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IX 

SUMMARY 

The objective of this research is to develop and investigate a 

procedure for synthesizing slowly time-varying filters which generate 

Gaussian random processes for use in simulation studies. The procedure 

has application in many physical problems which require laboratory simu

lation in lieu of expensive live tests. The class of stochastic 

processes for which the synthesis procedure is valid are those in which 

only the first and second statistical moments are of interest. It is 

known that the first two moments of any stationary or nonstationary 

random process can be represented as the output of a linear filter whose 

input is stationary Gaussian white noise. The synthesis procedure pro

vides a technique for approximating prescribed stationary Gaussian random 

processes that depend only on a position parameter. The position param

eter dependence on time allows the generation of the random process in 

the time domain. The slowly time-varying filters are implemented by use 

of conventional analog computer components, e.g., amplifiers, integrators, 

multipliers resolvers etc. 

The Gaussian random process g(x) to be simulated is specified by 

its first two statistical moments, the mean M and the autocovariance 

function r . These statistics are specified in the position parameter 

x. In addition, the position parameter time dependence x(t) is assumed 

known. Application of the procedure accomplishes the shaping of the 

output of a stationary Gaussian white noise source with an appropriate 

analog computer network. The prescribed statistics and the position 



parameter time dependence are used in the procedure to determine the 

structure and the inherent parametr's of the shaping network. Since 

the required random process is stationary in the parameter x, an 

appropriate network transfer function is obtained by factoring the power 

spectral density function of the process. The parameters of the network 

are modified by the position time dependency to provide a time-varying 

filter whose output is in general nonstationary in time. The resulting 

output random process is an approximation to the composite random 

process g(x(t)). The position time dependency used in the procedure is 

the velocity v(t) and is related to the position parameter x(t) by its 

first time derivative. 

The computer network has two inputs; the first is stationary 

Gaussian white noise, and the second is the velocity profile v(t). The 

use of the velocity as a controller or auxiliary input is advantageous 

since the effects of the random process on a vehicle translating through 

it may be observed in simulation studies with many different vehicle 

velocity profiles without redesigning the basic network. The external 

generator is all that need be modified. The output of the computer net

work is a Gaussian random process that is stationary in the position 

parameter x and, in general, is nonstationary in the time parameter t. 

The output is an approximation of the composite random process g(x(t)) 

and hence its statistics are approximations of the prescribed random 

process statistics. 

In some cases the synthesis procedure results in a computer net

work whose output is an exact representation of the composite random 

process. In general, however, the output random process is an approxi-
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mation. When the velocity, x(t) = v(t), is constant the synthesis 

procedure yields an exact result. The" general restriction on the class 

of velocity profiles in order that the procedure yield a close approxi

mation to g(x(t)) is that the first time derivative, x(t) = v(t), have a 

small value. Experimental and analytical examples of both exact and 

approximate representations of g(x(t)) are presented. 

In an application of the synthesis procedure, a simulation study 

is to be made of a random process known to be an active random disturb

ance in a particular region. The statistics of the process are stationary 

in the spatial coordinate x of the region. A vehicle translates through 

the region in time and experiences the effects of the random disturbance. 

The synthesis procedure produces a mechanization system whose output 

simulates the effects of the prescribed random disturbance on some sensing 

element on the vehicle body whose variable location is specified by the 

position parameter x. The prescribed random process is g(x) . Since the 

position of the sensing element is specified by x(t), the instantaneous 

effect of the random disturbance g at a particular time t is given by 

g(x(t )), which is recognized as a composite function. The random dis

turbance for all time t is given by g(x(t)). Thus the mechanization 

system generates the composite process g(x(t)) when one input is sta

tionary Gaussian white noise and the second input is v(t) = —rr— = x(t). 

When x(t) is constrained to have a small value the procedure yields a 

good approximation to the composite function g(x(t)). 

The approach used admits constraints on the class of prescribed 

random processes which can be generated. 

1. The prescribed random process is stationary in the position 
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parameter x, hence the statistics are independent of the origin of the 

parameter x. The random process may become nonstationary as position 

x of the sensing element translates in time. 

2. The random process is specified by its autocovariance function 

r (x,,x ) and its mean value M . Without loss of generality the proce

dure presented is concerned with the realization of random processes g(x) 

with mean zero. Random processes having nonzero mean can be realized as 

the sum of the random process generated by this technique and the output 

of a source having output numerically equal to M . For random processes 

with mean zero, it is sufficient to specify the autocorrelation function 

R (xn,xn) since it is equal to the autocovariance for this condition. 
g 1 * 

Nonzero mean random processes are first translated to zero mean processes 

and the procedure is continued as before. The nonzero mean is then 

added back to the output random process generated by the procedure. 

3. The random process is stationary m the position parameter 

x, hence the power spectral density of the random process is found by 

the direct Fourier transform of the autocorrelation function. The power 

spectral density is constrained to be real, non-negative, an even func

tion of frequency, and expressible as a ratio of polynomials in 

frequency UJ. 

4. In all cases the synthesis procedure yields an exact repre

sentation of the composite process when the second time derivative of 

position x(t) is zero. In some cases the synthesis procedure yields 

an exact representation of the composite process when x(t) is arbitrary 

except that x(t) is not allowed to change sign. In general, however, 

the second time derivative of position x(t) must be restricted to small 
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values for the synthesis procedure to yield a good approximation of the 

composite random process. * 

As an outgrowth of the study, a more general synthesis procedure 

established by Webb, Hammond, et ai., was extended to provide an exact 

representation of the composite random process g(x(t)). This state 

variable approach extension yields an analog computer mechanization 

system whose output is exactly the composite random process with the 

constraints (1), 4.2), and (3). The position x(t) is arbitrary except 

that x(t) is not allowed to change sinn- The extension of the general 

synthesis procedure is called "the parallel x>rocedure" throughout this 

study. It is used to provide the exact nth order differential equations 

which are used to perform a comparative analysis with the nth order 

differential equations derived by the approximate synthesis procedure. 

The parallel procedure is much more involved mathematically and 

leads to a more complex analog computer mechanization than the approxi

mate synthesis procedure, First and second order analytical examples 

are presented with the comparative analysis made between the tWO proce

dures where significant. The complexity of the parallel approach is 

certainly offset when precise representation of g(x(t)) is required for 

a simulation study« 

The measurement system which outputs the experimental data is 

presented. The measurement system and the mathematical calculations 

are not unlike those made by Bendat and Bryan. Several velocity pro

files are used in both the first order and second order examples» The 

theoretical and experimental, data for the autocovariance function are 

illustrated for each example„ The process mean and standard deviation 
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with their respective confidence level error boundaries are illustrated 

for each example. The analytical and experimental examples present the 

salient features of the approximate synthesis procedure. 

The main advantage of the approximate synthesis procedure is its 

* 1 * * 4 - *-*-li,*J» * * "1 J * J -+» V ' ' • ^ * ^ * 4. 

simplicity with ITs principal disadvantage Deing its restriction to sta

tionary processes in the position parameter x. On the other hand the 

parallel procedure is attractive in that it applies to stationary or 

nonstationary processes in which the autocovariance function r (x ,x ) 

can be expressed as a finite sequence of terms which are separable in 
the xn and x„ variables, i.e., 

1 2 

. I 
1-1 

rg l'X2 I $j^x^;Yj^x2' • 

It has the main disadvantage of being quite complex mathematically and 

leads to an involved analog computer mechanization system. 
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CHAPTER I 

INTRODUCTION 

In this chapter the objectives of the research are stated. The 

need for analog computer simulation studies of certain physical problems 

which occur frequently in flight tests, environmental tests, quality 

control, etc., is presentedt An approach for the synthesis of time-

varying filters adaptable for mechanization on an analog computer which 

can perform laboratory simulation of tine physical problem is stated and 

some of the many possible areas of application are indicated. Previous 

and current work by other authors that is related to the research project 

is cited and summarized, 

Statement of the Problem 

The objective of the research is to develop and investigate a 

procedure for synthesizing slowly time-varying filters which generate 

nonstationary Gaussian stochastic processes. The time-varying filters 

are mechanized on analog computers using conventional analog computer 

elements such as multipliers, resolvers, amplifiers, integrators, etc. 

The procedure has application in many physical problems which require 

laboratory simulation studies in lieu of expensive live tests. 

In a certain class of physical, problems a vehicle experiences a 

random disturbance g as a function of its position parameter x. The 

statistics of the random disturbance in the parameter x are known. The 

translation of the vehicle through the random disturbance is given by 
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the position time relationship x(t). However, the position time rela

tionship is not specified a priori. "The simulation task is to generate 

a nonstationary Gaussian random process in the time domain which char

acterizes the random disturbance g(x) as x varies with time, a variation 

not previously specified. In the general problem the random disturbance 

g is a stochastic process that may depend on several position parameters 

as well as time given by g(x,y,z;t). In the problem of this research g 

is taken to depend only on x. The random process g(x), specified by its 

autocovariance function r (x ,x9) and its mean value M , represents the 

random disturbance on the vehicle at each position x. The composite 

function g(x(t)) then represents the random disturbance on the vehicle 

at each instant of time t. Since the composite function g(x(t)) depends 

only on the time parameter t it can be simulated by an analog computer 

directly in the time domain. 

The lack of a priori knowledge about x(t) requires that the ana

log computer mechanization have two inputs. The first is stationary 

Gaussian white noise w(t). The second, the auxiliary controller, is 

dependent on x(t). For the procedure presented in this research the 

dependency used for the auxiliary controller is the velocity function, 

related to x(t) by 

, . dx(t) 
d(t) 

(1 i ^ 

or by 
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x(t) = / 
t 

t 
v(u)du + x(t ) . (1-2) 

o 

This choice of dependency has direct utility in the physical problems 

of interest since a velocity sensor output from a vehicle translating 

through a random disturbance is perhaps more likely to be available 

than position information. Figure 1-1 illustrates a system block dia

gram of the problem. Figure 1-2 illustrates a typical sample function 

of the random process g(x). It is not unlike a sample function from 

more familiar random processes in the time domain. 

The procedure is restricted to random processes g that are sta

tionary in the position parameter x, but g(x(t)) may become nonstation-

ary in the time parameter t depending on the nature of the position 

time relationship. The procedure yields in general a random process 

which is an approximation of the composite random process g(x(t)). 

In some cases, however, the procedure yields an exact result, i.e., 

identically g(x(t)). Analytical examples of both approximate and exact 

results are presented in Chapter III. 

Applications 

The need for simulation of nonstationary random processes arises 

quite naturally since in nature most physical systems experience non-

stationary disturbing phenomena. Laboratory simulation of various ran

dom processes provides a means of eliminating the expensive live tests 

when trying to prove a system response in a random disturbance environ

ment. 



w(t) 

WHITE NOISE 

AUXILIARY CONTROL 
v(t) 

1+ 

e(t) = g(x(t)) 

COMPOSITE PROCESS 

Figure 1-1. System Block Diagram. 

g(x) 

Figure 1-2. Typical Sample Function of the Random Process g(x). 
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The precise simulation of a specified random process is sometimes 

mathematically involved and requires availability of extensive analog 

equipment. A simplified procedure for simulating approximately a specie 

fied random process lends itself toward a reduction of analog equipment 

required for the simulation. 

A study of possible applications of the procedure indicates that 

the mechanization procedure has substantial potential usefulness. Many 

different physical processes conceptually might be represented as random 

processes depending on a position parameter. In all of the suggested 

areas, the sample functions of the random process represent some type 

of random irregularity whose value is dependent only upon the position 

with respect to a spatial coordinate system„ Two areas of application 

are suggested with a brief explanation of each. 

Vibration Studies 

The sample functions might represent the random surface variations 

on an airport runway, a superhighway, or a railroad roadbed. The air

plane, automobile, or train would experience the random disturbance as 

it translated over the surface„ For a wide range of velocity profiles, 

the effects of the random surface irregularity upon the translating 

vehicle could be studied in a laboratory simulation of the random process 

by once designing the time-varying filters and simply changing the veloc

ity profile generator. 

Quality Control Studies 

In quality control studies, the sample functions might represent: 

1. random surface irregularities in a channel or tube that is 

guiding the flow or movement of a liquid or gaseous substance; 
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2. random variations in the density or hardness of a solid 

material being processed by a machine tool, i.e., lathe, mill, saw, 

drill press, etc; or 

3, random variations in the width or thickness of a long ribbon 

of material subject to a rolling operation in an industrial plant, i.e., 

textiles, steel, paper, etc. 

In all of the cases mentioned, the sample functions represent 

some type of random irregularity or disturbance whose value is dependent 

only upon the position of some sensor with respect to a spatial coordi

nate system. The effects of the disturbance could be studied as a 

function of the rate of movement of the material or substance. 

Related Work 

The related work is reported in four subdivisions of the field 

and a reasonably extensive bibliography is included at the end of this 

research presentation. The research project presented is part of a 

larger study that has been sponsored by the Simulation Branch of the 

Computation Laboratory at the George C. Marshall Space Flight Center 

in Huntsville, Alabama, under Contract No. NAS8-2473 to the Georgia 

Institute of Technology. 

Several technical reports related to the general problem of the 

generation of nonstationary Gaussian random processes are now briefly 

summarized. 

Simulation 

The first area of effort in the field of stochastic processes 

and the one primarily related to this research is the field of simula-
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tion.. The references of current import follow: The work of VIebb, et 

al. (1), presents a synthesis method for the generation of nonstationary 

time parameter random processes having prescribed first and second sta

tistical moments. The autocovariance function is expanded into a finite 

series from which the coefficients of a differential equation can be 

found to characterize a time-varying filter to generate the process. 

This work was also presented by Webb (2). This particular approach is 

extended in Chapter IV of this presentation to include The composite 

function and to provide an exact solution for the analytical examples 

investigated by the approximate procedure. 

The work of Finn (3) presents a special class of stochastic proc

esses designated as partially stationary stochastic processes. The 

class is potentially useful in the development of methods of generating 

nonstationary stochastic processes for simulating the random wind dis

turbances which affect a rocket during flight. The work of Finn and 

Yates (4) is a prelude to the comprehensive details of this research 

material, which presents the problem of the generation of random proc

esses in a position parameter. The work of Johnson (5) and Johnson 

and Loftin (6) is also related to the specific problem of generation of 

random processes for simulation purposes. Other authors in this cate

gory are Korn and Korn (7, 8, and 9) and Bendat (10). 

Analysis and Measurement 

The second area of effort in the field of stochastic processes 

is the area of statistical analysis and measurement of random processes. 

This category includes techniques and data processing schemes both ana

log and digital used to analyze and measure random processes, i.e., to 
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determine process statistics, to determine stationarity and nonstation-

arity, to apply parametric curve fittings techniques, etc. These tech

niques have been applied to many types of random processes whose sources 

are quite varied, i.e., flight dynamics, acoustic research, seismology 

recordings, structural vibration data, etc. Directly related to the 

techniques used in this research for the measurement and analysis of 

the generated random processes is the work of Bryan (11). The Measure

ment Analysis Corporation of Los Angeles is also very active in this 

area. Some of the current work by Bendat et al. (12,, 13 14, and 15), 

is related to the analysis techniques of this research. 

Stochastic Control Systems 

The third area of effort in the field of stochastic processes is 

the area of stochastic control system theory. This is a relatively new 

approach to design and analysis of control systems using state variable 

techniques in the time domain rather than in the conventional frequency 

domain. Some of the authors that have contributed in this area are 

Laning and Battin (16), Zadeh and DeSoer (17), Leondes (18), Solodov-

nikov (19), and Webb (2). A current contribution that presents the 

application of state variable theory to analog computer systems is 

authored by Hammond (20). This particular work backgrounds the deri

vation and presentation in Chapter IV. 

