dominated by nitrogen p-
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orbitals). The HOMO orbital has significant bridge-based contributions from the local 

HOMO of the bridge, out of phase with those from the diarylamine-based orbitals. The 

LUMO in each case is principally bridge-based, resembling the LUMO of the isolated 

bridging moiety.  
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Figure 3.5. HOMO-1, HOMO, and LUMO for compounds 1, 2, 3, and 4a according to 
DFT calculations. 
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3.1.3. Electrochemistry of the Bis(diarylamino) Derivatives 

In order to determine the ease of oxidation, cyclic voltammetry (CV) experiments 

were run for the bis(diarylamino) derivatives.  Cyclic voltammograms of compounds 1-4 

(Figure 3.6) indicate that all five compounds show two facile reversible oxidations at 

different potentials.  In the voltammograms below, the compounds are shown along with 

cobaltocenium / cobaltocene as an internal reference (each time appearing at -1.32 V). 

 



 132 

 

 

 

 

  

Figure 3.6.  Cyclic voltammetry of compounds 1-4 in 0.1 M tetra-n-butylamino 
hexafluorophosphate in dichloromethane at 50 mV/s, shown with Cp2Co+/0 as the internal 
reference. 
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The oxidation potentials for compounds 1-4 are shown in Table 3.2;  additionally 

Table 3.2 includes redox potentials of related bis[di(4-(methoxy)phenyl]amine 

analogues,23,40,45 the structures of which are shown in Figure 3.1.  Comparisons with these 

analogs indicate compounds 1-4 are rather more readily oxidized than analogues with 

1,4-phenylene, biphenyl-4,4'-diyl, or E-stilbene-4,4'-diyl bridges.  The dithienopyrrole-

based bridges results in the most electron-rich compounds, which are ca. 0.2 V more 

readily oxidized than their dithienothiophene-bridged analogues, consistent with the 

ionization potential of the simple pyrrole (8.2 eV) and thiophene (8.9 eV) heterocycles,46  

with the N-alkyl derivative (4b) being slightly more electron-rich than its N-aryl analogue 

(4a). 

 
Table 3.2. Redox potentials for bis[di(4-alkoxyphenyl)amino] compounds determined by 
CV in 0.1 M tetra-n-butylammonium hexafluorophosphate in dichloromethane (CH2Cl2) 
or acetonitrile (CH3CN). 
 

 CH2Cl2 CH3CN 
Compound E1/2

+/0 E1/2
2+/+ ΔE1/2 E1/2

+/0 E1/2
2+/+ ΔE1/2 

1 –0.23 –0.14 0.09 –0.22a a 
2b −0.20 −0.04 0.16 –0.14 -0.02 0.12 
3 –0.19 +0.13 0.32 –0.19 +0.03 0.22 
4a –0.40 –0.08 0.32 –0.31 –0.07 0.24 
4b –0.43 –0.10 0.33 –0.37 –0.15 0.22 

Ic +0.08 +0.22 0.14 – – – 

IIad14 +0.09 +0.31 0.22 – – – 
IIIad –0.15 +0.34 0.49 – – – 

a Separation not resolvable. b Values for 2 in acetonitrile / 0.1 M [nBu4N]+[PF6]–reported in 
reference40  are similar. Potentials for IVa, IVb, and longer Ph-terminated species in 
benzonitrile / 0.1 M [nBu4N]+[PF6]– are reported in reference.28 cData for reference.23 d 

Data from reference. 14 
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The difference between the first and second redox potentials, ΔE1/2, for all four 

compounds is greater in the less polar solvents, consistent with the predictions of the 

dielectric continuum model for the electrostatic contribution to ΔE1/2.47 This model 

assumes that the more polar solvents stabilize the positive and negative charges, therefore 

resulting in the second oxidation occurring at lower potentials due to the stabilization of 

the first positive charge.  Although ΔE1/2 values have often been used as measures of 

electronic coupling in MV species, it has been shown that they provide a very poor guide 

and must be used with extreme caution.48  The values of  ΔE1/2 in Table 3.2 show no clear 

relation with the couplings, V, in Table 3.3 (see later discussion of this table).  However, 

it is worth noting that the ΔE1/2 values for compounds 3, 4a, and 4b are rather large 

compared to many of the other species included in the table, indicating that the 

corresponding radical cations are relatively stable to disproportionation.  

 

3.1.4. Electronic Spectra of the Radical Monocations of Bis(diarylamine) Derivatives 

As in previously reported studies, the radical cations of compounds 1-4 were 

generated in dichloromethane solution by addition of the excess diamine to a solution of 

tris(4-bromophenyl)aminium hexachloroantimonate.22,23,25,49 The visible-NIR absorption 

spectra of the resulting solutions are shown in Figure 3.7.   
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Figure 3.7.  Visible-near-IR absorption spectra of monocations 1-4a+ in dichloromethane. 
The onsets of strong absorption at high energy (at ca. 20000 for 1+ and ca. 23000 cm–1 for 
2+, 3+ and 4a+) correspond to absorption by the excess neutral diamines present; the 
absorptivity scale applies only to the lower energy absorptions attributable to the radical 
cations.  

 
 
Radical cations 4a+ and 4b+ show very similar spectra, the similarity reflecting the 

lack of pyrrole nitrogen contributions to the relevant orbitals (Figure 3.8).  For clarity the 

spectrum for 4b+ was not shown in Figure 3.7.    
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Figure 3.8.  Normalized visible-near-IR absorption spectra of monocations 4a+ and 4b+ in 
dichloromethane. The onsets of strong absorption at high energy (at ca. 23000 cm–1) 
correspond to absorption by the excess neutral diamines present.  
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Monocations  1+-4+  show intense absorption bands in the NIR region that are 

similar in terms of energy and, absorptivity and lineshape to the IVCT absorptions 

previously observed for other strongly coupled bis(diarylamine) monocations, data for 

some examples of which are also included in Table 3.3.  Specifically, the bandwidths at 

half height, 

! 

" 1/2[obs], are narrower than the width predicted by Hush theory for a class-II 

MV species according to: 

   
  

! 

" 1/ 2[Hush] = 2310#" max      (3.1)  

where both  

! 

" 1/2[Hush] and  

! 

" max are in cm–1.  In the case of radical cations 1+, 3+, and 4+, 

the bands are strongly asymmetric (as gauged by 

! 

" 1/2[high]/

! 

" 1/2[low]), with twice the 

bandwidth on the high-energy side being in the vicinity of the Hush limit, 

! 

" 1/2[Hush].  

These asymmetric lineshapes were originally interpreted in terms of a cut-off on the low-

energy side of the band due to the thermal population of the electron-transfer barrier 

top.14 50 Definitively localized class II bis(diarylamino) MV systems show more-or-less 

symmetrical Gaussian IVCT bands that have widths in excess of that predicted by 

equation 3.2.14,22,23,26,51,52   According to this model, this situation is predicted for any 

system belonging to Robin and Day’s class II53  (valence-localized) but  lying very close 

to the borderline with class III (delocalized), i.e. with a low barrier to intramolecular 

electron transfer. Subsequent work suggested that these lineshapes could also arise from 

coupling of the electron transfer in class-III and  class-II/class-III borderline systems to 

symmetric vibrations.54  A number of other bis(diarylamine) MV cations have been found 

to exhibit similar lineshapes.  Crystallographic and vibrational studies15,23,55 and variable-

temperature measurements of the IVCT band shape56  support the latter of the two 
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interpretations.  Although the near-IR absorptions of radical cations 4a+ and 4b+ are also 

consistent with delocalized structures in that both 

! 

" 1/2[obs] and 

! 

" 1/2[high] are well below 

! 

" 1/2[Hush], the bands are the broadest of the species under consideration (

! 

" 1/2[obs] over 600 

cm–1 greater than for the next broadest, that of radical cation 3+) and are considerably less 

asymmetric as gauged by 

! 

" 1/2[high]/

! 

" 1/2[low] (compare the values of 1.34 and 0.95 for radical 

cations 3+ and 4+, respectively). Thus, the characteristics of the low-energy near-IR 

absorptions strongly support the assignment of radical cations 1+-4+ to Class III, along 

with the previously studied radical cation I+.  

The DFT geometry optimization results (see supporting information for details) of 

the radical cations  1+, 2+, 3+, 4a+ and I+ also suggest all these systems should be assigned 

to class III. While use of DFT often leads to overdelocalization and, therefore, may 

suggest a symmetric class-III structure for a class-II species, it has previously been found 

to give good agreement with structural and spectroscopic features when applied to 

species shown experimentally to belong to class III.15,18,23 The TD-DFT transition energies 

and transition dipole moments are included in Table 3.3.  The calculated energies are 

slightly overestimated for the ethylene-bridged species 1+ and I+ and slightly 

underestimated for 2+ and for the fused-ring species 3+ and 4a+, with the variation in 

! 

" max 

between compounds being well-reproduced.  This further supports the assignment of the 

cations to class III.  The transition dipole moments are generally less well-reproduced by 

TD-DFT calculations than in the case of the corresponding neutral species.   

In all cases, the TD-DFT results indicate that the lowest energy transition is 

dominated by a SOMO–1 to SOMO transition, with other configurations playing a 

slightly more important role in the more extended species. The SOMO and SOMO–1 of 
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the radical cations very closely resemble the HOMO and HOMO–1, respectively, of the 

neutral species (see Figure 3.4). Thus, the transition is between combinations of 

diarylamino-based orbitals (dominated by amine nitrogen p-orbitals) with opposite parity, 

this orbital picture closely resembling that previously reported for other delocalized 

bis(diarylamino) radical cations,15,18,29,30,57,58  and thus supporting the identification of the 

lowest energy band in  1+-4+ as IVCT transitions. 

The electronic structure calculations also provide some insight into the differences 

in experimental band shapes. The relaxation energy associated with the lowest excited 

state of the radical cations was estimated using DFT to be 2873 cm–1, 3480 cm–1, 3331 

cm–1, and 3943 cm–1 for radical cations 1+, 2+, 3+, and 4a+, respectively, and, thus, follow 

a similar trend as seen in experimental values of  

! 

" 1/2[obs] (2720 cm–1, 3338 cm–1, 3640 

cm–1, and 4260 cm–1, respectively).  Thus the increase in the bandwidth when going from 

radical cations 3+ to 4a+ could be related to a significant (about 600 cm-1) increase in the 

corresponding relaxation energy.  Usually larger relaxation energies result in a more 

symmetric (Gaussian-like) band shape, which is consistent with the broader, more 

symmetric, lineshape of the IVCT of radical cation 4a+ relative to that of 3+. 

 

 

3.1.5.  Calculation of the Electronic Coupling of the Radical Cations of the 
Bis(diarylamine) Derivatives 

   

According to Hush theory the electronic coupling, V, between two redox centers 

can be obtained from the transition dipole moment, µge, and the absorption maximum, 

! 

" max, of the IVCT band of the MV species according to 
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! 

V =
µge" max

eR
     (3.2)  

where e is the electronic charge and R is the diabatic electron-transfer distance, i.e. the 

distance between donor and acceptor in the absence of any electronic coupling.59 60 In the 

case of Class-III MV systems, the coupling can also be obtained directly from the IVCT 

maximum: 

        

! 

V = " max / 2      (3.3) 

Estimates of V from eq 3.2, obtained by assuming R to be the geometric N—N 

separation, are given in Table 3.3, along with values from eq 3.3.  According to either 

estimate, radical cations 1+, 2+, 3+, and 4a+ all show rather large couplings, as one would 

anticipate from the electron-rich character of the thiophene-containing bridges. 

Comparison of the dithienylethylene derivative with the stilbene species (1+ and I+), 

respectively, or of the bithophene and biphenyl species (2+ and IIa+), respectively, shows 

that replacement of phenylene with thienylene groups leads to increased coupling. The 

coupling suggested by equation 3.3 in the dithienopyrrole-bridged species (4a+), is the 

strongest yet reported for a bis[di(4-alkoxyphenyl)amino] MV species inlcuding IIIa+ (a 

stronger coupling of V[eq3] = 5790 cm–1 is obtained for the 1,4-bis(diphenylamino)benzene 

radical cation (IIIb+)15 emphasizing that the relative electron-richness of the bridge and 

end groups is important, while a value of V[eq3] = ca. 5550 cm–1 for IVb+ can be deduced 

from the published spectrum28). For all the compounds in Table 3.3, the couplings 

estimated according to equation 3.2 are signficantly smaller than those obtained from 

equation 3.3. This discrepancy is at least partly attributable to the nitrogen—nitrogen 

separation being greater than the true diabatic electron-transfer distance; i.e. the redox 

centers cannot be regarded as centered on the nitrogen atoms, but are displaced somewhat 
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into the bridge. Assuming the validity of equations 3.2 and 3.3, the appropriate values of 

R would have to be approximately half to two-thirds of the geometric nitrogen—nitrogen 

separation. In view of the reduced adiabatic electron-transfer distances in all these 

species, it is interesting to ask to what extent these species can still be regarded as 

diamino MV species, rather than being “bridge-oxidized” species.  To obtain information 

pertinant to this question, the monocations were next examined by ESR. 
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Table 3.3.  Parameters from the low-energy near-IR absorptions of radical cations 1+, 2+, 3+, 4a+ and other symmetric bis[di(4-
alkoxyphenyl)amino] radical cations in dichloromethane or, for IIa+ and IIIa+, dichloromethane / 0.1 M [nBu4N]+[PF6]– with 
some values from TD-DFT calculationsa in italics. 

 

! 

" max/cm-1 εmax / 

M-1cm-1 
! 

" 1/2[obs ] / 

cm-1 
! 

" 1/2[Hush]
b / 

cm-1 
! 

" 1/2[high] / 

! 

" 1/2[low]
c 

! 

" 1/2[high] / 

! 

" 1/2[Hush]
d 

µge / D V[eq2]
e/ 

cm-1 

V[eq3] / 

cm-1 

1+ 8750 9480 56500 2720 4500 1.37 0.70 13.0 9.3 2150 4375 

2+ 10100 10020 47900 3338 4830 1.17 0.75 12.3 9.6 2820 5050 

3+ 10500 10300 57100 3640 4920 1.34 0.85 14.0 10.4 3400 5250 

4a+ 12500 11600 49000 4260 5380 0.95 0.77 12.3 9.7 3480 6270 

I+ 6080f 6980 39300f 2760f 3750f 1.40f 0.86 13.5f 15.5 1400 3020 

IIa+ 6360g 6920h 28000g 3170g 3830 1.45g 0.98 11.6g 14.5h 1550 3180 

IIIa+ 9350g 9250h 22700g 3640g 4647 1.76g 0.99 9.17g 10.1h 3240 4675 

a B3LYP/6-31G(d,p) level. b Calculated using eq 1. c Ratio of bandwidth on high-energy side to that on low-energy side. d Ratio 
of twice the band of the high-energy side to the bandwidth from eq 1. e Estimated from eq 2 using the experimental values of 

! 

" max and µge and the geometric N—N distance. f Data taken from reference 22,23. g Data from reference 14. h TD-DFT values from 
reference 54. 
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3.1.6 Electron-Spin Resonance of Radical Cations of the Bis(diarylamine) Derivatives 
 

Room temperature X-band ESR spectra were acquired for the same 

dichloromethane solutions of radical cations 1+-4+ used for measurement of the visible-

NIR absorption spectra.  The ESR spectra show more resolvable coupling than the 

spectra of bis(diarylamino) MV species that have been previously reported.22,23,25 The 

spectra are of monocations 1+-4a+ are shown in Figure 3.9.  The spectra are reminiscent 

of those of the radical cations of bis(diphenylamino)-terminated oligothiophenes such as 

the monocations of IVa+ and IVb+ (structures in Figure 3.1), where coupling constants to 

the I = 1 (14N nuclei) and the I = ½ (1H nuclei) of the bridging ligand are of comparable 

magnitude.28  Figure 3.9 shows the spectra, along with the previously reported spectrum 

of monocation I+,22  and spectra simulated using WinSim.  In all cases, the spectra are 

centered at g = 2.004, a typical value for triarylamine radical cations.61 In each case the 

spectra were fitted by assuming coupling to two equivalent 14N nuclei and to varying 

numbers of pairs of 1H nuclei (i.e., assuming the cations to be symmetrical, at least on a 

timescale of >10–7 s.  
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Figure 3.9.  Experimental X-band ESR Spectra (lower, red solid line) of monocations I+ 
and 1+-4a+ in dichloromethane with simulations (upper, blue dotted line) used to obtain 
coupling constants.  
 
 
 The ESR spectra for the radical cations 4a+ and 4b+ are essentially identical, 

indicating that the spin density is relatively small on the nuclei of the N-substituent of the 

dithienopyrrole ring of these radical cations.  The ESR spectra of the monocations of 4a+ 

and 4b+ are shown in Figure 3.10, on the same scale for x-axis but offset to show each 

spectral shape clearly. 

 

 
 
Figure 3.10.  Experimental X-band ESR spectra of monocations 4a+ (left) and 4b+ (right) 
in dichloromethane offset on the x-axis. 
 
 

The coupling constants obtained from the simulation are given in Table 3.4.  

Values obtained from DFT calculations, also given in the table, are in good agreement 
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with the experimental data, and allow assignment to the resolvable 1H coupling, as 

indicated in Table 3.4.  Moreover, the good agreement between experimental and DFT 

coupling constants suggests that DFT describes the spin distribution in the radical cations 

well and justifies using DFT spin densities as a means of assessing the degree to which 

the oxidation can be regarded as amine-based. 

 

Table 3.4. Experimental and theoretical (italics) ESR hyperfine coupling constants (G) 
for some bis[di(4-alkoxyphenyl)amino] radical cations.a   
 

 1+ 2+ 3+ 4a+ I+ 
AN(a) 2.68 2.91 3.20 3.30 3.44 3.43 3.17 3.15, 

3.18 
3.80c 3.65 

AH(a)
b 2.00 1.90 2.70 2.45 2.15 1.85 1.24 1.17, 

1.20 
d 0.76, 

0.82e 
AH(b)

b 2.28 2.09 2.20 2.13 – –     –         
– 

d 0.26, 
0.30e 

AH(c)
b 1.90 1.79 – – – –     –         

– 
d 0.82 

AN(b)
f – – – – – – 1.61 1.22 –             – 

a Calculated values, from open-shell DFT at the B3LYP/6-31G(d,p) level, are absolute 
values of the isotropic Fermic contact couplings whereas the experimental values are 
moduli, |A|. b H(a), H(b), and H(c) are defined in Figure 3.8.c Previously a somewhat 
larger value was reported22  for this coupling constant by inspection of the experimental 
spectrum; however, the spectra are better simulated with the present value.d Not 
resolvable in the experimental spectrum.e  The first and second values are H(a/b) and 
H(a'/b') respectively.f  This nitrogen is that in the pyrrole ring of 4a+.  
 
 

Figure 3.11 shows the labeling scheme for the structures of the monocations for 

which hyperfine coupling constants are reported in Table 3.4. 
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Figure 3.11. Labeling scheme for 1H and 14N nuclei for which coupling constants are 
given in Table 3.4. 
 
 

A value of AN = 8.97 G has been reported for the radical cation of tri(4-

methoxyphenyl)amine ([(p-MeOC6H4)3N]+) in acetonitrile.62  Thus, a notional class-III (or 

rapidly exchanging) MV system consisting of two such redox centers would be expected 

to show AN = ca. 4.5 G. The experimental (and calculated) AN values are lower, 

decreasing in the order I+ > 3+ > 2+ > 4a+ > 1+, suggesting the total spin density for the 

two 14N atoms is reduced relative to that in [(4-MeOC6H4)3N]+, consistent with the bridge 

character of the oxidation increasing in the order I+ < 3+ < 2+ < 4a+ < 1+.  DFT-calculated 

spin densities (see Table 3.5 and Supporting Information) are consistent with this picture.  

Even in I+ there is considerably more spin density on the stilbene bridge than on the 

terminal aryl groups, consistent with the shift of the diabatic states into the bridge 

suggested by the NIR data and with the appearance of the SOMO (corresponding to the 

HOMO of the neutral species shown in Figure 3.5).  In the thiophene-containing radical 

cations, the spin density on the bridge is increased at the expense of that on nitrogen and 

that on the terminal aryl groups with the bridge character increasing in the same order as 

deduced from the values of AN.  Nevertheless, the calculations indicate the amino 

nitrogen atoms bear greater spin density than any of the other atoms, suggesting that, 

although the bridge character of the oxidation is increased in monocations 1+ - 4+ relative 
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to that in analogues such as I+, the species with thiophene-based bridges can still be 

regarding as having significant MV diamine character.  

 

Table 3.5. DFT-calculated Spin Densities for Different Portions of the Radical Cations of 
1+, 2+, 3+, 4a+, and I+.   
 

 1+ 2+ 3+ 4a+ I+ 
Terminal Aryl 0.12 0.15 0.17 0.13 0.27 

Amino N atoms 0.25 0.28 0.29 0.27 0.31 
Bridging group 0.63 0.57 0.54 0.60 0.42 

 

 

3.2 Summary of the Analysis of Bis(diarylamine)s and Their Radical Cations 

Di(4-alkoxyphenyl)amines can be coupled to bromothiophene and related 

derivatives in good yield under palladium-catalyzed conditions.  At least in some cases, 

microwave irradiation leads to improved yields and fewer side reactions.  Five bis[di(4-

alkoxyphenyl)amino] species with thiophene-based bridges have been synthesized. The 

ease of oxidation of these materials may lead to potential application as hole-injection 

materials in organic light-emitting diodes, while the 5-[di-(4-n-butoxyphenyl)amino]-2-

formylthiophene intermediate used in the synthesis of one of these compounds has 

potential utility as a stable and potent π-donor for incorporation into electrooptic 

chromophores.  The radical cations of the bis[di(4-alkoxyphenyl)amine] compounds have 

been generated.  Their NIR spectra are indicative of strong coupling between the two 

redox centers, stronger than that observed in species with phenylene-based bridging 

groups of comparable length.  This can be attributed to high-lying orbitals of the 

thiophene-based bridging units.  ESR spectroscopy and quantum-chemical calculations 

indicate increased spin density on the bridging groups than in comparable species with 
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phenylene-based bridges, with a concommitant reduction in spin density on the amino 

nitrogen centers.   

 

3.3. Experimental Details for Chapter 3 

3.3.1 Computational Methods 

Note: All DFT and TD-DFT calculations in this chapter were performed by Kelly 

Lancaster and Vaeceslav Coropceanu in the research group of Prof. Jean-Luc Brédas at 

Georgia Institute of Technology.  

The geometries of the bis(diaryl)amine compounds of the neutral and radical 

cation ground and first excited states were optimized  at the DFT level.  The excitation 

energies and transition dipole moments of the low-lying excited states were calculated at 

the TD-DFT level. All DFT and TD-DFT calculations are performed using with the 6-

31G(d,p) split valence plus double polarization basis set63-66  and with the B3LYP 

functional.67,68 All calculations were carried out using the Gaussian 03 suite of 

programs.69 

Simulations of EPR experiments were accomplished using WinSim, a simulation 

program for Windows, which is currently provided for free download at the National 

Institutes for Environmental Health Sciences of the National Institutes of Health website 

at http://www.niehs.nih.gov/research/resources/software/tools/index.cfm. 

 

 

3.3.2 General Experimental Methods 
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Starting materials were reagent grade and were used without further purification 

unless otherwise indicated. Starting materials were purchased from Acros Chemical Co. 

except for tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3) and tri-tert-butylphosphine 

solution in hexane, both of which were purchased from Strem Chemicals, Inc.  Solvents 

were dried by passing through columns of activated alumina in a manner similar to that 

described in the literature (tetrahydrofuran, toluene, dichloromethane)70 or by distillation 

from calcium hydride (acetonitrile), or were obtained as anhydrous grade from Acros 

Organics. Chromatographic separations were performed using standard flash column 

chromatography methods using silica gel purchased from Sorbent Technologies (60 Å, 

32-63 µm) or basic alumina purchased from Aldrich Chemical Company.  Elemental 

analyses were performed by Atlantic Microlabs. The microwave used was a CEM 

Discover Labmate. Mass spec FAB was performed on a VG Instruments 70SE.  GCMS 

data were acquired on an Agilent 5790 GC/ 6850 MS. Electrochemical measurements 

were carried out under nitrogen in dry deoxygenated dichloromethane or acetonitrile 

solutions ca. 10–4 M in analyte and 0.1 M in tetra-n-butylammonium hexafluorophosphate 

using a BAS 100 W Potentiostat, a glassy carbon working electrode, a platinum auxillary 

electrode, and, as a pseudo-reference electrode, a silver wire anodized in 1 M aqueous 

potassium chloride.  Potentials were referenced to ferrocenium / ferrocene at 0 V by 

using cobaltocenium hexafluorophosphate (–1.32 V in dichloromethane) or 

decamethylferrocene (–0.52 V in acetonitrile) as an internal reference (since many of the 

redox events of interest were at similar potentials to that of ferrocene). Cyclic 

voltammograms were recorded at a scan rate of 50 mVs–1.  UV-visible-NIR spectra were 

recorded in 1 cm cells using a Varian Cary 5E spectrometer.  Room-temperature ESR 
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spectra were acquired using a Bruker EMX spectrometer. Monocation solutions (ca. 

0.00005 M) visible-NIR and ESR spectroscopy were generated by addition of < 0.1 eq. 

tris(4-bromophenyl)aminium hexachloroantimonate (Aldrich) in dry dichloromethane; 

absorptivities were calculated assuming all of the oxidizing agent added resulted in 

formation of monocation and that disproportionation is negligible at these concentration 

ratios.  

 

3.3.3  Synthesis of Bis(diarylamine) Derivatives and Precursors 

Note: Some of the compounds reported in this section (specifically compounds 1, 

3, 7a, 9, and 10) were initially synthesized by Luca Beverina with the assistance of 

Natalie Thompson in the research group of Prof. Seth Marder at Georgia Institute of 

Technology.  Kelly Lefler, also in the same research group, provided assistance with 

synthesis and characterization (specifically with the resynthesis of compound 4a). 

 

Di(4-methoxyphenyl)amine (7b).  This compound was synthesized as described in the 

literature.34  1H NMR (300 MHz, C6D6) δ 6.81 (d, J = 9.3 Hz, 4H), 6.75 (d, J = 9.0 Hz, 

4H), 4.75 (s, 1H), 3.35 (s, 6H).  13C NMR (75 MHz, C6D6) δ 154.8, 138.4, 119.8, 115.0, 

55.1. 

