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Corrosion of Composite Tube rapidly attacked,exposingthe carbonsteel
underneath.Stainlesssteelcorrosionratesup to

Air Ports in Kraft Recovery _50 mils per year (mpy) have been measured

Boiler- Cr203 Solubility in (]-5).After completely consuming the stainless

NaOH steel, corrosion of the underlying carbon steel
occurs at a rate of 10 mpy (1-5). However,
there is some concern that the carbon steel can
suffer sulfidation corrosion, which was the

By Matthew Estes, Alan Rudie, and reason for using composite tubes in air ports.
Jeffery Colwell Molten sodium hydroxide has been

postulated as a possible cause for corrosion at air
ports (1-3, 5). The severity and uniformity of

Abstract corrosion are consistent with a molten salt
reaction. It has been suggested that sodium

Composite tubes in kraft recovery boiler hydroxide vaporizing from :thesmelt bed can
air ports can experience severe corrosion. One migrate to the air port (.D. The walls of the air
possibility is the corrosion is caused by molten port at 275 to 500°C are relatively cool (4-6). At
NaOH. The corrosion of stainless steel in molten these temperatures, sodium hydroxide vapors
salts is dependent upon maintaining the would condense on the waterwall tube surface as

a liquid.protective Cr203 f'flm formed on the surface. The
goal of this project was to measure the solubility There is some evidence for NaOH being
of Cr2O3as a function of the basicity of NaOH. present at kraft recovery boiler air ports. Colwell
Plots of the chromium ion concentration indicate and Fonder collected deposit samples on a

a minimum solubility at -log aca20 ) of 8.2. The cooled probe and measured the melting point in
data support two mechanisms for dissolution of situ inside a kraft recovery boiler. Analysis of a
the Cr2O3. The basic dissolution had a slope of limited deposit showed a Na:K ratio of
-0.988, consistent with the formation of approximately 6:1. The melting poims measured
Na2CrO4. The acidic dissolution had a slope of yielded a value close to the theoretical melting
1.48, consistent with _e formation of Cr 3+._e point of NaOH:KOH of 6 to 1ratio (3).
results from weight loss experimentson Laboratory experimentationhas shown
chromium metal were then compared to the that molten sodium hydroxide corrodes stainless
solubility curves for Cr203to conf'm that metal steel faster than carbon steel (3). Other corrosive
oxide solubility was the rate limiting step in the mechanisms in addition to molten NaOH may
corrosion mechanism. The weight loss take place as suggested by Falat (_6_),but they do
experiments on chromium metal also confirmed not explain why stainless steel corrodes faster
that the corrosion rate was a function of the than carbon steel.

basicity of molten NaOH. Understanding the
mechanisms and the environment in which Theory of molten salt reactions
minimum solubility occurs for chromium oxide
allows a solution to be proposed to lessen the The stability of an oxide layer on a
composite tube air port corrosion of kraft metal is a function of the oxide's
recovery boilers, thermodynamics, growth kinetics, and the

dissolution of that oxide in the environment.

Introduction Solubility of an oxide can be defined as the
maximum weight of metal ions in solution
divided by the weight of the solution. Solubility

In recent years, the frequency of of a nominally protective oxide is often a
corrosion in recovery boiler air ports has risen function of the salt basicity; where solubility is
dramatically throughout the pulp and paper the def'ming mechanism, the corrosion rate
industry (!-5). The increase coincides with the should also be a function of basicity.
growing use of composite tubes, which are Basicity of a molten salt is def'medon
fabricated with a stainless steel outer shell and the basis of the dissociation of the compound, in
carbon steel inner body. A unique characteristic this case, NaOH:
of air port corrosion is that the stahn3ess steel is



Thus, the location on the curve provides
2 NaOH = Na20 + H20 (1) information about which type of dissolution is

occurring.
For sodium hydroxide, sodium oxide is def'med In addition, based on various assumed
as the BrOnstedbase because it accepts a proton, soluble ions, the dependence of the solubility of
and water is def'medas the Br6nsted acid a particular ion on basicity can be related to the
because it donates a proton. Basicity, for NaOH, experimental slope of the curve. An example of

can also be defined by -log a(Na20),analogous to acidic dissolution would be:
the def'mifion of pH.

A considerable volume of work has I_logM_+) y
been reportedin the literatureshowingthe
solubility of different metal ions plotted as log 0 2- = _ (4)
function ofbasicity as shown in Figure 1 (7-15).

