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During the reporting period, the oscillating airfoil problem was 

formulated in a coordinate system attached to the airfoil using the 

vorticity and the velocity vector as dependent variables. The kinetic 

part of the problem was expressed as a new vorticity transport equation 

containing a new term which is absent in the equation for steady state 

problems. The kinematic part of the problem was expressed as an integral 

representation of the velocity vector. This integral representation is 

presented in a paper (Ref. 1) authored by the principal investigator dur-

ing the reporting period. 

A new method for treating the farfield velocity boundary condition 

and the condition of the "non-velocity" flow variable on the solid sur-

face (i.e., the extraneous boundary condition) was developed and utilized 

to solve selected test problems. This method was shown to satisfy the 

integral law for the total vorticity in the flowfield and to remove the 

major difficulties and uncertainties encountered in other methods. The 

method yielded stable and accurate results for all test problems treated 

(Ref. 1). 

It was shown that the determination of the initial vorticity dis-

tribution on the airfoil surface after it is set into translational and 

oscillatory motions may be treated as a special case of the computation 

of the extraneous boundary vorticity distribution. A general computer 

program was prepared for computing the boundary vorticity distribution 

for various types of airfoils. Test computations were performed for 

the NACA 0009 airfoil section. It was demonstrated that the initial 

vorticity distribution obtained here are in excellent agreement with 

those deduced from the potential flow solutions given in NNSA. TR-824. 



With previous finite-difference or finite-element methods, the 

kinematic part of the computation required up to 90% of the total computer 

time for the type of problem under consideration. Work completed thus 

far indicates that the integro-differential method led to a drastic 

improvement in the kinematic part of computation. As a result, the 

kinematic computation now constitutes of only a small part of the total 

computational effort. Accordingly, the kinetic part of the computation 

now deserves additional attention. During the reporting period, special 

efforts were made to select an optimum method for the solution of the 

new vorticity transport equation. The alternating direction implicit 

(ADI) method was experimented with and shown to be subjected to severe 

stability restriction for the initial time steps, immediately after the 

airfoil is set into motion, when the predominant mechanism for vorticity 

transport is diffusion. A finite element system of equations was developed 

to replace the differential equations for vorticity transport using 

Galerkin's approach. Rectangular elements were used for regions away 

from the airfoil in order to facilitate the use of the flowfield seg-

mentation technique. A computer program was prepared for the numerical 

solution of the system of equations. Concurrently, several coordinate 

transformation techniques are being examined in detail for possible 

adaptation to the oscillating airfoil problem. These efforts related 

to the kinetic part of the computation are expected to continue well 

into the third quarter of this research program. 

Reference 1. J. C. Wu, "Velocity and Extraneous Boundary Conditions 
of Viscous Flow Problems," AIAA Paper No. 75-47,  presented 
at the AIAA 13th Aerospace Sciences Meeting, Jan. 1975. 
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During the second quarter of the present research, progress was made 

in using Galerkin's approach to solve the vorticity transport equation. 

A hybrid finite-difference, finite-element approach was developed for this 

kinetic part of the computation. 

The flowfield is divided into two regions for the 	thick symmetric 

Joukowski airfoil. Region 1 encloses the airfoil and contains 208 nodes, 

including the nodes on the surface of the airfoil and those on the common 

boundary of regions 1 and 2. Linear interpolation functions and triangular 

elements are used for this region. Galerkin's process is used to establish 

integral relation from the vorticity equation. A finite element method 

was developed to obtain the nodal vorticity values at a new time level 

from known nodal values of velocity and vorticity at an old time level. 

Region 2 encloses region 1 and contains approximately 2500 non-zero 

vorticity grid points in a rectangular finite-difference grid. The grid 

spacings are A x = 0.05 and p y = 0.025. The use of the hybrid approach 

offers the following distinct advantages: 

(1) The inherent flexibility of the finite element method in spacing 

the nodal points permits the boundary of the airfoil to be mapped accurately. 

That is, the nodes are made to coincide with the airfoil boundary and no 

interpolation is needed for boundary values. The inherent flexibility also 

permits a denser concentration of nodes in regions where gardients of field 

variables are expected,to be large. 

(2) The use of Dufort-Frankel scheme in region 2 eliminates the need 

of inverting large matrices and, at the same time, permits the use of a 

large number of field points to describe the wake in sufficient detail. 1 



The kinematics of the problem is treated using the integral represen-

tation of the velocity vector presented in Ref. 1. The local generation 

of vorticity on the airfoil surface is included in the kinematic computa-

tions (Ref. 2). 

A computer program incorporating the above features has been developed 

to analyze two-dimensional unsteady viscous flows over arbitrarily shaped 

bodies undergoing arbitrarily defined motions. The input data to this pro-

gram are: 

(1) the Reynolds number for the problem, 

(2) the time history of the solid motion, 

(3) the grid system for region 2, 

(Lb) the finite element nodes for region 1. 

This program has been calibrated by treating the following test pro-

blems: 

(1) Flow over an impulsively started circular cylinder at a Reynolds 

number of 1000. 

Results obtained are in good agreement with finite-

difference results. At the first few time steps, spurious 

vorticity values are obtained, in regions far from the body 

where the vorticity is expected to be negligible. These 

spurious values, however, tend to disappear as the solution 

progresses in time. The computation was terminated after 

five time steps. 

(2) Flow over a NACA0012 airfoil at zero angle of attack and a 

number of 1000. 

Results are obtained for the first few time steps. They 

show the correct trend. 



(3) Flow over the Joukowski airfoil oscillating about zero degree angle 

of attack with a reduced frequency of 0.3 and a 15 0  amplitude, 

with the axis of rotation located 1/4 chord from the leading 

edge. Thus far, this computation was performed for only two 

time steps. 

The program is being further calibrated by solving the problem of the 

Joukowski airfoil set into motion impulsively at an angle of attack of 15% 

and a Reynolds number of 1000. The flowfield has been computed for the first 

thirty time steps (dimensional time of 0.288). The following features are 

observed: 

(1) The local generation of vorticity on the airfoil surface is accur-

ately predicted by the kinematic computation. For example, at t = 0 +, the 

computed vorticity distribution on the airfoil surface gives -2.2035 com-

pared to the theoretical value of -2.2655. 

(2) A vortex of very large strength appears at the trailing edge at 

t = o 	As time progresses, this vortex strength decreases, ac- 

companied by the motion of the rearward stagnation point towards 

the trailing edge. The forward stagnation point moves towards 

the leading edge during the same time period. 

(3) The vortex strength on the surface continuously decreases every-

where. The surface vorticity distributions plotted at various 

times are in good agreement with the results of Ref. 3. 
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During the third quarter of the present research, the problem 

of an impulsively started Joukowski airfoil at a 15 ° angle of attack 

was further studied in order to calibrate and update the computer pro-

gram developed earlier. It was found that the use of explicit methods 

(both the simple explicit and the Dufort-Frankel) for the solution of 

the vorticity transport equation in the region covered by finite 

elements led to spurious oscillatory velocity and vorticity values, 

especially in surface vorticity values. The amplitude of the oscil-

lation could be kept low only with the use of very small time steps. 

This difficulty has been noted previously by Bratnow and Ecer (AIAA. 

Journal, Vol. 12, No. 11). It has been resolved in the present work 

by the use of the Crank-Nicholson method for the vorticity transport 

equation in the finite-element region. 

In the kinematic part, efforts were devoted to improving the 

accuracy of the surface vorticity computation, particularly for the 

leading edge region. Earlier methods of computing the surface vorticity 

value were based on the approach described in AIAA paper 75--i7 by the 

principal investigator. The approach required that the total contri-

bution to the normal velocity of the vorticity on the solid surface S, 

the vorticity away from S, and the freestream to be such that the normal 

velocity boundary condition is satisfied on S. Computationally, one has 

[ai  ] Cj 	(bi l 	i = 1, 2, • • . , N 

whereand{b.}are known, N is the number of data points on S 

and 1.  are vorticity values. 



It has been shown that the rank of the coefficient matrix [a. ] 
1. 
J 

is N - 1. The additional equation needed to obtain a unique set of 

values of C. is supplied by the principle of total vorticity conser-

vation. For symmetric flows such as the flow past a circular cylinder 

with no circulation and the flow past an airfoil at zero angle of 

attack, the symmetric condition can be used to replace the principle 

of total vorticity conservation and accurate results were obtained 

near the leading edge. For the airfoil at an angle of attack, a new 

formulation which explicitly computes the effect of vorticity distri- 

bution in the fluid domain on the surface distribution of vorticity has 

been developed. This new method is highly accurate for all parts of 

the airfoil and shall be discussed in detail in a future article. 

In anticipation of the fact that at high Reynolds numbers the 

boundary layer is very thin near the leading edge, the grid work near 

the leading edge is being modified so that the spacing between data 

point is smaller. Simultaneously, other possible approaches, such as 

considering the boundary layer near the leading edge to be simply 

represented by the vortex sheet, are being examined. This aspect of 

the effort is expected to continue into the fifth quarter of this 

research. 
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During the reporting period, numerical results were obtained for 

two problems: (1) starting flow over a 9% symmetric Joukowski airfoil 

at 15° angle of attack, and (2) starting flow over a 12% symmetric 

Joukowski airfoil at zero angle of attack. 

In the previous quarterly progress report, the problem of accurate 

determination of the vorticity distribution on the surface of the air-

foils was described. During the fourth quarter, the previously mention-

ed explicit method of computing the surface vorticity distribution was 

implemented and utilized in computing flows described above. The ex-

plicit method is further generalized to include the effect of rotation 

of the airfoil. A computer program subroutine will be prepared during 

the next quarter utilizing the explicit method in oscillating airfoil 

computations. 

An additional source of inaccuracy was uncovered during the fourth 

quarter of this research. At relatively large time levels, spurious 

numerical oscillations of significant magnitude were observed. The 

cause of these oscillations was traced back to the convection term in 

the vorticity transport equation. To eliminate these oscillations, 

either the cell Reynolds number must be restricted or the approximation 

of the convection term must be compromised. The latter alternative 

was chosen in the present effort. The spurious numerical oscillation 

was eliminated by a suitable modification of the coefficient matrix 

for the convective term. 

Additional nodes and elements were introduced to improve the solu-

tion accuracy for the 12% airfoil case. (The finite element region 



2 

now contains 354 elements instead of 306 elements used previously.) 

In the finite element region, it was found that the use of Galerkin 

formulation for the kinematics of the problem yielded more accurate 

overall solution than the integral representations formulation. 

The starting flow over the f0 Joukowski airfoil was computed up 

to a dimensionless time level of 0.754, the reference time being the 

chord length divided by the freestream velocity. The pressure and 

vorticity distribution on the airfoil are shown on the attached figures 

for several time levels. Variation of the drag coefficient with time 

is presented in the attached table. 75 time steps were needed to reach 

the time level 0.754. The solution at this time level will be used 

as a starting solution for the oscillating airfoil computations. Pro-

gramming for the oscillating airfoil case is being completed. 



Time 
Level 

Pressure 
Drag C 

D
P 

Viscous 
Drag 
C
D 
f 

Total Drag, C 

D 

.005 1.626 .426 2.052 

.014 1.414 .418 1.832 

.030 1.152 .403 1.555 

.058 .82o .378 1.198 

.098 .636 .358 .994 

.138 .537 .345 .882 

.218 .454 .333 .787 

.306 .400 .323 .723 

.386 .356 .314 .67o 

.466 .312 .302 .614 

.546 .290 .291 .581 

.626 .278 .282 .560 

.706 .286 .276 .562 
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During the reporting period, the computation of the starting 

flow over a 12% symmetric Joukowski airfoil at zero angle of attack, 

initiated during the previous quarter, was continued to a dimension-

less time level of 2.488, the reference time being the chord length 

divided by the freestream velocity. At this time level the rate of 

change of flow parameters was very slow and the computer results 

provided a reasonable estimate of steady state values. 

Using the steady state solution for the zero angle of attack 

case as the starting solution, the angle of attack was increased 

impulsively to 3° . The computation of flowfield surrounding the air-

foil was performed up to a time level of 2.052. 

A program for computing flows about an oscillating airfoil has 

been prepared. The 12% Joukowski airfoil was started impulsively from 

rest with a time dependent angle of attack described by a = 6 °  sin (0.6T). 

The computation was performed up to a time level of T = 1.786. 

In computations for airfoils at non-zero angles of attack ) surface 

pressure distributions were determined from computed vorticity gra-

dient at the airfoil surface. It was suspected that the accuracy of 

the surface pressure distribution determined in this manner may be 

questionable. Consequently, a viscous flow past a finite flat plate 

at a Reynolds number of 1000 was treated to resolve this question. 

This finite flat plate problem was solved previously using the finite-

difference integro-differential method and detailed results were 

available for comparison with the present solution. Vorticity distri-

butions obtained using the present procedure were found to compared 



reasonably with the previous results. The new results, however, 

indicated that modifications of the solution procedures are desirable 

for the computation of surface pressure distributions. As a conse-

quence of the finite flat-plate study, the following improvements are 

being incorporated into computer programs for the oscillating airfoil: 

(a) a more refined procedure for computing the vorticity dis-

tribution on the airfoil surface. 

(b) a higher order method of computing velocity values at nodes 

due to vorticities distributed in the finite elements sur-

rounding the nodes. 

During this quarter, two written articles were authored by the 

principal investigator. A paper entitled "Numerical Boundary Con-

ditions for Viscous Flow Problem", was submitted to the AIAA Journal. 

The paper has been accepted by the Journal for publication and is now 

in print. A second paper entitled "Finite Element Solution of Flow 

Problems Using Integral Representations" is scheduled for presentation 

and is being printed in the Proceedings of the Second International 

Symposium on Finite Element Methods in Flow Problems. 
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During the reporting period, the computation of the starting flow 

over a 12% thick airfoil at zero angle of attack and a Reynolds number 

of 1000 was completed. It was found that the computed surface pressure 

distribution differs substantially from that predicted by potential flow 

analysis. A remarkable behavior of the pressure distribution is that 

downstream of the mid-chord station the computed surface pressure remains 

nearly constant even though no flow separation occurs. An estimate of 

the boundary layer displacement thickness along the airfoil surface was 

made using the computed velocity profiles. It was shown that near the 

trailing edge this displacement thickness is comparable to one half the 

airfoil thickness, i.e., it is nearly 6% of the chord length. Thus the 

observed behavior of the surface pressure is not unreasonable. For the. 

12% thick airfoil, the effect of displacement thickness on the pressure 

distribution is expected to be significant up to Reynolds numbers of 

several hundred thousands, although for the higher Reynolds numbers this 

effect is not expected to be substantial. For thinner airfoils, the effect 

is even more important. 

Although the pressure distribution over the airfoil is not adequately 

described by the potential flow theory in the present case, the boundary 

layer siaplications, i.e., the neglect of diffusion in the tangential 

direction and the omission of the normal component of the momentum 

equation, is still valid in the viscous region of the flow. Also, when 

a region of flow separation exists and the pressure imposed on the attached 



region of the viscous flow cannot be predicted by potential theory, the 

boundary layer simplications are again valid in the attached region. 

The integro-differential approach used in the present research does not 

require a matching of the potential flow with the viscous flow. The 

computation procedure based on the integro-differential approach does 

not require a determination of the pressure "imposed" on the boundary 

layer.. Therefore, it is possible to utilize the boundary layer simpli-

cations in the attached region of the viscous flow, even though the 

imposed pressure is not obtainable from a potential flow analysis. A. 

preliminary study of this possibility has been initiated. The initial 

goal is to determine whether substantial reduction in computing effort 

is realizable for an airfoil oscillating at relatively high frequency 

and small amplitude about a low angle of attack. 

Additional efforts have been directed towards the establishment of 

a highly accurate method of predicting the surface pressure and shear 

stress from the computed vorticity distribution. Bulk computation for 

oscillating airfoils will begin after the completion of this important 

area of study. 

An article entitled "Finite Element Solution of Flow Problems Using 

Integral Representations" has been presented at the Second International 

Symposium on Finite Element Methods in Flow Problems. The article has 

been published by the International Centre for Computer Aided Design, 

Conference Series No. 2/76, June, 1976, pp. 203-216. 

A second article entitled "Explicit Finite Element Solution of the 

Viscous Flow Problem" has been prepared for the 1976 International Con-

ference on Finite Element Methods in Engineering. 
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Efforts during the reporting period include (1) the development of general 

formulas relating the aerodynamic forces and moments acting on an airfoil to the 

time variation of vorticity field, (2) the computation of flow fields about a 12% 

symmetric Joukowski airfoil oscillating in pitch aobut a mean angle of attack of 3 °, 

and (3) the study of flowfield segmentation technique. 

As mentioned earlier in previous progress reports, surface pressure 

distributions determined from computed vorticity gradients at the airfoil surface 

may be sometimes questionable. In an effort to provide alternative methods of 

computing the aerodynamic forces and moments acting on airfoils in time-

dependent motions (with steady state as a limiting case), the classical circulation 

theory for thin airfoils was critically reviewed and subsequently extended. General 

formulas for the lift, the drag, and the moment acting on airfoils were established 

without relying on the concept of "bound vortices" or "bound vorticity" or assuming 

the fluid to be inviscid. The formulas are applicable to thick airofils as well as thin 

ones. They not only remove the limitations of previous theories in calculating the 

lift and the moment, but also offer a simple method for the calculation of drag 

forces due to unsteady airfoil motion. 

The computation of flowfields about the oscillating airfoil is progressing at a 

reasonable pace. The above described general formulas are being programmed as a 

part of the solution procedure. 

A study of a flow past a finite flat plate at a finite angle of attack was 

carried out in which the flowfield segmentation technique was examined. This 

study demonstrated that the flow field segmentation technique provides more than 

a factor of two reducion in computer time, with no adverse effect on solution 

accuracy. It was also established that the optimum operation count using the 

segmentation technique compares favorably with that using the ADI method. 
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The eighth quarterly report for the subject research is expanded to present a 

review of the research initiated on January 1, 1975. During the time period from 

January 1, 1975 to December 31, 1976, three articles were authored by the principal 

investigator and his co-worker as a result of this research. These articles are listed 

at the end of this quarterly report. Reprints of these articles will be distributed as 

technical reports in accordance with the distribution list provided by ONR for this 

project. 

The work statement for the current project includes the following specific 

tasks: 

1. The optimization of the flowfield segmentation technique for the 

vorticity computation. 

2. The establishment of a computer program applicable to incompressible 

flow past airfoils of arbitrary shape executing arbitrary unsteady motions 

using the integro-differential method and incorporating the segmentation 

technique. 

3. The prediction of the time-dependent laminar incompressible flow fields 

associated with an NACA 0012 airfoil oscillating in pitch for specified 

values of Reynolds number, mean angle of attack, amplitude, frequency, 

and pitch axis location of oscillation. 

4. Exploration of the extensions of the integro-differential method to 

turbulent and to compressible flows. 

Tasks 1, 2, and 4 have been completed. Task 3 has been carried out for a 12% 

thick Joukowski airfoil for several of the reduced frequencies and mean angles of 

attack originally suggested. The remaining cases are expected to be completed 

very shortly. 



Under Task I, a study of a flow past a finite flat plate at a finite angle of 

attack was carried out by A. H. Spring, a Ph.D. candidate working on his thesis in 

absentia. This study demonstrated that this segmentation technique provides at 

least a factor of two reduction in computer time with no adverse effect on solution 

accuracy. In addition, it has been shown that the optimum operation count using 

the segmentation method compares favorably with that using the ADI method. The 

successful development of the segmentation technique in conjunction with the 

integro-differential method, which permits the confinement of the solution field to 

the vortical region of the flow, ensures the superiority of the method in 

computational efficiency. 

