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SUMMARY

The primary objective of the proposed research is to develop a framework for smart

and robust fingerprinting of networked systems. Many fingerprinting techniques have been

proposed in the past, however most of these techniques are designed for a specific purpose,

such as Operating System (OS) fingerprinting, Access Point (AP) fingerprinting, etc. Such

standalone techniques often have limitations which render them dysfunctional in certain

scenarios or against certain counter measures. In order to overcome such limitations, we

propose a fingerprinting framework that can combine multiple fingerprinting techniques in

a smart manner, using a centralized decision making engine. We believe that any given

scenario or a counter measure is less likely to circumvent a group of diverse fingerprinting

techniques, which serves as the primary motivation behind the aforementioned method of

attack. Another major portion of the thesis concentrates on the design and development of

a device and device type fingerprinting sub-module (GTID) that has been integrated into

the proposed framework. This sub-module is designed using the core technique proposed

by the authors of [1]. The technique proposed in [1] involves the use of statistical analysis of

packet inter arrival times (IATs) to identify the type of device that is generating the traffic.

However, the work presented in [1] only provides a preliminary study of feasibility and is

limited to fingerprinting device types, and not devices. In this work, we analyze the perfor-

mance of the identification technique on a real campus network and propose modifications

that use pattern recognition neural networks to improve the overall performance. Addition-

ally, we impart new capabilities to the fingerprinting technique to enable the identification

of ’Unknown’ devices (i.e., devices for which no signature is stored), and also show that it

can be extended to perform both device and device type identification.
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CHAPTER I

INTRODUCTION

Cyber infrastructure has enabled major revolutions all over the world. We can now com-

municate, collaborate, and conduct business transactions with anyone in the world at any

time. Cyber space has quickly gone from being reserved for scientists (i.e., ARPANET) to

something that is critical to enabling basic functions in everyday life (e.g., vehicle naviga-

tion, banking, commerce). Cyber space is not just expanding, but in fact is getting more

dense with the introduction of smart phones and tablets. With BYODs (Bring Your Own

Devices) becoming the norms at campuses and corporates, the number of active devices

on local area networks and the Internet has grown exponentially. Given the increasingly

critical nature of cyberspace, it is imperative that it is secured.

One of the most significant threats to today’s computer networks is the threat from

insiders [2]. Insider attacks are dangerous because they subvert the traditional defense

mechanisms and are initiated “behind” them. Further, they are initiated by individuals

who have valid credentials to access the network and systems. In a recent National Security

Survey [3] it was pointed out that forty percent of all incidents reported by the 7,818

respondents (representing 36,000 US businesses) were attributed to insiders. Further, nearly

seventy-five percent of all cyber theft was attributed to insiders. Insider attacks can take

on many meanings, but they can be broadly classified as: 1) Malfeasors - Insiders that do

not have malicious intent and can unknowingly bring harm to an institution (e.g., a young

private connecting a video game system to a military network) or 2) False Insider - An

individual who is strategically planted inside of an institution (or planted devices) in order

to cause harm to the institution.

Given that traditional perimeter defense mechanisms (e.g., firewalls, signature- and

anomaly-based NIDS) are not effective against insider attacks, many institutions, have

begun to invest in technologies that have the ability to detect insiders. Network Access

1



Control (NAC) is one of the popular approaches used by many organizations to prevent un-

authorized access to their network. In general, such a system consists of a NAC clients that

uses port-based authentication (802.1x) in conjunction with a backend authorization server

(e.g., RADIUS server). While such a solution can provide reasonable security when clients

are installed on the device it is to protect, it has limited to no support for other networked

devices (e.g., Internet Protocol (IP) phones [4]). Moreover, with the move towards an

Internet of things and with a constantly evolving threat landscape, it is unlikely that vendors

will develop and support NAC clients for dozens of architectures and OS variants.

This lack of support for architecture and OS diversity can be seen today, with popular

vendors NAC solutions (e.g., McAfee, Symantec, Cisco) only fully supporting Windows and

just recently Mac and Linux OSs. A point of attack for a skilled attacker is to insert a device

that appears to be a printer (or any other unmanageable device) on the network. This threat

is especially heightened when we consider that insiders have the correct credentials to access

the network. Thus, in addition to defending against malicious processes or components of

known trusted devices with NAC clients, a solution is needed to ensure that rogue devices

cannot be inserted into the network (posing as unmanageable nodes), even if the insertion

is executed by an insider who possesses the proper network credentials.

1.1 Research Objective

The objective of this thesis is to 1) develop a modular fingerprinting framework that can

be used to integrate a wide variety of fingerprinting techniques such as OS fingerprinting,

device fingerprinting, etc.; 2) analyze in detail and improve an existing device fingerprinting

technique; 3) implement this technique as a deployable module (GTID) and integrate it into

the framework, along with existing techniques such as OS fingerprinting, etc.

The general trend with the works published in the area of fingerprinting is that, they

are all stand alone techniques designed specifically for a single type of fingerprinting (e.g.,

OS fingerprinting). Such standalone techniques have some limitations which render them

less useful in one or more scenarios. This research is novel in that it presents a finger-

printing framework that can be used to combine a variety of such standalone fingerprinting

2



techniques to improve the overall robustness and performance of system fingerprinting.

In addition to this, the thesis proposes a device and device type identification technique

(GTID) with significant analysis and improvements to address the limitations of an existing

technique described in [1].

1.2 A Summary of Contributions

This thesis is an encapsulation of two major contributions. The first contribution is the

development of a deployable framework for system fingerprinting and the second contribu-

tion is GTID, a technique for device and device type fingerprinting. These contributions

are explained below.

1.2.1 Fingerprinting Framework

The framework’s design focuses on ways to combine multiple fingerprinting techniques such

that the overall strength is greater than the cumulative strengths of the standalone tech-

niques. The proposed framework has three major modules. The first module is called the

Monitoring-Module, which consists of tools that aid in the process of setting up network

interfaces cards and capturing network packets. The framework currently supports Wifi

and Ethernet interfaces, however the framework is modular and can be extended to support

other interfaces such as Universal Serial Bus (USB), Universal Software Radio Peripheral

(USRP) and more. The Identification-Module houses a list of identification sub-modules

that can work independently and feed results to the next stage. These sub-modules use the

monitoring tools provided in the Monitoring-Module to sniff packets or to send out specially

crafted traffic to the target system. At present, three sub-modules have been implemented

in the Identification-Module. The first is OS fingerprinting, which uses Nmap [5] as the

underlying program. The second sub-module is GTID, which has been implemented from

scratch. This sub-module will serve the purpose of fingerprinting devices and device types.

MAC-lookup is another simple sub-module that has been implemented. This uses IEEE’s

OUI List [6] in addition to a XML database to map MAC address to hosts/make. The third

and final module is the Decision-Module which will collect and processes the results fed in

by the Identification-Module. Using the stored results, the decision module will be able to
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send useful feedback to the identification tools. For example, OS results from the Nmap

sub-module can be sent as feedback to GTID, which can then wisely select a subset of the

available signatures. This will in turn help in reducing the number of false positives. This

framework also provides a graphical user interface that can be used to select target hosts,

apply identification techniques and to present results.

1.2.2 GTID: A Technique for Physical Device and Device Type Fingerprinting

GTID is a technique for device and device type fingerprinting. This work was motivated

by [1], which uses information leaked by the physical implementation of a device through

its network traffic to identify a device and a device’s type. This technique relies on the

use of statistical analysis to measure time-variant behavior in traffic and to create unique,

reproducible device and device type signatures. However, the work presented in [1] has the

following limitations that we address through this contribution.

Limitations:

1) The work presented in [1] only provides a preliminary study of feasibility and does not

perform extensive analysis on real networks. Such analysis is important given the fact that

inter arrival times (IATs) can be easily affected by both, physical and MAC layer contention.

2) Their proposed technique provided average results when used to analyze traffic on a real

network. This has been improved using a new technique that involves the use of pattern

recognition neural networks.

3) The original technique does not have the capability to identify unknown devices/types

(i.e., devices/types for which no signature exists in the master database). This has been

made possible through this work.

4) The authors of [1] focus only on wireless networks, however this work extends the analysis

to wired networks.

In addition to the above contributions, this work also looks into the effect of clock

skews on network traffic, possible counter measures to the proposed technique and into
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a deployable implementation that can be integrated into the Identification-Module of the

proposed framework. The primary weakness of this technique, as with most works that rely

on fine-grained packet timing, is that the timing is lost as a result of buffering in switches

and routers. Therefore, this technique is not suited for identification across the Internet.

Rather, it is perfectly suitable for the significant challenge of local network access control.

1.3 Thesis Outline

The remainder of this thesis proceeds as follows. In, Chapter 2 the related works are

presented followed by a description of the framework in Chapter 3. GTID is discussed in

Chapter 4, and the thesis concludes in Chapter 5 with discussions on the future work.
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CHAPTER II

RELATED WORK

The existing work in this area can be placed into four broad categories, namely, OS finger-

printing, device type fingerprinting, physical device fingerprinting and application finger-

printing.

The work in the category of OS fingerprinting, differentiates different OSs based on

different features of the protocol stack. Nmap [5] and Xprobe [7, 8] are active fingerprinting

tools that create special test packets to determine which OS is being used by the target. In

contrast to the aforementioned active approaches, p0f [9] uses TCP/IP protocol information

to passively determine the OS. SinFP [10] is an active and passive OS fingerprinting tech-

nique that bypasses some of the emerging limitations of Nmap (i.e., working with PAT/NAT

configurations and emerging packet normalization technologies). Such techniques can be

used by an adversary to launch OS specific attacks on target systems or can be used for

automating security tests in industries that use Supervisory Control and Data Acquisition

(SCADA) systems [11]. However OS fingerprinting techniques do have their own limitation.

The authors of [12] claim that there are four major factors that significantly limit the use-

fulness of automated OS fingerprinting techniques. First, is over fitting of fingerprints to

non-OS-specific behavioral differences; second, is in-distinguishability of different OS vari-

ants; the third, is biasing of an automatic tool to the makeup of the training data; and the

fourth, is lack of ability for an automatic tool to exploit protocol and software semantics.

In addition to having natural limitations, OS fingerprinting techniques can also be evaded

using counter measures like the ones discussed in [13, 14]. Although the methods described

above are quite effective for OS fingerprinting, the goal of the GTID sub-module is to dif-

ferentiate device hardware and device types. Also, since our framework combines GTID

and OS fingerprinting, it has the combined advantage of both techniques which renders it

useful for both OS and device hardware fingerprinting.
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The second category of fingerprinting is host or physical device fingerprinting. Seminal

work in this area was introduced by Kohno et al. in [15]. In [15], a method for remotely fin-

gerprinting a physical device by exploiting the implementation of the TCP protocol stack

was proposed. The authors use the TCP timestamp option of outgoing TCP packets to

reveal information about the sender’s internal clock. The authors’ technique exploits mi-

croscopic deviations in the clock skews to derive a clock cycle pattern as the identity for a

device. The authors of [16] take a similar approach of that in [15] (i.e., using clock skew

to uniquely identify nodes), however the goal of [16] is to uniquely fingerprint APs. Also,

instead of getting the timestamp from TCP packets, they obtain the timestamp from 802.11

beacon frames. Because of the use of the 802.11 beacons, this approach only works for AP

fingerprinting, whereas GTID is capable of working for general devices such as laptops,

tablets and cell phones. There have also been physical layer approaches to fingerprint wire-

less devices. Radio frequency (RF) emitter fingerprinting uses the distinct electromagnetic

(EM) characteristics that arise from differences in circuit topology and manufacturing tol-

erances. This approach has a history of use in cellular systems and has more recently been

applied to Wi-Fi [17] and Bluetooth [18] emitters. The EM properties fingerprint the unique

transmitter of a signal and differs from emitter to emitter. Such techniques require expen-

sive signal analyzer hardware to be within RF range of the target. In contrast, GTID, and

thus our framework, requires only a network tap at a switch to capture traffic on a wired seg-

ment that could be a hop downstream. Moreover, GTID fingerprints devices independent of

the protocol and does not require deep packet inspection (e.g., timestamps). In contrast to

[15], the GTID sub-module is better positioned for scalability, does not compromise privacy

and works on IP level encrypted streams. In general, a major difference between the works

in this category and GTID is that the techniques presented here only fingerprint devices,

not both devices and device types. Also, the proposed technique will be able to classify a

previously unseen device to be Unknown, which is an unique feature not present it other

techniques discussed above. Given that GTID is a sub-module of the proposed framework,

it too shares the above advantages in addition to being able to fingerprint OSs, etc.

Another body of work that is very important is device type fingerprinting. The main

7



objective of the techniques in this category is to be able to remotely identify a specific device

type. In [19], the authors fingerprint wireless AP types by probing them with various regular

and malformed packets. Along similar lines, the work discussed in [20], introduces a device

fingerprinting technique that can detect the type of wireless AP that a traffic stream passes

through. It relies on distinct patterns (from the hardware composition of the device) that

are generated in the network traffic as a result of specially crafted data streams. Wavelets

were used to extract the signatures of the device types from the data stream. Both of these

are active techniques and have the limitation that they can only fingerprinting wireless AP

types. The authors in [21] use timing information between commands and responses on

the Universal Serial Bus (USB) to distinguish between variations in model identifiers, OSs

(and sometimes OS version number), and whether a machine is answering from a real or

virtual environment. The obvious limitation of this work is that it requires one to be in

physical possession of the device. The authors of [22] propose a technique for device type

behavioral and temporal fingerprinting. They model a specific protocol implementation (i.e.,

the Session Initiation Protocol - SIP) and create a behavioral fingerprint using a Temporal

Random Parameterized Tree Extended Finite State Machine (TRFSM). Their technique

can learn distinctive timing patterns of the transitions in the SIP protocol’s state machine.