Filter Optimization Techniques 

The fourth area of effort in the field of stochastic processes 

is the area of filter optimization theory and techniques. This work 

largely presents techniques and considerations which extend the basic 

optimum filter theory of Wiener (21) to include filter systems with 
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nonstationary inputs. Authors mentioned in this category are Zadeh 

(22), Davis (23), Lampard (24), Urkkwiit (25), and many oothrs iincuded 

in the "other references" section of the Bibliography. 

General Approach to Problem 

The general approach to the study and investigation of the re

search problem previously stated is as follows: 

First, the relationship between the specified random process 

statistics and the approximating physical analog mechanization system 

establishes the synthesis procedure. 

Second, several applicable examples are investigated analytically 

and experimentally to determine the validity of the mechanization system 

employed. 

Third, a parallel approach is developed and extended which pro

vides an exact representation of the specified random process statistics 

and the analog computer representation for tnis approach is determined. 

Fourth, a comparative analysis is considered which presents the 

approximate procedure in comparison with the exact parallel procedure. 
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CHAPTER II 

PHYSICAL PROBLEM FORMULATION 

In this chapter a general physical description and a summary 

mathematical description of the physical problem are given. The 

physical restrictions and mathematical assumptions are stated. The 

synthesis procedure is outlined, and the class of problems for which 

it is applicable and useful is indicated. The relationship of the 

procedure to another more involved approach is discussed and some of 

the limitations of each approach are presented. 

Mathematical Statement and Assumptions 

The concept of the problem is made quite precise by identifying 

all of the constraints, assumptions, and definitions that pertain to 

it. To show specifically the nature of the problem, one of the areas 

of application presented in Chapter I is selected and detailed. The 

physical problem that frames the remainder of this research presenta

tion is that of a vibration disturbance. The Gaussian random process 

g affects a vehicle in the position parameter x as the vehicle translates 

across the region where the random process is active. 

Description 

A stochastic process (or random process) g(x), defined for 

_ m <L x < °°9 is an indexed collection of random variables. The random 

process may be characterized as an ensemble of sample functions with 

an associated probability measure. The sample functions of the random 
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process g(x) are dependent on the position parameter x, Sample functions 

of the vibration disturbance random 'process under consideration might 

typically have an appearance as illustrated in Figure 2-1. The sample 

functions represent conceptually the value of the random disturbance as 

a function of the position x. A particular point on the vehicle body 

houses a velocity sensing element. As the vehicle translates across 

the random process g(x) the position of the sensing element is repre

sented by the position coordinate x. The sensing element experiences 

the irregularity of the random process g(x) at each position x. The 

sensor position time variations can be described as a deterministic 

function of time x(t), i.e., the instantaneous location of the sensing 

element is x(t). Hence, the effect of the random process g on the sensing 

element at the instant of time t is completely described by the composite 

random process g(x(t)). A typical sample function for the random process 

g(x) is shown in Figure 2-2. An assumed position time relationship x(t) 

for the sensing element is also illustrated. The position parameter 

process g(x) is then transformed into a time parameter process g(x(t)) 

by the composition of x by g. The effect of the random disturbance at 

position xf is given by g(xf) and the instantaneous effect of the dis

turbance at the time t' is given by g(x(t')). 

The fact that the composite process g(x(t)) is dependent only 

upon the time parameter t provides the potentiality that the effect of 

the random process g(x) on the sensing element having position x(t) 

may be simulated by an analog computer system operating directly in the 

time domain. 
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Figure 2-1. Sample Functions of a Random Process 
Depending on a Position Parameter. 



,g(x(t')) 

x ( t ' ) 

Figure 2-2. Transformation of a Position Parameter Process g(x) 
into a Time Parameter Process g(x(t)). 
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Characterization and Constraints 

The generation of a stationary Gaussian random process g(x), 

specified by its mean M and its autocovariance function r (x ,x 2), is 

of interest. The mean M of the random process g(x) is defined as the 

expected value of the random variable generated by the random process 

g for each fixed position x and is written as 

M = E{g(x)} , (2-1) 

where E{«} denotes the expected value operation. The autocovariance 

function r (x.,x ) of the random process g(x) is defined as the expected 

value of the product of the random variables generated by the random 

process g about its mean at two fixed positions x and x„, written as 
1 i 

r (xl'x2) = E{[g(Xj) - Etg(xl)}][g'U?) - Elg(x2}}]} . (2-2) 

The asterisk denotes the complex conjugate (see Davenport and Root (26, 

page 59)); however, only real random processes are of interest so Equa

tion 2-2 is written as 

r (x ,x ) = E{[g(x ) - E{g(x )}][g(x ) - E{g(x )}]} . (2-3) 

Equation 2-3 reduces to the following expression 

r (x 9x ) = E{g(x )g(x )} - E{g(x )}E{g(x )} . (2-4) 
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The autocorrelation function of g(x) is given by 

R (x ,x ) = E{g(x )g(x )}. , (2-5) 

which is the first term on the right hand side of Equation 2-4, hence 

the autocovariance is written 

r (x ,x ) = R (x ,x ) - E{g(x )}E{g(x )} . (2-6) 

The random processes of interest are wide-sense stationary in 

the position parameter x, hence the first two statistical moments, the 

mean and the autocovariance function, are independent of the origin of 

the parameter x (see Davenport and Root (26, page 159)). For the wide-

sense stationary process g(x) the mean value is constant, i.e., 

M = E{g(x)} = constant, (2-7) 

and the autocovariance function depends only on the difference of the 

two positions x and x , i.e., 

r (x ,x ) = r (T) = R (T) - M , (2-8) 

where x - x = x . 

There is no loss of generality when the constant of Equation 2-7 

is zero. If a process with a nonzero mean is specified a new variable 

g(x) is defined where, 
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g(x) = g(x) - M (2-9) 

The random process g(x) is generated and the output or a source whose 

value is equal to the mean M is added back into the random process 

g(x), thus yielding the original random process g(x). For zero mean 

processes the autocovariance function is equal to the autocorrelation 

function. For nonzero mean processes the autocorrelation function is 

determined from Equation 2-8. 

A Gaussian random process is uniquely determined by its mean and 

its autocorrelation function (see Davenport and Root (26, Chapter 8)). 

Hence, the generation of a Gaussian random process with mean M and 

autocorrelation function R is sufficient for the purposes of this 

research. 

Since g(x) is wide-sense stationary, the power spectral density 

S (a)) can be related to the autocorrelation function R (T) by the direct 

and inverse Fourier transform relationships 

S (hiJ = J R ( x ) e d x , 
_ c o g — CO 

(2 -10 ) 

and 

CO 

R ( T ) = —— / S (OOE dw , 
2TT 

—cc 

( 2 - 1 1 ) 

respectively (see Davenport and Root (26, page 104), and Papoulis (27, 

page 338)). 
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Of subsequent interest is the reduction of the power spectral 

ip 

density S (u) to the following form 

S (to) = H (p)H (p) , p = ju> . (2-12) 

This is accomplished by spectral factorization. The transfer function 

H (p) that results is restricted to be a ratio of polynomials. To 

satisfy this requirement the power spectral density is constrained to 

be real, non-negative, an even function of frequency u, and expressible 

as a ratio of polynomials in frequency co. Any autocorrelation function 

whose direct Fourier transform is a power spectral density meeting these 

constraints is an admissible autocorrelation function. Some of the 

allowable autocorrelation functions for which the procedure is appli

cable are given in Chapter III. 

Another constraint that arises in Chapter III is a direct result 

of the technique used for mechanizing the time-varying filter. This 

constraint is that the position time relationship x(t) be restricted 

to have a non-negative first time derivative and a small second time 

derivative. 

A summary of the constraints that have developed in the charac

terization of the problem are: 

First, the random process g is wide-sense stationary in the 

position parameter x. 

Second, a specified random process with nonzero mean is trans

lated to a new random process with mean zero. The nonzero mean is 

added to the new random process generated by the procedure. 
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Third, the admissible autocorrelation functions are those whose 

direct Fourier transforms are even, real, non-negative, and expressible 

as a ratio of polynomials in frequency w . 

Fourth, the position time relationship of the vehicle translating 

through the disturbance g must have a non-negative first time derivative 

and a small second time derivative. 

Mechanization Procedure Outline 

The steps involved in using the approximating procedure are out

lined. Details of each step with assumptions, and limitations are dis

cussed in Chapter III. The infozonation available from which the mechani

zation system is developed includes the autocorrelation function R (T) 

(determined from the autocovariance function given by Equation 2-8), the 

mean M , and the set of velocity profiles v(t). 

Step One: The power spectral density S (in) is determined from 

the autocorrelation function R (T) by the direct Fourier transform. 

Step Two: The power spectral density S (w) is factored by 

spectral factorization to determine the transfer function of a fixed 

parameter linear filter H (p). 

Step Three: The transfer function H (p) is translated in gain 
g 

and in bandwidth to a translated transfer function H (p). The trans-
v 

lated transfer function H (p) is expressed as a ratio of polynomials. 
v 

Step Four: H (p) is considered as the ratio of the Laplace 

transform of the output e(t) to the Laplace transform of the input w(t) 

of a fixed parameter linear filter. The differential operator p = — 
a— 

is applied to the ratio of polynomials to determine in general an nth 

order differential equation. 



1.9 

Step Five: The nth order differential equation is reduced to n 

first order differential equations. 

Step Six: The equation(s) are implemented by a generalized 

analog computer mechanization wherein the v of Step Three is used as 

an auxiliary controlling input and is allowed to vary with time. The 

set of v(t) are then generated by function generators and applied as 

J • *#**. ,- ,„.& dx(t) .. ,.. 
the second input to the filter. When v{t) = —-7-— the output e(t) 

approximates the composite function g(x(t)). 

A Parallel Approach 

In parallel with the approximating procedure, an exact approach 

is developed in order to provide a means of comparison and evaluation 

from the viewpoints of mathematical complexity, equipment usage, and 

utility. The exact approach is an extension of the work of Webb (2) 

and of Webb, et al. (1), tt oinclde eth ecomposit funncton gg(x(t)) 

The parallel approach is more general than the approximate ap

proach and indeed the approximate approach could be considered a special 

case of the parallel approach. The parallel approach is mechanized to 

provide the same flexibility with respect to having no a pviovi. knowl

edge about v(t) as with the approximate approach. The parallel approach 

applies to the class of physical problems discussed in Chapter I. 

The principal restriction of the parallel procedure is that the 

autocovariance function r (x ,x ) must be expressible as a finite series 

of terms 

n 
rg x i 'x2 i = 1 W x l 

(xn)y,(x0) 
• 

(2 13) 
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The approach is more general in that the restriction of stationarity 

in the position parameter x is not required. 

The parallel approach has some inherent disadvantages in that 

it is quite involved mathematically and requires extensive use of analog 

equipment, but it maintains the advantage of exactness. This approach 

is developed in Chapter IV. 
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CHAPTER III 

THE SYNTHESIS PROCEDURE AND MECHANIZATION SYSTEM 

In this chapter the details of the synthesis procedure are 

established. One mechanization system on the analog computer of the 

time-varying filter is discussed and illustrated. 

First and second order analytical results obtained by applying 

the synthesis procedure are presented. The limitations of the results, 

stability, and errors are mentioned. 

The Procedure Details 

An outline of the procedure was presented in Chapter II. The 

steps listed are now expanded and the necessary constraints are included 

in the appropriate steps. 

o 
The specified process statistics are assumed given as the mean M 

and the autocovariance function r (x ,x ). When a nonzero mean is 

specified, the random process is translated by the assignments of Equa

tion 2-9 with a resulting mean of zero and autocorrelation function 

determined by Equation 2-8. Steps One through Six of the procedure are 

followed, generating the translated random process. The nonzero mean is 
r 

added to the output random process yielding the specified random process. 

The general class of velocity profiles v(t) is assumed known; 

however, the individual functions need not be specified a priori. The 

procedure leads to a generalized mechanization scheme whereby the com

posite function g(x(t)) can be simulated. 
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Step One: The power spectral density S (w) is determined from 

the autocorrelation function R ( T ) by the direct Fourier transform 

S ( CJ ) = f R (x ) e di' . 
- c o 

(3-1) 

The admissible autocorrelation functions are those whose power spectral 

density is real, even, non-negative, and expressible as a ratio of poly

nomials in frequency w. 

A further restriction for the autocorrelation function to repre

sent a real physical process is that the value of the function at T = 0 

must be greater than or equal to the value of the function for all other 

values of T, i.e., 

R (0) > R (T) . (3-2) 

Examples of the admissible autocorrelation functions are 

,2 -o T 
A e , (3-3) 

, 2 - a T „. I I - a t 
A e ' ' + A a | i | £ ' ' , 

! — OL 1 T j / I I rt. 

e ' 'cos(a \ t \ + 8 ) , and 

C I T I .2 i i - O I T | .2 i i -a 1 / i i 
1 • + A a T e ' ' + A a t e 'cos(.aT 

A £ + A a\ T i + O ) 

Appendix A gives the derivation of these basic terms as valid auto-
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correlation functions. 

Step Two: The power spectral^density S (u), restricted as in 

Step One, is factored by spectral factorization techniques to determine 

the transfer function of a fixed parameter linear filter H (p) (see 
g 

Davenport and Root (26, pages 171 and 227)), where 

S (to) = | H (p) |'" = H (p)H (p), p = jui) . (3-4) 

The resulting transfer function represents a fixed parameter linear 

filter whose output has power spectral density S (u>) when the input to 

the filter is white noise with power spectral density of unity. The 

transfer function of the time-invariant linear filter is expressed as 

a ratio of two polynomials as 

Hg(p) 
+ a „ + a _ 2 + + 3 0m 

a il 2 mp 

• ~bP + ... + bni bQ + b l P + b2p + ... + bnp
n 

(3-5) 

A technique for determining the a.'s and the b.'s in the transfer func-
, i l 

tion H (p) is discussed by Davenport and Root (26, page 233). The 

expression for H (p) is evaluated for two examples in this chapter. 
Step Three: H (p) is translated in gain and in bandwidth to the 

*-• 

new fixed parameter filter H (p) by the relationship 

H (p) = •- H (p/v) . (3-6) 
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The translated transfer function, representing a fixed parameter linear 

filter, is expressed as a ratio of polynomials by 

O . , .. m 
1 ao a^Pp v +a^P'vv - .. ." +a(/vv 

H n—r , , , , -.5 , , , , n ' 
/ v b + b.p/v + b„(p/v) + ... + b (p/v) 

o lr 2 n 

) 

Now if white noise of unity power spectral density is an input to a 

fixed parameter linear filter with transfer function H (p) the output 

has a spectral density of 

S (OJ) = |H (p) | | = I — H (p/v)[" = -i—r S (OJv) , p = joa > (3-8) 
^\ v) |v g 

Step Four: The differential operator p = -j— is applied to H (p) 

in order to determine in general an nth order differential equation 

written in operator form as 

L e(t) = N w(t) (3-9) 

where e(t) and w(t) are the output and input, respectively, of a fixed 

parameter linear filter. Expanding the operators L and N , the differ

ential equation is written 

yi r , -, n , , ~ -1 de(t) d e (t K. 
b 1 d' , n 

("^-i o .1 
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n r^. n-1 dw(t) d w(t) 
= a v w(t) + a-V — T T — + ... + a . v - — . 

o 1 at n-1 j n-1 

Here it is assumed, without loss of generality, that m = n - 1 and that 

b =1. 
n 

Step Five: The nth order differential equation in Step Four is 

reduced to n first order differential equations. A set of equations 

which is equivalent to Equation 3-10 for fixed positive values of v is 

e (t) = e(t) (3-11) 

de.(t) 
—jt— = v|v" (e (t) + a ,w{t) - b _-,/17T e (t)) 

de (t) 

dt 
= v(e_(t) + a ~w(t) - b „/|[l e, ( t ) ) 

n-2 . 1 v[ K,e 

n-2 ' ' 1 

de (t) 

dt 
= v(e (t) + a _qW(t) - b __ /|vT e,(t)) 

Q c l ( t ) 

^t v(en(t) ax-w(t) - D ^ / | V | e^t)) 

de (t) 
T— = v(a w(t) - b / I v l e . ( t ) ) 
at o o ' ' 1 
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Step Six: The n first order equations are implemented by a 

generalized mechanization scheme discussed in the next section of this 

chapter. The set of v(t) are developed by function generators and 

become the auxiliary controlling input for the filter described by H (p). 

