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Adaptive Neural Network Flight Control Using both 

Current and Recorded Data 
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Modern aerospace vehicles are expected to perform beyond their conventional flight 

envelopes and exhibit the robustness and adaptability to operate in uncertain environments. 

Augmenting proven lower level control algorithms with adaptive elements that exhibit long 

term learning could help in achieving better adaptation performance while performing 

aggressive maneuvers. The current adaptive methodologies which use Neural Network based 

control methods use only the instantaneous states to tune the adaptive gains. This results in a 

rank one limitation on the adaptive law. In this paper we propose a novel approach to 

adaptive control, which uses the current or the online information as well as stored or 

background information for adaptation. We show that using a combined online and 

background learning approach it is possible to overcome the rank one limitation on the 

adaptive law resulting in faster adaptation to the unknown dynamics. Furthermore, we show 

that using combined online and background learning methods it is possible to guarantee long 

term learning in the adaptive flight controller, which enhances performance of the controller 

when it encounters a maneuver that has been performed in the past. We use Lyapunov 

based methods for showing boundedness of all signals for a proposed method. The 

performance of the proposed method is evaluated in the high fidelity simulation 

environment for the GTMAX UAS maintained by the Georgia Tech UAV lab. The 

simulation results show that the proposed method exhibits long term learning and faster 

adaptation leading to better performance of the UAS flight controller. 

  

  

I. Introduction 

EURAL network (NN) controllers have found many successful applications in the Aerospace industry. Neural 

network based adaptive flight controller for uncertain, nonlinear dynamical systems eliminate the need for 

offline gain tuning and scheduling methods as well as reduce the money and effort needed to identify and model 

system dynamics. A neural network can be thought of as a parameterized class of non-linear maps. Multilayer feed-

forward neural networks are capable of approximating any continuous unknown nonlinear function or mapping on a 

compact set
1, 6

. Furthermore Neural Networks have online adaptation capabilities, which can be used to design 

control laws that can handle uncertainties and nonlinearities in system dynamics and the environment.  

 

Adaptive neural network controllers have been applied to robot arm manipulator control by Lewis, Kim and others
6
. 

Neural Network controllers are natural choice for Unmanned Aerial Vehicle (UAV) system control due to their 

capability to adapt to varying dynamics, ease of implementation, and robustness properties. Using Neural Network 

adaptive flight controllers in UAV control systems design also reduces the effort required in modeling and flight 

system identification of the flight platform. Calise, Johnson, Kannan and others have implemented Neural Network 

augmented approximate model inversion controllers with pseudo control hedging successfully for control of various 
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fixed wing as well as rotary wing UAV systems with significant nonlinearities and saturations in the control loop
2-5

. 

These controllers have proven successful even in performing highly demanding maneuvers requiring fast adaptation.  

 

The increasing demand on precision, agility, cooperation, and safety in autonomous aerospace systems, their time-

variant nature,  and the intricacies of real-world operations limit the effectiveness of control architectures employing 

only lower-level or “steady-state” methodologies. While depending on sound control theory concepts is extremely 

important; it is clear that true advances can only be made by ensuring intelligence, adaptation, and long term 

learning in the core control and decision-making architecture. However, the current adaptive laws for neural 

networks (e.g. 2-7) only use the instantaneous knowledge for adaptation. Hence the current adaptive laws have no 

real long term memory and hence do not exhibit any improvement in performance when performing maneuvers that 

have been performed previously. This limitation can also be explained by noting that the rank of the NN weight 

dynamic is always at most one when only current data is used for NN training. If it could be possible to augment 

these dynamics to be of a higher rank or even full rank then the additional degrees of freedom could be used to 

improve the performance of the control system.  

 

In this paper we propose a novel approach to the design of Neural Network adaptive controllers which overcomes 

the rank-1 limitation and exhibits the properties of semi global learning. We accomplish this by combining current 

online learning algorithms with a background learning methodology, where the background learning law is a 

projection of the current learning law into the nullspace of the current learning. We show that one such method 

which uses Linear in the Parameter NN guarantees boundedness of all signals using a Lyapunov stability approach. 

Simulation results are analyzed in order to evaluate the performance of the new approach.  Our work builds upon the 

work of the second Author and Seung-Min Oh
8
.  