Agreement between the experimental slopes and
I Rgure1:MeasuredoxidesolulffiminNaz_04at1200'1(_. theoretical slopes based on stoichiometric

i o' _i [ /_ I I I I I\ v _, , , , I equations can be used to confirm the identity of
the soluble ion 2Q).
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Theplotshavebasicity valuesalongthex-axis crucible_-_ / crucible i

and the solubility limit of the metal oxide along , ' !il

the y-axis. These plots show the basicity

conditions that give the minimum solubility for a Furnace Furnace ii
particular metal oxide. If the basicity conditions i
for a metal oxide is located to the left side of the

minimum, the material undergoes a basic l_ _ao_ ii:idissolution mechanism such as:
/ / X_ K-type thermocoupleII-alumina

Excess Metal:oxide

MxO Y + 0 2- = MxO2'y+l (2)
where M = metal O = oxygen

If the basicity conditions for a metal oxide is The ceramic crucibles were surrounded by a
located to the right side of the _mum, the cylindrical radiant furnace that provided uniform
material undergoes an acidic dissolution heating. Temperature was measured with a
mechanism,whichis: calibratedK-typethermocoupleprotectedby an

cz-alumina tube and was controlled by a CN3201

MxOy = X h/P++ Y 0 2. (3) Omega® controller. An aluminum top and a
silicone O-ring encapsulating in Teflon®, se_ed
the top of the crucible. Port holes fitted with
Cajon® vacuum fittings with Viton® O-rings



providedaccess to the reactor for the R is equalto 8.314J * mol'1 * K'l, and F is
thermocouples, gas Wet and outlets, and equal to 96484.6 C/mol. The temperature, T,
electrodes, washeldconstantat 773Kfortheexperiments.

Electrodes were inserted into the melt to Because atmospheric air was the reference for
measure the basicity (!6-17). The electrode the zirconia tube, the P(O2) was equal to 0.21
system consisted of a combination of a [5- atm. By measuring the voltage, E, the resultant
alumina probe and a zirconia probes. [5-alumina activity of sodium oxide was used to determine
(A1203,5 Na20 ) conducts sodium ions the basicity of the sodium hydroxide melt.
exclusively. TheB-aluminatubeswere TheE° value in equation(9) was
purchased from Polyceram and attached using a experimentally determined as follows: fu'st, the
Durabond 989TM adhesive to an o_-aluminatube sodium hydroxide was completely dried at 500°C
to minimize the expense. The inside of the tube under nitrogen gas for three days to remove
was filled with sodium metal, in contact with a excess water and contaminants. Then, the
platinum wire that was routed outside and sealed, basicity was changed by adding sodium oxide to
A potential across the ceramic robe wall results the sodium hydroxide in differem concentrations,
from a difference in sodium activity, and the corresponding voltage was measured. A

Zirconia fully stabilized with yttria plot of the mole fraction of sodium oxide versus
(ZrO2 , Y203 ) conducts oxygen ions the measuredvoltage is shown in Figure 3.
exclusively. The inside end of a closed-end tube

was painted with three coats of platinum paste Figure 3' Value for fi'.
andattachedto a platinumwire. The tubewas .2
open to the air and thus uses the oxygen in air as i

a reference. A potential across the ceramic tube .1 _:
wall results from a difference in the oxygen y = -o.l_4x + o.5669!
activity. ; 1 R2= 0.9769 '_

iThehalf-cellreactionateachelectrode i
isasfollows: _ 0.9 i

Oxidation: 2 [Na --->Na+ + e'] (5) _ 0.8 _i_

ii
Reduction: ½ 0 2 + 2e- --->O2_ (6) 0.7 ii

Usingthe Nerstequation,it followsthat o.6

o.5 ...... _......... _ _ .... {

E = E° - RT In a(i) (7) -3.5 -2.5 -1.5 -0.5ZF LogMoleFraction

where Z represents the moles of electrons Extrapolating the line to zero sodium oxide
participating in the reaction. For our case with content gives E ° = 0.567.
NaOH,equation(7)becomes Forthe experiments,sodiumoxidewas

added to make the NaOH more basic. Sodium

E=EO ' RT ha + _ln (Na)+RT oxide pellets were purchased from Aldrich®.
2F F To make NaOH more acidic water

vapor was added by bubbling the carrier gas
RT IrtP(O2) (8) through a water colum fitted with a4F

polyurethane frit. By fixing the water column
Using pure Na metal as the reference, in the temperature and assuming saturation, which was
standard state (Na) is unity and tn (Na)=0. tested by Schwerdtfeger, the vapor pressure was

determined 1(1__.
Samples for chemical analysis were

E = E° -2FRTIn a(Na20)+ 4FRTIn P(O2) (9) collected by inserting a ceramic rod through a
ball valve on the alarum top. The depth of
rod insertion was calibrated so that samples of



approximately the same size and nearly the same Chromium oxide was found to have a minimum
area were obtained. The cold rod caused the solubility at a basicity of 8.2. The solid line
sample to freeze to the rod as it was withdrawn represents the least squares best fit of the data.