 

Di(n-butoxyphenyl)amine (7a), conventional heating.  To a 100 mL round-bottomed 

flask was added anhydrous deoxygenated toluene (50 mL), 4-n-butoxyaniline (6, 8.4 g, 

51 mmol), and 1-bromo-4-n-butoxybenzene (5, 11.6 g, 50 mmol) under nitrogen.  Then 

tris(dibenzylideneacetone)dipalladium (0) (0.46 g, 0.50 mmol), 1,1'-
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bis(diphenylphosphino)ferrocene (0.56 g, 1.0 mmol), and sodium tert-butoxide (6.0 g, 62 

mmol) were added.  A reflux condenser was attached, and the reaction solvent was 

brought to reflux.  After one hour, the reaction appeared complete by TLC.  The reaction 

mixture was cooled, and hexanes (50 mL) was added.  The resulting mixture was run 

through a short pad of silica gel, eluting with hexanes (1 L) to remove any starting 

bromide, and then with hexanes / ethyl acetate (9:1, 2 L) to give the crude product (15.7 

g), which was crystallized from boiling hexanes to give an off-white semicrystalline solid 

(11.45 g, 73%).  1H NMR (300 MHz, C6D6) δ 6.84 (s, 8H), 3.67 (t, J = 6 Hz, 4H), 1.60 

(quintet, J = 8 Hz, 4H), 1.36 (m, 4H), 0.83 (t, J = 7 Hz, 6H).  13C{1H} NMR (100 MHz, 

acetone-d6) δ 154.1, 139.2, 119.5, 116.0, 68.5, 32.2, 19.9, 14.1. HRMS-EI (m/z) [M]+ 

calcd for C20H27NO2, 313.20418; found, 313.20416.  Anal. Calcd for C20H27NO2: C, 

76.64; H, 8.68; N, 4.47.  Found C, 76.42; H, 8.80; N, 4.40.  

 

Di(n-butoxyphenyl)amine (7a), microwave heating. To a 100 mL round-bottomed 

flask was added anhydrous deoxygenated toluene (50 mL), 4-n-butoxyaniline (6, 8.4 g, 

51 mmol), and 1-bromo-4-n-butoxybenzene (5, 11.6 g, 50 mmol) under nitrogen. Then 

tris(dibenzylideneacetone)dipalladium (0) (0.46 g, 0.50 mmol), 1,1'-

bis(diphenylphosphino)ferrocene (0.56 g, 1.0 mmol), and sodium tert-butoxide (6.0 g, 62 

mmol) were added.  The reaction flask was assembled in a microwave reactor with a 

reflux condenser attached, and the reaction mixture was heated at 80 Watts, which 

reached a maximum temperature of 84 ºC.  The reaction was monitored by TLC after 

every 15 minute heating cycle.  After 45 minutes of heating, the starting amine appeared 

consumed by TLC, and the reaction mixture was cooled.  The reaction mixture was 
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worked up in the same way as the conventional reaction (12.6 g crude material; 9.2 g, 

59% after recrystallization).  The recrystallized product showed essentially the same 1H 

NMR spectrum as that observed for the same compound synthesized using conventional 

heating. 

 

2-[Di(4-n-butoxyphenyl)amino]thiophene (9), conventional heating.  To a 100 mL 

round-bottomed flask, anhydrous deoxygenated toluene (20 mL), 

tris(dibenzylideneacetone)dipalladium (0) (0.091 g, 0.10 mmol), and tri(tert-

butylphosphine) (0.25 mmol, 10% weight solution in hexanes) were added under 

nitrogen. The solution was stirred at room temperature under nitrogen for 20 minutes.  

Di(4-n-butoxyphenyl)amine (7a, 2.40 g, 7.70 mmol), 2-bromothiophene (8, 3.2 g, 20 

mmol), and sodium tert-butoxide (3.0 g, 31 mmol) were added.  A reflux condenser was 

attached to the flask, and the reaction mixture was heated to reflux under nitrogen.  After 

5 hours of heating, the reaction appeared complete by TLC (SiO2, 5% ethyl acetate in 

hexanes), and the reaction flask was removed from the oil bath, and the reaction mixture 

was concentrated by rotary evaporation. The crude product was redissolved in 5% ethyl 

acetate in hexanes and was run through a short pad of silica gel, eluting with the same 

solvent.  The crude product was concentrated and then chromatographed on a column of 

silica gel. 1H NMR spectroscopy showed the title compound with minor impurities 

(73%).  Purification with the same chromatographic system of a small portion of product 

afforded that which was used for analytical characterization. 1H NMR (300 MHz, 

[D2]dichloromethane) δ 7.03 (dt, J = 9.0, 2.4 Hz, 4H), 6.52 (dd, J = 1.8 Hz, 1H), 3.93 (t, J 

= 6.6 Hz, 4H), 1.76 (quintet, J = 8.1 Hz, 4H), 1.50 (sextet, J = 7.2 Hz, 4H), 0.97 (t, J = 
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7.2 Hz, 6H).  13C {1H} NMR (75 MHz, CD2Cl2) δ 155.4, 153.7, 141.8, 126.0, 124.3, 

118.0, 117.5, 115.1, 68.3, 31.7, 19.6, 14.0.  HRMS-EI (m/z): [M]+ calcd for C24H29NO2S, 

395.1919; found, 395.1924.  Anal. Calcd  for C24H29NO2S: C, 72.87; H, 7.39; N, 3.54.  

Found: C, 72.86; H, 7.48; N, 3.60. 

 

2-[Di(4-n-butoxyphenyl)amino]thiophene (9), microwave heating. To a 100 mL 

round-bottomed flask, anhydrous deoxygenated toluene (20 mL), 

tris(dibenzylideneacetone)dipalladium (0) (0.091 g, 0.10 mmol), and tri(tert-

butylphosphine)  (0.25 mmol, 10% wt. in hexanes) were added under nitrogen. The 

catalyst mixture was stirred at room temperature under nitrogen for 20 minutes.  Di(4-n-

butoxyphenyl)amine (7a, 2.40 g, 7.70 mmol), 2-bromothiophene (8, Acros, 3.2 g, 20 

mmol), and sodium tert-butoxide (3.0 g, 31 mmol) were added.  The reaction flask was 

assembled in a microwave reactor with a reflux condenser attached to the flask. The 

reaction mixture was heated to 80 Watts for 15 minutes (reaching a maximum 

temperature of 85 °C) after which TLC showed the reaction was complete.  After 

concentration by rotary evaporation, the crude product was redissolved in 5% ethyl 

acetate in hexanes and was run through a short pad of silica gel, eluting with the same 

solvent. The crude product was concentrated and was then chromatographed on a column 

of silica gel to give slightly impure material (95%), shown to be principally the title 

compound by comparison of its 1H NMR spectrum to the same target obtained by 

conventional heating.  
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5-[Di-(4-n-butoxyphenyl)amino]-2-formylthiophene (10). Phosphorus oxychloride 

(2.94 g, 19.3 mmol) was added dropwise to a stirred mixture of 2-[di(4-n-

butoxyphenyl)amino]thiophene,  (9, 6.9 g, 17.5 mmol) and anhydrous N,N-

dimethylformamide (50 mL) at 0 °C under nitrogen.  The reaction mixture was stirred for 

4 hours at 0 °C after which the reaction was brought to room temperature for 1 hour.  The 

reaction mixture was poured into aqueous sodium carbonate, and a yellow-orange 

precipitate formed.  The aqueous layer was extracted with ethyl acetate (2 × 200 mL), 

and the organic layer was subsequently washed with aqueous sodium carbonate (1 M, 3 × 

200 mL) and water (2 × 200 mL).  The organic layer was dried with anhydrous 

magnesium sulfate, was filtered, and was concentrated by rotary evaporation.  

Chromatography on a column of silica gel, eluting with hexanes / ethyl acetate / 

triethylamine (100:10:1), gave the title compound as a yellow oil (5.29 g, 71%).  1H 

NMR (300 MHz, CD2Cl2) δ 9.52 (s, 1H), 7.43 (d, J = 4.5 Hz, 1H), 7.23 (dd, J = 4.5, 2.1 

Hz, 4H), 6.90 (dd, J = 8.7, 1.5 Hz, 4H), 6.16 (d, J = 4.5 Hz, 1H), 3.97 (t, J = 6.6 Hz, 4H), 

1.78 (quintet, J = 7.8 Hz, 4H), 1.50 (sextet, J = 7.8 Hz, 4H), 0.99 (t, J = 7.2 Hz, 6H).  

13C{1H} NMR (75 MHz, CD2Cl2) δ 180.7, 166.2, 157.8, 139.1, 138.8, 128.6, 127.4, 

115.1, 108.9, 68.3, 31.6, 19.6, 14.0.  HRMS-EI (m/z): [M]+ calcd for C25H29NO2S, 

423.1868; found, 423.1845.  Anal. Calcd for C25H29NO2S: C, 70.89; H, 6.90; N, 3.31.  

Found: C, 71.13; H, 7.04; N, 3.34.   

 

E-1,2-Bis(5-{di[4-(n-butoxy)phenyl]amino}-2-thienyl)ethylene (1). In a flame-dried 

100 mL round-bottomed flask, allowed to cool under a flow of nitrogen, zinc (0.26 g, 4.0 

mmol) was suspended in anhydrous deoxygenated tetrahydrofuran (10 mL). The 
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suspension was cooled in a dry ice / acetonitrile bath until the temperature fell below –20 

°C.  Titanium tetrachloride (0.37 g, 0.070 mmol) was slowly added, and a reflux 

condenser was attached, following which the mixture was heated at reflux for 50 minutes 

under nitrogen.  The reaction was then recooled in the dry ice / acetonitrile bath, and a 

solution of anhydrous pyridine (0.23 g, 2.9 mmol) and aldehyde 3 (0.40 g, 1.0 mmol) in 

anhydrous deoxygenated tetrahydrofuran (10 mL) was added slowly.  The resulting dark 

suspension was heated to reflux for 2 hours.  The reaction mixture was cooled and was 

poured into 100 mL of 3:2 mixture of dichloromethane / water.  The resulting dark 

suspension was filtered through Celite.  The organic phase was separated, was washed 

with water (150 mL), was dried over anhydrous magnesium sulfate, and was concentrated 

by rotary evaporation to afford a dark oil.  Column chromatography on silica gel, eluting 

with hexanes / ethyl acetate / triethylamine / dichloromethane (95:3:1:1), gave the title 

compound as a bright yellow solid (0.28 g, 68%). 1H NMR (300 MHz, DMSO-d6) δ 7.03 

(d, J = 9.6 Hz, 8H), 6.87 (d, J = 9.3 Hz, 8H), 6.71 (d, J = 3.9 Hz, 2H), 6.59 (s, 2H), 6.16 

(d, J = 3.9 Hz, 2H), 3.91 (t, J = 6.6 Hz, 8H), 1.66 (quintet, J = 8.1 Hz, 8H), 1.41 (sextet, J 

= 7.8 Hz, 8H), 0.91 (t, J = 7.2 Hz, 12H).  13C{1H} NMR (125 MHz, acetone-d6) δ 157.1, 

153.6, 142.0, 134.4, 126.2, 126.1, 120.3, 116.2, 116.1, 68.7, 32.3, 20.0, 14.1. UV/Vis 

(dichloromethane) λmax (ε): 442 (41300), 294 (19800), 247 nm (25700 M-1cm-1).  HRMS-

EI (m/z): calcd for C50H58N2O4S2, 814.3838; found, 814.3799.  Anal. Calcd for 

C50H58N2O4S2: C, 73.67; H, 7.17; N, 3.44.  Found: C, 73.91; H, 7.41; N, 3.36. 

 

5,5'-Bis{di(4-methoxyphenyl)amino}-2,2’-bithiophene (2). To tube-shaped a Schlenk 

flask containing anhydrous deoxygenated toluene (15 mL) was added 



 155 

tris(dibenzylideneacetone)dipalladium (0) (0.036 g, 0.040 mmol) and tri(tert-

butylphosphine) (10% wt. solution in hexanes, 1.5 mL).  After stirring for 25 minutes, 

5,5'-dibromo-2,2’-bithiophene (11, 0.26 g, 0.79 mmol), di(4-methoxyphenyl)amine (7b, 

0.40 g, 1.75 mmol), and sodium tert-butoxide (1.49 g, 15.5 mmol) were added.  The 

reaction mixture was heated to reflux for 100 minutes, after which the crude product was 

concentrated and was then run through a short pad of basic alumina, eluting with 10%, 

20%, then 33% ethyl acetate in hexanes, collecting the product as a yellow-orange solid.  

After crystallization from boiling ethyl acetate / methanol, a rusty-orange solid was 

isolated.  Finally, the product was run through a pad of basic alumina, eluting with 

toluene, then precipitated again from ethyl acetate / methanol to obtain the pure product 

as a yellow-orange solid (0.37 g, 76%).  1H NMR (300 MHz, C6D6) δ 7.12 (d, J = 8.7 Hz, 

8H), 6.73 (d, J = 3.9 Hz, 2H), 6.68 (d, J = 9 Hz, 8H), 6.34 (d, J = 3.9 Hz, 2H), 3.24 (s, 

12H). UV/Vis (dichloromethane) λmax (ε): 406 (25800), 296 nm (17900 M-1cm-1).  

HRMS-FAB (m/z): [M]+ calcd for C36H32N2O4S2, 620.1804; found, 620.1808.  Anal. 

Calcd for C36H32N2O4S2: C, 69.65; H, 5.20; N, 4.51.  Found: C, 69.28; H, 5.11; N, 4.41. 

 

2,6-Bis{di(4-n-butoxyphenyl)amino}dithieno[3,2-b;2',3'-d]thiophene (3). A mixture of 

di(4-n-butoxyphenyl)amine (7a, 0.69 g, 2.2 mmol), 2,6-dibromodithieno[3,2-b;2',3'-

d]thiophene (12, 0.36 g, 1.00 mmol), and sodium tert-butoxide (0.24 g, 2.5 mmol) were 

suspended under nitrogen in anhydrous deoxygenated toluene (3 mL).  In a separate 

flask, a suspension of tris(dibenzylideneacetone)dipalladium (0) (0.04 g, 0.04 mmol) and 

tri(tert-butylphosphine) (0.17 mL, 10 % wt. solution in hexane) in anhydrous and 

deoxygenated toluene (2 mL) was stirred under nitrogen for 10 minutes and was then 
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added to the reaction mixture.  The resulting brown-yellow solution was heated under 

microwave irradiation at a constant power of 80 Watts for 50 minutes, during which time 

the reaction temperature reached 110 °C. The solvent was removed, and the residue was 

dissolved in dichloromethane and was run through a short silica gel column.  The solvent 

was removed by rotary evaporation, affording a viscous yellow oil that was further 

purified by column chromatography (silica gel, hexane / ethyl acetate (95:5)) to give the 

product as a light yellow oil (0.60 g, 73%).  1H NMR (500 MHz, C6D6) δ 7.10 (d, J = 8.8 

Hz, 8H), 6.73 (d, J = 8.9 Hz, 8H), 6.57 (s, 2H), 3.57 (t, J = 6.3 Hz, 8H), 1.52 (quintet, J = 

6.4 Hz, 8H), 1.30 (sextet, J = 7.4, 8H), 0.79 (t, J = 7.3 Hz, 12H).  13C{1H} NMR (125 

MHz, C6D6) δ 155.9, 153.1, 141.6, 137.1, 129.1, 124.6, 115.4, 112.2, 67.8, 31.7, 19.6, 

14.0.  UV/Vis (dichloromethane) λmax (ε): 387 (32100), 290 nm (27500 M-1cm-1).  MS-

FAB m/z (%): 818 (100) [M+], 762 (7), 669 (9), 404 (3).  Anal. Calcd for C48H54N2O4S3: 

C, 70.38; H, 6.64; N, 3.42.  Found: C, 70.45; H, 6.65; N, 3.38.   

 

2,6-Bis{di(methoxyphenyl)amino}dithieno[3,2-b;2',3'-d]thiophene (3b). To a tube-

shaped Schlenk flask were added tris(dibenzylideneacetone)dipalladium (0) (0.022 g, 

0.034 mmol), tri(tert-butyl)phosphine (1.0 mL, 10% wt. in hexane), and anhydrous 

deoxygenated toluene (10 mL) under nitrogen atmosphere.  2,6-Dibromodithieno[3,2-

b;2',3'-d]thiophene (12, 0.19 g, 0.53 mmol), bis(4-methoxyphenyl)amine (7b, 0.31 g, 1.3 

mmol), and sodium tert-butoxide were added.  A reflux condenser was attached, and the 

reaction mixture was brought to reflux for 30 minutes, after which the reaction flask was 

removed from the heat, and the crude product was run through a tall pad of basic 

alumina, eluting with ethyl acetate/toluene (1:9).  The crude product was crystallized 
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from ethyl acetate and methanol, giving an orange-yellow solid (0.17 g, 49%).  1H NMR 

(300 MHz, C6D6) δ 7.09 (d, J = 8.7 Hz, 8H), 6.69 (d, J = 9.0 Hz, 8H), 6.57 (s, 2H), 3.23 

(s, 12H).  13C{1H} NMR (125 MHz, C6D6) δ 156.4, 153.2, 141.8, 137.2, 125.4, 114.2, 

114.1, 113.1, 55.1.  HRMS-EI (m/z): [M]+ calcd. for C36H30N2O4S3, 650.1369; found, 

650.13388.  Anal. Calcd for C36H30N2O4S3: C, 66.44; H, 4.65; N, 4.30.  Found: C, 66.09; 

H, 4.58; H, 4.18. 

 

N-(4-tert-Butylphenyl)-2,6-bis{di(4-methoxyphenyl)amino}dithieno[3,2-b;2',3'-

d]pyrrole (4a).  To an ampoule was added dry deoxygenated toluene (20 mL), 

tris(dibenzylideneacetone)dipalladium (0) (0.060 g, 0.065 mmol), and tri(tert-

butylphosphine) (10% wt. in hexane, 1.5 mL) under nitrogen. After stirring for 10 

minutes at room temperature, N-(4-tert-Butylphenyl)-2,6-dibromodithieno[3,2-b;2',3'-

d]pyrrole (14a, 0.15 g, 0.32 mmol), bis(4-methoxyphenyl)amine34 (7b, 0.175 g, 0.76 

mmol), and sodium tert-butoxide (0.20 g, 2.1 mmol) were added.  The reaction was 

subjected to three freeze/pump/thaw cycles, and the reaction vessel, still under vacuum, 

was immersed in an oil bath at 110 ˚C.  After stirring for 40 minutes, the reaction flask 

was removed from the heat, and the reaction mixture was run through a column of basic 

alumina, eluting with toluene, then 2% ethyl acetate in toluene (using deoxygenated 

solvents and running the column under nitrogen) to give the title product (0.16 g, 67%).  

1H NMR (500 MHz, C6D6) δ 7.23 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 8H), 7.00 (d, J 

= 8.5 Hz, 2H), 6.96 (s, 2H), 6.71 (d, J = 8.5 Hz, 8H), 3.27 (s, 12H), 1.02 (s, 9H).  13C{1H} 

NMR (125 MHz, C6D6) δ 156.1, 150.9, 148.6, 139.4, 137.6, 126.8, 124.2, 122.3, 114.9, 

112.7, 106.9, 55.0, 34.4, 31.3.  UV/Vis (dichloromethane) λmax (ε): 382 (34100), 304 nm 
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(32200 M-1cm-1).  MS-EI (m/z): 765 (M+).  Anal. Calcd for C46H43N3O4S2: C, 72.13; H, 

5.66; N, 5.49.  Found: C, 71.78; H, 5.60; N, 5.42. 

 

N-(tert-Butyl)-2,6-bis{di(4-n-methoxyphenyl)amino}dithieno[3,2-b;2',3'-d]pyrrole 

(4b).  To a 100 mL Schlenk ampoule was added dry deoxygenated toluene (15 mL), 

tris(dibenzylideneacetone)dipalladium (0) (0.060 g, 0.065 mmol), and tri(tert-

butylphosphine) (1.5 mL, 10% solution by weight in hexanes) under a positive pressure 

of nitrogen.  After stirring for 20 minutes at room temperature, N-(tert-Butyl)-2,6-

dibromo[3,2-b;2',3'-d]pyrrole (14b, 0.12 g, 0.51 mmol), di(4-methoxyphenyl)amine (7b, 

0.26 g, 1.12 mmol), and sodium tert-butoxide (0.22 g, 2.3 mmol) were added.  The 

reaction mixture was subjected to three freeze/pump/thaw cycles, and the reaction vessel, 

still under vacuum, was immersed in an oil bath at 110 ˚C for 30 minutes. The reaction 

flask was removed from the oil bath, and the reaction mixture was through a column of 

basic alumina under nitrogen, eluting with toluene, then 2% ethyl acetate in toluene 

(using deoxygenated solvents and running the column under nitrogen). The yellow 

fractions containing the desired product were concentrated to give a viscous yellow-

orange oil, which was precipitated from ethyl acetate / hexanes to give the product as a 

bright yellow powder (0.13 g, 26%).  1H NMR (300 MHz, C6D6) δ 7.25 (d, J = 9 Hz, 8H), 

7.01 (s, 2H), 6.73 (d, J = 9 Hz, 8H), 3.27 (s, 12H), 1.22 (s, 9H).  13C{1H} NMR (75 MHz, 

C6D6) δ 156.0, 149.2, 142.6, 138.5, 124.0, 114.9, 112.4, 110.1, 57.5, 55.0, 30.2.  UV/Vis 

(dichloromethane) λmax (ε): 376 (30600), 299 nm (24700 M-1cm-1).  HRMS-FAB (m/z): 

calcd for C40H39N3O4S2, 689.2317; found, 689.2321.  Anal. Calcd for C40H39N3O4S2: C, 

69.64; H, 5.70; N, 6.09.  Found: C, 69.55; H, 6.08; N, 5.87. 
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CHAPTER 4 

ELECTRONIC COUPLING AND INTRAMOLECULAR ELECTRON 

TRANSFER RATES IN BIS(TRIARYLAMINE)S 

 

4.1 Introduction 

In this chapter, the electronic coupling of triarylamine redox centers in the mixed 

valence radical cations of 1,4-bis[4-(diarylamino)styryl]benzenes, and related 2,5-bis[4-

(diarylamino)styryl]heteroarenes, and later with bis(diarylaminophenylene)-based 

derivatives with bridges of different conjugation length and degrees of unsaturation (C=C 

versus C≡C) are compared.  The comparison includes derivatives with variation in the 

electron donor strength of the terminal aryl groups and / or of the phenylene, thienylene, 

or pyrrolylene bridges, as well as in the degree of unsaturation in the bridges.  The 

bis(diarylamino)-substituted derivatives were investigated by cyclic voltammetry (CV), 

and their corresponding monocations – generated by chemical oxidation – were studied 

by visible-near infrared (visible-NIR) absorption and electron paramagnetic resonance 

(EPR) spectroscopies.  For some monocations, variable temperature EPR (VT-EPR) 

experiments were used to determine rates of electron exchange between the triarylamine 

redox centers. 

 

4.1.1 Coupling in Organic Mixed-Valence Species 

In many organic mixed-valence (MV) systems, the separation between redox 

centers precludes direct orbital overlap between the orbitals associated with the redox 
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centers.  In such systems, electronic coupling can be considered as arising through 

interaction of bridge-based orbitals with the “redox group” orbitals.1 In π-conjugated 

organic systems, the highest filled bridge orbitals are generally the most relevant to the 

ground state character of the oxidized species.  In Figure 4.1 a rough approximation of 

the highest occupied molecular orbitals (HOMOs) for a simple diamino derivative with a 

bithiophene bridge are shown to illustrate the relevance of the interaction of the HOMOs 

of the building blocks to the electronic coupling in a monocation.   

When two nitrogen atoms are used as starting points, there are two possible 

combinations of HOMOs: in-phase and out-of-phase.  Because the nitrogen atoms 

separated over a relatively large distance, they are considered to be essentially non-

interacting, so the energies of both combinations of orbitals are approximately the same.  

The HOMO of bithiophene has an in-phase and out-of-phase interaction with the 

nitrogen-nitrogen (N-N) HOMO.  The in-phase combination is at lower energy than the 

bridge HOMO and is more bridge-based than N-N based.  The out-of-phase combination 

is at higher energy and is more N-N based than bridge-based.  The HOMO of bithiophene 

has no net overlap with the in-phase N-N MO set, so the HOMO of the in-phase nitrogen-

nitrogen pair remains at approximately the same energy as where it started in this model.  

Of course, in reality it is possible for in the in-phase N-N HOMO to interact with the 

LUMO – a destabilizing effect – and the HOMO-1 – a stabilizing effect.  For simplicity, 

the HOMO is shown at the same energy in this simple model because it is now known 

whether the N-N HOMO will interact more with the LUMO or the HOMO-1, thus being 

destabilized or stabilized.  In total, three orbitals were used as starting points, and, as 

required when generating MO diagrams, three orbitals were obtained. 
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Figure 4.1.  Rough approximation for HOMOs of N-N and bridge building blocks. 

 In the neutral version of this simple model. The MOs are filled with paired 

electrons.  When an electron is removed, generating the monocation, there is a vacancy in 

the orbital drawn at highest energy.  There is now a transition (labeled V) that is 

equivalent to the electronic coupling.  The strength of the resultant electronic coupling is 

expected to increase with increased overlap between local orbitals associated with the 

redox-active fragment and with the bridge, and this overlap increases as the energy 
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bridge-based orbitals approaches that of the end-group orbitals.  A model for orbital 

mixing of the bridging and triarylamine frontier molecular orbitals is shown below, 

showing a case in which the energy of the bridging orbitals approaches the energy of the 

triarylamine orbitals. 

2 Ar3N
bridge

2 Ar3N

bridge

Veff Veffdecrease 
energy

mismatch

 

Figure 4.2.  Model for orbital mixing in a class III bis(triarylamine) monocation. 

The role of the end group can be seen in the couplings found for the radical 

cations of bis(diphenylamino)-terminated biphenyls or benzenes exceeding those of their 

analogs with bis(di-p-anisylamino)-terminated end groups.2-5 The role of the bridge is 

illustrated by varying the arene cores in the radical cations of bis[4-(di-p-

anisylamino)phenylethynyl]arenes 6,7 and by the strong couplings observed in species 

incorporating thiophene groups in the bridge (see results from Chapter 3).  Increasing 

coupling via bridging orbitals leads to an increased contribution of bridge orbitals to the 

semi-occupied molecular orbital, resulting in increased bridge character to the radical 

cation.  This displaces the redox center from its formal triarylamine position into the 

bridge, giving a reduction in the diabatic electron-transfer distance (Rab).   This means 

that the redox centers can no longer be regarded as centered on the triarylamines and that 

the diabatic transfer distance required for Hush analysis of the IVCT band (equation 4.2, 

see below) will be reduced relative to the nitrogen-nitrogen distance. 
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As described in previous chapters, in a class-III system, the electronic coupling is 

directly proportional to the energy of absorption of the IVCT band 

    

! 