When the velocity profile is related to position by 

or 

v(t) «= X 

t 
x(t) = J v(u)du + x(t ) 

t 
I o 

(3-12) 

(3-13) 

the output e(t) of the filter closely approximates the composite function 

g(x(t)). The representation is valid for all positive velocity profiles 

and the quality o,t the approximation in most cases is dependent on the 

value of the second time derivative of x(t). The representation is exact 

for velocity profiles whose first derivative is identically zero and it 

is expected to be a good approximation for those velocity profiles whose 

first derivative is small numerically. 

The Mechanization System 

The generalized mechanization system to implement the n first 

order differential equations is presented. The development that led to 

the general system that approximates g(x(t)) is described. In general 

the function of time x(t) should be constrained to have a small second 

derivative with respect to time in order for the output e(t) of the 

mechanization system to provide a close approximation to the composite 
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random process g(x(t)). This is to say physically that the vehicle or 

sensing element should have a small acceleration. 

To develop the mechanization system, consider the stationary 

Gaussian random process g(x) where x is replaced by t. The time 

dependent process g(t) can be realized by the application of Gaussian 

white noise of unity power spectral density to a fixed parameter linear 

filter whose transfer function magnitude squared is 

2 
S (ai) = |H (p) | , p = jo) . (3-14) 

Such a transfer function is expressed by Equation 3-5. It may be re

alized in a variety of ways by the use of conventional analog computer 

elements (references 7, 8, and 28). Specifically, H (p) may be realized 

by any appropriate mechanization of the differential equation shown in 

Equation 3-15 

K eft) + K ^ ) L K - SLL£2 + + K d e(t) 
b b at 2. j — b ^ — 

t^ ,2 ,,, 

,. . dw(t) d w(t) 
3m , . 
d w(t) 

ao wt a ix d t - 2— 2±— " •*' m— mtm 

(3-15) 

The output of a linear filter having the transfer function 

H (p) with a Gaussian white noise random process input w(t) having a 

unity power spectral density is a Gaussian random process e(t) having 

power spectral density S (w) given by Equation 3-IM-. The corresponding 
g 
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R (t-st0) = R (t - t_) = R (T) 
1 g 

(3-16) 

is given by the inverse Fourier transform of S (u>) 

^2 = "2TT / s (<*)}£ " dd) . (3-17) 

Thus the filter output e(t) is a realization of the random process 

g(x) where x is replaced by t. It is clear that e(t) thus represents a 

realization of the composite random process g(x(t)) where the position 

of the sensing element is described by the function x(t) = t. Figure ' 

3-1 depicts the mechanization of the transfer function H (p). 

This approach is now extended to include the mechanization of 

g(x(t)) when x(t) is given by x(t) = vt + x(0) . The quantities v and 

x(0) are assumed to be arbitrary constants. It is noted that v is the 

first derivative of x(t) with respect to time. Again the mechanization 

is accomplished in a straightforward manner by applying Gaussian white 

noise w(t) with a unity power spectral density to a fixed parameter 

linear filter having an output e(t). The output is to be given by 

e(t) = g(x(t)) = g(vt + x(0)) . (3-18) 

The autocorrelation function of the output is R (t1,t2), but since the 
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e(t) = g(t) 

Figure 3-1. Mechanization of the Composite 
Process g(x(t)) with x(t) = t. 

H (p) v 

e(t) = g(vt + x(0)) 

Figure 3-2. Mechanization of the Composite 
Process g(x(t)) with x(t) = vt + x(0). 

w(t ) 

v ( t ) = d x ( t ) / d t 

e ( t ) = g ( x ( t ) ) 

Figure 3-3. Approximate Mechanization of the Composite Process 
g(x(t)) with x(t) Arbitrary. 
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random process is stationary, it is expressed as 

Rv(tl " t 2 ) = E*Sv t ti + (0)))g(vt2 +
 X())}J 3- 9)) 

= R (vt, + x(0) - vt„ - x(0)) = R (v(t, - t„)) = R ( V T ) 
g l 2 g 1 2 g g g 

Hence, a filter whose output e(t) has autocorrelation function 

R (T) = R (VT) (3-20) 

accomplishes the mechanization of g(x(t)) where x(t) = vt + x(0). The 

power spectral density of e(t) is given by the direct Fourier transform 

of R (T) expressed as 

00 

S (w) = J R (T)E ' dT . (3-21) 

Substituting for R (T) by Equation 3-20 the power spectral density 

becomes 

S (ID) = \ R (VT)E 
-co 

J \ii I dT . (3-22) 

Letting y = VT and dy = vdT, Equation 3-22 is 
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00 

S Cw) = -I—r / R (y)e dY . (3-23) 
I I -co & 4 

Comparing Equation 3-23 with the standard form of the Fourier 

transform, it reduces to 

S (w) = -i—r S (va/v) . (3-24) 

This mechanization may be accomplished by applying a Gaussian 

white noise random process w(t) having power spectral density of unity, 

S (u) = 1, to a linear filter having a transfer function H (p), such 

that 

In < M 2 c t s 1 « /• , <* 1 lo t , M 2 . /* *b« 
H (pj = S {,UJJ = -i—r S (.(D/V) = -i—p H (.p/v) , u = id) . (3-25) 
1 y * I v jv| g ]v| ' g**-' ' ' e J 

Applying Equation 3-25 to the expression of Equation 3-5, a satisfactory 

transfer function to accomplish the mechanization is obtained as 

a +• a,p/v + ... + a (p/v) 
,, / \ L ,H t i \ 1 O 1 ™ ?.« ^c \ 

" 'P' = — ., , (p/v) = ~* • ~ ~—~~ —~~ " zr . (J-2bj 
/|v | ,/Tv| b + b,p/v + ... + b (p/v) 

H (p) may be realized in a variety of ways by the use of conventional 

analog computer elements (see references 7, 8> and 28). Specifically, 

H (p) may be realized by an appropriate mechanization of the following 

differential equation 
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' dt 
/IvT /u v

n e(t^ L k „n-l de(t) 
dt 

n e., n-1 dw(t) 
a v w(t) + a,v — T T — + ... + a nv 
o ± QT n-l 

d ^(t) 

,t n 

,3-27) 

It is assumed with no loss of generality that m = n - 1 and b = 1. 

Figure 3-2 illustrates this mechanization. It is clear then that the 

output e(t) is representative of the composite process g(x(t)) when 

x(t) = vt + x(0). It is noted that H (p) is realized as a fixed 

parameter linear filter which requires that a different filter be used 

for each value of v. 

Figure 3-3 depicts an extended approach to the mechanization of 

the filter which generates the composite random process g(x(t)) which 

does not need to be redesigned for various values of v. In fact, v is 

used as an auxiliary input to the filter H (p). H (p) is related to 

the original H (p) in that the a.'s and b.'s of both filters are equal. 
• v c

 I I * 

Consideration of the system of n first order equations given by Equation 

3-11 shows a possible means for synthesizing a system that generates a 

random process that approximates the composite random process g(x(t)) 

when x(t) is an arbitrary function of time having a small second 

derivative. If v in Equation 3-11 is redefined as 

or 

i i, dx(t) 
v ( t ) = —i -

t 
x(t) = / v(u)du + x(0) , 

0 

(3-28) 

(3-29) 
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the system of equations becomes 

e1 (t) = e(t) (3-30) 

de (t) 

dt 
= /[v(t)j (e(t) + a lw(t) - b /\ v(t) | e. (t)) 

de2(t) 

T T — = v(t)(e;K(t) + V ~ w ( t ) - b /|v(t)| e (t)) 

de^Ct) 
j 7 — = v(t)(e.,(t) + a r,w(t) - b „/ v(t) en(t)) at H n-o n- j 1 

• 

de -i(t) 

-rr = v(t)(e (t) + a.w(t) - b /|v(t) | e (t)) 

de (t) „____^ 
—j~— = v(t)(a w(t) - b / v(t) e.(t)) . 
dt o o ' ' 1 

This representation provides a direct approach to modify the 

mechanization of Figure 3-3 so that v(t), the time derivative of the 

position parameter x(t), may be applied as the position function input 

to the system. Axinechanization for this set of equations is shown in 

Figure 3-H. The differential equations of Equation 3-30 may be 

mechanized by the use of standard analog computer components (see 
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Figure 3-4-. Mechanization System for the Composite 
Process g(x(t)). 
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references 7, 8, and 28) such as integrators, amplifiers, multipliers, 

resolvers, etc. The use of the v(t) function generator allows the 

implementation of the composite process g(x(t)) without redesigning 

the filter for variations of x(t). 

The mechanization system presented in Figure 3~- provides an 

exact realization of g(x(t)) for any constant value of v(t); hence, 

it is expected to provide a close approximation to an exact realization 

of g(x(t)) for slowly varying functions of time v(t) related to x(t) 

by Equations 3-28 and 3-29. In order to realize a good approximation, 

the second derivative of x(t) is to be maintained at a small value. 

It is emphasized that in general any analog computer mechaniza

tion of the transfer function H (p) given by Equation 3-26 provides a 

possibility of adaptation for approximating the composite random process 

g\yL(t)). The mechanization selected allows by the addition of multi

pliers and other components, the versatility gained with v(t) appearing 

as an input to the filter. 

Adjustment of the White Noise Generator 

The preceding development was based on a white noise source with 

unity power spectral density, i.e., 

S (HI) = 1 . (3-31) 

This is not normally the case and hence the experimental results are 

normalized so that a comparison can be made between the theoretical 

and experimental results. 
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However, for the cases of interest in this research the station-

arity of the random process g(x) provides a method of adjusting the 

white noise input, the forward gain of the mechanization system, or the 

gain of the sampling system to provide an output random process that 

need not be normalized to compare with the theoretical results (see 

Finn and Yates (4, page 13)). The statistical mean squared value 

^ , . , ..2i . , - „ / / w - . j 

Etg(x(t)) i or the composite random process g(x(t,); is independent of 

the waveform x(t). To accomplish the adjustment, the input v(t) is 

adjusted to any convenient fixed value. The output of the system is 

then a stationary Gaussian random process in the time parameter t. The 

timewise average of the squared output is then equal to the statistical 

average of the squared output. Thus, an rms meter may be used to 

2, . . . 
determine E{g(x(t)) }. The level of the white noise input may be varied 

until the rms meter at the output indicates the correct mean squared 

value for the composite random process g(x(t)). 

Analytical Results 

In this section analytical results for two specified autocorrela

tion functions are presented. The synthesis procedure yields differen

tial equations which when implemented on an analog computer generate 

the composite process g(x(t)) associated with a stationary Gaussian 

process g(x) having the specified autocorrelation function. 

Analytical Example One 

For the first analytical example the autocorrelation function for 

g(x) is assumed to be 
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2 -a| x x | 

E x,X2 = e , 
(.3 32 ) 

and the mean value of g(x) is assumed to be 

M = 0 . 

Assigning the difference x1 - x = T the autocorrelation function is 

written as 

R ( T ) = A e ' l . (3-33) 

The power spectral density S (to) for g(x) is found by use of Equation 
c? 

3-1 to be 

V"» • 7 7 7 • (3-34) 

By use of Equation 3-4 H (p) is determined to be 

H ( ) = ^ 2 A 2 « 
Cf D + Ct 
6 f » 

(3-35) 

The translated transfer function H (p) defined by Equation 3-6 for the 

example under consideration is 

v 
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HvCp) = / ] v I " p/v' + 1* " (3-36) 

H (p) may be realized by an analog computer mechanization of the follow

ing first order differential equation, 

;(t) + ave(t) = /2A at|v| w(t) . (3-37) 

As previously suggested the output e(t) of an analog computer mechani

zation of Equation 3-37 is expected to approximate the composite process 

g(x(t)) when the position parameter is given as 

t 
:(t) = f v(u)du + x(t ) 

t 
(3-38) 

and x(t) has a small second derivative. 

For this example the quality of the approximation may be investi

gated by obtaining the analytical solution to the differential Equation 

3-37. 

The general solution (see Coddington (29, page 43)) of a first 

order differential equation in the form of Equation 3-37 is 

e(t) = 

t 
- / av(u)du 
t t 

f 
t 
O 

u 
/ ctv(s)ds 
t j ^ I 7 

/2A a| a|v(u)) w(u)du + C e 

(3-39) 

t 
-J av(u)du 
"t 
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The v(t) is restricted to be non-negative and C = e(t ). 

The general solution cannot be further simplified since the 

integrand of the first term contains the representation of a Gaussian 

white noise random process w(t). However, the autocorrelation function 

for e(t) can be found. If the white noise random process is assumed to 

have a unity power spectral density, S (co) = 1, then the autocorrela-
J r w 

tion function reduces to 

vt 

l _ 2 
—ot j | v(u)du u J v(u)du| 

2 to 
{eti l)e( 2 e 

^Q 

, (3 40 ) 

which for t > t becomes 
t_ 

-a|/ ' v(u)du| 

r; <+ ^ f+ M *2 t 2 J 
Ete(t )e(t )} = A e = A E 

-a|x(t ) - x(t ) | 

(3-41) 

By comparing Equations 3-32 and 3-4-1 it is obvious that the 

synthesis procedure has realized exactly the autocorrelation function 

R (x ,x ) where x = x(t ) and x = x(t ). In this example an exact 

realization of the composite process g(x(t)) is achieved when the first 

derivative of x(t),x(t) = v(t)»is restricted to be non-negative, but 

the second derivative of x(t), 5i(t) = v(t), need not be restricted to 

small values. The first order example is implemented by the general 

mechanization system. The experimental results are presented in Chapter 

V. 

The details of this derivation are presented in Appendix C. 
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Analytical Example Two 

For the second analytical example the autocorrelation function 

for g(x) is assumed to be 

_ -a|xX - x | -3|x- - x | 
R (xitx2) = A e + B t , 33-42) 

and the mean value of g(x) is assumed to be 

H = 0 , e 

Assigning the difference x - x = T the autocorrelation function is 

written as 

R (x) = A e" l l • B e~ . 
g 

(3-43) 

The power spectral density S (ID) for g(x) is found by use of Equation 

3-1 to be 

c (a) = (2A « + 2B )(m + 2a3(A 3 + B a) (3-UU. 
g a)4 + oa282ui2 x ,a2t2,2 

3 " - t t j 

By use of Equation 3-4 H (p) is determined to be 
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/ 'A a + 2B 3 | p + 

Hg(p) = 
/ 

2„ „a 2ag(A 3 + B a) 

2A a + 2B 6 / 

(p + a)(p + 6) 
(3-45) 

The translated transfer function H (p) defined by Equation 3-6 for this 

example is 

/ 2fl$(A M B a) 
>A2a ^ 2B2I iv + / 2A2a + 2B2I / 

H ( j y = = • • - -

|v | (*- + a)(*- + 3) 
(3-46) 

By making the following assignments 

J7?l ot,2 
= v*;A Qt + 2B l 

(3-47) 

and /2< a = /2af>(A 6 + B a) , 

Equation 3-46 reduces to 

i. (p/v + a /a,) 
,, , , 1 o 1 
H (p) = • T — 7 - — - — — T 7 — ; ^ 

v ' /i—r (.p/v + ajtp/v + 3j 

(3-48) 

H (p) may be realized by an analog computer mechanization of the follow

ing second order differential equation 

/[v T (S(t) + (a + 3)ve(t) + a3v e(t)) = a vw(t) + a v w(t) . (3 49) 
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With the following additional assignments 

b = a + 6 (3-5G) 

and b = a 3 , 

the second order differential Equation 3-49 can be reduced by the assign

ments of Equations 3-50 to two first order differential equations 

e ^t) = /|vf (e (t) + a w(t) - ̂  /|vf e^t)) (3-51) 

and e0(t) = v(a w(t) - b /|v| e (t)) . 

