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“I can do all things through Christ who gives me strength.”

Philippians 4:13
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SUMMARY

Have you ever attempted to rub your abdomen with one hand while tap-

ping your head with the other? Separately these movements are easy to perform but

doing them together (bilateral task) requires motor adaptation. Motor adaptation

is the process through which the Central Nervous System improves upon perfor-

mance. Transfer of learning is the process through which learning a motor task in

one condition improves performance in another condition. The purpose of this study

was to determine whether transfer of learning occurs during bilateral goal-directed

reaching tasks. It was hypothesized that transfer of learning would occur from the

non-dominant to the dominant arm during bilateral tasks and that position and load

feedback from the arms would affect the rate of adaptation and transfer of learning.

During the experiments, subjects reached with one or both their index finger(s) to

eight targets while a velocity dependent force perturbation (force environment) was

applied to the arm(s). Three groups of bilateral tasks were examined: (1) unilateral

reaching, where one arm learned to reach in a force environment, while the other

arm remained stationary and therefore did not provide movement related position or

load feedback; (2) bilateral reaching single load, where both arms performed reaching

movements but only one arm learned a force environment and therefore the other

arm provided movement related position feedback but not load feedback; (3) bilateral

reaching two loads, where both arms performed reaching movements and both learned

a force environment, while providing movement related position and load feedback.

The rate of adaptation of the force environment was quantified as the speed at which

the perturbed index finger trajectory became straight over the course of repeated

task performance. The rate of adaptation was significantly slower for the dominant
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arm during the unilateral reaching tasks than during the bilateral reaching single load

tasks (p < 0.05). This indicates that the movement related position feedback from

the non-dominant arm improved significantly the motor adaptation of the dominant

arm; therefore transfer of learning occurred from the non-dominant to the dominant

arm. The rate of adaptation for the non-dominant arm did not differ significantly

(p > 0.05) between the unilateral reaching and bilateral reaching single load tasks.

Results also indicated that the rate of adaptation was significantly (p < 0.05) faster

for both the non-dominant and the dominant arms during the bilateral reaching two

loads tasks than during the bilateral reaching single load tasks. The latter results

indicate that transfer of learning occurred in both directions - from the dominant

to the non-dominant arm and from the non-dominant to the dominant arm - when

position and load feedback was available from both arms, but only when the force

environment acted in the same joint direction. This study demonstrated that transfer

of learning does occur during bilateral reaching tasks and that the direction and de-

gree of transfer of learning may be modulated by the position and load feedback that

is available to the central nervous system. This information may be used by physical

therapists in order to improve rehabilitation strategies for the upper extremity.
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CHAPTER I

BACKGROUND AND SIGNIFICANCE

1.1 Introduction

A piece of music written for the piano, such as the Sonata in C Major by Wolfgang

Amadeus Mozart [108] has an intricate part for each arm and may take an average

pianist up to a year to master. While another piano piece such as Twinkle Twinkle

Little Star [176] consists of a single melody for the right arm and may be mastered

in a matter of minutes. The difference in the time to master each piece of music may

be attributed to the complexity of moving two arms and ten digits simultaneously in

perfect rhythm for the Sonata in C Major, versus moving one arm and five digits to

play Twinkle Twinkle Little Star. By increasing the number of joints and therefore

the degrees of freedom that must be controlled by the Central Nervous System (CNS)

the complexity increases and therefore the time to learn the intricate movements also

increase.

Have you ever attempted to rub your abdomen with one hand while tapping your

head with the other? Separately these movements are easy to perform but their simul-

taneous executions require interlimb coordination that is learned over time. Motor

adaptation is the process through which the CNS improves upon performance. Trans-

fer of learning is the process through which learning a motor task in one condition

improves performance in another condition. Studies on motor adaptation have pre-

dominantly focused on the movement of one arm (unilateral tasks) [38, 41, 48, 49, 155].

A few studies have considered what happens when both arms learn to move at the

same time (bilateral tasks) [2, 36, 34, 55, 59, 64, 65, 81, 80, 188]. What remains

unclear is how one arm may influence the motor adaptation of the other arm during
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bilateral goal-directed reaching tasks. The long term goal of this research is to

understand the mechanisms of bilateral motor control and motor adaptation and to

investigate transfer of learning during bilateral tasks.

1.2 Motor adaptation and learning

Thorndike proposed the empirical law of effect which states that in order for learn-

ing to have occurred positive reinforcement is required [179]: rewarding a required

response leads to a repetition of the response, while punishing incorrect responses

leads to their elimination. The process of acquiring a correct motor behavior has

been suggested to lead to the behavior becoming automatic, that is the contribution

of conscious movement control becomes smaller [12]. Today the process of acquiring a

novel motor behavior is attributed to neural plasticity in the Central Nervous System

(CNS). Not only are humans able to acquire specific movements in novel conditions

during motor adaptation, but this process of adapting to one condition can improve

performance in another condition, which is called transfer of learning.

Richard Schmidt formally defined motor learning as “a set of processes associated

with practice or experience leading to relatively permanent changes in the capability

for responding” [148]. This is also referred to as skill acquisition, which is different

from motor adaptation. During skill acquisition a movement may be learned that

does not dissipate with time, such as riding a bicycle. In contrast, effects of motor

adaptation do not last over time and may be dependent on the constraints that are

placed on the motor task to be accomplished [156]. It is thought that during motor

adaptation the CNS generates voluntary motor commands that activate targeted

muscles thereby causing movement to occur. Sensory organs (e.g., Golgi tendon

organs, muscle spindles, eyes, etc) detects movement and provides sensory feedback

to the CNS regarding the actual movement. If the actual movement differs from the

intended one, the CNS detects this movement error and changes the motor commands
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in order to reduce the movement error. During this process of trial and error, the CNS

chooses and retains the motor commands that are appropriate for the given motor

task and environment, thereby forming the motor program. Over the years various

models have been proposed to explain the process of motor adaptation.

1.2.1 Models of motor adaptation and learning

In 1917, Lashley demonstrated that rats were able to execute a learned maze naviga-

tion behavior after sensory feedback had been removed. This led to the formulation

of the open-loop system hypothesis of learned motor behavior [90]. Lashley theorized

that the CNS does not rely on sensory feedback to execute a learned task. This led

to a theory of the feedforward model, which states that the motor program is defined

prior to the onset of the movement, with sensory feedback only coming into play at

the termination of movement [79].

In 1971, Adams proposed the closed-loop model of motor control, which stated

that the CNS does rely on sensory feedback during the execution of skilled tasks

[1]. Adams incorporated the detection of movement error and correction of motor

behavior into the motor control model. This line of research led to the development of

the feedback model, which is conceptually the opposite of the feedforward model. The

feedback model states, that the motor program is not defined prior to the movement,

but rather evolves during the movement. The motor commands are generated during

movement by comparing the current location of the arm against the target location,

through the movement error [69].

The hybrid model incorporates the feedforward and feedback models, in that a

motor program may be defined prior to the onset of movement, however it may be

constantly updated through sensory feedback [32]. This hybrid model has been shown

to be consistent with experimental evidence obtained for upper extremity reaching

tasks [72, 140]. Further developments of the hybrid model have led to the current
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generally accepted understanding of the processes underlying motor control during

upper extremity goal-directed reaching.

The CNS is intimately involved in motor adaptation (Fig. 1, page 5). The in-

tention to generate a movement starts in the motor association areas of the sup-

plementary motor cortex and premotor cortex where the motor program (controller,

Fig. 1, page 5) is formed [143]. The motor association areas use information from

the somato-sensory areas and posterior parietal cortex to update the motor program

[56, 86, 143, 185]. The neural signals forming the motor program are transmitted to

the primary motor area [143]. From there motor commands descend via the corti-

cospinal tract to spinal interneurons and motor neurons and activate the contralateral

muscles [21]. It is commonly believed that the motor commands are formed in the

contralateral hemisphere to the arm that is being controlled. Only less than 15% of

the fibers in the corticospinal tract do not cross over to the contralateral side at the

pyramidal decussation [15, 16, 17]. Movement is thought to be constantly monitored

by body sensors (e.g. eyes, muscle spindles, golgi tendon organs, etc) which trans-

duce sensory information back to the CNS. The CNS compares this sensory feedback

against the predicted feedback and evaluates the movement (movement evaluation,

Fig. 1, page 5) [135]. Many researchers believe that the cerebellum may receive an

efference copy of the motor commands from the primary motor cortex via the superior

colliculus-cerebellar-brainstem pathway loop [121, 120, 154]. Studies have shown that

the cerebellum plays a role in generating the predicted feedback, based on a history of

motor commands that form an internal model [112, 159, 171, 193]. Due to noise that

may be present in the system and external environment (produced by perturbations),

there are often differences between the predicted and actual sensory feedback. The

parietal cortex is thought to compare the predictive feedback against the propriocep-

tive and visual sensory feedback in order to update the estimated state of the system

(i.e., arm location in space) and sends this information to the primary motor cortex
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Figure 1: General motor control and motor learning model.

via supplementary motor areas to generate new motor commands [33, 60, 156, 193].

It has been shown that if the parietal cortex is injured or stimulated via transcranial

magnetic stimulation in humans, the individuals are not able to update the direction

of their movement if the target location changes during goal-directed reaching [33, 60].

Therefore, it is believed that the parietal cortex is responsible for comparing the pre-

dicted feedback and sensory feedback. This model accounts for motor adaptation, in

that through movement evaluation the movement error is reduced over time.

To illustrate how motor adaptation may occur in a unilateral reaching task, the

following example is presented (Fig. 2, page 7). Subjects sat in a Kinarm robot and

performed reaches with their unilateral right dominant arm towards eight targets (Fig.

2.a). Initially subjects performed target reaching with a straight line index finger tip

trajectory in the neutral environment (Fig. 2.b). If the Kinarm robot generates an

index finger tip velocity dependent force F applied to the arm, the index finger tip
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trajectory becomes curved (Fig. 2.d). The force vector F is a function of the index

finger velocity vector V,

F = B ∗V (1)

where, F is the force vector F = [Fx, Fy] applied to the index finger tip (in

Newton), V is the finger tip velocity vector V = [V x, V y] (in meter/second), and B

is the viscosity matrix (in Newton*seconds/meter):

B =

 0 10

−10 0

 (2)

As a result, the force environment F is directed clockwise and perpendicular to the

index finger tip trajectory (Fig. 2.c). Upon initial exposure to the force environment,

the finger tip trajectories have large deviations from the straight line (perpendicular

displacements) therefore large movement errors are observed (Fig. 2.d). Perpendicu-

lar displacement is defined as the maximum perpendicular distance of the finger tip

trajectory from a straight line connecting two targets. After training, the finger tip

trajectories straighten out and the movement errors become smaller (Fig. 2.e). The

speed at which this transition from large to small perpendicular displacements occur

is termed the rate of adaptation. Then during a catch trial, when the force environ-

ment is unexpectedly turned off, there are large movement errors once more which

are in the opposite direction compared to the case when the arm was initially exposed

to the force environment (Fig. 2.f). The difference in the movement error between

the catch trial conditions (Fig. 2.f) and the learned environment (Fig. 2.e) is often

referred to as the aftereffect and has been shown to be a measure of how well the

subject has learned the force environment in unilateral reaching studies [155]. The

process of adaptation to the force environment is likely to take place in accordance

with the mechanisms described above in this section. The sensory feedback signals
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Figure 2: An example of motor adaptation of the unilateral right dominant arm. (a)
Subject sits in the Kinarm. (b) Averaged finger tip trajectories of the right dominant
arm in the neutral environment. (c) Depiction of the clockwise force environment
applied during the unilateral right dominant arm reaching. (d) Initial finger tip
trajectories when the force environment is first turned on. (e) Finger tip trajectories
after adaptation to the force environment. (f) Finger tip trajectories during the catch
trials when the force environment is randomly removed.

from the moving arm are the essential part of these mechanisms.

1.2.2 Sensory feedback during goal-directed arm reaching

Muscle, joint and skin receptors provide proprioceptive feedback to the CNS. Such

muscle receptors as Golgi tendon organs and muscle spindles are sensitive to muscle

force and muscle length, respectively. The Golgi tendon organs are located at the

muscle-tendon junctions and innervated by group Ib afferents. The Ib afferents are

activated when the muscle is producing force, thus encoding the muscle force output.

The group Ib fibers synapse onto interneurons in the spinal cord that relay information
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to motoneurone of synergists and antagonists at the spinal cord and also projects to

the cortical regions. The primary and secondary muscle spindle afferents innervate the

intrafusal muscle fibers in the spindles, muscle length sensors. The muscle spindles lie

in parallel to the extrafusal muscle fibers, and therefore are able to detect the changes

in the length of the muscle when it is stretched. The primary muscle spindle afferents

are able to detect the velocity at which the muscle fibers are stretched. The primary

muscle spindle afferents synapse directly onto α-motor neurons of the muscle and its

synergists; they also project to motor neurons of the antagonists via Ia-interneurons.

The secondary muscle spindle afferents tend to detect the actual changes in muscle

fiber length and synapse onto interneurons that transmit length related information

further to α-motor neurons and the cortical areas. The skin also contains sensors:

(1) Merkel discs are able to detect light touch and texture, (2) Pacinian corpuscles

sense deep pressure, stretch, and vibration, and (3) Ruffini corpuscles sense heavy

touch, pressure and stretching of the skin and are also located in the joints and

therefore can sense joint movements [143]. Goal-directed arm movements tend to

be long enough in duration to allow for proprioceptive sensory feedback to play a

key role in updating any movement errors that may occur. It is thought that reflex

pathways allow for fast and immediate updates of the neural commands during a

single reach [180]. These command corrections are mediated by the neural pathways

from muscle afferents [156]. During fast reaching tasks, updating motor commands

during the reach may take longer than task requirements allow due to a feedback

delay. However, it has been suggested that in this case the system may rely on a

feedforward model of control [6, 52, 101] which allows the CNS to predict what the

sensory feedback would be, based on a history of motor commands that form the

internal model of the musculoskeletal system and the external environment.

In the current study the sensory feedback produced by the muscles are manip-

ulated in order to elicit different responses from the arm(s) during bilateral tasks.
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When the arm is stationary it produces presumably constant force and length feed-

back. When the arm(s) move but a force environment is not applied, the arm(s)

muscle afferents produce changes in muscle force and length feedback. These changes

are related to changes of the arm position due to movement and therefore for the pur-

pose of this study are termed movement related position feedback. When the arm(s)

move in a force environment, there is presumably larger changes in the muscle forces

and thus activity of group Ib afferents. These changes directly relate to the force

environment and therefore are termed external load feedback. By altering movement

related position feedback and external load feedback from the two arms it may be

possible to determine how sensory information affects motor adaptation.

A typical way in which motor adaptation has been studied is by applying perturba-

tions (such as visual rotations of the observed arm or changing the force environment)

and observing the changes in the performance. Studies have demonstrated that indi-

viduals are able to adapt to visual perturbations [84, 86, 97, 98, 104]. Other studies

have used applications of novel force environments [155] or force pulses [49] as pertur-

bations to the moving arm in order to quantify the rate of adaptation and understand

the motor behavior of the arm. When considering bilateral tasks, there are multiple

combinations of how the force environment may be applied to the arms. One question

is, does motor adaptation depend on whether one or both arms experience the force

environment? This question will be addressed in Chapter 4, page 63.

It is difficult to make general conclusions about motor adaptation because ex-

perimental findings are often dependent on the nature of the task [95, 94, 31, 170].

Unilateral studies of motor adaptation and learning have considered, wrist movement

[4, 41], elbow flexion [51, 111, 145], thumb and finger pinching [58], key pressing [59],

finger tapping [178], drawing [27, 83, 140, 139, 183], and reaching [10, 26, 30, 32, 38,

49, 56, 57, 68, 76, 84, 86, 99, 105, 129, 137, 155]. Studies on bilateral tasks have con-

sidered, finger tapping [77, 85, 88], cyclical movement [41, 53, 66, 70], pinching index
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finger to thumb [13], flexing of index finger [14] and reaching [34, 35]. Most of these

bilateral task studies looked at rhythmic movements, the role of sensory feedback and

the coordination between the limbs. Bilateral goal-directed reaching is interesting,

because the movements are discrete, and yet may require a high degree of coordina-

tion especially if the movements are out-of-phase. There are several possible models

to describe bilateral motor control which will be explored next.

1.3 Bilateral motor control

Bernstein has been credited with introducing the concept of coordination between

the limbs and asking the question of how the motor system is able to control so many

degrees of freedom at once [12]. This question has been the pursuit of many studies

that have led to the formulation of several possible models that may predict bilateral

motor behavior. Four of these models will be discussed next: (1) The Generalized

Motor Program (GMP), (2) Intermanual Crosstalk, (3) Hierarchical Model and (4)

The Optimal Feedback Control (OFC) model.