These timing patterns for the state machine can be detected by observing the difference

between various outgoing and incoming SIP messages of the device being fingerprinted.

In their early work [23], their technique required knowledge of the entire syntax of the

protocol. However, in [22] this requirement is relaxed as they only need a corpus containing

SIP sessions. The authors of [22, 23] develop a real-time approach and discuss deploying

their techniques in [24]. The disadvantage of this technique is that it is limited to a specific

application layer protocol - SIP (similar to the limitations of [15, 16]). The technique

proposed in [1] uses the differences in the statistical characteristics of inter arrival times of

the packets to identify the type of device that is generating the traffic. Such an approach was

shown [1] to overcome some of the limitations faced by other techniques in this category

of fingerprinting. Moreover, this technique has also been shown to work across different

traffic types, which means it is not protocol dependent akin to the techniques proposed in
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[15, 16, 25]. Finally, due to the nature of the core feature that is used, this technique is able

to work across a variety of device types, and is not limited to a specific type of device, which

is the case in [19, 20]. In general, a major difference between the work in this category and

the GTID sub-module is that the techniques presented here only fingerprint device types,

not both devices and device types. Moreover, GTID also address some of the limitations

of the work presented in [1]. A detailed explanation of the drawbacks and our method of

attack is explained in Chapter 4. Since, GTID is a part of the proposed framework, the

framework will be able to fingerprint both physical devices and device types in addition to

fingerprinting OSs, etc.

The next class of fingerprinting deals with the identification of application traffic. The

techniques proposed here can be further sub-classified as session-based, content-based and

constraint-based techniques. The session-based and content-based methods require prepa-

ration and training before the technique can be made ready to use. In addition to that,

the signature details need to be updated as and when the protocol or application behavior

changes. Well known port matching can be seen as a simple example of a session-based

traffic identification technique. Here the traffic of interest will be mapped to an application

based on the details provided in [26]. More advanced techniques in this area are discussed in

[27, 28]. The content-based techniques try to identify payload contents that are static and

unique for a given application. This is then used as a signature to classify unknown traffic.

The problem with such an approach is that it may fail with payloads that are encrypted

or when the application undergoes a version update. The constraint-based traffic identifi-

cation method can be seen as a subclass of session-based techniques. The major difference

of the constraint-based methods is that they do not require any application-level protocol

information. These methods use statistical techniques such as statistical signatures [29] or

supervised machine learning [30] to map traffic into a specific set of predetermined clusters.

These clusters are usually formed by applying constraints on traffic characteristics such as

flow duration, average packet size of a flow, packet inter arrival time and more. Clearly,

this category of work is orthogonal to the sub-module GTID which focuses on fingerprinting

physical devices and device types. However, these techniques can still be very useful for

9



fingerprinting networked systems and might be integrated as a part of our framework in the

future.

Almost all the fingerprinting techniques that we have discussed above are standalone

techniques and this has been the general trend with the works published in this area of

research. The framework for system fingerprinting in general and the design ideas on in-

tegrating multiple standalone fingerprinting techniques, are novel, and to the best of our

knowledge there is no prior work that has addressed these specifically. Further, our de-

vice and device type identification sub-module (GTID) overcomes several aforementioned

limitations of existing device / device type fingerprinting techniques.
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CHAPTER III

A FRAMEWORK FOR SYSTEM FINGERPRINTING

The proposed framework is discussed in this chapter with insights into the motivation behind

this contribution and scenarios where such a framework can be useful.

3.1 Motivation

As discussed in Section 2, most of the works published in this area of research have concen-

trated in the development of standalone techniques. The design goals of such techniques are

focused primarily on a single type of fingerprinting (e.g., device fingerprinting). While such

an approach is good for serving the needs of a particular application, it cannot be used for

broader needs such as fingerprinting networked systems. For example, an OS fingerprinting

technique provides very little or no information related to a system’s hardware. Also, each

technique has one or more limitations that renders them less useful in certain scenarios.

For example, the RF-based device fingerprinting technique requires the target system to be

in wireless range of the detection device. This is not always possible, and in such cases one

could use alternate techniques proposed in [15] to fingerprint devices. In addition to this,

the targeted system can also use some form of counter measures to evade a fingerprinting

technique. As an example, a simple MAC lookup technique can be easily evaded by an

attacker who spoofs the MAC address of his network interface card. However, it is very

unlikely that a given scenario or a counter measure will evade a group of fingerprinting

techniques, each of which uses a different detection algorithm. This serves as the primary

motivation for developing a fingerprinting framework that can integrate multiple standalone

techniques in a manner, where the overall strength is greater than the cumulative strengths

of individual techniques.
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Figure 1: Overview of the Framework

3.2 Overview of the Framework

As mentioned earlier, the central objective of this framework is to enable the integration of

various fingerprinting techniques that are available now and also those that will be available

in the future. To achieve this, the framework has been modularized into three segments:

the Monitoring-Module, the Identification-Module and the Decision-Module. An overview

of the framework is shown in Figure 1. The solid boxes in Figure 1 refer to modules that

have been currently integrated, and those in dotted boxes show possible extensions. The

following sections discuss in detail each of these modules and the components that have

been currently integrated into the framework.

3.3 Monitoring Module

The Monitoring-Module performs two primary tasks. The first task is to monitor network

traffic in one of the supported interfaces and the second is to generate and send out spe-

cially crafted packets. This may include packets with abnormal flags, SYN packets, etc.

Tcpdump [31] is currently integrated into this module to enable the monitoring of traffic

from within the framework. Tcpdump is a popular packet analyzer that can be used to

intercept and capture packets on interfaces such as that for Ethernet. The next tool that is

integrated into this module is Nmap [5]. Nmap is a popular open source OS fingerprinting
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tool used for network exploration and hacking. It is capable of both probing as well as

fingerprinting, however the probing capabilities of Nmap are most relevant to this module.

In addition to housing techniques for monitoring and probing, this module also brings

with it tools that are required to set up the network interfaces. As shown in Figure 1, this

is the only module that is in direct contact with the network interfaces. One such tool

that is currently integrated into this module is Airmon-ng [32]. This tool aids in setting up

virtual interfaces and in configuring wireless NICs to monitor traffic in promiscuous mode.

This brings us to the list of interfaces that are currently supported by this framework. As

shown in Figure 1, the framework currently supports Ethernet and Wifi interfaces. However

this can be extended in the future to include Universal Serial Bus (USB), Software Defined

Radios, bluetooth, etc. Such an expansion will also aid identification techniques such as

[21] and [17] respectively.

3.4 Identification Module

The Identification-Module is the heart of this framework. This module is responsible for

performing different types of fingerprinting and houses a number of identification techniques.

Currently, three such techniques have been integrated into this module. The first is GTID,

a tool that was developed as a part of this thesis. This tool is capable of both device

and device type identification. It uses trained neural networks to recognize previously seen

timing patterns in network flows, to identify both the device and the device’s type. A more

detailed explanation and analysis of this tool can be found in Chapter 4. The next tool is a

simple MAC look up module, which was also developed as a part of this work. It uses IEEE’s

OUI list [6] to map a particular MAC address to a company or make. This sub-module

also has a simple XML database which can be used to store known MAC addresses and

information related to it. The tool queries both places, with higher priority on the custom

built XML database. The third and final sub-module that is currently supported is OS

Fingerprinting. This sub-module uses Nmap [5] as the underlying program to fingerprint

OSs. It has its own database of signatures that it uses to match the OS of the target

host. As observed from the above discussion, each fingerprinting sub-module is completely
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independent from one another, and uses different techniques and separate databases. One

of the main objectives of the framework is to derive a way to integrate such stand-alone

modules in a way that they can work hand-in-hand. The way this is done is by using a

centralized Decision-Engine which is briefed in the next section.

3.5 Decision Module

This module aids in combining techniques that are available in the Identification-Module

in a way that helps them work together. It houses a centralized database that holds the

results obtained from each of the ID techniques. These results are properly categorized

and mapped to their respective technique. For example, MAC look up and GTID give out

the results for device ID. In this case both of these results are categorized under device ID

and each of them will be mapped to the respective technique. This helps in implementing

weights which represent how dependable the results are from a particular technique. The

GUI provides users control over the weights which are customizable. As an alternative,

one may chose a network scenario, from a list, which auto configures the weights according

to the selected scenario. For example, if the user is very sure about the integrity of the

network, he or she can set a high weight for MAC lookup (using the customize option) or

use a network scenario from the provided list that closely reflects the network’s climate.

As shown in Figure 1, the decision engine has a feed back path that is used for conveying

information back to the Identification-Module. Using this, the decision engine will be able

to send back information that aids in the trimming of master databases used by the identi-

fication sub-modules. For example, when one applies OS fingerprinting on a specific target,

the decision engine caches this information. Now, when GTID is invoked, the decision en-

gine passes the OS information to GTID, which will then be able to cherry pick the list of

masters signatures that run that specific OS. This has two major advantages. First, it helps

in improving the accuracy of the identification techniques (the smaller the number of master

signatures, the smaller the probability of false positives). Second, it helps in reducing the

identification times of the techniques (the smaller the number of masters signatures, the

smaller the processing time). Currently, this feature has been incorporated into GTID and
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Figure 2: Screen-shot of framework prototype

will be extended to other techniques. The decision engine also interfaces with the GUI to

display the final results in a very concise manner. It uses the provided weight and confi-

dence measure of the result to compute the overall confidence of the output generated by

a particular identification technique. For example, if the user assigns a weight of 60% to

GTID and if GTID produces a result with 80% confidence, then the overall confidence of

that particular outcome or result is measured as the product of the two confidence values,

which is 48%. Finally, the Decision-Module uses these confidence measures to display the

results for each system parameter (such as OS, ID, Type, etc.).

Figure 2 shows a screen-shot of the framework prototype that was developed. The way
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this operates is as follows. At first, the user types in the network address that is to be

scanned in the input box (marked 1). Then the user clicks “Scan Network” (marked 2)

which tabulates the list of devices (marked 3) that are up in the scanned network. The user

can now select a target system from the list shown under “Scan Results” (marked 3) and

apply any of the available ID techniques (marked 4). When an ID technique is selected, the

tool displays related options on the right (marked 5). The screen-shot in Figure 2 shows the

options that are available for GTID sub-module, which includes a slide-bar for setting the

confidence level. After setting up the ID technique, the user clicks “Apply ID” (marked 6)

which gives out the ID result under “Decision Outputs”. The screen-shot in this case shows

OS Fingerprinting and MAC Lookup applied on three targets, and GTID applied on the

first target alone. The outcomes listed under “Decision Outputs” (marked 7) are concise

results generated by the decision algorithm. To view detailed results about a specific target,

the user clicks the target under “Decision Outputs” (marked 7) and this generates a more

elaborate result under “Device Details” (marked 8).
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CHAPTER IV

AN IDENTIFICATION SUBMODULE FOR DEVICE AND DEVICE

TYPE FINGERPRINTING

4.1 Motivation

An important requirement in managing a network is to be able to identify the nodes that

are connected or attempting to connect. This is required to implement NACs that authen-

ticate devices using software clients, login credentials or rely on innate characteristics for

identification. The problem with using such techniques are 1) software clients - it cannot

be installed on all devices (e.g. embedded devices such as IP-Cameras or Sensor Nodes); 2)

login credentials - authenticates only the users and not devices, which is not secure (Fig-

ure 3); 3) innate characteristics - these parameters can be easily faked (e.g. spoofing of IP

Address or MAC Address). To overcome some of these limitations, the authors of [1] pro-

posed a technique to fingerprint device types using statistical analysis on the inter packet

arrival (IAT) times. Such an approach is passive (does not require a client software) and is

difficult to fake. However in order for the technique to be used for access-control it needs

to be able to identify devices and not just the types. Moreover, the work presented in [1]

only provides a preliminary study of feasibility and does not perform extensive analysis on

real networks. Such analysis are important given the fact that IATs can be easily affected

by both, physical and MAC layer contention.

The work presented in this chapter address the above issues through extensive analy-

sis of the technique on a real campus network. During the initial phase of this analysis,

it was found that the technique proposed in [1] did not perform well under real network

conditions. Thus, a number of other processing techniques in the area of signal process-

ing, machine learning and pattern recognition were evaluated. This analysis revealed the

suitability of pattern recognition neural networks, which shows acceptable levels of perfor-

mance for both device and device type identification. The experimental results obtained
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Figure 3: Problem with 802.1x

using neural networks show a significant improvement over the original technique. More-

over, for a detection technique to be of practical use, it needs to be quick and accurate.

High accuracy with high latency may lead to correct, but less useful results. In order to

study the detection speed of this technique, a prototype version of GTID was developed in

MATLAB and its performance was tested.