In the kinematic part of the computation, the use of the integro-differential 

method allows the velocity field to be computed by evaluating an integral 

containing only the vorticity distribution and spatial coordinates in its integrand. A 

numerical quadrature procedure has been developed which is similar to that used in 

finite-element methods. The region of integration is divided into elements of 

various shapes. Interpolation functions are used in each element and expressed in 

terms of nodal values of vorticity. Analytic integrations then yield the velocity 

value at each node as the sum of products of vorticity values and geometric 

functions associated with each node. This procedure allows an inherent flexibility 

in the selection of data node locations and the accomodation of complex boundary 

geometries. 

Under Task 2, a program for the prediction of time-dependent laminar 

incompressible flows past a 12% thick Joukowski airfoil has been prepared, 

calibrated, and refined. This program can be easily modified and used for airfoils 

of other types. With previous finite-difference or finite-element methods, the 



kinematic part of the computation required up to 80% of the total computer time 

for the type of problems under consideration. The integro-differential method led 

to a drastic improvement in the kinematic part of computation. As a result, the 

kinematic computation now constitutes only a small part of the total computing 

effort. Since the kinetic part of computation now becomes the bottleneck in the 

overall solution procedure, further improvements in the kinematic computation 

cannot lead to further drastic improvements in the overall computational effi-

ciency. Considerable effort has been consequently devoted to the development of 

more efficient numerical methods for solving the kinetic equation of vorticity 

transport. 

Finite-element methods are inherently mroe flexible than finite-difference 

methods in the seleciton of data node locations and the accomodation of complex 

boundary geometries. However, finite-difference expressions are somewhat easier 

to formulate and the coefficient matrices involved in the finite-difference 

equations are somewhat less cumbersome than those of finite-element methods. 

Also, within either the finite-difference or the finite-element methods, explicit 

techniques of solution generally require much less computaiion per time step than 

do implicit techniques However, since explicit techniques generally are subject to 

very stringent stability restrictions on the maximum time step, the use of implicit 

method is generally preferred on an overall basis. These relative advantages and 

disadvantages of the finite-difference methods vs. the finite element methods and 

of the explicit techniques vs. the implicit techniques are well known. No successful 

attempt has been made, however, by previous investigators to devise a method that 

possesses the advantages mentioned above and alleviates the disadvantages. Under 

the curent project, such a method has been established by N. L. Sankar as part of 

his Ph.D. thesis in preparation. 



Sankar has successfully developed a hybrid method in which the solution field, 

already confined to the vortical region, is divided into an inner region and an outer 

region. In the inner region, a finite-element method based on Galerkin's procedure 

is used to set up a system of algebraic equations containing the unknown vorticity 

values at a new time level. This inner region envelops the airfoil. The airfoil 

boundary is accurately represented by the finite-element nodes. This region is kept 

small so that it contains a relatively few closely spaced nodes. For example, for 

the 12% thick Joukowski airfoil, the inner region is assigned 232 nodes while the 

total number of nodes in the solution field is about 2500. (Note that for an 

impulsively started airfoil, as the vortical region grows with time, the total 

number of nodes increases). The close spacing of nodes in this region is required by 

the solution resolution since the vorticity gradient is relatively large near the 

airfoil, particularly in the boundary layer. The relatively small number of nodes in 

the inner region allows an implicit solution procedure to be employed without 

excessive computing efforts. 

The outermost layer of elements in the inner region is made to overlap with a 

finite-difference grid used for the outer region. The finite-difference grid lines are 

arranged to coincide with the coordinate lines. Relatively large grid line spacings 

are adequate in the outer region since the vorticity gradient is relatively small far 

form the airfoil. The Dufont-Frankel finite-difference technique, which is explicit 

and is not subject to stringent stability restrictions on the time step in regions of 

large grid spacings, is used for the outer region. 

The hybrid method has been calibrated by treating the test problem of a 

circular cylinder. It has been, and is being, used to obtain solutions for time-

dependent laminar incompressible flows associated with an oscillating 12% thick 



airfoil. The method has been described in Article 1, which presents sample results 

for the airfoil. Additional numerical results, detailed mathematical analyses, 

numerical procedures, computer programs, and discussions of the major difficulties 

encountered and resolved, are being included in Sankar's Ph.D. thesis and in a final 

report of the current project. 

Under task 4, a systematic study of formulation of integral representations 

for elliptic and parabolic differential equations has been completed. Application of 

the integro-differential method to various types of flow problems--potential and 

viscous, time-dependent and steady, incompressible and compressible, laminar and 

turbulent —has been considered. The results of this study are presented in a recent 

article (Article 2) . The availability of integro-differential formulations under very 

general circumstances is expected to be a significant factor in future solutions of 

flow problems of all types. Some initial work has been performed in using a two-

equation turbulence model in conjunction with the integro-differential method for 

the solution of turbulent flow problems. Very encouraging results have been 

obtained for several relatively simple test problems. 

In addition to the specific tasks reviewed above, general formulas relating 

the lift, the drag, and the moment acting on an airfoil to the time variation of 

vorticity field has been examined. 

A particularly difficult aspect of previous numerical methods for the solution 

of viscous flow problems has been the establishment of "extraneous boundary 

conditions." It was shown earlier by the principal investigator that the use of the 

integro-differential method eliminates this difficulty. Under the current project, 

further work has been carried out to formalize a kinematic approach for 

establishing the extraneous vorticity boundary conditions. It has been shown that 

this approach leads to an integral equation containing the boundary vorticity value 



as the unknown function. The necessary and sufficient condition under which this 

integral equation yields a unique solution has been studied. It has been found that 

under certain circumstances, an integral equation, similar to that encountered in 

the study of the extraneous boundary condition problem, can be established for the 

study of motions surrounding an unsteady airfoil. Thus, the techniques established 

for the extraneous boundary condition problem are useful in the development of an 

unsteady airfoil theory. 



PUBLISHED ARTICLES 

1. Wu, J. C. and Sankar, N. L., "Explicit Finite Element Solution of the Viscous 
Flow Problem," Proceedings of the 1976 International Conference on Finite 
Element Methods in Engineering,  1976. 

2. Wu, J. C., "Finite Element Solution of Flow Problems Using Integral 
Representations," Proceedings of Second International Symposium on Finite  
Element Methods in Flow Problems,  International Centre for Computer Aided 
Design, Conference Series No. 2/76, pp. 203-216, 1976. 

3. Wu, J. C., "Numerical Boundary Conditions for Viscous Flow Problems", AIAA 
Journal,  Vol. 14, No. 8, pp. 1042-1049, August, 1976. 
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Numerical computation of the time-dependent flow fields associated with 

a 12% symmetric Joukowski airfoil oscillating sinusoidally about a pitching 

axis located 1/4 chord from the leading edge, with a mean angle of attack of 3 ° , 

and amplitude of 1
o
, and a reduced frequency of 0.3, has begun. The main 

purpose of this computation is to provide numerical results for a case where 

the flow does not separate over a large region on the upper side of the 

airfoil. It is planned to utilize these results and other results for 

different angles of attack and reduced frequencies as standards against which 

various simplified numerical procedures as well as improved and extended 

airfoil theories for steady and unsteady flows can be tested. A number of 

modifications to the previously developed computer program for the oscil-

lating airfoil problem are being considered. They include the possibilities 

of performing the kinetic computation for several time steps before recom-

puting a new velocity field (kinematic computation), of using an implicit 

procedure for the kinetic computation in both the inner finite-element region 

and the outer finite-difference region, and the use of a Fourier series in 

the computation of the surface vorticity. These modifications are directed 

towards further reductions of the needed computer time and improvements in 

solution accuracy, which are highly important for the intended purpose of the 

present numerical results. 

A study has been initiated to extend the general relations between the 

time-variation of the vorticity field and the aerodynamic forces and moments 

to three-dimensional problems. The two-dimensional versions of these gen-

eral relations have been presented in the renewal proposal for this project, 

dated November 5, 1976. A thorough literature review has been made for the 

three-dimensional problems. Certain fundamental theorems deemed necessary 



for the derivation of three-dimensional relations have been obtained. It is 

hoped that these fundamental theorems will permit a rigorous derivation of 

the three-dimensional relations. 

During this Quarter, the principal investigator of this project visited 

Ankara and Cairo, the former at the invitation of the Middle East Technical 

University to contribute to a NATO project studying the oscillating airfoil 

problem. He gave seminars in both cities on the general topic of numerical 

methods for the solution of the Navier-Stokes equations. 
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A major emphasis during the reporting quarter has been the continued 

computation of the time-dependent flow fields associated with a 12% symmetric 

Joukowski airfoil oscillating sinusoidally about a pitching axis located 14 

chord from the leading edge, with a mean angle of attack of 3 ° , an amplitude 

of 1 ° , and a reduced frequency of 0.3. Numerical solutions have been carried 

out up to a dimensionless time level of 8, which corresponds to the movement 

of the airfoil relative to the freestream through a distance of eight chord 

lengths. It is anticipated that this computation will be completed during 

the subsequent quarter of research. Additional numerical results will be 

obtained for the same airfoil oscillating at a higher reduced frequency of 3, 

and also for a higher angle of attack so that the phenomena of dynamic stall 

occurs. An article is being prepared summarizing the numerical methods 

developed as well as numerical results for the airfoil problem, obtained 

previously and currently, under this project. This article is scheduled for 

presentation at the AGARD Fluid Dynamics Symposium on Unsteady Aerodynamics 

to be held in Ottawa, Canada, on 26-28 of September, 1977. The article is 

entitled "A Numerical Study of Unsteady Viscous Flows around Airfoils." It 

will be published in the Proceedings of the Symposium by AGARD. 

The development of three-dimensional relations between the time-varia-

tion of the vorticity field and the aerodynamic forces and moments has 

progressed more rapidly than anticipated. The significances of these results 

in practical applications are being studied. It is anticipated that a report 

summarizing the basic concepts of a new airfoil and wing theory based on 

these relations will be prepared during the next quarter (July to September, 

1977). 
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During the reporting quarter, computations of flows past a 12% symmetric 

airfoil were completed. Five sets of computer solutions are now available 

for the following five flows past the airfoil at a Reynolds number of 1000: 

(a) impulsively started motion, zero angle of attack; (b) impulsively started 

motion, 30 angle of attack; (c) oscillation in pitch with an amplitude of +1 0 

about a mean angle of attack of 3 0 , reduced frequency 0.3; (d) same as case 

"c" except that the reduced frequency is 3; (e) oscillation in pitch with an 

amplitude of +60 about a mean angle of attack of 9 0 , reduced frequency of 3. 

The pitching axis for all oscillating airfoil cases is at 1/4 chord from the 

leading edge. 

Selected results for some of the above cases are included in a paper 

presented at the AGARD Fluid Dynamics Symposium on Unsteady Aerodynamics held 

in Ottawa, Canada, on September 26-28 of 1977. The written version of this 

paper, entitled "A Numerical Study of Viscous Flows Around Airfoils", is being 

published in the Proceedings of the Symposium by AGARD. 

The development of three-dimensional relations between the time-variation 

of the vorticity field and the aerodynamic forces and moments have been 

completed. A report summarizing the major results of a new airfoil and wing 

theory is being prepared. 
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The following paragraphs are modified version of a section of a renewal 

proposal recently submitted by the principal investigator to ONR. They 

summarize the work accomplished during the calendar year 1977. A major 

emphasis during the reporting quarter (October to December, 1977) has been 

the analysis of the considerable amounts of numerical results generated, 

the development of a better understanding of the interplay between the 

numerical approaches and the physical aspects of the general viscous flow 

problem, and the planning for additional efforts in studying the oscillating 

airfoil problem. 

The research program proposed in November of 1976 is a long termed 

program requiring three years of research effort. It contains the following 

specific tasks: 

1. The systematic development, calibration, and application of 

improvements and extensions of presently available steady 

and unsteady airfoil theories for calculating aerodynamic 

forces and moments. 

2. The establishment of simplified numerical procedures for the 

solution of viscous flow equations. 

3. The prediction of time-dependent laminar incompressible flow-

fields associated with several types of unsteady airfoil motion 

utilizing the existing and the simplified numerical procedures. 

4. The exploration of extensions of the general relations between 

the time-variation of vorticity field and the aerodynamic 

forces and moment to three-dimensional problems. 



2 

Two-dimensional formulas relating the forces and moments acting on 

an airfoil section to the time-variation of vorticity-moment integrals were 

obtained as extensions of the circulation theory of airfoils and presented 

in the proposal. During 1977, general formulas that are valid for two- 

and three-dimensional viscous flows past one or more finite solid bodies 

of arbitrarily prescribed shapes and executing arbitrarily prescribed 

steady or time-dependent motions have been obtained. The derivation of 

these general formulas has proceeded on a formal mathematical basis. 

Several theorems for viscous flows, utilized in the derivation of the 

general formulas, have been proved. These theorems are of significance 

by themselves. Derivations of the general formulas and proofs of the 

theorems are included in a ONR report to be released. Task 4 described 

above is essentially completed. 

Under Task 3, it was proposed that a 12% thick Joukowski airfoil be 

studied. The unsteady motions considered were to be principally oscillating 

motions. However, impulsively started motions would also be studied. 

Cases where the boundary layers are attached all the way to the trailing 

edge were to be emphasized initially because of the direct usefulness of 

these cases in assessing the range of validity of the current unsteady 

airfoil theories and of the new theory. During 1977, five sets of computer 

solutions were obtained for the following five flows about a 12% thick 

Joukowski airfoil at a Reynolds number of 1000: (a) impulsively started 

motion, zero angle of attack; (b) impulsively started motion, 3
o 
angle of 

attack; (c) oscillation in pitch with an amplitude of +1 °  about a mean angle 

of attack of 3 ° , reduced frequency 0.3; (e) oscillation in pitch with an 

amplitude of +6
o 
about a mean angle of attack of 9

o
, reduced frequency of 



3 

3. The pitching axis for all oscillating airfoil cases is at 1/4 chord 

from the leading edge. 

The results for the above cases are presented in a Ph.D. thesis by 

N.L. Sankar. Aside from these computations performed under ONR support, 

results were also obtained for a 9% thick impulsively started airfoil at 

15 °  angle of attack. The substantial amounts of numerical solution obtained 

during the past twelve months indicate that the integro-differential approach 

has progressed to the stage where it is feasible to develop, for two-dimen-

sional laminar flows, packages of computer codes that are efficient, reason-

ably universal, sufficiently accurate, and relatively simple to utilize. In 

fact, for steady internal flows, such a package of computer codes that are 

efficient, reasonably universal, sufficiently accurate, and relatively simple 

to utilize. In fact, for steady internal flows, such a package of computer 

code was recently prepared by Dr. M. M. Wahbah, a member of our research team 

at Georgia Tech, under a separate project. This code is being utilized in a 

research program in which various turbulence models for separated steady flows 

are tested. For external laminar flows, existing computer programs require 

about 10 minutes of CDC-6600 CPU time to advance the numerical solution by one 

dimensionless unit of physical time, i.e., the time interval during which the 

airfoil advances by one chord length relative to the freestream. Consequently, 

drastic further improvements in solution efficiency is no longer a critical 

factor in the development of a general-purpose user-oriented package of computer 

code for external laminar flows in two-dimensions. Thus far, however, efforts 

at Georgia Tech have continued in developing simplified and more efficient 

numerical procedures, principally in anticipation of future applications 

involving turbulent and three-dimensional flows that are known to require 



several hundred times the computation required for two-dimensional laminar 

flows. In this regard, under Task 2, an integral equation approach which 

is expected to eliminate much of the computation in the boundary-layer 

region of the flowfield has been examined. It was pointed out in the 

proposal that for two-dimensional flows containing no appreciable separation 

region, the near vortical system can by approximated by a vortex sheet 

enveloping the airfiDil. The vortex strength of this sheet can be obtained 

by solving an integral equation. It has been shown recently that in the 

more general case where an appreciable separation region exists, the 

boundary layer portion of the flow can still be approximated by a vortex 

sheet. The strength of this vortex sheet can be obtained by solving a 

modified integral equation. 

Under Task 1, several possible extensions and improvements of the 

existing airfoil theory were pointed out in the proposal. Detailed studies 

of these possibilities have been initiated. Previous "inviscid" airfoil 

theories do not permit the calculation of the drag. The present theory 

relates the diffusion of vorticity in the vortical wake to a drag force. 

Furthermore, even if the vortical wake is considered inviscid, the present 

theory predicts a non-zero drag due to the rotational and unsteady transla-

tional motions of an airfoil. The present theory offers a simple method 

for quantitative determination of this drag. In particular, for two-dimen-

sional problems, an extremely simple procedure has been developed for 

the force experienced by a solid body undergoing unsteady translation. 

4 
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It was previously reported that, during 1977, five sets of computer solutions 

were obtained for the following five flows past the airfoil at a Reynolds number 

of 1000: (a) impulsively started motion, zero angle of attack; (b) impulsively 

started motion, 3°  angle of attack; (c) oscillation in pitch with an amplitude of 

+1
o 

about a mean angle of attack of 3
o
, reduced frequency 0.3; (d) same as case 

"c" except that the reduced frequency is 3; (e) oscillation in pitch with an 

amplitude of +6°  about a mean angle of attack of 9 ° , reduced frequency of 3. 

The pitching axis for all oscillating airfoil cases is at 1/4 chord from the 

leading edge. These results are presented and discussed by N. L. Sankar in his 

Ph.D. thesis entitled "Numerical Study of Laminar Unsteady Flow over Airfoils", 

Georgia Institute of Technology. 

It was also previously reported that work has been in progress to develop a 

new theory for aerodynamic forces and moments. This theory, described in our 

renewal proposal for this project dated November 1977, relates the aerodynamic 

forces and moments to the time-variation of vorticity-moment integrals. The 

development of this theory for both two-dimensional and three-dimensional flows 

was completed during the reporting quarter. The theory is now established 

rigorously on a formal mathematical basis. A number of ambiguities in the 

understanding of previous aerodynamic theories has been removed by the present 

theory, which permits a clearer interpretation of various aerodynamic pheno-

mena. 

The major emphasis of this research during the reporting period has been 

the development of a better understanding of the interplay between the numerical 

and physical aspects of the viscous flow problem. This understanding has been 

brought into focus by the simultaneous availability, for the first time, of 

detailed numerical results for several unsteady airfoil problems and of a theory 

which relates flow details to the forces and moments on the airfoil. Considerable 



amounts of information have been generated through an in-depth examination of the 

numerical results with the help of the new aerodynamics theory. 

The theory has been applied also in an analytical study of the two-dimen-

sional unsteady flow problem. It has been shown that the theory yields an 

extremely simple procedure for the determination of the apparent mass and the 

apparent moment of inertia of a solid body of any arbitrarily prescribed shape 

undergoing any arbitrarily prescribed unsteady translational or rotational 

motions. 
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Several manuscripts describing various aspects of the present research 

were prepared during the reporting quarter. The manuscripts are: 

1. "Viscous Flow around Oscillating Airfoil --- A Numerical Study", 

by N. L. Sankar and J.C. Wu, AIAA Paper 78-1225, presented at the 

AIAA 11th Fluid and Plasma Dynamics Conference, July 1978. 

2. "Integral-Representation Approach for Time-Dependent Viscous Flows", 

by J. C. Wu and Y. M. Rizk, Proceedings of the Sixth International 

Conference on Numerical Methods in Fluid Dynamics, 1978, in print. 

3. "Numerical Solution of Unsteady Flow Problems using Integro-Differential 

Approach", by J. C. Wu, M. M. Wahbah, and A. Sugavanam, Proceedings 

of the Symposium on Nonsteady Fluid Dynamics of the 1978 Winter Annual 

Meeting of the ASME, in print. 