1.3.1 Generalized Motor Program

The Generalized Motor Program incorporates the notion that there is a single motor

program that controls both arms during bilateral tasks [59, 188]. This motor program

specifies all of the movement parameters (velocity, direction, threshold, gain, etc)

necessary to complete the task prior to the initiation of movement, similar to the

feedforward model. Studies have shown that typically the temporal aspects (speed,

time, etc) are common parameters that may be specified by the motor program, while

force is thought to be coded differently for each arm [149]. When the Generalized

Motor Program refers to a single motor program, this does not mean that there is a

single region in the brain where the motor program is formed. Instead it is suggested

that all of the brain regions play an intricate role that work together to produce a

single motor program that controls the motor behavior of each arm during bilateral
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tasks [31]. Studies have shown that there are several regions in both hemispheres

that are active during bilateral movements. These include the primary motor cortex,

somatosensory areas [39], supplementary motor areas [136, 166], basal ganglia [132]

and the cerebellum [103].

1.3.2 Crosstalk between arm controllers (Intermanual Crosstalk)

The concept of Intermanual Crosstalk incorporates the notion that there are two mo-

tor controllers generating motor commands, one for each arm [7, 96, 31]. Interference

and transfer of learning between the arms are thought to occur because of an inter-

action of the motor commands and/or feedback signals between the arms (crosstalk),

and may be important during motor adaptation of bilateral tasks [55]. Potential neu-

ral pathways that may mediate crosstalk between the limbs’ control systems include

(1) ipsilateral pathways, (2) bilateral corticomotoneuronal projections in the spinal

cord, as well as (3) the corpus callosum (carsoon2005).

• Ipsilateral pathways: Less than 15% of the neurons that originate in the primary

motor cortex do not cross the midline at the pyramidal decussation but project

onto ipsilateral spinal interneurons and motoneurons [128]. These uncrossed

fibers may be responsible for activity in the ipsilateral homologous muscles

when only the contralateral limb is intended to move [21].

• Spinal cord: Branched corticospinal projections may occur at the spinal cord

level and may be an alternative pathway for mediation of bilateral mirror move-

ments [21, 102].

• Corpus callosum: The corpus callosum may be the primary structure respon-

sible for the cross-talk between the hemispheres. Studies have indicated that

the corpus callosum plays a vital role in coordination [9, 43, 54, 110] and syn-

chronicity [44, 153] between the arms during bilateral tasks. Specifically, it has
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been reported that the anterior corpus callosum influenced the difference in re-

action time and movement time between the arms during bilateral movements

[130], and the posterior corpus callosum affected differences in coordination [43]

and synchronicity [44, 153] between the arms. Other studies have demonstrated

the importance of the corpus callosum for accomplishing coordinated bilateral

tasks [9, 54, 110].

If this model is used it is predicted that during bilateral tasks, information is

transferred from one hemisphere to the other. However, it does not specify what type

of information is being transferred or the direction of information transfer between

the hemispheres. One assumption that is made of the Intermanual Crosstalk model

is that each arm has its own motor controller generating a motor program, and that

information is transferred between the two motor controllers via the neural pathways

indicated above [21, 96, 31].

1.3.3 Hierarchical Model

There is a possibility that the Generalized Motor Program and the Intermanual

Crosstalk models may be combined to form the Hierarchical Model. In accordance

with the Hierarchical Model a motor command is generated with common movement

parameters for both arms (Generalized Motor Program), whereas some arm specific

aspects of the motor commands and/or feedback signals from the arms interact with

the opposite motor controller (crosstalk).

1.3.4 Optimal Feedback Control

Thorndike proposed the empirical law of effect which states that in order for adap-

tation to occur, positive reinforcement is required [179]. One expects to receive a

reward at the end of the movement while paying a cost. This reward versus cost

may affect how quickly and accurately one adapts to a new motor task, and how one

responds to the sensory feedback [154]. The Optical Feedback Control (OFC) theory
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Figure 3: A schematic for goal directed movements as suggested by the Optimal
Feedback Control theory. Adopted from [154].

has been suggested to explain how movement evaluation, i.e. comparing between the

predicted and actual sensory feedback, takes place (Fig. 3, page 13) [181, 154].

The OFC theory incorporates the notion that in order for movement to occur

three problems need to be solved: (1) system identification: the CNS needs to pre-

dict what the sensory consequences will be when the planned movement is executed,

(2) state estimation: the CNS needs to compare the predicted feedback against the

actual sensory feedback in order to update the current system state estimation (arms

mechanical state in the world) and (3) optimal change of motor command: the CNS

needs to use this updated state of the arms to modify the motor program, based on

the expected costs and rewards for the task, in order to improve movement outcome.

Neurophysiological studies have identified anatomical structures in the cortical areas

that may mediate system identification, state estimation and optimal control. Studies
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have suggested that the cerebellum is involved with system identification, the parietal

cortex allows for state estimation, while the basal ganglia is involved with the optimal

change of motor command [154, 181].

The cerebellum receives input from the primary motor cortex (M1), which is

thought to be an efference copy of the motor command, i.e., the descending input via

the corticospinal tract to the interneurons and motoneurons activating muscles. The

cerebellum uses the efference copy to build an internal model that predicts the sensory

feedback of the intended movement. Nowak et al. [112] conducted an experiment

where a ball was dropped into a basket that subjects held. The performance variable

that was considered was the time it took between the start of ball movement and the

onset of tightening subject’s grip on the basket. In healthy subjects it was found that

the response time was much faster when the subject dropped the ball in the basket

than when the experimenter dropped it. When the subject dropped the ball, he/she

was able to predict in advance what the sensory feedback should be, and thus would

tighten their grip sooner. Nowak et al. compared the results of the healthy subjects,

against a patient that had no cerebellum due to a rare developmental condition;

however sensory feedback of the patient appeared to be intact. There was no difference

in response time between the conditions of dropping the ball by experimenter or

the patient. Therefore, it has been suggested that the cerebellum is involved with

predicting the sensory consequences of motor commands [112, 154, 193].

There have been several studies on the posterior parietal cortex that demonstrated

that this cortical area is involved with state estimation. A lesion study on monkeys

reaching with their arms while the lights were turned on and off, demonstrated that

the inferior parietal lobe interprets visual feedback while the superior parietal lobe

interprets proprioceptive feedback [135]. Other studies have supported the notion

that the posterior parietal cortex evaluates visual and proprioceptive sensory feedback

against the predicted feedback in order to update the current state estimation of the
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arm in the world [33, 60]. The posterior parietal cortex receives the sensory and

predicted feedback via the thalamus which acts as a relay between the primary motor

cortex (M1), cerebellum, basal ganglia and other cortical regions.

According to the OFC theory, the basal ganglia is thought to be involved with

optimal change or selection of motor commands, by weighing the cost versus reward

for a specific movement. The basal ganglia receives inputs from nearly all the corti-

cal regions, including a branching of the corticostriatal neurons which is thought to

contain another efference copy of the descending motor command. The basal ganglia

has two outputs, first is the direct pathway which disinhibits neurons in the thala-

mus, superior colliculus and the brainstem. The other indirect pathway inhibits these

regions. Packard and McGuagh [122] conducted a study where rats were placed in a

pool of water and had to swim to a platform in order to get out of the water. Two

platforms were placed in the water, a large platform was marked with a red flag and a

small platform was marked with a green flag. Healthy rats gradually learned to swim

to the red flag, while rats with a lesion to their basal ganglia took longer to learn this.

These rats were probably not able to associate the reward stimuli of standing on the

large platform with the red flag. Other studies on Parkinson’s disease patients have

also come to the conclusion that the basal ganglia is possibly involved with comparing

the cost versus the reward of performing movements [100].

1.4 Transfer of learning

Transfer of learning has been defined as the process through which learning a motor

task in one condition improves performance in another condition. Transfer of learning

has been shown to occur between arms when one arm has undergone motor adaptation

and the opposite non-trained arm was tested and demonstrated signs of adaptation

[11, 38, 76, 99]. Transfer of learning has also been demonstrated to occur when a

unilateral motor task was trained, but a bilateral task was tested [113, 114]. The
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Figure 4: Overview of the three transfer of learning models: (1) Callosal Model,
(2) Proficiency Model and (3) Cross-Activation Model. These models predict the
direction in which transfer of learning may occur during a bilateral task between the
dominant (Dom) and the non-dominant (NDom) arms. (Images taken from [5]).

opposite has also been shown to occur where subjects trained a bilateral motor task

but was tested on a unilateral task [71, 158]. One key question that has not yet been

addressed in the literature is: Does transfer of learning occur during bilateral tasks?

This question will be addressed in Chapter 3, page 42.

This section will review: (1) Three current models (callosal, proficiency and

cross-activation) that have been proposed to explain how transfer of learning may

occur (Fig. 4, page 16), (2) The role that handedness may play in transfer of learning

as explained by the dynamic dominance hypothesis, (3) A description of cortical areas

that may be associated with transfer of learning, and (4) The effect that the external

environment may have on transfer of learning.
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1.4.1 Models of transfer of learning

1.4.1.1 Callosal Model

According to the callosal model, a single motor program, located in the left dominant

hemisphere, controls the motor behavior of both the arms. The right dominant arm

has direct access to this motor program, whereas the left non-dominant arm only has

access to it via the corpus callosum [175]. Therefore, the dominant arm should benefit

more from the motor learning of the non-dominant arm than vice versa [150]. Several

studies have supported this expectation and shown that transfer of learning is greater

from the non-dominant arm to the dominant arm than from the dominant arm to the

non-dominant arm [58, 67, 175]. The Generalized Motor Program model is consistent

with the callosal model, in that it also suggests that a single motor program controls

the movement of both the arms. If the callosal model is applied to bilateral reaching

tasks, it is predicted that the non-dominant arm would influence the motor behavior

of the dominant arm.

1.4.1.2 Proficiency Model

The proficiency model incorporates the notion that there are two motor programs,

one for each arm, which are stored in the contralateral hemisphere to the arm being

trained. In accordance with this model, each arm can benefit from motor learning

of the other arm [177]. Laszlo et al. in 1970 demonstrated that sensory feedback

influences the direction of transfer of learning between the arms [91]. When subjects

were trained with reduced feedback (removing visual, audio and tactile sensing) and

then tested in normal feedback conditions on the other arm, transfer of learning

occurred only from the dominant to the non-dominant arm. However, when the other

arm was tested in the reduced feedback condition, transfer of learning occurred only

from the non-dominant to the dominant arm. Other studies have indicated that there

is no difference in the direction of transfer of learning [177]. Thus, there may be an
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equal update of the two motor programs via motion dependent feedback independent

of which arm is being trained. If the proficiency model is applied to bilateral reaching

tasks, it is predicted that there will be no difference in the amount of influence that

one arm has on the other.

1.4.1.3 Cross-Activation Model

The cross-activation model incorporates the notion that there is a motor program in

each hemisphere for the corresponding arm, and these programs are able to interact

with one another in a way similar to that proposed for the Intermanual cross-talk

model [124]. In a study where the cerebral hemispheres were surgically disconnected

(callosotomy), it was found that transfer of learning did not occur for unilateral tasks

[160]. With the Cross-Activation model, arm dominance comes into play in that the

non-dominant hemisphere/arm system receives information from the dominant hemi-

sphere/arm system, but not vice versa. When the dominant arm is trained it forms

a dominant motor program in the dominant hemisphere and a less complete motor

program in the non-dominant hemisphere. When the non-dominant arm performs

the task for which the dominant arm was trained, the non-dominant arm has access

to this lesser motor program in the non-dominant hemisphere. However, when the

non-dominant arm is trained, it only forms a motor program in the non-dominant

hemisphere that does not affect the dominant motor program. Therefore according to

the cross-activation model, transfer of learning is expected to occur from the dominant

arm to the non-dominant arm [62, 91, 124, 150, 182, 189].

Haaland and Harrington (1996) conducted a series of experiments demonstrating

that in patients with unilateral brain damage to the dominant hemisphere, there were

deficits in the motor behavior of the non-dominant arm. However, the dominant hemi-

sphere did not experience any deficits when there was damage to the non-dominant

hemisphere [61]. This supports the idea of the cross-activation model, in that the
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dominant hemisphere potentially contains key circuitry that affects the motor behav-

ior of the non-dominant arm. In one of the few studies that looked at transfer of

learning during a bilateral task, it was found that transfer occurred from the right

dominant arm to the left non-dominant arm, thereby supporting the cross-activation

model [182]. Subjects were trained to trace a star with their right hand and a straight

line with their left. During testing the left hand traced the star and the right hand

traced the straight line. Transfer of learning did occur for a bilateral task, from the

dominant arm to the non-dominant arm. Viviani et al. (1998) conducted a study

that considered hemispheric asymmetries with respect to handedness [185]. Sub-

jects performed a bilateral task that involved tracing elliptical trajectories with both

their hands. Subjects performed this cyclical bilateral task while a positron emission

tomography (PET) scanner was recording brain activity. The results of the study

indicated that for both right- and left-arm dominant individuals, the dominant arm

led the non-dominant arm. Also, the dominant hemisphere had consistently greater

neural activity in the motor and premotor areas than the non-dominant hemisphere,

which supports the cross-activation model. Therefore, it was concluded that the asym-

metric motor behavior of the arms were related to the asymmetric neural activations

in the hemispheres. If the cross-activation model is applied to bilateral reaching

tasks, it is predicted that the dominant arm would influence the motor behavior of

the non-dominant arm, but not vice versa.

1.4.2 Dynamic Dominance Hypothesis

The dynamic dominance hypothesis [137] incorporates the notion that the right dom-

inant arm is more proficient in coordinating dynamical intersegmental interactions

than the left non-dominant arm and therefore should be better in controlling arm

endpoint trajectory in terms of trajectory direction and shape. At the same time,

the left non-dominant arm is more capable of performing static stabilizing tasks and
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thus is more proficient in specifying the final arm endpoint position. Sainburg and

colleagues conducted a series of experiments in order to understand the asymmetric

behavior of the arms due to handedness [141, 138, 190]. Subjects performed goal-

directed unilateral reaching with either visual or inertial perturbations. The results

demonstrated that when the arms were exposed to inertial forces, the dominant arm

produced significantly smaller muscle torques than the non-dominant arm in order to

accomplish the same task [137]. This suggested that the dominant arm is better in

controlling limb dynamics. Other studies have demonstrated that the final position

of the non-dominant arm is often more accurately achieved than that of the dominant

arm [7, 8, 137, 141].

The dynamic dominance hypothesis also incorporates the notion that the type of

information that is transferred between the arms depends on the properties of the

arms’ motor programs and the inherent task of each arm [138]. Sainburg and Wang

(2002) demonstrated that for a visuomotor perturbation, the information transferred

between the arms was specific to each arm [137]. Subjects adapted to a 30◦ counter

clockwise visual rotation of the targets with the right- and left-arm separately. Af-

ter adaptation the other arm was tested to evaluate whether transfer of learning

occurred. The results showed improvement in the initial movement direction (trajec-

tory information) of the right dominant arm after the left arm was trained due to the

motor adaptation of the left non-dominant arm. The non-dominant arm improved in

final position accuracy after the right dominant arm was trained due to the motor

adaptation of the right dominant arm. Therefore it was suggested that final position

information was transferred from the dominant to the non-dominant arm, while the

trajectory information was transferred from the non-dominant to the dominant arm.

These findings supported the dynamic dominance hypothesis, in that each arm uti-

lizes the information available to it in order to improve specific kinematic features

of its performance in accordance with the arm specialization. Therefore it may be
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predicted that for bilateral tasks, that trajectory information will transfer from the

non-dominant to the dominant arm while final position information will transfer from

the dominant to the non-dominant arm.

1.4.3 Cortical areas associated with transfer of learning

The direction in which transfer of learning occurs may be dependent on hemispheric

dominance [137] and on the strategies developed by the subjects during training

[164]. Researchers have debated over the direction of transfer of learning between the

arms, which have led to the development of the before mentioned transfer of learning

models. A few studies have examined what the underlying neural mechanisms may

be for transfer of learning by employing positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI) technologies [45, 5]. In a series of

PET studies conducted on monkeys performing reaching tasks, brain activity during

transfer of learning were examined [115, 116]. Results of these studies indicated that

during learning bilateral activation of the prefrontal cortex (PFC) and intraparietal

sulcus (IPS) occurred. Contralateral cerebellar activity was also observed for the

arm being used. Obayashi suggested that transfer of learning is mediated by the

fronto-parietal-cerebellar pathway, and that information is shared between the frontal

cortices via the anterior corpus callosum [45]. Perez et al. (2007) conducted a study

using fMRI on transfer of learning of a finger tapping sequence task [127]. The right

hand trained a 12-item finger tapping sequence and then the left hand was tested

in a mirror image sequence, random sequence and a different unlearned sequence.

Results of this study indicated that greater transfer of learning from the right hand

to the left hand resulted in greater activity of the supplementary motor area (SMA).

When transcranial magnetic stimulation was applied to the SMA, transfer of learning

did not occur. The conclusion of that study was that the SMA is responsible for

intermanual transfer of learning. Anguera et al. examined how the brain activity
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during learning a unilateral task may support the transfer of learning models [5].

Subjects participated in a visuomotor adaptation unilateral task, where the right

dominant arm was trained and the left non-dominant arm was tested. During transfer

of learning to the left non-dominant arm, the fMRI data revealed brain activity in

the non-dominant hemisphere, especially in the temporal cortex, medial frontal gyrus,

middle occipital gyrus. Neural activity was also observed in the temporal cortex of the

dominant hemisphere. Therefore during transfer of learning there was neural activity

in both hemispheres which would support the cross-activation model, but not the

callosal model or the proficiency model. However, these results may be dependent

on the experimental design in that the right dominant arm was trained and the left

non-dominant arm was tested. It is unknown whether these results would support the

cross-activation model if the left non-dominant arm is trained and the right dominant

arm is tested.