from the melt. The sample was then quickly Basicity error bars were estimated at -log a(Na_O)
scraped off with ceramic tweezers into a _+0.1 based upon fluctuations in the voltage --
volumetric flask partially filled with deionized readings. Concentration of chromium error bars
water. The weight change of the flask was show _+one standard deviation.
recorded. The flask was then filled to the mark If the dissolution reaction for basic
with deionized water and stored until analyzed, conditions is assumed to be:
Four replicate salt samples were taken at each
basicity.

Chromium concentration was measured Cr:O3+ 2 O2'+ 3 O2= 2 CRO42' (10)2
using a Perkin Elmer Optima 3000 Dual View

Inductively Coupled Plasma (ICP) Spectrometer. At constant P(O2),
Standards were prepared, values loaded into the
computer, and then compared with unknown

the theoretical slope for the reaction is given by:
samples using EPA's guidelines for solid waste

@. The optimal conditions for the ICP had f ,_

been found to be a pressure of 70 psi for argon _- log CrO 2-4 _ - -1 (11)and wavelength 267 nm for chromium. - log O z-
Chromium gave a linear response from 0.04 ppm

to 100ppm. Each unknown sample was The measured value of-0.9879 is in very good
analyzed three times, and the average value was agreement with theory. Also, the melt was
reported, yellow in color, which is consistent with the

formation of chromate ®.
Results and Discussion tf the dissolution reaction for acidic

conditions is assumed to be:
Results for the chromi_ concentration vs.

basicity are summarized in Figure 4 below. Cr203 = 2 Cr3++ 3 02. (12)

Figure 4:Cr20 a in NaOH. The theoretic_ slope for the reaction is given by:
3.5

3 k,-1-_g_) - 2 (13)1
19

_E 2-5
-- The measured value of 1.477 is in very good
o_ 2 agreement with theory. Also, the melt was green

in color, which is consistent with the formation

1.5 of chromium ions _.
' _; To further confirm that the mechanism

o_ 1 y =-0.9879x + 9.6835 y = 1.477x - 10.639 for dissolution had changed, the oxidation state_ = 0.9807 Re= 0.9903
:_ _ ofthechromiumionwasdetermined.A

0.5 _

'J t basic acidic chemical method described by Cranston and
[ dissolution 411-H_ dissolution Murray was used _. Chromium (III) was0 ........ t _ i i ..... i

6.6 7.1 7.6 8.1 8.6 9.1 scavenged by reacting the solution with 0.01 M
-Loga(.a_o) iron0ID hydroxide at pH 8. The chromium was

precipitated and collected on a 0.45 gm
NucleaporeTM filter precleaned with 12 M HC1.

Each basicity condition shown in Figure 4 is a The chromium complex was then dissolved in 6
mean of three values. Equilibrium was ensured M HC1 and analyzed by ICP. Chromium (VI)
at a given basicity by measuring until the and chromium(III) are both precipitated by
concentration did not change over three days. reacting the solution with iron(H) hydroxide at



pH 8. The iron(II) was oxidized to iron(III), and loss at a basicity value of 6.8 should be higher
the chromium(VI) was reduced. The than at 8.8 based upon the solubility curve in
precipitated chromium was dissolved in 6 M HC1 Figure 4. Weight loss experiments with
and analyzed as before. Chromium (VI) was chromium metal at basicities of 6.8 and 8.8 in
determinedby the difference. Figure 5 showed thepredicted increase in weight

Results indicate that the mechanism for loss. Therefore, basicity, which determines the
dissolution had changed under different basicity solubility, does affect the weight loss of
conditions on either side of the _mum. chromium metal.