" 
max

= 2V       (4.1) 

The electronic coupling between two redox centers (V) can also be estimated for 

both class II and III systems from characteristics of the IVCT band using the Hush 

expression 

     
    

! 

V =
µge" max

eRab

      (4.2) 

where e is the electronic charge, Rab is the diabatic electron-transfer distance, and µge is 

the transition dipole moment. 

For bis(diarylamino)-substituted species, computational estimates suggest values 

of Rab are considerably reduced from the nitrogen–nitrogen distance;8 in the case of class-

III (valence-delocalized) systems, reduced Rab values are a requirement for consistency 

between estimates of the electronic coupling (V) from equations 4.1 and 4.2 (see Chapter 

3).  Moreover, as shown in Chapter 3, DFT calculations, which are supported by EPR 

measurements, suggest that replacing the stilbene bridge of a bis(diarylamino)-substituted 

monocation with a more easily ionized dithienylethene bridge leads to an increase in the 

spin density on the bridge at the expense of that on the nitrogen atoms and the terminal 

aryl groups (see Chapter 3).  

The first portion of this chapter (4.2) focuses on incorporating electron-rich 

bridges into bis(diarylaminostyryl)arenes, as well as modifiying the electron-richness of 
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the bis(diarylamino) end groups.  In addition to CV studies of the 

bis(diarylaminostyryl)arene derivatives, the monocations were analyzed by visible-NIR 

and EPR spectroscopies in order to examine the change in spectral characteristics upon 

increasing V and thus decreasing Rab.  The second portion of the chapter (4.3) focuses on 

determining the difference in the rates of electron transfer (ET) from one triarylamine 

redox center to another, which – in some cases – can be determined by VT-EPR 

experiments.   By comparing VT-EPR spectra of MV monocations with varying degrees 

of electronic coupling, it could be possible to determine the different rates of ET on the 

EPR time scale for some of the Class II MV species.  From that data, it may be possible 

to determine barriers to ET and to, therefore, gain experimental insight into the extent of 

deviation of Rab from the nitrogen-nitrogen distance. 

 

4.2 Previous Analysis of Bis(diarylaminostyryl)arenes and Their Radical Cations 

 The monocations of several previously synthesized bis(diarylaminostyryl)arenes 

(I-VII)8-10   were studied as MV radical cations.  The compounds (Figure 4.2) were 

chosen for comparison as MV systems with variation in the electron-richness of the end 

groups (alkyl versus alkoxy versus no substituent) and / or of the bridging aromatic group 

(phenylene, 2,5-disubstituted p-phenylene, 3,4-dialkoxythiophene-2,5-diyl, pyrrole-2,5-

diyl, or 3,4-dialkoxypyrrole-2,5-diyl).  The derivatives were previously studied by CV 

experiments, and the visible-NIR absorption spectra were recorded for the monocations 

in dichloromethane, and were analyzed by Marcus-Hush theory.11 
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Figure 4.3. 1,4-Bis[4-(diarylamino)styryl]benzenes and related 2,5-bis[4-
(diarylamino)styryl]heterocycles. 

 
 

Electrochemical data for II and V in dichloromethane have been previously 

published.8,10 The redox potentials of the remaining neutral compounds were investigated 

using CV in 0.1 M tetra-n-butylammonium hexafluoroantimonate (nBu4NPF6) in 

dichloromethane.  For compounds I-VI, the first and second electrons are removed at 

similar potentials, and the separation between first and second oxidation potentials was 

not resolvable using CV.  Compounds I-VI also exhibited a third one-electron oxidation 

at higher potential.  Additionally, for compound V, a fourth oxidation is evident within 

the solvent window.  For compound VII, three separate one-electron oxidations are 

observed in the CV experiment.  The E1/2
+/0 values reflect the overall electron-richness of 

the molecules and are consistent with expectations based on the electron-withdrawing or 

electron-donating character of the bridging and terminal substitutents, and on the relative 

ionization potentials of benzene (9.2 eV),12 thiophene (8.9 eV),13 and pyrrole (8.2  eV).14 
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Spectroscopic data for II+ has been previously published.8 The visible-NIR 

absorption spectra for monocations I+ and III+-VI+ were also previously recorded.11  In 

the spectra of I+ and II+, the lowest energy features are approximately symmetric 

Gaussians, which are broader than the Hush prediction for class-II compounds 

(

! 

" 1/2[Hush], equation 4.3) and were therefore assigned to the intervalence charge transfer 

(IVCT) transitions of class-II MV compounds.  

 

 

! 

" 
1/ 2[Hush ]

= 2310 #" 
max

    (4.3) 

 
Compound III has less electron-rich end groups than II and a more electron-rich 

bridge compared to I.  The IVCT band of III+ is qualitatively different to that seen for 

those cations I+ and II+; the band has neither the symmetric Gaussian lineshape typical of 

class-II systems nor the characteristic shape of class-III bis(triarylamine) MV IVCT 

bands, leading to its tentative assignment as a class-II / class-III borderline species.  

Compound IV has a more electron-rich bis(alkoxy)-substituted bridge than III; the IVCT 

band of its monocation is higher in energy than that seen for III+, and it has a lineshape 

typical for class-III bis(triarylamine)s.3,4,8.  Further increasing the electron-richness of the 

bridge in 3,4-dialkoxythiophene-bridged compounds V+ and VI+ gives similar IVCT 

lineshapes as at increased energies relative to IV+, consistent with class III species having 

increased electronic coupling as a result of raising the bridge energy.   

Lastly, the maximum of the IVCT of the pyrrole-bridged cation VII+ occurs at 

higher energy than even those of IV+-VI+; the band shape is rather different: broader and 

less strongly asymmetric.  However, because the absorption spectrum was recorded at 

unknown concentration of monocation, some of the terms relevant to Marcus-Hush 
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analysis of the IVCT band could not be calculated.  In addition to obtaining a quantitative 

spectrum of the radical cation of VII+, because the character of the IVCT band changed 

throughout the series of monocations I+-VI+, it would be interesting to raise the orbital 

energy of the bridge relative to the end groups even further to see the effect on the IVCT 

band in the absorption spectra of the monocations, and also to evaluate whether the 

species can still be considered MV systems or are better described as bridge-based 

monocations.   

 

4.2.1 Bis(diarylaminostyryl)pyrrole Derivatives and Bridge-Based Model Compounds 

 As a first comparison to bis(diarylaminostyryl)pyrrole derivative VII, compound 

1 (Figure 4.3) was designed as an analog with less electron-rich end groups; the n-

butoxyphenyl groups were replaced with tert-butylphenyl groups.  Compound 2 (Figure 

4.3) was designed as a derivative that also incorporated the less electron-rich end groups 

and additionally incorporated a more electron-rich 3,4-propylenedioxy-substituted 

pyrrole bridge.  It has been previously reported that 3,4-propylenedioxy-N-alkylpyrroles 

are approximately 0.1 V easier to oxidize than N-alkylpyrroles,15 so it was expected that 

compound 2 would be  easier to oxidize than compound 1. 
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Figure 4.4.  Bis(diarylaminostyryl)pyrrole derivatives. 
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Figure 4.4 shows the extent to which the electron-richness of end and bridging 

groups is varied among compounds I-VII and 1-2, as measured by the HOMO energies, 

calculated at the AM1 level, for the triarylamine (E1-4) and divinylbenzene or 

divinylheterocycle  (B1-6) fragments.  From this data, it is reasonable to expect that 

monocations of compounds VII, 1, and 2 will have greater bridge character. 
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Figure 4.5. HOMO energies calculated at the AM1 level of theory for compounds I-VII 
and 1-2 and for the constituent end group (E1-E4) and bridging group (B1-B6) fragments 
(some alkyl groups were replaced by methyl groups in the calculations).  
 
 

 Additionally, in order to compare the properties of the new and previously 

analyzed bis(diarylaminostyryl)arene derivatives with their corresponding bridges – in 

part to help determine if any of the monocations are bridge-based and exhibit the same 

properties independently of the diarylamino substitution – model compounds 3-7 (Figure 

4.5) were synthesized.  The model compounds are bis(styryl)arenes that are 
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functionalized at the 4-positions of the outer phenyl ring with tert-butyl or methoxy 

groups in attempt to block the presumably most reactive positions in the isolated bridges.  

The methoxy group was used in the case of compound 7 in order to obtain a more 

electron-rich bridge model compound compared to 6. 
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Figure 4.6.  Bis(4-tert-butylstyryl)arenes and a bis(4-methoxystyryl)pyrrole as model 
compounds for the bis(diarylaminostyryl)arene derivatives. 

 

4.2.2  Syntheses of Bis(diarylaminostyryl)arene Derivatives and Model Compounds 

The syntheses of compounds II-VII have been previously described in the 

literature.8-10,16   Compound I was previously synthesized17 under typical Horner-Emmons 

conditions18,19 from 4-[bis(4-n-butoxyphenyl)amino]benzaldehyde and tetraethyl 2,5-

dicyano-1,4-xylene-α,α'-diyldiphosphonate.20 4-[Bis(4-n-butoxyphenyl)amino]-

benzaldehyde was synthesized via a Buchwald-Hartwig21,22 coupling of 4-

bromobenzaldehyde and bis(di-4-n-butoxyphenyl)amine (Chapter 3).  
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Diethyl bis(4-tert-butylphenyl)aminobenzylphosphonate (11, Scheme 4.1) was 

common to the syntheses of compounds 1 and 2.  The phosphonate was synthesized by 

the formylation of bis(4-tert-butylphenyl)aniline (8)23   to obtain 4-bis(4-tert-

butylphenyl)aminobenzaldehyde (9),23   which was followed by reduction with sodium 

borohydride in ethanol to obtain 4-bis(4-tert-butylphenyl)aminobenzyl alcohol (10), 

which was ultimately reacted with triethylphosphite / iodine to obtain phosphonate 11 

under previously published conditions.24 
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Scheme 4.1.  Synthesis of diethyl bis(4-tert-butylphenyl)aminobenzylphosphonate. 

 

 2,5-Bis(di(4-tert-butylphenyl)aminostyryl-N-methylpyrrole (Scheme 4.2) was 

synthesized in a Horner-Emmons reaction of diethyl bis(4-tert-

butylphenyl)aminobenzylphosphonate (11) with N-methylpyrrole-2,5-dicarboxaldehyde 

(12)25 in reasonable yield. 
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Scheme 4.2.   Synthesis of 2,5-bis(di(4-tert-butylphenyl)aminostyryl-N-methylpyrrole.  
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 Similarly, to obtain 2,5-bis(di(4-tert-butylphenyl)aminostyryl-3,4-[2,3,4,7-

tetrahydro-[1,4]dioxepino]-N-methylpyrrole (2, Scheme 4.3), the same reaction 

conditions were used to react diethyl bis(4-tert-butylphenyl)aminobenzylphosphonate 

(11) with 3,4-[2,3,4,7-tetrahydro-[1,4]dioxepino]-N-methylpyrrole-2,5-dicarboxaldehyde 

(13). 
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Scheme 4.3.  Synthesis of 2,5-Bis(di(4-tert-butylphenyl)aminostyryl-3,4-[2,3,4,7-
tetrahydro-[1,4]dioxepino]-N-methylpyrrole. 

 
 Bis(4-tert-butylstyryl)-2,5-di(n-dodecyloxy)benzene (3, Scheme 4.4) was 

synthesized as a model compound for compound IV.  A Horner-Emmons reaction was 

used to react diethyl 4-tert-butylbenzylphosphonate26 (14) with 1,4-di(n-

dodecyloxy)benzene-2,5-dicarboxaldehyde27 (15). 
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Scheme 4.4.  Synthesis of 1,4-bis(4-tert-butylstyryl)-2,5-di(n-dodecyloxy)benzene.  
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2,5-bis(4-tert-butylstyryl)-3,4-di(n-butoxy)thiophene (4, Scheme 4.5) was 

synthesized by a Horner-Emmons reaction of diethyl 4-tert-butylbenzylphosphonate26 

(14) with 3,4-di(n-butoxy)thiophene-2,5-dicarboxaldehyde28 (16).  Compound 4 was 

synthesized as a model compound for compounds IV and V. 
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Scheme 4.5.  Synthesis of 2,5-bis(4-tert-butylstyryl)-3,4-di(n-butoxy)thiophene.  
 
 

Similarly, 2,5-bis(4-tert-butylstyryl)-N-methylpyrrole (5, Scheme 4.6) was 

synthesized by a Horner-Emmons reaction of diethyl 4-tert-butylbenzylphosphonate26  

(14) with N-methylpyrrole-2,5-dicarboxaldehyde (12).25 
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Scheme 4.6.  Synthesis of 2,5-bis(4-tert-butylstyryl)-N-methylpyrrole.  
 
 
 
 Lastly, bis(2,5-bis(4-tert-butylstyryl)-3,4-propylenedioxy-N-methylpyrrole (6, 

Scheme 4.7) and 2,5-bis(4-methoxystyryl)- 3,4-propylenedioxy-N-methylpyrrole (7) 

were synthesized from diethyl 4-tert-butylbenzylphosphonate26 (14) or commercially 
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available diethyl 4-methoxybenzylphosphonate (15) with 3,4-propylenedioxy-N-

methylpyrrole-2,5-dicarboxaldehyde (13) as model compounds for compound 2. 
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Scheme 4.7.  Synthesis of 2,5-bis(4-tert-butylstyryl)-3,4-propylenedioxy-N-
methylpyrrole. 
 
 

 
4.2.3  Electrochemical Characterization of Bis(diarylaminostyryl)pyrrole Derivatives 

and Model Compounds 
 

 CV experiments were performed on bis(diarylaminostyryl)pyrroles 1 and 2.  As 

was the case for the previous bis(diarylaminostyryl)pyrrole derivative (VII), compounds 

1 and 2 showed three separate one-electron oxidations (Figure 4.6).  The cyclic 

voltammogram of compound 1 is shown with Cp*2Fe+/0 as the internal reference at -0.55 

V, and that of compound 2 is shown with Cp2Co+/0 as the internal reference at -1.32 V.
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Figure 4.7.  Cyclic voltammogram of compound 1 in 0.1 M nBu4NPF6, shown with 
Cp*2Fe+/0 as the internal reference at -0.55 V (top); cyclic voltammogram of compound 2 
in 0.1 M nBu4NPF6, shown with Cp2Co+/0 at -1.32 V as the internal reference (bottom), 
potentials referenced to Cp2Fe+/0- at 0 V. 
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The half-wave oxidation potentials of compounds I-VII and 1-2 are shown below 

in Table 4.1.  The first and second oxidations of VII and 1 occur at relatively similar 

potentials, while the third oxidation of 1 is 0.15 V more difficult than of VII+/0; the more 

difficult third oxidation potential in 1 is consistent with the less electron-rich end group 

compared to compound VII.  This difference also suggests that the first and second 

oxidations depend more on the character of the bridge than on the end groups in the cases 

of VII and 1.  Upon introduction of the 3,4-propylenedioxy-pyrrole bridge in compound 

2 while also retaining the less electron-rich end groups, the first oxidation of 2 becomes 

easier than that of 1 by ca. 0.1 V; this difference is also consistent with the first oxidation 

being strongly bridge-based and also correlates with the difference between the oxidation 

potentials of 3,4-propylenedioxy-N-alkylpyrroles and N-alkylpyrroles.15  The second 

oxidation is slightly easier in compound 2 than in 1, which may also be a contribution 

from the alkoxy groups on the pyrrole in 2.  The third oxidation occurs at the same 

potential for 1 and 2, which have the same end groups, and is again consistent with the 

third oxidation depending more on the end groups than on the bridge. 
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Table 4.1. Half-wave oxidation potentials (V) versus Cp2Fe+/0 at 0 V, in 0.1 M nBu4NPF6 
in dichloromethane) for 1,4-bis[4-(diarylamino)styryl]benzenes and 2,5-bis[4-
(diarylamino)styryl]heteroarenes.a 

 
compound +/0 2+/+ 3+/2+ 

I +0.26b +0.94 
II +0.20b +0.81 
III +0.31b +0.97 
IV +0.24b +0.91 
V +0.05b +0.70c 
VI +0.15b +0.97 
VII –0.18 +0.01 +0.58 
1 -0.16 +0.02 +0.73 
2 –0.26 –0.02 +0.73 

 
a All processes were reversible. b The separation between first and second oxidation were 
not resolvable.   
 
 

CV experiments (Figure 4.7) were also performed on the bridge-based model 

compounds (3-7).  Of the derivatives with tert-butyl functionalization, compounds 3 and 

4 showed reasonably reversible oxidations, while pyrrole-based compounds 5 and 6 

displayed partially reversible oxidations, suggesting that the radical cations of 

compounds 5 and 6 are not stable.  Generally, the more electron-rich the bridge is, the 

smaller difference there is between the first oxidation potentials of the model compounds 

and their corresponding bis(diarylaminostyryl)arene derivatives, which suggests that the 

oxidation of the bis(diarylaminostyryl)arene derivative becomes more bridge-based when 

the frontier molecular orbital energy of the bridge is raised.     

In the case of the bridge-based pyrrole model compound with methoxy end 

groups (7), the difference in oxidation potential between the model compounds and its 

bis(diarylaminostyryl)pyrrole derivative (2) is 0.04 V.  Although the model compound is 

oxidized at a similar potential to its bis(diarylaminostyryl)arene counterpart, the 

oxidation of the model compound is not reversible, suggesting that 7+ is unstable.  
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Because the lack of diarylamino-donor substitution leads to irreversible oxidations of the 

pyrrole-based model compounds in CV experiments, this suggests that di(styryl)pyrrole 

monocations requires the donor substitution for stability, and, thus, the monocation of 

compounds IV, 1, and 2 cannot be entirely bridge-based. 
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             (e) 

 
Figure 4.8.  Cyclic voltammograms of (a) 3 with Cp2Fe+/0; (b) 4 with Cp2Fe+/0; (c) 5 with 
Cp*2Fe+/0; (d) 6 with Cp*2Fe+/0; and (e) 7 with Cp*2Fe+/0 as the internal reference.  All CV 
experiments were recorded in 0.1 M nBu4NPF6 in dichloromethane at 50 mV/s. 
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Table 4.2 shows the oxidation potentials for the bridge-based model compounds as well 

as the first oxidation potentials for the corresponding bis(diarylaminostyryl)arene 

derivatives.  One can see that as the E1/2
+/0 for the model compound decreases, there is 

also a decrease in the E1/2
+/0 for the bis(diarylaminostyryl)arene derivatives.  Furthermore, 

the difference in the oxidation potentials decreases as the bridge becomes easier to 

oxidize, which is consistent with the oxidation becoming more bridge-based when the 

bridge is more electron-rich. 

 
Table 4.2.  Oxidation potentials for bridge-based model compounds 3-7 with the first 
oxidation potentials of relevant reference compounds; difference in oxidation potentials 
between model and reference compounds. 
 

Compound E1/2
+/0 (V) Relevant 

Bis(diarylamino) 
Derivative 

E1/2
+/0 (V) ΔE1/2

+/0 
(V) 

3 +0.49 I +0.26 0.23 
V +0.05 0.30 4 +0.35 
VI +0.15 0.20 
VII -0.18 0.19 5 +0.01 
1 -0.16 0.17 

6 -0.14 2 -0.26 0.12 
7 -0.22 2 -0.26 0.04 

 
 
 

4.2.4 Visible-NIR Absorption Spectra of the Monocations of the 
Bis(diarylaminostyryl)pyrrole Derivatives 

As in Chapters 2 and 3, solutions containing the MV radical cations were obtained 

in dichloromethane using tris(4-bromophenyl)aminium hexachloroantimonate (E1/2
+/0 = 

0.70 V versus Cp2Fe+/0 at 0 V in dichloromethane29) as the oxidant.  Spectroscopic data 

for II+ has been previously reported,8,10 and the absorption spectra of the remaining 

monocations of I and III–VII were previously recorded.  The absorption spectra of 

monocations VII+ and 2+ were recorded at known concentration, and are plotted below 
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with the IVCT bands of the monocations previously assigned as class III MV species (V+ 

and VI+) in Figure 4.8.   The monocation of 1+ appears to be very unstable in comparison 

to the other monocations of the bis(diarylamino) derivatives.  It is not obvious why this 

monocation was unstable when VII+ and 2+ were relatively stable, but because of the 

instability, it is difficult to know the real molar absorptivity of the IVCT band as well as 

the properly analyze the shape of the band because of the presence of decomposition 

products in the spectrum. 
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Figure 4.9.  Molar absorptivities of the IVCT bands of monocations IV+, VI+, VII+, 1+, 
and 2+ in dichloromethane.  
 
 
 Parameters obtained from the IVCT absorptions of the monocations are 

summarized in Table 4.3.  

! 

" max is the energy of absorption of the IVCT band, and εmax is 

the molar absorptivity at the absorption maximum of the IVCT band.  The half height 
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(

! 

" 1/2[obs]) is defined as the width of the IVCT absorption at half-height.  The width 

predicted for class II compounds by Hush theory (

! 

" 1/2[Hush]) is shown for comparison 

(Equation 4.1).  

! 

" 1/2[high] and 

! 

" 1/2[low] are compared to evaluate the symmetry of the 

band.  The transition dipole moment (µge) is also included.  For 1+, fewer parameters are 

included because of the inability to properly analyze the IVCT band; it should also be 

noted that the parameters that are shown have larger error than the other monocations, 

due to the greater error in the energy of maximum absorption of the IVCT band. 

 
 
Table 4.3. Experimental parameters characterizing the intervalence absorptions of the 
radical cations of bis(diarylamino)styrylbenzenes and bis(diarylamino)styrylheteroarenes 
in dichloromethane.   
 

 

! 

" max / 
cm–1 

εmax / 
M–1cm–1 

! 

" 1/2[obs] 
/ cm–1 

! 

" 1/2[Hush] 
/ cm–1 

! 

" 1/2[high] 
/ 

! 

" 1/2[low] 

! 

" 1/2[high] / 

! 

" 1/2[Hush] 
µge / 
D 

I+ 7450 6100 4490a 4150 1a 1.08a 5.78a 
II+ 6130 15500 4310a 3760 1a 1.15a 10.3a 
III+ 4860 21300 3380 3350 2.15 1.38 11.8 
IV+ 5400 46300 1980 3530 1.50 0.67 13.6 
V+ 5660 45800 2450 3620 1.81 0.97 13.9 
VI+ 6390 53000 1980 3840 1.41 0.60 12.9 
VII+ 7630 27600 3090 4200 1.25 0.82 10.4 
1+ 7810 – – 4247 – – – 
2+ 8420 41100 1920 4410 1.01 0.44 9.65 

aAppear to be approximately symmetrical and assumed to be so due to overlap with other 
bands on high-energy side 
 

The absorption maximum of the IVCT band of the pyrrole-bridged cation VII+ is 

at yet higher energy than IV+–VI+, and the band shape is rather different, being broader 

and less strongly asymmetric (Figure 4.7). However, the band is still narrower than the 

Hush limit (Equation 4.1), suggesting a symmetric cation (i.e. bridge-based on a class III 

MV species).  Interestingly, the IVCT of a bis(diarylamino)dithienopyrrole radical cation 

shows a rather different band shape to analogues with bithiophene or dithienothiophene 
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bridges (Chapter 3).  The IVCT band of 1+ appears to be more blue-shifted than that of 

VII+, although it is difficult to determine with certainty due to the rapid decomposition of 

1+; if the absorption of 1+ is indeed blue-shifted with respect to VII+, the coupling in 1+ 

would be stronger than in VII+, which is what was predicted.  The IVCT of the 

dialkoxypyrrole-bridged monocation 2+ is strongly symmetric and is much narrower than 

the IVCT band of VII+, the width being less than half of the Hush limit, suggesting that it 

is a symmetric class III mixed valent monocation.  Also, because CV experiments 

suggested that the monocation of the bridge model compounds (6 and 7) for 2 were not 

stable, this provides support that the monocation of 2 can still be considered as having 

some MV diamine character rather than being a completely bridge-localized species. 

 

4.2.5 Evaluation of the Coupling in Bis(diarylaminostyryl)pyrrole Derivatives from 
IVCT Absorptions 

Equations 4.2 and 4.3 can be used to calculate the electronic coupling in class III 

MV species.  While the transition dipole moment (µge) can be readily evaluated from the 

experimental spectra, identifying the appropriate value of diabatic ET distance (Rab) is 

often problematic, since the diabatic states are often displaced into the bridge. Theoretical 

estimates of Rab can be obtained from 

     
    

! 

Rab =
2µ±

e
     (4.4) 

where µ± is the transition dipole moment between the adiabatic surfaces at the symmetric 

geometry corresponding to the crossing point of the diabatic surfaces,30 or from  
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! 

Rab =
"µ12

2 + 4µge
2

e
    (4.5) 

where µge and Δµ12 are the transition dipole moment and static dipole moment change 

associated with the IVCT transition.31,32 In the case of equation 4.4, TD-DFT values are 

used to calculated µ±, and for equation 4.5, experimental values are used for µge, and 

AM1/CI values are used to calculate Δµ12. 

Table 4.4 compares estimates of V from equations 4.2 (for class III systems only) 

and 4.3; for equation 4.3, three sets of values for V were calculated: 1) using the nitrogen-

nitrogen distance (RNN) and the alternative estimates of R, 2) using Rab calculated from 

equation 4.4, and 3) using Rab calculated from equation 4.5.  Note that for 1+, only the 

value of V from equation 4.2 was used because the molar absorptivity for this monocation 

is not known.  The values for V when using alternate estimates for R with equation 4.3 

are larger by a factor of ca. 3 (IV+-VI+) or 4 (VII+ and 2+) than the values obtained from 

equation 4.3 using RNN.  Additionally, for the class III systems, the value for V using 

equation 4.2 give similar values to those used with equation 4.3 when the alternate 

estimates for R are employed. These discrepancies at least partially reflect the fact that 

the diabatic electron-transfer distance, Rab, is shorter than the geometric nitrogen-nitrogen 

separation, meaning that the centers of the two redox sites are considerably displaced into 

the bridge, rather than centered on the amine nitrogen atoms.  
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Table 4.4.  Electronic coupling (cm-1) calculated by various estimates of R with equation 
4.3, and from equation 4.2 for class III species. 