Currently there are various hypotheses that have been proposed regarding the neu-

ral mechanisms for transfer of learning of unilateral tasks. As has been demonstrated

there are various pathways and neural structures that may be involved with transfer

of learning: PFC, IPS, cerebellar, corpus callosum, SMA, temporal cortex, middle

occipital gyrus. Further research in this area is needed, in order to understand the

neural mechanisms involved with transfer of learning. All of these studies considered

transfer of learning of unilateral tasks, and thus it is unclear what neural pathways

and structures may be involved during transfer of learning in bilateral tasks.

1.4.4 Environment

The force environment in which transfer of learning occurs has been shown to play

a role in motor adaptation and transfer of learning. Burgess et al. demonstrated

that transfer occurred from a bilateral to a unilateral reaching task when the same

extrinsic force environment (coordinate frame is external to the body, e.g. both arms

22



experience a clockwise force environment) were applied to the arms [19]. Malfait

and Ostry showed that transfer occurs in an extrinsic coordinate frame only if the

force environment is applied abruptly but not if it gradually increases [95]. It has

also been shown that during unilateral reaching [28], transfer of learning occurs from

the dominant to the non-dominant arm only in the extrinsic coordinate frame and

not in the intrinsic coordinate frame (coordinate frame is with respect to the joints

in the body, e.g. the right arm experienced a clockwise force environment which

tends to extend the right arm joints, while the left arm is experiencing a counter

clockwise force environment which also tends to extend the left arm joints). This

results supports the cross-activation model. Therefore, it is plausible that transfer

of learning may depend on the direction of the force environment (i.e., extrinsic or

intrinsic coordinate frame). The question becomes, does the direction of the force

affect bilateral motor adaptation? This question is addressed in Chapter 5, page 73.

1.5 Motor behavior of the arm

The human body has more kinematic degrees of freedom than is strictly necessary to

perform a movement. As a result, the arm endpoint can be positioned in a specific

location with many different combinations of angles at the shoulder, elbow and wrist.

Despite this kinematic redundancy healthy individuals tend to utilize limited specific

motor patterns, which are called kinematic invariant characteristics. These include (1)

straight-line finger tip trajectory, (2) bell-shaped hand velocity profile, (3) power law

and (4) Fitt’s law. Straight-line finger tip trajectory is observed when the finger tip

moves in a nearly straight line from one target to another (Fig. 2.b, page 7). Joint

angles during these reaching tasks are variable and may have complex non-linear

patterns. During reaching, the finger tip has a bell-shaped velocity. The velocity

magnitude is zero at the start of the movement, reaches peak in the middle of the

reach and then goes back to zero. The symmetric bell-shaped velocity profile can
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be distorted by applying random external perturbations. The bell-shaped velocity

profile can be restored through motor adaptation [155]. During drawing, writing or

when the arm moves along a curved trajectory, the finger tip velocity is coupled with

the curvature of the finger tip trajectory. The power law describes the relationship

between the velocity and the curvature of the trajectory [40, 89, 146, 186, 184].

Fitt’s law incorporates the notion that there is a tradeoff between speed and

accuracy in arm reaching, that is when speed increases the accuracy will decrease.

This has been demonstrated by changing the size of and distance to the target during

reaching tasks. The smaller the target and the further away it is, the higher the

accuracy demands are and therefore the slower the movements [50]. Movement time

has been shown to be dependent on the ratio between movement amplitude and

movement precision (target size). Kelso et al. (1979) demonstrated that during a

bilateral task when there is a difference in the size of the target for each arm, both

arms moved slower in order to accommodate the arm that was moving towards the

smaller target [81]. Therefore, in order to ensure that the same conditions are placed

on both hands, the distance to the target and target size would have to be the same

between hands. Kelso, also demonstrated that these results hold true regardless of

the direction during bilateral reaching [80].

Attention may influence the motor behavior of the arms during bilateral tasks.

Bilateral movements tend to have longer reaction times than unilateral movements

and this may be attributed to increased cognitive demands on the CNS [37, 82, 106,

117, 161, 173, 174]. The more complex the bilateral task is the greater the attentional

focus needs to be, as demonstrated in pianists playing a Bach piece versus a scale

[125]. Divided attention can cause spatial errors during bilateral tasks. Researchers

have found that if a subject is instructed to focus attention on a single limb during a

bilateral task, the unattended limb would make greater movement errors [157]. There

appears to be an attention bias towards the right arm in right-handed subjects [18]
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and that during bilateral reaching there tends to be more saccadic eye movements

toward the right arm than the left arm [74]. Furthermore, the right arm tends to

lead the left during bilateral cyclical drawing in right arm dominant subjects but

not left arm dominant subjects [167]. However, studies have shown that there is no

difference in reaction or movement time during bilateral in-phase (symmetrical) and

out-of-phase (non-symmetrical) movements [2]. Although in-phase cyclical movement

is more stable [25, 167, 168], subjects are still able to learn out-of-phase movements

[169]. One of the primary reasons for observed differences between unilateral and

bilateral movements may be that a greater amount of attention is required during

bilateral movements. What would be interesting to know, is whether attention plays

a role in the transfer of learning during a bilateral reaching task. An easy way to

test this would be to consider any differences in movement time and reaction time.

Longer reaction times and movement times, are often used to indicate that a higher

neural activity in the CNS is required to execute complex bilateral movements when

compared to simpler unilateral movements.

1.6 Significance

The Center for Disease Control estimates that this year in the United States ap-

proximately 600,000 people will suffer from a stroke, which comes to approximately

one person per minute [194]. A stroke occurs when a blood clot gets trapped in a

blood vessel due to plaque buildup and causes oxygen depravation to the brain. This

often results in movement disability that may be restored through intensive rehabil-

itation. In stroke rehabilitation there is an ongoing debate as to whether unilateral,

bilateral motor learning or a combination there of may be more beneficial. Stud-

ies on unilateral motor learning, such as the Constraint Induced Movement Therapy

(CIMT), have demonstrated to be an effective strategy for retraining the affected arm

[3, 20, 123, 192]. Other studies have demonstrated that bilateral motor learning also
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improves the motor control of the affected arm [29, 92, 63, 109, 134, 165, 187]. The

type of therapy that is chosen for a stroke survivor may depend on many factors and

may involve a combination of unilateral and bilateral motor learning strategies. What

remains unclear for bilateral reaching tasks is whether and how transfer of learning

occurs. Understanding the mechanisms of transfer of learning may aid therapists in

designing improved rehabilitation therapy for stroke survivors.

Most studies of upper extremity have focused on unilateral motor learning of the

right dominant arm [41, 49, 58, 59, 76, 83, 137, 145, 155, 178]. Few have considered

the unilateral motor learning of the left dominant arm [46, 172, 191]. In addition,

transfer of learning studies have focused on unilateral tasks, where one arm is trained

and the opposite arm is tested. From these studies several theories on how transfer of

learning may occur have been developed (See Section 1.4 and [28, 91, 124, 137, 175]).

However, since these theories are mostly based on unilateral tasks, it remains unclear

where and how motor adaptation and transfer of learning occur during simultaneous

repeated performance of novel bilateral tasks by both arms.

1.7 Central hypothesis and specific aims

The purpose of the current study is to determine whether transfer of learning occurs

during bilateral reaching tasks. This is addressed by comparing the difference in

motor adaptation of the arm(s) during bilateral reaching tasks, when the arm(s) are

exposed to a novel force environment. For bilateral tasks, there are multiple ways of

how the force environment may be applied. The current study examines whether there

is a difference in motor adaptation when only one arm or both arms experience the

force environment. Furthermore, the current study examines whether the direction

in which the forces are applied may affect motor adaptation and transfer of learning.

The central hypothesis of the study is that during bilateral reaching in a novel

force environment, either transfer of learning or interference between the arms may
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take place depending on the type of sensory feedback (position dependent or external

load dependent) from the dominant and non-dominant arm.

1.7.1 Aim 1

Transfer of learning has been shown to occur for unilateral tasks when one arm was

trained and then the other arm was tested. Based on results from various experiments

three transfer of learning models have been proposed to describe the direction in which

transfer of learning occurs: Callosal Model [175], Proficiency Model [91] and Cross-

Activation Model [124]. Studies that have examined neural activity during transfer of

learning support the cross-activation model [185]. The intermanual cross-talk model

for bilateral motor control is consistent with the cross-activation model which proposes

that each arm has its own motor program in the contralateral hemisphere and that

motor program related information is transferred from the dominant to the non-

dominant hemisphere but not vice versa. It is predicted that during a bilateral task

when one arm remains stationary, the stationary arm provides constant movement

related position feedback to the opposite moving arm but does not influence the motor

adaptation of the opposite arm. When both arms are moving, but only one arm adapts

to the force environment, it is predicted that the movement related position feedback

from the arm that does not experience the force environment may influence the motor

adaptation of the arm that does experience the force environment. Therefore, when

incorporating the cross-activation model with this rationale, it implies that sensory

feedback from the dominant arm may influence the development of the motor program

of the non-dominant arm, but not vice versa. The primary question addressed in this

study is: Does transfer of learning occur during bilateral tasks? This question will

be explored further in Chapter 3, page 42.

Aim 1: Determine the effects of arm dominance on transfer of learning during

bilateral reaching.
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Hypothesis 1.1: The transfer of learning from the non-dominant to the dominant

arm is smaller than the transfer from the dominant to the non-dominant arm, given

that one arm learns a force environment and the other simultaneously operates in the

natural force environment.

1.7.2 Aim 2

The CNS is thought to use sensory feedback in order to compare the predicted move-

ment against the actual movement. If there is a difference between predicted and

actual movement (movement error), the CNS updates the motor program in order

to produce improved motor commands. When an unexpected force environment is

applied to the arms, large movement errors result. With practice and adaptation to

the force environment, these movement errors become smaller. In bilateral tasks, the

force environment can be applied in multiple combinations to the arm. However, the

current study addressed the question: does motor adaptation depend on whether one

or both arms experience the force environment? It is anticipated that during bilateral

tasks when both arms experience an intrinsic force environment, the external load

feedback available from each arm would be similar. During a bilateral task when

only one arm experiences the force environment but the other arm does not, it is

anticipated that there would be a difference in the external load feedback between

the arms. If it is assumed that transfer of learning occurs during bilateral tasks, then

it is predicted that when sensory feedback is similar between the arms, the CNS is

able to update the motor programs more efficiently than if there is a difference in

sensory feedback between the arms. This will be explored further in Chapter 4 (page

63).

Aim 2: Determine the effects of simultaneous learning of the intrinsic force envi-

ronment by two arms on transfer of learning during bilateral reaching.

Hypothesis 2.1: When both arms learn the intrinsic force environment during
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bilateral reaching, motor adaptation of the dominant arm should be greater than

when only the dominant arm learns the force environment during bilateral reaching.

Hypothesis 2.2: When both arms learn the intrinsic force environment dur-

ing bilateral reaching, motor adaptation of the non-dominant arm should be greater

than when only the non-dominant arm learns the force environment during bilateral

reaching.

1.7.3 Aim 3

Studies on transfer of learning have demonstrated that the direction in which the

force environment is applied does affect the direction in which the information is

transferred from one arm to the other. Criscimagna-Hemminger et al. found that

transfer of learning occurs from the dominant arm to the non-dominant arm for

extrinsic force environments but not for intrinsic force environments [28]. The current

study addressed this issue by asking the question: Does the direction of the force

environment affect bilateral motor adaptation. It is predicted that during bilateral

reaching, transfer of learning should be greater for the extrinsic force environment

than the intrinsic force environment. This will be explored further in Chapter 5

(page 73).

Aim 3: Determine the effects of extrinsic and intrinsic force environments on

transfer of learning during bilateral reaching.

Hypothesis 3.1: When both arms learn the force environment during bilateral

reaching, transfer of learning should be greater for the extrinsic force environment

compared to the intrinsic force environment.

1.8 Conclusion

This chapter reviewed studies on motor adaptation and four motor control models

(Generalized Motor Program, Intermanual Crosstalk, Hierarchical model and Opti-

mal Feedback Control) that may apply to bilateral movements. Motor adaptation is
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thought to be an iterative process through which the CNS updates motor commands

to the muscles to improve motor behavior. During motor adaptation sensory feedback

about the ongoing movement is provided back to the CNS for a comparison with the

predicted feedback. The mechanisms of bilateral arm control are still under debate.

The four discussed models attempt to address the question of whether there is a sin-

gle controller for both arms, or whether each arm has its own controller, and how

sensory feedback may influence the controllers. One way in which this question has

been studied is by considering how learning a motor task by one arm in one condition

may transfer to the other arm in a different condition. There are three models that

have been proposed to explain transfer of learning, callosal model, proficiency model

and the cross-activation model. However, handedness may contribute significantly

to the interference or transfer of learning between the arms during bilateral goal-

directed reaching tasks, as explained by the dynamic dominance hypothesis . Three

key questions have been posed with the aims and hypotheses: (1) Does transfer of

learning occur during bilateral tasks? (2) Does motor adaptation depend on whether

one or both arms experience force environment? and (3) Does the direction of the

force affect bilateral motor adaptation? Each of these questions will be addressed in

subsequent chapters.
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CHAPTER II

METHOD

2.1 Introduction

This chapter covers the methodology used to conduct the studies described in this

thesis. Descriptive information about the subjects are provided, along with the ex-

perimental equipment and protocol. The task performance measures and how these

were analyzed are discussed.

2.2 Subjects

Sixty one (61) subjects were recruited for this study (43 males and 17 females, Table

1, page 32). The selection criteria for the subjects were: (1) 21 years of age or older,

(2) had no known neuromuscular disorders, and (3) had to be right hand dominant

in that the Edinburgh Inventory [118] had to be between 0.5 and 1. One subject

had a small lesion in the right frontal lobe, however upon examining her data this

did not seem to alter her performance when compared with other subjects. Data

from one subject was lost due to technical difficulties. The only significant difference

between gender (p < 0.05) was that males tended to be taller than females (Table 2).

Subjects were pseudo-randomly assigned to one of six groups to ensure a nearly equal

distribution of males and females per group. More details about the groups will be

provided later in this chapter (page 37) and in subsequent chapters. Informed consent

was obtained prior to the initiation of the experiment. This study was approved by

the Georgia Institute of Technology Internal Review Board.
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Table 1: Descriptive information across subjects.

N Mean±Std Range

Age (years) 60 35±12 [21,59]
Height (cm) 60 177.82±8.66 [155,197]
Weight (kg) 60 81.63±17.06 [49.9,134]
Handedness 60 0.77±0.14 [0.5,1]

Table 2: Descriptive information by gender.

Males Females

N 43 17
Age (years) 33±11 39±14
Height (cm)* 181.1±6.5 169.6±8.2
Weight (kg) 83±15.6 78.2±20.4
Handedness 0.77±0.14 0.75±0.17

2.3 Bilateral exoskeletal robotic equipment

Kinarm (Kinesiological Instrument for Normal and Altered Reaching Movement;

BKIN Technologies, OT, Canada) is a robotic assessment system for quantifying

motor function of the upper extremities (Fig. 5, page 34). The Kinarm is a motor-

ized exoskeleton that monitors and manipulates arm motion in the horizontal plane.

Elbow and shoulder joints are aligned with the Kinarm robot’s joints. The Kinarm

system includes two robots for simultaneous left- and right-arm manipulation. The

system integrates a virtual target presentation system and wheel-chair-style seat-

ing. The BKIN Dexterit-E software allows for creating and controlling behavioral

paradigms for recording.

The calibration of the Kinarm involves three steps. The first calibration step is

done prior to the subjects arrival and involves locking the robotic arms into a fixed

position where all the angles between robotic arm segments are known. Next, the

subject is asked to sit in the wheel-chair-style seating while the joints of the robot are

aligned with the shoulder and elbow joints of the subjects. The second calibration
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step is called the docking station calibration step and is performed once the subject

is wheeled up to the visual display system (Fig. 5.b). The subject moves the robotic

arm such that the pin beneath its distal end makes contact with the most lateral

docking point of the visual display system, then he/she moves the pin on to the

next two docking points located medially. There are three docking points per arm,

and this serves to map the visual display system to the subject’s dimensions. The

last calibration step involves the finger-tip calibration. At the visual display system,

subjects are asked to move his/her index finger tip to each of four projected target

points sequentially. This is done separately for each arm and serves to calibrate the

projected index finger cursor to the subjects specific anthropometrics. Two white

dots are projected onto the screen and serves as cursors that track the movement

of the tip of the index fingers of the subject. After the calibration is complete, a

non transparent screen is slid forward in the visual display system so that subjects

are not able to see their arms. In addition a cloth is draped over their shoulders to

further ensure that subjects do not receive visual feedback on their arm position and

configuration. Instead the only visual feedback that subjects receive are white dots

that coincide with the tip of their index fingers.