II. Neural Network Based Adaptive Control 

A brief explanation of a baseline dynamic inversion based online learning Neural Network based adaptive 

control system is given here. The reader is referred to [2-7] for detailed explanations.  

A. Approximate Model Inversion based Adaptive Control 

Consider a system of the form: 

1                                                                             ),,( δxxfx ��� =     (1) 

Where  
nxx ℜ∈δ,, � . We introduce a pseudo control input  ν  which represents a desired  x��  and is expected to 

be approximately achieved by the actuating signal δ , in the following manner: 

2  ν=x��     (2) 

Where, 

3            ),,( δν xxf �=  (3) 

In a model inversion scheme the actual control input δ  is found by inverting Eq.(3). However since the function  

),,( δxxf �  is usually not exactly known or hard to invert, an approximation is introduced as: 

4           ),,(ˆ δν xxf �= . (4) 

Based on the approximation above the actuator command is determined by an approximate dynamic inversion of 

the form 

5           ),,(ˆ 1 νδ xxfcmd
�

−= . (5) 

 

This results in a modeling error in the system dynamics, 

6     ),,( δν xxx ��� ∆−=  (6) 

Where, 
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7    ),,(ˆ),,(),,( δδδ xxfxxfxx ��� −=∆   (7) 

The approximation,  f̂ is chosen such that an inverse with respect to δ  exists. Figure 1depicts a more specific 

form of an approximate dynamic inversion-based Neural Network adaptive controller including actuator a PCH 

compensation. 

 
Figure 1 Neural Network Adaptive Control using Approximate Model Inversion and PCH compensation 

 

 Based on approximation in Eq.(4), the actuator command is determined by an approximate dynamic inversion of 

the form 

8   ),,(ˆ 1 δδ xxfcmd
�

−=  (8) 

Where  ν  is termed the ‘pseudo-control’, and represents a desired x��  that is expected to be approximately 

achieved by δ cmd. This dynamic inversion assumes perfect actuator dynamics and hence does not take into account 

effects such as actuator saturation, or rate limitation. As a result the actual command may not equal the achieved 

command due to the characteristics of the actuator (which may further vary with time). Incorporating the actuator 

dynamics in the actual nonlinear inversion presents other difficulties arising due to various discontinuous actuator 

characteristics, such as actuator saturation, discrete (quantized) control, rate limitation, time delays, and unmodelled 

dynamics. The Neural Network element will attempt to adapt to these characteristics even when it might not be 

desirable to do so. Pseudo Control Hedging (PCH)
4
 is one method that can handle this problem. This method 

prevents the adaptive elements of the adaptive control system from trying to adapt to a class of unwanted plant input 

characteristics.  

The pseudo-control hedge signal ( ν
h

) is defined as the difference between the commanded pseudo-control input 

and the actually achieved pseudo-control input. This difference is computed by using an estimated actuator position 

based on a model or measurement. This estimate is then used to get the pseudo-control hedge as the difference 

between commanded pseudo-control and the estimated actual pseudo-control. 

rmrm xx �,  
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9    ννδδν ˆ)ˆ,,(ˆ),,(ˆ −=−= xxfxxf cmdh
��   (9) 

Figure 1 illustrates the manner in which pseudo control hedging can be achieved for a position and rate limited 

actuator. The PCH signal is introduced as an addition input into the reference model, forcing it to ‘move back’. 

Hence the reference model dynamics with PCH become: 

10  hccrmrmcrmrm xxxxx νν −= ),,,( ����    (10) 

Where cc xx �,   represent external commands. The instantaneous pseudo-control output of the reference model in 

the feed-forward path is not changed by the use of PCH and is  crmν . 