4. "A Theory for Aerodynamic Forces and Moments", by J. C. Wu, Georgia 

Institute of Technology Report, June 1978, in print. 

In addition to the above manuscripts, another report entitled "A Modern 

Look at Apparent Mass and Apparent Moment of Inertia of Solids Undergoing 

Unsteady Motions", by J. C. Wu and N. L. Sankar, has been written. This manu-

script for report is being revised before final typing. The preparation of 

five full-length manuscripts during the reporting quarter taxed the attention 

of the investigators. It is felt, however, that the substantial amount of 

information generated recently under the present project should be documented 

and made available in the open Literature in a timely manner. The preparation 

of these manuscripts has offered the principal investigator an opportunity 

to review comprehensively the research work accomplished during the past several 

quarters. As a result of this review, a decision has been made to emphasize, 



during the next two quarters, the following two tasks: (a) the development 

of efficient numerical procedures based on the formulation of the viscous 

flow problem entirely as integral representations and (b) the investigation 

of the possibility of treating the boundary layer region separately from the 

recirculation and wake regions of the flow. Preliminary results obtained 

thus far indicate that both approaches just mentioned are well suited for 

high Reynolds number flows. Detailed studies will be made to assess in quan-

titative as well as qualitative terms the advantages of these new approaches. 



LIBRARY DOES NOT HAVE 

Fifteenth Quarterly Progress Report, July 1, 1978 through August 31, 1978 

F18-6A 
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A generalized wake-integral theory relating the drag force acting on a 

three-dimensional lifting body to properties of the vortical wake 

downstream of the body was further developed during the reporting quarter. 

This theory is a generalization of the well known theory of Betz, who 

expressed profile drag acting on a solid body as a wake integral, i.e., an 

integral over only the vortical wake region downstream of the solid body. 

The experimental determination of the profile drag using Betz's formula is 

convenient and efficient, since measurements need to be made only in the 

vortical wake region of a single downstream plane. The determination of the 

induced drag in Betz's formula requires measurements of velocity components 

perpendicular to the free stream direction over a large region and is not 

limited to the vortical wake. These transverse velocity components are 

usually too small in regions away from the vortical wake for measurements 

with good accuracy. For these reasons, the experimental determination of 

the induced drag presented serious difficulties in cost as well as in 

accuracy. 

The present wake-integral theory is an offshoot of the new theory for 

aerodynamic forces and moments developed as a part of the present research 

program. With the present theory, the induced drag was expressed as the sum 

of two integrals representing separately the contributions of the axial and 

transverse components of the wake vorticity. It was shown that under quite 

general circumstances the transverse vorticity integral is negligible 

compared with the axial vorticity integral. In consequence, the induced 

drag is accurately determined by axial vorticity measurements in the 

vortical wake only. This means that the experimental determination of the 

induce drag using the present theory is efficient and accurate. Together 

with the theory of Betz, the present theory offered considerable insight 

into the interplay between the drag components and the wake characteristics. 
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Exploratory wind-tunnel results obtained by J. E. Hackett and his co-

workers at the Lockheed-Georgia Company were utilized to verify the validity 

of some of the theoretical conclusions. It is worthy of note that these 

experimental results lend substantial support to the expectation that the 

profile drag and the induced drag can be separately measured through wake 

integrals and such measurements can provide accurate quantified knowledge 

about the relative importance of various flow features to drag. 

In addition to the development of the wake-integral theory for drag, 

some attention was devoted to the development of a numerical procedure in 

which the attached boundary layer region is solved separately from the 

remainder of the viscous flow. It is expected that more definitive 

conclusions regarding this procedure will be reached during the next two 

quarters. 
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During the reporting period, the development of the wake-integral 

theory for drag measurement, described in the preceeding (September to 

December, 1978) quarterly progress report for this project, reached a 

reasonable stage of completion. The theory was shown to offer considerable 

insight to the interplay between the profile and the induced drag 

components. Many theoretical conclusions based on this theory were verified 

experimentally. In particular, it was shown conclusively that the induced 

drag, like the profile drag, can be accurately determined by measurements in 

the vortical wake of a single downstream plane. Additional research efforts 

beyond the present research are being planned. A paper, entitled "A 

Generalized Wake-Integral Approach for Drag Determination in Three-

Dimensional Flows", was jointly authored by the principal investigator and 

J. E. Hackett and D. E. Lilley of the Lockheed -Georgia Company. The latter 

two authors provided the experimental data and data reduction efforts for 

comparison with the theory developed at Georgia Tech. This paper was 

published by AIAA as a preprint, AIAA Paper No. 79-0279, and was presented 

at the 17th Aerospace Sciences Meeting of AIAA in New Orleans, La. 

A focal point of research during the reporting quarter was the de-

velopment of a numerical method for the separate treatment of attached and 

detached flow regions in general viscous flows. In such flows there exist 

usually two distinct regions, one attached and the other detached, in which. 

viscous effects are important. 	In the attached region, the flow is 

generally adequately described by boundary-layer equations. 	In the 

detached flow, simplifications of the Navier-Stokes are only occasionally 

justifiable. The numerical solution of boundary layer equations is 

substantially simpler than that of Navier-Stokes equations. Prevailing 

numerical methods for the general viscous problem, however, do not treat the 



attached and detached regions separately -- the Navier-Stokes equations are 

solved in both regions. In consequence, highly efficient and accurate 

computer codes presently available for boundary layers cannot be utilized in 

studies of general viscous flows. 

The description of the boundary-layer includes a specification of the 

velocity at the outer edge of the boundary-layer, or, equivalently, the 

pressure gradient along the boundary layer. In a general viscous flow past 

a finite solid body, the presence of "strong viscous-inviscid interaction" 

makes it unacceptable to determine this boundary-layer-edge velocity 

through a potential flow calculation based on the solid body shape, even 

when boundary-layer displacement effects are accounted for. This fact 

represents a major obstacle to a separate treatment of the attached and 

detached regions. Earlier proposals for removing this obstacle suggested 

repeated computations of the attached and detached flow regions 

individually. The influence of one region on the other is then determined 

through an iterative matching procedure. Such, a procedure requires very 

large amounts of computation. In contrast, the present method permits the 

separate computation of the attached and detached flow regions without using 

an iterative matching procedure. In consequence, the method offers several 

important advantages in computation. 

A research paper presenting the basic concepts of this new method is 

scheduled for presentation at the AIAA 4th Computational Fluid Dynamics 

Conferences in July of 1979. This paper is entitled "Separate Treatment of 

Attached and Detached Flow Regions in General Viscous Flows", and is co-

authored by J. C. Wu and U. Gulcat. Because of the great potential of this 

method for future three-dimensional flow computations, it is planned to 

carry on this specific topic of research for the remainder of this year and 

beyond. 
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During the reporting quarter, several manuscripts describing various 

aspects of the present research were presented. The manuscripts are: 

1. "Principal Solutions and Finite-Element Procedures," by J. C. Wu, 

Proceedings of the 4th International Symposium on Finite Element Methods in Flow 

Problems, in print. 

2. "Sources, Sinks, Vortices and Flow Computations," by J.C. Wu, 

Proceedings of International Conference on Finite Element Methods, in print. 

Copies of these two manuscripts are attached to the Quarterly Report. In 

addition to these manuscripts, a report entitled "Unsteady Aerodynamics Forces 

Associated with a Vortex Flowing past a Lifting Body" has been prepared. The 

manuscript for this report is being revised before final typing. The preparation of 

these three full-length manuscripts during the reporting quarter required 

substantial attention by the principal investigator. It is felt, however, that the 

substantial amount of information generated recently under the present research 

should now be documented and made available in the open literature. Of particular 

significance is the emergence, through the present research, of an insight into the 

interplay between the physical and the numerical aspects of the unsteady viscous 

flow problem. This insight, continually cultivated since the inception of this 

project, has enabled the principal investigators to develop not only highly efficient 

numerical methods for the solution of viscous flow problems, including those at 

high Reynolds numbers, but also new and general theories for aeordynamic forces in 

unsteady viscous flows. The cross-fertilization between the theoretical and 

computational branches of fluid dynamics has been remarkably fruitful. It is 

planned to further investigate several promising approaches for the study of 

unsteady aerodynamics forces on the basis of the theories and numerical methods 

developed under this project. 
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PRINCIPAL SOLUTIONS AND FINITE-ELEMENT PROCEDURES 

J.C. Wu 

Georgia Institute of Technology 
Atlanta, Georgia 

U.S.A. 

INTRODUCTION 

Until relatively recently, the world community of fluid dynamicists has 
emphasized the development of the finite-difference approach for flow 
problems. The application of the finite-difference approach to certain types 
of flows, such as viscous flows in contact with solids with complex shapes 
and containing appreciable regions of separation, however, encountered 
serious difficulties. The need for alternatives to the finite-difference 
approach has led to a rapid growth of interest in the use of the finite-
element approach for the solution of flow problems. The development of 
finite -element procedures for fluid -dynamics applications has been strongly 
influenced by the earlier successes of the finite -element approach in solid 
mechanics applications. In extending the application of the finite -element 
approach to the more general realm of continuum mechanics, however, many 
difficulties encountered earlier in the development of the finite-difference 
approach for flow problems have reappeared. 

During the past decade, this author and his co-workers have carried out a 
research program with the objective of establishing an alternative numerical 
approach for the solution of flow problems. A focal point of this program 
has been the development of a finite =-element procedure which utilizes 
integral representations for the flow variables obtained through the concept 
of principles solutions of differential equations. This approach yields 
algebraic equations that are drastically different from the more familiar 
finite-element and finite-difference equations and offers several decisive 
advantages. In a forthcoming publication , this approach will be reviewed 
and summarized. The purpose of the present article is twofold: (1) to 
discuss the role of the principal solutions in the formulation of flow 
problems for finite -element computations, and (2) to present selected 
results that illustrate the essential features of this approach. 

PRINCIPLE SOLUTIONS 

The concept of principal solutions is fundamental to the method of solving 
flow equations described in this paper. The principal solution P(W'r

o
) of 

the elliptic equation is defined by 

- 	Zn -1-  in two-dimensional problems 
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 in three -dimensional problems 
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P satisfies Laplace's equation everywhere except at the point i = o where it 
is singular. The singularity of P at 12.  = o is such that 

1 	if R contains the point r = r
o 
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The principal solution Q(r
4  
, t; ro ;, t o ) of the parabolic equation is defined 

by 
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where t is the time coordinate, t > t o , d is the dimensionality of the 
problem, i.e., d=2 for a problem involving two spatial dimensions and d=3 for 
a problem involving three spatial dimensions, and v is the diffusion 
csgfficienc. Q satisfies the homogeneous diffusion equation 

(--1 at ' v 7 1Q = 0) and possess the following integral property: 

	

1 	if R contains the point 1-  = J 	 0  QdR = 	 „ (5) 
R 	 0 	if R does not contain the point r = r 

 

The physical significance of the principal solutions P and Q are well -known. 
If there exists a unit source at the point r,then the scalar potential 
associated with this unit source at the point r + in an infinite unbounded 
region is given by P. 	If, at the time t there exists ins,  an infinite 
unbounded region a unit of some physical quanity at the point r = r

' then Q represents the distribution of this physical quantity in space at a later 
time t > t o as a result of the diffusion process. 

VISCOUS FLOW EQUATIONS 

The time dependent motion of an incompressible viscous fluid is governed by 
the law of mass conservation and Newton's laws of motion. The mathematical 
statements of these laws are familiarly expressed in terms of the velocity 
vector v and the pressure p. It is convenient, however, to introduce the 
concept of the vorticity vector 	and and re-express the problem as follows: 

V- -■"/ = 0 	 (6) 

V x 	= 	 (7) 

	

aw 	 4 	4- 
at = vx(1; x w ) +v  v

2w 	 (8) 

Equation (6) is the continuity equation for an incompressible fluid. 
Equation (7) is the definition of the vorticity vector. These two equations 
together describe the kinematic aspect of the viscous flow problem l. That 
is, they express the relationship between the vorticity field at any given 
instant of time and the velocity field at the same instant. The kinetic 
aspeCt of the problem, equation (8), expresses the transport of the vorticity 
by the processes of convection, vorticity stretching, and viscous diffusion. 

R 	 0 	if R does not contain the point +r = r 
4- 



In the solution of a time dependent viscous flow problem, it is convenient to 
follow the kinetic development of the vorticity field in the fluid. A 
numerical procedure can be established in which the solution is advanced from 
an old time level to a new time level through a computation loop consisting 
of a kinetic step and a kinematic step. In the kinetic step, with vorticity 
and velocity values known at the old time level, equation (8) is solved to 
obtain vorticity values at the new time level. In the kinematic step, 
velocity values corresponding to the vorticity values at the new time level 
are obtained by solving equations (6) and (7). 

In order to carry out the computational loop described above repeatedly and 
advance the solution, boundary values of the vorticity vector at each new 
time level must be determined. Since the boundary vorticity values are not 
ordinarily known directly from the physics of the problem, the problem of 
determining the vorticity bo2ndary condition has been called the "extraneous 
boundary condition problem" . As it turns out, this extraneous boundary 
condition problem is a part of the kinematics of the overall problem. The 
integral representation of the kinematic aspect of the problem p5ovides a 
convenient way to compute the boundary vorticity values accurately . 

INTEGRAL REPRESENTATIONS 

Equations (6) and (7) form an elliptic set. Using Green's theorem, equat ions 
(6) and (7) have been recast into the following integral representation : 
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where the subscript "o" indicates that a variable, a differentiation, or an 
integration is in the r space, n. 0  is the unit normal vector directed outward 
from the region R, and 93 is the boundary of R. 

The velocity and vorticity fields in Equation (9) are for the same instant 
of time. The integral representation is composed of an integral over the 
region R and an integral over the boundary B. Both integrals contain the 
gradient of P in their integrands. Physically, the quantity - Cicx 90P d R 
gives the velocity field associated with the vorticity in the elementaT 
region d R in accordance with the Biot-Savart Law. The region integral 
gives therefore the "Biot-Savart" contribution of the vorticity present in R 
to the velocity field in R. The boundary integral represents the 
contribution of the velocity boundary condition on B to the velocity field in 
the region R. Alternatively, the boundary integral may be viewed as 
representing the contribution of the vorticity field outside the region R to 
the velocity field in the region R. 

The vorticity transport equation, equation (8), i4 5a vector parabolic 
differential equation. An integral representation ' of the vorticity 
vector that satisfies equation (8) everywhere in the region R is 

(et) = f(ii)oQ) t=o dRo 
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The principal solution Q gives the vorticity distribution in an infinite 
unlimited stationary fluid at the 	level t as a result of diffusion of .a 
unit amount of vorticity located at r o 	 o  at a preceding time level t. The 
first integral in equation (10) therefore represents the effect of an initial 
(t=0) vorticity distribution. In actual flows, a stationary fluid cannot co-
exist with a non-zero vorticity field. The vorticity distribution changes as 
a result of not only the diffusion process but also the convection and the 
vortex stretching processes. The cumulative effects of these additional 
processes on the vorticity distribution at the time level t are represented 
by the second integral. The third integral gives the effect of the boundary 
values of (:)°. on the vorticity distribution in R at the time level t. This 
integral may be viewed as representing the effect of diffusion of the 
vorticity field outside the region R on the vorticity field in the region R. 

SOLUTION PROCEDURE 

Equations (9) and (10) express the entirety of the time-dependent 
incompressible viscous flow problem mathematically as integral 
representations. The use of the familiar finite-element methodology leads to 
a set of algebraic equations approximating equation (9) and (10). In 
essence, the region R is divided into subregions (elements). The boundary B 
is divided into boundary elements. 	The integrals in equation (9) are 
replaced by sums of element integrals over individual elements. ,  Element 
interpolation functions are introduced, the field variables, v and w , 
expressed in terms of their nodal values, and the element integrals evaluated 
analytically. Equation (9) then yields a set of algebraic equations in the 
form: 

N 

n 	

4- 	 4. 1  
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m 
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mn  x wn + 
b

2 	vb + 6mb x vb )  
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where the subscripts m, n, and b designate respectively velocity nodes in R, 
vorticity nodes in R, and velocity nodes on B; I

ma' Bmb' and mb. are 
geometric coefficients depending only upon the relative positions of the 
nodes m and n, or m and b; N and B are respectively the total number of nodes 
in R and on B. There exists a large number of options in the selection of 
specific element types and interpolation-functions. 

For equation (10), the use of the finite-element methodology in the numerical 
quadratures with respect to time and space yields algebraic equations 
approximating equation (10). There exist again a large number of options in 
the selection of specific element types and interpolation functions, with 
respect to both time and space. 	The algebraic equations utilized be the 
present author and his co-workers are described in the references given . In 
the remainder of this section, the distinguishing features resulting from the 
use of equations (9) and (10) in the numerical procedures are outlined. 

As described earlier, the computation loop that advances the solution from an 
old time level to a new time level is composed of a kinetic step and a 
kinematic step. In these steps, equations (9) and (10) may be used in place 
of equations (6), (7) and (8). 	In the kinetic step, the distinguishing 
feature of the integral representation, equation (10), is that it expresses 
the several kinetic processes that redistribute the vorticity in the fluid as 
separate integrals. This feature offers the possibility of using different 
numerical quadrature procedures for the evaluation of the different kinetic 
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processes. 	In this manner, the drastically different characteristic time 
scales of these kinetic processes can he individually accommodated. Also, as 
noted before, the contribution of the initial vorticity distribution in R to 
the distribution at a later time is identical to the contribution of the 
diffusion process in an infinite unbounded region. In evaluating the first 
integral in equation (10), therefore, one needs to solve only the homogeneous 
diffusion equation in an infinite unbounded region. The form of the 
principal solution Q, which appears in each of the three integrals of 
equation (10), indicates that interpolation functions other than the 
familiar polynomials should be used for both the time-element and the space 
elements. It appears that simple, efficient and accurate procedures can be 
developed on the basis of these attributes. 

Equations (6) and (7) form an elliptic system. Conventional finite-element 
and finite-difference equations approximating these equations are implicit. 
The integral representation (9), however, yields explicit algebraic 
equations of the form (11). This unique attribute of the integral 
representation permits the velocity values to be computed in any selected 
region of the flowfield. It is obvious from the vorticity transport equation 
(8) that information about the velocity field is needed only in the region of 
non-zero vorticity in order to determine the effect of convection. This 

region of non-zero vorticity is the only region in which viscous effects are 
important. In many viscous flow problems, including those involving massive 
regions of separation, the viscous region occupies only a small portion of 
the total flowfield. The integral representation permits the confinement of 
the computation to the viscous region. In consequence, drastic reductions in 
the number of data points and in the amount of computation are achieved. 

The integral representation permits the confined solution field to be 
segmented and the computation within each segment performed independent of 
those in other segments'. It also permits the boundary layer region of t iie 
flow to be treated separately from the detard viscous region . 
Furthermore, it is simple to form hybrid approaches in which the integral 
representation approach is utilized advantageously in some parts of the 
flow. 

ILLUSTRATIVE RESULTS 

It has been found that the integral-representation approach is well-suited 
for a wide range of viscous flow problems involving flow separation. In 
recent articles, this authoy and his co-workers have resented numerical 
results for turbulent flows 0 , for compressible flows 11p, and for internal 
steady flows 6 . In these recent works, integral representations are utilized 
in the kinematic part of the computation. Rizk , however, obtained results 
for viscous flows using integral representations in both the kinetic and 
kinematic parts of the computation. Selected results obtained by Rizk are 
presented here to illustrate the application of the approach. 