2.4 Experimental protocol

In the experimental task subjects were instructed to place the two cursors in two blue

targets. These blue targets defined the start positions of the two arms (Fig. 6.a,

page 36) with shoulder flexion angles q1 = 30◦, elbow flexion angles q2 = 60◦, and

wrist angles q3 = 0◦. The subject was then instructed to reach to eight targets (1

cm diameters) randomly selected and arranged radially 10 cm away from the starting

position as quickly and as accurately as possible. In order to start the task, the

subject had to remain in the starting position for 3000ms before a green target would

appear signaling the subject to initiate the movement. The response time was defined
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Figure 5: The Kinarm robotic upper extremity assessment system. (a) Frontal view
of the Kinarm shows subjects arms are supported in the horizontal plane. (b) The
visual display system on the right uses mirrors and a projector to show targets in the
subjects field of view.
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as the time between when the green target first turns on and the subject reached the

target. If the response time was less than 500ms the green target would turn yellow,

indicating that the subject was doing exceptionally well. If the response time took

between 500ms and 1000ms to reach the target it turned pink and was an indication

that the subject was doing all right. If the response time was longer than 1000ms the

target turned red and this was an indication that the subject was performing poorly

and had to focus on improving. This immediate feedback served to motivate subjects

to reach towards the targets as accurately and as quickly as they could.

There were two types of bilateral goal-directed reaching task conditions: (1) uni-

lateral reaching (Fig. 6.b), and (2) bilateral reaching (Fig. 6.c). During unilateral

reaching only one arm would reach to the targets, while the other arm was required

to maintain the cursor in the starting position. During bilateral reaching both arms

reached towards targets in an out-of-phase pattern. Studies have demonstrated that

during out-of-phase reaching, movement time does not vary between the arms if the

targets are of the same size and the same distance away from the starting position for

each arm [81]. The out-of-phase pattern was used in this study to determine whether

discrepancies of the sensory feedback would affect this relationship. Target number-

ing was based on the out-of-phase pattern observed between the arms. Consecutive

reaching towards all eight targets in a random order was defined as a cycle.

The experimental protocol was as follows (Fig. 7, page 37). Subjects performed

2 cycles during the warm up phase to ensure that they understood the instructions

and that they were able to see all of the targets and reach all of the targets. If

subjects were unable to see or reach any of the targets, adjustments were made to

the Kinarm and the system was calibrated during the warm up phase. During the

pre-exposure phase subjects completed 20 cycles in a natural environment, meaning

there was no force environment applied to the arm. The pre-exposure phase allowed

subjects the opportunity to familiarize themselves with the task. After resting for
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Figure 6: Diagram of the experimental task. (a) Configuration diagram for defining
the starting location. (b) Unilateral reaching was defined as one arm reaching to 8
random targets, while the other arm remained stationary in the starting position.
(c) Bilateral reaching was defined as reaching with both he arms in an out-of-phase
pattern.
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Figure 7: Experimental protocol.

5 minutes, subjects proceeded to complete 20 cycles in the exposure phase where

a velocity dependent force environment was applied to the index finger. The force

vector F, was a function of the index finger velocity vector V

F = B ∗V (3)

where, F is the force vector F = [Fx, Fy] applied to the index finger tip (in

Newton), V is the finger tip velocity vector V = [V x, V y] (in meter/second), and B

is the viscosity matrix (in Newton*seconds/meter):

B =

 0 10

−10 0

 (4)

As a result the force environment F was directed clockwise perpendicular to the

index finger tip velocity (Fig. 2.c, page 7). Negative viscosity matrix -B resulted in

a counter clockwise force environment. This force environment was applied to either

one or both arms, in the same or different directions depending on the experimental

conditions (see below). After the initial exposure, subjects rested for 5 minutes before

completing 20 more cycles in the exposure phase. Between the last exposure phase

and the catch trial phase there was no rest to ensure that subject did not anticipate

a change in the reaching conditions. During the catch trial phase subjects completed

10 cycles, however during 3 out of the 10 cycles the force environment was pseudo-

randomly removed.

37



Table 3: Experimental groups.

Exposure Catch Trial
Arm Field Arm Field

Unilateral Right Right CW Right Null
Left Null Left Null

Unilateral Left Right Null Right Null
Left CCW Left Null

Bilateral Right Right CW Right Null
Left Null Left Null

Bilateral Left Right Null Right Null
Left CCW Left Null

Bilateral Intrinsic Right CW Right Null
Left CCW Left Null

Bilateral Extrinsic Right CW Right Null
Left CW Left Null

The specific reaching tasks and the force environments depended on the exper-

imental group assignment. The rationale for these groups will be discussed in sub-

sequent chapters where the specific aims are addressed. There was some overlap in

groups between specific aims, therefore Table 3 (page 38) lists all the groups and

shows the force environments that each arm experienced. During unilateral reach-

ing, only the arm experiencing the force environment reached to the targets while the

other arm remained stationary in the starting position (Unilateral Left and Unilateral

Right). During bilateral reaching both arms performed reaches, however the force en-

vironment was applied to either one arm, the left non-dominant arm (Bilateral Left)

or the right dominant arm (Bilateral Right), or both arms in the intrinsic (Bilateral

Intrinsic) or the extrinsic (Bilateral Extrinsic) coordinate frame. Force environments

were applied in the clockwise (CW) or counter clockwise (CCW) direction, dependent

on the group (Table 3, page 38). Descriptive data broken down by the groups are

shown in table 4, page 39.
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Table 4: Descriptive information by groups.

Group N Age Height Weight Handedness
(years) (cm) (kg)

Unilateral Right 10 29±06 178±10 80±14 0.76±0.10
Unilateral Left 10 35±14 176±07 78±13 0.75±0.18
Bilateral Right 10 31±13 177±08 73±11 0.80±0.11
Bilateral Left 10 42±12 178±08 77±11 0.75±0.15
Bilateral Intrinsic 10 33±11 177±12 89±20 0.78±0.15
Bilateral Extrinsic 10 40±12 180±09 93±24 0.77±0.19

2.5 Measures of task performance

Six measures of task performance were calculated from hand trajectory data: (1)

perpendicular displacement (PD), (2) final position error (FPE), (3) reaction time

(RT ), (4) movement time (MT ), (5) peak velocity (Vmax) and (6) peak velocity posi-

tion (Vpos). Perpendicular displacement was defined as the maximum perpendicular

displacement of the finger tip trajectory from a straight line connecting the start and

end target (Fig. 8.a, page 40). Final position error was taken as the absolute differ-

ence in position between the end target and the index finger at movement termination

(Fig. 8.b). Reaction time was the difference in time between the moment the target

turns on and the onset of movement. The onset and offset of reaching movement

was defined using a threshold of 5% of the peak velocity vector. Movement time

was the time difference between the index finger movement onset and offset. Peak

velocity was the maximum vector velocity magnitude (cm/ms) during a single reach.

The position of peak velocity (% movement time) indicates when the peak velocity is

reached. The aftereffect was calculated as the difference in the mean perpendicular

displacement between the last four cycles of the exposure phase and that of the catch

trial phase (measured in cm).
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Figure 8: Performance variables. (a) Perpendicular displacement (PD). (b) Final
position error (FPE).

2.6 Data analysis and statistics

The index finger tip displacement data recorded by the Kinarm were filtered using a

6th order low pass Butterworth filter with a cut-off frequency of 10 Hz. All kinematic

data were normalized to movement time. A successful reach was when: (1) the

movement time was less than 1000 ms, and (2) the final position error was less than

two standard deviations of the mean of final position errors for each individual subject.

Approximately 8.7% of the data was removed because of these criteria.

The perpendicular displacement data were further normalized to the perpendicu-

lar displacement of the first reach towards a target. This allowed for comparisons of

perpendicular displacement across target directions, subjects and groups. Regression

analysis was used to determine the relationship between the normalized perpendicular

displacement and cycle number. The rate of adaptation of the normalized perpen-

dicular displacement is the rate constant of the regression line. In order to compare

two learning curves against one another for statistical difference, the Rosenbrock and

Quasi-Newton method with a custom function and least squares estimation was used.

For the other performance variables, typically two-way ANOVA’s were conducted

with the independent variables being group assignment and arm used. In addition,
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correlation coefficients were computed between the performance variables and sub-

jects’ characteristics such as age, gender and handedness. Further details regarding

exact statistical procedures will be considered in subsequent chapters as each aim

is explored in greater depth. Statistica Version 7.0 was used to perform statistical

analyses.

2.7 Conclusion

Sixty one subjects were recruited and randomly assigned to one of six groups: (1) Uni-

lateral Right, (2) Unilateral Left, (3) Bilateral Right, (4) Bilateral Left, (5) Bilateral

Intrinsic and (6) Bilateral Extrinsic. The Kinarm robotic device was used to capture

upper extremity motor behavior of subjects performing unilateral and bilateral reach-

ing while experiencing force perturbations on one or both the arms in the intrinsic or

extrinsic coordinate frame. The primary performance variable was the perpendicular

displacement, which has been shown to be a good indicator of motor adaptation [155]

and has also been used in studies on transfer of learning [28]. Other performance

variables were also calculated to gain additional insight into bilateral movement be-

havior. While this chapter focussed on general methodology, subsequent chapters

will contain further details regarding the motivation for the experimental design as it

pertains to each specific aim.
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CHAPTER III

AIM 1. DOES TRANSFER OF LEARNING OCCUR

DURING BILATERAL TASKS?

3.1 Introduction

Transfer of learning has been defined as the process through which learning a motor

task in one condition improves performance in another condition. Transfer of learning

has been shown to occur between arms when one arm has undergone motor adaptation

and the other non-trained arm demonstrated improved performance [11, 38, 76, 99].

Transfer of learning has also been demonstrated to occur when a unilateral motor

task was trained, while a bilateral task was tested and demonstrated an improvement

in performance [113, 114]. The opposite has also been shown to occur when subjects

trained in bilateral motor task demonstrated improved performance in a unilateral

task [71, 158]. One key question that has not yet been addressed is: Does transfer of

learning occur during bilateral tasks?

There are several models of transfer of learning that predict the direction in which

transfer of learning may occur based on previous studies of unilateral reaching. These

models have been described in Chapter 2 (page 15) and include: Callosal model [175],

Proficiency model [91] and Cross-activation model [124]. In addition to these models,

Sainburg and Wang (2002) demonstrated that transfer of learning does occur from one

arm to the other during unilateral reaching with a visuomotor perturbation, however

only selective information is transferred [142]. Specifically, the final position error

information was transferred from the dominant to the non-dominant arm. The infor-

mation regarding finger tip trajectory (which may be determined by perpendicular

displacement) was transferred from the non-dominant to the dominant arm. These
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results are consistent with the dynamic dominance hypothesis, which states that the

dominant arm is an actuator and the non-dominant arm is a stabilizer. Therefore,

handedness may affect transfer of learning during bilateral reaching tasks. Motor

adaptation has been shown to transfer from one arm to the other during unilateral

reaching studies, however in each case the transfer was only tested after completion

of training. It is not known whether or how transfer of learning can occur when both

arms participate and learn different reaching tasks simultaneously. It is plausible

that transfer of learning could be enhanced or worsened depending on continuous

sensory feedback from both arms to the Central Nervous System (CNS) that can

either compliment or interfere with motor adaptation.

To test if transfer of learning occurs during bilateral tasks, two experimental con-

ditions should be investigated: unilateral reaching and bilateral reaching. During

unilateral reaching, only one arm learns to reach in a force environment, while the

other arm remains stationary and therefore does not provide movement related po-

sition feedback or external load feedback. It is anticipated that the stationary arm

will not affect the motor adaptation of the arm that is exposed to the force environ-

ment. For the bilateral reaching condition, both arms perform reaching movements

but only one arm learns the force environment while the other arm does not. In

this condition, the arm moving in the natural environment would provide movement

related position feedback but not external load feedback to the arm that is exposed to

the force environment. It is further predicted that the effect on motor adaptation of

the trained arm (left non-dominant/right dominant) is based on the type of sensory

information that it receives from the other arm (right dominant/left non-dominant)

as explained by the dynamic dominance hypothesis. The following specific aim and

hypothesis addresses this issue:

Aim 1. Determine the effects of arm dominance on transfer of learning during

bilateral reaching.
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Hypothesis 1.1: Transfer of learning from the non-dominant to the dominant

arm is smaller than transfer from the dominant to the non-dominant arm, given that

one arm learns a force environment and the other simultaneously operates in the

natural force environment.

3.2 Method

Forty (40) subjects were recruited and randomly assigned to one of four groups (Table

5, page 45):

• Unilateral Right: Right dominant arm learned a clockwise (CW) force envi-

ronment, while the left non-dominant arm remained stationary and did not

experience a force environment.

• Bilateral Right: Both arms were moving, but only the right dominant arm

learned a clockwise (CW) force environment while the other arm did not expe-

rience a force environment.

• Unilateral Left: Left non-dominant arm learned a counter clockwise (CCW)

force environment, while the right dominant arm remained stationary and did

not experience a force environment.

• Bilateral Left: Both arms were moving, but only the left non-dominant arm

learned a counter clockwise (CCW) force environment, while the other arm did

not experience a force environment.

To test whether motor adaptation occurred and to compare rate of adaptation

between the conditions, a regression equation was computed between the normalized

perpendicular displacement and the cycle number. The regression line equation was

of the form

y = exp(−b ∗ x) (5)
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Table 5: Aim 1: Experimental Groups.

Exposure Catch Trial
Arm Field Arm Field

Dominant
Unilateral Right Right CW Right Null

Left Null Left Null
Bilateral Right Right CW Right Null

Left Null Left Null
Non-Dominant
Unilateral Left Right Null Right Null

Left CCW Left Null
Bilateral Left Right Null Right Null

Left CCW Left Null

where, y is the normalized perpendicular displacement, b is a constant and the rate

at which motor adaptation occurred, and x is the cycle number. To compare whether

the obtained regression lines (or learning curves) differ between experimental groups,

the regression lines were compared using the Rosenbrock and Quasi-Newton method

with least squares. The effects of experimental groups and arm dominance on the

aftereffects were tested using a two-way ANOVA. The aftereffect was calculated as

the difference in the mean perpendicular displacement between the last four cycles of

the exposure phase and that of the catch trial phase (measured in cm). Similar effects

on all other performance variables measured during the exposure and the catch trial

phases, were also studied using two-way ANOVA’s.

3.3 Results

The typical index finger path of a subject in the unilateral right group is shown in

figure 9, page 47. When the subject was initially exposed to the clockwise force en-

vironment, large movement errors were observed (Fig. 9.a, blue dashed lines). With

training the index finger path became straighter (Fig. 9.a, black solid lines). Dur-

ing the catch trial phase when the force environment was pseudo-randomly removed,
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large movement errors were observed in the opposite direction compared to move-

ment errors during the initial exposure to the force environment (Fig. 9.b). The

large movement errors during the catch trial is an indication that motor adapta-

tion occurred. The regression analysis of the normalized perpendicular displacement

revealed that for all target directions across subjects the rate of adaptation, was

statistically significant (p < 0.05), except for the target direction 3 (pink line, Fig.

9.c). One possible reason for this is that for target 3, the direction in which the force

environment is applied to the finger tip is in line with the upper limb and passes

through the shoulder thereby generating small external moments at the elbow. Since

the external moments are small, there is not much motor adaptation that needs to

occur in order to adequately perform the task.

Similar observations were made for the unilateral left group, where during initial

exposure to the force environment, large movement errors were observed however the

index finger path straightens out with training (Fig. 10.a, page 48). During the

catch trials the movement errors were large when the force environment was pseudo-

randomly removed (Fig. 10.b). The large movement errors during the catch trials

were an indication that motor adaptation occurred. The regression analysis of the

normalized perpendicular displacement revealed that for all target directions across

subjects the rate of adaptation was significant (p < 0.05). However, as may be seen in

figure 10.c the learning for target direction 7 (purple line) the performance worsened.

A potential explanation for this is that the force environment produced for target 7

small external moments on the joints therefore little or no motor adaptation had to

occur.

For the bilateral right group, when both arms were moving and only the right

dominant arm experienced a force environment, the results demonstrated that motor

adaptation occurred (Fig. 11.e-f, page 50). The regression analysis of the normalized

perpendicular displacement for the right dominant arm revealed that for all target
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Figure 9: Unilateral Right. (a) Right index finger displacement for a single subject
averaged over the first four cycles of the exposure phase (dashed blue line) and over
the last four cycles of the exposure phase (solid black line). (b) Right index finger
displacement for a single subject averaged over the catch trial phase. (c) Normal-
ized perpendicular displacement (mean ± standard error) for each target direction
averaged across subjects.
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Figure 10: Unilateral Left. (a) Left index finger displacement for a single subject
averaged over the first four cycles of the exposure phase (dashed blue line) and over
the last four cycles of the exposure phase (solid black line). (b) Left index finger
displacement for a single subject averaged over the catch trial phase. (c) Normal-
ized perpendicular displacement (mean ± standard error) for each target direction
averaged across subjects.
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directions across subjects the rate of adaptation was significant (p < 0.05), even for

the target direction 3 (pink line, Fig. 11.d). This result may indicate that transfer

of learning of the trajectory information occurred from the left non-dominant arm

to the right dominant arm, according to the dynamic dominance hypothesis. This

would result in improvement of rate of adaptation of the normalized perpendicular

displacement for all directions. For the left non-dominant arm no movement errors

were observed, and this was expected since this arm was not exposed to a force

environment (Fig. 11.b-c). The regression analysis of the normalized perpendicular

displacement for the left non-dominant arm revealed that for target directions 1, 2, 3,

6, and 8 the rate of adaptation significantly worsened (p < 0.05), but that for target

directions 4, 5, and 7 there was no significant difference. Therefore motor adaptation

did not occur for the left non-dominant arm.