In the analog computer mechanization of Equation 3-51 the output e(t) 

is given by 

e(t) = e (t) . (3-52) 

The output of the analog computer mechanization is expected to 

approximate the composite process g(x(t)) when the position parameter 

x is given as 

t 
x(t) = / v(u)du + x(t ) , (3-53) 

if x(t) has a small second derivative and the first derivative x(t) is 
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non-negative. For this example the solution of the second order differ

ential equation cannot be found for general values of v(t); hence, the 

autocorrelation function cannot be investigated analytically. One 

approach to determine the validity of the approximation to the composite 

process is to implement the time-varying filter and complete a statis

tical analysis of the output ensemble. This approach is presented in 

Chapter V. Another approach to determine the validity of the approxi

mation is to compare term by term the coefficients of the second order 

differential equations represented by the mechanization system and the 

ones obtained by applying the parallel procedure discussed in Chapter 

IV. The results .of this comparison are presented in Chapter IV. 

The second order example is implemented by the general mechani

zation system and the experimental results are presented in Chapter V. 

Error Considerations 

There are two basic ways to consider the errors that result 

from the approximate synthesis procedure: 

1. Data error analysis. 

2. Theoretical error analysis. 

The statistical data that result from the experimental measure

ments provide the information to satisfy (1). An analysis is made in 

Chapter V of the experimental data which applies confidence level error 

boundaries to both the mean and the standard deviation statistics of 

the resulting output random process. The experimental data include 

errors from several sources, e.g., estimate bias errors, measurement 

system errors, ensemble truncation errors, mechanization errors, and 

errors resulting from the approximate nature of the synthesis procedure. 



44-

An unbiased estimator is used to determine the process statistics 

which eliminates the estimate bias error. The errors produced in the 

measurement system as a result of sampling and timing errors are shown 

by Bryan (11» page 15) to be negligible when compared with the ensemble 

truncation errors. The inherent errors in the analog components4 multi

pliers, resolvers, amplifiers, and integrators classified as mechaniza

tion errors are considered negligible by proper zeroing, and alignment 

of the analog equipment. The remaining two sources of errors, ensemble 

truncation errors, and approximate procedure errors, are not separable 

from an examination of the experimental data. However, the cumulative 

error from all of the itemized sources is bounded by the confidence 

level error boundaries as shown in the data presentation in Chapter V. 

This fact certainly lends credibility to the "goodness" of the approxi

mate procedure. 

A technique for determining theoretically the error resulting 

from the approximate procedure is not apparent at this time. The dif

ference between the solution of the system of equations and the desired 

composite function expressed by 

e = e(t) - g(x(t)) (3-54-) 

has not been determined analytically. However, a comparison approach 

has been considered which provides a comparison of coefficients of the 

nth order differential equations resulting from the approximate pro

cedure and the parallel exact procedure. This approach is applied to 

the first and second order examples; the results are presented in 
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Chapter IV. The logic of this approach is simply that if the coeffi

cients of two differential equations are correspondingly essentially 

the same then the solutions of the two equations are essentially the 

same. Furthermore, implication on the quality of the similarity of 

the resulting statistics is even better since the statistics are them

selves averages and would not tend to show the "fine grain" differences 

prevalent between the similar solutions. 

Stability 

Some heuristic comments are made concerning the stability of 

the time-varying filters in lieu of an extensive study of stability 

since that subject was not the objective of the present research. 

Two viewpoints are in order: consideration of the mechaniza

tion of the differential equations, and consideration of the translated 

transfer functions. To present the discussion the equations are again 

written. 

Example One. The translated transfer function is 

H (p) 
^ 2 q | v i 

p + tv 
, (3-55) 

and the first order differential equation is 

e(t) = /fvf (/2A a w(t) - ct/fvj e(t)) . (3-56) 

Example Two. The translated transfer function is 
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H (o) = 
1 7 F 

a /|v| (p + — v) 
• al 

(p + av)(p + 3v) 
, (3-57) 

and the two first order differential equations are 

e (t) = /|vf (e2(t) + a w(t) - b /|vT e^t)) (3-58) 

and e (t) = v(a w(t) - b / | v | e (t)) . 

Note that the transfer functions are in the normal break frequency 

format; the differential equations are in the form as is mechanized 

on the analog computer. 

Stability is assured for all positive fixed values of v for the 

filters represented by Equations 3-55 and 3-57, since they are the 

results of spectral factorization of a power spectral density S (OJ 

that represents a real random process (see Davenport and Root (26, page 

106)) where 

S (w) = H (p)H (p) = ]H(p)| . (3-59) 

The filter is represented by H (p), a transfer function all of whose 

poles are in the left half of the p-plane, hence stable for all values 

of v greater than zero. If v becomes zero the mechanization system 

remains stable since clearly the right-hand side of Equations 3-56 and 

3-58 is zero. 
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CHAPTER IV 

A PARALLEL PROCEDURE 

In this chapter another.procedure for synthesizing the time-

varying filters is presented. Its relationship to the physical problem 

is stated. The parallel procedure is an extension of results obtained 

by Webb, et al. (1), by an appropriate consideration of the composite 

function. His results are modified to apply to the physical problem. 

The parallel procedure yields exact results for the first and second 

order analytical examples presented in Chapter III. The exact results 

are used to provide a goodness comparison of the approximate synthesis 

procedure. 

a: 

Relation to Physical Problem 

The parallel procedure is applicable to the physical problems 

presented in Chapter I but it also has application to a larger class of 

physical problems. Spectral factorization techniques are not employed 

in the parallel procedure. The procedure techniques make it useful in 

generating stochastic processes which may be nonstationary in both the 

position parameter and the time parameter. The parallel procedure will 

realize any random process, insofar as its first two statistical 

moments are concerned, as the output of a linear time-varying network 

excited by stationary white noise. The parallel procedure involves 

expanding the autocovariance function of the desired process into a 

finite series. The finite series expansion is then used to determine 
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the coefficients of a linear differential equation whose analog realiza

tion is the required network. * 

The parallel procedure, without ;loss of generality considers the 

realization of random processes with mean zero. As before the nonzero 

mean processes can be realized as the sum of the random process generated 

by this technique and a deterministic function equal to the required 

mean. 

The Composite Modification 

The sequence of the parallel procedure is presented in this 

section. The notation used in this presentation is similar to that of 

Webb (1 and 2) so that cross-reference may be accomplished with minimum 

difficulty. 

The autocovariance function for the composite random process 

g(x(t)) with mean zero is given by 

c 
ill 

r(t',t) = E{g(x(t ))g(x(t ))} , (4-1) 

where E is the expected value operator and 

t' = larger of t. and t 

t = smaller of t and t . 

The representation of the autocovariance function that is most useful 

in developing the required analog networks is in the following form 
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r(.t ,t) . I <p^(x[t ) ))^{yi(t)) . 
i=l 

\^~2) 

The form is a finite sum of separable functions in the parameters 

x(t') and x(t). Many physical processes (see Webb (1, page 4-)) can be 

represented in this format; all of the admissible functions given in 

Appendix A for the approximate procedure can be expressed as finite 

sums of separable functions in the parameters x(t') and x(t). Recall 

that the position parameter's dependency of interest is the velocity 

function given by 

or 

t 
x(t) = / v(u)du 

o 

v(t) = —T—— 

(4-3) 

Thus the autocovariance expansion is written 

n t' t 
r(t',t) = 2, ^>(/ v(u)du)Yi(/ v(u)du) . (4-4) 

i=l o o 

Using now the parallel of Webb's procedure, a set of first order differ

ential equations can be derived which when mechanized on an analog 

computer will generate the prescribed random process. The input to the 

system is stationary Gaussian white noise w(t) and the output e(t) is a 

random process that is equal to the composite random process g(x(t)). 

The system is described by the nth order differential equation 
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of the form 

e (t) + P 1(t)e (t) + ... + p((t)e (t) + p (t)e(t) (4-5) 

(m) (D, = q (t)w (t) + ... + q.. (t)w ) (t) + q (t)w(t) , 

which can be written in operator form as 

L e(t) = N w(t) , (4-6) 

where 

Lt = J0 p i ( t ) ^ r * p n = x ' \ H- —7 ) \ H--

and 

ffi dI 
N = I Q±S^"3 T . 

i=0 dt 
(4-8) 

The homogeneous equation is written 

L e(t) = 0 . . (4-9) 

Assuming without loss of generality that m = n - 1, the nth order 
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d i f fe ren t i a l equation is converted to a set of n f i r s t order d i f fe ren t ia l 

equations by the following ident i f ica t ions 

e ( t ) = e ( t ) (4--10) 

e . ( t ) = e 0 ( t ) - a . ( t ) e 1 ( t ) + b ( t ) w ( t ) 1 2 n -1 1 in 

. ( t ) = e „ ( t ) - a ^ ( t ) e . , ( t ) + b . ( t ) w ! o n-z ± rn-± ( t ) 

e - , ( t ) = e ( t ) - a / t t ) e , t ) ) + b n ( t ) w ( t ) 
n - l n 1 1 1 

e ( t ) = - a ( t ) e 1 ( t ) + b ( t ) w ( t ) . 
n o 1 o 

.i o ( 
o 

In matrix notation this set can be written more concisely as 

e_(t) = A(t)e(t) + B(t)w(t) , (4-11) 

where e(t) = He(t) , 
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e_(t) = 

e1 (t) 

e (t) 

e (t) 

s m 

b At) 
m-1 

B(t) = w 

* 

• 
b ( t ) 

b (t) 

and 

H = [1 0 0 ... 0] , 

A(t) = 

-a (t) 1 0 

-a (t) 0 1 0 . 

-a.(t) 0 0 

-a (t) 0 0 o 

0 

1 

(4-12) 

The elements of the A(t) and B(t) matrices a and b are related 

to the coefficients p and q, of Equation ^-5 by 
K K 
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n-l-k 

D = I (n-1~i!! 
k 

(n-l-j-k) 

j=0 kl(n lrf-k)! n-l-j 
(4—1^ ^ 

and 

qv = I vtfi!-tJ-vv b n "2 k ' 
j=0 u J J' n-l-j 

(( f-14) 

When the p,, q, are known, Equations 4-13 and 4-14- can be solved sequen-
K JC 

tially for the a, and b, , 

The homogeneous vector differential equation associated with 

Equation 4-11 is 

e(t) = A(t)e(t) . (4-15) 

Webb shows (1, pages 6-13) that the n <(J , in Equation 4-2 can be taken 

as the fundamental set of solutions to the homogeneous differential 

equation given by Equation 4-15. The operator L , and hence the 

coefficients p can be obtained by evaluating the following determinant 
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e(t) ^(xCt)) . . . . <j> (x(t)) 

n 

e (t) ( "" (x(t)). . ..<Ji " (x(t)) 

(2) (2) ((2) 

L e(t) = det 

e (t) <f> (x(tjj....<p (x(t)) 

(3) )'(3 ,(3 
e (t) ( (x(t))....( (x(t)) 

= 0 . (4-16) 

e (t) <j> (x(t))....<ĵ  (x(t)) 

Note that the superscripts denote differentiation with respect to 

time, hence the chain rule must be used in the i(». (x(t)) evaluations. 

The elements of the A(t) matrix can now be determined using Equa

tion 4-13; again the chain rule must be used in the differentiations. 

If the <f>.(xxt)) are the n linearly independent solutions to 

Equation 4-9, then the fundamental matrix solution <Hxx(t)) for Equation 

4-15 satisfying 

II. 

-TT A(t)4>(x{t)) , (4-17) 

is defined by 
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<)>>x(t)) = 

*n T - , 
1 1 z i 

*15 ^„ 
LZ 11 

in 2x1 

nl 

n2 

nn 

(4-18) 

where 

* 
d<j>. . , 

J O ' 1 + 
i : dt •rt -$ . 1 . "1 r n- j+1 il 

(4-19) 

• ' • : ; : 

h 

* = *•, kk 1 1 , '',n)) . 
kl k 

(4-20) 

The elements b, of the B(t) matrix can now be determined. Webb 

(1, page 13) defines a D matrix whose elements are given as 

Y.(x(t)) 
d,,(x(t)) = (x(t)) » i = J (4-21) 

and 

d..(x(t)) = 0 , i, f H 
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RCt'.t) = <|»(tt')D(x(t))$ 1x(t)) , (4-22) 

/ * ± J • rr-L -, - v. --• 

where ( ) denotes matrix transpose. The element in the first row and 

first column of this matrix is just the scalar autocovariance r(t',t). 

The elements b, of the matrix B(t) can be determined from the proper

ties of the R(t',t) matrix. 
ft ... 

Define by R (t',t) the extension of R(t',t) when the sign of the 
difference t -t changes. Then 

it T •T 
R (t'\t) = <ji(x(tt))(x(tt')tfi (x(t<)) = R (t,t') . (4-23) 

Denote A(t',t) as the difference 

C 
I C 
'ill!! 
iil;,„. 

A(t',t) = R(t',t) - R (t',t) (4-24) 

The elements b, of B(t) are evaluated from 

b . . = /-6.. , 
m-i+1 li 

(4-25) 

where <5. . a r e t h e d i agona l elements of 

3 A ( t f , t ) 
a t1 t ' = t 

( 4 - 2 6 ) 
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All of the elements of the differential equation 

e_t) = A(t)e(t) + B(t)w(t) (4-27) 

are known. The equation can be realized by the system of Figure 4-1. 

Analytical Examples 

Two analytical examples are presented that will serve to clarify 

the parallel procedure and provide exact results to be used in the com

parative analysis. 

Example One 

It is desired to generate a composite random process g(x(t)) 

with autocovariance 

r(t',t) = AVlx( ( t , ) "" X(t)l (4-28) 

c 
• ; 

and mean zero. Equation 4-28 can be expanded into a finite sum 

separable in the parameters x(t') and x(t) as follows, where 

x(t«) > x(t) , 

r(t',t) = Ae a x ( t ? ) A£ a x ( t ) . (4-29) 

By inspection the d>.(xxt)) and the v.(x(t)) are assigned as 
J r T 1 'i 



w(t) 

NOTE: Double l ines indicate 

^ s e ( t ) 

mult ivariable signal flow. 