11   ),,,( ccrmrmrmcrm xxxxf ��=ν   (11) 

B. Model Tracking Error Dynamics 

The total pseudo-control signal for the system is now constructed by the three components: 

12   adpdcrm νννν −+=   (12) 

Where crmν is the pseudo-control signal generated by the reference model in Eq. (11), pdν  is the output of a 

linear compensator, and adν  is the Neural Network adaptation signal. The linear compensator ( pdν ) can be 

designed using standard linear control design techniques which render the closed loop system stable, these include 

P-D(Proportional-Derivative) compensation or LQR (Linear Quadratic Regulator) compensation. For the second 

order system PD compensation is expressed by 

13    eKK dppd ][=ν   (13) 

Where the reference model tracking error is defined as: 

14   








−

−
=

xx

xx
e

rm

rm

��
    (14) 

The model tracking error dynamics are found by differentiating e: 

15    [ ]),,(ˆ),,(),,( δδδν xxfxxfxxBAee ad
���� +−+=    (15) 

Where, 

16   







=









−−
=

I
B

KK

I
A

dp

0
,

0
    (16) 

Where both Kp and Kd are real positive matrices.  With the above form, A is Hurwitz. When one assumes that the 

plant inputs δ  are exactly known then the error dynamics can be represented as: 

17   

[ ]

),,(ˆ),,(),,(

,

),,(),,(

δδδ

δδν

xxfxxfxx

where

xxxxBAee ad

���

���

−=∆

∆−+=

  (17) 

Is regarded as the model error to be approximated and cancelled by adν , the output of the Neural Network. We 

define the signal r as: 

18   
13×

ℜ∈=
nT PBer     (18) 



 

American Institute of Aeronautics and Astronautics 

 

5 

Where  
nn

P
22 ×ℜ∈  is the positive definite solution to the Lyapunov equation: 

19   0=++ QPAPAT
    (19) 

C. Neural Network Based Adaptation 

Single Hidden Layer (SHL) Perceptron NNs are universal approximators. They can approximate any smooth 

nonlinear function to within arbitrary accuracy given sufficient number of hidden layer neurons and input 

information
20

. The input output map of the SHL NN can be expressed in compact matrix form as: 

20   
13)(),,(

×
ℜ∈=

nTT

ad xVWxVW σν   (20) 

Where the following definitions are used: 

 

21   
1)1(

2

1

1

.

.

×+
ℜ∈

























=







=

n

n

v

in

v

x

x

x

b

x

b
x     (21) 

22    
1)1(

22

11

2

)(

.

.

)(

)(

)(
×+

ℜ∈

























=
n

nn

vw

z

z

z

b

z

σ

σ

σ

σ    (22) 

23   
( ) 21 1

2,11,1

2,11,1

2,11,1

nn

nnn

n

n

v

v
V

×+
ℜ∈



















=

θ

θ

θθ

�

���

…

…

    (23) 

24    
( ) 32 1

3,21,2

2,11,1

2,11,1

nn

nnn

n

n

ww

ww
W

×+
ℜ∈



















=

�

���

…

… θθ

   (24) 

Where,  x   is the input vector,  σ is the sigmoidal activation function vector, V is an input layer to hidden layer 

weight matrix, W is a hidden layer to output layer weight matrix, and adν  is the NN output.  0≥vb  and 0≥wb   

are input biases that allow the thresholds vθ  and wθ   to be included in the weight matrix V and W. n1,  n2, and n3 

represent the number of input, hidden, and output layer nodes respectively. 

Input to hidden layer neuron is: 
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25    
1

2

1

2×
ℜ∈



















==
n

n

T

z

z

xVz
�

�
   (25) 

The sigmoidal activation function used is: 

26   
jj zajj

e
z

−
+

=
1

1
)(σ     (26) 

Details on Neural Network theory can be found in reference [2,6,7]. 

 

III. Online Learning NN Adaptive Control and Rank-1 Limitation 

Neural Networks are considered to be excellent function approximators, that is, they can approximate any 

smooth nonlinear function within a compact set to arbitrary accuracy given enough number of input layer neurons 

and proper inputs. We present a brief proof for the standard backpropogation method of NN online weight 

adaptation. 

The following online adaptive law guarantees the boundedness of all signals
6, 2

 

 

27   
σ

σ

′Γ−=

Γ−=

T

v

w

rWxV

rW

�

�

  (27) 

Consider a positive definite Lyapunov candidate of the form: 

 

28   ( ){ } ( ){ }T

v

T

w

T
VVtrWWtrPeeVWeL
~~

2

1~~

2

1

2

1
)

~
,

~
,( 11 −− Γ+Γ+=   (28) 

Where, 
*~

WWW −=  and 
*~

VVV −=   , where 
*

W  and V
*
 denote the ideal weights for the NN. Note that: 