The flow past a circular cylinder at a Reynolds number based on the cylinder 
diameter of 40 is computed twice, once using the integral representations in 
the entire flowfield and once using a hybrid approach. In both computations, 
the cylinder is set into motion from rest and the time-dependent solution is 
advanced to a steady state. With the hybrid approach, the flowfield is 
divided into a small inner region and an outer region. The integral 
representations approach is used in the inner region and finite-difference 
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procedures are used in the outer region. As shown earlier, the integral-
representation approach leads to a drastic reduction in the number of data 
points needed in the computation. However, as is evident from equation (11), 
the use of algebraic equations obtained from the integral -representations 
leads to a relatively high operation counts, of the order P, for the 
computation of each field variable value. By using the integral 
representation in only the inner region, which contains a small number of 
nodes, the operation count for the computation of each field variable value 
in the inner region is reduced. The operation count in the outer region is 
determined by the specific finite-difference procedure used and is not large. 

As a result, the hybrid procedure is more efficient than the straight 
integral-representation procedure. The results of the hybrid computation is 
in comparison with those obtained using the straight inwral-representation 
and also with finite-difference results of Jain and Roa below. It is seen 
that the hybrid results and the integral-representation results are in 
excellent agreement with each other. Furthermore, these results are in good 
agreement with finite-difference results. 

Finite 
Different 

Integral 
Representation Hybrid 

Drag Coefficient 1.55 1.57 1.57 

Pressure drag-Total drag ratio 0.66 0.67 0.67 

Separation Point (Angle 
from Front Stagnation Point) 127.3 °  125.6°  125.8°  

The accuracy of the integral-representation and hybrid procedures are 
further attested to by a comparison of the computed pressure distributions 
over the circular cylinder with the experimental data of Grove. The 
integral-representation and hybrid results are graphically indistinguishable 
and are in good agreement with the experimental data. 

The hybrid procedure is used in the calculation of a flow past a 9% thick 
symmetric Joukowski airfoil at an angle of attack of 15 °  and at a Reynolds 
number based on the chord length of 1000. The airfoil is set into motion from 
rest and the solution is carried to a large time level. Unlike in the cases 
of the circular cylinder, the flowfield around the airfoil does not approach 
an asymptotic steady state. Rather, a cyclic shedding of vortices from the 
separated region near the airfoil occurs. This cyclic shedding of vortices 
is similar to the well-known Karman vortex shedding behind a circular 
cylinder. A typical streamline plot about the airfoil during the shedding of 
a vortex is shown in Figure 2. 

CONCLUDING REMARKS 

The finite -element procedure that has been developed on the basis of 
principal solutions represents a major departure from previous finite-
difference and finite-element methods. The use of the integral 
representation containing the principal solutions offer a number of decisive 
advantages. Highly efficient computer codes have been prepared for the 
compqtation of two-dimensional laminar and turbulent, steady and time-
dependent, incompressible and compressible viscous flows involving large 
separation regions in two-dimensions. Current efforts are directed towards 



the full utilization of the advantageous attributes of the integral 
representation for the kinetic aspect of viscous flows and the development of 
highly efficient three-dimensional algorithms. 
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E 

A 	finite-element 	method 	using 	integral 

representation of field variables is described. The 

integral representations are linked to the concept of 

sources, pinks and vorticep. The interplay between the 

physical and the numerical aspects of the method is 

discussed. The advantages offered by the method and the 

scope of its application are outlined. 

1. Introduction  

The use of the finite-element approach in the 

solution of flow problems is a relatively recent 

development. During the past few years, however, 

research articles dealing with various aspects of this 

subject have proliferated. Extensive efforts are now in 

progress at ■ number of institutions at various points 

of the world to develop finite-element methods for flow 

applications. This extensive effort is motivated by the 

need for alternatives to the finite-difference approach 

which has occupied the center stage in the fluid 

dynamics community for several decades. The impetus for 

the present intensive activities in the finite-element 

approach was provided by the success of the approach in 

solid mechanics applications. It should be emphasized 

even at the risk of appearing trivial that, although the 

fluid medium and the solid medium are both continua, 

many physical processes of importance in flow problems 

are absent or unimportant in solids. The success of the 

finite-element approach in solid applications therefore 

does not assure its success also in flow applications. 

Indeed, because of the diverse physical features and 

processes present, numerical procedures that transcends 

the previously observed difficulties must be tailored to 

fit the important flow characteristics. 

In this paper, a finite-element approach for the 

computation of flow problems based on the notion of flow 

elements - sources, sinks, and vortices - is described. 

The development of this approach, called the integral 

representation approach, has been underway at the 

Georgia Institute of Technology since the early 1970s. 

Flow problems computed using this approach include 

steady and time-dependent, incompressible and 

compressible, laminar and turbulent, two-dimensional and 

three-dimensional, potential and viscous, boundary-

layer and separated types. Through analyses and  

numerical illustration, this alternative approach has 

been shown to overcome many difficulties experienced by 

finite-difference and other finite-element methods. 

The establishment of this approach has undergone 

several stages of development. In each stage, selected 

attributes of this approach have been incorporated into 

the numerical procedure and substantial improvements in 

solution efficiency and accuracy have resulted. The 

overall result is an ability to compute a variety of 

flows accurately and economically on a routine basis. 

In a series of previous articles and doctoral theses at 

Georgia Tech, 1-10 the detailed mathematical and 

numerical analyses related to this approach have been 

presented. In the present paper, the interplay between 

the physical and numerical aspects of the present 

approach is discussed. The linkage between the 

principal solutions of differential equations and the 

flow elements is emphasized. It is well-known that the 

notion of sources, sinks, and vortices are indispensable 

in the interpretation of many important aerodynamic 

phenomena. It is clear that these flow element can also 

play an important role in the development of 

computational methods for flow problems. 

Because of length limitation, this paper discusses 

mainly the incompressible flow problem. Compressible 

flows are only mentioned briefly here and are discussed 

extensively elsewhere. 74  

2. Vorticity and Dilatation Fields  

The vorticity and the dilatation are defined 

respectively as the curl and the divergence of the 

velocity field. In some flows, the magnitude of the 

vorticity field in the neighborhood of a surface in the 

fluid is much larger than that elsewhere. Such a 

concentration of the vorticity field occurs, for 

example, in the boundary layer region adjacent to a 

solid surface. For some applications, it is justifiable 

to approximate a concentration of vorticity by a vortex 

sheet. A vortex sheet is mathematically a surface of 

discontinuity of the velocity component tangential to 

the surface. Conceptual and numerical difficulties may 

arise in connection with the use of the notion of the 

vortex sheet. These difficulties however, are not 

difficult to resolve if the vortex sheet is viewed as an 

approximation to a continuous distribution of vorticity. 



Vortex filaments or lines are useful approximations 

of concentrated vorticity along lines in the fluid. 

Such concentrations of vorticity exist, for example, in 

tip vortices trailing a lifting wing. 

In analogy to vortex sheets, source sheets can be 

used to approximate concentrated dilatation in the 

neighborhood of a surface. Source and sink sheets are 

mathematically surfaces of discontinuity of the velocity 

component normal to the surface. They should be viewed 

as approximations to real distributions of dilatation in 

the fluid so as to avoid apparent conceptual and 

numerical difficulties. In the case of a shock wave in a 

supersonic flow, for example, although the shock wave is 

justifiably approximated by a sink sheet in many 

applications, the fact that the shock does possess a 

finite structure should be remembered. 

3. Dynamics of  Vortices, Sources and Sinks  

The law of conservation of mass states that the 

dilatation 	field 	vanishes 	everywhere 	in 	an 

incompressible flow. Sources and sinks therefore do not 

represent physical reality in such flows. 	They 

nevertheless provide mathematical conveniences in 

computations. In contrast, vortex sheets and lines do 

represent real distributions of vorticity and, for this 

reason, are more preferable in numerical procedures for 

incompressible flows. 

The 	differential 	equations 	describing 	the 

incompressible flow are familiarly expressed as the 

continuity and Navier-Stokes equations. Taking the curl 

of each term in the Navier-Stokes equation yields the 

vorticity transport equation 
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where v and (-0.  are respective the velocity vector and the 

vorticity vector and v is the kinematic viscosity of the 

fluid. The right-hand side terms in equation (1) 

represent the amplification and rotation of vorticity by 

the strain rate, the convection of vorticity with the 

fluid in motion, and the diffusion of vorticity through 

viscous action. if the fluid were inviscid, then the 

vorticity flux associated with each material element 

moving with the fluid would remain a constant for all 

times. This well-known theorem of Helmholtz, a proof of 

which is available in many textbooks, is modified in the 

case of a real fluid by the process of viscous diffusion. 

Since the process of diffusion alters the distribution 

of vorticity without creating or destroying it, 

vorticity flux can neither be created nor be destroyed 

in the interior of the real fluid. 

Consider a solid body immersed in an incompressible 

fluid occupying an infinite region. The solid body is 

initially at rest in the fluid also at rest. A 

subsequent motion of the solid induces a corresponding 

motion of the fluid. At large time levels after the  

motion's onset, if the solid motion is uniform relative 

to the freestream, then the possibility of an asymptotic 

steady flow exists. Alternatively, the possibility of a 

time-dependent flow involving periodic shedding of 

vortices, as evidenced by the well-known Kerman vortex 

sheet, also exists. The vorticity is obviously 

everywhere zero in the fluid prior to the motion's 

onset. Consequently, immediately after the onset of the 

motion, the vorticity is everywhere zero in the fluid 

except at the boundary in contact with the solid. That 

is, the fluid motion immediately after the onset of the 

motion has a non-zero tangential velocity relative to 

the solid. The discontinuity in the tangential velocity 

constitutes a vortex sheet at the boundary. At 

subsequent time levels, the vorticity in the vortex 

sheet spreads into the interior of the fluid domain by 

diffusion and, once there, is transported away from the 

boundary by both convection and diffusion. At the same 

time, the no-slip condition provides a mechanism for the 

continual generation of vorticity at the boundary. The 

general pattern of flow development therefore consists 

of the continual generation of vorticity at the solid 

boundary, the diffusion of the vorticity from the solid 

boundary into the fluid, and the subsequent transport of 

the vorticity away from the solid by convection and 

diffusion. 

The transport of vorticity by convection is a 

finite rate process. The fundamental solution of the 

diffusion equation decays exponentially with the square 

of the distance from the source location. Consequently, 

the effective rate of diffusive transport of vorticity 

is also finite. Since vorticity must originate at the 

solid boundary, the vortical region of the flow is of 

finite extent at any finite time level after the 

initiation of the solid motion. 

If the coefficient of viscosity v is very small 

and the flow Reynolds number is very large, as is the 

case in most applications, then the effective rate of 

diffusion is much slower than the rate of convection. A 

large region of the flow, ahead and to the side of the 

solid, is then essentially free of vorticity and 

therefore inviscid. 

For the case where the flow does not separate from 

the solid surface, as, for example, in flows past a thin 

airfoil at a small angle of attack sketched in Figure 1, 

the vorticity is concentrated in thin boundary layers 

adjacent to the solid surface where the vorticity 

originates. In addition, as the boundary layer fluid 

leaves the solid, carrying vorticity with it, a thin 

vortical wake trailing the solid is formed. in 

potential flow computations, the vorticity fields are 

approximated by vortex sheets. The simplifications 

resulting from this approximation are remarkable, as 

discussed in Section 5 of this paper. 
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If the detailed flow structures within the vortex 

layer are of interest, then the boundary layer equations 

need to be solved. The use of the vorticity and the 

notions of vortex offers an alternative to the familiar 

solution methods, as described in Section 6. 

For the case where massive regions of flow 

separation are present near the solid, as sketched in 

Figure 2 for an airfoil at a high angle of attack, the 

Navier-Stokes equations enter the solution procedure. 

The concept of vortex is again well-suited for the 

computation of this type of flow, known as the general 

viscous flow, as discussed in Section 6. 

For compressible flows, the law of conservation of 

mass does not require the dilatation field to be 

everywhere zero in the flowfield. Indeed, the 

dilatation field is important over a much greater region 

than the vortical region. A differential equation 

describing the transport of dilatation has been derived 

and presented earlier. 7  

The dilatation transport equation has been recently 

utilized together with the vorticity transport equation 

in the computation of compressible general viscous 

flows. The computation procedure that has been 

developed is ultimately related to the concept of 

sources and sinks. 

4. Kinematics of Flows  

In 	a 	numerical 	solution 	procedure 	for 

incompressible flows, it is convenient to follow the 

kinetic development of the vorticity field. With the 

velocity and vorticity fields known at an old time 

level, equation (1) can be solved numerically to 

establish a new vorticity distribution at a subsequent 

time level for the interior of the fluid domain. The 

solution of equation (1) can be carried out by using a 

finite-different approach or a finite-element approach. 

Alternatively, the integral-representation approach can 

be used. With each approach, a variety of options exist 

regarding the specific numerical schemes to use. In 

recent articles, the advantages of using hybrid schemes 

to accommodate the important physical features present 

in the flows have been discussed. 1°  

Having established the new vorticity distribution 

in the fluid domain, the solution can be advanced 

further by again solving equation (1), provided that the 

velocity field and the boundary values of the vorticity 

are determined for the new time level. The new velocity 

field and the new vorticity boundary values are related 

to the new vorticity field in the fluid domain through 

the following kinematic equations: 

7 v - 0 

. 	 V x 

Equations (2) and (3) are respectively the 

continuity equation and the definition of the vorticity 

field. They relate the velocity field at a given instant 

of time to the vorticity field at the same instant. 

By using the principal solution of the elliptic 

equations and the Green's theorem, equations (2) and (3) 

can be recast into an integral representation for the 

velocity vector" 
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where I.-  is a position vector, d is the dimensionality of 

the problem i.e., 41.2 for two-dimensional flows and d..3 

for three-dimensional flows, n is the unit normal vector 

directed outward from R, and the subscript "o" 

designates a variable or an integration in the i o  space. 

The vectors and and w are for the same instant of time. 

The first integral in equation (4) represents the 

Biot-Savart contribution to the velocity field. 	For 

example, the familiar Biot-Savart law for an infinite 

straight vortex line in an infinite unlimited fluid 

states that the magnitude of the velocity associated 

with it is inversely proportional to the distance from 

the vortex line to the point where the velocity is 

measured and the direction of the velocity vector is 

perpendicular to the vortex line. This statement may be 

viewed as a result of the first integral of equation (4) 

ae applied to an infinite vortex tube of infinitesimal 

cross-section in an infinite fluid. 

The second integral in equation (4) gives a 

potential velocity field, say vp , in the region R. 

represents the contribution of the velocity boundary 

values. Alternatively, may be considered the 

contribution of a vorticity distribution which is 

present outside R on the velocity field in R. Equation 

(4) is therefore a generalized version of the familiar 

law of Biot-Savart and is intimately connected to the 

notion of vortex. 

Finite-difference and familiar finite-element 

equations approximating the elliptic system of equations 

(2) and (3) are implicit. With equation (4), however, 

velocity values can be computed explicitly, point by 

point, using known distribution of vorticity in R and 

known boundary velocity values on B. Furthermore, if 

equation (4) is used to compute the velocity values on 

the boundary of a subregion in R, then the information 

necessary for further computation of velocity values 

within the subregion becomes entirely contained in the 

subregion and its boundary. In other words, the 

computation of velocity values in the subregion no 

longer depends upon information outside the subregion. 

The ability to compute the velocity values 



explicitly and the ability to treat each subregion of 

the flow independently of the remainder of the flow 

field are two unique and most important features of the 

integral representation. 

5. Potential Flow  

In the case of an attached two-dimensional steady 

flow, the thin wake trailing the finite solid body is 

composed of two layers of vortices of equal magnitude 

and opposite sense. The effect of this double layer may 

be small. The strength of the vortex sheet representing 

the boundary layers can then be determined through the 

use of the integral representation (4). To illustrate 

the concept involved, consider a steady flow past an 

airfoil with a freestream velocity ;on . The application 

of equation (4) to the boundary B on the airfoil yields, 

1 Jr 70- 	-  
173  13+ 	1- 	1 2  o 

where "77 	is the strength of the vortex sheet 

representing the boundary layer, i b  is a point on B, and 

B+  is the surface enveloping B and at an infinitesimal 

distance from it. 

In equation (5), a distinction is made between the 

suface where the vortex sheet is located, and the 

surface B, which is a part of the airfoil and on which 

the velocity is given by the prescribed motion of the 

airfoil. This distinction is consistent with the 

physics of the problem since the boundary layer is 

located outside the solid surface. 

For the two-dimensional flow problem, the vorticity 

vector ‘;'; is directed perpendicular to the plane of the 

flow. In consequence, the unknown function Y in 

equation (5) has only one component. Equation (5) is a 

vector Fredholm integral equation with two scalar 

components. The solution of either of the two component 

equations, however, satisfies the other. It is noted 

that the solution to either component of equation (5) 

contains an arbitrary constant. This arbitrary constant 

can be determined uniquely by the Kutta condition. It is 

noted in passing that instead of applying equation (4) 

to B, one may apply it to the surface B "  which envelops 

B+  and is at an infinitesimal distance from B. The 

resulting integral equation differs from equation (5) 

only by the amount -Yet , where -et  is the unit vector 

tangent to B, added to the right side. This added term 

accounts for the discontinuity across the vortex sheet 

of the tangential velocity component. By removing the 

vortex sheet from the region of concern, possible 

conceptual confusions and mathematical difficulties are 

removed. 

The most widely used numerical procedures for 

computing incompressible potential flows today are based 

on the concept of fictitious sources and sinks. Source 

and.sink elements are placed inside the solid body in  

such a way that the normal velocity boundary conditions 

are satisfied on the surface of the solid. This method 

of sources and sinks leads to an equation identical to 

the tangential component of equation (5). It is worthy 

of note, however, that the vortex conception of equation 

(5) is based upon real phenomena. For this reason, it 

often; important advantages in its generalization for 

viscous flow applications. 

With the strength of the vortex sheet determined, 

the velocity field everywhere can be immediately 

established through the generalized Biot-Savart law. In 

this regard, it is worthy of note that the vortex method 

leads to a particularly simple expression for the 

pressure coefficient acting on the solid surface. Since 

the vortex sheet strength represents the magnitude of 

the discontinuity in the tangential velocity and the 

velocity is zero on the solid surface, the velocity 

magnitude on the fluid side of the vortex sheet is simply 

Y . Physically, then, Y gives the boundary layer edge 

velocity. The pressure coefficient on the fluid aide is 

simply 1 - (Y  /L0 2 . Since the pressure across a 

boundary layer is constant, and the vortex sheet ie an 

approximation of the boundary layer, the pressure 

coefficient acting on the solid surface is also given by 

1 - u cd 2 . 

For some problems, the structure of the thin wake 

is important. One such structure, illustrated in Figure 

1, shows the roll-up of the wake behind a non-lifting 

flat plate. The flow pattern computed using the vortex 

concept agrees remarkably well with the flow pattern 

observed experimentally. 

For lifting bodies, a starting vortex is always 

present in the fluid. Even though this starting vortex 

may be thought of as located at an infinite distance from 

the solid, its presence is being felt in the boundary 

layer by the requirement that the total vorticity in the 

boundary layer, i.e., the circulation, must be equal in 

magnitude and opposite in sign to the total vorticity in 

the starting vortex. For lifting bodies with trailing 

edges that are not sharp, the Kutta condition is 

ambiguous. The circulation can be determined by the 

total vorticity in the starting vortex. 12  For three-

dimensional flows, because of the solenoidal nature of 

the vorticity field and because the vorticity in the 

fluid must originate from the solid surface, the 

starting vortex is connected to the solid surface by 

trailing vortices. For time-dependent flows, trailing 

vortices are also present. In some applications, the 

effects of viscous diffusion is unimportant in the 

trailing vortices. The trailing vortices may therefore 

be approximated by vortex sheets and vortex filaments. 