Figure 4 - 1 . Generalized Computer Implementation of Equation 4-27. 
jaj 
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<j> (x(t)) = Ae 
•ax(t) 

(4-30) 

Y1(x(t)) = Ae 
oix(t) 

The operator L e(t) is given by 

L e(t) = det 

e(t) Ae 

-a/ v(u)du 
o 

(1) 
-a/ v(u)du 

e (.t) -aAv(t)e 

= 0 , (4-31) 

where the chain rule is used to determine the time derivative of 

<f>fxxt)). The expansion of the determinant is a first order differen

tial equation given by 

e(t) + av(t)e(t) = 0 . (^-32) 

The expression for p is given as 

p = civ(t) . 
o 

(4-33) 

Using Equation 4-13 the a, is determined, when n = 1 and k = 0, as 

p = a = av(t). The elements of the $ matrix aar determined using 
o o 
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Equations 4-19 and 4-20 . The $ mat r ix has only one element in t h i s 

example given by -

cf> = <fs = Ae 
atxV.t ) (4-34) 

The single element of the D matrix is determined using Equation 4-21 

ax{t) onv(+y 
d = — r = e 2 « X y T } . 
11 , -ax(t) Ae 

(4-35) 

The autocovariance matrix is determined using Equation 4-22 to be 

T5/J.i 4-\ - a -ctx(t') 2ctx(t). -txx(t) 
l i l t j ^ J - nE e nE , 

(4„36) 

which reduces to 

2 ax((t') 0»C*) R C t ' . t > = AV x ( l t )
 £

w t ) 

The extension of R(t',t) when t > t' is determined to be 

R (f ,t) = A E 
Z ^ OiX^lTj CtX^TI ) (,-37) 

The difference matrix A(t',t) is given by 

A(t',t) = R - R* = A 2[c - a x ( t , ) X ( t ) ) - c"a(x(t) - x t t ' : ) - ! (4-33e) 

. 
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The single element of the B(t) matrix is determined from Equations 

4-25 and 4-26, when m = n - 1 =.0 and i - 1 to be 

b = /-6,, . o 11 

The value of 6 is obtained from the single term of Equation 4-38 as 
11 

8A(t' \t) 
3t' 

= -2ctA v(t) 

t' = t 

(4-39) 

The b term is then given by 

b = (2aA v(t)) (4-40) 

The elements of the differential equation 

e_(t) = A(t)e(t) + B(t)w(t) 

are single element matrices given as 

A(t) = |-av(t)| 

and B(t) = |(2aA v(t)) * , 2 ,_,1/2 

thus the first order differential equation is 
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1/2 
e(t) = - av(t)e(t) + (2aA v(,t;; w(.t) . (4-41) 

Comparing this result with Equation 3-37 it is found to be identical; 

thus the approximate procedure yields the same result as the parallel 

exact procedure for the first order example. 

Example Two 

The autocovariance function given for the second example leads 

to a second order system. It is 

r(t',t) = A V a l ( t , ) ) " X(t)l B VV
6l t , ) ," ~ X(t). . (4-42) 

The parallel procedure is now used where the autocovariance is expanded 

by Equation 4-2 to be 

r(t',t) = <j>- (x(tT) )Y-I (x(t)) + ifu>x(tt'))Y(x(t)) , (4-43) 

• , j. _ «-, 

$ 

-ax(t) . ctx(t) 
y S A c 1 rtE 

$* = B£_Bx(t> y2 = B£
Bx(t) 

and x(t') > x(t) . 

In order to see the effects of the composite function the sequence 

of the procedure is followed in a general notation. The expressions for <|> 

u -4. * A ** n ^ A A « r*i - dxCt) 
and y are then substituted and finally the dependency or v\t) - —TT— 

is substituted. 
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The set $ „ <)>,- are taken as solutions to the homogeneous differ

ential equation 

L e(t) = det 

e ^ 
*2 

* 4j *2 

e 01 
l T2 

= 0 (4-44) 

Expanding the Equation 4-44 the differential equation becomes 

*j4*2 " ̂ 1*2 . *1*2 ~ *1*2 e + ( . . )e jf ( . . )e = 0 . 

1 2 1 2 1 2 1 2 

(4-45) 

The expressions for p, and p are the coefficients of e and e, 

respectively. The coefficients in the alternate vector representation 

of Equation 4-45 are determined by Equation 4-13 to be 

1 2 1 2 

1 2 ^ 2 

(4-46) 

and 

a = o 
1 2 1 2 1 2 1 2 

[•^'2 - *i1^2"' 

*-.'t'o - ^1*0 
,- 1 I 1 2-) 
( I _ : Y 
V 2 1 2 

(4-47) 
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The (j> mat r ix i s determined by Equations 4-19 and 4-20 t o be 

TJT 1 T T T O * 1 1 l ^ 2 +r o ^ o 

(4-48) 

The elements of the D matrix are determined by Equation 4--2 to ob 

d12 = d21 ° ° 

s. -si d = — 
II A ' 2 2 <t> 

1 2 
(4-49) 

The autocovariance matrix is determined by Equation 4-22 to be 
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R(t',t) = (4-50) 

^Ct*) •211 ) 

<fr, (f' ) + a1(t)(j){t») <^_(tJ) + a ^ t ' J ^ ^ t t 1 ) 

Y-i (t) 

<K (t) 

Y,(t) 
0 _ £ , 

OtT 

* i ( t ) *2 ("t ) 

^(t) + a (t)<f> (t) (t12^'t) + an 11̂ (f> ("t) 

R(t»,t) = (4-51) 

$, ( t ' )y. ( t ) + • ( t » ) Y 2 ( t ) (*) 

( * ) 

• 4 

[f, (f ) + a1("t')*1(t')][Y1(t)(f1(t)/(fi(t) + a1 (t)Y1(t)] 

+ L $ J > t ) + a-i(t))$r(t,)][Y<j(t)tfi,_tt)/4i,5(t) + a 1 ( t ) Y 2 ( t ) ] 

(*) These terms are not used further and are hence omitted here. 
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The expression for R (t',t) can be written by inspection of Equation 

4-51 by an interchange of tf and t. The terms of interest in the dif-

ference matrix A(t',t) = R(t',t) - R (t',t) are 

)Y -,1 = <{i, ( t ' Yl, ( t ) + <ji ( t t ) 7 (t) - <jJ (t)Y1 (t. ) - <fi„CttY (t') (4-52) 

6 „, not used 
12 

6 , not used 

622 = MiClfc' ) + a (t(|<f> (t')][Y-, tt H-, ( t ( t t K (t) + a ^ . ( t ) y ( t ) ] 

- [<L(t) + â t)cfC ( t ) E [ y (t')(})-, t t f //4,-] (t') + a (tf )y t'')] 

+ C ^ ( t 1 ) + a (t) )((>-(t')][Y--,(t)<fr (t)/<})(t) + Bi..(t)y~(t)] 

- C0~(t) + a1 ( t ) ( ( . t ) ] E Y - ( t ' ) $ (tt )/iJ»„(tf) + a1(t»)Y (tf>] 

The elements of the B matrix are determined by 

b*(t) St" ^ l l " 1 (4-53) 

t' = t 

2 9 
" b o ( t ) = "St1" [ 622 ] 

t' = t 
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Performing the indicated operations of Equation 4-53 the expressions for 

b and b in the parameter t are 

bAt) - i y t 4: y - -̂.Y-, - $2^2 

b (t) = - [̂  + a <j> + a $ ] [ Y ((fi(r> + a y ] (4-54) 

+ ri + c- V ^ l t Y i V V A + - + * 
1 1 1 2 1ll] 

• » t • i 

- [$ + a i ^ 9 t a* ^ ^ Y j , / * ) 1 , t a-i'Vo-' 

L t y J n + Y2»2 - Y2^2 
+ [({2 + a * ][ ^ + aiY^ + s-iYr2] 

The components of the vector Equation 4-15 are now determined where 

A(t) = 

-a^t) 1 

-a (t) 0 
o 

r i 
b (t) 

i(t) = 

b (t) 
o 

(M--55) 

The expressions for a , b , a , and b are perfectly general for the 

functions <J> <j» y , and y„. For the stated autocovariance function of 
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Equation 4--4-2 the functions and the required derivatives are assigned 

as follows. 

(p = Ae -ax(t) (4-56) 

<f) - - . -ax(t)•( ) 

$.1 = a Ae 'x(t) - aAe x(t) 

4>; = -0L Ae x(t) t 3a Ae x(t)x(t)- aA£ t x(t) 

_ • <p = oe -3x(t) 

fg = - PBE x(t) 

$ = 62Bc*"ex(t)K(t)2 - 6BE eX<t)K(t) 

if. = -B B£ i(t) '+ 3S Be x())x(t)-gBE x(t) 

ox(t) 

ax(t)• Y, = aA£ t x(t) 
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Bx(t) 
Y2 = BE 

;2 = 3Be t x(t) . 

By substitution into Equations 4-46, 4-47, and 4-54 one obtains 

ax(t) = (a + 3)v(t) - v(t) 

v(t) 
(4-57) 

a(t) = a£v(t) - (a + S)v(t) + , , " ( ; < 

b1(t) = ([2aA + 23B ]v(t)) , 

and 

• , . 2 '(•1.>2 1/2 
b (t) = {2v(t)[aA (6v(t) - / •,) + 3B (av(t) - ̂ rrr) ]} 

it,: 
KZ 

X 

% i . 

.. j 

] 

The two first order differential equations found by using Equations 

4-15 and 4-55 are 

el 
(4-58) 

e = e - (Cct + 0)v - v/v)e + (v[2aA + 23B ]) w 



g - _ (a8v2 - ( a + 8)v t v/v - (v/v)2)e 
2 ^ 1 
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+ {2v[aA (Bv - v/v) + 8B (av - v/v) J) w 2 , , 1 / 2 

These equations realize exactly the composite random process g(x(t)) 

when the autocovariance of the random process is given by Equation 

4-42 with mean zero. This equation is compared in the next section of 

this chapter with the approximate equations derived, using the simpli

fied procedure. The system of Equations 4-58 can be mechanized by the 

generalized computer implementation shown in Figure 4-1 with v(t) as 

an auxiliary input as with the mechanization of the approximate pro

cedure . 

Comparative Analysis 

In this section a comparative analysis is made of the second 

order example. The second order differential equations resulting from 

the parallel approach and the approximate approach are compared. The 

comparison is based on the similarity of coefficient;, of the two equa

tions. 

The second order differential equation arising from the parallel 

approach is 

• -t • 2 » _ „ .2 0 < D 2 - | i 1 / 9 . (4-59) 

+ [{2v[aA (6v - v/v) + &B (ov - v/v) J) + [2aA + 2pB J v/2v]w . 2- . i1 /2 ,2n1/2, 

2-.i1/2


71 

1 

The second order differential equation arising from the approxi

mate procedure is obtained from Equation*3-52 with the substitutions of 

Equations 3-51 and 3-47. It is written as 

e +• [(a + 3)v - v/2v]e + [aBv + 1/2 (a + (3)v]e (4-60) 

- tv* »2 non21 ,1/2. ,„ ar,2. D2 -. 3,1/2 
- {[2aA + 2B.B ]v} w + (2aB[A $ + B a]v ) w . 

It can be shown that the coefficients of Equations 4-59 and 4-60 

approach common expressions as the parameter v(t) approaches zero. The 

common coefficients are given in Equation 4-61 as 

: 
: 

c 

S 

n 2 

+ aBv e = 
e+(.a+B)ve + agve=[(2aA + 26B )v] w 2 + ,2\ 

I I 

-L/ £-

2n ~2 s 3-v> + a a}v , 
J-/ £• 

+ [ -„ n f **- ft Tl*- \ ^ "1 

L2afHA [i + B â v J w . 

(4-61) 

Indritz (30. page 354) proves that small changes in continuous 

coefficients of a second order differential equation cause only small 

changes in the solution of the differential equation. The theorem is 

now applied to Equations 4-59 and 4-60. The coefficients of both 

equations satisfy the continuity requirement for the parameters v(t) 

and v(t) of interest. Hence, the solutions are continuous in those 

parameters. It can be shown that when v(t) is sufficiently close to 

zero the solutions of the two differential equations approach- a common 

solution, hence they approach each other, i.e., the absolute value of 

the difference between the solutions to Equations 4-59 and 4-60 can be 
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made arbitrarily small. It can further be shown that two functions which 

are arbitrarily close have autocorrelation functions which are arbitrarily 

close. 

In order to make a numerical comparison for the second order 

example the coefficients are identified as b , b , b , a , and a by the 

following equation 

r~ t^ - i_ . . v 2 * . 2 
/v (be + b ve + P v e) = a vw + a v w . ^ , o . o 

(4-62) 

The expressions for b , b , b , a , and a are now tabularized in Table 

4-1. The quantities in the second column of the table are from Equation 

4-59; the third column entries are from Equation 4-60. The substitutions 

k = $/a, A = B, and (v(.t)/v(t) ) = m are made. 

::siM 

iM 

"""'̂ H 

•i 

• 
t 

Table 4-1. Coefficient Comparison 

Coefficient Exact Approximate 

b n 2 
X 1 

b a(l + k) - m a(l + k) - m/2 

b 
o 

, 2 ka i 2 ,n L , , ,„ ka + mall + kJ/2 

i 

9 1/2 
[2aA (1 + k)] 

7 1/2 
[2aA (l + k)] 

o 
r- . 2p 2, , V\ (U. V\ r o A 2 3,, . , ,,-,1/2 [2A a (1 + k)k] 

+ m ( l + k ) ] } 

+ (m/2)[2aA (l + k)] 1/2 
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The curves of Figure "4-2 illustrate the coefficients plotted 

versus the ratio of $ to a, i.e., k = 8/a. The curves of a., and b. are 

not shown since by the comparison of Table 4-1 they are equal for both 

the exact and approximate coefficients. The solid curves illustrate 

the range of the coefficients from the exact equation; the triangles 

(A) represent the data points calculated from the coefficients of the 

^- <T.T_ • / n 2 „ 2 T „ _ „„ T, 
approximate equation. The numerical values (A - B = 10, and m = 0.001) 

selected for the illustration are the same as the ones used in the 

experimental results of Chapter V. 

Figure 4-3 is a different presentation of the coefficients where 

their numerical values are plotted against the parameter m = v(t)/v(t) . 

The values selected for the illustration are A = B = 10, k = 3vt = 2, 

ct = 0.01. The plots of b2 and a are again omitted since the coeffi

cients are equal. The coefficients from the exact equation are plotted 

as solid curves; the values of the coefficients from the approximate 

equation are plotted as triangles (A) for m > 0, and as circles (o) for 

m < 0. The values of the coefficients from the approximate equation 

and the values of the coefficients from the exact equation are very 

close for m < 0.001, with the approximation becoming less valid as m 

gets larger. 

These results then illustrate numerically the dependence of the 

approximate approach on the parameter v(t) and indicate that in the 

limit as v(t) approaches zero the approximate and exact coefficients 

approach a common value. 

An extension of this comparison technique to higher order equa

tions is deemed feasible. Tomovic indicates in his work (31, pages 
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d 

Figure 4-2. Magnitude of Coefficients versus k = 6/a. 
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25-28) that the order of the differential equation and the number of 

parameters effecting the changes in the continuous coefficients do not 

affect the generality of the conclusion, iv.e., that the solutions are 

continuous in the parameters and hence small changes in the continuous 

coefficients cause only small changes in the solutions. Further sub

stantiation of this remark requires a detailed study of the general 

problem of sensitivity, a study that is not one of the objectives of 

this research. 

i-

i 

a 
J f " 
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CHAPTER V 

EXPERIMENTAL RESULTS 

This chapter presents experimental results obtained in the course 

of the research. The two analytical results obtained in Chapter III are 

implemented by the general mechanization scheme on the analog computer 

and the output process statistics are illustrated for various velocity 

profiles. The measuring system used to obtain the sampled data and the 

digital processing scheme are discussed. A summary of the experimental 

results is presented at the end of the chapter. 

Measuring System 

The measuring system used to obtain the experimental results is 

a slightly modified version of a system developed by R. E. Bryan. Only 

the details of the measurement system that are necessary for clarity of 

this study are presented. Further information and design details are 

found in the work of Bryan (11). 

The data collected from the measuring system are used to determine 

the first two statistical moments of the output stochastic process e(t), 

which is in general a nonstationary stochastic process. The statistical 

moments of interest are the process mean M(t.) and the process covariance 

R (t,t-x). The nonstationary random process statistics are determined 

The notation used here means a specified autocovariance function 
Rc(ti,t2). Rc is used to compute the theoretical curves, which are com
pared with the discrete time estimates R (tijt2). The standard deviation 
is called the deviation and the autocovariance is called the covariance 
in this chapter. 
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from a sequence of sample functions from the ensemble which characterizes 

the random process e(t). Figure 5-1 illustrates the ensemble of sample 

functions which characterizes the nonstationary random process. The out

put process sample functions are sampled at each t. time to collect the 

data points for the statistical analysis. 