 
  V[eq 4.3] 

with 
RNN 

V[eq 4.3] 
with 

R[eq 4.4] 

V[eq 4.3] 
with 

R[eq 4.5] 

V[eq 4.2] 
 

I+ 480 1020 530 – 
II+ 700 1500 1460 – 
III+ 640 1500 1400 – 
IV+ 810 2130 2010 2700 
V+ 960 2370 2080 2830 
VI+ 1000 2970 2260 3200 
VII+ 920 2350 3720 3820 
1+ – – – 3905 
2+ 940 2840 4080 4210 

 

The values of V calculated using RNN vary by a factor of two depending on the 

redox properties of the terminal and bridging groups.  However, Rab is likely to decrease 

as the electron-richness of the bridge is raised or that of the end group is lowered; 

accordingly the true variation in V between the most weakly and most strongly coupled 

systems is likely to be even greater than the variation in V based on RNN suggested by 

Table 4.4. 

 

4.2.6 EPR Spectra of the Monocations of the 
 Bis(diarylaminostyryl)arene Derivatives 

Because the diabatic electron-transfer distance (Rab) appears to decrease upon 

increasing the frontier molecular orbital energies of the bridges, in principle this change 

should be observable as the coupling to the nitrogen nuclei decreases and coupling to the 

bridging hydrogen nuclei increases.  If the cation becomes more bridge-based, then, 
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instead of showing coupling to two nitrogen nuclei at room temperature, it is possible that 

the unpaired electron would be more coupled to the hydrogen nuclei of the bridge and 

therefore have smaller coupling to the nitrogen nuclei.  Therefore the EPR spectra of 

several bis(diarylaminostyryl)arene monocations were recorded to compare spectral 

features in the different species. 

The same solutions of monocations generated for visible-NIR absorption spectra 

were used for measurement with an X-band EPR spectrometer. The spectra (Figure 4.9) 

were all centered at g = 2.004 and, in many cases, no coupling was resolvable in the EPR 

spectra; the poor resolution could be caused by coupling to large numbers of inequivalent 

protons, which could blur any pattern in the EPR signal.  For example, the poor 

resolution of the tri(biphenyl-4-yl)aminium monocation, the poor resolution in the EPR 

spectrum is attributed to the large number of unique hydrogen nuclei.33  In the cases of I+ 

and II+, however, five-line spectra were observed in dichloromethane, consistent with 

coupling to two equivalent nitrogen centers (I = 1 14N) with hyperfine coupling constant 

(AN) of 4.3 G and 3.6 G, respectively, noting though that the simulation to I+ was not a 

perfect fit (this will be further addressed in section 4.3).   These values are similar to half 

of the magnitude of the coupling constant reported for the mononuclear triarylamine 

radical cation [(4-MeOC6H4)3N]+ in acetonitrile,34 which is reasonable since the amount 

of charge localized on each nitrogen nucleus in an apparently delocalized system should 

be approximately half that reported for one triarylamine, assuming minimal contributions 

from coupling to hydrogen nuclei.  It is not surprising that the coupling to nitrogen is 

larger for I+ than for II+ because the bridge energy is higher in II+ than in I+, and 

therefore, it is expected that there would be slightly more charge on the bridge than the 
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triarylamine in II+ than in the case of I+. The observation of coupling to both nitrogen 

centers is consistent either with a delocalization of the unpaired electron (class III MV 

species) or with an intramolecular electron exchange rate in excess of ca. 1.7 × 107 s–1, the 

approximate magnitude for a coupling constant to nitrogen of ca. 5.8 G. 
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Figure 4.10.  EPR spectra of the monocations of some bis(diarylaminostyryl)arene 
derivatives in dichloromethane. 
 
 

Although the EPR spectrum of III+ does not show a fine pattern, the overall shape 

of the spectrum is narrower than the spectra for I+ and II+.  The spectra of IV+ and V+ are 

narrower than that of III+.  The spectra for these three monocations support the idea that 

the charge has more bridge character and that the coupling to the nitrogen nuclei 

continues to decrease as the bridge energy is increased.  Interestingly, the EPR spectrum 

of VI+, with higher bridge energy than V+, is broader than that of V+; the broadening 
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could be due to coupling to the nitrogen nucleus in the pyrrole ring.  While 

intermolecular ET has been shown to cause line narrowing in EPR spectra when the 

concentration of monocation of a bis(triarylamine) derivative was increased,35 the 

concentrations of the monocations is sufficiently dilute that intermolecular exchange was 

not expected to be a factor in the line shape, and the concentrations were similar to those 

reported in the literature for which line narrowing was not observed.35  Additionally, the 

line shapes (when integrated) are not Lorentzian in shape, which also supports the notion 

that the spectra are free from intermolecular exchange.   

Finally, in the case of 2+, with a more electron-rich pyrrole-based bridge than VI+, 

the EPR spectrum is broader than that of VI+, which could result from even more bridge 

basis in 2+, which could give an even larger coupling to the central nitrogen nucleus, 

again broadening the spectrum.  Unfortunately, since there is no splitting pattern in the 

EPR spectra of the class III monocations, the spectra cannot be simulated with WinSim to 

analyze this proposed explanation for the spectral narrowing and eventual broadening 

upon increasing the energies of the bridges.  Additionally, because the bridge-based 

model compounds are not stable as monocations, it is not possible to examine their EPR 

spectra for comparison.  Hopefully future DFT calculations will lead to predictions of 

hyperfine coupling constants that could be used to simulate the EPR spectra to determine 

if the prediction of the trend in line shape is replicated. 

 
 

4.3 Determination of the Barrier to Electron Exchange in the Monocations of 
Bis(diarylamino) Derivatives 

 
In MV compounds the inherent ET properties and patterns of charge 
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(de)localization strongly depend on the interplay between the electronic coupling (V) 

and reorganization energy (λ). While analysis of IVCT bands in the framework of 

Hush semi-classical36 or vibronic coupling models 30,37 have been used to extract 

information quantifying both microscopic parameters in MV bis(triarylamine)s, this 

approach suffers from the ambiguity in deriving the ET distance between redox 

centers, as was discussed previously section 4.1. 2,30 

In the conventional semi-classical model,36l the barrier to thermal 

intramolecular ET (ΔG‡) is also related to electronic coupling and reorganization 

energy through 

  

! 

"G
‡=

# $ 2V( )
2

4#
     (4.6) 

and, thus, the determination of the ET barrier can also be used to gain insight into the 

microscopic parameters.  

A widely applied experimental method to probe the ET barrier is based on the 

measurements of the ET rates by means of EPR spectroscopy. 38,39 However, most of the 

previously investigated MV triarylamines have been strongly electronically coupled and 

are either completely delocalized (class III) or are likely to exhibit ET rates much faster 

than the typical EPR timescale.  While VT-EPR has been used to determine the rates of 

intermolecular ET in the monocation of spiro-fused bis(triarylamine) derivative, in this 

study, the spectra at all temperatures were 5-line in nature, and no optical data was 

provided for comparison.40   The goal of this study was to observe a transition from 

approximately 5-line to 3-line from high to low temperatures and to try to gain insight 

about the ET rates in the bis(diarylamino) monocations. 
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Because the radical cations of some of the bis(triarylamine)s in the first portion of 

this chapter appeared to be class II MV species, the possibility was reasonable for 

observation of a difference in the rate of electron exchange in the monocation in a VT-

EPR experiment.  If spectral changes occurred in VT-EPR, it should allow for rates of 

electron exchange to be extracted (from simulations of the EPR spectra), ultimately using 

an Arrhenius plot to determine the barrier to electron exchange. 

 

 
4.3.1  Bis(triarylamine)s for Variable Temperature EPR Studies 

 
This portion of the chapter focuses on the analysis and interpretation of VT-EPR 

experiments of radical cations I+, II+, and VIII+-XI+ (Figure 4.10).   Some of the 

monocations (I+, II+, and IX+-X+) were chosen because of their weak electronic coupling 

(V), as calculated based on Hush analysis of their IVCT absorptions, while VIII+ has 

been assigned as a strongly coupled MV species on the basis of visible-NIR absorption, 

vibrational spectroscopy,8,41 and X-ray diffraction analysis of a crystal of the monocation 

salt.  In alkene-based derivatives (I+, II+, and VIII+), the frontier molecular orbital energy 

and length of the bridge were chosen for comparison of bis(triarylamine)s with similar 

structure with slight variations that affect the electronic coupling between the two redox 

centers.  In another family of bis(triarylamine)s with alkyne-based bridges (IX+-X+), the 

bridge length is varied.  In one additional example, a diarylaminophenylacetylene (XI+) 

was studied as a non-MV control species.  In particular, the magnitudes of the electronic 

coupling and the hyperfine interactions in MV cations I+ and IX+ lead to the observation 

of a transition from delocalized (room temperature) to localized (low temperature) 

behavior on the EPR timescale.  Rates extracted from simulations of the VT-EPR spectra 
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were used to obtain the thermal barrier to ET and to show that the ET falls in the 

adiabatic regime. 
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Figure 4.11.  Bis(triarylamine)s and a control compound studied for which the radical 
cations were studied by VT-EPR experiments. 
 
 
 

4.3.2  Room temperature EPR Spectra of the Monocations of the Bis(triarylamine)s 
and the Control Compound 

 
 For room temperature EPR spectra, the monocations of compounds I+, II+, and 

VIII+-XI+ were generated by addition of a 10-fold excess of neutral compound to one 

equivalent of tris(4-bromophenyl)aminium hexachloroantimonate in dichloromethane 

with concentrations of ca. 3 × 10-4 M in oxidizing agent.  The EPR spectra for the radical 

cations are shown in Figure 4.11.  The EPR spectra for the radical cations of the 

bis(triarylamino) derivatives all show approximately 5-line spectra, consistent with 

coupling to two nitrogen nuclei (I = 1, 14N).  In the cases of monocations I+ and IX+, the 

shape of the spectrum is difficult to model with WinSim, given that the height of the first 
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line is taller than the height of the second line, which is not typical for coupling to two 

nitrogen nuclei in a fast-exchange or delocalized regime.  The nature of these line shapes 

will be explored further in the next sections.  The EPR spectrum of the radical cation of 

the control triarylamine (XI+) has a 3-line spectrum, consistent with coupling to one 

nitrogen nucleus, as was expected for this monocation. 
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(a)              (b) 

 

           
              (c)                        (d) 

 

           
                  (e)               (f) 
 
Figure 4.12.  Room temperature EPR spectra for monocations I+ (a), II+ (b), and VIII+ (c), 
IX+ (d), X+ (e), and XI+ (f). 
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4.3.3 VT-EPR Spectra of the Monocations of the Bis(triarylamine)s 
 
 This section describes the experimental and simulated VT-EPR spectra of the 

monocations of the bis(triarylamine)s (I+, II+, and VIII+-X+) and of the model 

triarylamine (XI+).  For the VT-EPR experiments, monocations I+, II+, and VIII+-XI+ 

were also generated by adding a 10-fold excess of neutral compound to one equivalent of 

tris(4-bromophenyl)aminium hexachloroantimonate in dichloromethane, with 

concentrations ranging from ca. 3 × 10-4 M to 3 × 10-3 M in oxidizing agent. 

 
4.3.4.1 Experimental and Simulated EPR Spectra of I+ 
 
 VT-EPR spectra were recorded of monocation I+ at ca. 10 K intervals from 298 to 

191 K in dichloromethane.  The spectra change shape from approximately a 5-line 

spectrum at room temperature to approximately 3-line spectrum at low temperature, 

suggesting a dynamic delocalization at room temperature and localization onto one 

triarylamine at low temperatures on the EPR time scale.  The room temperature EPR 

spectrum could not be simulated with a good fit in WinSim, which assumes a static 

delocalization of the lone electron.  Instead, the room temperature spectrum was 

simulated with an EPR-EXN program, which allows for the possibility of ET between 

multiple redox centers, giving a rate of kET
 = 6.7 × 108 s-1.  The VT-EPR spectra were 

simulated at all temperatures using the EPR-EXN program and are shown in Figure 4.12.  

As expected, the rate of ET decreases upon cooling, reaching a minimum of 8.4 × 107 s-1 

at 191 K. 
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Figure 4.13.  Experimental (left) and simulated (right) VT-EPR spectra of I+ in 
dichloromethane. 
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At high temperatures, the simulations give reasonable fits to the experimental 

data, but at colder temperatures – where the spectra appear to be in an intermediate 

regime between the 5- and 3-line limits – the fits of the simulations do not match the 

experiments well.  This may be because the model for fitting the electron exchange is 

purely classical and does not take into account nuclear tunneling effects.  The rate data 

from the simulations will be further evaluated in Section 4.3.5. 

 
4.3.4.2 Experimental and Simulated EPR Spectra of II+ 
 
 EPR spectra of monocation II+ were also recorded in dichloromethane at variable 

temperatures.  As is shown in Figure 4.13, the overall shape of the EPR spectra does not 

change much upon cooling from 300 to 195 K, suggesting that this approximately 5-line 

spectrum represents either a statically delocalized (class III) or rapidly dynamic 

delocalization of electron exchange between the two triarylamine redox centers on the 

EPR time scale.  This is not surprising because, based on the optical data for the radical 

cations, monocation II+ is more strongly coupled (V = 700 cm-1) than monocation I+ (V = 

480 cm-1) - based on equating RNN to the diabatic ET distance - and should, therefore, 

have a lower barrier to electron exchange than does I+. 
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Figure 4.14.  EPR spectra of monocation II+ in dichloromethane at multiple temperatures. 
 
 
 
 The room temperature spectrum was simulated with WinSim (Figure 4.14) to fit 

coupling to two nitrogen nuclei, giving a coupling constant AN = 3.9 G, consistent with a 

monocation that is delocalized or in a fast exchange regime on the EPR time scale. 

 

 

Figure 4.15.  Experimental (blue) and simulated (red) EPR spectra for II+ at room 
temperature in dichloromethane. 
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4.3.4.3 Experimental and Simulated EPR Spectra of VIII+ 
 
 VT-EPR spectra were also acquired for monocation VIII+ in dichloromethane.  

The room temperature and low temperature spectra are nearly identical (Figure 4.15).  

Overall it appears that the spectrum is approximately a broadened 5-line spectrum at 205 

K, which suggests that this monocation is in the fast regime of electron exchange on the 

EPR time scale.  For the monocation to be in the fast regime at cold temperatures is not 

surprising because the optical data for VIII+ suggest that it a strongly coupled (V = 1400 

cm-1) class III MV species.  The observation of a 5-line spectrum at all temperatures is 

consistent with the previous assignment of VIII+ as a class III MV species. 

 

 
 

Figure 4.16.  EPR spectra of monocation VIII+ at 290 (red) and 205 (blue) K in 
dichloromethane. 
 
 
 Simulations of the room temperature EPR spectra of VIII+ with WinSim gave a 

good fit to the experimental spectrion, showing coupling to two nitrogen nuclei with 
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coupling constant AN = 3.8 G.  The experimental and simulated spectra are shown in 

Figure 4.16. 
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Figure 4.17.  Experimental (blue) and simulated (red) EPR spectra of VIII+ at room 
temperature in dichloromethane. 
 
 
 
4.3.4.4 Experimental and Simulated EPR Spectra of IX+ 
 

 VT-EPR spectra recorded for monocation IX+ in dichloromethane show that the 

monocation appears to be in an intermediate regime of electron exchange at room 

temperature and reaches an approximately 3-line spectrum at lower temperatures.  Again 

it is not surprising that the VT-EPR spectrum of IX+ showed spectral changes upon 

cooling; in comparison to monocation II+, which has a similar bridge length to that of 

IX+, the electronic coupling in IX+ (V = 490 cm-1) is smaller than in II+ (V = 700 cm-1),  
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The room temperature EPR spectrum of IX+ can only be simulated as a localized 

charge with hyperfine coupling to one triarylamine (AN = 8.4 G) and thermal exchange 

rate on the order of ca. 3.5 × 108 s-1.  The shape of the spectrum cannot be reproduced 

(with WinSim) under the assumption of a delocalized charge.  The VT-EPR spectra of 

IX+ were simulated with the EPR-EXN program at each temperature, and a rate of 

electron exchange was extracted from each simulation (Figure 4.17). As expected, the 

rate of ET decreases with decreasing temperature, reaching a minimum of 3.5 × 107 s-1 at 

185 K.   
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Figure 4.18.  Experimental (left) and simulated (right) VT-EPR spectra of IX+ in 
dichloromethane.  
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In general, the simulations are in good agreement with the experimental spectra, 

although in some cases (particularly 255, 265, and 277 K), the center of the spectra do 

not match well.  This is again presumably due to the treatment of this system as a 

classical model of electron exchange, as was described in the discussion of the fits for the 

VT-EPR spectra of I+, neglecting electron tunneling effects. 

 
 
4.3.4.5 Experimental and Simulated EPR Spectra of X+ 
 
 VT-EPR spectra were recorded for X+ in dichloromethane.  Both the low 

temperature and room temperature spectra show a 5-line pattern, consistent with coupling 

to two nitrogen nuclei (Figure 4.18).  This result suggests that the rate of intermolecular 

electron exchange is in the fast regime on the EPR time scale at both temperatures.  This 

is consistent with stronger coupling in X+ (as determined from the analysis of the IVCT 

absorption band, assuming Rab = RNN) is ca. 1080 cm-1, compared to that for IX+ (V = 490 

cm-1). 
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Figure 4.19.  EPR spectra of X+ at 180 (green) and 295 (red) K in dichloromethane, 
slightly offset on the x-axis. 
 
 
  

The room temperature EPR spectrum of X+ can be simulated as a delocalized 

charge with hyperfine coupling to two equivalent triarylamine moieties (AN = 4.2 G, 

Figure 4.19).  The line shape is consistent with either a static delocalization class III) or 

rapid dynamic delocalization; however IR and visible-NIR analysis of this monocation 

suggest that it is a class II species. 
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Figure 4.20.  Room-temperature experimental (blue) and simulated (red) EPR spectra for 
X+ in dichloromethane. 
 
 
 
4.3.4.6 Experimental and Simulated EPR Spectra of XI+ 

 
 For comparison of the hyperfine coupling constant to nitrogen in the EPR spectra 

of a one-site monocation, VT-EPR spectra were recorded for monocation XI+ in 

dichloromethane (Figure 4.20).  At the two temperature extremes (298 and 198 K), the 

spectra are 3-line in nature, although there are slight changes in the height of the ratio of 

the inner to outer peaks upon cooling.  This may be due to a change in coupling to 

hydrogen nuclei at different temperature due changes in conformational populations. 



 207 

3480 3500 3520 3540

298 K

198 K

Field / G  

Figure 4.21. EPR spectra of XI+ at 298 (red) and 198 (green) K in dichloromethane. 
 
 

Since there is only one triarylamine, the simulation for monocation XI+ (Figure 

4.21) was expected to fit one nitrogen nucleus, possibly with additional coupling to 

hydrogen nuclei.  In this case simulation with WinSim to one nitrogen nucleus (I = 1, 8.3 

G) is adequate indeed to describe the EPR spectrum at room temperature. 
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Figure 4.22. Experimental (blue) and simulated (red) room-temperature EPR spectra for 
XI+ in dichloromethane. 
 
 
 
4.3.4.7  Summary of Simulated EPR Spectra 

 The hyperfine coupling constants to nitrogen for monocations I+, II+, VIII+, IX+, 

X+, and XI+ are shown below in Table 4.5, including whether the simulation used was 

from a static delocalization (WinSim) or using a thermal exchange rate over two nitrogen 

nuclei (EPR-EXN). 
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Table 4.5.  Hyperfine coupling constants (G) fitted from WinSim or EPR-EXN for I+, II+, 
VIII+, IX+, X+, and XI+ from the room temperature EPR spectra. 
 

Compound AN from 
WinSim 

Number of 
nuclei 

AN from 
EPR-EXN 

Thermal 
exchange 
rate (s-1) 

I - - 8.4 6.7 × 108 

II 3.9 2 - - 
VIII 3.8 2 - - 
IX - - 8.4 3.5 × 108 

X 4.2 2 - - 
XI 8.3 1 - - 

 
 
 
 

4.3.5 Arrhenius Plots of the Kinetic Data Obtained from EPR Simulations 
 

From the simulated data in Figures 4.12 and 4.16, the plot of ln(kET) versus the 

inverse of the temperature (1/T) for I+ and IX+ (Figure 4.22) both yield a linear 

relationship between these quantities,  suggesting  that ET rate obeys an Arrhenius-

type equation  

  

! 

k
ET

= Aexp "
#G *

k
B
T

$ 

% 
& 

' 

( 
)      (4.7) 

where kB denotes the Boltzmann constant and T is the temperature. From this equation 

the prefactor (A) and the free activation energy for electron exchange (ΔG‡) were 

estimated as A ≈ 3  × 1010 and  4  × 1010 s-1 and ΔG‡ ≈ 760 and 970 cm-1 for I+ and IX+, 

respectively.   Note that some of the temperatures (hollow triangles and hollow squares) 

were left out of the fit because the experimental spectra could not be well-simulated at 

these temperatures, and therefore, the obtained rates should be regarded as less reliable. 
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Figure 4.23.  Arrhenius plots for I+ ( and ) and IX+ ( and ), shown with linear 
fits. 
 
 

It is interesting to compare the EPR estimate of the barrier (ΔG‡) with that 

derived from optical data shown earlier in this chapter. The Hush analysis of IVCT band 

of I+ measured in dichloromethane gives λ = 7450 cm-1 and V = 480 cm-1 (Section 4.2), 

assuming that R is equal to the nitrogen-nitrogen distance.  From equation 4.1, these 

values result in an activation barrier of ΔG‡ = 1410 cm-1, which is much higher than that 

derived from the VT-EPR data (ΔG‡ = 760 cm-1).  Similarly, the Hush analysis of IVCT 

band of IX+ measured in dichloromethane gives λ = 7780 cm-1 and V = 490 cm-1,8 

resulting in an activation barrier of ΔG‡ = 1520 cm-1, which is also much higher than that 

derived from the VT-EPR data (ΔG‡ = 970 cm-1).  As stated before, both sets of results 

suggest that the distance for ET (or R) was overestimated in the calculations based on the 

optical data, and really the diabatic ET distance is shorter than the nitrogen-nitrogen 
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distance.  Note that this is not to be confused with the adiabatic ET distance, i.e. the 

actual distance moved by the electron. 

 

Table 4.6.  Parameters for electron exchange calculated from Hush analysis of IVCT 
bands and simulations of the VT EPR spectra for compounds I+ and IX+. 
 

 I+ IX+ 

 Optical 
data 

VT EPR 
data 

Optical data VT EPR 
data 

ΔG* (cm-1) 1410 760 1520 970 
 
 
 

4.3.6  Conclusions from VT-EPR Experiments 
 

In earlier work8,41 on the basis of the analysis of the IVCT bands, it was 

concluded that X+ displays a weaker electronic coupling than its vinylene analogue 

VIII+.  Although the VT-EPR did not demonstrate variable rates in these 

monocations, both MV compounds appear delocalized on the EPR timescale.  

However, now it can be demonstrated that the longer bridge in IX+ reduces the 

electronic coupling to such an extent that the rate of ET is not in the fast limit at room 

temperature. In contrast, its vinylene analogue II+ exhibits the five-line signature of a 

bis(triarylamine) MV monocation with an ET rate faster than the EPR timescale. This 

shape persists even at temperatures as low as 195 K. Thus it can be concluded that the 

electronic coupling through CH=CH is stronger than through C≡C, consistent with 

previous work.8 Additionally, it has been demonstrated that modification of the 

energy of the frontier molecular orbitals of a conjugated bridge while keeping the 

energies of the end groups and remaining conjugated structures constant, can modify 

the rates of intermolecular ET, as was the case in the comparison of monocations I+ 



 212 

and II+.   

 

4.4 Overall Conclusions from Chapter 4 

It has been shown that bis(diarylaminostyryl)arene derivatives can be 

systematically modified by altering the orbital energies of the bridge and end groups to 

alter the MV character of the monocations gradually, making the transition from class II 

to class III, as demonstated by visible-NIR absorption and EPR spectroscopies.  

Ultimately, a completely bridge-localized monocation was not obtained, as demonstrated 

by the instability of the monocations of relevant bridge model compounds (specifically 6 

and 7).   Additionally, for the first time, triarylamine-based MV systems (I+ and IX+) 

have been shown to exhibit a delocalized-to-localized transition on the EPR timescale as 

a function of temperature. The analysis of EPR spectra in these monocations and other 

related systems allowed for a deeper insight into the nature of ET processes in organic 

MV systems.  Importantly, for the class III pyrrole compounds in section 4.2 (VII and 2) 

and for the class II systems of section 4.3 (I and IX), the Rab has been shown to be shorter 

than RNN for the monocations. 
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4.5  Experimental Section for Chapter 4 
 
 

4.5.1 EPR Computational Details 
 

Note: All EPR simulations using the EPR-EXN program and rate calculations 

were done by Kelly Lancaster and Vaeceslav Coropceanu of the research group of Prof. 

Jean-Luc Brédas at Georgia Institute of Technology. 

Room-temperature EPR spectra for the MV compounds were simulated in one of 

two ways. The first corresponds to the static case, where it was assumed that the charge is 

completely delocalized over both triarylamine moieties; for this method, the WinSim 

program was used. The second corresponds to the dynamic case, where it was assumed 

that a charge localized on one triarylamine can transfer to the other triarylamine upon 

thermal activation; for this case, the EPR-EXN program was employed. 

 
 
 

4.5.2 Computational Details 
 

Note: All AM1 and DFT calculations were done by Dr. Chad Risko of the 

research group of Prof. Jean-Luc Brédas at Georgia Institute of Technology.  

 Geometry optimizations and energies of the HOMOs for the fragments for the 

neutral molecules were performed using both the semiempirical Hartree-Fock Austim 

Model 1 (AM1).  A correlated semiempirical AM1/CI method was utilized for the 

investigations of the radical cations, including the determination of R12. Density 

Functional Theory (DFT) methods were also used in calculations of µ± and µ12, which 

were used to calculate Rab in equations 4.4 and 4.5.  The DFT calculations were carried 

out using the B3LYP functional, in which Becke’s three-parameter hybrid exchange 
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functional is combined with the Lee-Yang-Parr correlation functional, with a 6-31G* 

split valence plus polarization basis set. 

 

4.5.3  Electrochemical Methods 

Note: CV data for new compounds I-VII were obtained by Dr. Stephen Barlow in 

the research group of Prof. Seth R. Marder at Georgia Institute of Technology.  