29   

∞→∞→

>

=====

VWeasVWeLefurthermor

otherwiseVWeLand

VVandWWeeiffVWeL i

~
,

~
,)

~
,

~
,(,

0)
~

,
~

,(,

,0,00)
~

,
~

,( **

   (29) 

Hence the Lyapunov candidate is radially unbounded
10,11

. Taking the time derivative of the Lyapunov candidate 

we have, 

30   ( ) ( ){ } ( ){ }T

v

T

wad

T
VVtrWWtrrQeeVWeL ��� 11 ~~

2

1
),

~
,

~
,(

−− Γ+Γ+∆−+−= νσ   (30) 

Expanding the NN model cancellation error
6,6

 we have, 

31   ( ) ( ) xVxVWxVWxVWxVW
TTTTTTTTT

ad

~~
)()( '** σσσσν +=−=∆− +H.O.T.  (31) 

Assumption: In the above equation H.O.T. represents higher order terms which we omit for the sake of clarity. 

It is possible to obtain bounds on the H.O.T. which changes the adaptation law accordingly
3,4

.  

 Then, 

32   ( ){ } ( ){ }σσ ′+Γ++Γ+−= −− TT

v

TT

w

T
WrxVVtrWrWtrQeeVWeL ��� 11 ~~

2

1
)

~
,

~
,(   (32) 
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By setting: 

33   01 =+Γ−
rW w σ�   (33) 

34   01 =′+Γ− σTT

v WrxV�   (34) 

We have, 

35    0
2

1
)

~
,

~
,( <−= QeeVWeL

T�    (35) 

Establishing Lyapunov stability, we note that equation 35 can be written as a strict inequality based on 

assumption 1. However, if the H.O.T. terms of equation 31 are considered equation 35 does not result in a strict 

inequality, and the LaSalle Theorem and the Barbalat’s lemma
10

 needs to be used for ascertaining Lyapunov 

stability.  

Solving Eq. (32) and Eq(33) yields the adaptive laws, 

36   
σ

σ

′Γ−=

Γ−=

T

v

w

rWxV

rW

�

�

  (36) 

 

Fact 1: Every matrix of  rank one has the simple form A=uv
T
 Where A is mn×  matrix, u is 1×n  vector and v 

is 1×m vector. 

 

Using the above fact from linear algebra it is easy to see that since 
1)1( 2 ×+

ℜ∈
nσ  and  

)1( 3n

wr
×

ℜ∈Γ  then  W�  

is always at most a rank one matrix. Similarly  V�  is also at most rank one because 
( ) 111 ×+

ℜ∈Γ
n

v x  and  

( )21 nT
rW

×
ℜ∈′σ .  Hence, even though the NN weight adaptation matrices have a matrix form, their rank is always 

at most one. This may affect the performance of the NN law. In order to overcome the rank one limitation it is 

proposed to utilize online as well as background learning by using current as well as stored data in the NN weight 

adaptation process. In this paper we show that using this approach yields better performance since it makes use of all 

the information available for the adaptation purposes. We also show that use of current as well as stored date 

improves global learning behavior and guarantees long term learning of the adaptation. 

IV. Combined Online and Background Learning Adaptive Control  

A. Choice of the background learning law 

Any learning that does not immediately affect the instantaneous learning (that is, does not directly affect adν  ) 

has the following form: 

37  0=σT

bW�     (37) 

38  0=Γ xV v

T

b
�     (38) 

    where the subscript b denotes the background learning law. This condition ensures that the background learning 

adaptation law is orthogonal to the underlying vector space of the instantaneous learning. This indicates that the 

orthogonal projection of any NN learning law can be used as a background learning law. In this paper we consider 

the orthogonal projection of the learning law for the W and the V matrix onto the orthogonal subspace of the span 

of equation 37 and equation 38 in the following form 

 

39  tT

T

b WIW ��








−=

σσ

σσ
    (39) 
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40  t

VV

T

V

T

V

b V
xx

xx
IV ��












ΓΓ

ΓΓ
−=     (40) 

 

41 where the subscript t denotes any suitable NN learning law. It is to be noted that equation 39 and equation 40 are 

also the optimal solutions to the Lagrange’s constrained minimization method by minimizing 

btbt VVWW ���� −+−  corresponding to the Frobenius norm
4
. 