4.2 Background

Figure 4: Packet flow in hardware

Device packet creation is a complex process. This process involves many internal parts

of the node working together. Before a packet can be sent, the instruction set that initiates

the process must be extracted from the memory hierarchy (LI/L2 cache, main memory,

hard disk) and sent to the CPU for execution. The OS then directs the CPU to create a

buffer descriptor in main memory, which contains the starting memory address and length of

the packet that is to be sent. Multiple buffer descriptors are created if the packet consists
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of multiple dis-contiguous regions of memory. The OS then directs the CPU to write

information about the new buffer descriptors to a memory-mapped register on the network

interface card (NIC). These data traverse the front side bus through the Northbridge to

the PCI bus. The NIC initiates one or more direct memory access (DMA) transfer(s) to

retrieve the descriptors. Then, the NIC initiates one or more DMA transfer(s) to move

the actual packet data from the main memory into NIC’s transmit buffer using the address

and length information in the buffer descriptors. These data again leave the front side bus,

and travel to the NIC through the Northbridge and the PCI bus. Finally, the NIC informs

the OS and CPU that the descriptor has been processed. Then, the NIC sends the packet

out onto the network through its medium access control (MAC) unit [33]. A diagramatic

representation of this is shown in Figure 4.

Figure 5: PDFs of IATs for different CPU configurations

Assuming that the effect of the OS can be abstracted, one can see that the major

components that affect the creation of packets are: the CPU, L1/L2 cache, physical memory,

the direct memory access (DMA) controller, the front side bus, the back side bus, the

PCI bus, and the NIC. The opportunities for diversity are both at the device level and

at the component level. At the device level, different vendors use different components

with different capabilities and algorithms (e.g., Dell Latitude 2110 with Intel Atom N470

processor @ 1.83GHz vs. Lenovo G570 with Intel Core i5-2430 processor @ 2.4GHz) to
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create a device’s internal architecture. Accordingly, the packet creation process varies across

architectures aiding device type identification. The author of [34] has studied the variation

in IAT patterns for different CPU configurations and clock frequencies, the results of which

are presented in Figure 5 and 6. Figure 5 shows the difference in the IAT patterns for

two cache configurations (cache-config 1: data cache size 4KB, instruction cache uses LRU

replacement algorithm; cache-config 2: data cache size 8KB, instruction cache uses Random

replacement algorithm), and Figure 6 shows the result for two different clock frequencies.

These experiments clearly demonstrate the impact of hardware configuration on packet

IATs.

Figure 6: PDFs of IATs for different clock frequencies

Moreover, microscopic differences in the clock frequencies (clock skews) also contribute

to the differences in the timing pattern. For example, assume Asus netbooks take x CPU

cycles to sleep for 10ms and generate a 56 byte ping packet, and f1 and f2 are the clock

frequencies of two Asus netbooks, then the difference in the time taken to generate a packet

is x(f2 − f1)/(f1f2). This value will be reflected as average differences in the inter arrival

times (IATs) between two devices. Figure 7 shows a plot of average IAT values, of 5 identical

Asus netbooks generating 56 byte ping packets at 10ms intevals. The x-axis denotes the

sample numbers, where each sample consists of 2.5K ping packets. For instance, 20 samples

will have 50K ping packets in total. The average IAT of packets in each sample is shown
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on the y-axis. A clear difference in the average IATs of each of the 5 Asus netbooks can be

noted, even though they all belong to the same type. These minor variations in the average

IATs can affect the frequency count, which in-turn will result in different signatures for each

device. These two are among several possible reasons which enables device identification.

Figure 7: Effect of clock skew on inter arrival times (IATs)

4.3 Overview of the Technique

This section introduces the major components of GTID and discuss the algorithm used to

identify devices and their types. Further, it articulates the technical methods that were

used in evaluating the overall performance of the technique.

4.3.1 Components of the Technique

In this setup, a wireless device transmits data over the air to an AP. The AP forwards data

over its wired interface towards the final destination. GTID passively collects traffic on a

wired segment between the AP and the final destination to identify the type of wireless

client. As depicted in Figure 8, GTID consists of four major components: feature extrac-

tion, signature generation, similarity measure and enroll.

Feature Extraction : As traffic is collected, the feature extraction process measures

traffic properties successively in time. Example measurements include inter-arrival time
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(IAT), round-trip-time (RTT), and packet size. The resulting feature vector is a time series

of values passed to the signature generation process for time-series analysis. When selecting

a feature to measure, it should preserve the information pertinent to the type of device and

capture discriminating properties for successful classification. This analysis uses the packet

IAT as the feature for fingerprinting a physical device. IAT measures the delay (∆t) between

successive packets and characterizes the traffic rate. The IAT feature vector is defined as:

f = (∆ t1,∆ t2,,∆ t3, ...,∆ ti) (1)

where ∆ ti is the inter-arrival time between packet i and i−1, and the first collected packet

is i = 0.

Figure 8: Overview of GTID

Signature Generation : The signature generation process uses statistical analysis to

reveal patterns embedded in the traffic measurements. This method adopts a time-domain

method for signature generation, which relies on the distribution of the IAT feature vector.

Distributions capture the frequency density of events over discrete intervals of time. Due to

the periodic nature of network traffic, distributions are a useful tool for traffic analysis. The

frequency count is defined as a vector that holds the number of IAT values falling within

each of the N equally spaced bins. Dividing the frequency count by the total number of

IAT values produces the probability distribution, p, which is the fingerprint. The interval

of time for a bin is refered to as its bin width, so the edges of the interval for the nth bin

are (binstart + (n − 1) ∗ binwidth) and (binstart + n ∗ binwidth), where binstart is the

minimum inter arrival time accommodated in the distribution.
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Algorithm 1 Device ID and Type Identification
1: Identify − ID − Type()
2: begin
3: ΘID,ΘType, Devlist, T ypelist ←MastersDB(Traffic Type)

4: ~λID, ~λType ←MaskingV ectors()
5: S ← IAT Sample()
6: Ω← generate signature(S)

7: ~outID ← ~λID ∗ ~sim(ΘID,Ω)
8: index, closeness← max( ~outID)
9: X ← 10 percentile TP (Devindex

list )
10: if (closeness > X)
11: return Devindex

list , Corresponding Type
12: else
13: ~outType ← ~λType ∗ ~sim(ΘType,Ω)
14: index, closeness← max( ~outType)
15: X ← 10 percentile TP (Typeindex

list )
16: if (closeness > X)
17: return Unknown, Typeindex

list

18: else
19: return Unknown,Unknown
20: end if
21: end

The device signature is sensitive to the bin width and different bin widths will reveal

different information about the feature vector. Smaller bin widths cause fewer IAT values

to occur within a particular bin, and what may appear to be meaningful information may

really be due to random variations in the traffic rate. Conversely, larger bin widths may

omit important information, aggregating information into fewer bins that might otherwise

help to discriminate between two different devices. Based on the experiments, N = 300 was

emperically determined to be an ideal choice for all traffic types tested in this paper. This

value of N is then used to determine the binwidths for each traffic type.

Similarity Measure : Once signatures are generated, it is passed through trained neural

networks that are present in the master database. This yields closeness values between 0

and 1 for each device in the database (note that 1 denotes a perfect match). These values of

closeness or similarity measures are used to compare an unknown signature to the master

signatures, which are essentially a collection of previously seen signatures.

Enroll : Signatures generated in step one are used to train Artificial Neural Networks

(ANNs) which registers the pattern and in essence enrolls that device or device type. ANNs
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are basically computational models inspired from biological neural networks and they imi-

tate them both structurally and functionally. An ANN consists of a group of interconnected

computational units called neurons. These neurons take in inputs and transform them ac-

cording to a specified activation function to generate an output. The technique uses ANNs

that belong to a class called feedforward networks, where there is only a one-way connection

from the input to the output layer. ANNs belonging to this class require supervised training

and are commonly used for prediction, pattern recognition and nonlinear function fitting.

The feedforward ANN is configured to use scaled conjugate gradient backpropagation as the

training function. The basic backpropagation algorithm adjusts weights in the steepest

descent direction (negative of the gradient). This is the direction in which the performance

function is decreasing most rapidly. It turns out that, although the function decreases most

rapidly along the negative of the gradient, this does not necessarily produce the fastest

convergence. In the conjugate gradient algorithms a search is performed along conjugate

directions, which generally produces faster convergence than steepest descent directions. It

should also be noted that the proposed technique uses sigmoid hidden and output neurons

which are ideal for pattern recognition. These produce a value between 0 and 1, where 1

denotes a perfect match in our case.

Figure 9 shows an example of an ANN that can be trained to classify M different device

or device types using signatures having N bins. This is a multi-layer feedforward ANN

which consists of an input layer, a hidden layer and an output layer. In this case, the

input layer takes in a vector of size N (b1 to bN ), and produces an output vector of size M

(d1 to dM ). The elements of the input vector correspond to the values in the probability

distribution (signature) and the elements of the output vector correspond to the similarity

measure between the input signature and the M device or device type signatures that it was

trained on. The number of hidden nodes P , that provide optimum results was emperically

determined to be 50. Two neural networks of this kind are used for each traffic type that is

analyzed. One is trained for device identification while the other is trained for device type

identification. Once trained, the neural networks (Θ) are stored in a master database for

future use.
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Figure 9: Sample Neural Network

4.3.2 Classification

As explained earlier, GTID compares a device in question with previously collected master

signatures and identifies the device in question and/or its type. The successful identification

of an unknown device with one of the master devices is refered as Device Identification and

the identification of the unknown device’s type with one of the master device types is refered

as Device Type Identification. For instance, GTID may have a collection of master signatures

for two identical Kindles. In this case, there will be two master device IDs (Kindle#1 and

Kindle#2) and one device type (eReader). Hence, given a set of master signatures, there

would be three applicable outcomes in identifying a device and its type.

Figure 10: CDF plot of closeness value for kindle fire - TCP traffic
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In the first one, GTID successfully recognizes the unknown device and its device type

because the samples from the unknown device match either one of the master signatures

of a device or master signatures of a device type in the signature database. In the second

one, GTID is not able to find a match for a given device and device type in the signature

database. Therefore, in this case, the sample device is classified as an unknown device. The

third outcome represents a case between the first two outcomes as the system is able to

identify the device’s type, but not the actual device associated with the tested device.

GTID’s core algorithm is shown in Algorithm 1. Based on the type of traffic (Table 3),

the system extracts the neural networks (ΘID, ΘType) and lists (Devlist, T ypelist) from

the master database (line 3). Masking vectors are then generated according to the subset

of master signatures that is used for comparison (line 4). The system then extracts the

unknown signature Ω from the unknown sample S (lines 5− 6). Once this is extracted, the

system feeds it into the device ID neural network (ΘID). The masked output generated by

the neural network is then used to get the index and the corresponding value of closeness

(lines 7−8). The closeness values range between 0 to 1, where 1 denotes a perfect match. If

the value of closeness fits the previously observed True-Positive (TP) closeness values (X),

the unknown signature is identified as the device pointed by the index and its corresponding

type (lines 9− 11). If not, similar steps are performed to get the index and closeness value

for device type using ΘType (lines 12−14). If the device type closeness satisfies the condition

in line 16, the system identifies the unknown signature to be from an Unknown device and

a known category pointed by the index, else the signature is identified to be from an

Unknown device and an Unknown type (lines 15 − 19). Note that the TP values used to

determine X come from a database of TP values which was created using a separate dataset.

Thus, GTID checks to see if the closeness value fits the previously seen TP distribution of

the master signature in order to determine whether a signature is classified as known or

unknown. An example distrubution of TP history for Kindle (device) and eReaders (device

type), along with the cutoff TPs Xdev and Xcat is shown in Figure 10. From the Kindle and

eReader TP distributions in Figure 10, it can be observed that device (Kindle) TPs (red

line) are more often closer to 1, compared to the device type (eReader) TPs (green line).
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The clearly observed difference in the distribution patterns of device TP, the device type

TP and TN from other devices (Figure 10) is in fact due to heterogeneity of the different

hardware composition (e.g., processor, DMA controller, memory) of the devices as well as

clock skew and possibly the intrinsic variation in the chip fabrication process. Therefore, a

tested device is first expected to be closest to its own signature, next to its type signature,

then to other devices, assuming the existence of a match for the signature of the tested

device.

4.3.3 Metrics for GTID’s Effectiveness

The performance of GTID is evaluated using accuracy and recall as our metrics similar to

[35]. Accuracy is defined as:

α =
TP + TN

TP + TN + FP + FN
, (2)

where TP, TN, FP, and FN refer to True Positive, True Negative, False Positive, and False

Negative, respectively. The analysis uses accuracy to measure the overall performance of the

proposed system. Recall is the measure of identifying an actual device and it is statistically

defined as:

γ =
TP

TP + FN
. (3)

The analysis use both accuracy and recall because the sole usage of accuracy is mis-

leading when analyzing certain types of test cases (e.g., for test cases that do not allow the

entire cohort to contribute to all of the statistics). This is because accuracy, as shown in

Equation 2, requires statistics from the entire cohort of devices (i.e., TNs). This informa-

tion may not be available for certain experiments (i.e., different protocols on one device).