Electrochemical measurements were carried out under nitrogen on dry 

deoxygenated dichloromethane solutions ca. 10–4 M in analyte and 0.1 M in tetra-n-

butylammonium hexafluorophosphate (nBu4NPF6) using a BAS 100W Potentiostat, a 

glassy carbon working electrode, a platinum auxillary electrode, and, as a pseudo-

reference electrode, a silver wire anodized in 1 M aqueous potassium chloride. Potentials 

were referenced to ferrocenium / ferrocene by using cobaltocenium hexafluorophosphate 

(–1.32 V versus ferrocenium / ferrocene) or decamethylferrocenium / 

decamethylferrocene (-0.55 B versus ferrocenium / ferrocene). Cyclic voltammograms 

were recorded at a scan rate of 50  mVs–1.  

 

4.5.4 Visible-NIR Absorption Spectra of the Radical Cations 

The visible-NIR absorption spectra for the monocations of compounds I-IV were 

obtained by Dr. Stephen Barlow; for compounds V-VI, the same spectra were recorded 

by Dr. Shijun Zheng, also of the same research group.  The initial visible-NIR absorption 

spectra for the monocation of VII was obtained by Dr. Luca Beverina, also a member of 

the research group of Prof. Seth R. Marder at Georgia Institute of Technology. 
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Monocations and dications were generated in solution by addition of appropriate 

amounts of tris(4-bromophenyl)aminium hexachloroantimonate (Aldrich) in dry solvents 

(< 0.1 eq. for monocations).  Absorptivities were calculated assuming complete ET and, 

in the case of monocations, negligible disproportionation.  Visible-NIR spectra were 

recorded in 1 cm cells using a Varian Cary 5E spectrometer. 

 

4.5.5 EPR Experimental Details. 

EPR spectra were acquired on a X-band Bruker EMX spectrometer in 

dichloromethane solutions. Dichloromethane was dried by passing through columns of 

activated alumina in a manner similar to that described in the literature.42 Tris(4-

bromophenyl)aminium hexachloroantimonate was purchased from Aldrich Chemical 

Company.  In all cases a ca. 10-fold excess of either diarylamine or bis(diarylamine) 

derivative was added to a solution of tris(4-bromophenyl)aminium hexachloroantimonate 

in dichloromethane, thus generating a solution with molarity of radical cation that was 

approximately the same as the molarity of the original oxidant in solution.  For EPR 

spectra recorded at room temperature, the solutions were ca. 3 × 10-4 M in tris(4-

bromophenyl)aminium hexachloroantimonate and were recorded from samples in 4 mm 

EPR tubes.  For EPR spectra recorded at variable temperatures, the solutions were ca. 3 × 

10-3 to 3 × 10-4 M in tris(4-bromophenyl)aminium hexachloroantimonate and were 

obtained from samples in 2 mm EPR tubes supported inside 4 mm EPR tubes or in 3 mm 

tubes independently supported.   
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4.5.6 Synthetic Details 

Note: Compound I and 4-bis(4-n-butoxyphenyl)aminobenzaldehyde were 

synthesized and characterized by Dr. S. Thayumanavan of the research group of Prof. 

Seth R. Marder at the University of Arizona.  The experimental data are included here for 

completeness.  Compound II8 was synthesized by Neil Tucker; III9 and IV9 by Dr. 

Stephen Barlow; V,10 VI,16 and VIII41  by Shijun Zheng; VII16 by Dr. Luca Beverina; and  

IX,2 X,43 and XI44 by Dr. Simon Jones and Zerubba Levi, all as described in the 

literature.  Compound 13 was synthesized by members of the research group of Prof. 

John Reynolds at the University of Florida. 

Compounds 8,23  9,23 and 1225 were synthesized as described in the literature.  

Starting materials were reagent grade and were used without further purification 

unless otherwise indicated. Starting materials were purchased from Acros Chemical Co. 

except for tris(dibenzylideneacetone)dipalladium(0) and tri-tert-butylphosphine solution 

in hexane, both of which were purchased from Strem Chemicals, Inc.  Solvents were 

dried by passing through columns of activated alumina in a manner similar to that 

described in the literature (tetrahydrofuran, toluene, dichloromethane)42 or were obtained 

as anhydrous grade from Acros Organics.  Chromatographic separations were performed 

using standard flash column chromatography methods using silica gel purchased from 

Sorbent Technologies (60 Å, 32-63 µm) or basic alumina purchased from Aldrich 

Chemical Company.  Elemental analyses were performed by Atlantic Microlabs. FAB 

and EI mass spectra were obtained from a VG Instruments 70SE.  GCMS data were 

acquired on an Agilent 5790 GC/ 6850 MS. 
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4-Bis(4-n-butoxyphenyl)aminobenzaldehyde.  4-Bromobenzaldehyde (17.7 g, 95.7 

mmol) was added to a solution of tris(dibenzylideneacetone) palladium(0) (0.44 g, 0.48 

mmol) and 1,1'-bis(diphenylphosphino)ferrocene (0.40 g, 0.72 mmol) in dry toluene (150 

mL) under nitrogen. After 15 minutes of stirring, sodium tert-butoxide (8.59 g, 89.3 

mmol) and bis(di-4-n-butoxyphenyl)amine (20.0 g, 63.8 mmol, prepared as previously 

described (Chapter 3)) were added.  The reaction mixture was heated to 90 °C for 24 

hours. After allowing the reaction mixture to cool to room temperature, water was added, 

and the reaction mixture extracted with diethyl ether. The product was purified by 

column chromatography on silica gel, eluting with ethyl acetate / hexane (1:9) to give the 

product as a yellow oil (22.2 g, 83%).  1H NMR (300 MHz, CD2Cl2) δ 9.76 (s, 1H), 7.63 

(d, J = 8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 4H), 6.92 (d, J = 8.8 Hz, 4H), 6.84 (d, J = 8.8 Hz, 

2H), 3.97 (t, J = 6.4 Hz, 4H), 1.77 (m, 4H), 1.01 (t, J = 7.4 Hz, 6H).  13C{1H} NMR (75 

MHz, CD2Cl2) δ 190.2, 157.5, 154.5, 139.0, 131.5, 128.6, 128.2, 116.8, 116.0, 68.5, 31.8, 

19.7, 14.0.  HRMS-FAB (m/z): [M+] calcd. for C27H31NO3, 417.2304; found, 417.2307. 

 

E,E-1,4-Bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene (I). To a 

mixture of tetraethyl 2,5-dicyano-1,4-xylene-α,α'-diyl diphosphonate20 (0.83 g, 1.9 

mmol) and 4-bis(4-n-butoxyphenyl)aminobenzaldehyde (1.62 g, 3.88 mmol) in 

tetrahydrofuran (15 mL) at 0 ºC was added potassium tert-butoxide (0.87 g, 7.8 mmol) in 

tetrahydrofuran (10 mL) dropwise.  The resultant solution was stirred at 0 °C for 30 

minutes, then at room temperature for 4 hours.  The reaction mixture was then poured 

into water and was extracted with ether, then concentrated by rotary evaporation, and the 

residue was purified using flash column chromatography on silica, eluting with hexane / 
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dichloromethane (2:1) to give the product as a red solid (1.24 g, 67%). 1H NMR (300 

MHz, CD2Cl2) δ 7.99 (s, 2H), 7.38 (d, J = 8.5 Hz, 4H), 7.23 (d,  J = 16.1 Hz, 2H), 7.14 

(d, J = 16.1 Hz, 2H), 7.06 (d, J = 8.7 Hz, 8H), 6.85 (d, J = 8.6 Hz, 12H), 3.94 (t, J = 6.5 

Hz, 8H), 1.74 (m, 8H), 1.48 (m, 8H), 0.97 (t, J = 7.4 Hz, 12H).  13C{1H} NMR (CD2Cl2, 

75 MHz) δ 156.6, 150.4, 140.2, 138.9, 134.5, 129.6, 128.6, 127.7, 127.4, 119.3, 118.8, 

117.3, 115.8, 114.7, 68.4, 31.8, 19.7, 14.1.  HRMS-FAB (m/z): [M+] calcd. for 

C64H66N4O4, 954.50841; found, 954.50717.  Anal. Calcd. for C64H66N4O4: C, 80.47; H, 

6.96; N, 5.87; found: C, 80.42; H, 6.98; N, 5.94.  Cyclic voltammetry in 0.1 M nBu4NPF6 

in dichloromethane: E1/2
+/0, 2+/+: +0.26; E1/2

3+/2+: +0.94 V versus Cp2Fe+/0 at 0 V. 

 

4-[Bis(4-tert-butylphenyl)amino]benzylalcohol (10).  4-[Bis(4-tert-

butylphenyl)amino]benzaldehyde (1.0 g, 2.6 mmol) was dissolved in ethanol (80 mL) 

using heat and sonication, and the solution was sparged with nitrogen gas; sodium 

borohydride (0.13 g, 3.5 mmol) was added under nitrogen atmosphere, and the reaction 

mixture was stirred for 1 hour. Water (50 mL) and diethyl ether (100 mL) were added, 

and the layers were separated; the organic layer was washed with water (1 × 100 mL) and  

was dried over anhydrous magnesium sulfate.  Concentration by rotary evaporation gave 

the title compound as an off-white solid (0.84 g, 97%). 1H NMR (300 MHz, CDCl3) δ 

7.31 (2 overlapping d, J = 9 Hz, 6H), 7.11 (d, J = 8 Hz, 2H), 7.06 (d, J = 9 Hz, 4H), 4.67 

(s, 2H), 1.34 (s, 18H).  13C{1H} NMR (75 MHz, CDCl3) δ 147.8, 145.6, 145.0, 134.1, 

128.2, 126.0, 123.8, 123.2, 65.2, 34.2, 31.4. EI-MS (m/z): 388.3 (MH+). Anal. calcd. for 

C27H33NO: C, 83.66; H, 8.58; N, 3.61; found: C, 83.40; H, 8.69; N, 3.57.  
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Diethyl 4-[bis(4-tert-butylphenyl)amino]benzylphosphonate (11). 4-[Bis(4-tert-

butylphenyl)amino]benzylalcohol (1.0 g, 2.6 mmol) was dissolved in triethylphosphite 

(10 mL); the mixture was deoxygenated and cooled in ice-water under nitrogen. Iodine 

(0.68 g, 2.7 mmol) was added, and the reaction was allowed to warm to room 

temperature and was stirred for 3 hours under nitrogen.  Residual triethylphosphite was 

removed by distillation under vacuum, and the remaining product was purified by passing 

through a pad of silica gel, eluting with hexanes / ethyl acetate (4:1) to give an off-white 

solid (0.58 g, 84%). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 4H), 7.15 (dd, J = 

2.1, 8.4 Hz, 2H), 7.04 – 6.98 (m, 6H), 4.04 (q, J = 7.2 Hz, 4H), 3.11 (d, J = 21 Hz, 2H), 

1.33 (s, 18 H), 1.23 (t, J = 7.2 Hz, 2H). 13C{1H} NMR (75 MHz, CDCl3) δ 146.8 (d, JCP = 

4.0 Hz), 145.2, 144.8, 130.2 (d, JCP = 9.6 Hz), 123.5, 123.1 (d, JCP = 2.9 Hz), 61.8 (d, JCP 

= 6.8 Hz), 34.0, 32.8 (d, JCP = 137.3 Hz) 31.3, 16.2 (d, JCP = 5.7 Hz).  EI-MS (m/z): 508.3 

(MH+).  Anal. calcd. for C31H42NO3P: C, 73.35; H, 8.34; N, 2.76; found: C, 73.43; H, 

8.46; N, 2.71.   

 

2,5-bis(4-bis(4-tert-butylphenyl)aminostyryl)-N-methylpyrrole (1).  To a 100 mL 

round-bottomed flask was added diethyl bis(4-tert-butylphenyl)aminobenzyl 

phosphonates (0.20 g, 0.40 mmol), N-methylpyrrole-2,5-dicarboxaldehyde (0.025 g, 0.18 

mmol), and dry tetrahydrofuran (10 mL) under nitrogen.  Potassium tert-butoxide (0.12 g, 

1.1 mmol) was added, and the reaction immediately turned from tan to bright yellow.  

The reaction mixture was stirred for 30 minutes at room temperature after which the 

solvent was removed by rotary evaporation.  The crude product was run through a tall 

pad of silica gel, eluting with hexanes / ethyl acetate (20:1), collecting the product as an 
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orange-yellow solid.  After Recrystallization from ethyl acetate / methanol, the title 

compound was isolated as a yellow solid (0.070 g, 47%).  1H NMR (400 MHz, acetone-

d6) δ 7.43 (d, J = 8.2 Hz, 4H), 7.34 (d, J = 8.2 Hz, 8H), 7.10 (d, J = 16 Hz, 2H), 6.98 (d, J 

= 8.2 Hz, 8H), 6.93 (d, J = 8.2 Hz, 4H), 6.90 Id, J = 16 Hz, 2 H), 3.75 (s, 3H), 1.29 (s, 36 

H).  A 13C NMR spectrum was not obtained for this compound due to low solubility.  

HRMS-EI (m/z): [M+] calcd. for C61H69N3, 843.54915; found, 843.55666.  Cyclic 

voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0,: –0.16; E1/2

2+/+: +0.02; E1/2
3+/2+: 

+0.94 V versus Cp2Fe+/0 at 0 V. 

 

N-n-Octadecyl-3,4-propyenedioxy-pyrrole-2,5-dicarbaldehyde (13).  This compound 

was provided as a gift from the research group of Prof. John Reynolds at the University 

of Florida.  A procedure for this compound has not been published and has not been 

provided. 

 

2,5-Bis(4-(bis(4-tert-butylphenyl)amino)styryl)-N-n-octadecyl-3,4-propylenedioxy-

pyrrole (2). Dry deoxygenated tetrahydrofuran (2 mL), N-n-octadecyl-3,4-

propylenedioxypyrrole-2,5-dicarbaldehyde (0.076 g, 0.17 mmol), diethyl bis(4-tert-

butylphenyl)aminobenzylphosphonate (0.20 g, 0.39 mmol), and potassium tert-butoxide 

(0.11 g, 1.0 mmol) were stirred under nitrogen for 10 minutes. The solvent was then 

removed under reduced pressure, and the residue was passed through a column of basic 

alumina, eluting with hexanes / ethyl acetate (10:1). The product was recrystallized from 

ethyl acetate and methanol to give a yellow solid (0.15 g, 76%).  1H NMR (500 MHz, 

C6D6) δ 7.68 (d, J = 16 Hz, 2H), 7.39 (d, J = 8.5 Hz, 4H), 7.17 (s, 8H), 7.01 (d, J = 16 Hz, 
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2H), 3.79 (t, J = 5 Hz, 4H), 3.65 (t, J = 7 Hz, 2H), 1.78 (m, 2H), 1.58 (quintet, J = 7.5 Hz, 

2H), 1.05–1.35 (m, 30H), 1.23 (s, 36H), 0.91 (t, J = 6.5 Hz, 3H).  13C{1H} NMR (125 

MHz, C6D6) δ 147.5, 146.1, 145.9, 139.0, 133.9, 127.2, 126.7, 126.4, 124.7, 124.2, 118.1, 

115.0, 43.2, 24.8, 23.3, 32.5, 31.7, 30.4, 30.34, 30.32, 30.27, 30.2, 30.1, 30.01, 29.79, 

27.2, 23.3, 14.6 (4 alkyl peaks missing, presumably due to overlap).  FAB-MS (m/z): 

1154 (M+). Anal. calcd. for C81H107N3O2: C, 84.25; H, 9.34; N, 3.64; found: C, 83.18; H, 

9.45; N 3.59.  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0,: –0.26; 

E1/2
2+/+: –0.02; E1/2

3+/2+: +0.73 V versus Cp2Fe+/0 at 0 V. 

 

1,4-Bis(4-tert-butylphenylvinyl)-2,5-di(n-dodecyloxy)benzene (3).  To an oven-dried 

50 mL round-bottomed flask cooled under nitrogen was added diethyl 4-tert-butylbenzyl 

phosphonate (0.22 g, 0.75 mmol), 1,4-di(n-dodecyloxy)benzene-2,5-dicarboxaldehyde 

(0.11 g, 0.22 mmol), and dry tetrahydrofuran (5 mL).  Potassium tert-butoxide (0.22 g, 

2.0 mmol) was added under nitrogen atmosphere.  After stirring the reaction mixture for 

60 minutes at room temperature, the solvent was removed by rotary evaporation, and the 

crude product was run through a tall pad of silica gel, eluting with hexanes/ethyl acetate 

(20:1), yielding 0.16 g (94%) of the title compound as a bright yellow solid.  1H NMR 

(300 MHz, C6D6) δ 8.00 (d, J = 16 Hz, 2H), 7.61 (d, J = 8.1 Hz, 4H), 7.44 (d, J = 16 Hz, 

2H), 7.33-7.32 (m, 6H), 3.83 (t, J = 6.3 Hz, 4H), 1.76 (quintet, J = 6.6 Hz, 4H), 1.49 (m, 

4H), 1.30 – 1.40 (m, 32H), 0.91 (t, J = 6.9 Hz, 6H).  13C{1H} NMR (75 MHz, C6D6) δ 

151.8, 150.6, 135.9, 129.1, 127.6, 126.8, 126.0, 123.5, 111.0, 69.4, 34.6, 32.3, 31.4, 30.2, 

30.1 (2 peaks separated by 0.04 ppm), 29.9 (2 peaks separated by 0.04 ppm), 29.8, 26.7, 

23.1, 14.4.  HRMS-EI (m/z): [M+] calcdd for C54H82O2, 762.63148; found, 762.63201.  
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Anal. calcd. for C54H82O2: C, 84.98; H, 10.83; found: C, 84.41; H, 10.90.  Cyclic 

voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: +0.49 V versus Cp2Fe+/0 at 0 

V. 

 

2,5-Bis(4-tert-butylphenylvinyl)-3,4-di-n-butoxy-thiophene (4).  In an oven-dried 50 

mL round-bottomed flask, diethyl 4-tert-butylbenzyl phosphonate (0.22 g, 0.77 mmol), 

3,4-di-n-butoxythiophene-2,5-dicarboxaldehyde (0.22 g, 0.34 mmol), and dry 

tetrahydrofuran (10 mL) were combined under nitrogen.  Potassium tert-butoxide (0.22 g, 

2.0 mmol) was added, and the reaction mixture was stirred for 50 minutes at room 

temperature after which the solvent was removed by rotary evaporation.  The crude 

product was passed through a tall pad of silica gel, eluting with hexanes / ethyl acetate 

(20:1), and was concentrated by rotary evaporation to obtain the title compound as a 

yellow-orange oil (0.11 g, 59%).  1H NMR (300 MHz, C6D6) δ 7.63 (d, J = 16 Hz, 2H), 

7.40 (d, J = 8.4 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H), 7.18 (d, J = 16 Hz, 2H), 4.04 (t, J = 6.3 

Hz, 4H), 1.65 (quintet, J = 6.6 Hz, 4H), 1.42 (sextet, J = 6.6 Hz, 4H), 1.21 (s, 18H), 0.86 

(t, J = 7.5 Hz, 6H).  13C{1H} NMR (75 MHz, C6D6) δ 150.6, 148.3, 135.1, 127.1, 126.5, 

126.0, 124.4, 118.3, 73.8, 34.6, 32.4, 31.3, 19.5, 14.0.  EI-MS (m/z): 544.2 [M+]. Cyclic 

voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: +0.35 V versus Cp2Fe+/0 at 0 

V. 

 

2,5-Bis(4-tert-butylphenylvinyl)-N-methylpyrrole (5).  To an oven-dried 50 mL round-

bottomed flask cooled under nitrogen was added diethyl 4-tert-butylbenzyl phosphonate 

(0.22 g, 0.75 mmol), N-methylpyrrole-2,5-dicarboxaldehyde (0.047 g, 0.34 mmol), and 
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dry tetrahydrofuran (5 mL).  Potassium tert-butoxide (0.22 g, 2.0 mmol) was added upon 

which the reaction immediately turned yellow.  After 30 minutes of stirring at room 

temperature, the reaction mixture was extracted with ethyl acetate (2 × 50 mL), and the 

organic layer was washed with water (1 × 50 mL).  After drying the organic layer with 

anhydrous magnesium sulfate, the organic layer was concentrated by rotary evaporation.  

The crude product was run through a tall pad of basic alumina, eluting with hexanes/ethyl 

acetate (20:1).  The product was recrystallized from ethyl acetate/methanol, yielding 

0.062 g (46%) of the title compound as a bright yellow solid.  1H NMR (500 MHz, C6D6) 

δ 7.40 (d, J = 8.5 Hz, 4H), 7.33 (d, J = 8.5 Hz, 4H), 7.03 (d, J = 16 Hz, 2H), 6.90 (d, J = 

16 Hz, 2H), 6.69 (s, 2H), 2.93 (s, 3H), 1.25 (s, 18H).  13C{1H} NMR (125 MHz, C6D6) δ 

150.0, 135.9, 134.0, 126.3, 126.2, 125.9, 117.0, 108.3, 34.6, 31.4, 29.9.   Anal. calcd. for 

C29H35N: C, 87.60; H, 8.87; N, 3.52; found: C, 87.55; H, 8.94; N, 3.62.  HRMS-EI (m/z): 

[M+] calcd. for C29H35N, 397.27695; found, 397.27804.  Cyclic voltammetry in 0.1 M 

nBu4NPF6 in dichloromethane: E1/2
+/0: +0.01 V versus Cp2Fe+/0 at 0 V. 

 

2,5-Bis(4-tert-butylphenylvinyl)-7-n-octadecyl-3,5-propylenedioxy-pyrrole (6). 

Diethyl 4-tert-butylbenzylphosphonate26,45 (0.11 g, 0.37 mmol), N-n-octadecyl-3,4-

propylenedioxypyrrole-2,5-dicarbaldehyde (0.076 g, 0.17 mmol), anhydrous 

deoxygenated tetrahydrofuran (10 mL) were combined in a 50 mL oven-dried round-

bottomed flask.  Potassium tert-butoxide (0.11 g, 1.0 mmol) was added, and the reaction 

mixture was stirred under nitrogen atmosphere at room temperature for 30 minutes.  The 

solvent was removed by rotary evaporation, and the crude product was passed through a 

pad of silica gel, eluting with hexanes / ethyl acetate (9:1).  Recrystallization from ethyl 
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acetate and methanol gave the title compound as a bright yellow powder  (0.080 g, 67%). 

1H NMR (500 MHz, C6D6) δ 7.76 (d, J = 16 Hz, 2H), 7.54 (d, J = 8 Hz, 4 H), 7.31 (d, J = 

8 Hz, 4H), 7.16 (d, J = 16 Hz, 2H), 3.84 (t, J = 5.0 Hz, 4H), 3.74 (t, J = 7.5 Hz, 2H), 1.66 

(quintet, J = 5.0 Hz, 2H), 1.62 (quintet, J = 7.0 Hz, 2H), 1.10–1.35 (m, 30H), 1.25 (s, 

18H), 0.91 (t, J = 6.5 Hz, 3H). 13C{1H} NMR δ (125 MHz, C6D6) δ 149.6, 138.8, 136.8, 

126.5, 125.9 (2 peaks, 0.01 ppm apart), 117.8, 115.8, 105.1, 71.7, 71.1, 43.0, 34.6, 32.3, 

31.5, 30.21, 20.19, 30.17, 30.11, 30.07, 29.88, 29.80, 29.57, 27.0, 23.1, 14.4 (4 alkyl 

peaks missing, presumably due to overlap).   MS-FAB (m/z): [M+] calcd. for C49H73NO2, 

707.56; found, 707.5. Anal. calcd. for C49H73NO2: C, 83.11; H, 10.39; N, 1.98; found: C, 

82.60; H, 10.45; N, 1.99.  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: 

E1/2
+/0: –0.14 V versus Cp2Fe+/0 at 0 V. 

 

2,5-Bis(4-methoxyphenylvinyl)-N-octadecyl-3,4-propylenedioxy-pyrrole (7).  In a 25 

mL oven-dried round-bottomed flask were combined diethyl 4-methoxy 

lbenzylphosphonate (0.096 g, 0.37 mmol), 7-n-octadecyl-2,3,4,7-tetrahydro-

[1,4]dioxepino[2,3-c]pyrrole-2,5-dicarbaldehyde (0.076 g, 0.17 mmol), anhydrous 

deoxygenated tetrahydrofuran (5 mL), and potassium tert-butoxide (0.11 g, 1.0 mmol).  

After 30 minutes, the reaction mixture was concentrated by rotary evaporation, and the 

crude product was run through a tall pad of basic alumina, eluting with hexanes/ethyl 

acetate (1:1), then with ethyl acetate, yielding a bright yellow.  Recrystallization from 

ethyl acetate / methanol afforded the product as a yellow solid (0.078 g, 71%).  1H NMR 

(300 MHz, C6D6) δ 7.71 (d, J = 16 H, 2H), 7.47 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 16 Hz, 

2H), 6.82 (d, J = 8.7 Hz, 4H), 3.86 (t, J = 5.4 Hz, 4H), 3.74 (t, J = 7.2 Hz, 2H), 3.30 (s, 
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6H), 1.69 (quintet, J = 5.1 Hz, 2H), 1.63 (m, 2H), 1.10-1.35 (m, 30H), 0.91 (t, J = 6.6 Hz, 

3H).  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: –0.22 V versus 

Cp2Fe+/0 at 0 V. 
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CHAPTER 5 

MIXED-VALENCE MONOCATIONS OF 1,3,5-TRIS(DIARYLAMINO) 

DERIVATIVES AROUND A CENTRAL BENZENE CORE 

 

5.1.  Introduction 

 In comparison to two-site mixed-valence (MV) systems, three-site MV systems 

have had a rather limited investigation in the literature.  In many three-site MV systems, 

either the intervalence charge-transfer (IVCT) band is too weak to study, or the IVCT 

band overlaps in energy with other strong transitions in the radical species such that it 

cannot be readily studied.  This is often the case in 1,3,5-trisubstituted benzene 

derivatives in which the redox sites are often poorly coupled due to poor conjugation 

through the meta-positions of the benzene ring.  In attempt to learn more about the nature 

of three-site MV species, the synthesis and characterization of new three-site MV species 

in an attempt obtain more strongly coupled MV species with IVCT bands that are well-

separated from other absorption bands are described in this chapter. 

 

5.1.1 Coupling in Three-Site MV Monocations 

 MV species are useful systems to study as simple models for electron transfer 

processes.  Understanding fundamental electron transfer processes has relevance in 

complicated biological systems as well as in charge transport materials in organic 

electronic devices.  While two-site MV species provide the simplest systems for 

investigation and have been studied in numerous publications, 1-4 investigations of three-

site MV species have been rather more limited. 5-16   However, when considering a 
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situation in which multiple positions are available to accept an electron – such as in the 

case of an oxidized or reduced conjugated oligomeric or polymeric system in which there 

are more than two redox sites available for electron transfer – then a three-site model 

system may be more helpful in understanding the nature of electron transfer.  Yet another 

example of intermolecular electron transfer in a molecular solid, where multiple redox 

sites could be more readily available than in solution measurements.  Rather than having 

one redox center with which electronic coupling can occur, a three-site MV species has 

more options for electron transfer because there are two potential redox sites available 

(Figure 5.1).   