For the bilateral left group, when both arms were moving and only the left non-

dominant arm experienced a force environment, the results demonstrated that motor

adaptation occurred for the left non-dominant arm (Fig. 12.b-c, page 51). The regres-

sion analysis of the normalized perpendicular displacement for the left non-dominant

arm revealed that for all target directions across subjects the rate of adaptation was

significant (p < 0.05). However, similar to the unilateral left group for the target

direction 7 (purple line, Fig. 12.a), performance worsened while for all other target

directions the rate of adaptation improved. For the right dominant arm no movement

errors were observed, which was expected since this arm was not exposed to a force

environment (Fig. 12.e-f). The regression analysis of the normalized perpendicular

displacement for the right dominant arm revealed that for all target directions, except

target direction 4 (light green line, Fig. 12.d), the rate of adaptation was significant

(p < 0.05).

Although there was significant difference in the rate of adaptation for some target
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Figure 11: Bilateral Right. (a/d) Left/Right index finger normalized perpendicular
displacement (mean ± standard error) for each target direction averaged across sub-
jects. (b/e) Left/Right index finger displacement for a single subject averaged over
the first four cycles of the exposure phase (dashed blue line) and over the last four
cycles of the exposure phase (solid black line). (c/f) Left/Right index finger displace-
ment for a single subject averaged over the catch trial phase. Target direction labels
are indicated for each arm according to the out-of-phase reaching pattern.
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Figure 12: Bilateral Left. (a/d) Left/Right index finger normalized perpendicular
displacement (mean ± standard error) for each target direction averaged across sub-
jects. (b/e) Left/Right index finger displacement for a single subject averaged over
the first four cycles of the exposure phase (dashed blue line) and over the last four
cycles of the exposure phase (solid black line). (c/f) Left/Right index finger displace-
ment for a single subject averaged over the catch trial phase. Target direction labels
are indicated for each arm according to the out-of-phase reaching pattern.
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directions, there did not appear to be a consistent pattern with respect to the bilat-

eral reaching tasks, in that in some directions performance worsened while in other

directions it improved. Therefore, it may be more beneficial to consider the overall

effect by comparing across target directions. Figure 13 (page 53) shows the results

for the normalized perpendicular displacement for each group taken across targets

and subjects. The results indicate that for the unilateral groups (blue lines, Fig. 13),

rate of adaptation was significant for the right dominant arm (y = exp−0.0212±0.001∗x)

and the left non-dominant arm (y = exp−0.0165±0.001∗x). The rate of adaptation for

the right dominant arm was greater than that of the left non-dominant arm during

unilateral reaching. For the bilateral right group (red line, Fig. 13), the rate of

adaptation was significant for the right dominant arm and the normalized perpen-

dicular displacement decreased with training (y = exp−0.0234±0.001∗x), while for the

left non-dominant arm regression line was also significant, however the normalized

perpendicular displacement worsened (y = exp0.00653±0.006∗x). This may potentially

be due to the lack of attention to the non-dominant arm which did not experience

the force environment. This suggestion will be addressed when considering move-

ment time and reaction time differences between the arms across groups (page 56).

For the bilateral left group (green line, Fig. 13), the rate of adaptation was signif-

icant for the left non-dominant arm (y = exp−0.0138±0.001∗x) but the regression line

was not significant for right dominant arm (y = exp0.0005±0.001∗x). This indicates that

the right dominant arm does not experience learning during the bilateral reaching

task when only the left non-dominant arm experiences a force environment. The

comparison of these learning curves against each other showed that for the right

dominant arm there is significant difference between the unilateral right and the bi-

lateral right groups (p < 0.05). The only difference between these groups were that

in the unilateral right group, the left non-dominant arm was stationary (provides

static sensory feedback), and in the bilateral right group, the left non-dominant arm
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Figure 13: Normalized perpendicular displacement (mean ± standard error) averaged
across all targets for the left non-dominant and right dominant arm for the unilateral
(blue line), bilateral right (red line) and the bilateral left (green line) groups.

was moving thereby providing movement related position feedback to the CNS. Since

rate of adaptation was significantly slower for the dominant arm during the unilateral

right tasks than the bilateral tasks, transfer of learning potentially occurred from

the non-dominant to the dominant arm. When considering the left non-dominant

arm, there was no significant difference between the unilateral left and bilateral left

groups (p = 0.989). Therefore, transfer of learning potentially did not occur from the

right dominant to the left non-dominant arm. This proposition supports the dynamic

dominance hypothesis, in that perpendicular displacement information is passed from

the left non-dominant arm to the right dominant arm, thereby improving the motor

adaptation of the right dominant arm when movement related position feedback was

available from the untrained arm.

Since motor adaptation did not occur for the arms that did not experience a force

environment during the bilateral reaching tasks, those were not included in the af-

tereffect evaluation. The two-way (experimental group x arm) ANOVA conducted
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on the aftereffect compared the group (unilateral and bilateral single force environ-

ment) with the arm (right dominant and left non-dominant) independent variables

and revealed that the unilateral group had a significantly larger aftereffect than the

bilateral group F (1, 316) = 11.92, p < 0.01 (Fig. 14, page 55). Also, the right

dominant arm had a significantly larger aftereffect than the left non-dominant arm

F (1, 316) = 14.55, p < 0.01. In order to determine whether the right dominant arm

aftereffect differed between the unilateral and bilateral groups, an independent t-test

was conducted and revealed that it was significantly different t(80) = 2.36, p < 0.05.

For the left non-dominant arm there was also a significant difference in the aftereffect

between the unilateral and bilateral groups t(80) = 2.57, p < 0.05. These results

indicate that the aftereffect for the unilateral reaching conditions were consistently

and significantly larger than for the bilateral reaching conditions. This would imply

that motor adaptation was more complete during the unilateral reaching tasks than

the bilateral reaching tasks. Typically aftereffects have only been used in unilateral

studies to quantify the quality of motor adaptation. A key component to this is that

during the catch trial the response of the arm is solely dependent on the fact that the

force environment is suddenly removed. Calculating the aftereffect for a bilateral task

may be problematic, because of the influence one arm may have on the other arm

when the force environment is suddenly removed. Therefore, aftereffect calculation

for bilateral tasks need to be interpreted with caution. Comparisons made between

groups may be problematic, seeing that the results of this study indicate that the

direction and the type of information shared between the limbs depend largely on

the sensory feedback available. However, comparisons within an experimental group

could be done.

A two-way (experimental group x arm) ANOVA was conducted on the final po-

sition error as a dependant variable during the exposure phase across groups and

arms, and no statistical significance was observed (p > 0.05). A two-way ANOVA
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Figure 14: Aftereffects are shown for the right dominant arm (solid) and the left
non-dominant arm (hashed) for the unilateral and bilateral single groups when only
one arm experiences the force environment. * p < 0.05
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was also conducted on the final position error during the catch trial phase by com-

paring groups and arms F (2, 54) = 7.06, p < 0.01. Upon further investigation it was

found that for the right dominant arm there was no significant differences between

groups F (2, 27) = 1.75, p = 0.193. However, for the left non-dominant arm there

was a significant difference in final position error between groups F (2, 27) = 6.84,

p < 0.01 during the catch trials. A Tukey HSD post-hoc test revealed that the final

position error of the left non-dominant arm was significantly greater for the bilateral

left group when compared to the unilateral left or the bilateral right groups (Fig.

15, page 57). Therefore the movement related position feedback from the dominant

arm interfered with the performance of the left non-dominant arm during the catch

trial phase of the bilateral left group. A one-way ANOVA was conducted for the

final position error of the left non-dominant arm during the pre-exposure phase. The

results showed that there was significant differences between the groups for the left

non-dominant arm F (2, 27) = 10.194, p < 0.01. A Tukey HSD post-hoc test revealed

that the final position error of the left non-dominant arm was significantly smaller

for the unilateral left group when compared to the bilateral right and bilateral left

groups. Therefore, the movement related position feedback from the dominant arm

interfered with the performance of the left non-dominant arm when both were in the

natural environment. Therefore, the right dominant arm interferes with the perfor-

mance of the left non-dominant arm during the pre-exposure and catch trial phases

of the bilateral left group, but not the exposure phase. Because of this interference

during the catch trials, all aftereffect calculations need to be interpreted with caution.

A two-way ANOVA was conducted on the reaction time during the exposure phase

across groups and arms, and no statistical significance was observed (p > 0.05). Since

there was no difference in reaction time between the arms regardless of the group, it

is plausible that divided attention was not a contributing factor in these experiments.

A two-way ANOVA was conducted on the reaction time during the catch trial phase
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Figure 15: Final position error of the right dominant arm (solid) and the left non-
dominant arm (hashed) during catch trials for aim 1. * p < 0.05

across groups and arms, and significant difference was observed between the groups

F (2, 54) = 4.56, p < 0.05. A Tukey HSD post-hoc test revealed that the reaction

time for the bilateral right group was significantly longer than for the unilateral

groups. Upon further examination this difference was due to a difference for the right

dominant arm F (2, 27) = 4.14, p < 0.05, but not for the left non-dominant arm

F (2, 27) = 1.206, p = 0.315. Therefore, during the catch trial it takes subjects in

the bilateral right group longer to respond with their right dominant arm than the

unilateral right group. This may be due to interference from the non-dominant arm

on the dominant arm. However, since there is no significant difference in reaction

time between the left non-dominant and right dominant arms, divided attention is

not a determining factor in these experiments.

A two-way ANOVA was conducted on the movement time during the exposure

phase across groups and arms, and no statistical significance was observed (p > 0.05).

A two-way ANOVA was conducted on the movement time during the catch trial phase

across groups and arms, and a significant interaction affect was observed F (2, 54) =
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5.804, p < 0.05. A Tukey HSD post-hoc revealed that the movement time for the left

non-dominant arm was shorter during the bilateral right group when compared to the

bilateral left group. Upon following the interaction, results revealed that there was

no difference across groups for the right dominant arm F (2, 27) = 0.334, p = 0.719

during the catch trial phase. However, for the left non-dominant arm movement time

was significantly shorter during the catch trial phase for the bilateral right group

than the other groups F (2, 27) = 10.538, p < 0.01. Upon examining this further, it

was found that for the left non-dominant arm for the bilateral group, that there was

no significant difference in movement time between the pre-exposure, exposure and

catch trial phases F (2, 27) = 0.393, p = 0.678. Therefore, the reason as to why the

left non-dominant arm movement time is shorter for the bilateral right group, when

compared to the other groups is because it was never exposed to a force environment.

These results are consistent with a previous study by Kelso et al. (1979) [81] where

there was no difference in movement time between the arms p > 0.05 given that

the target sizes and the distance to the targets were the same between the arms.

Although, subjects were moving in an out-of-phase pattern this did not influence their

performance because there were no differences in movement time between unilateral

and bilateral groups during training.

A two-way ANOVA was conducted on the peak velocity during the exposure phase

and the catch trial phase across groups and arms, and no statistical significance was

observed (p > 0.05). A two-way ANOVA was conducted on the position of the peak

velocity during the exposure phase and the catch trial phase across groups and arms,

and no statistical significance was observed (p > 0.05).

3.4 Discussion

The question that was posed was whether transfer of learning occurs during bilateral

reaching? Four experimental groups were created to examine whether the sensory
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feedback of one arm affected the motor adaptation of the other arm. The unilateral

reaching groups involved only one arm training in a force environment while the other

arm remained stationary in the starting position. The bilateral reaching groups in-

volved reaching with both arms while only one arm experienced a force environment.

By comparing the performance of the training arm between the unilateral and bi-

lateral groups, it was possible to determine whether the movement related position

feedback of the arm without the force environment affected the motor adaptation of

the arm training in the force environment. Results showed that the rate of adaptation

was significantly slower for the dominant arm for the unilateral reaching group than

for the bilateral reaching group (p < 0.05, Fig. 13, page 53). This indicated that

the movement related position feedback from the non-dominant arm improved signif-

icantly the motor adaptation of the dominant arm during the bilateral reaching task.

Therefore, it is plausible that transfer of learning occurred from the non-dominant to

the dominant arm. Movement related position feedback from the dominant arm did

not affect the rate of adaptation of the non-dominant arm. These results supported

the notion that trajectory specific information (in terms of perpendicular displace-

ment) was transferred from the left non-dominant arm to the right dominant arm,

but not vice versa during bilateral tasks.

As for the quality of motor adaptation, the aftereffect analysis revealed that motor

adaptation was more complete for the unilateral groups than the bilateral groups, and

that the aftereffect for the dominant arm was greater than the aftereffect for the non-

dominant arm across groups. These results seem to contradict the rate of adaptation

results, in that rate of adaptation of the dominant arm was greater for the bilateral

right group than the unilateral right group. A plausible explanation for this may

be that there was interference from one arm on the other arm during the catch-trial

phase that distorted the aftereffect calculations. A key assumption in computing

aftereffects are that the movement errors observed during the catch trial phase are
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solely dependent on the degree to which the force environment had been learned in

the exposure phase. Results of this study demonstrated that interference occurred

from one arm to the other during the catch trials, and therefore the movement errors

no longer were only due to the removal of the force environment. Therefore the

aftereffects results of bilateral tasks needs to be interpreted with caution.

The results showed that for the final position error during the exposure phase

there was no difference for the left non-dominant arm between the unilateral left

and bilateral left groups. This would indicate that the dominant arm did not affect

the motor adaptation of the non-dominant arm during the exposure phase. When

both arms experienced the same natural environment (pre-exposure and catch trial

phases), there was not a discrepancy in the external load feedback between the arms

and it was observed that the right dominant arm interfered with the motor behavior

of the left non-dominant arm. The final position error was worse during the bilateral

task than the unilateral task. The difference between these two tasks are that during

the unilateral task the right dominant arm does not move and therefore produces

static sensory feedback, whereas for the bilateral task the right dominant arm pro-

vides movement dependent movement related position feedback, but not external load

feedback. Presumably the CNS uses the sensory feedback from the right dominant

arm to update the motor program of the left non-dominant arm, which results in

increasing the endpoint final position error. This result suggests that final position

information from the right dominant arm interferes with the left non-dominant arm

controller and decreases the motor behavior in controlling reaching accuracy of the

left non-dominant arm.

Studies on divided attention, have found that reaction times tended to be longer

for bilateral tasks than unilateral tasks [174, 37, 82, 117, 161, 173, 106], due to an

increased demand on the CNS to control additional degrees of freedom. Researchers

have found that if a subject is instructed to focus attention on a single limb during
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a bilateral task, the unattended limb would make greater movement errors [157].

In the current study, subjects were not instructed to fixate their eyes towards any

specific limb or the center, but were instead left to self-select their preference. A

limitation of this study is that, saccadic eye movements were not recorded to verify

what subjects fixations points were. This information would have been useful, and

should be considered for inclusion in future studies. However, reaction time may

be considered as an alternative measure to address divided attention. The results

indicated that there was no difference in reaction time ([81]) during the exposure

phase between the arms or between the groups. Therefore, it is plausible that divided

attention did not affect motor adaptation in this study.

The results from the current experiment demonstrated that transfer of learning

occurred during bilateral reaching. Trajectory information transferred from the left

non-dominant arm to the right dominant arm, but not vice versa. This supported the

callosal model, which predicted that transfer of learning would occur in that direction.

However, this was not the only direction in which information transfer was observed.

The right dominant arm interfered with the left non-dominant arm, in that the final

position error of the left non-dominant arm was worse for the bilateral task than the

unilateral task. These results may be explained by the dynamic dominance hypothesis,

which incorporates the notion that trajectory information is transferred from the left

non-dominant arm to the right dominant arm, while final position information is

transferred from the right dominant arm to the left non-dominant arm.

3.5 Conclusion

Transfer of learning does occur during bilateral reaching tasks. The trajectory infor-

mation transferred from the left non-dominant arm to the right dominant arm during

the exposure phase, but not vice versa. The dominant arm interfered with the final

position performance of the non-dominant arm during the bilateral task when there
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was no difference in the load feedback between the arms.
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CHAPTER IV

AIM 2. DOES MOTOR LEARNING DEPEND ON

WHETHER ONE OR BOTH ARMS EXPERIENCE THE

FORCE ENVIRONMENT?

4.1 Introduction

During motor learning the Central Nervous System (CNS) is thought to compare the

sensory feedback from the moving limb against the predicted feedback and updates

the motor plan as needed in order to reduce movement error. Force environments

are often used to perturb the system, in order to determine how movement errors

are corrected over the course of practice in the force environment [155, 49]. Studies

have shown that motor adaptation occurs in the stationary left non-dominant arm

when it resists a force environment that is dependent on the velocity of the moving

right dominant arm [10]. Therefore, it is plausible that sensory feedback from one

arm may affect the motor adaptation of the other arm during bilateral tasks. When

considering force perturbations and bilateral tasks, there are multiple combinations

of how the force perturbation may be applied to the arms in order to feature different

aspects of sensory feedback to the CNS. In this chapter, this issue is addressed by

posing the question: Does motor adaptation depend on whether one or both arms

experience the force environment?