One reasonable choice for the training of the background learning law is to train the NN using stored data along 

with current data in order to improve global learning behavior of the NN and guarantee long term adaptation. In the 

proposed method this is achieved by using current data as well as a stored ‘history stack’
8
. Both data are used 

concurrently in the adaptation process.  

The combined control law then has the form: 

42  ∑
=









−+=

p

i

tT

T

t i
WIWW

1σσ

σσ��     (42) 

And 

 

43  ∑
=










ΓΓ

ΓΓ
−+=

p

i

t

VV

T

V

T

V

t V
xx

xx
IVV

1

���     (43) 

 

B. Selection of data points for background learning 

Selection of NN inputs for background learning is not a trivial problem, since these inputs impact the global 

learning properties of the combined online and background learning approach. Detailed discussion on some methods 

of selecting  data points can be found in [8], we suffice here by mentioning that we select data points that satisfy the 

following criterion: 

44   
( ) ( )

xT

p

T

p

xx

xxxx
ε>

−−
    (44) 

Here the subscript p denotes the index of the last data point stored. The above method ascertains that only those 

data points are selected that are sufficiently different from the last data point stored. Once the data points are 

selected, the model error relating to that data point must be observed and stored. We achieve this by using an online 

implementation of optimal fixed point smoothing
12

. In the given framework of adaptive control the model error i∆   

for the i
th

 data point is  

45   ),,(ˆ),,(),,( iiiiiiiiiii xxfxxfxx δδδ ��� −=∆     (45) 

Using equation 5, the above can be expressed as: 

46  iiiiii xxx νδ −=∆ ��� ),,( .    (46) 

Once a point is selected for storing, the fixed point smoothing algorithm is initiated until a sufficiently accurate 

estimate of ix�� is obtained. Using this estimate and stored values of iν an estimate of the model error for the i
th

  data 

point is obtained. The residual signal that is used in the background learning adaptation is: 

47  i

TT

i xVWr ∆−= )(σ .    (47) 
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Considering equation 16, it is seen that the residual signal in this form for the background learning NN attempts 

to reduce is the difference between the current estimate of the model error and a stored estimate of the model error. 

Hence, one can say that by using this method, the background learning NN attempts to adapt the W and V matrices 

of the NN in such a way that the model error for multiple data points is simultaneously reduced.  

Alternatively, the residual signal r can be formed by simulating the error dynamics
8
 by integrating equation 17 

for the i
th

 data point and then using equation 18. 

 

C. Approximate model inversion adaptive control using Combined instantaneous and background learning 

NN 
We now present a novel NN weight training law that uses both current and stored data for a Linear In the 

Parameters (LIP) NN. 

A LIP has the simple form given by: 

48  
13)(),,( ×ℜ∈= nT

ad xWxVW σν   (48) 

Where σ  is an appropriate basis function. The benefit of using a LIP NN is that only the W matrix of equation 

24 containing the weights of the NN needs to be tuned. 

 

 

Theorem 1: Consider the system in equation 1 and the inverting controller of equation 5, the following 

combined online and background adaptive laws for a LIP NN of equation 48 guarantee the boundedness of all 

signals: 

49   ∑
=

Γ







−+−Γ−=

p

i

WiiT

T

w rxIkIrW
1

)(σ
σσ

σσ
σ�  (49) 

With the sigmoidal activation function defined as: 

50  
1)1(1

2

22

1

)(

...

)(
ˆ ×+

ℜ∈







































−+=

n

nn

n

w

T

T

x

x

b

IkI

σ

σ

σσ

σσ
σ  (50) 

Where iσ  are found from equation 26 with xz = , and k is a predefined, nonzero constant. 

 

 

Proof: The orthogonality of the operators in equation 39 can be expressed as, 

51  0=







− σ

σσ

σσ
T

T

I  (51) 

Also note that, 

52  ( ) )(
~~

)(ˆ)(ˆ *
xkWxIkIWxWxW

T

T

T
TTT

ad σσ
σσ

σσ
σσν =


















−+=−=∆− . (52) 

And, 

53  ( )xIkIWxWxW
T

T
T

i

T

i

T

iadi
σ

σσ

σσ
σσν 


















−+=−=∆−

~
)(ˆ)(ˆ *

. (53) 
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Where 
** ,VW denote the ideal NN weights. The error dynamics for the i

th
 data point can be written as: 