 

Figure 5.1.  Potential for electron transfer reactions in a two-site (left) and three-site 
(right) MV species, examples shown for cationic MV species. 
 

While some publications have addressed the theory concerning electron transfer 

in centrosymmetric three-site MV species,5,6,8,17 these species are often more difficult to 

study because of the smaller electronic coupling in systems that are convenient to 

synthesize.  For example, when considering three-site MV systems in which the three 

redox centers are strictly equivalent (in the neutral version of the MV system), a fairly 

simple system to synthesize and study is a 1,3,5-trisubstituted benzene ring with three 

redox centers attached to the benzene core. However, the meta-substitution in such 

systems prevents effective conjugation between the substitutents in comparison to the 
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para-substition in similar two-center MV species, the result of which is weaker electronic 

coupling, and, therefore, less intense IVCT bands compared to similar two-site species 

with para-substition around a phenylene bridge.  This chapter focuses on the synthesis 

and characterization of potentially more strongly coupled three-site MV species with 

1,3,5-substitution around a central benzene ring than those reported in the literature, thus 

potentially retaining the synthetic ease in a trisubstituted benzene derivative with the 

advantage of stronger coupling and therefore greater ease in studying the characteristics 

of the IVCT bands. 

 

5.1.2  Previous Studies of the Monocations of Tris(diarylamine)s 

 A few examples of symmetric three-site MV species have been reported in the 

literature, i.e. three-site species with strict three-fold symmetry in the neutral species.8,17,18  

Concerning symmetrically substituted organic MV species, Launay’s reports on the 

mono-, di-, and tri-cations of tris(diarylamine)s5,6  have been among the few. In Launay’s 

reports,5,6  the monocation of 1,3,5-tris(di(4-ethylphenyl)aminophenyl)benzene (I) and a 

related two-site system – the monocation of a 1,3-bis(di(4-

alkylphenyl)aminophenyl)benzene derivative (II)6   – have been studied as MV species.  

These compounds are shown in Figure 5.2. 
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NR2

NR2R2N

R =

NR2R2N

I II  

Figure 5.2.  A tris(triarylamine) and related two-site derivative for which the monocations 
were studied as MV species.5,6 
 
 

Cyclic voltammetry (CV) experiments of compound I have been reported in 

dichloromethane.5 For this derivative, one reversible oxidation wave was observed, which 

presumably corresponds to three one-electron oxidations of each triarylamine moiety, 

occurring at experimentally indistinguishable potentials.  This result suggests that the 

oxidation of one triarylamine does not effect the other triarylamine enough to cause the 

second and third oxidations to occur at higher potentials, as far as could be detected by 

the CV experiment. 

The visible-NIR absorption spectra of the mono-, di-, and tri-cation of compound 

I were reported in tetra-n-butylammonium hexafluorophosphoate (nBu4NPF6) in 

dichloromethane.5    The bands associated with the triarylamine monocation absorption 

(from 500 to 900 nm) are similar in the mono-, di-, and tri-cation, and increase in 

intensity from mono- to tri-cation, as was expected for the transitions associated with the 

individual redox centers.  The IVCT band of the monocation was measured, having an 

absorption maximum at ca. 1400 nm.  The dication of I is also a MV species in which 

there are two redox centers with electronic vacancies and one neutral center.  In 

comparison to the IVCT band of monocation I+, the absorption of the IVCT band of the 

two-site monocation II+ is slightly red-shifted and is less intensely absorbing.  The signal-
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to-noise ratio was small for the IVCT bands, and although Launay and coworkers 

analyzed the band using Hush theory19 – obtaining electronic couplings (V) of 205 and 

181 cm-1 for I+ and II+, respectively – more confidence could be ascribed to the shape and 

analysis of the IVCT absorption if a spectrum with higher signal-to-noise ratio had been 

obtained and if the IVCT bands were more separated from the triarylaminium absorption 

features.   

The main goal of this chapter was – in comparison to an analog of I for 

comparison – to study a more strongly coupled monocation of a tris(diarylamino) 

derivative in order to obtain a more strongly absorbing IVCT band, and in which the 

IVCT band did not have an absorption energy coincident with the other triarylaminium 

transitions.  In addition to Hush analysis19 of the IVCT band of the monocation, electron 

paramagnetic resonance (EPR) studies could possibly shed light as to the nature of the 

delocalization of the monocations on the EPR time scale, potentially similar to the studies 

in section 4.3 of this thesis.   

 

 
5.1.3 Tris(diarylamino) Derivatives and Model Compounds 

 In order to determine if the measurements obtained for compound I could be 

replicated in a derivative with a similar structure and to investigate a 1,3,5-tris(di(4-

alkylphenyl)aminophenyl)benzene derivative using DPV, initially compound 1 was 

synthesized, replacing ethyl groups with tert-butyl groups (Figure 5.3).  Because many 

bis(diarylamino) derivatives that have been studied in the literature incorporate 4-

alkoxyphenyl rather than 4-alkylphenyl end groups, a derivative with di(4-

methoxyphenyl)amino end groups  (2, Figure 5.3) was designed as a more electron-rich 
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π-system.  To obtain potentially more strongly coupled three-site MV systems, two 

derivatives were synthesized in which phenylene bridges were replaced with thienylene 

bridges (3 and 4, Figure 5.3).  The difference in ionization potentials of benzene (9.2 

eV)20 and thiophene (8.9 eV)21 could lead to stronger coupling through the less aromatic 

and more easily oxidized thiophene rings.   In Chapter 3, for example, it was shown that 

the monocations of bis(diarylamino) derivatives with thiophene-based bridges have 

stronger electronic coupling than the equivalent derivatives with phenylene-based 

bridges. 
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Figure 5.3. Tris(diarylamino) derivatives to be discussed in this chapter. 

 

 Additionally, for comparison to one of the thiophene-based three-site systems (3), 

a two-site version (5) was designed as a two-site MV monocation that should have an 

IVCT band, and a one-site version (6) was designed as a triarylamine monocation that 

should not have an IVCT transition (Figure 5.4).  It would be interesting to see, in a set of 
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similar two- and three-site MV species, if the trends in energies of absorption maxima 

and electronic coupling were consistent with the trends observed in the case of I+ and II+.  

In this way, a comparison of the IVCT bands of 3+ and 5+ could lead to more information 

about the difference in electron transfer between similar two- and three-site MV species. 
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Figure 5.4.  A three-site compound for study as a MV monocation, and corresponding 
two- and one-site control compounds. 
 
 

5.2  Results and Discussion 

5.2.1 Synthesis of Tris(diarylamino) Derivatives and Model Compounds 

The synthesis of the tris(diarylamino) derivatives and model compounds 

employed extensive use of palladium-catalyzed amination reactions and condensation 

reactions.  The 1,3,5-tris(diarylaminophenyl)benzene derivatives (1 and 2) were 

synthesized in two steps (Scheme 5.1).  First, commercially available 1-acetyl-4-

iodobenzene (7) was cyclized in a condensation reaction with silicon tetrachloride to 

form known compound 1,3,5-tris(4-iodophenyl)benzene (8).22,23    Next the triiodide was 

coupled with a di(4-tert-butylphenyl)amine (9) or di(4-methoxyphenyl)amine (10) in a 

palladium-catalyzed amination reaction, yielding the desired triply aminated products (1 

or 2, Scheme 5.1). 
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Scheme 5.1.  Synthesis of 1,3,5-tris(di(aryl)aminophenyl)benzene derivatives.  
 

 Similarly the 1,3,5-tris(5-di(aryl)aminothien-2-yl)benzene derivatives (3 and 4) 

were synthesized in a palladium-catalyzed amination of 1,3,5-tris(5-bromothien-2-

yl)benzene (13) with diarylamine (9 or 10).  To obtain the triply brominated core, 

originally 2-acetyl-5-bromothiophene was reacted with silicon tetrachloride, following a 

published procedure to obtain compound 13,24 but the product isolated from the reaction 

was a mixture of tribromo-, dibromo-monochloro-, monobromo-dichloro-, and trichloro-

products, as was determined by mass spectrometry and 1H NMR spectroscopy.  Instead, 

2-acetylthiophene (11) was cyclized to form 1,3,5-tris(thien-2-yl)benzene (12),23  which 

was triply brominated with N-bromosuccinimide  to form 1,3,5-tris(5-bromothien-2-

yl)benzene (13, Scheme 5.2).   
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Scheme 5.2.  Synthesis of 1,3,5-tris(diarylamino-5-thien-2-yl)benzene derivatives. 
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 A palladium-catalyzed Stille coupling of 1,3-dibromobenzene and 2-tri(n-

butyl)stannylthiophene was used to synthesize commercially available 1,3-bis(thien-2-

yl)benzene (14), which was brominated to obtain 1,3-bis(5-bromothien-2-yl)benzene 

(15).  Reaction of 15 with bis(4-tert-butylphenyl)amine (9) in a palladium-catalyzed 

amination reaction yielded 1,3-bis(di(4-tert-butylphenyl)amino-5-thien-2-yl)benzene (5, 

Scheme 5.3). 
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bromine
AcOH
NaOAc

Pd2dba3, PtBu3

NaOtBu, PhMe

refluxS
S

Br

82%
50%

14
15 5

S
NR2

S

R2N

R = tBu

NHR2 (9)

 

Scheme 5.3.  Synthesis of 1,3-bis(di(4-tert-butylphenyl)amino-5-thien-2-yl)benzene. 
 
 
 
 The one-site version of the above product was also synthesized in a similar 

fashion to the original synthesis of the two- and three-site species.  First 2-

phenylthiophene (16) was brominated25 (Scheme 5.4).  Then palladium-catalyzed 

amination of 2-bromo-5-phenylthiophene (17) with bis(4-tert-butylphenyl)amine (9) 

yielded 2-bis(4-tert-butylphenyl)amino-5-phenyl-thiophene (6) as an off-white solid. 
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Scheme 5.4.  Synthesis of 2-bis(4-tert-butylphenyl)amino-5-phenyl-thiophene. 
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5.2.2  Electrochemical Characterization 

 Compounds 1–6 were analyzed by CV to determine oxidation potentials; for the 

two- and three-site derivatives, DPV was used in attempt to determine any differences in 

potential between successive oxidations.  When multiple oxidations in the same molecule 

occur at the same potential, the oxidation of one redox center does not affect the 

potentials of the other redox centers to a sufficient extent that a difference in the multiple 

processes can be observed.  However, if the two redox centers are sufficiently close in 

space, electrostatic interactions can cause the presence of one positive charge to make the 

second and further oxidations more difficult.  Also, if the conjugation between the redox 

centers is sufficiently large, and thus the monocation is delocalized to some extent over 

both redox centers, then the second and further oxidations will also occur at higher 

potentials. 

In all cases, CV and DPV experiments were run in 0.1 M nBu4NPF6 in 

dichloromethane, and decamethylferrocenium / decamethylferrocene (Cp*2Fe+/0) was 

used as the internal reference at –0.55 V versus ferrocenium / ferrocene (Cp2Fe+/0) at 0 V.  

As was the case with the published characterization of compound I,5    the cyclic 

voltammogram of compound 1 (Figure 5.5, left) is consistent with three overlapping, 

unresolved one-electron oxidations at +0.42 V, referenced to Cp2Fe+/0 at 0 V.  DPV 

experiments showed no separation in the multiple oxidations (Figure 5.5, right). 
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Figure 5.5.  Cyclic voltammogram (left) and differential pulse votammogram (right) of 
compound 1 in 0.1 M nBu4NPF6 in dichloromethane, both shown with Cp*2Fe+/0 as the 
internal reference and referenced to Cp2Fe+/0 at 0 V. 
 
 

The cyclic voltammogram of compound 2 (Figure 5.6, left) is also consistent with 

three overlapping, unresolved reversible one-electron oxidations.  DPV experiments 

(Figure 5.6, right) did not show any separation of the multiple oxidations.  The oxidation 

of 2 (E1/2
+/0 = +0.27 V) occurs at lower potential than that of compound 1 (E1/2

+/0 = +0.42 

V), which is consistent with the more electron-rich alkoxy end groups in compound 2. 

 

    

Figure 5.6.  Cyclic voltammogram (left) and differential pulse voltammogram (right) of 
compound 2 in 0.1 M nBu4NPF6 in dichloromethane, both shown with Cp*2Fe+/0 as the 
internal reference and referenced to Cp2Fe+/0 at 0 V. 
 
 
 The cyclic voltammogram of compound 3 is consistent with multiple oxidations 

at different potentials (Figure 5.7, left), although it is not possible to determine the 

positions of each oxidation from the cyclic voltammogram without simulation.  The three 
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oxidations are separated in the DPV experiments (Figure 5.7, right).  Compound 3 is 

considerably easier to oxidize (E1/2
+/0 = +0.22 V) than its phenylene-based analog 1 (E1/2

+/0 

= +0.42 V), which was expected because of the lower ionization potential of thiophene 

relative to benzene.  Also, because the oxidations are separable in compound 3, this result 

implies that the oxidation of each triarylamine moiety affects the potentials of the others, 

which could be due to greater electronic coupling of the redox centers in compound 3 

than in compound 1.  Because the nitrogen-nitrogen distance in 3 is shorter than that in 1, 

the lower distance between nitrogen nuclei might lead to greater electrostatic 

contributions to the difference in oxidation potentials.  Regardless of the cause of the 

increase in ∆E1/2, the result of the increase is that monocation 3+ is more stable with 

respect to disproportionation and makes acquisition of the monocation [only] spectra 

easier. 

 

    

Figure 5.7.  Cyclic voltammogram (left) and differential pulse voltammogram (right) of 
compound 3 in 0.1 M nBu4NPF6 in dichloromethane, both shown with Cp*2Fe+/0 as the internal 
reference and referenced to Cp2Fe+/0 at 0 V. 
 
 
 The oxidations in compound 4 are also somewhat separated in CV experiments 

(Figure 5.8, left) and are better resolved in the DPV experiments (Figure 5.8, right).  The first 
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oxidation of compound 4 occurs at lower potential (E1/2
+/0 = +0.20 V) than compound 3  (E1/2

+/0 

= +0.22 V), consistent with the more electron-rich end groups in compound 4. 

 

      
 

Figure 5.8.  Cyclic voltammogram (left) and differential pulse voltammogram (right) of 
compound 4 in 0.1 M nBu4NPF6 in dichloromethane, both shown with Cp*2Fe+/0 as the internal 
reference and referenced to Cp2Fe+/0 at 0 V. 
 
 
 The cyclic voltammogram and differential pulse voltammogram of the two-site 

compound (5) are shown in Figure 5.9, displaying two reversible oxidations with separation of 

ca. 0.09 V.  The separation in oxidation potentials suggests that – as was the case for the 

equivalent three-site compound (3) – the oxidation of one triarylamine affects the oxidation of 

the second triarylamine.  The first oxidation potential of 5 is similar to that of 3, consistent 

with the relatively weak coupling expected from meta-substitution around the central benzene 

ring, which implies that the monocation of 3 is not more stabilized than 5, despite it having 

additional redox sites.   
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Figure 5.9.  Cyclic voltammogram (left) and differential pulse voltammogram (right) of two-
site compound 5 in 0.1 M nBu4NPF6 in dichloromethane, both shown with Cp*2Fe+/0 as the 
internal reference and referenced to Cp2Fe+/0 at 0 V.  
 
 
 The cyclic voltammogram of the one-site compound (6) is shown below in Figure 

5.10.  In this case, one oxidation is observed at a similar oxidation potential (E1/2
+/0 = +0.22 V) 

to the two- (5) and three-site (3) analogs.   Because there is only one triarylamine moiety in 

compound 6, it is reasonable that only one oxidation was observed. 

 

 

Figure 5.10.  Cyclic voltammogram of compound 6 in 0.1 M nBu4NPF6 in dichloromethane at 
50 mV/s, shown with Cp*2Fe+/0 as the internal reference and referenced to Cp2Fe+/0 at 0 V. 
 
 
 The oxidation potentials of compounds 1–6 are summarized in Table 5.1.  The 

oxidation potential reported for I (which was initially reported as E1/2 = +0.822 V versus a 

standard calomel electrode (SCE) and converted assuming a value of referencing Cp2Fe+/0 to 
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SCE from Connelly and Geiger26) is slightly lower than that obtained for 1.  Here potentials 

are referenced to Cp2Fe+/0 because this is the standard reference recommended by the 

International Union for Pure and Applied Chemistry.26 

 
 
Table 5.1.  Half-wave oxidation potentials (V) of I5 and 1–6 in 0.1 M nBu4NPF6 in 
dichloromethane, referenced to Cp2Fe+/0 at 0 V. 
 

Compound +/0 2+/+ 3+/2+ 
I     +0.36,a,b,c 

1 +0.42c 

2 +0.27c 

3 +0.22 d +0.30d +0.52 d 
4 +0.20d +0.28 d +0.40d 
5 +0.22d +0.31d – 
6 +0.22 – – 

a value reported from a literature reference.5  b value corrected from its initial report of an 
oxidation potential versus a standard calomel electrode.  c separation between first, 

second, and third oxidations were not resolvable.  d values determined using a 
combination of CV and DPV experiments 

 
 
 

5.2.3  Visible-NIR Absorption Spectra of the Monocations 
 
 Monocations 1+–4+ were generated by adding a 10-fold excess of the neutral 

compound to a solution of tris(4-bromophenyl)aminium hexachloroantimonate in 

dichloromethane or d2-dichloromethane.  Visible-NIR absorption spectra of monocations 1+, 

3+, and 4+ are shown in Figure 5.11. Knowing the initial concentration of oxidizing agent in 

solution allowed for the determination of the molar absorptivities of the resultant 

monocations, assuming complete electron transfer and no disproportionation.  The visible-

NIR absorption spectrum of 1+ shows similar features to the published spectrum of I+.  In 

addition to the triarylamine monocation transitions (at ca. 10500 cm-1 and higher), there is a 

weak IVCT band at ca. 7000 cm-1.  In the case of the thiophene-based monocations 3+ and 4+, 
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both species showed similar triarylamine absorptions and IVCT bands to those observed for 

1+, although the line shapes are narrower and molar extinction coefficients for the 

triarylaminium absorption bands are lower for both 3+ and 4+ than for 1+.  The extinction 

coefficients of the IVCT bands are similar for all three monocations. 
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Figure 5.11.  Visible-NIR absorption spectra of monocation 1+ in dichloromethane, and 
monocations 3+ and 4+ in d2-dichloromethane.  
 

 Unexpectedly, visible-NIR absorption spectrum resulting from the oxidation of 

compound 2 (Figure 5.12) does not show a distinct IVCT band and shows a long tail that 

overlaps with the triarylamine monocation transition.  It is possible that the energy of the 

IVCT band is higher in 2+ than that of 1+, resulting in the appearance of the tail and lack of a 

distinct IVCT band.  The energy of the IVCT band depends on the reorganization energy – not 

the electronic coupling – in a class II MV system, so this could mean that the reorganization 

energy is larger for 2+ than for 1+.  The visible-NIR absorption spectrum for the oxidation of 
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compound 2 is shown in Figure 5.12.  In this case, the spectrum is shown from a solution with 

higher concentration of monocation than the solutions for which spectra were recorded in 

Figure 5.11.  However, even at high concentrations, the IVCT band cannot be clearly 

observed; a shoulder from ca. 9000 – 12000 cm-1 precluded analysis of what might be the tail 

of an IVCT band apparent from 5000 – 9000 cm-1.  Another possibility is that the spectrum 

observed is not of 2+ at all.  For this reason, no Hush analysis19 was done for the visible-NIR 

absorption spectrum recorded upon oxidation of compound 2. 
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Figure 5.12.  Visible-NIR absorption resulting from the oxidation of 2 in dichloromethane. 

 

 An expansion of the IVCT bands of 1+, 3+, and 4+ is shown in Figure 5.13.  In this 

expansion, one can see that the separation of the IVCT bands from the triarylaminium 

absorption is more distinct for 3+ and 4+ than for 1+. 
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Figure 5.13.  IVCT bands of 1+, 3+, and 4+ in dichloromethane. 
 

 The visible-NIR absorption spectra of three-site monocation 3+ and its relevant two-

site (5+) and one-site (6+) model compounds are shown in dichloromethane (Figure 5.14). 

Unfortunately the shape of the IVCT band of 5+ is not reliable because there is an impurity 

peak that varies in intensity with the concentration of the monocation in solution (Figure 

5.15).  Since the extent of the absorption spectrum of the impurity is unknown, the IVCT band 

could not be confidently analyzed because its apparent line shape and absorption maximum 

could be affected by the absorption of the impurity.  However, it is at least evident that there 

is an IVCT band for 5+ that occurs at similar energy and similar intensity as that for 3+, so the 

spectrum is shown for comparison.  As expected, 6+ does not show an IVCT band and does 

show a triarylaminium absorption similar to those observed in 3+ and in 5+. 
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Figure 5.14.  Visible-NIR absorption spectra of monocations 3+, 5+, and 6+ in 
dichloromethane. 
 

 The visible-NIR absorption spectrum of 5+ is shown in Figure 5.15 when recorded at 

different concentrations.  In this figure, one can see the change in relative amounts of the 

impurity peak with absorption maximum at ca. 8500 cm-1. 
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Figure 5.15.  Visible-NIR absorption spectra recorded for 5+ at two concentrations in 
dichloromethane. 

 
  

As a consequence of overlap between the IVCT absorption and the triarylaminium 

absorption, the tail of the triarylaminium absorption and the IVCT for 1+, 3+, and 4+ were 

fitted as two symmetric Gaussians, the sum of which is are shown in Figure 5.16.  The 

Gaussian used to fit the IVCT band were used for the Hush analysis of the monocations. 
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Figure 5.16.  Sum of two Gaussian fits to the NIR absorption bands of 1+, 3+, and 4+ from 
spectra recorded in dichloromethane. 
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 The Gaussian fits of the IVCT bands of 1+, 3+, and 4+ were analyzed by Hush theory 

and are compared with the data provided in the literature for I+, although the absorption 

spectrum for I+ was recorded in nBu4NPF6 in dichloromethane (the monocation was generated 

electrochemically, thus requiring the presence of an electrolyte).  The full width at half 

maximum predicted by Hush theory19 (ν1/2[Hush]) was calculated using 

 

 

! 

" 
1/ 2[Hush ]

= 2310 #" 
max

    (5.1) 

 

In the spectra of 1+, 3+, and 4+, the lowest energy features are approximately symmetric 

Gaussians, which are broader than the Hush prediction for class-II compounds and were 

therefore assigned to the IVCT transitions of class II MV compounds. 

The transition dipole moment (µge) was calculated using the integration of the 

Gaussian fits of the IVCT bands rather than the raw experimental absorption spectra, since the 

original spectra would have overlap of the IVCT and triarylaminium absorption bands with 

each other.  In addition to calculating µge using the area under the Gaussian curve, for 

comparison with I+ and II+ for which µge was not provided, µge was also calculated using the 

molar absorptivity multiplied by ν1/2 because, even though this method is less accurate, both 

the molar absorptivity and ν1/2 were provided for I+ and II+, so this method for calculating µge 

allows for comparison with published data.  Using µge calculated from the Gaussian fits, the 

electronic coupling (V) can be estimated for both class II and III systems from characteristics 

of the IVCT band using the Hush expression, modified for a three-site MV species7 

     

! 

V
Hush

=
µge" max

2eRab
     (5.2) 
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where e is the electronic charge, and Rab is the diabatic electron-transfer distance.  Rab was 

assumed to be the nitrogen-nitrogen distance (RNN), the value for which was calculated 

using an MM2 geometry minimization of the neutral species, though this value may not 

be the real Rab; the more strongly coupled the MV species is, the more likely Rab is likely 

to be smaller than RNN.  Because the ionization potentials of the thiophene bridges are 

lower than the phenylene bridges, it was expected that the coupling in the thiophene-

based monocations should be stronger than their equivalent phenylene-based systems, 

because the monocation could have more bridge character in the thiophene-based species, 

moving the redox centers closer.  Spectral characteristics and calculations for transition 

dipole moment and electronic coupling based on the experimental data for the IVCT 

absorptions for 1+, 3+, and 4+ are shown in Table 5.2. 

 
Table 5.2. Experimental parameters characterizing the intervalence absorptions of the 
monocations of tris(diarylamino) derivatives in dichloromethane.  
 
 
 
 

 
 
 

 
a values from published data,6,7  b calculated using the area under the Gaussian,  c calculated 

using the molar absorptivity multiplied by ν1/2 instead of the area,  d value not provided 
 
 

From this data, the electronic coupling obtained for 1+ is slightly larger than that 

obtained for I+ in the literature, which – since the molar absorptivities for the two 

monocations are similar – is presumably due to the larger ν1/2 obtained from the Gaussian fit 

for 1+.  The electronic coupling found for thiophene-based monocation 3+ is also slightly 

compound νmax  
/ cm-1 

ε  
/ M-1cm-1 

ν1/2 

/ cm-1 
ν1/2[Hush] 

/ cm-1 
µge

b 

/ D 
µge

c 

/ D 
VHush 
/ cm-1 

Ia 6935 797 5650 4002 –d 2.4 205 
IIa 5981 258 7898 4271 – d 1.8 181 
1 7400 830 10300 4130 2.8 3.2 244 
3 7100 910 13000 4050 3.3 3.9 296 
4 6700 840 10600 3930 3.0 3.5 254 
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larger than those found for phenylene-based monocations I+ and 1+, which was expected based 

on the predicted increase in electronic coupling due to the lower ionization potentials of 

thiophene compared to benzene.  It is more difficult to know what trend in electronic coupling 

to expect for 1+ versus 4+ because both the end groups and the bridging groups are changed.  It 

is unfortunate that the IVCT band of the two-site monocation 5+ could not be reliably 

evaluated in this series to see how the electronic coupling compares to that of 3+.  In 

conclusion, as was expected based on the relative ionization potentials of thiophene and 

benzene, the electronic coupling in the thiophene-based MV monocations is slightly stronger 

than in the phenylene-based MV monocations. 