Hence, recall makes the evaluation independent of the impact of the other TNs and yields

a realistic performance focused only on TPs. Nonetheless, accuracy is still useful, for in-

stance, in analyzing the behavior across different traffic types of the entire cohort. Thus, in

the Performance Evaluation Section, accuracy is only populated where appropriate in the

results.
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Table 1: Isolated Network Device Specifications
Device Device ID Model Hardware Specification Operating System Kernel

Netbook

Dell 1
DELL Intel Atom N470 Ubuntu 10.04.1 LTS Kernel 2.6.32-24Dell 2

Latitude 2110 @ 1.83GHz 1GB RAM /Windows XP -genericDell 3
Dell 4
Dell 5

Nokia
Nokia 1

N900
ARMv7 rev 3 (v7l) Maemo 5, Version Kernel 2.6.28

Nokia 2 @ 600MHz 256MB RAM 3.2010.02-8 - omapl

iPhone3G
iPhone3G 1

MB715LL (A1303)
A4 processor @ 1GHz

iOS 4.0 (8A293) Kernel 10.3.1
iPhone3G 2 512MB eDRAM

iPhone4G
iPhone4G 1

MC608LL (A1332)
A4 processor @ 1GHz

iOS 4.3.3 (8J2)
Kernel 11.0.0

iPhone4G 2 512MB eDRAM /Firmware 04.10.01

iPad
iPad 1

MC497LL
A4 processor @ 1GHz

iOS 4.3.5
Kernel 10.3.1iPad 2

256MB DDR RAM
iOS 3.2.2

iPad 3 iOS 3.2.2

Table 2: Campus Network Device Specifications
Device Device ID Model Hardware Specification Operating System Kernel

Asus Netbook

AS1

Asus EeePC 1025C
AS2 1.6 GHz Intel Atom processor-N2600 Ubuntu 12.04 (32 bit) Linux 3.2.0-29
AS3 1GB RAM / Windows 7 (32bit) - generic
AS4
AS5

Lenovo
L1

Lenovo G570
2.4 GHz Intel Core i5-2430M Ubuntu 11.04 (64 bit) Linux 2.6.38 - 13

L2 4GB RAM /Windows 7 (64 bit) - generic

Dell
D1

Dell Probook 4350s
2.4 GHz Intel Core i5-2430M Ubuntu 11.04 (64 bit) Linux 2.6.38 - 13

D2 4GB RAM /Windows 7 (64 bit) - generic

ASUS Tablet
T1 ASUS Transformer 1.0GHz NVIDIA Tegra 2

Android 3.2.1 Kernel 2.6.36.3
T2 TF 101 dual-core CPU 1GB RAM

Google Nexus G1
Nexus One

1 GHz Qualcomm QSD8250
Android 2.2

Kernel 2.6.32.9
One G2 Processor 512MB RAM Kernel 2.6.29

Kindle Fire
K1

Kindle Fire
1 GHz Texas Instruments OMAP

Customized Android 2.3
Firmware 6.2.2

K2 4430 dual-core processor; 512MB RAM Firmware 6.2.1

Apple TV
A1

ATV 1st Gen
Intel Pentium M processor OS Version 2.0

-
A2 256MB DDR2 RAM @400MHz based on Mac OS X

HP Printer
H1 HP Officejet

- RTOS -
H2 6500A Plus

D-Link C1
D-Link DSC 932L - RTOS -

IP-Camera C2

PS3
P1

CECH-3001A

CPU : Cell Processor PowerPC-base Core

XrossMediaBar Firmware Version 3.72
@3.2GHz. GPU: RSX @550MHz

P2
256MB XDR Main RAM @3.2GHz
256MB GDDR3 VRAM @700MHz

4.4 Performance Evaluation

This section evaluates the performance of GTID across three dimensions. First, the tech-

nique is analyzed in an isolated network environment (Figure 11). Traffic captures on this

setup was performed by the authors of [1]. The pcap files from their experimentation was

borrowed for analysis of the newly proposed technique. Second, the performance of GTID

is measured in a live campus network (Figure 13) during peak hours in both wireless and

wired setups. Finally, the effectiveness of GTID is studied under various attack scenarios.

4.4.1 Setup of Testbeds

Two automated testbeds were assembled to transmit and record traffic from the wireless

devices to the wired segment and vice versa. In the isolated testbed setup by the authors
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Figure 11: APL testbed setup

of [1] (Figure 11), a control machine (not shown in the figure) was used to send commands

to the different devices in the testbed for single and multiple hops scenarios. The device

under test was placed in an isolation box to reduce RF leakage and interference. For the

real network testbed (Figure 13), the AP and LAN destination were connected to a campus

backbone switch to test the device with real MAC and physical layer interference from other

wireless users in proximity, during peak hours. The same experiments were repeated using

the wired interface on devices, by connecting them directly into the back bone switch. A

total of 37 different devices, (Figure 12) were tested and the details of which are listed in

Tables 1 and 2.

4.4.2 Traffic & Signature Generation

Two generic applications were used to generate traffic in our testbeds. One was Iperf,

which was used to generate both TCP and UDP traffic at controlled rates, and the other

was Ping. The analysis also includes Active Fingerprinting for which IATs of ping responses

were used for characterizing a device. In addition to these, tests were performed using day

to day applications such as secure copy (SCP) and Skype. Table 3 presents the list of traffic

types and the associated parameters that were used for performance analysis.
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Figure 12: Devices used

The analysis uses one hour of traffic from each of these traffic types. The captures for

the devices listed in Table 1 was provided by the authors of [1], while the rest was captured

by us using the automated testbed shown in Figure 13. In addition to these, a few wireside

captures were also made to show that GTID can be applied for both wired and wireless

environments. This produces a total of 400+ hours (more than 500 gigabytes) of traffic

which was used to evaluate GTID. The first half of each capture is used for training the

ANN and the second half is used for performance analysis. The best sample size for a good

overall performance of GTID was empirically determined to be 2.5K packets.

GTID operates in two modes: Known and Unknown. The known mode refers to a case

where GTID attempts to recognize a previously seen device among other previously seen

Table 3: Traffic Types Used in Experiments
Exp # Active/Passive Traffic Type Traffic Case # Parameters

1

Passive

Iperf - UDP

1 -b 1M -t 3600 -l 56
2 2 -b 1M -t 3600 -l 1400
3 3 -b 8M -t 3600 -l 56
4 4 -b 8M -t 3600 -l 1400
5 Iperf - TCP 1 -t 3600
6 SCP 1 1.7 GB
7 Skype - UDP 1 Video
8

Ping
1 -s 56 -0.01 -c 360000

9 2 -s 1400 -i 0.01 -c 360000
10

Active Ping Response
1 -s 56 -i 0.01 -c 360000

11 2 -s 1400 -i 0.01 -c 360000
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Figure 13: Campus testbed setup

devices and therefore, has a master signature associated with the device in question. Hence,

in this case, GTID either correctly identifies the device and the device type (category) or

mis-identifies them. In the unknown mode of test, GTID is exposed to both devices it has

previously seen and devices that it has not previously seen. Hence, in this case, GTID does

not have the necessary master signature associated with a sample device tested. As a result,

if GTID does not recognize a device, it then identifies it as an unknown device, otherwise

it identifies the type and/or the device. The two different modes work best for different

scenarios. For example, in a benign network, the known mode, which has better accuracy

and recall, can be used for inventory control. However, in a network where access control

is a concern, GTID can be employed in unknown mode. Using the accuracy (α) and recall

(γ) metrics explained in Section 4.3.3, the overall effectiveness of our technique is analyzed

for these different modes. Nonetheless, as noted earlier, the performance analysis specific

to device IDs and device types, only focuses on γ, because α is inflated superfluously by

TNs. Note that this is not needed for results per traffic type because all traffic from devices

and types are aggregated for each traffic type; hence, results pertinent to both metrics are

included.
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4.4.3 Experimental Results from Isolated Testbed - Wireless

Table 4: Isolated Network Testbed (Passive Analysis)
Device ID Device Type

Known Unknown Known Unknown
Dev α γ α γ Type α γ α γ

Max Netbook #5 - 1.00 - 0.93 iPhone4 - 0.99 - 0.89
Min Iphone4 #2 - 0.74 - 0.66 iPhone3G - 0.15 - 0.18

Traffic Type Traffic Type
Max UDP 1400B 1Mbps 1.00 0.97 0.98 0.82 UDP 1400B 1Mbps 0.87 0.66 0.87 0.61
Min SCP 0.99 0.89 0.97 0.80 SCP 0.87 0.67 0.87 0.61
Avg 0.99 0.94 0.97 0.81 0.87 0.67 0.88 0.64

The captures generated by the authors of [1] were used to test the performance of

GTID in an isolated network environment (Figure 11). Conducting experiments in an

isolated network allowed for fundamental and deeper understanding of the overall technique.

Specifically, we seek to understand: (1) What is the overall accuracy and recall of this

technique in an isolated environment? (2) Is there a protocol/rate that works the best for

this technique in the testbed? (3) Are there devices that are more amenable to this technique?

(4) How does data rate affect this technique overall? A summary of results for this analysis

is shown in Table 4. For more detailed results, please refer to Section A.1.

In a single hop case, as seen in Table 4, the device with the maximum γ is Netbook #5

with 100% while the device with the minimum γ is iPhone4 #2 with 74% and the average

is 94% for the device identification analysis in the known analysis mode. For the same

devices, in the unknown mode, the maximum, minimum, and the average fall to 93%, 66%,

and 81%. The maximum, minimum, and the average recall values for both known and

unknown test modes for device types identification are lower compared to that of device

identification. The average recall values are 67% and 64% for the known and unknown test

modes, respectively. One reason for this is lack of enough representative devices to train

for device type identification. Since most device types have only two devices (Table 2), we

had to use one device for training (which wasn’t sufficient) and the other for performance

evaluation. It is shown through experiments in Section 4.4.4 that recall of device type
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identification can be significantly improved by using more number of training samples (Fig-

ure 14). As for the protocols and applications tested, UDP with the rate of 1Mbps shows

a recall of 97% (known) and 82% (unknown) for device identification and 66% (known)

and 61% (unknown) for device type identification. The minimum for this four-tuple, de-

vice identification (known: 89% vs. unknown: 80%) and device type identification (known:

67% vs. unknown: 61%) belongs to the SCP application. The slight performance penalty

with SCP, in comparison with UDP, is attributed to the additional processing time that is

specific to the application layer (e.g., encryption).

4.4.4 Experimental Results from Campus Network - Wireless

Both active and passive experiments were conducted on a live network to determine the

feasibility of the technique and to provide bounds on the performance of GTID in realistic

deployments. The real network analysis was specifically meant to answer the following set

of question: What is the overall accuracy (α) and recall (γ) of this technique in a real net-

work? and Is there a traffic type or device that is more amenable to this technique? The

results of the active and passive analysis for the campus network analysis are summarized

in Table 5 and Table 6 respectively. For detailed results, please refer to Section A.2

Table 5: Campus Network - Wireless (Passive Analysis)
Device ID Device Type

Known Unknown Known Unknown
Device α γ α γ Device Type α γ α γ

Max Kindle #2 - 0.93 - 0.85 Asus Netbook - 0.99 - 0.87
Min Tablet #2 - 0.48 - 0.41 Google Ph - 0.22 - 0.30

Test Type Test Type
Max UDP 1400B 8Mbps 0.96 0.80 0.95 0.70 Skype 0.96 0.96 0.95 0.90
Min TCP 0.95 0.74 0.94 0.56 UDP 1400B 8Mbps 0.77 0.54 0.80 0.52
Avg 0.95 0.74 0.94 0.64 0.86 0.68 0.87 0.63

Passive Analysis : As seen in Table 5, in the campus network testbed the device with the

maximum γ is Kindle #2 with 93% while the device with the minimum γ is Asus Tablet

#2 with 48% and the average is 74% for the device identification analysis in the known

operational mode. In the unknown mode of these devices, the maximum, minimum, and

the average γ fall to 85%, 41%, and 64%, respectively. Similar to what was observed in
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the isolated experiments, the maximum, minimum, and the average recall values for both

known and unknown test modes for device type identification is less compared to device

identification. The average values of recall are 68% and 63% for the known and unknown

test modes, respectively. As mentioned in Section 4.4.3, the performance of device type

identification can be significantly improved by using more number of training samples for

each type of device. Figure 14 shows the results of an experiment that was conducted to

see if our hypothesis was true.

Figure 14: Effect of Increasing Training Data

This particular experiment starts by training on one representative device for each device

type, and continues to increase in steps of 1, the number of representative devices used to

train the Asus netbooks (device type). From the results (Figure 14), the recall of the Asus

netbook (device type) is clearly observed to increase as the number of training samples is

increased. As for the applications and protocols, maximum and minimum are different for

device identification and device type tests. Specifically, for the device identification tests,

UDP with a rate of 8Mbps and 1400B payload exhibits the maximum γ: 80% while for the

device type tests, the maximum is achieved by Skype traffic with γ: 96%. Further results on

the recall for all traffic types and devices/device types are shown in Figure 15 and Figure 16

respectively. In the future, we plan to determine why the recall values of these signatures

are traffic and device type dependent.

By comparing the results of the real network to the isolated network, one can observe
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Figure 15: Recall vs Traffic Types

Figure 16: Recall vs Devices/DeviceTypes

the degradation in performance across both α and γ in the real network. It is also observed

that the device identification results are better than the device type identification, across

all the cases. This can be attributed to the lack of enough devices to train for each device

type.

Results from the analysis of the impact of physical and MAC layer interference on the

real network is presented in Figure 17. Focusing on the similarity measures for these two

testbeds, it is seen that more than 50% of the similarity measures have values close to 1

(which denotes a perfect match) in the isolated testbed, while its less than 30% for the

real testbed. This difference is attributed to the uncontrolled characteristics of the physical

medium which make inter arrival patterns look less similar in the real network.