In order to answer this question, two experimental conditions were investigated:

(1) bilateral reaching single load and (2) bilateral reaching two loads. For the bilateral

reaching single load condition, both arms are reaching to targets but only one arm

learns the force environment and therefore the other arm provides movement related

position feedback but not external load feedback. For the bilateral reaching two loads
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condition, both arms are reaching to targets and both learn the force environment

(intrinsic coordinate frame), while providing movement related position feedback and

external load feedback to the CNS. The distinguishing factor here, is whether ex-

ternal load feedback is available from one or both the arms, depending on the force

environment. It is predicted that when there is a difference in the sensory feedback

between the arms, that the CNS takes longer to learn the force environments than

when the sensory feedback is similar between the arms. The following specific aim

and hypotheses addresses this issue:

Aim 2. Determine the effects of simultaneous learning of the intrinsic force

environment by two arms on transfer of learning during bilateral reaching.

Hypothesis 2.1: When both arms learn the intrinsic force environment during

bilateral reaching, motor adaptation of the dominant arm should be greater than

when only the dominant arm learns the force environment during bilateral reaching.

Hypothesis 2.2: When both arms learn the intrinsic force environment dur-

ing bilateral reaching, motor adaptation of the non-dominant arm should be greater

than when only the non-dominant arm learns the force environment during bilateral

reaching.

4.2 Method

Thirty (30) subjects were recruited and randomly assigned to one of three groups

(Table 6, page 65):

• Bilateral Right: Both arms were moving, but only the right dominant arm

learned a clockwise (CW) force environment, while the other arm did not ex-

perience a force environment.

• Bilateral Left: Both arms were moving, but only the left non-dominant arm

learned a counter clockwise (CCW) force environment, while the other arm did

not experience a force environment.
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Table 6: Aim 2: Experimental Groups.

Exposure Catch Trial
Arm Field Arm Field

Bilateral Reaching Single Load
Bilateral Right Right CW Right Null

Left Null Left Null
Bilateral Left Right Null Right Null

Left CCW Left Null
Bilateral Reaching Two Loads
Bilateral Intrinsic Right CW Right Null

Left CCW Left Null

• Bilateral Intrinsic: Both arms were moving, but the right dominant arm learned

a clockwise (CW) force environment, while the left non-dominant arm learned

a counter clockwise (CCW) force environment.

Both the bilateral right and bilateral left groups, were identical to that described in

Chapter 4 (page 42). Therefore, the only new group is the bilateral intrinsic group.

The learning curve was determined by conducting a regression analysis on the

normalized perpendicular displacement of the index finger as a function of the cy-

cle number. The rate of adaptation was determined as the rate constant of the

regression line. To compare whether the obtained learning curves differed between

experimental conditions, the regression lines were compared using the Rosenbrock

and Quasi-Newton method with least squares. The effects of the experimental groups

and arm dominance on the aftereffects were tested using a two-way ANOVA. The

aftereffect was calculated as the difference in the mean perpendicular displacement

between the last four cycles of the exposure phase and that of the catch trial phase

(measured in cm). Similar effects on all other performance variables measured during

the exposure and the catch trial phases, were also studied using two-way ANOVA’s.
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4.3 Results

The typical index finger path of a subject in the bilateral intrinsic group is shown in

figure 16, page 67. Large movement errors were observed during the initial exposure

to the force environment, when the right dominant arm experienced a clockwise force

environment and the left non-dominant arm experienced a counter clockwise force

environment. The index finger path for both arms straightened out with training

(Fig. 16.b/e). During the catch trial phase when the force environment was ran-

domly removed, large movement errors were observed in both arms in the opposite

direction compared to the movement errors during the initial exposure to the force

environment (Fig. 16.c/f). This was an indication that motor adaptation occurred

in both arms. The regression analysis revealed that the rate of adaptation of the

normalized perpendicular displacement for all target directions across subjects were

statistically significant (p < 0.05)(Fig. 16.a/d).

The results of the regression analysis for the other two groups, bilateral right

and bilateral left, have been described in the previous chapter (Chapter 4, page 42).

Figure 17 (page 69) shows the results for the normalized perpendicular displacement

for each group taken across targets and subjects. The results indicated that for

the bilateral right group (red line, Fig. 17), the rate of adaptation was significant

(p < 0.05) for the right dominant arm and the normalized perpendicular displace-

ment decreased with training (y = exp−0.234 pm0.001∗x), while for the left non-dominant

arm the regression line was also significant, however the normalized perpendicular

displacement worsened (y = exp0.00653 pm0.006∗x). Therefore, learning did not occur

for the non-dominant arm in the bilateral right group. For the bilateral left group

(green line, Fig. 17), the rate of adaptation was significant for the left non-dominant

arm (y = exp−0.0138±0.001∗x) but the regression line was not significant for the right

dominant arm (y = exp0.0005 pm0.001∗x). This indicated that the right dominant arm
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Figure 16: Bilateral Intrinsic. (a/d) Left/Right index finger normalized perpendic-
ular displacement (mean ± standard error) for each target direction averaged across
subjects. (b/e) Left/Right index finger displacement for a single subject averaged
over the first four cycles of the exposure phase (dashed blue line) and over the last
four cycles of the exposure phase (solid black line). (c/f) Left/Right index finger dis-
placement for a single subject averaged over the catch trial phase. Target direction
labels are indicated for each arm according to the out-of-phase reaching pattern.
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did not experience learning during the bilateral left group. For the bilateral intrin-

sic group (purple line, Fig. 17), the rate of adaptation was significant (p < 0.05)

for the right dominant arm (y = exp−0.0263±0.001∗x) and the left non-dominant arm

(y = exp−0.0191±0.001∗x). This indicated that both arms were able to learn the force

environment at the same time. The comparison of these learning curves against each

other showed that for the right dominant arm the rate of adaptation for the bilateral

intrinsic group was significantly (p < 0.05) faster than for the bilateral right group.

In addition, results indicated that for the left non-dominant arm that the rate of

adaptation for the bilateral intrinsic group was significantly (p < 0.05) faster than

for the bilateral left group. These results indicated that transfer of learning occurred

in both directions - from the dominant arm to the non-dominant arm and from the

non-dominant arm to the dominant arm - when movement related position feedback

and external load feedback was available from both arms. The rate of adaptation

for the right dominant arm was significantly greater than for the left non-dominant

arm during the bilateral intrinsic group (p < 0.05). Thus, it seemed that the right

dominant arm benefitted more from transfer of learning than the left non-dominant

arm.

Since motor adaptation did not occur for the two arms that did not experience

a force environment, these conditions were not included in the aftereffect evaluation.

The two-way ANOVA conducted on the aftereffect compared the group (bilateral

reaching single load and bilateral reaching two loads) with the arm (right dominant

and left non-dominant) independent variables. The aftereffect of the right domi-

nant arm was significantly greater than the aftereffect of the left non-dominant arm

F (1, 316) = 17.00, p < 0.01. (Fig. 18). There was no statistically significant differ-

ences between the groups (p = 0.295), nor did the aftereffect differ within each arm

when compared between the groups. This finding contradicts the previous results

that there was a difference in rate of adaptation between the groups for each arm.
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Figure 17: Normalized perpendicular displacement (mean ± standard error) aver-
aged across all targets for the left non-dominant and the right dominant arm for the
bilateral right (red line), bilateral left (green line) and the bilateral intrinsic (purple
line) groups.

However, when taking into consideration that transfer of learning occurred during

the catch trial, it was not unexpected that there should be no difference in the after-

effect between groups. The only conclusion that may be drawn from the aftereffect

results with confidence, was that motor adaptation was more complete for the right

dominant arm than the left non-dominant arm.

A two-way ANOVA was conducted on the final position error during the exposure

phase across groups and arms, and no statistical significance was observed (p > 0.05)

between groups or arms. A two-way ANOVA was conducted on the final position error

during the catch trial, and a significant interaction effect was observed between groups

and arms F (2, 54) = 4.099, p < 0.05. The Tukey HSD post hoc test revealed, that

during the catch trial the only significant difference in final position error was between

the right dominant arm and the left non-dominant arm during the bilateral left group.

Upon further investigation of the interaction effect, it was found that for the right

dominant arm there was no significant differences between groups F (2, 27) = 1.851,
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Figure 18: Aftereffects are shown for the right dominant arm (solid) and the left
non-dominant arm (hashed) for the bilateral single groups (for the arm experiencing
the force environment) and the bilateral intrinsic groups. * p < 0.05

p = 0.176. For the left non-dominant arm there was a significant effect across groups,

F (2, 27) = 4.04, p < 0.05. A Tukey HSD post-hoc showed the final position error of

the left non-dominant arm was significantly lower for the bilateral right group than

the bilateral intrinsic group during the catch trial. This occurred probably because

during the bilateral right group the left non-dominant arm never experienced a force

environment. There were no differences in the final position error of the left non-

dominant arm between the bilateral left and the bilateral intrinsic group.

A two-way ANOVA was conducted on the reaction time during the exposure phase

across groups and arms, and no statistical significance was observed (p > 0.05). A

two-way ANOVA was also conducted on the reaction time during the catch trial

phase across groups and arms, and no statistical significance was observed (p > 0.05).

Therefore, since there was no difference in the reaction time between groups or arms,

divided attention was not a contributing factor to this set of experiments.

A two-way ANOVA was conducted on the movement time during the exposure

phase across groups and arms, and no statistical significance was observed (p > 0.05).

A two-way ANOVA was conducted on the movement time during the catch trial
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phase, and a significant interaction effect was observed between the groups and arms

F (2, 54) = 7.5, p < 0.01. There was no difference across groups for the right dominant

arm F (2, 27) = 2.064, p = 0.146. However, for the left non-dominant arm movement

time was significantly shorter during the catch trial phase for the bilateral right

group than the other groups F (2, 27) = 10.93, p < 0.01. This conferred with what

was demonstrated in the previous chapter (page 42), that the movement time for

the left non-dominant arm for the bilateral right group was much faster, because

in this experimental condition the non-dominant arm was never exposed to a force

environment.

A two-way ANOVA was conducted on the peak velocity during the exposure phase

and the catch trial phase across groups and arms, and no statistical significance was

observed (p > 0.05). A two-way ANOVA was conducted on the position of the peak

velocity during the exposure phase and the catch trial phase across groups and arms,

and no statistical significance was observed (p > 0.05).

4.4 Discussion

The question that was posed at the outset of this chapter was: Does motor adap-

tation depend on whether one or both arms experience the force environment? The

hypothesis stated that motor adaptation would be more complete when both arms

experienced a force environment than when only one arm experienced the force en-

vironment. Three experimental groups were created, in two of which only one arm

experienced a force environment while the other arm did not (bilateral right and bilat-

eral left) and for the third group both arms experienced an intrinsic force environment

(bilateral intrinsic). The results indicated that the rate of adaptation was significantly

(p < 0.05) faster for both the non-dominant and the dominant arm during the bi-

lateral intrinsic group than the bilateral left or bilateral right groups. Therefore, the

research hypothesis is accepted. This improvement in rate of adaptation during the
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bilateral intrinsic group, was likely due to transfer of learning occurring. It appears

that trajectory information was transferred in both directions, from the dominant to

the non-dominant arm and from the non-dominant arm to the dominant arm when

both arms experienced an intrinsic force environment. This would seem to contradict

what has been proposed by Sainburg and Wang, who demonstrated that trajectory

information is passed from the left non-dominant to the right dominant arm [142] for

a unilateral visuomotor perturbation task. Since trajectory information was shared

from the right dominant arm to the left non-dominant arm, perhaps this informa-

tion may be modulated based on the sensory feedback that each arm provides to the

CNS. If this is the case, then the CNS would need to be able to compare the sensory

feedback against the predicted feedback for each of the arms and then compare the

results between the arms.

4.5 Conclusion

Transfer of learning occurred in both direction, from the dominant arm to the non-

dominant arm and the non-dominant arm to the dominant arm, when movement

related position feedback and external load feedback was available from both arms,

when the force environment was applied in the intrinsic environment. The dominant

arm had a greater rate of adaptation than the non-dominant arm. Therefore motor

adaptation for the right dominant arm was more complete than the left non-dominant

arm. Both arms were able to learn the force environments they were placed in at the

same time. The next question to be addressed is, does the direction in which the

force is applied have an effect?
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CHAPTER V

AIM 3. DOES THE DIRECTION OF THE FORCE

AFFECT BILATERAL MOTOR LEARNING?

5.1 Introduction

Researchers have found that transfer of learning during reaching tasks in a novel

force environment depended on the direction of the force environment. Burgess et a.

(2007) demonstrated that transfer of learning occurred from a bilateral to a unilateral

reaching task when the same extrinsic forces were applied to the arms [19]. Transfer

of learning has also been shown to occur from the dominant to the non-dominant arm

in a unilateral reaching study, but only in the extrinsic coordinate frame but not in

an intrinsic coordinate frame [28]. Fine and Thoroughman, demonstrated that the

direction but not the magnitude of the force environment affected motor behavior

during a unilateral reaching study [49]. Therefore, the direction in which the force

environment was applied to the arms seemed to affect unilateral motor adaptation.

The question becomes, does the direction of the force environment (extrinsic versus

intrinsic) affect bilateral motor adaptation?

In order to answer this question, two experimental conditions were investigated:

(1) bilateral intrinsic and (2) bilateral extrinsic. For the bilateral intrinsic experi-

mental condition, both arms moved and both arms experienced a force environment

in the intrinsic coordinate frame (i.e. the force environment was applied in the joint

space). For the bilateral extrinsic experimental condition, both arms moved and both

arms experienced a force environment in the extrinsic coordinate frame (i.e. the force

environment had the same direction, clockwise, on both the arms). Based on the

literature discussed above [19, 28, 49] it was predicted that transfer of learning would
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Table 7: Aim 3: Experimental Groups.

Exposure Catch Trial
Arm Field Arm Field

Bilateral Intrinsic Right CW Right Null
Left CCW Left Null

Bilateral Extrinsic Right CW Right Null
Left CW Left Null

occur from the dominant to the non-dominant arm if both arms learned the task in

the extrinsic coordinate frame. The following specific aim and hypothesis addresses

this issue:

Aim 3. Determine the effects of extrinsic and intrinsic force environments on

transfer of learning during bilateral reaching.

Hypothesis 3.1: When both arms learn the force environment during bilateral

reaching, transfer of learning should be greater for the extrinsic force environment

compared to the intrinsic force environment.

5.2 Method

Twenty (20) subjects were recruited and randomly assigned to one of two groups

(Table 7, 74):

• Bilateral Intrinsic: Both arms were moving, but the right dominant arm learned

a clockwise (CW) force environment, while the left non-dominant arm learned

a counter clockwise (CCW) force environment.

• Bilateral Extrinsic: Both arms were moving and both arms experienced a clock-

wise (CW) force environment.

The bilateral intrinsic group, was identical to that described in chapter 5 (page 63).

Therefore, the only new group was the bilateral extrinsic group.
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The learning curve was determined by conducting a regression analysis on the

normalized perpendicular displacement of the index finger as a function of the cy-

cle number. The rate of adaptation was determined as the rate constant of the

regression line. To compare whether the obtained learning curves differed between

experimental conditions, the regression lines were compared using the Rosenbrock

and Quasi-Newton method with least squares. The effects of the experimental groups

and arm dominance on the aftereffects were tested using a two-way ANOVA. The

aftereffect was calculated as the difference in the mean perpendicular displacement

between the last four cycles of the exposure phase and that of the catch trial phase

(measured in cm). Similar effects on all other performance variables measured during

the exposure and the catch trial phases, were also studied using two-way ANOVA’s.

5.3 Results

The typical index finger path of a subject in the bilateral extrinsic group is shown in

figure 19, page 76. During initial exposure to the force environment, when both arms

experienced a clockwise force environment, large movement errors were observed. The

index finger path for both arms straightened out with training (Fig. 19.b/e). During

the catch trial phase when the force environment was randomly removed, large move-

ment errors were observed in both arms in the opposite direction compared to the

movement errors during the initial exposure to the force environment (Fig. 19.c/f).

This was an indication that motor adaptation occurred in both arms. The regres-

sion analysis revealed that the rate of adaptation of the normalized perpendicular

displacement for all target directions across subjects were statistically significant

(p < 0.05) (Fig. 19.a/d). Similar results for the bilateral intrinsic group have been

discussed in the previous chapter (page 63).
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Figure 19: Bilateral Extrinsic. (a/d) Left/Right index finger normalized perpendic-
ular displacement (mean ± standard error) for each target direction averaged across
subjects. (b/e) Left/Right index finger displacement for a single subject averaged
over the first four cycles of the exposure phase (dashed blue line) and over the last
four cycles of the exposure phase (solid black line). (c/f) Left/Right index finger dis-
placement for a single subject averaged over the catch trial phase. Target direction
labels are indicated for each arm according to the out-of-phase reaching pattern.
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Figure 20 (page 78) shows the results for the normalized perpendicular displace-

ment for each group taken across targets and subjects. For the bilateral intrin-

sic group (purple line, Fig. 20), the rate of adaptation was significant (p < 0.05)

for the right dominant arm (y = exp−0.0263±0.001∗x) and the left non-dominant arm

(y = exp−0.0191±0.001∗x). This indicated that both arms were able to learn the force

environment at the same time. For the bilateral extrinsic group (orange line, Fig.