54  [ ]),,(),,( δδν xxxxBAee iadii i
��� ∆−+=   (54) 

 Consider a Lyapunov candidate of the form: 

55   ( ){ }
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56  

∞→∞→

>
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WWeeasWWeeLefurthermor
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~
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~
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~
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         (56) 

 

The last condition is the ‘radially unbounded’ condition
10,11

. Taking time derivative of the Lyapunov candidate 

along the trajectory of system described by equation 54 we have: 
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Using equation 52 and  equation 53  the above equation can be written as: 
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Then by setting, 
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And noting that 

61  bt WWW ��� +=     (61) 

 

We arrive at the update law given in equation 49. Furthermore, the time derivative of the Lyapunov candidate 

reduces to: 

62  00
2

1

2

1
),

~
,

~
,(

2

1

≠ℜ∈<−−= ∑
=

eeQeeQeeVWeL
n

p

i

i

T

i

Tσ�  (62) 

 



 

American Institute of Aeronautics and Astronautics 

 

11 

Since, 0>L and 0<L� , the NN adaptive law given in equation 49 guarantees boundedness of all signals based 

on the Lyapunov approach for the control system of equation 5.                              ⁭ 

Remark 1: 

1. When a data point is added the discrete change in the  Lyapunov function is zero. 

2. When a data point is dropped the net change in the Lyapunov function is negative. 

3. Due to 1 and 2 the system signals are all bounded in the sense of Lyapunov stability. 

 

Also note that since the nonzero constant k can be arbitrarily chosen, it is possible to choose small enough k such 

that equation 60 forms an arbitrarily close approximation of equation 42 with the adaptive law of equation 59. 

 

Method 2: Consider the system in equation 1 and the inverting controller of equation 5, the following combined 

online and background adaptive laws for the SHL  NN of equation 20 are proposed: 
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V. Demonstration of concept for the adaptive control of an inverted pendulum 

To illustrate the concept of background learning augmented adaptive control, we present a simple example with 

a low dimensional problem. 

The inverted pendulum system described by the following equation is to be controlled: 

 

65   xxxx ���� −+= )sin(δ .    (65) 

Where δ the actuator model, x describes the position of the pendulum, the last two terms are regarded as 

unknown and represent a significant model error. We assume that a measurement for x��  is not available and that the 

system outputs are corrupted by Gaussian white noise. Consequently, an optimal fixed lag smoother is used to 

estimate the model error of equation 6 for points sufficiently far in the past. The reference model desired dynamics 

are that of a second order system. We use a history stack of 5 data points, replacing the oldest data point as newer 

points are selected. Background learning point selection is based on equation 44. The background learning method 

used is that of Theorem 1. 

Figure 2 shows the performance of the NN based adaptive controller for the plant in Eq. 65. Square waves are 

commanded at regular intervals. No considerable improvement is seen over the span of the input command. This 

indicates that the adaptive control has no long term memory and does not show better performance when presented 

with a task that it has encountered before. Figure 3 shows the history of the NN weight adaptation, the forgetting 

nature of the adaptive law is clearly seen. 
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Figure 2 Comparison of states, only online adaptation 
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Figure 3 NN weight adaptation W and V, only online adaptation 
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Figure 4 shows the state comparison when background learning is used, while Figure 5 explicitly shows the 

evolution of both position and angular velocity error. It is clearly seen that the controller performance improves 

through subsequently repeated commands, which exhibits long term learning in the adaptive element. To further 

characterize the impact of background learning we consider the following two criterions: 

1. Comparatively quicker convergence of NN weights to constant values (Figure 6). This behavior 

indicates that the NN is able to adapt to the unknown model error faster when background learning is 

used.  