Finally, the slight performance decrease associated with the unknown test mode ob-

served in all the test scenarios (Figure 15) is attributed to the nature of the identification

algorithm. However, our binary identification technique utilizing TPs, FPs, TNs, and FNs,

shows strong promise for the effectiveness of GTID (given its numerous benefits).

Active Analysis : In this analysis, ping requests were used as probes to trigger responses

(ping response) from the device. Using this method, a network administrator will be able

35



Figure 17: Effect of MAC Contention

to fingerprint any device that responds to ping (e.g., IP camera). Due to this advantage,

we were able to fingerprint a total of 23 devices using this technique. The list includes

devices such as play station, apple TV, IP camera, HP printer, etc. Ping requests of two

different payload sizes (Table 3) were sent at 10ms interval to generate a continuous stream

of responses from the targeted device. The IATs from the response stream were then

analyzed using GTID. The results of this analysis are summarized in Table 6.

Table 6: Campus Network - Wireless (Active Analysis)
Device ID Device Type

Known Unknown Known Unknown
Device α γ α γ Device Type α γ α γ

Max Kindle #2 - 0.91 - 0.85 Printer - 1.00 - 0.91
Min Printer #2 - 0.35 - 0.08 Laptop - 0.55 - 0.56

Test Type Test Type
Max Ping 1400B 0.97 0.72 0.96 0.58 Ping 1400B 0.95 0.77 0.94 0.71
Min Ping 56B 0.97 0.66 0.96 0.51 Ping 56B 0.94 0.71 0.94 0.70
Avg 0.97 0.69 0.96 0.55 0.94 0.74 0.94 0.70

From the results summary shown in Table 6, it can be observed that Kindle #2 once

again has the highest γ of 91%, which shows that it quite suitable for fingerprinting using

GTID. The minimum recall was shown by the HP printer with 35% recall in the known

mode of operation. However, the same printer has the highest value of recall for device type

identification. This shows that the printers possess signatures that are very different from

other types of devices, but quite similar to each other. From the per traffic type analysis, it

can be seen that Ping with 1400Byte payload does better than Ping with a 56Byte payload.
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This holds good for both device and device type identification and also across both known

and unknown analysis. This we believe is due to the fact that a continuous stream of

large packets will involve more memory operations, which in turn will provide a stronger

fingerprint of the device’s hardware. In general, the active mode of fingerprinting performs

slightly worse compared to the passive analysis. This is because, in active fingerprinting,

the IAT patterns embed the signature of both the probing device and the target device.

Looking into methods for removing the sender’s signature from the IAT pattern is a part

of the proposed future work.

4.4.5 Experimental Results from Campus Network - Wireline

This section briefly shows that GTID can be easily extended to a wired environment and

thus is not limited to a wireless setup. In this setup, the target devices are directly wired into

the backbone switch instead of connecting through an AP as shown in Figure 13. Similar

to the analysis in Section 4.4.4, both active and passive traffic types are used to evalu-

ate the performance of GTID in a wired environment. A summary of results obtained from

this analysis is shown in Table 7 and 8. For more detailed results, please refer to Section A.3.

Table 7: Campus Network - Wireline (Passive Analysis)
Device ID Device Type

Known Unknown Known Unknown
Device α γ α γ Device Type α γ α γ

Max Dell #1 - 1.0 - 0.88 AsusNetbook - 1.00 - 0.84
Min AsusNetbook #2 - 0.39 - 0.35 Dell - 0.26 - 0.41

Test Type Test Type
Max Ping 56B 0.97 0.86 0.94 0.72 TCP 0.91 0.87 0.96 0.90
Min UDP 56B 1Mbps 0.89 0.50 0.88 0.42 UDP 1400B 1Mbps 0.66 0.49 0.75 0.51
Avg 0.92 0.65 0.92 0.68 0.92 0.57 0.84 0.67

Passive Analysis: The summary of results in Table 7 shows that GTID is feasible on

a wired network as well. Dell #1 shows the highest value of recall for device identification

while Asus netbooks show the best recall for device type identification. One major reason

for this is that, Asus netbooks had many more devices to train for the device type, while the

rest of the devices had just one (refer Figure 14). While one would expect the performance

of GTID to be better on a wired network as compared to a wireless network (no physical
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or MAC layer contention), this is not what was observed. The results of the wired network

analysis show slight degradation in the performance of GTID in comparison to the results

obtained from the wireless setup. The reasons for this could be 1) use of different sets of

devices for analysis in the wired and wireless analysis; and 2) binwidths for a wired network

might have to be configured differently due to lesser timing fluctuations and higher rates.

A more detailed analysis of this will be done as a part of the future work. With respect

to traffic type analysis, we see that that TCP is performing the best with a recall of 90%.

However, in the wireless analysis, TCP performed poorly (recall of 59%) when compared

to other traffic types (refer Table 20 in Appendix). This shows the impact of delays and

retransmissions on a wireless network which directly impacts the behavior of TCP flows.

The absence of such delays and packet losses on wired networks produced more consistent

IAT patterns and thus better signatures for TCP. It is also seen that 1400 byte UDP traffic

at 1Mbps has the lowest recall for both the wired and wireless analysis. This traffic type

is one of the slowest in our analysis with average inter arrival times of 11.2ms. This shows

that GTID works better with traffic that have higher packet rate (i.e., smaller IAT).

Table 8: Campus Network - Wireline (Active Analysis)
Device ID Device Type

Known Unknown Known Unknown
Device α γ α γ Device Type α γ α γ

Max PlayStation #2 - 0.98 - 0.91 Apple TV - 1.00 - 0.90
Min AsusNetbook #5 - 0.21 - 0.45 Dell - 0.08 - 0.05

Test Type Test Type
Max Ping 1400B 0.96 0.67 0.96 0.61 Ping 56B 0.96 0.87 0.94 0.75
Min Ping 56B 0.96 0.66 0.94 0.49 Ping 1400B 0.95 0.82 0.94 0.77
Avg 0.96 0.66 0.95 0.55 0.96 0.85 0.94 0.76

Active Analysis : Table 8 shows a summary of results obtained for Active analysis on

a wired network. It can be observed that PlayStation#2 shows the best performance for

device identification while the AsusNetbook#5 shows the worst. This might be partially

due to the fact that there are more AsusNetbooks in the list of devices compared to the

rest which have only two. For device type identification, AppleTV has the highest recall

(100%) while Dell has the lowest. It is easy to see from Table, 7 and 8 that the Dell device

type is the most difficult to classify. After further investigation, it was found that the Dells
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had a few differences in the hardware (including the NICs) even though they were sold

with the same model number. This, in a way shows the sensitivity of GTID to hardware

differences/similarities.

4.5 Attacker Models

Figure 18: PDF of UDP IATs for Normal and Attacker Traffic

Figure 19: PDF of Ping Response IATs for Normal and Attacker Traffic

This section seeks to determine the effectiveness of GTID under a number of attack

scenarios. This analysis assumes that the attacker has some knowledge of the detection

technique and is capable of controlling his device’s network traffic. Given that this technique
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is IAT-based, a novice attacker would be prompted to do one of the following: (1) Introduce

constant/random delays to packet stream; (2) Vary the packet size; (3) Modify/change the

operating system; (4) Load the CPU with intensive applications to over shadow normal

behavior ; (5) Tunnel packets through another protocol. These attacks were carried out in

an attempt to evade GTID. In the scenario, we assume all the devices are known. GTID

detects these attacks and classifies all of these devices that generated attack traffic from

previously seen devices as unknown, which is a red flag to a network administrator. The

variation in the IAT distribution patterns (from normal) observed in Figure 18, 20, 19, and

21 explains why GTID was able to identify the attacker traffic.

Figure 20: O/S Attack

However, if the attacker is highly skilled and knowledgeable of the technique, she could

try to emulate an authorized device in order to establish/maintain network access. To do

this, the attacker would need the distribution of the difference in the IATs of her device

and the device that she wants to emulate. Once she has this information, she can feed

it into a network emulation tool like netem (which is available in linux kernels 2.6 and

higher) to transmit packets in accordance with the distribution. When such an attack

is performed, one would expect the attacker’s device to be classified as a known device.

However, as seen in Figure 21 this is not true. Figure 21 shows the IAT distribution when

the Lenovo laptop attempted to behave like a Kindle. Clearly, the distribution of the
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emulated traffic is different from the actual and the targeted device and GTID labels this

traffic as unknown. Also, the IATs are observed to be more distributed when compared to

the unaltered device. One of the primary factors that prevented an accurate emulation is

the fact that the attacker’s device has to simultaneously spoof a signature of a device and

attempt to hide its innate signature. This is because, the variation in the IATs that the

device attempts replicate gets added to its innate timing variation with results in a signature

that is different from both the device that is trying to emulate and the device that is being

emulated. It is important to note that the theory behind GTID is that different devices

essentially ”talk” differently (i.e., they have a different cadence), so as illustrated above,

it is difficult for even a more powerful device to emulate the traffic distribution of a less

powerful device.

Figure 21: Laptop Emulates a Kindle

4.6 Sub-module Architecture

Detection techniques need to be quick in order to be of any practical use. High accuracy

with high latency may lead to correct, but less useful results. In order to study the detection

speed of this technique, a prototype version of GTID was developed in MATLAB and its

performance was tested. The internal architecture of the prototype is shown in Figure 22.
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4.6.1 Overview

The basic purpose of this tool is to match a sample from a given network traffic with a list

of previously stored signatures. This is achieved using a three stage process as explained

below.

Stage1 : Network Traffic Collection : Before starting to collect traffic from the

network interface, the tool takes in necessary parameters such as Sample Size (S ), Number

of Samples (N ), and MAC address of the suspicious device. Tcpdump is then used at the

back end to collect and save N number of pcap files, each containing captures of S+1 packet

headers. These files are sent to stage two (identification) of the process as and when they

are captured. This results in a pipeline which thereby contributes to the speed up GTID’s

detection time. Another alternative that the tool supports is taking existing pcap files as

input. When this option is used, the tool parses the given pcap file in stage one and sends N

IAT matrices of size S to stage two of the process. In this case, stages one and two cannot

be pipelined and therefore, the time required to complete stage one is highly dependent on

the size of the pcap file. Analysis of preexisting captures is very handy in forensics.

Stage2 : Identification : At this stage, once a pcap sample arrives, IAT values are

extracted using [36]. After extraction, the IAT values are passed to the identification module

which is the core module of this entire process. This module is responsible for matching

the given IAT pattern to a preexisting pattern in the master database. After processing,

it gives out the identified device/type along with the similarity measures. This process of

extraction and identification can be done in parallel because each incoming pcap file is a

separate sample. In order to parallelize this process, the tool assigns each sample to a new

thread that runs on a separate core or hyper threads in the CPU. This is done using n

matlabpool workers and parallel loops. If this stage receives sampled IAT matrices, then it

skips the extraction phase and directly enters into the process of identification as shown in

Figure 22. This happens when pcap files are fed into stage one of the process.

Stage3 : Decision Making : The decision making stage is simple and straight forward.

It waits and accumulates all the results obtained from the identification module until the

N th sample is identified. Once it has all N results, it checks for the device/type that has
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Figure 22: Real-Time Implementation

matched most of the input samples and declares that device/type as the final identified

device/type. The tool uses the graphical user interface (GUI) provided by the proposed

framework to take in values and display results. The GUI can be used to set all the

parameters that are required for traffic capture and identification. Moreover, it has features

which enables the user to select a subset of all the master signatures that is in the database

which will in turn help in both speeding up the identification process and also in reducing

the number of FPs. This is useful if one has an idea of the type of unknown device that is

under test.

4.6.2 Performance Analysis

In order to quantify the performance of this technique, timing analysis was performed on

the GTID tool. The two most important factors that delay the identification process are

capture time and processing time. The capture time is in turn dependent on the sample

size and the processing time is in turn dependent on the algorithm and processing power.

Table 9 shows the variation in the time taken to identify a device when the sample sizes

are varied. The time taken to capture increases linearly with an increase in sample size (as

expected). However the processing time increases at a slower rate. This is evident from the

decrease in the percentage of processing time from 4% to 2%, as sample size is increased

from 1K to 50K IATs.
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Table 9: Timing analysis for variation in sample sizes : Traffic - UDP 1400byte 8Mbps ,
Number of samples 20

Sample Capture Processing %Processing
Size Time(s) Time(s) Time
1K 1.18 0.051 4.14

2.5K 3.95 0.12 2.95
5K 7.59 0.199 2.55

7.5K 11.28 0.28 2.42
10K 14.98 0.38 2.47
30K 44.27 1.15 2.53
50K 73.61 1.18 1.58

Table 10: Effect of Parallelizing the Process : Sample Size 2500, Number of Samples 20

Test Type
Total Processing Time(s)
1 Thread 8 Thread

UDP 56B 1Mbps 30.66 26.24

UDP 56B 8Mbps 11.49 6.67

Since the capture time is inversely proportional to the packet rate, the percentage of

the processing time will not be as low as it appears in Table 9. At high data rates, the

processing time will start to become the performance bottle neck. The only way to overcome

this bottle neck is by parallelizing the identification process. Table 10 shows the time saved

by the tool when it was run over a single core and over a hyper threaded quad-core CPU

(Intel Corei7). Clearly, the process of parallelizing pays off when the packet rate increases,

or in other words, when the processing time becomes comparable to that of the capture

time. For the second test case, the time taken for identification reduced by almost 45%

when parallelized.