20), the rate of adaptation was significant (p < 0.05) for the right dominant arm

(y = exp−0.0202±0.001∗x) and the left non-dominant arm (y = exp−0.0108±0.001∗x). This

indicated that both arms were able to learn the force environment at the same time.

The comparison of these learning curves against each other showed that for the right

dominant arm there was no significant difference between the bilateral intrinsic and

the bilateral extrinsic groups (p = 0.802). For the left non-dominant arm, rate of

adaptation of the bilateral extrinsic group was significantly slower than for the bi-

lateral intrinsic group (p < 0.05). Therefore, the dominant arm interfered with the

motor adaptation of the non-dominant arm during the bilateral extrinsic experimen-

tal condition. The rate of adaptation of the right dominant arm was greater than the

rate of adaptation of the left non-dominant arm for both the bilateral intrinsic and

extrinsic groups (p < 0.05).

The aftereffect was compared between the experimental groups (bilateral intrinsic

and bilateral extrinsic) and the arms (right dominant and left non-dominant). The

aftereffect of the right dominant arm was significantly greater than that of the left

non-dominant arm F (1, 316) = 14.52, p < 0.01 (Fig. 21, page 78). There was no

statistical significance observed between the groups (p = 0.3384). The aftereffect

was not sensitive enough to measure differences in quality of motor adaptation be-

tween different bilateral tasks, because of the transfer of learning or interference that

occurred during the catch trials.

There was no significant differences in the final position error between the groups
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Figure 20: Normalized perpendicular displacement (mean ± standard error) aver-
aged across all targets for the left non-dominant and the right dominant arm for the
bilateral intrinsic (purple line) and the bilateral extrinsic (orange line) groups.

Figure 21: Aftereffects are shown for the right dominant arm (solid) and the left
non-dominant arm (hashed) for the bilateral intrinsic and bilateral extrinsic groups.
* p < 0.05
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and arms for the exposure or catch trial phases (p > 0.05). There was no significant

differences in the reaction time between groups and arms for the exposure and catch

trial phases (p > 0.05). Therefore, divided attention is not likely to be a contributing

factor. Also, no significant difference was observed for the movement time between

groups and arms for the exposure and catch trial phases (p > 0.05).

A two-way ANOVA was conducted on the peak velocity during the exposure phase

and a statistically significant interaction effect between the experimental groups and

arms was observed (F (1, 36) = 4.676), p < 0.05). However, upon further examination

there was no difference in peak velocity of the left non-dominant arm between groups

(p = 0.208), nor of the right dominant arm (p = 0.074). A post-hoc Tukey HSD test

did not reveal any significant interactions either. Therefore, it was concluded that

during the exposure phase, there was no difference in the peak velocity between the

arms and groups. A two-way ANOVA was conducted on the peak velocity for the

catch trial phase across groups and arms, and no significant difference was observed

(p > 0.05). There was no significant difference in the peak velocity position between

experimental groups and arms for the exposure and the catch trial phases (p > 0.05).

5.4 Discussion

Previous studies have indicated that transfer of learning during a unilateral task oc-

curred from the right dominant arm to the left non-dominant arm in the extrinsic

coordinate frame but not the intrinsic coordinate frame [19, 95, 28]. This chapter

considered whether similar results would hold true for bilateral reaching tasks, and

addressed the question: Does the direction of a novel force environment (extrinsic

vs intrinsic) affect bilateral motor adaptation? In order to answer this question, two

experimental groups were studied, where one group experienced force environments

in the intrinsic coordinate frame (bilateral intrinsic) and the other group experienced

the force environments in the extrinsic coordinate frame (bilateral extrinsic). When
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both arms learn the force environment during bilateral reaching, transfer of learning

should be greater for the extrinsic force environment compared to the intrinsic force

environment. Results demonstrated that the rate of adaptation of the bilateral in-

trinsic task by the left non-dominant arm was significantly faster than that of the

bilateral extrinsic task. This result suggested that the dominant arm interfered with

the motor adaptation of the non-dominant arm when the extrinsic forces were applied

to both arms. Thus, the research hypothesis must be rejected. For the dominant arm,

there was no difference in the rate of adaptation between the two experimental groups,

therefore, the non-dominant arm neither interfered nor helped the motor adaptation

of the dominant arm. These results demonstrated that the direction in which the

force environments were applied to the arms, did affect the motor adaptation of the

non-dominant arm but not the dominant arm.

The aftereffect results showed that there was no difference in the quality of motor

adaptation between the groups. However, the right dominant arm did have larger

aftereffects than the left non-dominant arm. This corresponds to the rate of adapta-

tion results, in that the rate of adaptation for the right dominant arm was faster than

the rate of adaptation for left non-dominant arm. Therefore, the right dominant arm

learned and performed bilateral tasks better than the left non-dominant arm.

5.5 Conclusion

The rate of adaptation by the non-dominant arm was faster for the bilateral intrinsic

group than for the bilateral extrinsic group. The rate of adaptation for the dominant

arm did not differ between the experimental groups. It appears therefore that the

sensory movement related position feedback and force feedback from the dominant

arm interfered with the motor adaptation of the non-dominant arm during the bi-

lateral extrinsic task. Thus the direction of the force environment affects the motor

behavior of the non-dominant arm but not the dominant arm.
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CHAPTER VI

GENERAL TRENDS

6.1 Introduction

Studies on motor learning have shown that there may be other contributing factors

such as age [152], gender [107] and handedness [118] that can affect motor behavior.

These factors were examined to see whether they may have biased the results of this

study.

6.2 Method

All of the groups, as outlined in Chapter 3 (Table 3, page 38), were considered in

these analyses. The correlation analyses were conducted between age and handedness

(determined by the Edinburgh Inventory) and the following performance variables:

(1) rate of adaptation, (2) final position error, (3) movement time, (4) reaction time,

(5) peak velocity and (6)peak velocity position. T-tests were conducted to see whether

the performance variables differed between gender.

6.3 Results

The rate of adaptation data were only considered for those experimental groups where

the right dominant arm demonstrated motor adaptation. The following groups were

included in the analysis: unilateral right, bilateral right, bilateral intrinsic and bilat-

eral extrinsic. There was no statistically significant correlation between the rate of

adaptation and age (r = 0.08, p = 0.543), handedness (r = −0.0697, p = 0.597) nor

was there a statistical difference in rate of adaptation for gender (t(58) = −0.086,

p = 0.932). The rest of the performance variables were correlated with age, hand-

edness and gender using data from all groups. The final position error did not
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correlate with age (r = 0.17, p = 0.1), handedness (r = 0.05, p = 0.61) nor

was there a statistical difference in final position error for gender (t(98) = 0.708,

p = 0.48). Reaction times did not correlate with age (r = 0.03, p = 0.799), hand-

edness (r = −0.02, p = 0.806) nor was there a statistical difference in reaction time

for gender (t(98) = −1.245, p = 0.216). Movement time did not correlate with age

(r = 0.19, p = 0.064) or handedness (r = −0.17, p = 0.096). Males tended to have

shorter movement times (599.93 ± 90.1 milliseconds) than females (659.63 ± 57.28

milliseconds) (t(98) = −3.25, p < 0.05). There was no significant difference in move-

ment time between the experimental groups (p = 0.308), since there was an almost

equal distribution of males and females in each group. Therefore, gender did not bias

the results of movement time in this study. The peak velocity did correlate with age,

in that older individuals tended to have lower peak velocities, however the correlation

coefficient was low (r = −0.25, p = 0.012). To investigate further the effects of age

and experimental group on peak velocity, a two-way ANOVA was conducted on peak

velocity. The results indicated that age did not affect peak velocity between groups

(p > 0.05). The peak velocity did not correlate with handedness (r = 0.02, p = 0.855).

Males tended to have greater peak velocities (0.001663 ± 0.0025 cm/msec) than fe-

males (0.000646 ± 0.0017 cm/msec) (t(98) = 1.99, p < 0.05). Upon conducting a

two-way ANOVA on peak velocity between groups and gender, no significant effects

were found. Therefore, age, handedness and gender did not affect the peak velocity

results. The peak velocity position did correlate with age (r = −0.32, p < 0.01) but

not with handedness (r = −0.09, p = 0.356). There was no statistical difference in

the peak velocity position for gender (t(98) = 0.141, p = 0.88). A two-way ANOVA

was conducted on the peak velocity position to test the effects of age and groups. The

results indicated that age did not affect the peak velocity positions between groups

(p > 0.05). Therefore, the general conclusion was that age, handedness and gender

did not affect the results of this study.
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Handedness, as measured by the Edinburgh Inventory [118] was used to determine

subjects’ hand preference. On average across all groups handedness did not affect the

results, as shown above. However, handedness could affect the results within the

groups. The following variables were found to significantly correlate with handedness

within the following experimental groups:

• Unilateral Right: rate of adaptation for the right dominant arm (r = 0.66).

• Unilateral Left: none.

• Bilateral Right: reaction time for both arms (r = −0.80).

• Bilateral Left: final position error (r = 0.46) and movement time (−0.49).

• Bilateral Intrinsic: movement time (r = −0.53) and reaction time (r = −0.45).

• Bilateral Extrinsic: none.

For the unilateral right condition, where only the right dominant arm learned a force

environment, rate of adaptation decreased with increasing the degree of right hand

dominance. The more right handed someone was the shorter their reaction times were

for the bilateral right and bilateral intrinsic experimental groups. For the bilateral

left and bilateral intrinsic experimental groups, movement time was shorter the more

right handed the individual was. The results were not consistent across all groups

which may have been due to interference or transfer of learning from one arm to

the other arm during the bilateral tasks. In addition when rate of adaptation, final

position error, reaction time, and movement time were compared across all groups

with respect to handedness, no statistical significance was observed (p > 0.05).

Movement time was analyzed between experimental phases across all of the ex-

perimental groups for each arm. The results indicated that the movement time for

the right dominant arm was longer for the catch trial phase (739.433 ± 50.43 msec)

compared to the pre-exposure (597.63 ± 27.52 msec) and exposure phases (606.75 ±
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30.02 msec) across all groups F (2, 135) = 22.533, p < 0.05 (Fig. 22, page 85). The

results of the two-way ANOVA on movement time of the left non-dominant arm re-

vealed that there was a significant interaction effect between the experimental groups

and the phases F (8, 135) = 2.123, p < 0.05 (Fig. 23, page 86). When this interaction

was followed, it was found that the movement time for the left non-dominant arm

during the pre-exposure phase and the exposure phase did not depend on the group

(p > 0.05). However, the movement time of the left non-dominant arm did differ be-

tween groups for the catch trial phase F (4, 45) = 6.287, p < 0.05. A Tukey HSD post

hoc test showed that the movement time of the left non-dominant arm was different

for the bilateral right group when compared to the unilateral left and bilateral left

groups. As has been discussed in chapter 4 (page 42), the left non-dominant arm’s

movement time did not change between the phases for the bilateral right group be-

cause it was not exposed to a force environment. For all other experimental groups,

the left non-dominant arm experienced a force environment.

A one-way ANOVA was conducted on the peak velocity position of the left non-

dominant arm across groups. Results indicated that there was a significant difference

F (4, 145) = 5.32, p < 0.05 (Fig. 25, page 88). A bonferroni post-hoc test revealed

that the peak velocity position of the left non-dominant arm was significantly greater

for the unilateral left task than the bilateral intrinsic and bilateral extrinsic tasks.

Therefore peak velocity of the left non-dominant arm occurred much sooner for the

bilateral reaching groups when both arms were experiencing force environments than

for the unilateral left group. This may be an indication that for the left non-dominant

arm the bilateral tasks were more complicated to perform than the unilateral task. A

one-way ANOVA was conducted on the peak velocity position of the right dominant

arm, and revealed that there was no significant difference between groups F (4, 145) =

2.09, p = 0.08 (Fig. 24, page 87).
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Figure 22: Movement time (mean ± standard deviation) of the right dominant arm
during the pre-exposure (blue), exposure (red) and catch-trial (green) phases for all
the groups.

85



Figure 23: Movement time (mean ± standard deviation) of the left non-dominant
arm during the pre-exposure (blue), exposure (red) and catch-trial (green) phases for
all the groups.
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Figure 24: Peak velocity position (mean ± standard deviation) for the right dominant
arm for all groups.
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Figure 25: Peak velocity position (mean ± standard deviation) for the left non-
dominant arm for all groups.
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6.4 Discussion

Age [152] and gender [107] have been shown to have potential influence on motor

control and motor adaptation. In order to account for these possible confounding

factors, all of the performance variables were correlated with age and gender. Results

indicated that age and gender did not bias the results of this study.

One of the most common methods to determine handedness is by taking the Edin-

burgh Inventory [118]. Performance variables were correlated to the handedness score

in order to determine if there were any significant relationships. Results indicated that

there was no correlation between the handedness score and the performance variables

when looking across all groups. However, when considering the correlation between

the handedness score and the performance variables within each group, some variables

significantly correlated with handedness. For the unilateral right group, when only

the right arm moved, the rate of adaptation became slower the more right hand dom-

inant the subjects were. For the bilateral groups, movement time and reaction time

appeared to decrease with increasing levels of handedness. Therefore, the handedness

score may have been an indication of how the subject responded to these tasks and

the specific performance variables. However, further studies need to be conducted

to determine how the Edinburgh Inventory correlates with performance variables.

The results here are only valid for subjects that had handedness scores greater than

0.5 to 1, meaning they were strongly right hand dominant. It is unclear whether

these performance variables would still correlate if subjects were strongly left hand

dominant.

The design of the experimental task was so that the target size and the distance

to the targets were similar between arms. This ensured that the speed and accuracy

trade off would be the same between the arms [50] even though they were moving

in an out-of-phase pattern [81]. Previous chapters have demonstrated that there was

no difference in movement time between the arms and groups, except for the left
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non-dominant arm of the bilateral right group. When considering movement time

across groups and experimental phase, results indicated that for the right dominant

arm and the left non-dominant arm the movement time was consistently longer for

the catch trial phase than the pre-exposure and exposure phases across all groups.

However, movement time did not differ between the arms across all groups. Therefore,

movement time did not depend on the differences in force environments between the

arms.

6.5 Conclusion

In conclusion, age, gender and handedness did not influence the results of this study,

when comparing between arms and across groups.
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CHAPTER VII

DISCUSSION

7.1 Introduction

The purpose of this study was to determine whether transfer of learning occurs during

bilateral reaching tasks. It was hypothesized that transfer of learning would occur

from the non-dominant to the dominant arm during bilateral tasks and that movement

related position feedback and external load feedback from the arms would affect rate

of adaptation and transfer of learning. Three groups of bilateral tasks were examined:

(1) unilateral reaching, where one arm learned to reach in a novel force environment,

while the other arm remained in a stationary position and therefore did not provide

movement related position feedback or external load feedback; (2) bilateral reaching

single load, where both arms performed reaching movements but only one arm learned

a novel force environment and therefore the other arm provided movement related

position feedback but not external load feedback; (3) bilateral reaching two loads,

where both arms performed reaching movements and both arms learned a novel force

environment, while providing movement related position feedback and external load

feedback to the CNS.

7.2 Transfer of learning

The first part of the study has considered whether transfer of learning occurs during

bilateral goal-directed reaching. The results of the study have demonstrated that

transfer of learning occurs during bilateral goal-directed reaching tasks. The rate of

adaptation, quantified by changes in the normalized perpendicular displacement of

the right dominant arm, is greater for the bilateral reaching single load task than
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for the unilateral reaching task (Fig. 13, page 53). This suggests that arm end-

point trajectory information of the left non-dominant arm enhances the adaptation

of the right dominant arm to the force environment. This result supports the cal-

losal model [58, 67, 175], which predicts that transfer of learning occurs from the

left non-dominant arm to the right dominant arm. The arm endpoint final position

error analysis suggests that there is interference from the right dominant arm to the

left non-dominant arm. Specifically, the endpoint final position error of the left non-

dominant arm was worse during bilateral reaching single load task when compared

to the unilateral reaching task, for the pre-exposure and the catch-trial phases (Fig.

15, page 57, Table 5, page 45). For the exposure phase there was no difference in the

endpoint final position error of the left non-dominant arm between the experimen-

tal tasks, when the left non-dominant arm experienced the force environment. The

difference between these two tasks are that during the unilateral reaching task the

right dominant arm does not move and therefore produces static sensory feedback,

whereas for the bilateral reaching single load task the right dominant arm provides

movement related position feedback, but not external load feedback to the CNS. Pre-

sumably the CNS uses the sensory feedback from the right dominant arm to update

the motor program of the left non-dominant arm, which might inadvertently result in

increasing the endpoint final position error (Fig. 15, page 57). This result suggests

that final position information from the right dominant arm interferes with the left

non-dominant arm controller and decreases the performance in controlling reaching

accuracy of the left non-dominant arm. These findings supports the study by Sain-

burg and Wang (2002) that demonstrated that trajectory information (e.g., trajec-

tory shape) is transferred from the left non-dominant arm to the right dominant arm,

whereas final endpoint position information is transferred from the right dominant

arm to the left non-dominant arm [142]. According to Sainburg’s dynamic dominance

hypothesis, the right dominant arm is better at controlling endpoint trajectory, while
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the left non-dominant arm is better in controlling for final endpoint position [137].