If the position of the trailing vortices are known, then 

an equation similar to equation (5) can be written for 

the entire vortex system. For this situation, the 

dB0  e 	 (5) 



kinetic aspect of the problem does not enter the 

solution procedure. The dimensionality of the problem 

is reduced by one. For example, the two-dimensional 

airfoil problem discussed earlier reduces to the problem 

of determining r on the boundary by solving the integral 

equation (5), which is one-dimensional. 	The vortex 

approach is therefore extremely attractive. 	In many 

applications, however, the position of the trailing 

vortices must be computed by treating the kinetic 

equation. 

6. Boundary Layers and Separated Flows  

The concept of sources, sinks and vortices offers 

decisive advantages in the computation of boundary 

layers and separated flows. Some of these advantages 

are outlined below. 

6.1 Computation of Vorticity Boundary Condition  

It is simple to show that, in the case of a flow 

where the vorticity is not confined to the immediate 

vicinity of solid surfaces, equation (5) can be 

generalized by adding a term to its right side 

representing the Biot-Savart contribution of equation 

(4) to the boundary velocity. This generalized integral 

equation gives a boundary vortex strength accurately 

simulating the process of vortex generation on the solid 

surface. 13 

6.2 Boundaryl.lerCo s 

As discussed earlier, the boundary layer edge 

velocity is equal to the strength of the vortex sheet in 

a steady flow. Thus the determination of the vortex 

sheet strength provides the needed boundary condition 

for boundary layer computation without a need to compute 

the potential flow details. Similar advantages are 

available for the computation of time-dependent boundary 

layers. 14 

6.3 Confinement of Solution Field  

From equation (1), it is obvious that the 

convection of vorticity is important only where the 

vorticity is not negligibly small. Thus, in solving 

equation (1), information about the velocity is needed 

only in the viscous region. Since, with the generalized 

Biot-Savart law, equation (4), velocity values can be 

computed point by point explicitly, it is possible to 

compute the velocity values only for the viscous region. 

In consequence, the large potential region of the flow, 

which surrounds the relatively small viscous region in a 

general viscous flow, does not need to be computed. The 

drastic reduction in the number of computation points 

resulting from the confinement of the computation to the 

viscous region leads to a drastic reduction in the 

amount of computation required. 11  

6.4 Separate Treatment of Boundary Layer and Separated  

Parts of General Viscous Flow  

The viscous part of the general viscous flow, where .  

the computation is confined to, contains the boundary 

layer region and the separated flow region. The 

characteristic length scale of the boundary layer is 

much smaller than that of the separated flow region. 

Futhermore, the physical characteristics of the two 

regions are different. The use of equation (4) permits 

the two viscous regions to be separately treated. The 

result is a procedure that is tailored to fit the 

physical features of the flow. The procedure is 

extremely efficient and accurate. It should be noted 

that as the flow Reynolds number increases, the ratio of 

the boundary layer length-scale to the separated-flow 

length-scale decreases and the problem of simultaneouly 

accommodating the two diverse length scales becomes more 

severe. The familiar finite-difference and finite-

_element methods usually encounter a "Reynolds number 

limit" beyond which excessive computer time is required 

to solve a given problem. The method based on the 

generalized Biot-Savart law, with the two confined 

viscous regions separately treated, transcends this 

limitation and is insensitive to the flow Reynolds 

number.
14 

In many applications, it is desirable to combine 

the unique attributes of the present approach with 

other, more conventional approaches so as to better fit 

the physics of the flow problem. It has been found that 

the present approach is extremely flexible and is well 

suited for hybridization with other approaches. 

There are a number of other advantageous attributes 

as well as a large amount of analyses and computed 

results available. At the present stage of development, 

the present approach has been thoroughly calibrated. 

The approach permits two-dimensional high Reynolds 

number flows, including turbulent flows, to be computed 

routinely and economically. Some three-dimensional 

results have been obtained for flows past solids with 

simple shapes. A research program aimed at developing 

this approach for computing three-dimensional flows past 

solids with complex shapes has been initiated. 
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During the reporting quarter, the general theory for aerodynamic forces 

and moments in time-dependent viscous flows has been further developed and the 

application of this theory to several types of unsteady viscous flows has been 

studied. This theory, described last year in a journal article (AIAA Journal, April 

1981), relates the rates of change of vorticity moments in the combined fluid-solid 

domain to the aerodynamic forces and moments acting on the solids. The 

mathematical derivation of the equations forming this theory is based on the 

viscous flow equations and is rigorous. No simplifying assumptions other than those 

contained in the Navier-Stokes equations have been introduced. The general theory 

is now complete for incompressible flows and is valid for both two-dimensional and 

three-dimensional problems. Progress has been made in extending this theory for 

compressible flows by analyzing the kinematics and the kinetics of the dilatation 

field, which is not everywhere zero in a compressible flow. 

The application of the present theory to several problems of practical 

importance has been studied. For applications were the vorticity in the viscous 

flow exists only in narrow bands such as the boundary layers, the use of the general 

theory is particularly simple. The apparent mass properties of solid bodies, for 

example, are related, through the general theory, to the process of vorticity 

generation on the surfaces of the solids. For two- and three-dimensional bodies, 

the apparently mass properties are determined in a simple manner without the need 

of involvement with the concepts of impulse and kinetic energy. For three-

dimensional configurations, previous approaches to the question of apparent mass 

properties are overly complex to yield meaningful information for all except 

extremely simple configurations. The general theory gives accurate results in a 

simple manner for most complex configurations. 

L 
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During previous quarters, the development of the integro-differential 

approach for the solution of unsteady viscous flow problems involving massive flow 

separation have produced two powerful methods. One of the two methods deals 

with the kinetics (as well as the kinematics) of the problem using integral 

representations. The other method treats the attached and separated flows 

independently. These methods have been established for two-dimensional problems. 

Over the past several years, the integro-differential formulation has undergone a 

series of improvements and refinements, such as the "flow-field segmentation" 

techniques and the hybrid "boundary layer/Navier-Stokes" techniques. Each 

improvement has led to a large reduction in the computer resources required to 

solve complex, separated flow fields. In the following table, the progressive 

reduction in the computer time required to solve a separated flow problem using 

the integro-differential approach is shown. A peculiar feature appearing in this 

table is that the calculations at Reynolds numbers 1000 and 40,000 require less 

time than the calculations at a Reynolds number of 40. This is because at e 

lower Reynolds number boundary layer assumptions are not val;d, and the hybrid 

boundary layer/Navier-Stokes technique is not applicable. 

Computer Time Requirements in Minutes of CDC 6600 
for the Circular Cylinder Problem 

Year 

Reynolds Number 1970 1975 1980 1985 

40 95 40 25 (20)a  

1000 (300) 80 20 (6) 

40000 (1200) (250) 20 (6) 

3,600,000 - 80 (15) 

a
Numbers in parentheses are estimated values. 
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The efficiency of this approach makes it feasible to further develop it for 

three-dimensional and turbulent separated flow problems. The present method is 

reviewed in the folllowing article which appeared during the reporting quarter: 

J. C. Wu: Problems of General Viscous Flow," Chapter 4 of Developments  
in Boundary Element Methods  - 2, Applied Sciences Publishers Ltd., 1982. 
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Dining the pasi to 0 decade there has been a ,o..eadv increase in the 

willingness oh fluid Jvnamici,ts to accept the computer as a valuable, 

perhap, indKnensahl,... tool in engineerim2 etfort - !'his willingness is it 

consequence ol the linpre‘ske progtess made in the tontine and accurate 

solution of dilheren ■ ial equitoon, describinu certain apes of flow on the 

wmputer . 1 01 ol t %pc% cJrabilit ■ lttr th ;outine and at:eurate 

comptuatuan ha. H:t to he 	 ,md the villingness to ;accept 
computer sonmon 	',oiled ...v tenure 	 act ‘ lilt's It ILis long 
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approach offers the only promise, for the foreseeable future, of accurate 
quantitative solutions under reasonably general circumstances. 

Until relatively recently, computational fluid dynamicists have empha- 
sised the development of the finite difference approach for viscous flow 
problems. Progress made in this regard during the past two decades for 
boundary layer flows has been extensive. For general viscous flows which 
contain appreciable regions of separation, however, the application of the 
finite difference approach encounters serious difficulties. The need for 
alternatives to the finite difference approach has been recognised by many 
researchers and has led, in the past few years, to a rapid growth of interest in 
the application of the finite element method to flow problems. An impetus 
for this interest was provided by the impressive success of the finite element 
approach in many solids mechanics applications. Many researchers have 
suggested that the application of the finite element approach to flow 
problems is a natural extension of its application to structure and elasticity 
problems. Such an extension, however, has not been straightforward. 
Many of the major difficulties experienced in the application of the finite 
difference approach have reappeared in connection with the use of the finite 

element approach for flow problems. 
In restrospect. the disparity of success of the finite different approach as 

applied to different types of viscous flow problem is not unexpected. The 
starting point of the finite difference approach is the discretisation of the 
familiar differential equations of flow. These differential equations, 
formulated long ago with classical mathematical analyses in the back-
ground, do not always represent the most suitable. or even a reasonable. 
formulation for numerical procedures. Regarding the finite element 
approach, it should be emphasised, even at the risk of appearing trivial. 
that although the fluid and the solid are both continuous media, many 
important physical processes in fluid dynamics are absent or unimportant 

solids 
in solids mechanics. The success of the finite element approa  
mechanics therefore does not assure its success in fluid dynamics. Also,.it is 
known that if the finite element nodes are arranged in a uniformly spaced 
rectangular array. then the algebraic equations obtained through the 
concept of the variational principle or that of residuals are often identical to 
those obtained through a finite difference procedure using the same gr as

id 

system. In consequence, the familiar finite element approach is not  
fundamentally different from the finite difference approach as some 

researchers have claimed it to be. 
In this chapter an approach which utilises the finite element method- 

ology but which does not rely on the concept of the variational principle, or 

that of the residuals such as the Galerkin's procedure, is described. With 
this approach, the differential equations of motion are recast into the form 
of integral representations. Each of the integral representations is com-
posed of an integral over the fluid domain and an integral over the 
boundary of this domain. During the past decade, several researchers have 
shown, by analyses and by numerical illustrations, that the solution 
procedure for flow problems based on the integral representation concept 
offers a number of decisive advantages. In particular, it has been found that 
the integral representation approach removes several major obstacles 
experienced in the prevailing finite difference and finite element solutions of 
the general viscous flow problem. In this chapter, the integral representa-
tion approach is reviewed and summarised. Important features of this 
approach are described. In particular, the distinguishing role of the 
boundary integral in the integral representation approach is examined. 
One purpose of the present paper is to bring into focus the understanding, 
acquired during the past decade of research into the integral representation 
approach, of the interplay between the numerical and the physical aspects 
of the general viscous flow problem. This interplay often dictates the 
utilisation of the integral representation formulation and hence the 
boundary element method for superior solution efficiency and solution 
accuracy. 

The discussions of this chapter are centred upon time-dependent laminar 
incompressible general viscous flow past the exterior of solid bodies. This 
type of flows possesses the essential features of interest and serves to bring 
into focus the most important concepts associated with the integral 
representation approach. It has been found that this approach is veii suited 
for a wide range of flow problems. In several recent articles. for example, 
this author and his co-workers have presented integral representation 
results for turbulent flows (Wu et al., 1977: Wu & Sugavanam. 1978: 
Sugavanam, 1979). for compressible flows (Wu, 1974; El-Refaee. 1981), 
and for internal and steady flows (Wu & Wahbah, 1976; Vv'ahbah, 1978). 
While the focal point of this chapter is the development of the integral 
representation approach to the solution of general viscous flows, the 
approach is also useful in solving boundary layer and potential flows. In 
fact, for potential flows. the integral representations reduce to a single 
boundary integral equation. The boundary integral method, developed on 
the basis of fictitious singularities, such as source and sink elements. is 
today widely used in computing complex potential flows (e.g. Hess, 1980), 
In this chapter, a different viewpoint is brought forth by a derivation of a 
boundary integral equation as a special case of a general viscous flow. 
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4.2 DIFFERENTIAL FORMULATION 

The time-dependent motion of an incompressible viscous fluid is governed 

by the law of mass conservation and Newton's laws of motion. The 

mathematical statements of these two laws are familiarly expressed in the 

differential form and known as the continuity and Navier-Stokes equa-

tions, respectively. Expressed in right-handed Cartesian tensor notations, 

these equations are 

ct 
= 0 

and _, 
(?ti 	i't t - ,ii :1 	I 	i'li 	t -r, 	

(2) 4.  ___ P = _ _ _ + % - 
, 

CI, I 	( • .V 	p c x , 	1.  x i  i" . x-  , 

where u i  is the ith component of the velocity vector, p is the static pressure. p 

is the density and v is the kinematic viscosity. considered to be uniform for 

simplicity. 
Equations (1) and (2) are in principle sufficient for the determination of p 

and v i . known as the primitive variables of the problem. pro%idad that 

appropriate initial and boundary conditions for the \ elocit ■ i.cctor are 

prescribed. It is, however, advantageous to introduce the corwept of the 

vorticity vector w defined by 

(3)  

where r; ; „, is the alternating unit tensor. 
The vorticity to is a derived variable. With it. the formulation of the 

problem is conveniently partitioned into its kinematic and king is aspects. 

The kinematic aspect of the problem is described by eqns. t f) and t 3). This 

aspect expresses the relationship between the vort i city field any given 

instant of time and the velocity field at the same instant. The kinetic aspect 

of the problem is described by the vorticity transport equation: 

t 	i, 
= to 

Equation (4) is obtained from eqn. (2) by taking the curl of each term in 

that equation and using eqns. ( I) and (3). The three right-hand side terms in 

eqn. (4) represent, respectively, the amplification and rotation of vorticity 

by the strain rate, the convection of vorticity with the fluid and the diffusion 

(4)  

of the vorticity through viscous action. These kinetic processes redistri-

bute the vorticity in the fluid. In the numerical solution procedure, it is 

convenient to follow the development of the vorticity field in the fluid. A 

numerical procedure therefore can be established in which the solution is 

advanced from an old time level to a new time level through a computation 

loop consisting of the following three steps: 

(a) With known vorticity and velocity values at the old level, eqn. (4) is 

solved to obtain vorticity values in the interior of the fluid domain 

at the new level. 

(h) New boundary values of the vorticity are computed using the 'no 

slip' condition. 

(c) 	New velocity values corresponding to the new -vorticity values are 

obtained by solving eqns. (I) and (3). 

Step (a) is the kinetic part of the computation loop. Since eqn. (4) is 

parabolic in its time-space relation. step (a) requires the solution of an 

initial value-boundary value problem. The process of vorticity generation 

on the solid boundary is not described by the kinetic process of vorticit y 

diffusion titt_i convection f 	1976). Boundary values of vorticity. 

howe ■ er. 	necessary to ads ance the solution further in time. Thiz, 

computatEon of the boundary allies of vorticity, step (t) in the loop. :s 

critical to the accuracy of the time-dependent solution and is discussed later 

in this ch:mter. 

Step (hi completes the computation of vorticity values at the new time 
a nal. Ste , fed utilises the iust-computed vorticity values to establish a set col 

mess veioeit ■ values. This step is the kinematic part of the loop It requires 

the of a boundary value problem since eqns. ( 1) and 31 ,nstitute 

yin ellipti s ∎  stern of differential equations. 

The general solution procedure just outlined enables the time de k:ior 
uncnt orlicity field in the fluid to be simulated computationally. The 

elocity o :n fact considered to be an auxiliary variable in the loop. The 

cominnidion of the velocity values is being carried out to provide the 

for the kinetic processes of vorticity transport 

'he general procedure just outlined, if the prescribed selocity 
:-)otindan, ‘Tontlitions are independent of time, then the possibility of an 

asymptotic steady flow exists in the limit of large time. Alternatively. the 

possibility or a time-dependent flow involving periodic vortex shedding, as 

idenced h\ the well-known Karman vortex sheet behind a eireular 

cylinder, also exists. lithe prescribed velocity boundary conditions are time 

dependent. then the flow is necessarily time dependent. 
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4.3 BOUNDARY CONDITIONS 

The kinematics and kinetics of the flow can be thought of as two interlaced 

problems in a numerical solution procedure. The kinetic computation of 

new vorticity values and the kinematic computation of new velocity values 

are obviously interlaced, since the kinetic computation of the convective 

effects in eqn. (4) requires a knowledge of the velocity field and the 
utation of new velocity values requires a knowledge 

kinematic comp 	

of the 

vorticity field. In addition, the kinematics needed 
and kinforetics

these 

of th
two

e 
 proasblpects.

em are 

linked through the boundary conditions 
The differential equations describing the kinematics of the flow. eq ns. ( 1) 

and (3), are linear. Equation (1) implies the existence of a vector potential. 

curl of which is (h) gives 
e veloc 	 P ity 	

a

a

rn  elliptic p 

an vector. lcin
tialg this definition of the vector 

the c 
potential into eqn. (3 	

ditTerential equation for the 

vector potential. Th 

	

	
art of the solution procedure therefore 

e kinematic pa  

requires the solution of a boundary value problem. 

The appropriate boundary conitions ven in 
for the kin

simply 

ematics of
cte 

the re probleR. m 

are as follows- If the vortieity field d 
islx.cii 	a 	

conned gion  

then either one of the following Nieloeity conditiveloeo ons ity fi

n the

e 

 closed boundary! 

B of the region R is sufficient le diners-nine 	
ld 	R uniquely: 

(5) 
on 8  

1 - 
 

B 	
(6) 

or 

where ?1 ;  is the unit normal vec,or 	
6' directed outward from the region 

R. 

andfand g i  are known ti.!nCI10 ∎ )s 01 CrwIl. 	and 
the position vector on the 

boundary B. 
If the region R 	rnultipl tiolt CAL C:_. j. 

then the value of circulation in the 

several independent circuits 
e t -  t:n t

eeten must be specified together with 

the condition (eqn. (5)i. In Ow 	
di,cussions. references to the 

boundary condition (eqn. ( 5)) 	i 	
nowledge about the circulation 

values wherever needed, ;litho:ten 
	m 	

be 
mentions of this need may b 

To prove the above '■ 'itten-k: 	
ding the boundary condition, let omitted at times. 

there be two velocity field., 	
each satisfying eqns. (1) and (3). 

Define a third velocity Held 	
f; 

It is obvious that te„, is solenoidal aed irrotational. In consequence. and 
possesses a scalar potential di which ..ansfies a Laplace equation. If v „  

it = I 

(7 ) 

tt,, have the same tangential component on B, then the tangential 

component of 1) 3 , is zero on B. This means that the tangential derivative of 

the scalar potential of C si  is zero on B. Therefore the scalar potential is a 

constant on B. By virtue of the principle of extremum for the Laplace 

equation. the scalar potential is then a constant in R. In consequence, 

t) 31 = 0 in R and u„ = (- 2 ,. In other words, the condition (6) gives a unique 

solution of eqns. (I) and (3). Alternatively. if u ;;  and v, ;  have the same 

normal component on B, then the normal component of t - 3 , is zero on B. 
This means that the normal derivative of the scalar potential is zero on B 
and the scalar potential is a constant in R. Therefore r,, = 0 in R and 

ti„ =1- 2i . In other words, the condition (5) gives a unique solution of 

eqns. (1) and (3). 