44



CHAPTER V

CONCLUSION AND FUTURE WORK

This work introduces a framework for fingerprinting networked systems. The design con-

sists of three modules that are independent from one another, thus enabling easy modifi-

cation/improvements in the future. Such a design enables easy addition/removal of net-

work interfaces, network monitoring tools and fingerprinting techniques. The framework

integrates the individual fingerprinting modules using a centralized decision engine which

makes the process of fingerprinting more robust. At present, the framework supports a lim-

ited number of interfaces and fingerprinting techniques. However, in the future, this will be

extended to include techniques such as clock skew identification, AP fingerprinting, protocol

fingerprinting, etc. Currently, the decision module provides users the control over customiz-

ing the weights for a particular technique. In the future, the framework will be improved

to auto detect the climate of the targeted network to adjust the weights accordingly.

This work also introduces GTID, a passive technique for device and device type finger-

printing. GTID exploits the heterogeneity of devices, which is a function of the different

device hardware compositions and the inherent variation clock skews. This technique was

applied to the challenging problem of access control in 802.11 networks. The effectiveness

and the practicality of GTID was demonstrated on both an isolated testbed and a live cam-

pus network using artificial neural networks. Further, it was shown, using a collection of

37 devices with a diverse set of operating systems, that GTID had high accuracy and good

recall in identifying previously seen and unknown devices and device types. This work also

addresses the efficacy of GTID under various attack models and considered the performance

of a real-time implementation of GTID. In the future, this work will be extended to un-

derstand the efficacy of GTID when device and device type identification is conducted over

various access links (e.g., DSL, LTE). Additionally, the robustness of GTID will be improved

to better handle congestion on links and variation in levels of load on a node. Further, the
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application of GTID will be extended to detecting, counterfeit devices, resource utilization

on a node, devices behind a NAT, virtual machines and malware activity. Finally, analysis

portion will be extended significantly to address the attacker models with experiments and

statistical results.
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APPENDIX A

DETAILED EXPERIMENTAL RESULTS

This Appendix section presents detailed results of all experiments that were summarized in

Sections 4.4.3, 4.4.4 and 4.4.5.

A.1 Results from Isolated Wireless Experiments

A.1.1 Known Analysis

Table 11: Device ID - Known Analysis Results in Isolated Experiment (Passive)
Ping C1 Ping C2 Udp C1 UdpC2 Udp C3 Tcp C1 Scp C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α

DevDN1 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.99 1.00 1.00 1.00 0.97 0.99 0.98 1.00
DevDN2 1.00 1.00 1.00 1.00 0.88 0.99 1.00 1.00 0.99 1.00 0.98 0.98 0.96 0.98 0.97 0.99
DevDN3 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.96 1.00 0.75 0.98 0.74 0.98 0.92 0.99
DevNP1 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.94 0.99 0.92 0.99 0.98 1.00
DevNP2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.88 0.99 0.98 1.00
DevIP1 0.98 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.95 1.00 1.00 1.00 0.86 0.98 0.96 1.00
DevIP2 0.90 0.99 0.98 1.00 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 1.00
DevIP3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
DevIT1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69 0.98 0.96 1.00
DevIT2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DevIF1 0.80 0.93 0.70 0.97 0.97 0.99 0.85 0.98 0.82 0.98 0.65 0.94 0.84 0.94 0.80 0.96
DevIF2 0.37 0.93 0.92 0.97 0.90 0.99 0.83 0.98 0.88 0.98 0.59 0.95 0.69 0.97 0.74 0.96
DevDN4 -NA- -NA- -NA- -NA- 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
DevDN5 -NA- -NA- -NA- -NA- 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PerFlow(Avg) 0.92 0.99 0.97 0.99 0.97 1.00 0.97 1.00 0.97 1.00 0.92 0.99 0.89 0.98 0.94 0.99

Table 12: Device Type - Known Analysis Results in Isolated Experiment (Passive)
Ping C1 Ping C2 Udp C1 UdpC2 Udp C3 Tcp C1 Scp C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α

DellNetbook 1.00 1.00 1.00 0.99 0.72 0.85 0.86 0.96 1.00 0.83 1.00 0.97 0.97 0.76 0.94 0.91
NokiaPhone 1.00 1.00 0.00 0.80 1.00 1.00 1.00 1.00 0.48 0.89 0.85 0.97 0.79 0.95 0.73 0.94
iPad 0.58 0.92 0.67 0.73 0.63 0.72 0.47 0.66 0.67 0.74 0.50 0.70 0.18 0.71 0.53 0.74
iPhone3G 1.00 1.00 0.07 0.81 0.00 0.78 0.00 0.70 0.00 0.80 0.00 0.73 0.00 0.80 0.15 0.80
iPhone4G 1.00 0.92 1.00 0.76 1.00 0.98 1.00 1.00 0.98 0.99 1.00 0.97 0.97 0.94 0.99 0.94
PerFlow (Avg) 0.92 0.97 0.55 0.82 0.67 0.87 0.66 0.87 0.63 0.85 0.67 0.87 0.58 0.83 0.67 0.87
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A.1.2 Unknown Analysis

Table 13: Device ID - Unknown Analysis Results in Isolated Experiment (Passive)
Ping C1 Ping C2 Udp C1 UdpC2 Udp C3 Tcp C1 Scp C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α

DevDN1 0.95 1.00 0.94 1.00 0.65 0.98 0.42 0.96 0.77 0.98 0.86 0.99 0.78 0.98 0.77 0.98
DevDN2 0.95 1.00 0.97 1.00 0.85 0.99 0.91 0.99 0.86 0.99 0.79 0.98 0.93 0.99 0.89 0.99
DevDN3 1.00 1.00 0.18 0.94 0.69 0.98 0.70 0.98 0.64 0.98 0.65 0.98 0.72 0.98 0.65 0.98
DevNP1 0.98 1.00 0.94 1.00 0.80 0.99 0.75 0.98 0.82 0.99 0.76 0.98 0.92 0.97 0.85 0.99
DevNP2 0.85 0.99 1.00 1.00 0.80 0.99 0.98 1.00 0.22 0.95 0.67 0.98 0.45 0.96 0.71 0.98
DevIP1 0.88 0.99 0.91 0.99 0.95 1.00 0.76 0.98 0.80 0.99 0.88 0.99 0.58 0.97 0.82 0.99
DevIP2 0.58 0.97 0.91 0.99 0.64 0.97 0.89 0.99 0.94 1.00 0.92 0.99 0.85 0.99 0.82 0.99
DevIP3 0.93 0.99 0.88 0.99 0.91 0.99 0.90 0.99 0.89 0.99 0.83 0.99 0.86 0.99 0.88 0.99
DevIT1 0.95 1.00 0.85 0.99 0.93 0.99 0.76 0.98 0.82 0.99 0.98 1.00 0.54 0.97 0.83 0.99
DevIT2 0.85 0.99 0.82 0.99 0.93 0.99 0.95 1.00 0.87 0.99 0.90 0.99 0.98 1.00 0.90 0.99
DevIF1 0.69 0.94 0.67 0.97 0.93 0.99 0.80 0.98 0.79 0.98 0.71 0.96 0.83 0.93 0.77 0.96
DevIF2 0.37 0.92 0.86 0.99 0.78 0.99 0.73 0.98 0.84 0.98 0.50 0.95 0.54 0.97 0.66 0.97
DevDN4 -NA- -NA- -NA- -NA- 0.69 0.98 0.81 0.99 0.88 0.99 0.76 0.98 0.80 0.99 0.79 0.99
DevDN5 -NA- -NA- -NA- -NA- 0.95 1.00 0.97 1.00 0.96 1.00 0.93 1.00 0.83 0.99 0.93 0.99
Unknown 0.85 0.89 0.94 0.84 0.97 0.85 0.97 0.84 0.98 0.82 0.87 0.84 0.79 0.85 0.91 0.85
PerFlow(Avg) 0.83 0.97 0.84 0.97 0.83 0.98 0.82 0.98 0.80 0.97 0.80 0.97 0.76 0.97 0.81 0.97

Table 14: Device Type - Unknown Analysis Results in Isolated Experiment (Passive)
Ping C1 Ping C2 Udp C1 UdpC2 Udp C3 Tcp C1 Scp C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α

DellNetbook 0.94 0.99 0.84 0.97 0.59 0.92 0.76 0.96 0.91 0.94 0.87 0.95 0.89 0.84 0.83 0.94
NokiaPhone 0.93 0.99 0.13 0.85 0.95 0.99 0.90 0.98 0.58 0.83 0.82 0.90 0.55 0.91 0.69 0.92
iPad 0.69 0.95 0.72 0.80 0.73 0.89 0.43 0.73 0.80 0.88 0.47 0.88 0.14 0.73 0.57 0.84
iPhone3G 0.88 0.98 0.37 0.86 0.00 0.81 0.00 0.75 0.00 0.84 0.00 0.74 0.00 0.83 0.18 0.83
iPhone4G 0.95 0.99 0.89 0.96 0.96 0.91 0.91 0.99 0.85 0.98 0.89 0.98 0.78 0.93 0.89 0.96
Unknown 1.00 0.90 0.56 0.73 0.79 0.82 0.65 0.80 0.61 0.79 0.62 0.77 0.50 0.71 0.68 0.79
PerFlow(Avg) 0.90 0.97 0.58 0.86 0.67 0.89 0.61 0.87 0.62 0.87 0.61 0.87 0.48 0.83 0.64 0.88
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A.2 Results from Wireless Campus Network

A.2.1 Known Analysis

A.2.1.1 Passive Fingerprinting

Table 15: Device ID - Known Analysis on Wireless Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 Scp C1 Skype C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α γ α

DevAS1 0.65 0.96 0.71 0.95 0.93 0.95 0.95 0.98 0.80 0.98 0.91 0.99 0.51 0.96 -NA- -NA- 0.78 0.97
DevAS2 0.83 0.96 0.58 0.95 0.53 0.94 0.73 0.96 0.70 0.93 0.86 0.97 0.23 0.93 -NA- -NA- 0.64 0.95
DevAS3 0.70 0.96 0.88 0.97 0.72 0.95 0.88 0.98 1.00 0.99 0.98 0.99 0.78 0.95 -NA- -NA- 0.85 0.97
DevAS4 0.58 0.90 0.44 0.93 0.74 0.98 0.81 0.94 0.91 0.96 0.88 0.97 0.69 0.95 -NA- -NA- 0.72 0.95
DevAS5 0.23 0.91 0.77 0.96 0.40 0.92 0.47 0.93 0.23 0.92 0.75 0.96 0.95 0.92 -NA- -NA- 0.54 0.93
DevG1 1.00 1.00 1.00 1.00 0.62 0.94 0.99 0.99 0.97 1.00 0.95 0.97 0.95 1.00 -NA- -NA- 0.93 0.99
DevG2 1.00 1.00 1.00 1.00 0.55 0.93 0.99 1.00 0.05 0.90 0.85 0.97 0.99 1.00 -NA- -NA- 0.78 0.97
DevL1 0.75 0.95 0.28 0.94 0.94 0.98 0.80 0.96 0.89 0.99 0.95 0.98 0.77 0.97 0.92 0.98 0.79 0.97
DevL2 0.60 0.95 0.96 0.94 0.50 0.93 0.70 0.93 0.97 0.99 0.86 0.96 0.83 0.97 1.00 0.98 0.80 0.96
DevT1 0.75 0.91 0.81 0.95 0.28 0.91 0.61 0.93 0.53 0.95 0.31 0.91 0.68 0.94 0.55 0.79 0.57 0.91
DevT2 0.03 0.91 0.58 0.95 0.50 0.92 0.41 0.92 0.67 0.88 0.46 0.91 0.59 0.95 0.60 0.79 0.48 0.90
DevK1 1.00 1.00 0.98 1.00 0.93 0.99 -NA- -NA- 0.69 0.96 -NA- -NA- 0.95 0.99 -NA- -NA- 0.91 0.99
DevK2 1.00 1.00 1.00 1.00 0.95 0.99 -NA- -NA- 0.78 0.97 -NA- -NA- 0.93 0.99 -NA- -NA- 0.93 0.99
PerFlow(Avg) 0.70 0.95 0.77 0.96 0.66 0.95 0.76 0.96 0.71 0.95 0.80 0.96 0.76 0.96 0.77 0.88 0.74 0.95

Table 16: Device Type - Known Analysis on Wireless Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 Scp C1 Skype C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α γ α

AsusNetbook 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.97 0.92 1.00 1.00 1.00 1.00 -NA- -NA- 0.99 0.99
GooglePhone 0.00 0.80 0.00 0.80 0.65 0.81 0.25 0.81 0.20 0.77 0.40 0.80 0.04 0.81 -NA- -NA- 0.22 0.80
Laptop 0.99 0.99 1.00 1.00 0.43 0.73 0.67 0.84 0.56 0.85 0.01 0.67 1.00 0.99 0.92 0.96 0.70 0.88
Tablet 1.00 0.81 1.00 0.80 0.60 0.86 0.84 0.72 0.66 0.79 0.77 0.61 0.99 0.95 1.00 0.96 0.86 0.81
eReader 0.25 0.69 0.20 0.68 0.54 0.89 -NA- -NA- 0.92 0.98 -NA- -NA- 0.95 0.85 -NA- -NA- 0.57 0.82
PerFlow(Avg) 0.64 0.86 0.64 0.85 0.64 0.86 0.69 0.84 0.66 0.86 0.54 0.77 0.80 0.92 0.96 0.96 0.68 0.86
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A.2.1.2 Active Fingerprinting