The quantities of interest are the mean 

M(ti) = E{e. } (5-1) 

and the covariance 

R (t.,t.) = E{[e. - E{e.}][e. - E{e.}]} , 
c i' j i I 3 j 

(5-2) 

which reduces to 

R (t.,t.) = E{e.e.} - E{e.}E{e.} , (5-3) 

which further reduces for random processes e(t) with mean value zero, 

i.e., E{e.} = 0, to 

R (t.,t.) = E{e.e. } , 
3 

(5-4) 

where e. and e. are the values of e(t) at t = t. and t = t., respec-
1 3 x 3 

vely. { } denotes the expected value operation. is ot 

for the problems of interest the covariance function reduces to the 

autocorrelation function represented by {e.e_.}. 
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e3 (t) 

e(t) 
n 

"M 

—•-{ At I*— 

+ 

A--^W 
tx t2 t , t 

m-l m 

Figure 5-1. Ensemble of Sample Functions Representing 
the Nonstationary Stochastic Process e(t). 
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In all of the experimental data presentations the measuring 

system computes the discrete time equivalents M(t.) and R (t.,t.) of 
1 c i ] 

the continuous time variables M(t) and R (t.t-x) where 

t = ti S i = 0, l,.. . ,m (5-5) 

and T = t. - t., j < i . (5-6) 

In the experiments N = 200, At = 1 second, and m = 9, and the calcula

tions made are then estimates of the actual quantities. The estimate 

used for the mean is 

N 

M ( t i ) = N J e i ' (5-7) 

where the superscript n and subscript i indicate that e. is the value 

of the nth sample function at t = t., and N is total number of sample 

functions used in the average. The estimate used for the covariance is 

v w * £ j ^••?) -*v«<v • (5-8) 

The estimate used for the standard deviation is 

a(t.) = /R (t. ,t. ) 
1 C 1 1 

(5-9) 

These estimates become better and better estimates of the true values 
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of the variables as N, the number of measurements, increases without 

limit (see Davenport and Root (26, page" 79)). A summary discussion of 

the statistical error introduced by truncation of the ensemble of sample 

functions is included in Appendix B. 

Figure 5-2 depicts the schematic diagram of the physical compo

nents that comprise the measurement system. The time-varying filter 

inputs are white noise w(t) and the velocity profile v(t). The output 

of the time-varying filter is e(t). The analog signals e (t), n = l, 

...,N are sampled, digitized, and serialized for the paper tape punch. 

The analog system is synchronized in the compute and reset cycles by 

the time reference-counter controller component. The paper tape sampled 

data is translated to digital punched card format by an IBM tape to card 

converter. The digital cards are inserted as data cards in a computa

tion routine for the B-5500 digital computer. The digital computer 

performs the ensemble statistical analysis and outputs the covariance 

function estimates R (t.,t.), the deviation function estimate a(t.), 
c i : i 

and the mean value function estimates M(t.) given by Equations 5-7, 

5-8, and 5-9. 

In the experimental data comparisons that follow, the estimate 

R (t,,t ) is compared with the specified statistic R (t ,t ). The format 

of R(^T,^T) as an output of the digital computer is illustrated m 

Figure 5-3. The values of t and t range from zero to nine seconds m 

one second intervals. The lower half of the diagram represents the 

covariance function where t < t^. Since the functions of interest are 

symmetric in the parameters t and t^, it is not necessary to include 

that data. 

i 
ii ,:• 
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Figure 5-2. Measurement System. 
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Figure 5-3„ Digital Data Format for Covariance Estimates R (t ,t ). 
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Experimental Examples 

The analytical results, Equations 3-37 and 3-51 are programmed 

on the analog computer using the mechanization system in Figure 3-4, 

and the measurement system illustrated in Figure 5-2. The theoretical 

curves and the measured data points are presented for the covariance 

function. The process mean and deviation with their respective confi

dence level error boundaries are shown for each of the cases considered. 

Example One 

The covariance function specified for the first experimental 

example is 

where 

-0.005|x - x | 
R (x ,x„) = le , 

t 
x(t) = / v(u)du +• x(0) . 

0 

(5-10) 

(5-11) 

Using the synthesis procedure the corresponding differential equation 

related to Equation 3-37 where v is allowed to vary with time is given 

by 

eft) = / | v ( t )f (a w(t) - b /|v(t)| e (t)) . (5-12) 

This equation is in the form required for the mechanization system. The 

analog computer mechanization of Equation 5-12 is shown by the simpli

fied block diagram in Figure 5-4-. The system of Figure 5-4 provides an 

exact realization of the composite random process g(x(t)), when x(t) 

and v(t) are related by Equation 5-11. For this example the coefficients 



w(t) _ _ 
WHITE NOISE 

e( t ) = g(x ( t ) ) 

Figure 5-4. Mechanization System for Example One. 

CD 

en 
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are a =1.0 and b ~ 0.005-. o o 
V. 

Case One. Each of the following five cases uses different 

velocity profiles„ Some lead to an output process that is stationary 

in time, others nonstationary in time. Figure 5-5 presents the first 

velocity profile. 

v(t) 

100-

50--

t (seconds) 
10 

Figure 5-5. Example One--Velocity Profile One. 

For Case One the position parameter x is given by 

x(t) = lOOt + x(0) . (5-13) 

The mechanization system generates a random process that is stationary 

m both position x and time t, since the velocity v(t) is a constant. 

Figure 5-6 illustrates the normalized covariance function R (t ,t~) 

for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. Figure 
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Figure 5-6. Normalized Covariance Function R (t ,t ) for 

Example One--Velocity Profile One. 
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5-7 illustrates the process mean M(t.) and the deviation a(t.) with their 

corresponding confidence level error bdimdaries. 

The theoretical curves are plots of Equation 5-10 and the experi

mental data points are derived from the estimator of the covariance 

function, Equation 5-8. In each case of the experimental examples the 

mean value is specified to be zero. However, the small value of M(t.) 

noted on the data is not unexpected since the ensemble of e(t) is trun

cated at N = 200 sample functions and also the noise source w(t) cannot 

be adjusted to yield a mean value of exactly zero (see Bryan (11, page 

22)). 

Case Two. The velocity profile used in the second case of Example 

One is illustrated in Figure 5-8. 

100-

v(t) 

t (seconds) 

Figure 5-8. Example One—Velocity Profile Two, 

The output random process in this case is stationary in position x 

but nonstationary in time t. The position parameter x is given by 
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x(t) = -ty.5t +• lOOt + x(0) . (5-11+) 

Figure 5-9 illustrates the normalized covariance function 
r*-

R (t,,,t_ for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. 

Figure 5-10 illustrates the process mean M(t.) and the deviation cr(t.) 
. -1 

with their corresponding confidence level error boundaries. 

Case Three. The velocity profile used in the third case of 

Example One is illustrated in Figure 5-11. 
e 

11 

"'111 

100 

v(t) 50--

10-• 
0 

0 2. 5 
t (seconds) 

10 

Figure 5-11. Example One—Velocity Profile Three. 

The output random process in this case is again stationary in position 

x but nonstationary in time t. The position parameter x is given by 

lOOt + x(0) , 0 < t < 2.5 

x(t) = (5-15) 

lOt + 225 + x(0), 2.5 < t < 10 . 
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Figure 5-9. Normalized Covarlance Function R "t Jt ^ for 

Example One--Velocity Profile Two. 
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Figure 5-10. Mean M(t.) and Deviation a(t. ) for Example One--

Velocity Profile Two. 
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Figure 5-12 illustrates the normalized covariance function 

= l-,|j and 7 seconds as t, ranges from 0 to 9 seconds. R (t,,t„) for t_ 

Figure 5-13 illustrates the process mean MAt.) and the deviation aAt.) 

with their corresponding confidence level error boundaries. 

Case Four. The velocity profile used in the fourth case of 

Example One is illustrated in Figure 5-14. 

100-r i 

v(t) 50| 

30 

0 5.5 

t (seconds) 

10 

li 
ill 

> 
.J», 

Figure 5-14. Example One—Velocity Profile Four. 

The output random process in this case is again stationary in position 

x but nonstationary in time t. The position parameter x is given by 

x(t) = < 

30t +x(0) , 0 < t < 5.5 

lOOt - 385 + x(0), 5.5 < t < 10 . 

(5-16) 
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Figure 5-12. Normalized Covariance Function R (t.. ,t_) for 

Example One--Velocity Profile Three. 



95 

7 

1 

-1 

-? 

" l " " " I i i i i i ! 

80% Confidence Level Error 
o, A Measured Points 

"~ : — 
i 

: 

^ 

_i> _ 

o(t.) 

k 

<5 . 

M(t.) 

— 

' * I 

t. (seconds) 

J L 

10 
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Figure 5-15 illustrates the normalized covariance function 

R (t,,>t) for t„ = i, M- and 7 seconds as t ranges from 0 to 9 seconds. 
A. A. 

Figure 5-16 illustrates the process mean M(t.) and the deviation a(t.) 

with their corresponding confidence level error boundaries. 
" 

Case Five. The velocity profile used in the fifth case of 

Example One is illustrated in Figure 5-17. 

100-

v(t) 50--

Figure 5-17. Example One—Velocity Profile Five. 
• 

The output random process in this case is again stationary in position 

x but nonstationary in time t. The position parameter x is given by 

x(t) = 

lOOt + x(0), 0 < t < 5.5 

550 + x(0) , 5.5 < t < 10 . 

(5-17) 
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Figure 5-15. Normalized Covariance Function R (t ,t ) for 

Example One—Velocity Profile Four. 
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Figure 5-18 illustrates the normalized covariance function 

R (t ,t ) for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. 
A A 

Figure 5-19 illustrates the process mean M(t.) and the deviation a(t.) 
e • v x ^ 

with their corresponding confidence level error boundaries. 

Example Two 

The covariance function specified for the second experimental 

example is 

R (x ,x ) = iOe 
-0.01|x - x | -0.02|x - x | 

+ 10c , (5-18) 

where 

t 
x(t) = / v(u)du + xCO) . 

0 
(5-19) 

SH 
Si 

Using the synthesis procedure the corresponding system of first order 

differential equations related to Equation 3-51 when v is allowed to 

vary with time is given by 

e^t) = /|v(t)| (e2(t) + d w(t) - b /|v(t)| e (t)) (5-20) 

e_(t) = v(.t)(a w(t) - b /|v(t) e.(t)) . 
2 o o ' | 1 

/ 
o 

These equations are in the form required for the mechanization system. 

The analog computer mechanization system of Equation 5-20 is shown by 
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the simplified block diagram in Figure 5-20. The mechanization system 

provides an exact realization of the composite random process g(x(t)) 

when the second derivative of x(t) is zero, i.e., v(t) is constant. 

The mechanization system is expected to provide a close approximation 

to the composite random process g(x(t)) when the second derivative of 

x(t) is small. The comparative analysis of the second order equations 

made in Chapter IV shows that the coefficients of the second order dif

ferential equations using the synthesis procedure and the ones from the 

parallel procedure are quite close in numerical value. The similarity 

of the differential equations indicates similarity of solutions e(t) 

which in turn implies similarity in the quantity E{e(t )e(t9)}. Further 

since the operation of expected value is an averaging operation it is 

expected to smooth any effect of the small difference in the values of 

the coefficients. The data presented in the cases of Example Two sub

stantiate the assertion. The relationship between x(t) and v(t) for 

each of the velocity profiles studied is given by Equation 5-19. For 

Example Two the coefficients are a = 0.011, a = 0.775, b = 0.0002, 
o J. o 

and b = 0.03c 

Case One. Each of the following five cases uses different 

velocity profiles. Some of the cases lead to an output random process 

that is stationary in time, others nonstationary in time. For each 

case the random process is stationary in the position parameter x(t). 

Figure 5-21 presents the first velocity profile. For case one the 

position parameter x is given by 

x(t) = lOt + x(0) . (5-21) 



w(t) 
WHITE NOISE 
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Figure 5-20. Mechanization System for Example Two. 
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Figure 5-21. Example Two--Velocity Profile One. 

The mechanization system generates a random process that is stationary 

in both position x and time t. Since the velocity v(t) is a constant, 

the output random process is given by 

e(t) = g(x(t)) . (5-22) 

Figure 5-22 illustrates the normalized covariance function R (t ,t ) 

for t_ = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. Figure 

5-23 illustrates the process mean M(t.) and the deviation a(t.) with 

their corresponding confidence level error boundaries. 

Case Two. The velocity profile used in the second case of 

Example Two is illustrated in Figure 5-24. The output random process 

in this case is again stationary in both position x and time t. The 

position parameter x is given by 
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x(t) = 50t + x(0) • (5-23) 

100--

v(t) 50-

t (seconds) 
10 

Figure 5-24. Example Two--Velocity Profile Two. 

The mechanization system output is given by e(t) = g(x(t)) . Equality 

is achieved since v(t) is constant. 

Figure 5-25 illustrates the normalized covariance function, 

R (t ,t ) , for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. 
rt * 

Figure 5-26 illustrates the process mean M(t.) and the deviation a(t^) 

with their corresponding confidence level error boundaries. 

Case Three. The velocity profile used in the third case of 

Example Two is illustrated, in Figure 5-/7 . The output random process 

in this case is stationary in position x, but nonstationary m time t. 

The position parameter x is given by 

:(-) = 0.5t + 50t + x(0) • 
(5-24) 

I 
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Figure 5-27. Example Two--Velocity Profile Three. 

The mechanization system output in this case is a close approximation 

to the composite process written as 

e(t) = g(x(t)) . (5-25) 

Figure 5-28 illustrates the normalized covariance function 

R (t ,t ) for t = 1, U, and 7 seconds as t ranges from 0 to 9 seconds, 

Figure 5-29 illustrates the process mean M(t.) and the deviation a(t.) 

with their corresponding confidence level error boundaries. 

Case Four. The velocity profile used in the fourth case of 

Example Two is illustrated in Figure 5-30. The output random process in 

this case is again stationary in position x but nonstationary in time t. 

The position parameter x is given by 

x(t) = - 2.5t + 50t + x(0) . (5-26) 
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Figure 5-28. Normalized Covariance Function R (t ,t ) for 
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Figure 5-30. Example Two—Velocity Profile Four. 

The mechanization system is expected to yield a close approximation 

to g(x(t)) during the initial part of the run, but as v(t) approaches 

zero the ratio of v(t)/v(t)'' becomes large and that parameter was 

required in the comparative analysis of Chapter IV to be small for a 

valid approximation. The smoothing effect of the expected value opera

tion is demonstrated here since the experimental data is still quite 

close to the theoretical curves. 

Figure 5-31 illustrates the normalized covariance function 

R (t ,t ) for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. 

Figure 5-32 illustrates the process mean M(t.) and the deviation a(t.) 
° - • r i l 

with their corresponding confidence level error boundaries. 

Case Five. The velocity profile used in the fifth case of 

Example Two is -illustrated in Figure 5-33. 
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Figure 5-33. Example Two--Velocity Profile Five. 

The output random process is stationary in position x but nonstationary 

in time t. The position parameter x is given by 

IE 

x(t) = 

50t + x(0), 0 < t < 3.5 

I17 5 + x ( 0 ) , 3 . 5 < t < 1 0 , 

(5-27) 

The mechanization system"is expected to yield a close approximation to 

g(x(t)) for this velocity profile. 

Figure 5-34- illustrates the normalized covariance function 

rt 

R (t1 ,t ) for t = 1, 4, and 7 seconds as t ranges from 0 to 9 seconds. 