Therefore, the type of information trasnferred between the arms would be specific

and consistent with functional specialization of each arm [138]. Sainburg and Wang

(2002) proposed a modified access model, in which they state that the information

that is stored during motor adaptation of either arm controller, may be accessed by

the contralateral controller.

The second part of the study considered whether there would be a difference in

motor adaptation and transfer of learning when one or both the arms experience a

force environment during bilateral reaching task. The results have indicated that

there is a difference in motor adaptation between these conditions. Specifically, the

rate of adaptation, quantified by the normalized perpendicular displacement, is faster

for the bilateral reaching two loads task with the same intrinsic force environment than

for the bilateral reaching single load tasks (Fig. 17, page 69). This result suggests

that transfer of learning occurs between the arms in both directions at the same

time. The trajectory information is likely transferred from the left non-dominant

to the right dominant arm, as well as from the right dominant arm to the left non-

dominant arm. This result does not support the dynamic dominance hypothesis [138],

in that this study demonstrated that transfer of trajectory information occurs from

the right dominant arm to the left non-dominant arm during a bilateral task. When

both arms experience an intrinsic force environment, bilateral reaching two loads, both

arms produce movement related position feedback and external load feedback. This

bilateral reaching task differed from the motor task studied by Sainburg and Wang

[142]; in the latter only one arm at a time practiced a visuomotor perturbation. It

is therefore possible that the CNS is using the movement related position feedback

and external load feedback from both arms to improve the motor adaptation of each

arm. During the bilateral reaching single load task, one arm produces both movement

related position feedback and external load feedback, while the other arm produces

93



only movement related position feedback. For this task transfer of learning only

occurred from the left non-dominant arm to the right dominant arm (Fig. 13, page

53). Therefore, it is plausible that the CNS, based on sensory feedback received from

both arms, selectively modulates the transfer of information between the arms, which

may either improve, decrease or keep constant the speed and quality of adaptation

for each arm.

The final part of the study has considered whether the direction in which the

forces are applied to both arms during bilateral reaching would affect motor adapta-

tion and transfer of learning. The results have indicated that the rate of adaptation

by the left non-dominant arm was lower in the extrinsic force environment compared

to the intrinsic force environment (Fig. 20, page 78). This finding suggests that the

CNS is sensitive to the direction in which the force environment is applied to the left

non-dominant arm during bilateral reaching tasks. One limitation of this part of the

study should be mentioned. During the bilateral reaching two loads tasks, the direc-

tion of the force environment on the left non-dominant arm was changed (extrinsic

versus intrinsic), but the direction of external forces for the right dominant arm were

unchanged (Table 7, page 74). Therefore, it may be that the results for the right

dominant arm would be different if the direction of the force environment changes.

However, some studies have shown that transfer of learning for unilateral reaching

occurs from the dominant to the non-dominant arm only in extrinsic coordinate frame

but not vice versa [28].

The transfer of learning models have been proposed based on unilateral reaching

studies, and have only considered discrete transfer of learning, that is, transfer of

learning was tested at the end of training (see Chapter 1, page 15). The current

study explored whether transfer of learning is ongoing during a bilateral reaching

task. The transfer of learning models predict unidirectional transfer of learning (cal-

losal model [58, 67, 175], and cross-activation model, [62, 91, 124, 150, 182, 189]) or an
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equal degree of transfer of learning between the arms (proficiency model, [177]). The

results of this study have demonstrated that transfer of learning may occur in both

directions simultaneously during bilateral tasks, and that the type of information that

is transferred between the arms may depend on the sensory feedback available from

both the arms. Therefore, the obtained results cannot be directly compared with

any of the transfer of learning models for bilateral goal-directed reaching tasks. How-

ever, it is plausible that the Parietal Cortex is able to compare the sensory feedback

from both the arms simultaneously against the predicted feedback. This comparison

may be mediated by the fronto-parietal-cerebellar pathway [45] and intrahemispheric

connections between the Parietal Cortices [22, 151].

The key findings of this study are: (1) Transfer of learning or/and interference

occurs between the arms during goal-directed bilateral reaching tasks, (2) The extent

to which transfer of learning or interference occurs depends on movement related

position feedback and external load dependent feedback from each arm and on arm

dominance. The following section discusses the possible motor control mechanisms

and potential neural pathways that could explain the observations of this study.

7.3 Bilateral motor control

The results of Aim 1 of this study have demonstrated that movement related infor-

mation is transferred between the arms during bilateral reaching. In accordance with

the intermanual crosstalk model, each arm is controlled by an independent motor

program during bilateral tasks [7, 96, 31]. Each arm controller has access to the con-

tralateral motor program via the corpus callosum [21, 9, 43, 54, 110, 43, 153, 163].

However, the intermanual crosstalk model does not specify the nature of the infor-

mation or the direction in which the information is transferred. The results of Aim 1

support the dynamic dominance hypothesis in that transfer of trajectory information

occurs from the non-dominant to the dominant arm, while final position information
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is transferred from the dominant to the non-dominant arm. However the results from

Aim 2 are inconsistent with the dynamic dominance hypothesis. Specifically, during

the bilateral reaching two loads task, transfer of trajectory information (evaluated by

straightness of trajectory) was observed in both directions (Fig. 17, page 69), not just

from the non-dominant to the dominant arm as predicted by the dynamic dominance

hypothesis. The transfer of learning in both directions could be explained within the

framework of the optimal feedback control(OFC ) model.

The OFC model suggests that in order for movement to occur three problems need

to be solved: system identification, state estimation and optimal control. Neurophys-

iological studies have suggested that the cerebellum is involved with system identi-

fication [112, 193, 154], the parietal cortex allows for state estimation [135, 60, 33],

and the basal ganglia is involved with optimal control [122, 100]. During system

identification, the cerebellum is thought to receive an efference copy of the motor

command and to build an internal model that generates the predicted feedback of

the intended movement [112, 193, 154]. For state estimation, the parietal cortex has

been suggested to compare the predicted feedback against the actual feedback from

the ongoing movement and to perform the movement evaluation, that is, determining

where in space the arm is actually located and how it is moving [135, 60, 33]. The

basal ganglia is thought to be involved with the optimal control and selection of the

motor commands, by weighing the cost versus the reward for a specific movement

[122, 100].

A diagram in figure 26 (page 100) is consistent with several models of bilateral

motor control described previously (page 10) and can explain the results of the present

study. The bilateral motor control schematic incorporates the OFC model and the

intermanual crosstalk model. This schematic suggests that each arm has its own

controller in the contralateral hemisphere. Interhemispheric communication occurs

between the dominant and non-dominant hemispheres via the corpus callosum [21].
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The intention to generate a movement starts in the motor association area where the

motor program is formed [143]. The motor association area uses information from

the somatosensory areas, cerebellum, parietal cortex and basal ganglia to update

the motor program [56, 86, 185, 143, 154]. The primary motor cortex integrates

the available information and generates descending motor commands [143]. These

motor commands descend via the corticospinal tract to the spinal interneurons and

motor neurons and activate the contralateral muscles. The activated muscles contract

and cause the arm to move. As a result, the arm’s mechanical state changes which is

reflected in changes in proprioceptive feedback from the muscle spindles, Golgi tendon

organs, and joint receptors. In addition, visual information about arm position is also

received by the CNS although with a longer feedback delay. The sensory feedback

information from the spindles, Golgi tendon organs, joint receptors and the retina on

the inner surface of the eye (yD and yND, Fig. 26, page 100) is transmitted via the

thalamus to somatosensory and visual cortexes (see Section 1.2.2, page 7 for details).

The cerebellum also receives movement related information and based on an efference

copy of the motor command from the primary motor cortex builds the internal model

of the environment (system identification) which in turn is used to predict sensory

consequences of the intended movement (x̂D and x̂ND). The predicted feedback is

then transmitted from the cerebellum to the parietal cortex.

The posterior parietal cortex compares the actual feedback against the predicted

feedback in order to update the current state of the arms and the external environment

(state estimation). Studies have demonstrated that there are intrahemispheric and

interhemispheric pathways between the posterior parietal cortex and the primary

motor cortex [22, 151]. Therefore, it is plausible that the posterior parietal cortex

not only updates the state of the contralateral arm, but is also capable of comparing

the states between the two arms. This could explain why the differential sensory

feedback from the dominant and non-dominant arms could affect transfer of learning
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and/or interference between the arms depending on the nature of the feedback and

arm dominance, as has been demonstrated by the results of this study. Based on the

predicted and actual sensory feedback from each arm, the posterior parietal cortex

updates the state estimations of the arms relative to one another in the world and

contributes to updating the motor program in the motor association and primary

motor areas [143].

The basal ganglia are thought to be involved with the optimal control and selec-

tion of the motor commands, by weighing the cost versus the reward for a specific

movement [122, 100]. The cost of moving the arm is greater than keeping the arm

stationary, because energy is required to move the arm. (i.e. unilateral reaching from

Aim 1). The cost of moving the arm in a force environment is greater than moving

it in the neutral environment (null force field), since greater energy expenditure is

needed to overcome the imposed force (i.e. bilateral reaching single load from Aim

1 and 2). In the same manner the cost of moving both the arms through a force

environment (i.e. bilateral reaching two loads from Aim 2) is different from the cost

of moving just one arm in a force environment and the other arm in a neutral envi-

ronment (i.e. bilateral reaching single load from Aim 1 and 2). This different cost

could explain differences in the rate of adaptation between the groups that were ob-

served in Aim 1 and 2. Also, the direction in which the force environment is applied

(intrinsic vs. extrinsic) may affect the cost (Aim 3). When the same intrinsic force

environment is applied to both arms, the muscle force feedback is consistent between

the arms (e.g., flexors of both arms counteract external forces that tend to extend the

arm). However, for the same extrinsic force environment the muscle force feedback is

inconsistent between the arms. Inconsistent muscle force feedback may cause a less

coordinated movement resulting in higher muscle coactivation [93]. Therefore, the

cost associated with moving the arms in the same intrinsic or extrinsic force environ-

ments could be different. The results of Aim 3 suggest that muscle force feedback
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contributes to motor adaptation. Inconsistent muscle force feedback from the two

arms in the same extrinsic force environment apparently contributes to interference

between the arms.

One way to examine the importance of sensory feedback for the update of the

cost function and subsequent update of the controller commands, would be to repeat

the Aim 1 experiment, however this time manipulate sensory feedback (yD and yND,

26, via tendon vibration causing activation of Ia spindle afferents, cooling the arm or

with a blood pressure cuff, as well as removing visual feedback) from the arm that is

moving in the neutral environment during the bilateral reaching single load task. It is

predicted that there should be no differences in the rate of adaptation to a novel force

environment when comparing between the bilateral reaching single load task and the

unilateral reaching task.

7.4 Implications for rehabilitation

It has been suggested that for unilateral reaching each arm has its own specializa-

tion in that the dominant arm tends to be more proficient in specifying trajectory

information, whereas the non-dominant arm is better in controlling the final arm po-

sition [137]. These natural tendencies of the arms movement organization have been

demonstrated to influence the contents and direction of shared information between

the hemispheres/arms during unilateral reaching tasks [138, 5]. The current study

has demonstrated that information is shared between the arms during a goal-directed

bilateral reaching task. The direction and the type of information that is shared

between the arms depend on the sensory feedback that is available from each arm.

This study suggests that the rehabilitation strategy for the arms may depend on: (1)

whether or not the affected arm is dominant or non-dominant, (2) the goals of the

rehabilitation and (3) the amount and kind of sensory feedback available depending
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Figure 26: A schematic illustrating a possible bilateral motor control. x̂D and x̂ND

represents the predicted feedback from the dominant controller and non-dominant
controller, respectively. yD and yND represents the actual sensory feedback from the
dominant arm and the non-dominant arm, respectively.
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on the pathology of the individual. The goals may relate to the accuracy of the move-

ment, final position error of the arm or the smoothness of the arm trajectory. The

results of the current study indicate that in healthy young subjects, both the domi-

nant and the non-dominant arms learn the trajectory information fastest when both

arms are moving in the same intrinsic force environment. If the goal is to train for ac-

curacy in a healthy young subject, then the results of this study suggest that the left

non-dominant arm should practice unilateral tasks, whereas for the right dominant

arm there is no difference between training in unilateral and bilateral tasks. Future

work should investigate whether these findings are applicable to individuals with a

pathology, like stroke.

Robotic-assisted rehabilitation is a new promising direction in rehabilitation. Robotic

devices have been used in studying motor adaptation and learning because they can

provide repeated and precise movement perturbations while assessing and cataloging

sensory-motor performance [131]. Examples of robotic devices whose effectiveness

in rehabilitation of neurological patients has been studied in clinical trials include

the MIT-Manus, which is a manipulandum [87] and an exoskeleton robotic arm,

for example the T-Wrex [119, 144, 75]. The studies cited above have shown that

stroke survivors with moderate neurologic arm impairment improved function (mea-

sured by clinical tests) due to robotic-assisted motor learning. Several studies have

shown that robotic-assisted practice resulted in motor learning and neural plastic-

ity [131, 47, 73, 78, 126, 133, 162]. The Kinarm can be used for motor learning

and rehabilitation research. It has been recently shown that the Kinarm robot may

provide accurate quantitative assessment of arm sensory function and the ability to

perform visually guided arm reaching movements in stroke survivors [42, 23, 24].

The major advantage of the Kinarm is its ability to study movements of both arms

simultaneously and control the task for each arm independently (applying external

force environments, presenting targets to both arms, etc.). Therefore, the Kinarm
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may be useful to address fundamental questions about motor adaptation and trans-

fer of learning between the arms that may provide useful information for designing

quantitative diagnostic methods and novel rehabilitation therapy.

7.5 Limitations and future work

The task protocol involved a limited number of trials, 160 for the pre-exposure phase

and 320 reaches for the exposure phase, which took 3 hours to be completed. Since 60

subjects were recruited for the study, it was decided not to increase the experimental

time in order to accommodate that many subjects. More trials could have resulted in

more complete motor adaptation. Another constraint was that the Kinarm equipment

was only able to safely apply a force environment with a viscosity matrix of 10 Ns/m.

This is somewhat small when compared to other studies [28, 147]. A greater force

environment may have resulted in greater differences in the performance variables

between the arms and the groups. Furthermore, this study only considered right arm

dominant subjects. It is unclear whether the findings of this study would apply to

left non-dominant individuals.

The current study considered whether transfer of learning would occur during

bilateral reaching tasks where the arms performed non-homologous arm movements.

Studies have shown that there is no difference in reaction or movement time between

bilateral in-phase (homologous) and out-of-phase (non-homologous) movements [2].

Although in-phase cyclical movement is more stable [25, 167, 168], subjects are still

able to learn out-of-phase movements [169]. However, as has been demonstrated by

Kelso et al. (1979), there is an entrainment effect between the arms during cyclical

movements [81]. The arms will switch from an out-of-phase to an in-phase pattern

at higher frequencies. The results of the current study only apply to out-of-phase

movements. A comparative study should be conducted to determine if there are

any differences in transfer of learning during a bilateral task between in-phase and

102



out-of-phase movements.

Subjects’ arms were continually supported throughout the entire arms length in

the Kinarm. This eliminated the involvement of anti-gravity muscles during the

task. Most of the tasks that people perform everyday do not happen in this type of

environment. Therefore, the results of this study need to be interpreted with caution.

The Kinarm and similar robotic devices used in motor adaptation studies [131, 47, 73]

are designed to reduce or completely eliminate the effect of gravity on the arms. This

design feature of the Kinarm is advantageous for simplifying complexities of arm

motor control and allows the study of specific questions related to motor learning

in isolation from other factors. This reduction in complexity of movement in the

current study allowed the focus on specific questions of motor learning transfer and

interference between the arms. At the current stage of the limited understanding of

bilateral reaching movements, this approach may be partly justified by the studies

demonstrating that robotic-assisted practice in gravity eliminated environment result

in motor learning and neural plasticity [131, 47, 73, 78, 126, 133, 162]. Whether or

not the results obtained in this study hold in more natural conditions should be the

subject of further research.

Divided attention may be another contributing factor to bilateral reaching move-

ments and should be considered in greater detail in the future. It has been found

that if a subject is instructed to focus attention on a single limb during a bilateral

task, the unattended limb would make greater movement errors [157]. In the current

study subjects were allowed to self select their strategy as to which arm they would

pay attention. However, it would have been beneficial to track their eye movements

to evaluate which arm they spent more time focusing on and whether this would

correlate with any of the results presented in this study.

The current study addressed the issue as to whether transfer of learning occurs

during a bilateral task. This is not the traditional method for testing transfer of
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learning where one arm is trained in a force environment and then the other arm is

tested. However, the traditional paradigm could be employed in a bilateral reach-

ing task in the way of the bilateral single load experimental condition. During the

training phase both arms would move, however only one arm would train the force

environment. During the testing phase, both arms would move, but the force envi-

ronment would be placed on the other arm. This would allow for measuring whether

discrete transfer of learning occurs between the arms at the end of bilateral training.
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