 
 

5.2.4 EPR Spectra of the Monocations 
 

EPR spectra were recorded of monocations 1+–6+.  One reason to obtain this data was 

to correlate any hyperfine coupling in the EPR spectra with the (de)localization of the 

monocation both throughout each arm of the tris(diarylamine) derivative and whether the 

monocation was coupled to multiple triarylamine moieties on the EPR time scale.  If the 

monocation showed a spectrum that indicated hyperfine coupling to all three nitrogen nuclei, 

then it would be considered in the fast limit of intramolecular exchange; if coupling to one 

nitrogen nucleus is observed in the EPR spectrum, then the monocation is considered in the 

slow limit of intramolecular exchange.  It should be noted that coupling to three nitrogen 

nuclei does not necessarily imply that the monocation is delocalized over all three 

triarylamine moieties; this result implies either delocalization of the monocation or that the 

rate of intramolecular exchange is greater than the coupling constant to nitrogen.  Recording 

the EPR spectra at variable temperatures could allow – if the spectrum changes with 
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temperature – for the determination of rates of intramolecular exchange, which could give a 

barrier to intramolecular electron transfer, as was shown for two monocations in Chapter 4.  

The second reason to record EPR spectra was to determine – if hyperfine coupling was 

observed – the extent to which the monocation is delocalized within the triarylamine moiety 

itself; for example, if the hyperfine coupling constant (HFCC) to nitrogen varies in magnitude 

from one monocation to another, this difference suggests that the monocation with the smaller 

HFCC to nitrogen (assuming coupling to the same number of nitrogen nuclei) is more 

delocalized throughout the aryl group(s).   

EPR spectra of monocations 1+–6+ were recorded in dichloromethane.  In the same 

way as was reported in section 5.2.2, the monocations were generated by addition of a 10-fold 

excess of neutral compound to tris(4-bromophenyl)aminium hexachloroantimonate in 

dichloromethane.  EPR spectra were initially recorded at room temperature on a Bruker X-

band EPR spectrometer at concentrations of ca. 5 × 10-4 M.   Additionally, DFT calculations 

were used to predict HFCCs based on predictions for spin densities in the monocations. 

 Figure 5.l7 shows the EPR spectra of 1+ and 2+, which are nearly identical in shape.  

Neither EPR spectrum shows any resolvable hyperfine coupling, so modeling the spectra (as 

was done for the EPR spectra of some of the monocations in Chapters 2, 3, and 4) would 

serve little purpose here.  The EPR spectra of 1+ and 2+ demonstrate the presence of a radical 

but do not allow for the determination of whether the monocation is in a fast or slow limit of 

electron exchange on the EPR time scale.  However, because the integrated peaks of the EPR 

spectra of 1+ and 2+ are essentially Gaussian in shape (not shown), this rules out 

intermolecular electron exchange as the reason for the lack of hyperfine coupling.  It is 
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possible that no hyperfine coupling is observed because of coupling to a large number of 

inequivalent hydrogen nuclei. 

 

 
 

Figure 5.17.  EPR spectra of 1+ and 2+ in dichloromethane at room temperature.  
 
 

 When cooled to 200 K, the EPR spectrum of 1+ (Figure 5.18) shows a three-line 

spectrum (AN = 7.7 G), consistent with coupling to one nitrogen nucleus; therefore, at low 

temperature the rate of intramolecular electron transfer between the multiple redox centers is 

in the slow regime on the EPR time scale. 
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Figure 5.18. EPR spectra of 1+ in dichloromethane at 298 and 200 K. 
 
 

The EPR spectra of 3+ and 4+ are shown in Figure 5.19.  While the spectrum of 4+ 

shows no hyperfine coupling – as was the case for both phenylene-based monocations 1+ and 

2+ – the spectrum of 3+ does show hyperfine coupling, the simulation of which will be 

discussed shortly.  The integrated peaks in the EPR spectrum of 4+ is Gaussian in shape, 

which rules out the possibility for intermolecular exchange being the cause of the lack of 

hyperfine coupling. 
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Figure 5.19.  EPR of monocations 3+ and 4+ in dichloromethane at room temperature. 
 
 

Variable temperature EPR (VT-EPR) spectra of monocation 3+ were obtained (Figure 

5.20) in order to determine if the spectrum changed upon cooling.  When cooled, the intensity 

of the signal observed by EPR initially diminished slightly – presumably due to 

decomposition of the monocation over the time required to record the spectra at multiple 

temperatures or because of precipitation of the monocation at the bottom of the EPR tube – 
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but retained the same shape until below 240 K, where the splitting pattern was lost. Retention 

of the same splitting pattern suggests that the spectrum observed at room temperature is in 

either a fast or slow limit of intramolecular exchange on the time scale of the EPR experiment. 
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Figure 5.20.  VT-EPR of 3+ in dichloromethane, from 298 to 246 K. 
 

In Figure 5.21, the normalized EPR spectra of 3+ at 298 and 206 K are shown.  While 

the fine structure of the EPR spectrum is lost at low temperatures, the overall line shape is 

similar.   
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Figure 5.21.  Normalized EPR spectra of 3+ at 298 and 206 K in dichloromethane. 
 
 
 EPR spectra of monocations 3+, 5+, and 6+ are shown in Figure 5.22.  The monocations 

have different splitting patterns; while the spectra of the monocations of the two- (5+) and 

three-site (3+) compounds have similar line widths, the spectrum of the monocation of the 

one-site species (6+) is much broader.  While the broadness of the EPR spectrum of 6+ was not 

expected, simulations of the spectrum give reasonable fits.  The shapes and splitting patterns 

will be discussed further when the EPR simulations are presented.  
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Figure 5.22.  EPR spectra of monocations 3+, 5+, and 6+ in dichloromethane at room 
temperature. 
 

 

 VT-EPR spectra of 5+ in dichloromethane (Figure 5.23) show little change in the shape 

of the spectrum upon cooling, suggesting that the intramolecular electron transfer is either in a 

fast or slow limit on the time scale of the EPR experiment.   
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Figure 5.23.  VT-EPR of 5+ in dichloromethane at 298, 248, and 199 K. 
 

 

 VT-EPR spectra of 6+ in dichloromethane (Figure 5.24) were recorded for comparison 

with the two- and three-site species, even though intramolecular electron exchange was not 

expected.  The EPR spectra show some change upon cooling, but overall the spectrum is still 

four-line in nature.  The changes in spectral shape may be due to a difference coupling to 

hydrogen nuclei at different temperature because of changes in conformational populations.   
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Figure 5.24.  VT-EPR of 6+ in dichloromethane at 298 and 200 K. 

 

The EPR spectra of 1+, 3+, 5+, and 6+ were analyzed using WinSim to obtain 

simulations (Figure 5.25) and hyperfine coupling constants (HFCCs, AN, Table 5.3) to 

specific types of nuclei.   The EPR spectrum of 1+ at low temperature gives a fairly good fit to 

coupling to one nitrogen nucleus (AN = 7.7 G); coupling to additional hydrogen nuclei did not 

improve the fit.  This value is lower than that of the magnitude of the HFCC reported for the 

mononuclear triarylamine monocation [(4-CH3C6H4)3N]+ in acetonitrile (AN = 9.45 G),27 and is 

presumably lowered by some delocalization onto the central benzene ring.  The EPR spectrum 

of 3+ can be simulated with a good fit to one set of three equivalent nitrogen nuclei (AN = 1.8 

G) and two sets of three equivalent hydrogen nuclei (AH = 2.7, 2.3 G).  Considering that the 

unpaired electron is coupled to three nitrogen nuclei, the magnitude of the HFCC seems 

reasonable; the HFCC to nitrogen is slightly smaller than one third of the HFCC to the 

nitrogen nucleus in a triarylamine monocation.27  Comparison to DFT calculations for HFCCs 

for 3+ was not possible in this case because the calculation for 3+ did not converge, possibly 
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due to complications from the degeneracy of the highest occupied molecular orbital in the 

neutral compound.  The fits from the simulation suggest that there is electron delocalization or 

fast exchange on the time scale of the EPR experiment, meaning that the intramolecular 

electron exchange rate is much greater than ca. 107 s-1.  A good fit could not be obtained when 

coupling to one or two nitrogen nuclei were used, regardless of how many hydrogen nuclei 

were used, further supporting the fit to three nitrogen nuclei.   

For the two-site monocation (5+), the simulation shows a good fit to two nitrogen 

nuclei (AN = 3.1 G), one set of two hydrogen nuclei (AH = 2.5), and one additional hydrogen 

nucleus (AH = 1.8 G), consistent with a monocation that is delocalized or in a fast exchange 

regime on the time scale of the EPR experiment.  The HFCC to nitrogen is reasonable because 

it is approximately 3/2 that of the AN obtained from the simulation of 3+; the value for AN is 

also consistent with that predicted by DFT calculations (AN = 3.05 G), assuming a delocalized 

monocation for the calculation of spin density.  A good simulation to this EPR spectrum could 

not be obtained using only one nitrogen nucleus, even when given the possibility for coupling 

to multiple hydrogen nuclei, again supporting that this monocation is not in the slow limit of 

intramolecular electron exchange on the EPR time scale.   

Lastly, the EPR spectrum of the one-site monocation (6+) was simulated, giving a 

reasonable fit to one nitrogen nucleus (AN = 6.5 G), three hydrogen nuclei (AH = 5.2, 2.6, and 

1.6 G), as well as a few more hydrogen nuclei with HFCCs of 1 G or less.  Unsurprisingly, the 

HFCC to nitrogen is larger than in the cases of 3+ and 5+; the value for AN is similar to that 

predicted by DFT calculations (AN = 5.83 G).  The unusually large HFCC to a hydrogen 

nucleus was also similarly predicted by DFT calculations (AH = 4.72 G), which was calculated 

to be the hydrogen atom at the 3-position of the thiophene ring.   
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Figure 5.25.  Experimental and simulated EPR spectra of 1+ (top left), 3+ (top right), 5+ 

(bottom left), and 6+ (bottom right) in dichloromethane. 
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The HFCCs obtained from simulated EPR spectra of 3+, 5+, and 6+, with the number of nuclei 

for which the HFCC applies, are shown in Table 5.3.  A summary of the HFCCs predicted 

from DFT calculations is given in the experimental section. 

 
 
Table 5.3. HFCCs for the EPR spectra of 3+, 5+, and 6+ from WinSim, with the number of 
nuclei corresponding to each coupling constant shown in parentheses.  Values of HFCCs of 1 
G or less were not included in the table. 
 

Compound AN / G AH / G AH / G AH / G 
1* 7.7 (1) – – – 
3 1.8 (3) 2.7 (3) 2.3 (3) _ 
5 3.1 (2) 2.5 (2) 1.8 (1) – 
6 6.5 (1) 5.2 (1) 2.6 (1) 1.6 (1) 

*from spectra recorded at 200 K in dichloromethane 

 

In summary, from the simulations of the EPR experiments, the thiophene-based MV 

species (3+ and 5+) are in a fast limit of intramolecular exchange or are statically delocalized 

species at both room temperature and low temperature (where the spectra have similar 

shapes), compared with the phenylene-based MV species (1+), which is in the slow limit of 

intramolecular electron exchange, at least at low temperature.   This observation is consistent 

with the assignment of monocations 1+ and 3+ as class II MV species that have different rates 

of intramolecular electron exchange (3+ having a faster rate than 1+).  In this context, it would 

also be reasonable to assume that 5+ could be assigned as a class II MV species with a rate of 

intramolecular exchange that is much greater than ca. 107 s-1.   Additionally, the EPR data for 

the thiophene-based compounds suggests more shifting of the redox site into the thiophene 

bridge, so Rab should be decreased versus RNN, and, therefore, V should be even larger for the 

thiophene-based monocations than the phenylene-based monocations than is suggested by 

simply using RNN. 
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5.3  Conclusions on Three-site MV Systems 

 In conclusion, the three-site monocations studied in this chapter can be 

confidently described as class II MV species.  From the CV and DPV data, the more 

easily oxidized thiophene-based derivatives show separable oxidations whereas the 

phenylene derivatives do not.  From the visible-NIR absorption spectra of the 

monocations, the thiophene-based derivatives show IVCT bands of similar intensity, and 

the IVCT bands are more separated from the triarylaminium absorption bands than is the 

case for the phenylene-based monocation; the IVCT bands of the thiophene-based 

monocations can, therefore, be more confidently analyzed by Hush theory than the 

phenylene-based monocations.  EPR spectra shed light into the minimum rates of 

intramolecular electron exchange for some of the thiophene-based derivatives, showing 

that the electron exchange is in the fast limit, whereas – at least at cold temperatures – the 

equivalent phenylene-based derivative is in the slow limit.  While all of the monocations 

are class II species, the monocations of the thiophene-based derivatives show evidence of 

stronger electronic coupling. 
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5.4 Experimental Section for Chapter 5 

5.4.1  Electrochemical Methods 

Electrochemical measurements were carried out under nitrogen on dry 

deoxygenated dichloromethane solutions ca. 10–4 M in analyte and 0.1 M in tetra-n-

butylammonium hexafluorophosphate (nBu4NPF6) using a BAS 100W Potentiostat, a 

glassy carbon working electrode, a platinum auxiliary electrode, and, as a pseudo-

reference electrode, a silver wire anodized in 1 M aqueous potassium chloride.  Potentials 

were referenced to ferrocenium / ferrocene using decamethylferrocenium / 

decamethylferrocene (-0.55 V versus ferrocenium / ferrocene) as an internal reference. 

Cyclic voltammograms were recorded at a scan rate of 50 mVs–1.  Differential pulse 

voltammetry experiments were run in the same solutions used for cyclic voltammetry 

experiments, and were run at a scan rate of 20 mVs-1. 

5.4.2 Visible-NIR Absorption Spectra of the Monocations 

Dr. Stephen Barlow, of the research group of Prof. Seth R. Marder at Georgia 

Institute of Technology, gave significant input as to the experimental design for collection 

of the visible-NIR absorption spectra.  The visible-NIR absorption spectrum of 1+ was 

recorded by Dr. Simon Jones, of the same research group. 

Monocations were generated in solution by addition of appropriate amounts of 

tris(4-bromophenyl)aminium hexachloroantimonate (Aldrich) in dry deuterated 

dichloromethane (< 0.1 equivalents for monocations).  Absorptivities were calculated 

assuming complete electron transfer and negligible disproportionation.  Visible-NIR 

spectra were recorded in 1 cm cells using a Varian Cary 5E spectrometer. 
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5.4.3  EPR Experimental Details 

David Jensen, of the research group of Prof. Bridgette Barry at Georgia Institute 

of Technology, assisted with the set-up and collection of the VT-EPR data.   

EPR spectra were acquired on an X-band Bruker EMX spectrometer in 

dichloromethane solutions. Dichloromethane was dried by passing through columns of 

activated alumina in a manner similar to that described in the literature.28 Tris(4-

bromophenyl)aminium hexachloroantimonate was purchased from Aldrich.  In all cases a 

ca. 10-fold excess of tris(diarylamino), bis(diarylamino), or diarylamino derivative was 

added to a solution of tris(4-bromophenyl)aminium hexachloroantimonate in 

dichloromethane, thus generating a solution with molarity of monocation that was 

approximately the same as the molarity of the original oxidant in solution.  For EPR 

spectra recorded at room temperature, the solutions were ca. 3 × 10-4 M in tris(4-

bromophenyl)aminium hexachloroantimonate and were recorded from samples in 4 mm 

EPR tubes.  For EPR spectra recorded at variable temperatures, the solutions were ca. 3 × 

10-3 to 3 × 10-4 M in tris(4-bromophenyl)aminium hexachloroantimonate and were 

obtained in 3 mm EPR tubes.   

 

5.4.4  Computational Details 

Kelly Lancaster and Dr. Veaceslav Coropceanu, of the research group of Prof. 

Jean-Luc Brédas at Georgia Institute of Technology, carried out the DFT calculations to 

obtain theoretical HFCCs. 
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For obtaining the nitrogen-nitrogen distance in the neutral molecules, geometries 

were minimized using MM2 calculations in Chem 3-D.  Separately, the ground-state 

geometries of the neutral and monocation of the tris(diaryl)amino derivatives were 

optimized  at the DFT level.   All DFT calculations were performed using the 6-31G(d,p) 

split valence plus double polarization basis set29-32  and with the B3LYP functional.33,34 

All calculations were carried out using the Gaussian 03 suite of programs.35 

Simulations of EPR experiments were accomplished using WinSim, a simulation 

program for Windows, which is currently provided for free download at the National 

Institutes for Environmental Health Sciences of the National Institutes of Health website 

at http://www.niehs.nih.gov/research/resources/software/tools/index.cfm. 

The labeling scheme for 5+ and 6+ for the HFCCs obtained from DFT calculations 

are shown below (Figure 5.26).   
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Figure 5.26.  Labeling scheme for HFCCs from DFT calculations. 

 

Table 5.4 shows the HFCCs for 5+, and 6+ obtained from DFT calculations of the 

spin densities of the monocations.  These values could not be obtained for 1+ and 3+ 

because the calculation did not converge. 
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Table 5.4.  Absolute values of the HFCCs (Ax) for 5+ and 6+ obtained from DFT 
calculations of spin densities of the monocations. 
 

AX (G) 5+ 6+ 

AN 3.05 5.83 

AHa –* –* 

AHa' 2.31 4.72 

AHb –* –* 

AHb' 0.06 0.39 

AHc 4.19 2.46 

AHc' 0.06 2.54 

AHc'' 4.19 3.32 

AHd 1.47 0.99 

AHd' –* 1.08 

AHe 0.57 1.00 

AHe' 0.61 1.05 

AHf 0.57 1.01 

AHf' 0.49 0.82 

AHg 0.36 0.64 

AHg' 0.34 0.60 

AHh 0.44 0.81 

AHh' 0.49 0.92 

AHi 0.68 1.15 

AHi' 0.80 1.32 

*atom does not exist for this structure 
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5.4.5 Synthetic Details 

 Compounds 1 and 2 were initially synthesized and studied by Dr. Simon Jones of 

the research group of Prof. Seth R. Marder at Georgia Institute of Technology.  Dr. 

Jones also completed the initial characterization of compound 1 and 2.  Kelly Lefler, also 

of the same research group, originally synthesized compound 4 and its precursors.   

Starting materials were reagent grade and were used without further purification 

unless otherwise indicated. Starting materials were purchased from Acros Chemical Co. 

except for tris(dibenzylideneacetone)dipalladium(0) and tri-tert-butylphosphine solution 

in hexane, both of which were purchased from Strem Chemicals, Inc.  Solvents were 

dried by passing through columns of activated alumina in a manner similar to that 

described in the literature (tetrahydrofuran, toluene, dichloromethane)28 or were obtained 

as anhydrous grade from Acros Organics.  Chromatographic separations were performed 

using standard flash column chromatography methods using silica gel purchased from 

Sorbent Technologies (60 Å, 32-63 µm) or basic alumina purchased from Aldrich 

Chemical Company.  Elemental analyses were performed by Atlantic Microlabs.  Mass 

spec (FAB and EI) was performed on a VG Instruments 70SE.  GCMS data were 

acquired on an Agilent 5790 GC/ 6850 MS. 

 

1,3,5-Tris(4-iodophenyl)benzene (8).  This compound was previously synthesized as 

previously described in two references.22,23 1H NMR (300 MHz, CD2Cl2) δ 7.83 (d, J = 

8.4 Hz, 6H), 7.34 (s, 3H), 7.45 (d, J = 8.7 Hz, 6H).   MS-EI (m/z): 683.6. 
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1,3,5-Tris(4-(bis(4-tert-butylphenyl)amino)phenyl)benzene (1).  To an oven-dried 

tube-shaped Schlenk flask cooled under nitrogen was added anhydrous deoxygenated 

toluene (10 mL), tris(dibenzylideneacetone)dipalladium(0) (0.050 g, 0.046 mmol), 1,1'-

bis(diphenylphosphino)ferrocene (0.019 g, 0.035 mmol), bis(4-tert-butylphenyl)amine 

(0.16 g, 0.58 mmol), and 1,3,5-tris(4-iodophenyl)benzene (0.10 g, 0.15 mmol).  A reflux 

condenser was attached, and the reaction flask was immersed in an oil bath, heating the 

reaction mixture to reflux.  After one hour of heating, the reaction flask was removed 

from the oil bath.  The reaction mixture was diluted by 50% with hexanes and was run 

through a pad of silica gel, eluting with hexanes/toluene (1:1).  After recrystallization 

from dichloromethane, the product was isolated as an off-white solid (0.10 g, 60%).  1H 

NMR (300 MHz, CD2Cl2) δ 7.69 (s, 3H), 7.56 (d, J = 8 Hz, 6H), 7.30 (d, J = 8 Hz, 12H), 

7.09 (d, J = 8 Hz, 6H), 7.05 (d, J = 8 Hz, 12H), 1.76 (s, 36H).  13C{1H} NMR (100 MHz, 

CD2Cl2) δ 147.1, 146.5, 145.3, 142.1, 134.5, 128.0, 126.5, 124.5, 123.6, 123.0, 34.6, 31.5.   

MS (EI, pos.) 1143.5.  Anal. calcd for C84H93N3: C, 88.14; H, 8.19; N, 3.67.  Found: C, 

87.66; H, 8.62; N, 3.81.  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: 

E1/2
3+/2+, 2+/+, +/0: +0.42 V versus Cp2Fe+/0 at 0 V. 

 

1,3,5-Tris(4-(bis(4-methoxyphenyl)amino)phenyl)benzene (2).  To an oven-dried tube-

shaped Schlenk flask cooled under nitrogen was added anhydrous deoxygenated toluene 

(10 mL), tris(dibenzylideneacetone)dipalladium(0) (0.050 g, 0.046 mmol), tri(tert-

butyl)phosphine (1.0 mL, 10% wt. in hexane), bis(4-methoxyphenyl)amine (0.13 g, 0.58 

mmol), and 1,3,5-tris(4-iodophenyl)benzene (0.10 g, 0.15 mmol).  A reflux condenser 

was attached, and the reaction flask was immersed in an oil bath, heating the reaction 
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mixture to reflux.  After one hour of heating, the reaction flask was removed from the oil 

bath, and the reaction mixture was run through a tall pad of silica gel, eluting with 

hexanes/ethyl acetate (4:1, then 1:1).  After recrystallization from ethyl acetate and 

methanol, 0.086 g (67%) of the desired product was isolated as an off-white solid.  1H 

NMR (400 MHz, C6D6) δ 7.86 (s, 3H), 7.54 (d, J = 8.8 Hz, 6H), 7.21 (d, J = 8.8 Hz, 6H), 

7.13 (d, overlapping with benzene signal, so cannot determine J, assumed 12H), 6.74 (d, 

J = 9.2 Hz, 12H), 3.29 (s, 18H).  13C{1H} NMR (100 MHz, CD2Cl2) δ 156.5, 148.8, 

142.1, 141.1, 133.2, 127.9, 127.1, 123.2, 120.7, 115.0, 55.8.  MS(FAB+) 987.2 (HRMS 

error: 3.17 ppm).  Anal. calcd. for C66H57N3O6: C, 80.22; H, 5.81; N, 4.25.  Found: C, 

79.53; H, 5.92; N, 4.02.  Cyclic Voltammetry in 0.1 M nBu4NPF6 in dichloromethane: 

E1/2
3+/2+, 2+/+, +/0: +0.27 V versus Cp2Fe+/0 at 0 V. 

 

1,3,5-Tri(thien-2-yl)benzene (12). This compound was prepared as previously 

described.23 1H NMR (C6D6, 500 MHz) δ 7.75 (s, 3H), 7.41 (d, J = 4.0 Hz, 3H), 7.34 (d, J 

= 5.0 Hz, 3H), 7.13 (dd, J = 4.0, 5.0 Hz, 4H). 

 

 

1,3,5-Tris(5-bromothien-2-yl)benzene (13).  Note: In contrast to what is described in 

the literature, from the cyclization/dehydration reaction of 2-acetyl-5-bromothiophene 

with SiCl4 in ethanol, a mixture of tri-halogenated (mixture of brominated and 

chlorinated) derivatives was obtained as an inseparable mixture.24 Instead, the title 

compound was obtained using the bromination 1,3,5-tris(thien-2-yl)benzene, as described 

below:   
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To a 300 mL round-bottomed flask wrapped in aluminum foil, acetic acid (50 mL) and 

chloroform (50 mL) were added.  The reaction flask was immersed in an ice-water bath, 

and 1,3,5-tris(thien-2-yl)benzene (0.20 g, 0.62 mmol) was added, followed by N-

bromosuccinimide (0.37 g, 2.1 mmol, freshly recrystallized from water).  After three 

hours, the reaction flask was removed from the cold bath and was allowed to warm to 

room temperature, and 0.055 g (0.31 mmol) additional N-bromosuccinimide was added to 

drive the reaction mixture (incomplete by TLC analysis in hexanes/dichloromethane 

(4:1)) to completion.  Dichloromethane (200 mL) was added, and the reaction mixture 

was washed with water (2 × 200 mL) and sodium bicarbonate (aqueous, saturated 

solution, 1 × 200 mL), after which it was dried over anhydrous magnesium sulfate.  The 

dichloromethane solution was diluted with hexanes to obtain an approximately 1:1 ratio 

of hexanes:dichloromethane, and the solution was run through a short pad of silica gel, 

eluting with hexanes/dichloromethane (1:1).  After concentration by rotary evaporation, 

0.25 g (73%) of off-white solid was isolated.  1H NMR (CDCl3, 500 MHz) δ 7.31 (s, 1H), 

6.67 (d, J = 4 Hz, 1H), 6.51 (d, J = 4 Hz, 1H).  13C{1H} NMR (125 MHz, CDCl3) δ 144.4, 

135.2, 131.0, 124.7, 122.1, 112.4.  MS (EI) calcd for C18H19Br3S3: 561.74; found: 561.7.  

Anal. calcd. for C18H19Br3S3: C, 38.53; H, 1.62.  Found: C, 38.60; H, 1.60. 