Consider a viscous flow past the exterior of a finite solid body. The fluid 

boundary B is composed of the solid surface S and a surface, , infinitely 

far from S. If the freestrearn velocity and the motion of the solid ar 

prescribed, then, with the no-slip condition on S. both conditions (5) and 

(6) are known on S and on S at each time level. If the vorticity distribution 

is known completely in the luid region R, then the kinematics of the flow 

problem is ov.erspeeihed. For example. suppose one uses the known 

condition (5) to solve for the velocit. field in R. then the tangential velocity 

on the boundary B. determined as a part of the solution. is in general 

different from the knci)v, n condition ito on B From the above considera-

tion, it is obvious that the distribution in the region R is subject to 

a kinematic restriction. Thi ,  restriction is imposed by the velocity 

boundarr condition g; -,en thc physics of the problem. 

The vorticity transport 	 eqn. (4). is parabolic in its time--space 

relation. The spatial 	 operator in eqn. (4; is elliptic. The kinetic 

part of the computation iherefore requires t he solution of an initial value- 

boundary value problem. T he initial condition for the vorticity vector is 

provided by the pbvslc 	:hs. 	 That is. with ans known initial 

distribution of the \ cioci! field. the initial orticity distribution is 

determined by eqn_ (3). The hott-Idar:, condition for the vorticity vector is 

needed to procetd Faith the so l ution. This boundary condition is de-

termined by the kinematic rc,tri,. - tron discussed in the preceding paragraph. 

The computation of the boundary ‘ortieity values can be accomplished 

through the use of a boundar:, iliteral equation, as described by Wu 

(1976). This procedure is discussed later. 1n tact, it is shown later that the 

normal gradient of yorticits. which is related to the tangential pressure 

gradient on the solid boundary. is similarly determined by a kinetic 

restriction. 

I 
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It is obvious that the transport of vorticity by convection is a finite rate 
process. The process of diffusion possesses an infinite signal speed. It is well 
known, however, that the fundamental solution of the diffusion equation 
decays exponentially with the square of the distance from the source 
location (see Section 4.5). Consequently, the effective rate of diffusive 
transport of vorticity is also finite. Since vorticity must originate at the solid 
boundary, the vortical region of the flow is of finite extent at any finite time 
level after the initiation of the solid motion. The vorticity is zero on S,.. 
Outside the vortical region. the flow is essentially free of vorticity and 
therefore irrotational. If the (low Reynolds number is not small, then the 
effective rate of diffusion is much smaller than that of convection. 
Therefore. a large region of the fluid, ahead and to the side of the solid. is 
essentially free of vorticity. The last term in eqn. (4) may be rewritten as 

Therefore the flow in this large region, where the vorticity 
and its derivatives are zero. is inviscid or potential. 

The vortical region of the general viscous flow is composed of three 
distinct flow components: the boundary layer. the recirculating flow, and 
the wake (see Fie. 	The boundary layer is an attached flow region. In the 
bounclar:, 	thc tlou direction is nearly tangential to the solid surface. 
Since. the ctlyet, 	r,tie of diffusion is much smaller than that of convection. 
the 	.1,:nerat,:.,1 on the solid boundary cannot penetrate far into the 
fluid domain by diffusion in the boundary layer. In consequence. the 

:2; H. thin comp..ired to the characteristic length of the solid 
body. In (eons of non-dinional length, with the characteristic solid 
length as 	7c-ere:tee length. the boundary layer thickness scale is of the 
order Re 	,'rc. Re is the Remolds number based on the free-stream 

toeit ;„,,cl. t 1 1 ,, 	 solid length. In comparison, the length scales 
of Inc 	U - Ctil.tiMg 1 1.011 and the \Rake are of the order of one. In the inviscid 
legion of t:R: 	the dimensionless length scale is of the order infinity 
since t 	 1.)1 the vorticity, which is the dependent variable 
of eonce n • 	o. Willi a :lnite difference procedure or a finite element 
proy Alli re 	the varial,lomil principle or the concept of residuals, the 
entire 	 inclusive of the viscous components and the potential 

be k.•; , : - puled. The existence of the diverse length scales then 
difficulties in the computation of high Reynolds 

number general viscous flo\%s. In particular, it is difficult to design a 
compotatiori g ,  d that pro\ ides a sufficient solution resolution in the 
boundar ,. t.i .2r and yet does not contain an excessively large number of 
grid poiititt the potential flow region. With increasing Reynolds number. 
the thickness of the houndar% layer decreases. The number of grid points. 
and hence also the computer time required, increases rapidly with 

t. C. W t ' 

4.4 VORTICITY DYNAMICS 

The vorticity transport equation is non-linear since the first two terms on its 

right-hand side involve the product of 1.., and co
; , and r ;  

f 	

is kinematically a 

unction of co,. Because of this non-linearity, the mathematical analysis of 
coon the kinetic aspect of the general viscous flow presents greater difficultie 

than that presented by the kinematic aspect. It is, however, possible to 
establish a substantial amount of understanding about the kinetic pro- 

cesses involved in the flow vvithout detailed mathemtical analyses. 
Consider a finite solid body immersed in an infinitea incompressible fluid 

 uniform viscosity and density. The solid body is initially' at rest. 

Subsequent prescribed motion of the solid body induces a correspondin
g  

if the fluid is inviscid, then the last term in 
 ❑eqn. (4) vanishes. The vorticity 

motion of the fluid. 

is then 

 

cony with the fluid in the sense that the vorticity flux 
wi cR 

associated with each material element ds
i 
 moving with the fluid remains a 

coostant for all times. This well-known theorem of Helmholtz. a proof of 

v,ltich is available in many text book.s
. 
 (e.g. Sommerfeld (19.5011, must he 

modified in the case of a real fluid because of the presence of vorticity 
diffusion. According to eqn. (4), changes in the vorticity flux (:) 

takc 

place only because of viscous diffusion described by the last term of this 
equation. Since the process of diffusion merely redistributes the Norticity

. 

 within a fluid. vorticity is not created, or destrohi pointt are presented by
.  Wu 

For the problem u
tion, the vorticity under consideration, 	

is ob\.iously e.\, cry- 
( I 98 I ). 

here zero in the fluid prior to the initiation of the solid motion 
Consequently, immediately after the onset of the motion. the vorticity is 

r 
eveywhere zero in the fluid except at the boundary in contact with the 
solid. That is. the fluid motion immediately after the onset of the motion 
has a non-zero tangential velocity relative to the solid at the solid 
boundary. The discontinuity in the tangential velocity constitutes a sheet of 
Loncentrated vorticity` (vortex sheet) at the boundary. At subsequent time 

leve

orticity spreads into the interior of the fluid domain by 
diff ls. this vusion and, once there, is transported away from the boundary by both 
convection and diffusion. At the same time, the no slip condition pro \ ides a 
mechanism for the continual generation of vorticity at the boundary. The 
general pattern of flow development therefore consists of the continua y 

 generation of vorticity at the solid boundary, the diffusion of the Norticit 

f, -
ont the solid boundary into the fluid, and the subsequent transport of the 

\ or ticity away from the solid by convection and diff usion. 

16 



The Green's theorem states that 

f 	

i-,,  . 2 ( ' P ' 

R.  (P 	'-. -.-. : 7-.; —) d R = 1 
.1 	- j   .., B 

cc 	cP 
Pni  dB 	(9) 

where R' is a closed region bounded by 8', ni  is the unit outward vector 
normal to B', C and P are finite and continuous and possess continuous first 
and second partial derivatives in R`. 

Let P be the principal solution of the elliptic differential equation defined 
by 

P = ______L In 

2 	

t:9 

n 	r' 

1 
— -- 

47rr' 

for two-dimensional problems 

for three-dimensional problems 

(10) 

where r ©  is the magnitude of the vector v„„ and r' is the magnitude of the 
vector defined by 

	

.1 	 tl 

The principal solution P satisfies the 	 cept 
the point x = x„,, where it is singular. This singular point is eve')uded from 
the region K by considering B to he composed of t‘k parts. B a nd C. C 
being a small closed surface surrounding the point v, ) , and bounding R 
internally. One then has. in the region R'. 

(T1) 	v, 

( X 	 — 

where d is the dimensionality of the ptoblern. i_c 	or a two- 
dimensional problem and d= 3 for a threc-dimensional problem 

One also has, in Rh 

J 2 P 
(1 3 t 

 

Using eqns. (8) and (13). eqn (9) is rewritt 	'is 

PgdR-1 	 (71' 
— 	n dB+ i 

(- v 

P 
dB 	(14) 

1. C. WU 
	 PROBLEMS OF GENERAL VISCOUS FLOW 

	
79 

78 

increasing Reynolds number. For this reason, successful finite difference 

and finite element solutions of the general viscous flow problem  
'Reynolds number limited' and are available only for two-dimensiona

l 

 flows involving relatively simple geometries. The currently popular pro- 

cedure for alleviating this difficulty is the 
use
ce from t 

of exphe anding g
(and from the 
rids, i.e. grids 

with increasing grid spacing as the (distance 
	 s olid  

viscous region) increases. It is known, however, that 
expanding

foe 

  g 
expan

rids do 
ding 

give rise to grid-associated errors which can be large r r  
grids needed for high Reynolds number flows. 

It is possible to remove the potential flow r 
fo
e 	

for
gi
rmulation 

on from the the solut 
kinioe- 

n 

procedure by using an integ 	
p 	 This resentation ral re 

mattes of the problem, as shown by Wu and Thompson (1973). 

formulation therefore removes the difficulties caused 
he disparity of the sed by  

viscous and potential length scales. Furthermore, it idet 
s possi 

ached vis
ble to cou s compute 

flow 
In so the boundary layer component separately from the 

components, as shown by Wu & Gulcat (1981) and by Gulcat (1981). scales of 
doing, not only are the difficulties caused by the disparity of length  

onents remo\'ed. but also the amount of compu- 
the several viscous comp 	 ced 
tation required is further drastic:all,. redu 

INTEGRA I. REPRESE:N.,TATIO7NS 

time-dependent flov. described 
The general solution procedure for the •  
earlier is composed of repetitive solutions of a parabolic equai.ion and an 

An alternative to the more familiar fini
.,e ::itlernce and finite element elliptic equation. 

ocedure 	ith this 
procedures is the integral representation pr 

	
procedure. 

the differential equations describing the i'lrrw art recast into integral 

representatiops. The solution 
blem is on of the Picw p 

awn based on the 

numerical qtladrature of the integrals. The ri-ii,hcr:AJiical foundation of the 
integral representation formulation is the in incipl -..olution. also referred 
to as the fundamental solution, of dill srent cciu:IL_ms. In this section, 

derivations of integral representations f(
-ii 	- elliptic 	the parabolic 

equations are presented. 

4.5.1 Scalar Elliptic Equations 
Consider a Poisson's equation 

- 

cx ; < 

1. 

(s) 	For a three-dimensional problem, let C he a sphere of radius centred at 
the point x oi . On C, the principal solution and its teradient are, according to 



43.2 Vector Elliptic Equations 

Consider a vector 7 ;  whose divergence and curl are h and c1, respectively: 

e q . = h 	 (19) 

and 

1  ij 
t="-- 
	

( 20) 

Equations (19) and (20) form an elliptic set. They give 

(713 	
( 21) 

CXj  

Since each component of 	satisfies a Poisson's equation, an integral 

representation for r1 is obtainable from eqn. (18) by substituting by ft ;  and 

g by the right-hand side terms of eqn. (21). The resulting integral 

representation for r7 , contains derivatives of b and c i  in the integrand for the 

interal over R tied a deiiN alive of ?1, in the boundary integral. 

An into2rai lopresontation tor i? ;  in which the derivatives of f) e,, and 

are absent is, -, hi_iinable 	d , -eoi -nposine 	into its irrotational and 

solenoidal pans. 
A s Is  uetl knev a . the 	•7a1101-1.:1 part of a vector can be expressed as the 

gradient of a scalar poteninii and the solenoid part of the vector can be 

expressed as !h:.- Lin] of a •.::10T-  potential. One writes therefore 

( 22) 

where ch and y er esracin 	the scalar potential and the vector potential 

of 	From egos. 	 7.in one obtains a Poisson's equation for o: 

= b 
	

(23) 

[corn eqn. :01 and (221 	ol-lt,ons by et.,ti ring 	to be solenoidal. 

2 v. 
	

(24) 

Integral representations for 0 and 	are obtainable immediately from 
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eqns. (10) and (12). — 1/(47u;) and — nj/(4-rrE2), respectively. As E —a 0, the 

surface area of C approaches zero as ti 2 . 
The part of the last integral in 

eqn. (14) involving P 
therefore does not contribute to the integral. 

e of .:', 

Th 

at 

e 

remaining part of the last integral in eqn. (14) gives simply the valu' radius  

the point' x oi
. It can be similarly shown, by letting 

C be a circle of s a 

centred at the point v oi
, that the last integral in eqn, (14) gives simply the 

value of at the point iv o
, for a two-dimensional problem. One therefore 

obtains the following integral representation for ': 

,.. 	 ,. 
(p __"' — c- 1.:—.---419 ) i dB 	(15) 

..% N 	
.,„ \ • (tX i 	( X J./ 

In eqn. (15), the region of integration 
R' has been replaced by R. which is 

bounded by B. 
This replacement is permissible since the integral over the 

interior of S tends to zero as i: -.0 
The concept of the principal solution is essential to the integral 

representation formulation. If there exists a unit source at the point v
oi . 

Potential associated with this unit source at the point x, in an 
then the scalar p  
infinite unbounded regon is '„Ji‘..en by the principal solution 

P. it is worthy 

of note that the derivation of eqn. (15) is st caig,htforward if the following 

integral property of the principal solution is recognised: 

if R' contains the point 

if R' does not contain the point 

With eqn- (16). one ha' 

if R contains the point .v, = , 	(1'7 ) 

In eqn. (9). if on replaces R and B .  by R and B. respectively. and uses 

eqns. ( ∎ ) and (1 7
i, one obtains eqn, (15) immediately. Interchanging the 

independent variables a,,, and x,. one then has 

ado 
 Pg„ 	— 	7.77. 	F.,----Noi ) n o) 6136  

A. o  

where the subscript 0 indicates a 
variable, or a ditTerentiation. or an 

integration evaluated in the x„, space. i.e. 
g, = g(N,). The integral 

representation for eqn. (18). is completely equivalent to the differential 

equation (eqn. (S)). 

dR 

\ J 

(16) 
An, 

(18) 



From eqn. (30), one concludes that, for t = t o  

Qk 0 dR k(t 

It is simple to show that 

if R contains the point x01  

(7•Q 

cr 	(11, 
and 

a 2 Q, 

ax i Ox ,
Ox 

0, 	01 

Therefore, from eqn. (28). one has 

?2Q 
	=0 

CXO  EX- 0 , 

Consider the identity 

Q 

„() 	a .„- 
cx0 , 

Q 	
to 
	R 

r-v0 ; 
 -.I 0 	) e2Q. 

4- a 	 
0)  cxoj  

(Q 

( 

Integrating each term in eqn (34) over the region R" and over the time 

interval 0 < t „ < r and using eq.. . (20) and (33), one obtains 

dr, 	 1dR, 

	

(7 Qo 	(7 0  

C y  r 	
Q 	n oi dB, 	(351 

Evo, 

In obtaining the last 	is in Nil (35). th. divergence theorem has been 

used. 

Placing ea L(32) into 	t 7-51, one obtains 

I Qk o dR o 
 „IR  

° Q 	)noic1B0 	(36) 
.11 \, 	(No , 	0j 

Equation (36) is an integral representation for the function J which 

satisfies the inhomogeneous parabolic differential equation (eqn. (26)). 
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eqn. (18). By placing these integral representations into eqn. (22) and 

noting that c./) /('x; =.-
-- —((7:Pli7'.1-,,,). one obtains 

b o  ...7--  — + i-:0,.oi --,---") )d R„ c . P 
( 

R . 	C-11:0i 	
e:COL, 

t""P 	
i-' P 	,, 

4- 	(lo in c, i -:-.---- ---- iikE p-nnliom
ri  on ---- u B,, 

s 	
CY°, 	

'. .7t.  0 k , 

Because of the absence of the derivative terms in thrical
e integ 	

dures proce

rands, the than integral 

representation (eqn. (25)) is better suited for nume 
	

the 

one obtained using eqn. (21). 

4.5.3 Parabolic Equations 
Consider the inhomogeneous diffusion equation 

__L._ _ a  ..____=_____ 	i: 	
(26) r..21 .  

('J 

(t 	(7  x i  i x 

of the diffusion equation is 
The principal solution Q  

	

Q-------- --- -- exP < -----7 	
t-'7) 

1 	
1 

(47tatt — td)  - 	
'( 	4ott -- t o ) 

where d is the dimensionality of the problem and 
II> I,. 

The principal solution (cqn. (27)) possesses the following properties: 

r(,)

(28)  
( 2Q 

— --- 	---- .-- 0 	
for all t values 

a  

	

=-- t„anci x i 	.V,,, 	
('9) 

Q=0 	
if t 

, 	, 
r 	(-_,- 	( ..1: - 

' 1 	i 

if I -- t o and R 
does not contain the point .y

o , 

I 	dR P)  
. — 11 	if I ,--- /„ and R contains the roint N„,, 

0  

lt is simple to show that eqn. (28) is correct by carrying. o.Jt the needed 

differentiations with respect to time and space. 
EqUatiOri U-!9) is obviously 

correct. The first part of eqn. (30) follows directly from eqn. (29). The 
second part of eqn. (30) can be shown to be correct by changing the variable 

of integration from _Y ;  to s;.with 
(31) v, 

- --- -----T"---- (4a(t — t o )) ' 

and perform the integration over an infinite unbounded reign. 

(25) 

(32) 

(33) 

(34) 
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4.6 BOUNDARY INTEGRAL AND POTENTIAL FLOW 

The kinematics of the viscous flow problem described in terms of 

differential equations are eqns. (1) and (3). Using eqns. (19). (20) and (25), 

one writes 

	

f 	-- u A + 

	

R 	
CX0k 
°P- 

	,,,D, 

.., R 	 (). 
i. 	

ill' 	 i.  P 

(I .  ° inn) -j, - + ..,- .0E.p,,,,von,no ,,  cv - 	dB 0 
) 

(37) 

Equation (37) is an integral representation for the velocity vector. It is 

simple to show that this integral representation satisfies eqns. (1) and (3). 

The physical meanings of the two integrals in eqn. (37) are as follows. The 

integral over the region R represents the contribution of the vorticity field 

to the velocity field. This integral, in fact, is a generalised statement of the 

well-known law of Biot-Savart. It describes the velocity field associated 

with distribution of vorticity in an infinite unbounded region. The 

boundary integral gives a potential flow in the region R. 

Consider a finite solid body immersed in an infinite incompres,able fluid 

and moving with a uniform velocity. in a reference frame attached to the 

solid body, the velocity on the solid boundary S is zero. The surface S 

therefore does not contribute to the boundary integral in eqn. (37i. On the 

surface S, , infinitely far from S. the velocity is r, ,, the free-stre,,,en ,,e1oeity, 

Let S be a large spherical surface of radius R in a three-dimensional 

problem which encloses S in its interior and which is centred at the origin. 

As R approaches infinity, according to eqn. (12). rP < x„, approaches 

n 0;  (47.R 2 ). In consequence, the integrand of the boundary inieral in 

eqn. (37) approaches 

47rR =  
... f,uxinofnoi - Eijk i• jrnn t  x prin Otrii 0A .  

Therefore the boundary 
The quantity inside the parentheses gives i 

integral yields r,, and eqn. (37) reduces to 

1 	
('-' 

P dR 0  + 
	 3 81 

r --= - 	cokwoj  -- - 	i , , 

R 	
i',Vok 

For a two-dimensional flow, it can be shown, by considering .S , to be a 

large circle which encloses S in its interior, that the boundary integral in 

eqn. (37) yields r„,. Equation (38) is therefore valid for both the two- 

dimensional problem and the three-dimensional problem. 