Table 17: Device ID - Known Analysis on Wireless Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

DevAS1 0.54 0.97 0.95 0.98 0.74 0.98
DevAS2 0.77 0.95 0.95 1.00 0.86 0.97
DevAS3 0.58 0.95 0.40 0.95 0.49 0.95
DevAS4 0.56 0.96 0.49 0.95 0.53 0.96
DevAS5 0.42 0.96 0.56 0.96 0.49 0.96
DevC1 0.64 0.97 0.49 0.97 0.56 0.97
DevC2 0.49 0.97 0.86 0.98 0.67 0.97
DevP1 0.94 0.96 0.77 0.97 0.85 0.97
DevP2 0.15 0.95 0.54 0.97 0.35 0.96
DevG1 0.86 0.98 0.95 0.99 0.90 0.99
DevG2 0.79 0.98 0.78 0.98 0.79 0.98
DevL1 0.42 0.96 0.73 0.95 0.58 0.95
DevL2 0.92 0.98 0.90 0.99 0.91 0.98
DevH1 0.76 0.97 0.88 0.99 0.82 0.98
DevH2 0.68 0.97 0.77 0.98 0.72 0.98
DevA1 0.64 0.95 0.22 0.96 0.43 0.95
DevA2 0.79 0.98 0.96 0.99 0.88 0.99
DevT1 0.59 0.95 0.67 0.94 0.63 0.95
DevT2 0.49 0.96 0.41 0.95 0.45 0.96
DevK1 0.91 0.99 0.90 1.00 0.90 0.99
DevK2 0.95 0.99 0.87 0.99 0.91 0.99
PerFlow(Avg) 0.66 0.97 0.72 0.97 0.69 0.97

Table 18: Device Type - Known Analysis on Wireless Campus Network (Passive)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

AsusNetbook 0.97 0.91 0.99 0.98 0.98 0.94
Camera 0.53 0.93 0.88 0.95 0.71 0.94
Gaming 0.74 0.96 1.00 0.99 0.87 0.97
GooglePhone 0.81 0.96 0.75 0.95 0.78 0.96
Laptop 0.58 0.94 0.51 0.88 0.55 0.91
Printer 1.00 1.00 1.00 1.00 1.00 1.00
TV 0.12 0.86 0.26 0.90 0.19 0.88
Tablet 0.79 0.90 0.82 0.94 0.81 0.92
eReader 0.88 0.98 0.67 0.94 0.78 0.96
PerFlow(Avg) 0.71 0.94 0.77 0.95 0.74 0.94
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A.2.2 Unknown Analysis

A.2.2.1 Passive Fingerprinting

Table 19: Device ID - Unknown Analysis on Wireless Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 Scp C1 Skype C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α γ α

DevAS1 0.48 0.95 0.70 0.95 0.83 0.96 0.81 0.98 0.53 0.97 0.74 0.97 0.22 0.94 -NA- -NA- 0.62 0.96
DevAS2 0.83 0.97 0.57 0.95 0.41 0.93 0.70 0.96 0.60 0.95 0.91 0.98 0.38 0.92 -NA- -NA- 0.63 0.95
DevAS3 0.64 0.93 0.75 0.97 0.64 0.95 0.79 0.97 0.93 0.99 0.86 0.99 0.77 0.94 -NA- -NA- 0.77 0.96
DevAS4 0.61 0.92 0.33 0.92 0.53 0.97 0.73 0.95 0.91 0.92 0.67 0.97 0.13 0.93 -NA- -NA- 0.56 0.94
DevAS5 0.13 0.92 0.78 0.96 0.27 0.92 0.33 0.92 0.03 0.92 0.72 0.96 0.76 0.92 -NA- -NA- 0.43 0.93
DevG1 0.78 0.98 1.00 1.00 0.52 0.93 0.94 0.99 0.86 0.99 0.84 0.98 0.79 0.99 -NA- -NA- 0.82 0.98
DevG2 1.00 1.00 0.97 1.00 0.36 0.93 0.99 1.00 0.25 0.93 0.75 0.96 0.94 1.00 -NA- -NA- 0.75 0.97
DevL1 0.60 0.95 0.16 0.94 0.83 0.98 0.72 0.96 0.84 0.99 0.75 0.98 0.56 0.95 0.74 0.94 0.65 0.96
DevL2 0.43 0.94 0.77 0.95 0.48 0.94 0.67 0.94 1.00 0.99 0.73 0.96 0.64 0.95 0.88 0.98 0.70 0.96
DevT1 0.68 0.91 0.87 0.97 0.29 0.91 0.66 0.93 0.21 0.93 0.29 0.92 0.53 0.94 0.66 0.85 0.52 0.92
DevT2 0.04 0.90 0.61 0.96 0.43 0.92 0.21 0.92 0.53 0.90 0.39 0.91 0.42 0.94 0.66 0.85 0.41 0.91
DevK1 1.00 1.00 0.94 1.00 0.84 0.99 -NA- -NA- 0.22 0.94 -NA- -NA- 0.85 0.99 -NA- -NA- 0.77 0.98
DevK2 0.93 0.99 0.74 0.98 0.84 0.99 -NA- -NA- 0.84 0.99 -NA- -NA- 0.93 0.99 -NA- -NA- 0.85 0.99
Unknown 0.48 0.84 0.59 0.85 0.55 0.80 0.67 0.85 0.66 0.81 0.72 0.82 0.63 0.83 0.59 0.77 0.61 0.82
PerFlow(Avg) 0.62 0.94 0.70 0.96 0.56 0.94 0.69 0.95 0.60 0.94 0.70 0.95 0.61 0.94 0.70 0.88 0.64 0.94

Table 20: Device Type - Unknown Analysis on Wireless Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 Scp C1 Skype C1 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α γ α γ α

AsusNetbook 0.97 0.99 0.93 0.99 0.90 0.98 0.87 0.98 0.80 0.95 0.90 0.98 0.69 0.95 -NA- -NA- 0.87 0.97
GooglePhone 0.06 0.84 0.08 0.82 0.61 0.84 0.46 0.89 0.38 0.83 0.50 0.86 0.02 0.82 -NA- -NA- 0.30 0.84
Laptop 0.92 0.95 0.94 0.99 0.45 0.79 0.77 0.91 0.42 0.86 0.03 0.73 0.93 0.99 0.84 0.96 0.66 0.90
Tablet 0.80 0.92 0.83 0.93 0.50 0.88 0.79 0.81 0.50 0.83 0.74 0.73 0.88 0.97 0.88 0.97 0.74 0.88
eReader 0.35 0.78 0.33 0.75 0.53 0.91 -NA- -NA- 0.59 0.93 -NA- -NA- 0.77 0.91 -NA- -NA- 0.51 0.85
Unknown 0.72 0.79 0.53 0.74 0.55 0.78 0.67 0.82 0.61 0.71 0.40 0.72 0.81 0.73 1.00 0.93 0.66 0.78
PerFlow(Avg) 0.64 0.88 0.61 0.87 0.59 0.86 0.71 0.88 0.55 0.85 0.52 0.80 0.68 0.90 0.91 0.95 0.63 0.87
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A.2.2.2 Active Analysis

Table 21: Device ID - Unknown Analysis on Wireless Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

DevAS1 0.43 0.97 0.64 0.97 0.54 0.97
DevAS2 0.66 0.95 0.81 0.99 0.73 0.97
DevAS3 0.38 0.95 0.55 0.95 0.46 0.95
DevAS4 0.48 0.95 0.38 0.95 0.43 0.95
DevAS5 0.40 0.96 0.37 0.96 0.38 0.96
DevC1 0.23 0.96 0.17 0.96 0.20 0.96
DevC2 0.47 0.97 0.70 0.97 0.59 0.97
DevP1 0.90 0.98 0.78 0.97 0.84 0.97
DevP2 0.01 0.94 0.15 0.96 0.08 0.95
DevG1 0.85 0.99 0.71 0.99 0.78 0.99
DevG2 0.54 0.97 0.72 0.98 0.63 0.98
DevL1 0.34 0.95 0.54 0.96 0.44 0.96
DevL2 0.77 0.98 0.60 0.98 0.69 0.98
DevH1 0.63 0.95 0.79 0.99 0.71 0.97
DevH2 0.05 0.96 0.74 0.98 0.39 0.97
DevA1 0.72 0.96 0.30 0.97 0.51 0.96
DevA2 0.42 0.97 0.98 1.00 0.70 0.98
DevT1 0.53 0.95 0.17 0.92 0.35 0.93
DevT2 0.28 0.94 0.42 0.95 0.35 0.94
DevK1 0.72 0.98 0.92 1.00 0.82 0.99
DevK2 0.93 0.99 0.78 0.99 0.85 0.99
Unknown 0.45 0.81 0.57 0.81 0.51 0.81
PerFlow(Avg) 0.51 0.96 0.58 0.96 0.55 0.96

Table 22: Device Type - Unknown Analysis on Wireless Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

AsusNetbook 0.83 0.96 0.85 0.98 0.84 0.97
Camera 0.41 0.93 0.71 0.96 0.56 0.94
Gaming 0.83 0.98 0.95 0.99 0.89 0.99
GooglePhone 0.71 0.97 0.72 0.96 0.72 0.97
Laptop 0.54 0.93 0.57 0.89 0.56 0.91
Printer 0.97 1.00 0.85 0.98 0.91 0.99
TV 0.17 0.90 0.17 0.90 0.17 0.90
Tablet 0.98 0.96 0.85 0.97 0.91 0.96
eReader 0.81 0.98 0.69 0.96 0.75 0.97
Unknown 0.78 0.81 0.77 0.82 0.78 0.81
PerFlow(Avg) 0.70 0.94 0.71 0.94 0.71 0.94
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A.3 Results from Wired Campus Network Experiments

A.3.1 Known Analysis

A.3.1.1 Passive Fingerprinting

Table 23: Device ID - Known Analysis on Wired Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α

DevAS1 0.70 0.95 0.56 0.89 0.51 0.88 0.33 0.87 0.89 0.96 0.78 0.94 0.63 0.92
DevAS2 0.87 0.97 0.19 0.86 0.42 0.87 0.21 0.79 0.05 0.89 0.61 0.89 0.39 0.88
DevAS3 1.00 1.00 1.00 0.99 0.43 0.86 0.16 0.89 0.50 0.88 0.48 0.82 0.59 0.91
DevAS4 0.76 0.92 0.51 0.92 0.44 0.87 0.11 0.85 0.67 0.84 0.09 0.85 0.43 0.88
DevAS5 0.54 0.90 0.93 0.94 0.24 0.85 0.33 0.74 0.27 0.85 0.31 0.90 0.43 0.86
DevD1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DevD2 0.99 0.99 0.92 0.99 1.00 1.00 0.83 0.93 0.20 0.85 0.59 0.91 0.75 0.95
DevL1 0.93 0.99 0.99 1.00 0.87 0.96 0.95 0.99 0.38 0.93 0.83 0.96 0.82 0.97
DevL2 0.94 0.99 0.96 0.98 0.75 0.96 0.62 0.94 0.95 0.89 0.65 0.92 0.81 0.95
PerFlow(Avg) 0.86 0.97 0.78 0.95 0.63 0.92 0.50 0.89 0.55 0.90 0.59 0.91 0.65 0.92

Table 24: Device Type - Known Analysis on Wired Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α

AsusNetbook 0.99 1.00 1.00 0.95 1.00 0.87 1.00 0.89 1.00 0.79 1.00 0.80 1.00 0.88
Dell 0.39 0.76 0.27 0.72 0.60 0.87 0.29 0.72 0.01 0.50 0.00 0.56 0.26 0.69
Laptop 0.87 0.76 0.89 0.76 1.00 1.00 0.86 0.83 0.45 0.69 0.69 0.76 0.80 0.80
PerFlow(Avg) 0.75 0.84 0.72 0.81 0.87 0.91 0.72 0.81 0.49 0.66 0.56 0.71 0.68 0.79
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A.3.1.2 Active Fingerprinting

Table 25: Device ID - Known Analysis on Wired Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

DevAS1 0.53 0.93 0.38 0.93 0.46 0.93
DevAS2 0.42 0.94 0.34 0.91 0.38 0.92
DevAS3 0.49 0.93 0.94 0.98 0.72 0.95
DevAS4 0.68 0.95 0.27 0.92 0.47 0.93
DevAS5 0.22 0.94 0.20 0.93 0.21 0.93
DevC1 0.97 0.96 0.41 0.92 0.69 0.94
DevC2 0.34 0.96 0.16 0.91 0.25 0.94
DevD1 1.00 1.00 1.00 1.00 1.00 1.00
DevD2 1.00 1.00 0.95 0.99 0.98 1.00
DevP1 0.34 0.96 0.84 0.99 0.59 0.97
DevP2 0.99 0.96 0.99 0.99 0.99 0.97
DevL1 0.95 1.00 1.00 0.99 0.98 0.99
DevL2 1.00 1.00 0.71 0.98 0.86 0.99
DevH1 0.98 0.94 0.81 0.97 0.89 0.95
DevH2 0.01 0.94 0.61 0.96 0.31 0.95
DevA1 0.34 0.96 0.83 0.99 0.58 0.97
DevA2 0.94 0.96 0.92 0.99 0.93 0.97
PerFlow(Avg) 0.66 0.96 0.67 0.96 0.66 0.96