2. Convergence of equation 47 for each stored data point (Figure 7). When background learning is on, the 

difference between the stored estimate of model error and the current estimate of model error reduces 

with time. This indicates that the NN is concurrently adapting to various data points, exhibiting semi-

global learning. 
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Figure 4 Comparison of states, with background learning method 1 
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Figure 5 Position and angular rate error with background learning adaptive controller 

0 50 100 150
-1

-0.5

0

0.5

time (sec)

W

 

 

bw

W

0 50 100 150
-0.5

0

0.5

1

time (sec)

V

 

 

bv

V

 
Figure 6: NN adaptation weights, W and V, with combined online and background learning, method 1 
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Figure 7 Difference between stored estimate of model error and current estimate of model error with 

background learning on 

 

VI. Implementation on a high fidelity flight simulator 

The Georgia Tech UAV lab maintains a high fidelity Software In the Loop flight simulator, complete with 

sensor emulation, detailed actuator models, disturbance simulation, and a high fidelity dynamical model. Our target 

platform is the Georgia Tech GTMAX Unmanned Aerial System (UAS), which is based on the versatile YAMAHA 

RMAX helicopter (Figure 8). The following results have been simulated on the GTMAX SITL simulation. Since 

this is a higher dimensional problem, theory indicates that the impact of background learning should be more 

significant.  

 

 
Figure 8 The Georgia Tech GTMAX, in landing auto approach 

The GTMAX uses an approximate model inversion adaptive controller characterized equivalently to the 

description in section II, a detailed description can be found in reference 2 and reference 3.  
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We command four successive forward step inputs with arbitrary delay between any two successive steps. The 

performance of the inner loop controller is characterized by the errors in the three body angular rates (namely roll 

rate p, pitch rate q and yaw rate r). As the rotorcraft accelerates and decelerates in forward step inputs the body roll 

rate q dominates. Figure 9 shows the performance of the inner loop controller with only instantaneous adaptation in 

the NN. It is clearly seen that there is no considerable improvement in the roll rate error as the controller follows 

successive step inputs. 
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Figure 9 Evolution of inner loop errors for successive forward step inputs with only instantaneous adaptation 

 

The forgetting nature of the controller is further characterized by the evolution of NN weights in the W and V 

matrices of equation 20. Figure 10 and Figure 11 clearly show that the NN weights do not converge to a constant 

value, in fact as the rotorcraft performs the successive step maneuvers the NN weights oscillate accordingly, clearly 

characterizing the instantaneous nature of the adaptation. 

 

On the other hand, when both instantaneous and background learning NN learning law of Method 2 is used a 

clear improvement in performance is seen characterized by the reduction in pitch rate error after the first two step 

inputs. Figure 12 shows the performance of the background learning augmented controller. The long term adaptation 

nature of the background learning augmented adaptive controller is further characterized by the convergence of NN 

weights in the W and V matrices of equation 20. Figure 13 and Figure 14 show that when background learning is 

used along with instantaneous learning the NN weights do not exhibit oscillations and tend to converge to constant 

values. This indicates that the NN learns faster and retains the learning even when there is a lack of persistent 

excitation. This indicates that the combined instantaneous learning and background learning controller will be able 

to perform better when performing a maneuver that it has previously performed, a clear indication of long term 

memory and semi-global learning. 
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Figure 10 Evolution of NN weights, V matrix, with only instantaneous adaptation 
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Figure 11 Evolution of NN weights, W matrix, with only instantaneous adaptation 
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Figure 12 evolution of inner loop error with combined instantaneous and background learning controller 
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Figure 13  Evolution of NN weights, V matrix, with combined instantaneous and background learning 
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Figure 14 Evolution of NN weights, W matrix, with combined instantaneous and background learning 

 

VII. Conclusion 

We have proposed and a novel approach to the design of NN based controller which utilize online as well as 

background data. The new methods have the following advantages: 

  

1. Long term learning: With combined online and background learning the adaptive law is able to retain long 

term learning. This allows the adaptive law to perform better when it encounters a task that it has adapted 

to before. 

2. Semi Global adaptation: By carefully choosing background learning data points and storing them in a 

‘history stack’ it is possible to maximize the dynamic envelop that the NN adaptive element is adapted to. 

3. Increased Robustness: Since the network adaptation is dependent on more than one data point, it is less 

sensitive to occasional outlying signals. 

4. Overcoming the Rank-1 limitation: The proposed adaptation law has higher rank than the unity, this 

results in better performance.  

 

We have provided a proof of boundedness of all signals for a background learning LIP NN learning law. In the 

future we wish to expand the scope of this work by extending our theory to encompass various other training 

schemes and NN types. We also intend to incorporate robustness analysis and analyze the sensitivity of the new 

adaptation laws to the selection of the history stack data points. 
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