It should be emphasised that the boundary integral in eqn. 37) contains 

both the tangential and the normal components of the boundary velocity_ 

Indeed, the derivation of eqn. (38). which is convenient to use in a 

numerical procedure, utilises a knowledge of both boundary velocity 

components on B. The prescription of both the tangential and the normal 

components of the boundary velocity, as shown in Section 4.3. over-

specifies the problem. Nevertheless, if the prescribed normal component 

and tangential component of the boundary velocity are compatible to one 

another, then the use of both these components in the computation of the 

velocity field in the region R is legitimate. For example, if a velocity field r ;  is 

determined on the basis of the prescribed tangential component of the 

boundary velocity and this velocity field possesses on the boundary a 

normal component which is identical to the prescribed value, then the two 

prescribed boundary velocity components are compatible to one another. 

The requirement that the velocity boundary conditions be compatible 

places a restriction on the vorticity distribution in R. 

Consider for the moment a two-dimensional potential flow past the 

exterior of a finite solid body. It is generally thought that a potential flow is 

an inviscid flow. In reality_ it is more appropriate to think of the potentia l 
ilow as an approximation ora high Reynoldsnumberviscous -iowin.ol,ine 

no appreciable region of flow separation (Wu. :981). In such a flow. th:: 

region of non-neeligible vorticity. and hence also the effects of viscosit 

confined to the thin boundary layer surroundinz ,  the solid and a thin wake 

trailing the body. The thin wake can be represented kinematically a pair 

of vortex sheets of opposite senses located close to one another. For certain 

types of flow. the effects of this vortex wake on the flow near the solid body 

may be neglected. The boundary layer surrounding the solid body can `-‘, 

represented kinematically by a vortex sheet which. in the ca.:se of a lifting 

body. possesses a total circulation. Physically. a vortex sheet is a concen-

trated layer of vorticity. If only the vortex sheet representing the hounder \ 

layer is important to the Plow field near the solid. then cqn.1,3i be  
written as 

P 
— dR„ -r r 

4 N Ok 

where is the strength of the vortex sheet representing the boundary layer. 

and S is the surface which encloses the solid surface S and is separated 

from S by an infinitesimal distance. 

If 7, is known, then the velocity field everywhere in the flow field can he 

computed using eqn. (39). The restriction on the vorticity field_ imposed by 

the compatibility of the velocity boundary conditions, suggests a method 

09! 
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for determining the distribution of y ;  on the surface S . Since eqn. (39) is 
valid everywhere in the closed region R bounded by S, it can be used to 
compute the value of on S. The value of v, on 5, however, is known. 
Indeed, it is simply zero for the problem under consideration. One 
therefore ha.s.. 

iT 
0= —. 	E, . - 	' dB, + r„., 	 (40) 1 

s- 	j" ° ' j"-Yok 

where P, is the principal solution of the elliptic equation defined by 
eqn. (10), with .x-,) , on the surface S' and x ;  on the solid boundary S. 

Equation (40) is a vector equation and can be written as two component 
scalar equations for the present two-dimensional problems. in particular, 
one has for the tangential component 

I 	-, , ,(xoj  — 
. 

1 	

r'2 

x))t, 

s 
	) d /3,, = —t- „ 	 (41) 

27r  

where 	is the tangential component of the free-stream ■ clocity on S. v- o)  
and xj  are respectively the position vectors on S and S. and 	is the 
strength of the vortex sheet. 

The left-hand side of eqn. (41) gives the %elocit% field due to the vortex 
sheet on the boundary S i . Equation (41) states that this velocity field. 
when combined with the free-stream velocity. sa'isties the condition that 
the tangential velocity is zero on the solid boundary 

The normal component of eqn. (40) can he similariv written. There 
exist, therefore, two scalar integral equations with as the unknown 
function. It shall be shown that the solution obtained from each equation 
satisfies the other. In consequence. the two prescribed components of the 
boundary velocity are compatible to one another. 

Consider the region R, occupied by the solid body kinematically, the 
velocity field and the vorticity field in this region are related by the 
continuity equation (eqn. (I)) and the ‘orticit, liarp*ort equation 

(eqn. (3)). -  For the problem under consideration. the solid hod ∎  is not 
undergoing a rotation and (9, is zero in the solid. i% 	potential (/) 
therefore exists in R,. The continuity equation further 	that this scalar 
potential satisfies the Laplace equation and is harmonic. A solution for 0 
obtained from eqn. (41) obviously satisfies the condition that the tangential 
velocity component, or the tangential derivato.c of iN zero on the 
boundary S. Therefore 4 is a constant on S. The principle of extremum for 
a harmonic function then requires q to he constant throughout R. 
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Therefore the normal derivative of 0, which is equal to the normal 
velocity component, is zero on the boundary S. In other words, a solution 
obtained from eqn. (41) ensures that the normal component of the 
boundary velocity is also zero. Similarly, it can be shown that a solution for 
the velocity field obtained from the norm 461 component of eqn. (40) satisfies 
the condition that the normal velocity component is zero on the boundary 
S. This velocity field also possesses a zero tangential component of the 
boundary velocity. 

It should be pointed out that the solution of eqn. (40) contains an 
arbitrary constant since the homogeneous counterpart of eqn. (40) pos-
sesses a complementary solution. This arbitrary constant is determined by 
the value of the circulation r about the solid body defined by 

F 	1 
	

(42) 

The value of F can often be established through a consideration of the 
physics of the problem, e.g. the use of the well-known Kutta condition in 
connection with a lifting body with a sharp trading edge. 

The computation of a potential flow field using the integral repre-sentation (eqn. (38)) is composed of two major steps. First, the boundary 
integral equation (eqn. (41)), or a similar equation which represents the 
normal component of eqn. (40), subject to the auxiliary condition 
(eqn. (42)). is solved to determine the function ;. on S . Then the function -; is placed into eqn. (39), which represents an approximation of eqn. (38), to compute the velocity field. 

The computation of can be accomplished by the use of a finite element technique. The boundary S" is represented by line elements with as-sociated nodes. The boundary integral is replaced by a sum ofintegrals over individual elements. Element interpolation functions are introduced and 
the element integrals are evaluated analytically for each velocity node. 
yielding a set of algebraic equations of the form 

(43) 

where nt and n designate respectively nodes on the boundaries Sand S ± , -;.„ is the strength of the vortex sheet at the node a, r„„, is the tangential 
component of the free stream velocity at the node at, and G :, is the 
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geometric coefficient determined from the element integrals and is de-

pendent only on the relative location of the nodes m and n, and N is the 

total number of vortex nodes on S 
It can be shown that the rank of the coefficient matrix G,„„ is N — I. The 

auxiliary condition (eqn. (42)) yields 

A
"
-,'„=r 	 (44) 

= I 

Equations (43) and (44) form a set of linear algebraic equations 

containing as unknowns. The size of the coefficient matrix is not large 

and a variety of numerical techniques are available for the computation of 

In the computation of the velocity field, a finite element technique again 

can be utilised. The finite element analogue of eqn. (39) is of the form 

(45) 
r = 

where 	is the oh component of the velocity vector at the node q and fi g„ is 

the eeometric coefficient dependent on the relative position of the nodes 
q 

and n. 
Equation (45) is an explicit equation for the computation of the velocity 

values. That is. each algebraic equation represented by eqn. (45) contains 

only one unknown velocity value. With known values of the values of r
; 

 are computed one node at a time. The computation of the r;  value at each 

node in the flow field is accomplished independently of the tt, value at other 

nodes. In contrast, with a finite difference method or a finite element 

method based on the Ariational principle or the residual concept, one 

obtains a set of simultaneous algebraic equations. Each algebraic equation 

contains mole than one nodal value of the velocity (or of the scalar 

potential). The alue of the velocity at each node depends on the values of 

the velocity at the neighbouring nodes. 
Equation (45) may be viewed as an inverted equation corresponding to 

the matrix equation obtained using a finite difference or a conventional 

finite element discretisation procedure. The distinguishing ability of the 

boundary integral formulation for the explicit computation of the velocity 

values offers great advantages in flc o computation. For example, in an 

aerodynamic computation of the pressure distribution on the surface of an 
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airfoil, one only needs to determine the velocity immediately adjacent to 

the airfoil. The pressure distribution is then immediately obtained from 

the well known Bernoulli's equation. With the boundary integral approach 

just described. the computations of the ylocity values can be confined to a 

surface S' surrounding and immediately adjacent to the surface S'. In 

fact, it is easy to see that the vortex sheet in this case represents a 

discontinuity of the tangential velocity component across the sheet. Since 

the velocity on S is zero, the magnitude of the velocity on the surface S" is 

equal to the local strength of the vortex sheet. In any event, with the 

boundary integral method the computation of the present two-dimensional 

potential flow is reduced to a one-dimensional procedure. Similarly. the 

computation of a three-dimensional potential flow is reduced to a two-

dimensional procedure. This unique feature is not available with a finite 

difference or a conventional finite element procedure. 

In the following section. the generalisation of the concepts just described 

for potential flow computation is described. 

4.7 130t NDARN INTF.G RA AND VORTICITY BOUN D AR 
CONDITION 

in a potential now. the vorticity field is negligible outside the thin boundary 

layer and there is no need in the computational procedure to be concerned 

with the kinetic aspect of the now problem dealing with vorticipi, transport. 

The solution procedure for the potential flow therefore deals only with 

eqn. (39). which is a simplified version of eqn. (38). 

In a general viscous flow. the kinetic aspect of the flow problem does 

enter into the computational procedure. In addition, 'the full integral 

representation for the kinematics of the flow (eqn. (37) or eqn. (3a o. must 

he treated in place of the simplified equation (eqn. (39)). 

concepts and features discussed in Section 4.6 in connection 'soh 

potential now . however. remain applicable. 

Unlike the potential flow. the presence of the vorticity in regions outside 

the thin boundary layer has a significant effect on the flow near the solid 

Consider the time-dependent two-dimensional flow of a viscous fluid past 

the exterior of a finite solid bode. The numerical procedure outlined in 

Section 4_2 can he utilised to simulate the flow computationally. Suppose 

step (a) of the computation loop described in Section 4.2 is completed. The 

computation of the boundary vorticity values in step (h) can be accom-

plished by using a boundary integral procedure similar to that described in 

J. C. wt 
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Section 4.6 for the computation of the vortex sheet strength 7. This 

boundary integral procedure is described in detail by Wu (1976). An 

alternative procedure for the explicit computation of the boundary 

vorticity values is described below. 

Let the region R be mapped into finite elements with associated nodes. 

Values of vorticity at nodes not located on the solid boundary S are known, 

while the values of the vorticity at the boundary nodes are to be computed. 

Element interpolation functions are introduced and the element integrals 

are evaluated analytically for each velocity node. A detailed description of 

the derivations using polynomials as interpolation functions is given by 

Wahbah (1978). The resulting algebraic equations are explicit and permit 

the node by node computation of the velocity values in the flow field. For 

example, for a two-dimensional flow, the algebraic equations are of the 

form 

(46) 

where K p  is a geometric coefficient dependent on the relative position of 

the nodes ci and p, (2), is the value of the vorticity at the node p. and Pis the 

number of nodes in the flow field where the vorticity is non-zero. 

It is simple to see that eqn. (46) contains the following subset of 

equations 

0 = (471 

v. here the subscript m designates the node m located on S . 

Equation (47) can be written as 
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large, the matrix can be easily inverted, yielding an expression of the form 

CO = 	

(49) 
11 = 

where M,„„ is a geometric coefficient and j is known. 
Equation (49) permits the boundary vorticity values to be computed 

explicitly. Placing eqn. (49) into eqn. 
(47) gives, after rearrangement of terms 

= N 

Equation (50) permits the velocity values to be computed using vorticity 
values at nodes not located on the boundary. 

In the above discussions, eqn. (38) is utilised to outline a procedure for 

computing the velocity values in an external viscous flow past a finite solid 

body. For other problems involving other types of flow. e.g. an internal 

flow. the no-slip and the free stream boundary conditions ma:. not be 
e ■

erywhere applicable and eqn. (37) may have to be used As already 

(..!::-.:ussed. the boundary integral in eqn. (37) gives a potential flow in the 
region R. 

With the tangential and normal velocity boundary conditions 
known. this boundary integral can be evaluated for each node in the flow 

held. One therefore obtains algebraic equations of a form identical to 
eqn (46), except that the term r is replaced by the term u

y  representing 
the contribution of the boundary integral to the velocity field at the node 

et Except for the added computation of the values of 
tie  the procedure for : ,

:nputing the velocity field is identical to that outlined for eqn. ;46). 

For the two-dimensional flow under consideration, the vorticit vector 

possesses only one component. In consequence, eqn. (46) is re 

simple. For three-dimensional flows, eqn. (37) or eqn. (38) yields algebraic 

eoilations that are lengthier than eqn. (46) because the vorticity vector in a 

hr,2e-di eiensional flow possesses in general three components. For three- 
mension a  I Boas, an integral 

representation for the vector potential can he 
used in place of the integral representation for the velocity vector. For too_ 

dimensional flows, the vector potential reduces to the stream function 

(S.impath, 1977). The various integral representations all possess a 

common feature----they permit the flow field to be computed explicitly, 

node by node. This distinguishing feature offers a number of important 

0= 	 + 	 + 

1 

where the subscript s designates a node on S and the subscript 11 designates a 

node not on S. The dimension of the coefficient matrix K , is N x N, where 

N is the number of nodes located on S. Since this dimension is in general not 

ti 

Nq•n), ggi 	
(50) 
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advantages. It should be emphasised that with a finite difference or a usual 

finite element procedure, each of the algebraic equations obtained contains 

more than one unknown value of the velocity (or the vector potential). The 

solution of these equations requires an implicit procedure. 

4.8 INTEGRAL REPRESENTATION AND VORTICITY 
TRANSPORT 

The kinetics of the viscous flow problem is described by the vorticity 

transport equation (eqn. (4)). Using eqns. (26) and (36), one writes 

	

, 	r 

f 
 

(0, = , ((0,„Q),,,,„ dR,, + I dr °  1 (0), :.-,-- — 1. 0 . ---- 

R 	 ,0 	, R 	 ( X0) 	 ( Noi 
Q dR, 

+ V  
 ( 0 	( (9,
Q  

- 	 -, 

,0 

where Q is the principal solution of the diffusion equation and is defined by 

eqn. (27), with a in that equation replaced by the coefficient of viscosity v. 

Equation (51) expresses the entiret ■, of the kinetics of a viscous flow in 

the form of an integral representation for the vorticity vector. The physical 

meaning of the fundamental solution Q is well known. If at the time 

there exists in an infinite unlimited region R a unit of some physical 

quantity, say]; at the point x, 	then Q represents the distribution off 

at the time level t, with 1> t,-, in the region R due to the process of diffusion. 

If J  is non-zero at the time level t = t o  only in an elemental region dR 0 
 located at x = x,,, and the value offin dRo  is 10. then the distribution of f at 

the time level t is QJadR 0 . lf, at the time level 1 0 , the distribution off is 
known in the infinite unlimited region R, . then the distribution off at the 
time level r is expressible as 

	

(x 1) = 	QI v „. )dR„ 	 (52) 
R , 

Equation (52) is valid in an infinite unlimited region. From eqn. (52), it is 

clear that the first integral in eqn. (51) represents the contribution of the 

initial vorticity distribution, through the process of diffusion, to the 

distribution of vorticity at the subsequent time level. The second and third 

integrals in eqn. (51) are due to the fact that in the present problem the 

kinetic processes present are not limited to that of diffusion and the region 

R is not unlimited. 
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In eqn. (51). the integrand of the ',cc- and integral cut tins a deny alive of the vorticity vector. In eqn (52) 	this dens-ann .' term is absent. Equation (54) is more 	
equ. 	 . 

convenient to use in corn put,ition ( 	 197e The 
third integral in eqn. (511, or rain (541, git..nt Ls effect , o f th e  presence of the boundary B on the vorticity Hie re

(

gion R. Since the vorticity values are zero On the surface 
S, the inte2ration  her the third integral needs to be performed only over the solid sort

-dee S. On S. orticit% is being 
generated continually and is being diffused 

froin the bounct:2ry into the fluid domain. The evaluation (lithe third integral in 
eqn (54) requires a knowledge of both the value and the normal derivative 

of the orticit vector on the boundary B. 
Consider step (a) of the 

computation loop described in Section 4.2. Let the vorticity and the velocity values at an old time level, say 
r — At, be 

( 

(5 1 ) 

The use of Gauss' theorem then permits the second integral of eqn. (51) to 
be rewritten as 

r, 	e 

	

..

I  dt, ! Q.,, ,,„k,„„o.) U. m v ?? , 	 (Q 

	

, — J dr 	I 	:7  

	

0 	f 	• ..J4 .. III, ' ' rtr (!-) .5 
 

JO 	 (7:1-,,, 

	

Ox , 	
o 

For 
the external flow problem under consideration. the 

boundary B is composed of the solid surface S and the surface S  infinitely far from S. Since i - , = 0 on S and (,), = U on 5 • the integral 
OVCI B in Cr: abet. e expression vanishes. One therefore obtains 

from eqn. (51i 

93 
The second integral 

in eqn. (51) is present because the 
diffusion equation, eqn. (4), satisfied by 

the vorticity 
Meld is inhomogeneous. The inhonto- 

geneous term represents the effects of vorticity stretching and of con- 
vection. The first term 

in the integrand of the second integral of eqn. 
(51) gives the effect of vorticity stretching which is a three-dimensional 

phenomenon and is absent in two - dimensional flows. The two terms of the integrand of the second integral can be rewritten as 

- (12.50)0 	
- ('Q 02.0.. 0)01r002) 

0,, 	
x „ 
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known at every node of interest in R and on 
B. The computation of the 

vorticity values at the new time level r can be accomplished by using 

eqn. (54) by letting t — At be the initial time level t o  0. The finite element 

analogue of eq.n, (54), for a two-dimensional flow, is therefore 

J. C. WU 
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4.9 SOLUTION PROCEDURE 

B„i(Via, / 

P= I  n 
	I 	 = I 

where the superscript t 
denotes the time level at which a variable is 

evaluated, the subscript q denotes a node in R at which a new vorticity value 

is to be computed, the subscript p denotes a point in R, the subscript n 

denotes a point on the solid boundary 
S. Bo  is a geometric cofficient 

dependent upon the relative position of the nodes 
q and p, C,„ and Dv, are 

geometric coefficients dependent upon the relative position of the nodes 
q 

and n, and h q 
 is dependent upon the vorticity and velocity values at the old 

time level t At and is known. 

Equation (55) contains the vorticit ■... and \ elocity values in R as well as the 

values of the normal derivatke of vorticity on 
S as unknowns. This 

equation contains a subset of equations: 

cu 
D„,,, 

/I ---- I 

where ni is a node on the boundary S. 

The coefficient matrix D,,„„, 	x 	matrix. can be easily inverted and 

used to obtain a set of explicit expressions for V/r) (x,)ti
j r„ in terms of It,. 

0., and (u joA. Placing this expression for {0 -  wa'a- , )/i j y„ and eqn. (49) into 

eqn. (55) and using the prescribed boundary values of r
j , one obtains, after 

rearrangement of terms. the following expression for a
q : 

±k  (5 7  ) 

where E N , 
and are eeorrietrie coefficients dependent only upon the 

relative position of the nodes q and r, and k g  is dependent upon the vorticity 

values at the old time Icycl and is known. 
Equation (57) is implicit and contains unknown values of rd„ and r„. This 

equation is non-linear in the sense t hat cl ic, is a function of (0' kinematically 

and the product (1. ;,-)) 1,, is present in the equation. 