Figure 5-35 illustrates the process mean M(t.) and the deviation a(t.) 
& t- ± 1 

with their corresponding confidence level error boundaries. 
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Summary of Experimental Results 

For both of the examples, five velocity profiles were investi

gated. In all of the cases of the two examples, the specified random 

processes were stationary in the position parameter x(t). In several 

of the cases the random processes were nonstationary in the time param

eter t. 

For all of the cases in Example One, the mechanization system 

yields exactly the composite random process g(x(t)). The experimental 

data plotted versus the normalized covariance function are quite close 

to the desired statistics. The random process mean and deviation 

estimates conform to the 80 per cent confidence level error boundaries. 

For the first two cases for Example Two, the mechanization system 

yields exactly the composite random process g(x(t)). The last three 

cases approximate closely the composite random process. The experi

mental data plotted versus the normalized covariance function are again 

quite close to the desired statistics. As in Example One the random 

process mean and deviation estimates conform to the 80 per cent confi

dence level error boundaries. 
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CHAPTER VI 

CONCLUSIONS 

In this chapter the problem statement and the general approach 

are summarized and compared in complexity and utility to the parallel 

approach. The experimental results are considered and some areas of 

new research and suggestions for extensions to the approach of this 

research are preseteed, 

The problem of this research is to develop and investigate a 

procedure for synthesizing slowly time-varying filters which generate 

stationary Gaussian random process in a position parameter, but which 

may be nonstationary in the time parameter. 

The general approach taken to solve the problem was as follows: 

First, to establish the relationship between the specified random 

process statistics (the mean and the autocovariance) and a realizable 

analog computer mechanization which approximates the random process. 

Second, to investigate analytically and experimentally several examples 

using the synthesis procedure to determine the quality of the approximate 

mechanization system,. Third, to develop a parallel approach which 

realizes exactly the prescribed random process. This exactness provides 

a basis for a comparative analysis of the nth order differential equa

tions derived from the approximate approach and the parallel approach. 

The synthesis procedure generates a Gaussian random process which 

approximates the statistics of the composite random process g(x( 



121 

The specified statistics used in the procedure are the mean and the auto-

covariance function stated in the position parameter x. The relationship 

of x to time t is not required a priori but the parameter x(t) must have 

a first time derivative given by the velocity v(t). The velocity v(t) 

is then used as an auxiliary input to the mechanization system. Appli

cation of the procedure is straightforward and leads,in general, to a 

system of n first order differential equations. The system of equations 

is realized by a mechanization system which generates a solution that 

approximates the composite random process. The approximate representa

tion of g(x(t)) is actually exact for all cases where x(t) is constant; 

the approximation is, expected to be good when x(t) is a slowly varying 

function of time,, 

The constraints that arise in the development of the procedure 

restrict the types of autocovariances that can be used in the approxi

mation procedure. The general form of the autocovariance is established. 

A parallel approach is developed that yields for all of the ad

missible autocovariance functions an exact result. It is an extension 

of the procedure developed by Webb, et al. (1), tt oincude eth eomppsiit 

function g(x(t)). The parallel approach is more general than the 

approximate approach, which could be considered a special case of the 

parallel approach. The principal restriction of the parallel procedure 

is that the autocovariance function must be expressable as a finite 

series of terms separable in the parameters x and x given as 

n 
r (x ,x ) a I (J). (x )y.(x ) . 
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The parallel approach has some inherent disadvantages in that it is 

quite involved mathematically and requires extensive use of analog 

equipmento It has the distinct advantage of exactness, which is costly 

both mathematically and from the standpoint of equipment usage. 

The experimental data substantiate the assertion that the 

approximate procedure yields an output random process that is close 

to the specified composite random process0 The discrete data points 

are in agreement with the predicted theoretical curves for the normal

ized autocovariance function. The mean and the deviation of the random 

processes were observed to conform to the 80 per cent statistical confi

dence level error boundaries. Thus, the approximate procedure is useful 

for simulation problems where precise solutions are not required and 

especially in those problems where analog equipment limitations dictate 

the quality of the simulation. 

One area for future investigation is the extension of the approx

imate approach through linearization techniques to position functions 

x(t) which are not slowly time-varying functions. Since the mechani

zation system is exact for velocities v(t) which are constant, the 

position functions x(t) would be broken into straight line segments, 

which represent constant velocity segments. With appropriate band

width considerations it may be possible to develop a more exact approxi

mate procedure for the segmented velocity profiles while still main

taining the simplicity of the approximate procedure . 

Another area for future investigation is an error analysis of 

the approximate synthesis procedure-, 
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APPENDIX A 

ADMISSIBLE AUTOCORRELATION FUNCTIONS 

This appendix is included to provide the foundation for the 

discussions of Chapter III regarding the types of autocorrelation 

functions for which the synthesis procedure is valid. The constraints 

that.S(o)), the direct Fourier transform of R(T), be even, non-negative, 

real, and expressible as a ratio of polynomials in to certainly becomes 

a restriction on R(T). The implications of this power spectral density 

constraint on the autocorrelation function R(T) and the admissible forms 

for that function are developed in this appendix. Also, the relation

ship of the constrained S.w) and the transfer function H(p) of a fixed 

parameter linear filter derived by spectral factorization techniques is 

presented. Several transform pairs are presented with their respective 

transfer functions. 

Fundamental Considerations 

The random processes of interest are real random processes; hence, 

the autocorrelation function is real and an even function (see Papoulis 

(27, page 337)), i.e., 

R(T) = R(-T) = R (T) (A-l) 

and R(0) > R(T) . (A-2) 
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Since R(x) is real and even the power spectral density is real, even, and 

non-negative (see Papoulis (27, pages 338 and 347)), i.e., 

S(-u) = S(w) > 0 (A-3) 

for all real m. If the additional constraint on S(u), that it be 

expressible as a ratio of polynomials in co, i.e., that S(oi) is a 

rational function of u, is imposed, all of the required constraints on 

S(id) are present and the allowable forms for R(T) may be considered. 

It is of interest first to show the realization of the transfer 

function H(p) at this point. With the above constraints the power 

spectral density can be expressed as follows, 

S(w) = S(p/j ) = A(-p )/B(-p ) , u = p/j , (A-4) 

where A(-p2) and B(-p2) are polynomials in -p2 with real coefficients. 

The degree of A(-p2) is smaller than the degree of B^p2) when the R(TT 

does not contain impulses. 

If p. is a root of the polynomial A(-p ), -p. is also a root; 

2. , . . . . 
hence, the roots of A(-p ) are symmetrical with respect to the imaginary 

axis in the p-plane. The same is true for B(-p ). Thus, S(p/j) can be 

factored as 

c(E/t ••• .A-p p ) _(p) C(-pp 
j B(-D^) *̂JU D(-p) 

(A— 5 *) 
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where C(p) and D(p) contain all of the roots of M-p ) and B(-p ), 

respectively, that lie in the left-half plane. Thus, the transfer func

tion of a realizable fixed parameter linear filter can be taken as 

H(p) = ̂ -r̂ y . 
D(p) 

A--6) 

The transfer function H(p) of Equation A-6 can always be mechan

ized by the approximate synthesis procedure. It is known (see Papoulis 

(27, page 410)) that if R(x) is a finite sum of exponentials then S(to) 

is a rational function meeting all the requirements that enable the 

determination of H(p)„ Papoulis (27, page 410) points out that any 

R(T) can be approximated sufficiently closely by a finite sum of expo

nentials. Hence, the approximate mechanization procedure can be used 

to simulate any desired R(T) by expressing it as a finite sum of expo

nentials. The parallel approach that is developed in Chapter IV is 

also applicable for this set of R(x). 

Thus it is established that 

n -a.|T| 
R(x) = I a. £ 

i=l 
(A-7) 

is an admissible form for the mechanization procedure. 

It is of interest to determine the most general form that the 

autocorrelation function may have. 

The power spectral density S(GO is an even, non-negative, ratio 

of polynomials ii m m written as 
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S(u) = A((J j . 
B((i) ) 

(A-8) 

. 2 
The roots of the denominator B(o) ) can be considered in two categories; 

distinct roots and repeated roots. 

Consider first only distinct real roots of the polynomial B(w ). 

It can always be factored into the following type of expression 

2 W 2 
B(UJ ) = b (to + p,j(w + p„) ... (a + pn ) ... (.a + p ) 

n 1 2 k n 
(A-9) 

n ( 2 

k=l 
B(a) ) = b It (o; + pvJ , n , , 

where the order of the B(o>2) is 2n. Since SU) is non-negative the p? 
K 

•wu ^ v - ^ ^ - • .= u 2 n 

are greater than zero. The factor b is the coefficient of the OJ 

term. There is no loss of generality by assigning b = 1 . 
Assume for definiteness that p, is greater than zero, then making 

, ^ - ^ j . - 2 2 „ „i , _ t i,.̂ , __. ..-. -the substitution -p = w Equation A-9 becomes with further factoring 

B(-p ) = (-p + p-.)(p + pr)(-p + p2)(p + P ) ... (-P + P )(p + P ) (A-10) 

TW 2, n , ,, , 
B(-p I = n (-p + p^Hp + pi.) 

k=l 

The factors in the expression are denominators in a partial fraction ex

pansion of —~" given by 

B(-p ) 
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9 K l K K 
A(-p ) . l 1 2 2_ 

B(-P ) i i - ^2 
(A-ll) 

K K K K 
+ . .. . f + + . . . + —— -

+ — * T) + -r * . i -r n Ti -r Pj. P + Pi n n 

The K.'s are determined by the method of Cheng (32, page 187). Con

sidering the expansion in pairs 

Kk K 
P "*" Pk ~P + P> 

the first term has no poles in the right-half plane; therefore, its in

verse transform say c(t) is zero for t < 0. The second term is obtained 

from the first by replacing p with -p; hence, the inverse transform of 

the second term is c(-t) (see Papoulis (27, page 355)). Thus 

R,(x) = C ( T ) .+ C(-T) (A-13) 

The form of the transform is 

c(~t ) = € , t > 0 , 
2p 'k 

and 

(A-14) 

, s ^ V t < o 
c ( -t ) = — E , ~ S u . 

2 P k 
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ic = 7n 
for all T . (A-15) 

Hence, for each of the pairs of terms the inverse transform is of the 

form of Equation A-15; thus the autocorrelation function is a finite sum 

of exponentials given by 

| Kv ~PvI T ' 
k=l 2 p k 

A"-16) 

Now let one consider the case of repeated real roots. Consider 

Equation A-9 where the first term is a repeated factor of multiplicity 

m. It will suffice to illustrate the modification of the expansion 

where only one of the roots is repeated. Consider the following expres

sion 

B(w )=((D + p . ) (a. + p „ ) . . . (tu + p, ) . . . (tt) + p ) . (A-17) 
1 2 k n 

f V 4 - . J - 4 - . ' ^ 2 J j - j . , I- • • •, J 

S u b s t i t u t i n g -p = ui , and f u r t h e r f a c t o r i n g y i e l d s 

2 m m 2 2 
B(-p ) ••• (-p + P-̂ J (p + p x ) (-p + p2J (A-18) 

/ 2 2 . , 2 2 , 
*K . . . n 
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The form of the partial fraction expansion of Equation A-18 is given as 

1/ 

lm 
t/ 

I . m - 1 A(-p ) 

B(-p ) (-p + p1) (-p + p ) 

22 
m-1 

(-p + px )2 

11 

t-p + p1 ) 
(A-19) 

+ 
lm 

(p + P ^ 
+ 

lm-1 

u? + p-x-1 m 
+ ... 

12 

(p + P i ' ' 
— + 

11 

(p + PJJJ 

, 
2 3_ 

;,- u p 2 ) (_p2 + J , ' ) ( V + 2". 
X XT F l X X ^ XT £7 T J -

2 u P2^ (-P2 + P^ 
2 > 

- + ... . 
k n 
2 _ 2 . 

V-* + P v - ( - P 2 t p2* 
) 

From before the terms with coefficients K , K , ..., K have inverse 

transforms which are sums of exponentials of the form of Equation A-15. 

The coefficients of the terms arising from the repeated root, i.e., 

K , ...» K aad I , ,... ,,,. ,an bb efund ussng tth etechiques of 

Cheng (32, page 193). It can be shown that K , = I , since if p = -p 

is a root of *-r— so also is p = p a root. 
B(-p ) 

Thus Equation A-19-can now be considered term by term for inverse 

transforms. It is noted that the terms with K coefficients have roots 
... 

in the right-half plane and the I,. terms have roots in the left-half & * I, 

plane. Using the technique of Equation A-14 and taking the terms of 

equal powers, i.e., 

Ik 
K 
lk lk lk 

(P + Px) (-p * p1) (p + P J (-p + Pl> 
(A-20) 
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the inverse transform of the first term on the right-hand side is c(t) 

and is zero for t < 0; the inverse transform of the second term on the 

right-hand side is c(-t) and is zero for t > 0. The inverse transform 

of the first term on the right-hand side is given as 

/ -t- \ _ T 

c\X) - L [-
Ik -Ls\. , A. J_ 

"Pnt 
j~"3 = — ' t 1 e , 

(p + p,) (k-1)! 
(A-21) 

for t > 0, where L-1 denotes the inverse Laplace transform. The contri-

bution to the autocorrelation function from the pair of terms is then 

R, ((T = C(T) + C(-T) , 
k 

(A-222 

which becomes 

( ) 1]< 

\ T = m» |M 
ik-l pl' T' 

T e (A-23) 2 

Similarly each of the roots has this form of inverse transform; thus 

the autocorrelation function R(T) is given by 

m 'Sir ic-, -p, 'T' 
RCl) = E (k-l)I 'Tl £ 

k=l 
(A-24) 

+ ) 75 E 

k=2 2pk 
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Thus we have established the general form for the admissible autocorrela

tion functions for implementation by "the mechanization procedure when the 

roots are real, distinct and/or multiples. 

An example is presented which illustrates the way in which Equa

tion A-2- changes if the roots are complex. The complex roots occur in 

, ai-p ) n 

conjugate pairs and since if p. and p. are roots or *-z— so also is 
* . B ( _ P ) 

-p. n "P^5 ence the roots occur in symmetry about both the imaginary 

axis and the real axis in the p-plane. 

Consider the following power spectral density 

S^ > .„ 16(0  

i+ 2 
w - 6w + 25 

CA-25) 

m l - j.1- i_ j. • j_ j. • 2 2 . , , , ,i , 

Making the substitution -p = oi the power spectral density can be 

expanded into the following four terms 

2 + jl jl 
P D "" P + i - 12 + p + l t j: 

(A-26) 

2 + jl 
-p + 1 - j2 

2 - jl 
-p + 1 + j2 

In this case p. = -(1 + j2), p. = -(1 - j2), -p. = -(1 + j2), aad 
i ri I 

-p. = -(1 - j2) are all roots of B(-p ) illustrating the above comment. 

The first pair of terms of Mp/j) has all of its poles in the left-hair 

plane; therefore, its inverse transform c(t) is zero for t < 0. The 

second pair of terms is obtained from the first by replacing p with -p; 
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hence the inverse transform of the second term is c(.-t) (.see Papoulis 

(27, page 355)). Thus the autocorrelation function is 

R(x) = C(T) + C(-T) . (A-27) 

for all T. 

The inverse transform of the first pair is 

c(t) = (2 + jl)^ + (2 - jl)' A-28)) 

c(t) = 2e (2cos 2t - sin 2t) 

for t > 0 . 

The transform for the second pair is obtained by evaluating 

c(-t) as 

c(-t) = 2e (2cos 2(-t) - sin 2(-t)) (A-29) 

for t < 0 . 