 

1,3,5-Tris(2-bis(4-tert-butylphenyl)aminothien-2-yl)benzene (3).  To a an oven-dried 

tube-shaped Schlenk flask cooled under nitrogen was added anhydrous deoxygenated 

toluene (20 mL), followed by bis(4-tert-butylphenyl)amine (0.50 g, 1.8 mmol), 1,3,5-

tris(5-bromothien-2-yl)benzene (0.25 g, 0.45 mmol), tris(dibenzylideneacetone)-

dipalladium(0) (0.50 g, 0.46 mmol), tri(tert-butyl)phosphine (3.0 mL, 10% wt. solution in 
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hexane), and sodium tert-butoxide (0.90 g, 9.4 mmol).  A reflux condenser was attached, 

and the reaction flask was immersed in an oil bath and was heated to reflux.  After one 

hour, the reaction flask was removed from the oil bath, and the reaction mixture was run 

through a column of silica gel, eluting with toluene.  The product was recrystallized from 

ethyl acetate and methanol, yielding a bright yellow powder (0.44 g, 83%).  1H NMR 

(500 MHz, C6D6) δ 7.64 (s, 3H), 7.27 (d, J = 8 Hz, 12H), 7.20 (d, J = 8 Hz, 12H), 6.80 (d, 

J = 4.0 Hz, 3H), 6.58 (d, J = 4.0 Hz, 3H), 1.19 (s, 18H).  13C{1H} (500 MHz, C6D6) δ 

152.6, 146.09, 146.05, 136.8, 136.5, 126.5, 124.2, 123.0, 121.0, 120.9, 34.3, 31.5. MS 

(EI, pos.) 1161.5. Anal. calcd. for C79H97N3S3: C, 80.57; H, 7.54; N, 3.61.  Found: C, 

80.32; H, 7.53; N, 3.60.  Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: 

E1/2
+/0: +0.22; E1/2

2+/+ +0.30; E1/2
 3+/+: +0.52 V versus Cp2Fe+/0 at 0 V. 

 

1,3,5-Tris(2-bis(4-methoxyphenyl)aminothien-2-yl)benzene (4).  To a an oven-dried 

tube-shaped Schlenk flask cooled under nitrogen was added anhydrous deoxygenated 

toluene (20 mL), followed by bis(4-methoxyphenyl)amine (0.41 g, 1.8 mmol), 1,3,5-

tris(5-bromothien-2-yl)benzene (0.25 g, 0.45 mmol), tris(dibenzylideneacetone)-

dipalladium(0) (0.50 g, 0.46 mmol), tri(tert-butyl)phosphine (1.0 mL, 10% wt. solution in 

hexane), and sodium tert-butoxide (0.90 g, 9.4 mmol).  A reflux condenser was attached, 

and the reaction flask was immersed in an oil bath and was heated to reflux.  After one 

hour, the reaction flask was removed from the oil bath, and the reaction mixture was run 

through a tall pad of silica gel, eluting with hexanes/ethyl acetate (4:1, then 1:1).  The 

product was recrystallized from ethyl acetate and methanol, yielding a bright yellow 

powder (0.17 g, 38%).  1H NMR (500 MHz, C6Dc) δ 7.73 (s, 3H), 7.18 (d, J = 9.0 Hz, 



 272 

12H), 6.89 (d, J = 4.0 Hz, 3H), 6.71 (d, J = 9.0 Hz, 12H), 6.48 (J = 4.0 Hz, 3H), 3.30 (s, 

18H).  13C{1H} NMR (125 MHz, C6D6) δ 156.6, 154.1, 142.0, 136.7, 134.7, 125.2, 123.1, 

120.3, 117.7, 115.0, 55.0.  MS (FAB+) calcd. for C60H51O6N3S3: 1005.29; found: 1005.9. 

Anal. calcd. for C60H51O6N3S3: C, 71.62; H, 5.11; N, 4.18.  Found: C, 71.47; H, 5.23; N, 

3.78. Cyclic voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: +0.20; E1/2

2+/+: 

0.28; E1/2
3+/2+: 0.40 V versus Cp2Fe+/0 at 0 V. 

 

 

2-Bromo-5-phenylthiophene (17).  This compound was prepared as previously 

described for the identical compound.25  1H NMR (500 MHz, CD2Cl2) δ 7.54 (d, J = 4.5 

Hz, 2H), 7.39 (t, J = 4.5 Hz, 2H), 7.31 (t, J = 4.5 Hz, 1H), 7.09 (d, J = 4.0 Hz, 1H), 7.06 

(d, J = 4.0 Hz, 1H). 13C{1H} NMR (125 MHz, CD2Cl2) δ 146.3, 133.9, 131.4, 129.4, 

128.3, 125.9, 123.8, 111.6.  GC-MS m/z (% relative intensity): 240 (100), 238 (100), 158 

(30), 115 (99). 

 

2-Bis(4-tert-butylphenyl)amino-5-phenylthiophene (6).  To an oven-dried tube-shaped 

Schlenk flask cooled under nitrogen atmosphere was added anhydrous deoxygenated 

toluene (10 mL), tris(dibenzylideneacetone)dipalladium(0) (0.050 g, 0.046 mmol), and 

tri(tert-butyl)phosphine (1.0 mL, 10% wt. in hexane).  After 15 minutes, 2-bromo-5-

phenylthiophene (0.20 g, 0.84 mmol), bis(4-tert-butylphenyl)amine (0.28 g, 1.0 mmol), 

and sodium tert-butoxide (0.40 g, 4.2 mmol) were added.  A reflux condenser was 

attached, and the reaction flask was immersed in an oil bath, bringing the reaction 

mixture to reflux.  After 45 minutes, the reaction flask was removed from the oil bath, 
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and the reaction mixture was run through a tall pad of silica gel, eluting with 

hexanes/ethyl acetate (9:1).  The product was recrystallized from ethyl acetate and 

methanol, yielding a pale yellow solid.  After a column of silica gel, eluting with 

hexanes/toluene (10:1), 0.28 g (76%) of the desired product was isolated as a pale yellow 

solid.  1H NMR (300 MHz, CD2Cl2) δ 7.50 (d, J = 8.1 Hz, 2H), 7.28 – 7.38 (m, 6H), 7.21 

(t, J = 6.0 Hz, 1H), 7.13 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 8.0 Hz, 4H), 6.60 (d, J = 3.6 Hz, 

1H), 1.31 (s, 18H).  13C{1H} NMR (75 MHz, CD2Cl2) δ 151.9, 146.4, 137.5, 135.0, 129.2, 

127.3, 126.4, 125.3, 122.5, 122.1, 121.2, 34.5, 31.5.  GC-MS m/z (% relative intensity): 

439 (100), 424 (100), 394 (30), 250 (10), 204 (35), 176 (40), 147 (20).  Anal. Calcd. for 

C30H33NS: C, 81.96; H, 7.57; N, 3.19.  Found: C, 81.70; H, 7.56; N, 3.23.  Cyclic 

voltammetry in 0.1 M nBu4NPF6 in dichloromethane: E1/2
+/0: +0.22 V versus Cp2Fe+/0 at 0 

V. 

 

1,3-Bis(thien-2-yl)benzene (14).  In a 100 mL round-bottomed flask were combined 1,3-

dibromobenzene (5.0 g, 21 mmol), 2-(tri-n-butylstannyl)thiophene (17 g, 47 mmol), and 

anhydrous toluene (20 mL).  After sparging with nitrogen for 20 minutes, 

tetrakis(triphenylphosphino)palladium(0) (0.050 g, 0.46 mmol), was added; a reflux 

condenser was attached, and the reaction flask was immersed in an oil bath and heated to 

reflux for 15 hours.  After removing the reaction flask from the heat, methanol, water, 

and potassium fluoride were added.  The reaction mixture was filtered, giving a white 

solid (although a large portion of the reaction mixture was discarded because of difficulty 

in the filtration), which was purified by column chromatography with 

hexanes/dichloromethane (9:1).  After recrystallization from dichloromethane and 
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methanol, a white solid (1.15 g, 22%) was isolated.  1H NMR (300 MHz, C6D6) δ 7.93 (s, 

1H), 7.37 (dd, J = 1.8, 7.8 Hz, 2H), 7.00 – 7.08 (m, 3H), 6.83 (dd, J = 1.2, 5.1 Hz, 2H), 

6.75 (dd, J = 3.6, 2.1 Hz, 2H). 13C{1H} NMR (75 MHz, C6D6) δ 144.7, 135.5, 129.7, 

128.2, 125.4, 125.2, 123.9, 123.8.  13C{1H} NMR (75 MHz, CD2Cl2) δ 144.1, 135.4, 

129.8, 128.5, 125.5, 125.3, 123.9, 123.6.  GCMS: m/z (% relative intensity): 242 (100), 

197 (65), 152 (45), 121 (50).  Anal. calcd. for C14H10S2: C, 69.38; H, 4.16.  Found: C, 

69.28; H, 4.16.     

 

1,3-Bis(5-bromothien-2-yl)benzene (15).  In a 100 mL round-bottomed flask, acetic acid 

(12 mL), bis(thien-2-yl)benzene (0.61 g, 2.5 mmol), and sodium acetate (0.82 g, 10 

mmol) were combined.  The reaction flask was immersed in an ice water bath, and 

bromine (0.80 g, 5.0 mmol) was added dropwise.  After one hour, water was added, and 

the product was extracted with ethyl acetate.  The organic layer was washed with aqueous 

sodium thiosulfate and was dried over anhydrous magnesium sulfate.  After concentration 

by rotary evaporation, the product was recrystallized from dichloromethane and methanol 

and was filtered to give 0.85 g (85%) of the desired product as a gray semicrystalline 

solid. 1H NMR (500 MHz, C6D6) δ 7.45 (t, J = 1.5 Hz, 1H), 7.09 (dd, J = 1.5, 8 Hz, 2H), 

6.89 )t, J = 8 Hz, 1H), 6.65 (d, J = 4 Hz, 2H), 6.54 (d, J = 4 Hz, 2H). 13C{1H} NMR (75 

MHz, C6D6) δ 145.3, 134.6, 131.2, 129.8, 125.2, 124.1, 122.8, 112.2.  13C{1H} NMR 

(CD2Cl2, 75 MHz) δ 145.4, 134.7, 131.4, 130.1, 125.4, 124.3, 122.9, 112.1.  GCMS: m/z 

(% relative intensity): 402 (55), 400 (100), 398 (45), 277 (15), 240 (10), 207 (30), 139 

(15).  Anal. calcd. for C14H8S2Br2: C, 42.02; H, 2.02.  Found: C, 41.27; H, 1.83.  
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1,3-Bis(5-bis(4-tert-butylphenyl)aminothien-2-yl)benzene (5).  In an oven-dried tube-

shaped Schlenk flask cooled under nitrogen atmosphere, anhydrous deoxygenated toluene 

(15 mL), tris(dibenzylideneacetone)-dipalladium(0) (0.050, 0.046 mmol), and tri(tert-

butyl)phosphine (1.0 mL, 10% wt. in hexane) were combined.  After 15 minutes, 1,3-

bis(5-bromothien-2-yl)benzene (0.40 g, 1.0 mmol), bis(4-tert-butylphenyl)amine (0.62 g, 

2.2 mmol), and sodium tert-butoxide (0.58 g, 6.0 mmol) were added; a reflux condenser 

was attached, and the reaction flask was immersed in an oil bath, bringing the reaction 

mixture to reflux.  After 100 minutes, the reaction flask was removed from the oil bath, 

and ethyl acetate was added after the reaction mixture reached room temperature.  The 

organic layer was washed with water after which it was concentrated by rotary 

evaporation.  Recrystallization from ethyl acetate and methanol gave 0.40 g (50%) of the 

desired product as a yellow powder.  1H NMR (500 MHz, C6D6) δ 8.13 (t, J = 1.2 Hz, 

1H), 7.50 (d, J = 8.5 Hz, 8H), 7.57 (dd, J = 1.5, 6.0 Hz, 2H), 7.54 (d, J = 8.5 Hz, 8H), 

7.31 (t, J = 8.0 Hz, 1H), 7.20  (d, J = 3.5 Hz, 2H), 6.91 (d, J = 3.5 Hz, 2H), 1.52 (s, 36H). 

13C{1H} NMR (125 MHz, C6D6) δ 152.5, 146.1 (2 peaks, 0.04 ppm apart), 137.1, 135.8, 

129.6, 126.5, 124.0, 123.0, 122.5, 122.0, 120.9, 34.3, 31.5.  HRMS (FAB+), calcd for 

C54H60N2S2: 800.41979; found: 800.42197.  Anal. calcd. for C54H60N2S2: C, 80.95; H, 

7.55, N, 3.50.  Found: C, 80.12; H, 7.42; N, 3.43.  Cyclic voltammetry in 0.1 M nBu4NPF6 

in dichloromethane: E1/2
+/0: +0.22; E1/2

2+/+: +0.31 V versus Cp2Fe+/0 at 0 V. 
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CHAPTER 6 

CONCLUSIONS 

 

 The research in this thesis focused on understanding different aspects of ET and 

delocalization.  In Chapter 2, the main goal was to understand the basic properties of some 

thiophene-based cores that were incorporated into bis(diarylamino) derivatives in Chapter 3.  

The study in Chapter 3 focused on determining the electronic coupling in strongly coupled 

monocations of bis(diarylamino) derivatives and on determining the extent to which the 

oxidation was amine-based – therefore mixed-valent (MV) – rather than bridge-based.  The 

research in Chapter 4 focused on understanding how electronic coupling changes in MV 

species when the ioniation potentials of the bridges are changed relative to that of the end 

groups.  The second study in Chapter 4 compared the barrier to ET in some MV species that 

was obtained from optical data and thermal ET data.  Finally, Chapter 5 focused on the 

properties of a three-site triarylamine and its monocation to determine the properties of a more 

strongly coupled three-site MV species.  

 From Chapter 2, some of the properties dithieno[3,2-b;2,3-d]thiophene (DTT) and 

dithieno[3,2-b;2,3-d]pyrrole (DTP) were analyzed.  Previously these fused thiophene-based 

moieties had been synthesized and incorporated into various derivatives for potential use in 

various optoelectronic applications.  Although some data for these cores had been published, 

some basic characerizations were lacking.  One of the most important properties that had not 

been properly characterized – for lack of the synthesis of suitable derivatives that would lead 

to the ability to complete this characterization – was the determination of the oxidation 

potentials of DTT and DTP (with N-alkyl or N-aryl substitutents) with reasonably reversible 
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cyclic voltammograms.  For incorporation into derivatives for optoelectronic applications, it is 

important to know the oxidation potentials of the constituent parts of a larger chromophore to 

know if the energies of the frontier molecular orbitals complement the design of the material.  

For example, in hole-transporting materials used in organic light-emitting diodes, it is 

important to have ionization potentials and electron affinities that match the other hole- and 

electron-transporting materials in the device in order to prevent the charges from being 

trapped at the interfaces of the different semiconductor layers.  In the case of DTT and N-

substituted-DTP, cyclic voltammetry (CV) gave irreversible oxidations.  This is presumably 

due to oxidative polymerization, which has been shown to occur in thiophene and in DTP 

derivatives.  From irreversible oxidations such as those observed for these derivatives, it is not 

possible to obtain a reliable half-wave oxidation potential, yet the oxidation potentials of these 

derivatives were being compared without having a reversible oxidation by CV.   

 In order to determine the oxidation potentials of DTT and N-substituted DTP 

derivatives, 2,6-dialkyl-substituted derivatives were synthesized, the alkyl groups blocking the 

positions at which oxidative polymerization has been shown to occur.  Additionally, a more 

commonly used non-fused analog, 2,2’-bithiophene (BIT) was used for comparison, such that 

the oxidation potentials, when measured, would be relevant to a more standard material.  In 

this case, 5,5’-di(n-hexyl)-2,2’-bithiophene was used for comparison.  The oxidation 

potentials of the dialkylated BIT, DTT, N-alkyl-DTP, and N-aryl-DTP derivatives were 

measured by CV experiments.  The cyclic voltammograms showed reasonably reversible 

oxidations in the case of the dialkylated derivatives.  From this data, it was found that the BIT 

and DTT derivatives had similar oxidation potentials (E1/2
+/0 = 0.69 and 0.66 V, respectively, 

versus ferrocenium / ferrocene at 0 V), and both DTP derivatives were significantly easier to 
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oxidize.  Also determined from these experiments was that the N-alkyl-DTP derivative was 

easier to oxidize (E1/2
+/0 = 0.23 V) than the N-aryl-DTP derivative (E1/2

+/0 = 0.38 V).  This data 

is also relevant in the design of DTP-based materials.  Often the substituent on DTP is varied 

based on solubility, but now it is known that the substitutent on DTP affects more than the 

solubility; the oxidation potentials of the aromatic cores are also affected. 

 In the process of synthesizing various derivatives of DTP, the synthesis of DTP was 

also improved.  Previously there had been a few published routes to the synthesis of N-

substituted DTP derivatives, but each route had a significant draw back, either in number of 

synthetic steps required to reach unique N-substituted derivatives or in the reaction yields.  

Based on the optimization of a previously published reaction scheme, it is now possible to 

obtain unique N-substituted DTP derivatives in one step (from 3,3’-dibromo-2,2’-bithiophene) 

in high yields.  This makes DTP more appealing as a building block for future materials 

because a variety of derivatives can be easily synthesized (as was shown in Chapter 2) from a 

simple intermediate. 

 The research in Chapter 3 focused on analyzing the electron delocalization in strongly 

coupled MV monocations of bis(diarylamino) derivatives with thiophene-based cores.  

Similar derivatives with phenylene-based cores had previously been synthesized, some of the 

monocations of which had been characterized as strongly coupled Class III MV species.  In 

this chapter, the phenylene-based bridges (stilbene and biphenyl) were replaced with more 

easily ionizable thiophene-based bridges (di(thien-2-yl)ethene and BIT).  Additionally, a 

fused-ring equivalent to BIT was used (DTT), and a more easily oxidizable DTP bridge was 

also used.  The result of replacing phenylene with thienylene was that the bis(diarylamino) 

derivatives were more easily oxidized than the phenylene-based derivatives, the most easily 



 281 

oxidized derivative having an oxidation potential of -0.43 V versus ferrocenium / ferrocene, 

which compares to an oxidation potential of +0.09 V for bis(dianisylamino)biphenyl.  If a 

hole-transporting material were needed that was very easily oxidized, for example, as a hole-

injection layer or where p-doping was desirable, these derivatives would be good candidates 

because of their low oxidation potentials.   

In the monocations, the electronic coupling was increased compared to the equivalent 

phenylene-based monocations.  For example, when comparing the electronic coupling for the 

bis(dialkoxyphenylamino)BIT derivative (V  = 5050 cm-1), the coupling is much larger than 

the equivalent phenylene-based derivative (V = 3180 cm-1) and is larger than the previously 

largest value for electronic coupling in a bis(dialkoxyphenylamino) derivative, the 1,4-

bis[di(alkoxyphenyl)amino]benzene monocation (V = 4675 cm-1).  For the DTP-based 

derivative, which had the most electron-rich bridge, the electronic coupling is the largest of 

these series (V = 6270 cm-1).   Although the diabatic ET distance in these species is 

considerably smaller than the nitrogen-nitrogen distance, suggesting redox centers that are 

bridge-based, electron paramagnetic resonance (EPR) experiments suggest that the 

monocations are best described as be MV species, not as bridge-based monocations.  By 

simulating the experimental EPR spectra, it was possible to determine the nuclei to which the 

lone electron was coupled, and because that data agreed well with computational predictions 

for the degrees of coupling constants to those nuclei, the calculations were used to determine 

the spin density of the monocations, which has significant character on the nitrogen nuclei.   

 The first part of Chapter 4 was a continuation of the study started by Barlow and Risko 

on a series of bis(diarylaminostyryl)arene derivatives.  Barlow and coworkers previously 

showed that the electronic coupling varied in bis(diarylaminostyryl)arene derivatives from 
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480 – 3200 cm-1 by changing the ionization potentials of the bridges and cores with respect to 

each other yet keeping the overall aromatic framework and redox centers the same.  At one 

extreme (where V = 480 cm-1), the end groups were di(alkoxyphenyl)amino, and the core was 

a 1,4-bis(styryl)-2,5-dicyano bridge.  At the other extreme (V = 3200 cm-1), the end groups 

were diphenylamino groups, and the core was a 2,5-bis(styryl)-3,4-di(n-butoxy)thiophene.  

The contribution to this study that is described in Chapter 4 are derivatives with even more 

easily ionizable pyrrole-based bridges.  These derivatives were more easily oxidizable than 

the most electron-rich derivative of the previous series: -0.26 V for one of the pyrrole 

derivatives compared to +0.05 V for the most easily oxidized thiophene-based derivative.  

The electronic coupling values in the pyrrole derivatives were all larger than the previous 

derivatives, with electronic coupling values as large as 4210 cm-1. 

 In the second part of Chapter 4, monocations of some Class II bis(diarylamino) 

derivatives were studied by variable temperature EPR.  One set of MV systems studied 

included the monocations of bis[di(alkoxyphenyl)aminophenyl]ethene, 1,4-

bis[di(alkoxyphenyl)amino]benzene, and 1,4-bis[di(alkoxyphenyl)aminostyryl]-2,5-

dicyanobenzene derivatives.  The second set included the monocations of 

bis[di(alkoxyphenyl)aminophenyl]acetylene and 1,4-bis[di(alkoxyphenyl)aminophenyl-

ethynyl]benzene.  All monocations showed approximately 5-line spectra at room temperature, 

which indicated that there was coupling of the lone electron to both nitrogen nuclei on the 

EPR time scale.  Some of the derivatives showed changes in their EPR spectra upon cooling 

while others remained the same; the spectra of the monocations that changed moved toward a 

3-line spectrum at lower temperatures, which indicates coupling to one nitrogen atom.  The 

derivatives that remained the same had a smaller barrier to ET than the ones for which 
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changes were observed, as determined by calculating the electronic coupling of the 

monocations from the Hush analysis of the IVCT bands.  By comparing which derivatives 

underwent changes upon cooling with those that did not, it was possible to compare the 

different structural aspects of the bis(diarylamino) monocations that lead to differences in 

barriers for ET.  For example, comparison of some of the derivatives indicated that – 

consistent with conclusions drawn from analysis of the IVCT bands of these monocations – 

the barrier to intramolecular ET increases when the redox centers are farther apart, i.e. when 

the bridge length is increased.  Additionally, the barrier to intramolecular ET increases when 

alkene-based bridges are replaced with alkyne-based briges.  Finally, this barrier decreases 

when the energy of the conjugated bridge approaches that of the end groups; specifically in 

the case of the bis(diarylamino) monocations, the barrier decreases as the energy of the 

frontier molecular orbitals of the bridge increases.  None of the conclusions from the VT-EPR 

experiments is surprising because we the same conclusions were drawn from Hush analysis of 

the IVCT bands of the same monocations. 

For the EPR spectra that changed with temperature, by simulating the EPR spectra, the 

rates of intramolecular ET were extracted.  An Arrhenius plot gave the barrier to ET and 

indicated that the ET is in the adiabatic regime.  The barrier to ET calculated from the 

Arrhenius plot was used, in combination with the reorganization energy obtained from the 

energy of maximum absorbance from the IVCT band, to determine a value for electronic 

coupling.  This value was compared to the electronic coupling found from analysis of the 

IVCT band using Hush theory using the nitrogen-nitrogen distance as the diabatic ET 

distance.  By comparing these values for electronic coupling, it was found that the diabatic ET 

transfer distance found from the variable temperature EPR data was 35 – 43% of the nitrogen-
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nitrogen distance.  This result is significant in that it is the first time for triarylamines (to the 

best of our knowledge) that two experimental methods (optical and thermal) have been used 

to compare values for diabatic ET, and it was found to be significantly different for each 

method.  This result suggests, as is consistent with previous suggestions based on IVCT band 

analysis, that the electronic coupling determined from the Hush equation is underestimated in 

strongly coupled MV species in which there is a conjugated bridge linking two redox centers 

when the nitrogen-nitrogen distance is used as the diabatic ET distance.  Based on the studies 

in this chapter, it is underestimated by two to three times the actual value. 

 The last study is presented in Chapter 5.  In this project, three-site compounds which 

are related to previously studied 1,3,5-tris[di(4-ethylphenyl)aminophenyl]benzene were 

synthesized in which phenylene bridges were replaced with thienylene bridges.  From 

comparison of the thiophene-based derivatives to the original phenylene-based derivative, it 

was found that the thiophene-based derivatives were easier to oxidize than the phenylene-

based derivatives, which was expected based on the results from Chapter 3 in which a similar 

bridge replacement was made.  Additionally, cyclic voltammetry and differential pulse 

voltammetry experiments showed different oxidation potentials for the three diarylamino 

moieties in the thiophene-based derivatives, whereas in the phenylene-based derivatives, the 

three oxidations occurred at indistinguishable potentials.  This means that the oxidation of one 

diarylamino moiety affects the oxidations of the remaining diarylamino moieties more in the 

thiophene-based derivative than in the phenylene-based derivative.  The electrochemical data 

is insufficient to determine whether the increase in separation of the redox potentials is due to 

increase in electronic coupling or if the change might result from contributions from 

electrostatic effects, ion-pairing, antiferromagnetic exchange, and inductive effects.   
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 Analysis of the IVCT bands of the monocations of the thiophene-based derivatives 

showed well-resolved bands that were modeled as Gaussians.  The Hush analysis using the 

nitrogen-nitrogen distance as the diabatic ET distance indicated that, as predicted, the 

electronic coupling in the thiophene-based monocations (V = ca. 300 cm-1) was slightly larger 

than that of the phenylene-based monocation (V = ca. 200 cm-1).   

 In the case of one of the thiophene-based monocations, the EPR spectrum at room 

temperature showed hyperfine coupling, which gave a reasonable fit to a simulation that 

indicated that the unpaired electron was coupled to all three nitrogen nuclei and, therefore, all 

three redox centers at room temperature.  Again, as has been previously stated, this does not 

imply that the electron is delocalized over all three redox centers; in fact, the analysis of the 

IVCT band implies that the electron is not delocalized.  However, given a Class II cation, 

these data indicate that the rate of intramolecular ET is in the fast regime at room temperature.  

Cooling of the solution by 50 K did not change the shape of the spectrum significantly, which 

implies that the barrier to intramolecular ET is larger than for the examples studied in Chapter 

4 for which changes in the EPR spectrum were observed upon cooling by as little as 10 K.  

Although the results from Chapter 5 are not particularly surprising, they will provide valuable 

experimental validation for theoretical work for these monocations that is currently underway. 

In conclusion, this thesis research has provided insight in ET and delocalization in a 

variety of MV monocations of bis- and tris-(diarylamino) derivatives.  From varying the 

electronic coupling to examining the barrier to ET, the studies in this thesis have investigated 

a variety of aspects of ET.  From what has been observed, several monocations that exhibit 

strong electronic coupling have been shown to have MV character.  It has been shown that the 

electronic coupling can be changed significantly in derivatives of the same overall structure 
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by simple modifications of the ionization potentials of the bridges relative to the redox 

centers.  Lastly, it was possible to compare the diabatic ET distance from data that calculated 

the thermal barrier to ET from variable-temperature rate-dependent techniques with that 

calculated from Hush analysis of the IVCT band, which indicated that the diabatic ET 

distance was overestimated when nitrogen-nitrogen distances were used. 
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