The use of integral representations in the numerical solution of flow 

problems represents a major departure from previous finite difference and 

finite element methods. This integral.eyepresentation approach offers a 

number of major advantages and, at the same time, requires the use of 

drastically new numerical procedures. In the following, a basic procedure 

for computing time-dependent incompressible general viscous flows using 

integral representations is described. Many alternative procedures can be 

utilised in place of a part or all of the procedures described here. In many 

applications, it is advantageous to combine the unique attributes of the 

integral representation approach with various features of other more 

conventional approaches. 

Equations (37) and (54) express the entirety of the time-dependent 

incompressible general viscous flow mathematically as integral repre-

sentations. The three steps forming the computation loop given in 

Section 4.2 can be carried out as follows for the external flow problem: 

(a) With known values of 1:` ,„" 	and nip 	in R. the term k g  in eqn. (5 - ) 

is evaluated. Equation (57) is then solved to determine values of 

v orticity 0, 1,1  at all nodes not on S for the new time level /. Sinee the 

dimension of the coefficient matrices Eg , and Fg ,. is P x P. and P. 
being the total number of non-boundary nodes, is usually very 

large. the solution of eqn. (57) requires an iterative procedure. With 

a sufficiently' small time interval At, the values of 	which appear in 

eqn. (57) may be approximated by the values of 	during the 

iterations. If the time interval At is large. then values of r 1., need to 

be evaluated repeatedly during the iteration. 

(b) With non-boundary values of vorticity determined for the time 

level 1. corresponding nodal values of vorticity (,): on the boundary 

S are computed using the explicit eqn. (49). 

(c) The velocity values t' for the time level tat the non-boundary nodes 

are computed using an explicit expression such as eqn. (46). 

Boundary values of the velocity 	are prescribed (zero for the 

present problem) and need not be computed. 

The distinguishing feature of the integral representation are:roach for 

elliptic systems is that it permits explicit numerical procedures. This feature 

offers several highly significant attributes. These attributes are summarised 

below, During the past few years, the advantages of these attributes haVe 

been demonstrated conclusively by extensive analytical and numerical 

= 
ero 

. — 17)
r 
 h, 	(5 5 ) 

"  
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investigation. Considerable experience has been accumulated regarding the 

application of this approach. A series of Ph.D. theses, research papers and 

computer codes have been made available. Highly complicated general 

viscous flow problems have been solved using this approach. The dis-

cussions below ale brief. Suitable references containing complete analyses 

and extensive numerical illustrations are given for each of the attributes 

discussed. 

4.9.1 Confinement of Solution Field (Wu & Thompson, 1973) 
The unique ability of the integral representation approach for the explicit 

evaluation of velocity values enables the solution field for the kinematic 

computation to be confined to any selected region of the flow field. It is 

obvious that each term in eqn. (57) vanishes wherever vorticity vanishes. 

Therefore, in the kinetic part of the computation, it is only necessary to 

compute new vorticity values in the viscous region where the vorticity and 

• its derivatives are not zero. In this computation. velocity values need to be 
known only in the viscous region. Therefore. with the integral repre-

sentation approach. one confines the kinematic computation of velocity
. 

 values to the viscous region. As discussed earlier. the viscous region usually 

occupies only a small portion of the total flow field. The use of the integral 

Jepresentation approach therefore requires a drastically smaller number of 

data nodes than prevailing finite difference and finite element methods 

requiring the computation of velocity values in the potential region as well 

as the viscous region. The resulting reduction in computing effort is also 

drastic (Wu & Sampath. 1976: Sampath, 1977). The difficulties caused by 

the fact that the potential flow length scale is incompatible with the 
viscou., 

flow scale are removed. 

4.9.2 Segmentation of Solution Field (Wu et al., 1974) 
With eqn. 46). the computation of each velocity value requires multipli-

cation. where Q is the number of non-boundary nodes where the vorticity 

values are not negligible. If the number of nodes Q is large, then the total 

amount of computation required for all the values of velocity is pro-

portional to Q 2  and is large. For such cases, a technique of segmentation of 

flow field can be used to drastically reduce the amount of computation 

required. For example, by dividing the solution field into two segments. 

each containing approximately Q/2 nodes, computing the velocity values 

on the boundary of each region using eqn. (46) and then using explicit 

algebraic equations obtained from eqn. (37) to compute velocity values in 

each segment separately, the number of multiplications required to compute 

each velocity value is reduced to about Q/2. If Q is a very large number, then 

successive segmentation of the flow field is advantageous. Each level of 

segmentation reduces the amount of computation substantially without 

adversely influencing solution accuracy. 

4.9.3 Computation of Vorticity Boundary Condition (Wu, 1976) 	' 
Previous methods for computing the boundary vorticity values are based 

upon extrapolation procedures and often experience stability and accuracy 

difficulties. The integral representation approach for computing boundary 

vorticity values has been shown to produce stable and accurate results. This 

approach simulates the physical process of vorticity generation on solid 

boundaries and is discussed fully by Wu (1976). 

4.9.4 Separate Treatment of Attached and Detached Flow Regions (Wu & 
Gulcat, 1981; Gulcat. 1981) 
The use of the integral representation approach permits the attached 

component (boundary layer) and the detached components (recirculating 

and wake flows) of the viscous flow to be separately treated. The detailed 

procedure for this method is presented by Wu and Gulcat (1981) and 

Gulcat 1 1981). By using boundary layer equations rather than the full 

Navier-Stokes equations in regions where the boundary layer simpli-

fications are justified, not only is the amount of computation substantially 

reduced. but also seN eral major difficulties experienced in previous 

numerical solutions of the general viscous flow problem are eliminated. 

These difficulties arise because of the existence of the diverse length scales 

associated with the several flow components and because of the excessive 

demands on the numerical procedure arising from the retention of 

negligibly small terms while computing the boundary layer flow. By 

treating the boundary layer flow separately from the detached flow, these 

difficulties are removed. The computer time required by this approach is 

elativel. small and is insensitive to the flow Reynolds number (Wu & 

Gulcat. 1981). 

4.9.5 Hybrid and Other Techniques (Wu & Sankar, 1978; Sampath, 1977) 

In many applications. it is advantageous to combine the unique attributes 

of the integral representation approach with various features of other. 

more conventional, approaches. As an example, in the kinematic part of 

the computation of an external flow, it is permissible to use eqn. (49) to 

compute the velocity values at the outer boundary of the vortical region. 

Once this is accomplished, a finite difference or a finite element method 

ith superior solution efficiency. not necessarily one based on an integral 
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representation, can be used to compute velocity values inside this boundary 
(Sampath, 1977). As another example, the solution field can be divided into 

an inner region near the solid body and an outer region far from the solid 
body. Velocity values on the demarcation boundary of the two regions can 
be computed. -using eqn. (49). Finite element methods. including the 

integral representation method, can then be used to compute values of 

velocity in the inner region so as to accommodate the complex solid 

boundary shapes. In the outer region. finite difference equations, with 

comparatively simpler coefficient matrices, can be used (Wu & Sankar, 

1978; Sankar, 1977). 

It has been found that the use of the integral representation approach for 

at least a part of the kinematic computation offers great flexibility in the 

solution procedure. For example, a finite Fourier series method has been 

developed in conjunction with the integral representation to allow very 

rapid computation of velocity values in a conformally transformed plane 

,.(Wu & Sugavanam, 1978; Sugavanam, 1979). 

For the parabolic system, the distinguishing feature of the integral 

representation is that it expresses the several kinetic processes that 

redistribute the vorticity in the fluid as separate integrals. Thus. in 

eqn. (54), the three integrals express respectively the contributions of the 

initial condition, the inhomogeneous term t vorticity stretching and con-

vection) and the diffusion of vorticity generated on the boundary. This fact 

suggests that, with an integral representation formulation, different 

numerical quadrature procedures can be used for the three different 

physical processes. For example. the time step for the diffusion process can 

be different from the time step for the convection process so as to 

differentiate between the different characteristic time scales of the two 

processes. For high Reynolds number flows, the effective diffusion speed is 

much slower than the convection speed. In a numerical procedure. the time 

interval At is usually selected on the basis of the convection speed. Within 

the time interval thus selected, the effect of diffusion from the solid 

boundary S is felt only at nodes located near S. This fact has been utilised 

by Rizk (1980) to design a highly efficient procedure for the kinetic part of 

the computation. It is also of interest to note that the contribution of the 

initial condition, represented by the first integral in eqn. (54), is identical to 

the contribution of the diffusion process in an infinite unbounded region. In 

evaluating this integral, therefore, one needs to soke only the homo-

geneous diffusion equation in an infinite unlimited region. It appears likely 

that simple, efficient and accurate procedures can be developed to take 
advantage of this observation. 

The expression of the entirety of the general viscous flow problem in the 
form of integral representations offers an inherent flexibility in accom-
modation of complex boundary shapes and in the spacing of the nodes in 
accordance with the local length scales of the problem. This flexibility 
results from the fact that, like other finite element procedures, the 
computations required are those of numerical integration rather than 
numerical differentiation. The integral representation procedure, however. 
offers a number of advantages not available with the usual finite element 
procedures. 

4.10 ILLUSTRATIVE PROBLEMS 

The usefulness of the integral representation approach in the solution of 
the general viscous flow problem has been demonstrated by application of 

this approach to flows around finite flat plates, circular cylinders and 

airfoils at high angles of attack. Various techniques described in Section 4.9 

have been used to obtain numerical solutions for each of these problems. In 

the following. only one set of these results is presented for each problem. 

In all the results presented. r.lie solid hods is considered to be initially at 
rest in a fluid also at rest. At a given time level. say 1 ----- 0 . the solid body is set 
into motion and thereafter kept moving at a uniform and constant velocity. 

The time-dependent flow induced around the solid body is then simulated 

numerically. The computations are carried to a sufficiently large time level 

so that either a steady state solution or a periodic solution is obtained. 

4.10.1 Flat Plates 

The flow past a finite flat plate It a Len) angle of attack provides a good test 

case for the present approach. Although the flow around the plate remains 
attached. there exists a well-known boundary layer solution of Blasius 
against which the asymptotic feu ' numerical results can be 
calibrated. Figure 1 shows a steady' state ■ elocit\ profile at the mid-plate 
obtained by Sankar (1977) for a Reynolds. number. based on the flat plate 

length and the free stream velocity. of 000. Sank ar's results are in excellent 
agreement with results obtained by others using various techniques 
described in Section 4.9. The agieernent between Sankar's results and 
Blasius' solution, also shown in Fig 1. is good. San kar's results show an 

overshoot in the velocity protile. i.e. the velocity s aloes are higher than the 
free stream velocity at some points in the boundary layer, which is absent in 
Blasius' solution. Since the favourable pressure gradient caused by the 
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boundary layer displacement effect is significant at the Reynolds number of 
1000, this overshoot is expected in all solutions based on the Navier-Stokes 
equations, 

At higherReynolds numbers, the wake flow behind the flat plate becomes 
unstable. Figure 2 shows computed filaffttnt lines in the wake of a flat plate 
at a Reynolds number of 14 000 obtained 'by Gulcat (1981). The roll-up of 
wake vortices observed is found to be in remarkable agreement with 
experimental results of Taneda (1958). 

4.10.2 Circular Cylinders 
Figure 3 shows a comparison between the computed (Sampath, 1977) and 
experimentally determined (Grove et al.. 1964) pressure distributions on a 
circular cylinder at a Reynolds number of 40 based on the circular cylinder 
diameter and the free stream velocity. Figure 4 shows a similar comparison 
between the computed (Guleat, 1981) and experimental (Linke, 1931) 
results for the case of a Reynolds number of 40000. The agreement between 
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Gulcat's results and the experimental data is remarkably good. The small 

disagreement in the region near the rear stagnation point is expected since, 

in Gulcat's computation. no provision is made to model flow turbulence 

occurring in the recirculating component and in the wake component of the 

flow. 

Figure 5 shows a comparison between the computed (Sugavanam, 1980) 

and experimental (Achenbach, 1968) pressure distributions on a circular 

cylinder at a Reynolds number of 3.6 x 106 . A two-equation differential 

K— s: model (Launder & Spalding, 1974) is used to simulate flow turbulence. 

In Fig. 6 a comparison between the computed drag coefficients and the 

experimental data (Schlichting. 1968) over a range of Reynolds numbers is 

shown. The good agreement between the data is encouraging. Equally 

10 

1 

• Computed Results 

	 Experimental Data 

Angle from leading edge 

FIG. 4. Surface pressure distribution on a circular cylinder at a Reynolds number 

of -+it OW. 

Reynokh number 

FIG. 6. Dra.o coefficient for circular cylinder. 

assuring is the fact that, by incorporating an increasing number of special 

techniques made possible by the use of integral representations. each stage 

of development of the integral representation approach has led to a 

substantial reduction in the computer time and data storage requirements. 

In Table I are summarised the computer time requirements for computing 

the steady flow around a circular cylinder at various Reynolds numbers. A 

peculiar feature appearing in this table is that, at the present, the 

computation of the flow at the higher Reynolds numbers of 1000 and 40 000 

actually requires less computer time than that required at the Reynolds 

number of 40. This is because at the low Reynolds number of 40, boundary 



TABLE I 
COMPUTER TIME REQUIREMENT IN MINUTES OF 

CDC-6600 

CPU FOR Till CIRCULAR CYLINDER PROBLEM 

Rr.qto Ns 	 Year 
1980 

number 	 1 975 	 i 05 
1970 
	 — — — 

	

40 
	25— 

	

80 	20 	(6) 

(250) 	20 	(6) 

	

- 	SO 	(15) 
-------- 

n parentheses are estimated values. 

40 
1 000 

40000 
3 600 000 

Numbers 

95 
(300) 

(1 200) 
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layer simplifications are not justifiable in the attached region has 
an 

is  d  not 
the 

hybridisation of the boundary layer and Navier--Stokes approac  

useful. 

4.10.3 Airfoils 
In the sample probkrns described above. 

integral representations are 

utilised for the kinematic part of the 
computation. The kinetic part of the 

problem is kept in its differential 
form and computed using either a finite 

difference method. a conventional finite element method or a hybrid 
method. This approach is named the integral-differential approach. In 

co mputing flows about airfoils at high angles of attack. Sankar (1977). 
Sampath (1977). Sugayanarn (1980). Gulcat (1981). and El Reface (1981) 
used the integral-differential approach. Rizk (1980) used integral repre-
sentations for both the kinetic part and the kinematic part of the 

computation. 
Figure 7 shov.'s a >equence of flow patterns obtained by Rizk (1980) at 

different tioia after the impulsive 
start of the airfoil motion. The 

airfoil is a 9 %thick sy mmetric Soukowski airfoil at an angle of attack of 

e 
to the free stream. The flow Reynolds number, based on the 

hord length aid the free stream velocity. is 1000. The non-dimensional 

time level measured from the onset of the airfoil motion is T. The reference 

time is the chord length divided by the 
free stream velocity. The stream 

function vaisies are 
non-dimensionalised. The reference stream function 

hies are the product of the freestream velocity and 
the chord length. The 

streamlines shown are spaced 0-02 apart. 
Immediately after the impulsive start, the vorticity is non-zero only at the 

airfoil surface. The flow in the remainder of the fluid domain is inviscid. The 

streamlines shown in Fig. 7(a) are identical to those for a potential flow 
with zero circulation around the airfoil. The rear stagnation point for this 
flow is located upstream of the trailing edge on the upper surface of the 
airfoil. 

After the onset of the motion. the roar stagnation point moves rapidly 
towards the trailing edge. This movement is accompanied by a curling up of 
the vorticity near the trailing edge of the airfoil. A starting vortex is then 
formed from the curled-up vorticity and is shed from the airfoil as shown in 
Fig. 8. The lines in Fig. 8 are equivorticity contours. The starting vortex 
moves downstream and diffuses rapidly. During the formation and 
shedding of the starting vortex. the vorticity diffuses from the airfoil 
boundary into the fluid. Boundary layers are formed around the airfoil. 
The presence of the boundary layers is evident from the presence of the 
vorticity around the airfoil shown in Fig. 8 as well as from the displacement 
of streamlines away from the airfoil surface shown in Fig. 7(b). 

The streamline pattern shown in Fig. 7(c) indicates the appearance of a 
small clockwise rotating separation bubble on the upper surface of the 
airfoil. This bubble grows in site until the reattachment point reaches the 
trailing edge. as is shown in Fig. Tid). 

The nest sla;!;.' ofdeselopment begins when the separation bubble bursts 
and the roattachment point of the bubble lifts off from the airfoil, as shown 
in Fig. — (2). The bursting of the bubble is followed by the shedding of 
vortices from the vicinity of the airfoil. While the starting vortex is 
counterclockwise. the vortices shed after the bursting of the bubble are 
clockwise. 

Follow ing the bursting of the clockwise bubble. small counterclockwise 
bubbles appear. The subsequent lift-off of the counterclockwise bubbles is 
indicative of the shedding of counterclockwise vortices as shown in 
Fig. 7i f ). The behaviour of the lift force acting on the airfoil is consistent 
with the observed shedding of vortices during this period. That is. when 
clockwise vortices are shed, the decrease in the clockwise circulation 
around the airfoil leads to a decrease in the lift force. Similarly, the increase 
in the clockwise circulation associated with the shedding of counterclock-
wise vortices is accompanied by an increase in the lift force. 

In Fig. 7(g) a streamline pattern which resembles that shown in Fig. 70) 
is shown. A closed clockwise separation bubble exists on the upper surface 
of the airfoil. TL' reattachment point of the bubble is at the trailing edge. 
The flow has undergone a sequence of events, during which vortices of 
opposite senses have been shed, between the time levels for Figs. 7(e) and 

7(g). 



(I) 7 = 6.26 

FIG 	- mai/ 

FIG. S. Equi-Norticity contour around an airfoil at T 
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FIG 7 Streamlines around an airfoil. (a) T =0.00; (b) T= 0.08: (c) T = 0-68: 

T=1.86; (e) 7 - = 2-54; (f) 7 - = 6.26; (g) T=6 60 . 
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During the reporting quarter, efforts have continued in the further 

development of the general theory for time-dependent aerodynamic forces and 

moments in viscous flows. Several problems involving vorticities confined to 

narrow bands have been analyzed. The problem of unsteady shedding of vortices 

near the trailing edge of airfoils, that is, the problem of unsteady Kutta condition, 

has been scrutinized. Various numerical procedures for this problem are being 

developed. 

Two articles prepared earlier have appeared in the published literature. These 

are: 

1. J. C. Wu, "Principal Solutions and Finite-Element Procedures," Proceedings of 
the 4th International Symposium on Finite Element Methods in Flow Problems, 
University of Tokyo Press, 1982, pp. 1063-1070. 

2. J. C. Wu, "Sources, Sinks, Vortices and Flow Computations", Proceedings of 
the International Conference on Finite Element Methods, Gordon and Breach, 
Science Publishers, Inc., 1982, pp. 540-545. 

Manuscripts of these two articles were submitted earlier to ONR. 
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The attached manuscript, prepared at the invitation of the 3rd International 

Symposium on Numerical Methods for Engineering, summarizes the efforts that 

were carried out under the present program. This paper will be presented in March 

of 1983. The most significant accomplishment during the present quarter is the 

clarification of the role of boundary vorticity on the unsteady development of 

flows. The manuscript discusses this problem in detail. 

The principal investigator has been asked by the editors of the International 

Journal for Numerical Methods in Fluids to prepare an extended manuscript for the 

Journal. Some efforts have been devoted to the initial writing of a paper reviewing 

the recent progress made under the present project. 
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