Thus R(x) can be written by use of absolute values to be 

R(T) = 2e '(2cos 2T - sin 2|T|) . (A-30) 

If the roots of this example were repeated roots of multiplicity 

m the autocorrelation function has the same form as derived in Equation 

A-23. 
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ft! 2K , . I . 
R<T> = 2, (_-i") ( lTl e (2cos 2T - sin 2|T|) . (A-31) 

k=l 

The most general type of term in the class of admissible auto

correlation functions has the form of Equation A-31; however, some of 

the specified coefficients are results of the specific example chosen, 

Particular Pairs 

Example One 

The first analytical result of Chapter III is the first example. 

R ( T ) = A e ' l (A-32) 

qC 1 - 2A a 
2 2 

co + a 

H(p) = kfLJL. 
p + a 

Example Two 

The second example is a finite sum of exponentials given as the 

second analytical result of Chapter III. 

2 -a|T| 2 
R(T) = .ft e + rs e ( 
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, . (2A a + 2B B)(jj + 2aB(A g + B a ) 
= 4 2 2 3 2 2- ( 2 C 2 ) 2 

/ •— i / z z 
i/2£?~a + 2B B P + / °^ g t B ct) + 2B B Ip 

H(p) = 
/ 2A a + 2B 8 

(p + a)(p + £5) 

Example Three 

The third example is a finite sum. The second term is dominated 

by the first to maintain the inequality R(0) > R(T). 

R(T) = A e ' + A a|T|e (hS^r) 

9 9 / 9 2*. 9 3 
n, , 2A a 2A a(a - a) ) M-A a 
S(.w) = — — + - - • • • • • 2 2 ( 2 J a2,2 fjy? + C [ 2 i 2 

-

/ 2 3 
H(p) = = -

/ _ j _ ™ N / - _i_ „ N 

Example Four 

The fourth example is a finite sum. The coefficients are chosen 

to maintain the inequality R(0) > R(T). 

„ _ I I „ - I I A 2 2 ? -ral T I 
R ( T \ = , 2 + A a [ T | E + — |X1 - (. 35) 



2 q 9 r 9 9 -
; (a)} - + — ] 

I /.* A- nj 1 I ti\ A' (.{Jj T 01 J CM + a )3 

2 5 
c , x _ 16 A ex 

~~ 3 2 2 2 , 3 

H(p) = /16A a /3 

(p + a) 

Example Five 

Again the example i s a f i n i t e sum. 

1 rt + 4A a I | 3 - a l t 
27 

S(w) = 

? » Li i i 

8A a (7a + w ) 
9 2 2 2.4 

Another term of t h e form 
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I i ,2 - a I I i A2 2 2 I I 
R( T v = A £ x ' + A a | T I E ' ' + i T . e ' ' ( . - 3 6 ) 

c | T ] V (A-37) 

can always be added to the autocorrelation functions in the forms of 

Examples Three, Four, and Five. The spectral density of the added 

term can be found from 
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S(w) = C2Re[- — n! 

(a + jtuK 
—] , (A-38) 

where Re(«) means the real part of (•) . This term is then added to the 

previous collection of terms. The negative terms in the numerator can 

always be cancelled by proper choice of the constant C. 

Example Six 

The spectral density of the following form 

S ((j) - 2 2.2 2 2 • 
o co t 

\n~9>) 

has three basic autocorrelation functions associated with it (see 

, /2 2 
Papoulis (27, page 355)). Define the value of u, = /u - £> /4 and the r > if & 1 O 

autocorrelation function is given by: 

T^ D2 „ „ 2 
If 0 < "40) , then 

R ( T ) = — e ' l (cos1 o T + -z— s i n u1 | T | ) . 
2&w2 l 

(A-'+0) 

,2 :. 2 I f B = M-w , t h e n 

R ( T ) = — e " ( 1 + — I T | ) . 
2puT o 

(A-41) 

I f B > *+oi , t h e n , w i t h w~ = / ( 3 / 4 ) - w 
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R(T) = — £ ' ' (cosh w T + ——innh m 1x|) . 
2f3w y 2 

(A-42) 

The transfer function representing the fixed parameter linear 

filter is given by 

H(p) r 

p + 3p + W 
2 ' (A"43 ) 

V. J ^ L Tl A , -, « J 2 . . _ _ . _ 

Note that Equation A-41 reduces for fj = 4dj to the form of Example 

Three with the spectral density given by 

V *"/ 2 f h 2 • 

, * , 
o 

( A " " " ^ / 

Another form that reduces from the power spectral density of Equation 

ft ^ e\ i _ 

A-39 IS 

S(u>) = - , 
co + 1 

(A-45) 

when B = / 2 , u) = 1 , and un = — . For t h i s c o m b i n a t i o n w i t h 3 < MLD , 
o 1 IT o 

/2 
E q u a t i o n A-40 r e d u c e s t o 

E { x ) = i e ' ' 2 c o s ( x T / 2 / 2 - ff/44 . (A-46) 
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These examples are not intended to be exhaustive but they do 

illustrate the types of autocorrelation functions for which the approxi

mate procedure can be used. The parallel procedure can be used with 

each of the above examples. 
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APPENDIX B 

EXPERIMENTAL DATA PRESENTATION 

This appendix is included to provide a better understanding of 

the experimental data presentation in Chapter V. The normalization 

procedure, the source of confidence limits, and the estimation equa

tions are presented. 

Theoretical Data 

The theoretical data for the covariance functions are plotted 

as continuous functions in the parameters t and t for the five cases 

of each example. The theoretical data are normalized for comparison 

with the experimental discrete values. Equations 5-10 and 5-18 are 

normalized by dividing by 1 and 20, respectively. This achieves a 

maximum value of unity when the difference t - t = 0 . 

Experimental Data 

The experimental data represent the discrete time equivalents 

of the continuous theoretical functions. The data are plotted as 

discrete points for t = 1, 4, and 7 seconds as t ranges from 0 to 9 

seconds at each integer value of seconds. The data are obtained from 

the digital computer statistical calculations and normalized for the 

presentation. Recall the expression for the estimates of the covariance 

R ( t . . , t . = — 

N 
I (e.e.)-M(t.)M(t.) 

n=l * : 3 
. (B-l) 
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The data points are normalized by dividing the Equation B-l by the 

following expression 

10 J0 V W ' (B-2) (B-

where t = 0, t = 1, t„ = 2, etc. This choice of normalization pro

vides a uniform technique for all of the covariance data presentations. 

This method of normalization does not preclude an experimental value 

for the covariance function greater than unity as can be observed in 

several of the figures in Chapter V. 
-

Confidence Level Error Boundaries 

This part of the appendix is devoted to a summary of the statis

tical error associated with the estimates M(t.) and a(t.) as defined by 
1 1 J 

Equations 5-7 and 5-9. The error is formulated in terms of N, the 

number of sample functions used in the estimates, and the statistical 

nature of the random processes under consideration. The rms statistical 

error of the estimate M(t.) is given by Bryan (11, page 16) to be 

a(t.) 
SD[M(ti)] = , (B-3) 

where SD means standard deviation and a(t.) is the square root of the 

process variance at t = t. time, i.e., R(t.,t.) = a (t.). Bryan further 
r 1 1 1 1 

shows that the estimate M(t.) is an unbiased estimator and that the 

expected value of M(t.) is M(t.). Using this information and the fact 
r i i ° 
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that M(t.) is Gaussian distributed, a band may be defined (in terms of 

M(t,), cCt.), and N) into which a given per cent, say K per cent, of the 
1 1 o r J 

estimates M(t.) will fall. The band defines the K per cent confidence 

level. The 80 per cent confidence level bounds for-the Gaussian proba

bility distribution is 2.56 standard deviations wide and symmetrical with" 

respect to the mean value. The boundaries for the 80 per cent confidence 

level for M(t.) are given by 

o(t.) 
M(t.) ± 1.28 . (B-4) 

Figure B-1 illustrates the 80 per cent confidence level error boundaries 

for the M(t.) estimates as a function of the number of sample functions 

The 80 per cent confidence level boundaries may be established 

for the random process standard deviation estimate a(t.). This random 

variable a(t.) is chi-distributed with N degrees of freedom and mean 

value cr(t.). An expression which defines the 80 per cent confidence 

level error boundaries for the standard deviation estimates is 

a(t.) 

+ K a(ti) 

2 i 

(B-5) 

where K and K as functions of N are defined by the curves in Figure 

B-2. 
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Figure B-1. 80 Per Cent Confidence Level Error Bounds for M(t.) Estimates. 

OJ 



2 . 0 

1 .5 

1 .0 

0 .5 

™ 

V 

K 2 -

H^Ii::: 
10 100 1000 

Figure B-2. 80 Per Cent Confidence Level Error Bounds for o*(t.) Estimates. 

0 



145 

Equations B-- and B-5 and the curves of Figures B-1 and B-2 are 

used in the analysis of the examples presented in Chapter V. 
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APPENDIX C 

DERIVATION OF EQUATION 3-40 

This appendix is included to provide the detailed mathematics for 

the statement of the results in Equation 3-40. Some additional material 

on the nature of the solution to the first order differential equation 

is also included for completeness. 

The equation of concern is written as 

e(t) + av(t)e(t) = /2A a Iv(t)I w(t) . (C-l) 

This equation is of the form 

y(x) + a(x)y(x) = b(x) . (C-2) 

The homogeneous solution to Equation C-2 is 

(f>1 (x) = e , (C-3) 

where A(x) is a function such that A(x) = a(x) . The particular solution 

to Equation C-2 is 

I(J(X) = e A ( x ) / e A ( t ) b(t)dt . 

x0 

(C-4) 
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Then i f C i s any constant 

$ = ty + C<£ (C-5) 

is a solution of Equation C-2 and every solution has this form (see 

Coddington (29, page 41)). 

By direct substitution the homogeneous representation of Equation 

C-l is 

e(t) + av(t: )e(t) = 0 , (C-6) 

which has a solution 

^(t) = e A ( t ) , (C-7) 

where 

t 
A(t) = / av(u)du . 

t 
(C-8) 

The particular solution for Equation C-l is written 

"A(u) t Afn) 
tfi(t) = £ / c b())du , (C-9) 

with 
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M u ) = v4A a | v ( u ) | w(u) . (C-10) 

The complete s o l u t i o n i s then 

e ( t ) = (f»(t-) + Cfy ( t ) , ( C - l l ) 

which by substituting Equations C-7, C-8, C-9, and C-10 becomes 

t s 
-/ av(s)ds / av(u)du 

^"o r t5 2 

) j \.JCJ\ | i,s)| ) w(s)ds 
o 

' • • C ) 

t 
-/ av(s)ds 

+ C e 
t o 

Evaluating Equation C-12 at t = t time, the value for C can 

be determined as 

C = e(t ) (C-13) 

which is a random variable with mean zero. 

The mean value of the solution e(t) is determined by the expected 

value of e(t) written as 

M = E{e(t)} . (C-14) 
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By appropriate interchange of integration and expected value operation 

in Equation C-12 (see Davenport and Rootv(26, page 182)), the mean 

value of e(t) is determined to be zero when the expected value of the 

white noise random process w(t) is zero, i.e., 

E{w(t)} = 0 . (C-15) 

Of most interest is the autocorrelation function for the solution 

e(t) given by 

R (t ,t ) = E{e(t1)e(t )} (C-16) 

Expanding Equation C-16 and restricting v(t) to be non-negative 

E{e(t.. )e(t )} = E{MN( / " e 
t ' ' o 

s 
/ av(u)du 

t t 1/2 
(2A av(s)) w(s)ds) (C-17) 

/ av(u)du 
to *n , o , ,,1/2 

(2A av(x)) w v x ; a x ; 
* ( / '" e (2A*av(x)) w(x)dx) 

J 

° 

f t t 

s 
J av(u)du 

o 

2 
i, avi.s)) wi.s)ds)e(tQ) 
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s 
/ <*v(u)du 

r 9 t 

o 

2 . 
i, avt,s)) w(s) )e( -) 

+ MNe(t ) } , 
o 

where 

-/ av(u)du 

M ~ e , (C-18) 

and 

-/ 2 av(u)du 
t 

N — E . (C-19) 

By interchanging the order of integration and expected value operation 

(see Davenport and Root (26, page 182)) Equation C-17 becomes 

E{e(t )e(t )} = (C-20) 

s x 
/ av(u)du / av(ujau , 

, t t t t 2 * , y r / \ f \\ r . r , r t t 

** I 
t t 
o o 

X 

/ av(u)du 

t t 
f i ° J e 

j _ 

° 

(2A av(x)) E{w(x)e(t )}dx 
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/ ov(u)du 

+ f 2 e 
t 
o 

(2A av(x)) E{w(x)e(t )}dx 

+ E{e(t ) }] . o 

The two middle terms vanish for all values of x, since E{w(x)e(t )} = 0, 

except possibly for x = t . However, for this value of x the limits on 

the integral ar*e from t to t which again contributes zero value. 

Hence, the expression reduces to 

E{e(t1)e(t )} = (C-21) 

s x 
/ otv(ujau / av(,u)du 

t t t t 1/2 
*r f' X f % ° o %_••, ,,.. v r Y* « r -

j j 
mii_ I J t . 

o o 

*:A I H , v ( s ) H A ) ) L , { « n , s ) w \ . A / } u A U S 

+ E{e(t ) }] . 
o 

The integrand of the first term includes the autocorrelation function 

of the stationary white noise random process at times s and x, 

E(w(s)w(x)} = R (s,x) . w ' (C-22) 
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But w(t) is a stationary random process whose autocorrelation function 

is the impulse function given by 

1 , x = s 

R (s,x) = R (s - x) = < 
w w 

(C-23) 

0 , otherwise . 

Using the sifting properties of the impulse function Equation C-21 

reduces to 

E{e(t1)e(t )} = (C-24) 

MN[ / e 
t 

2/ av(u)du 

*g "t 2 2 
2A av(s)(l)ds + E{e(t ) }] , 

when t < t < tn. The only difference when t < t 

of the upper limit on the integral from t_ to t^. 

The first term is of the form 

< t is the change 

b 
r JX . u 
J e du = e 
a 

u = b 

u = a 
(C-25) 

Using Equation C-25 to evaluate Equation C-24, the autocorrelation 

function is written 
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2/ av(u)du 

VI f W M M M i 2 r
 L ° 

Eie(t;e(tJ> = MNA Le 
1 1 M M > f * \ 2 1 

- 1J + MNEi.e(t ; J 
(C-26) 

Substituting the values of M and N from Equations C-18 and C-19, Equa

tion C-26 reduces to 

f l - , , -j ctv(u)du 

E { e ( t ) e ( t )} = A e + [ E { e ( t ) } - A ]MN . (C-27 ) 
• 

The second of the two terms vanishes since the E{e(t ) } is 
o 

equal to the variance of the random process at t time and o is the 
t 

value of the variance for all time t. 

Hence, the autocorrelation function reduces to 

t 
-/ av(u)du 

„, ,A , ,x ., .2 2 
EleCt )e(t )i = A e (C-28) 

for t < t„ < tn and similarly o 2 1 J 

-/ " av(u)du 

E{e(t )e(t )} = A2 ^ (C-29) 

for t < tn < t, 
o 1 * 
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This is expressed as 

L, 

-a| / ' v(u)du| 

E{e(t. )e(t-)} = A e (C-30) 

for all t_ and t., > t 
2 1 o 

Recall that the originally specified autocorrelation function was 

T> / \ . . ft ^ 

R (,x ,x ; - A e 

-a|x(t ) - x(t ) | 
-L £- (C-31) 

which is identical with the autocorrelation function of the output of 

the random process e(t), when 

x = x(t ) = / v(u)du + x(t ) 
t 

(C-32) 

and 

x = x(t ) = / v(u)du + x(t ) . 
t 

(C-33) 
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