Table 26: Device Type - Known Analysis on Wired Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

AsusNetbook 1.00 1.00 1.00 0.92 1.00 0.96
Camera 0.99 0.94 1.00 0.96 1.00 0.95
Dell 0.13 0.87 0.03 0.86 0.08 0.87
Gaming 1.00 1.00 1.00 1.00 1.00 1.00
Laptop 1.00 0.99 0.70 0.96 0.85 0.97
Printer 0.99 0.94 1.00 0.95 1.00 0.94
TV 1.00 1.00 1.00 1.00 1.00 1.00
PerFlow(Avg) 0.87 0.96 0.82 0.95 0.85 0.96
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A.3.2 Unknown Analysis

A.3.2.1 Passive Fingerprinting

Table 27: Device ID - Unknown Analysis on Wired Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α

DevAS1 0.37 0.92 0.55 0.93 0.50 0.90 0.26 0.89 0.52 0.95 0.80 0.96 0.50 0.92
DevAS2 0.63 0.94 0.18 0.87 0.34 0.88 0.17 0.80 0.00 0.90 0.78 0.94 0.35 0.89
DevAS3 0.91 0.99 0.90 0.99 0.30 0.88 0.03 0.90 0.80 0.93 0.73 0.87 0.61 0.93
DevAS4 0.61 0.92 0.25 0.90 0.41 0.88 0.06 0.88 0.60 0.86 0.07 0.88 0.33 0.89
DevAS5 0.53 0.89 0.80 0.94 0.28 0.86 0.24 0.77 0.26 0.87 0.25 0.91 0.39 0.87
DevD1 0.90 0.99 0.89 0.99 0.91 0.99 0.92 0.99 0.77 0.98 0.92 0.99 0.88 0.99
DevD2 0.91 0.99 0.79 0.98 0.89 0.99 0.53 0.93 0.04 0.85 0.56 0.93 0.62 0.94
DevL1 0.86 0.98 0.79 0.98 0.74 0.95 0.86 0.99 0.25 0.92 0.91 0.97 0.73 0.97
DevL2 0.77 0.98 0.90 0.99 0.58 0.95 0.65 0.95 0.89 0.90 0.66 0.95 0.74 0.95
Unknown 0.74 0.85 0.77 0.81 0.50 0.81 0.49 0.75 0.47 0.75 0.54 0.84 0.58 0.80
PerFlow(Avg) 0.72 0.94 0.68 0.94 0.55 0.91 0.42 0.88 0.46 0.89 0.62 0.92 0.58 0.92

Table 28: Device Type - Unknown Analysis on Wired Campus Network (Passive)
Ping C1 Ping C2 Tcp C1 Udp C1 UdpC3 Udp C4 PerDevice(Avg)
γ α γ α γ α γ α γ α γ α γ α

AsusNetbook 0.76 0.93 0.77 0.95 0.90 0.98 0.89 0.97 0.85 0.87 0.86 0.96 0.84 0.94
Dell 0.27 0.71 0.30 0.78 0.80 0.96 0.52 0.84 0.22 0.68 0.40 0.77 0.42 0.79
Laptop 0.80 0.79 0.85 0.85 0.90 0.98 0.75 0.88 0.46 0.83 0.82 0.88 0.76 0.87
Unknown 0.37 0.64 0.68 0.73 1.00 0.91 0.80 0.79 0.49 0.63 0.65 0.75 0.66 0.74
PerFlow(Avg) 0.55 0.76 0.65 0.83 0.90 0.96 0.74 0.87 0.51 0.75 0.68 0.84 0.67 0.84
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A.3.2.2 Active Fingerprinting

Table 29: Device ID - Unknown Analysis on Wired Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

DevAS1 0.55 0.94 0.24 0.93 0.39 0.93
DevAS2 0.24 0.94 0.22 0.91 0.23 0.93
DevAS3 0.29 0.93 0.79 0.97 0.54 0.95
DevAS4 0.80 0.98 0.18 0.93 0.49 0.95
DevAS5 0.58 0.94 0.32 0.93 0.45 0.94
DevC1 0.75 0.96 0.39 0.92 0.57 0.94
DevC2 0.03 0.95 0.22 0.93 0.13 0.94
DevD1 0.00 0.94 0.98 1.00 0.49 0.97
DevD2 0.87 0.99 0.85 0.99 0.86 0.99
DevP1 0.25 0.96 0.87 0.99 0.56 0.98
DevP2 0.92 0.96 0.89 0.99 0.91 0.97
DevL1 0.48 0.97 0.91 0.99 0.69 0.98
DevL2 0.53 0.92 0.69 0.97 0.61 0.94
DevH1 0.76 0.96 0.65 0.97 0.71 0.97
DevH2 0.08 0.95 0.70 0.97 0.39 0.96
DevA1 0.30 0.95 0.69 0.98 0.50 0.97
DevA2 0.85 0.96 0.85 0.98 0.85 0.97
Unknown 0.46 0.77 0.55 0.86 0.51 0.82
PerFlow(Avg) 0.49 0.94 0.61 0.96 0.55 0.95

Table 30: Device Type - Unknown Analysis on Wired Campus Network (Active)
Ping C1 Ping C2 PerDevice(Avg)
γ α γ α γ α

AsusNetbook 0.90 0.99 0.83 0.94 0.86 0.96
Camera 0.74 0.97 0.94 0.99 0.84 0.98
Dell 0.00 0.86 0.10 0.89 0.05 0.87
Gaming 1.00 1.00 0.87 0.98 0.93 0.99
Laptop 0.86 0.95 0.64 0.95 0.75 0.95
Printer 0.76 0.92 0.92 0.99 0.84 0.95
TV 0.92 0.99 0.89 0.99 0.90 0.99
Unknown 0.80 0.82 0.93 0.80 0.86 0.81
PerFlow(Avg) 0.75 0.94 0.77 0.94 0.76 0.94

56



REFERENCES

[1] K. Gao, C. L. Corbett, and R. A. Beyah, “A passive approach to wireless device
fingerprinting,” 2010, johns Hopkins Applied Physics Lab, White Paper.

[2] J. Predd, S. Pfleeger, J. Hunker, and C. Bulford, “Insiders behaving badly,” Security
Privacy, IEEE, vol. 6, no. 4, pp. 66 –70, july-aug. 2008.

[3] R. Rantala, “Cybercrime against businesses,” 2005,
http://bjs.ojp.usdoj.gov/content/pub/pdf/cb05.pdf.

[4] “Mcafee network access control 3.1 product and installation guide for use with epolicy
orchestrator 4.0,” 2009, McAfee, Whitepaper.

[5] “Network security scanner,” http://www.nmap.org/.

[6] “IEEE oui list,” http://standards.ieee.org/develop/regauth/oui/oui.txt.

[7] “Xprobe: Active os fingerprinting tool,” http://xprobe.sourceforge.net/.

[8] F. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, Y. Huang, and S.-Y. Kuo,
“Xprobe2++: Low volume remote network information gathering tool,” in Depend-
able Systems Networks, 2009. DSN ’09. IEEE/IFIP International Conference on, 29
2009-July 2, pp. 205–210.

[9] “TCP/IP protocol based passive fingerprinting,” http://lcamtuf.coredump.cx/p0f.shtml.

[10] “SinFP: A new approach to os fingerprinting,”
http://www.gomor.org/bin/view/Sinfp/WebHome.

[11] J. Medeiros, A. da Cunha, A. Brito, and P. Motta Pires, “Automating security tests for
industrial automation devices using neural networks,” in Emerging Technologies and
Factory Automation, 2007. ETFA. IEEE Conference on, Sept., pp. 772–775.

[12] D. W. Richardson, S. D. Gribble, and T. Kohno, “The limits of automatic os fingerprint
generation,” in Proceedings of the 3rd ACM workshop on Artificial intelligence and
security, 2010, pp. 24–34.

[13] X. Zhang and L. Zheng, “Delude remote operating system (os) scan by honeyd,” in
Computer Science and Engineering, 2009. WCSE ’09. Second International Workshop
on, vol. 2, Oct., pp. 503–506.

[14] S. Kalia and M. Singh, “Masking approach to secure systems from operating system
fingerprinting,” in IEEE Region 10 TENCON, 2005, pp. 1 – 6.

[15] T. B. A. Kohno and K. C. Claffy, “Remote physical device fingerprinting,” in Proc.
of the 2005 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp.
211–225.

57



[16] S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized wireless
access points using clock skews,” in MobiCom ’08: Proc. of the 14th ACM International
Conf. on Mobile computing and networking, pp. 104–115.

[17] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification with radio-
metric signatures,” in Proc. of the 14th ACM International Conf. on Mobile Computing
and Networking (MobiCom), 2008.

[18] J. Hall, M. Barbeau, and E. Kranakis, “Rogue devices in bluetooth networks using
radio frequency fingerprinting,” in IASTED International Conf. on Communications
and Computer Networks (CCN), 2006.

[19] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active behavioral fingerprinting of
wireless devices,” in ACM WiSec ’08: Proc. of the first ACM conference on Wireless
network security, pp. 56–61.

[20] K. Gao, C. Corbett, and R. Beyah, “A passive approach to wireless device finger-
printing,” in Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International
Conference on, 28 2010-july 1 2010, pp. 383 –392.

[21] L. Letaw, J. Pletcher, and K. Butler, “Host identification via usb fingerprinting,”
Systematic Approaches to Digital Forensic Engineering (SADFE), 2011.

[22] J. Francois, H. Abdelnurt, R. State, and O. Festort, “Ptf: Passive temporal fingerprint-
ing,” in International Symposium on Integrated Network Management (IM), 2011.

[23] J. Francois, R. State, H. Abdelnurt, and O. Festort, “Machine learning techniques for
passive network inventory,” in IEEE Transactions on Network and Service Manage-
ment, vol. 7, 2010.

[24] J. Francois, T. Engel, R. State, and O. Festort, “Enforcing security with behavioral
fingerprinting,” in International Conf. on Network and Service Management (CNSM),
2011.

[25] J. Francois, R. State, T. Engel, and O. Festor, “Enforcing security with behavioral
fingerprinting,” in Network and Service Management (CNSM), 2011 7th International
Conference on, Oct., pp. 1–9.

[26] “IANA port number list,” http://www.iana.org/assignments/port-20 numbers.

[27] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel traffic classifi-
cation in the dark,” in Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, 2005, pp. 229–240.

[28] M. Kim, Y. J. Won, and J. W. Hong, “Application-level traffic monitoring and an
analysis on IP networks,” ETRI Journal, vol. 27, 2005.

[29] A. Moore and D. Zuev, “Internet traffic classification using bayesian analysis tech-
niques,” in Proc. of the 2005 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), pp. 50 – 60.

[30] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping for
qos: a statistical signature-based approach to ip traffic classification,” in Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement, 2004, pp. 135–148.

58



[31] “Tcpdump: A packet analyzer tool,” 2009, http://www.tcpdump.org/.

[32] “Airmon-ng: Wireless interface setup tool,” http://www.aircrack-ng.org.

[33] H. Kim, V. S. Pai, and S. Rixner, “Exploiting task-level concurrency in a programmable
network interface,” in Proceedings of the ninth ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, 2003, pp. 61–72.

[34] S. Sathyanarayana, “Characterizing the effects of device components on network traf-
fic,” Master’s Thesis - Georgia Institute of Technology, 2013.

[35] G. Kakavelakis, R. Beverly, and J. Young, “Auto-learning of smtp tcp transport-layer
features for spam and abusive message detection,” in Proceedings of the 25th interna-
tional conference on Large Installation System Administration, 2011, pp. 18–18.

[36] “Sharktools,” http://www.mit.edu/ armenb/sharktools/.

59



VITA

Sakthi Vignesh Radhakrishnan from Chennai, India, obtained his Bachelors degree in Elec-

tronics and Communication Engineering from SSN College of Engineering (Anna University)

in 2011. During his Master’s at Georgia Institute of Technology, he was a member of the

Communication Assurance and Performance (CAP) group which focuses on problems re-

lated to network security and performance. In May 2013, Sakthi graduated with a Master’s

degree in Electrical and Computer Engineering from Georgia Institute of Technology and

joined Qualcomm Inc as a firmware developer for corporate routers. His research interests

include network security and wireless networking.

Publications :

[1] S.V. Radhakrishnan, and Subramanian S, “An analytical approach to s-box generation,”

Journal on Computer and Electrical Engineering, (2012)

[2] S. Uluagac, S.V. Radhakrishnan, C. Corbett, A. Beca, and R. Beyah, “A Passive Tech-

nique for Fingerprinting Wireless Devices with Wireside Observations,” in IEEE Interna-

tional Conference on Communications and Network Security (CNS), 2013 - in submission

[3] S.V. Radhakrishnan, S. Uluagac, and R. Beyah, “Realizing an 802.11-based Covert

Timing Channel Using Off-The-Shelf Wireless Cards,” in IEEE International Symposium

on a World of Wireless Mobile and Multimedia Networks (WoWMoM), 2013 - in submission

[4] S.V. Radhakrishnan, S. Uluagac, and R. Beyah, “Networked System Fingerprinting,”

IEEE Security and Privacy Magazine - in preparation

60