Cr(III) was the dominant species at -log a(N_O) In addition, three samples of chromium
of 8.8, and Cr(VI) was the dominant specie'at metal were placed in NaOH at a basicity value of
-log a¢4a o) of 6.8. The change in the oxidation 8.2. The minimum of the chromium oxide
state of c_omium confirms that the mechanism solubility was chosen to determine the effect of
changed from basic to acidic dissolution, time on weight loss. After 15 days, the samples

were removed and cleaned with water to remove

Weight loss experiments excess NaOH. The samples were then
ultrasonically cleaned for 5 minutes in acetone

Weight loss experimentswere and dried in a desiccator prior to weighing. The
performed using chromium metal in molten same samples were replaced in the furnace with
NaOH at basicity values of 6.8, 8.2, and 8.8. fresh NaOH for an additional 15 days. :Infigure
The three basicities selected represented basic 6, the results were graphed showing the weight
dissolution, the solubility minimum, and an changes of three 15-day trials.
acidic dissolution, respectively. Figure 5 shows

the results of the weight loss measurements Figure 6: Weight loss as a function of
performed at different basicities, time for Crin NaOHat a basicity value

of 8.2at $00°C.

Figure5: Chromiumweight lossin ..............................
NaOHat 500°C. 19
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_ (3 _ _ (3 _ analyzed by the ICP. The samples were yellow,
indicating the presence of chromate, so the

The weight loss variation can be basicity was slightly on the basic side of the
predicted from the basicity and solubility curves, minimum. The average results are summarized
The chromium oxide solubility results in Figure in Table 1.
4 show that the solubility was at a minimum at a
basicity value of 8.2. The weight loss of Table 1' Analysis for chromium by ICP
chromium metal is also low at a basicity value of
8.2. Logchromium(ppm)

At basicities of 6.8 and 8.8, the 1st 15 days 2.70
solubilitieswere much higher,which should lead 2na15 days 1.18
to higher weight loss. Furthermore, the weight 3ra15 days 0
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The kinetic reaction is afh, st-order Institute of Paper Science and Technology.
reaction. Visually, a dark green, fairly compact

scale formed on the test pieces that was strongly References
adherent to the metal. Because the chromium

oxide was minimally soluble inNaOH under the 1. Bnmo, F. Primary air register corrosion in
tested conditions, the chromium oxide was able kraft recovery boilers. Pulp and Paper
to form a passive layer, which reduced the rate International Corrosion Problem. 4:68-75.

of Corrosion. Because the melt was replaced at (1983)
each 15-day interval, the drop in corrosion rate 2. Colwell, J.A. On the mech_sm of
was not due to the melt becoming saturated, corrosion of composite tubes at ports in kraft

recovery boilers. 7th International
Conclusion symposium on corrosion, NACE. (1992)

3. Colwell, J.A. and G. Fonder. Status report
The solubility of Cr203 was determined to the corrosion control project advisory

as a function of basicity. The results clearly committee. Institute of Paper Science and

show a minimum solubility at -log a(Na_o)of 8.2. Technology Unpublished Resets. March 24
The data suggest two mechanisms of dissolution (1994)
of chromium oxide in molten NaOH. Basic 4. Luna, M.A., W.B.A. Sharp, J.D. Andrews,
dissolution (basicityvalues < 8.2) formed H.N. Tran, and D. Barbara. Corrosion of
chromate, and acidic dissolution (basicity values composite tubes at recovery boiler air ports -
> 8.2) formed chromium ions. Analysis of the A case history. 6th Imemational symposium
oxidation state of chromittm confmned the on corrosion in the pulp and paper industry,
products. NACE.151-162.(1989)

The solubility curves successfully 5. Wensley, D.A. Corrosion of recovery boiler
predicted the variation in the weight loss of waterwall composite tubes. Corrosion,
chromium metal. Chromium coupons at-log NACE. (28): 53-55. (1987)

acra_O)of 8.2, which is the minimtun solubility 6. Falat, Lad. Corrosion of air ports. Tappi
of ctiromium oxide in NaOH, developed a green Journal. 79(2)' 175-185. (1996)
film that successfully lessened the corrosion. 7. Deanhardt, M.L. and K.H. Stem. Solubility

Controlling conditions in the kraft of yttrium oxide in Na2SO4 and NsC1melts.
recovery boiler air ports that establish a Journal of electrochemical society:
minimum solubility condition should lead to a Electrochemical science and technology.
lower corrosionrate of composite tubes. The 29(10): 2228-2232. (1982)
basicity of a NaOH deposit in a kraft recovery 8. Gupta, D.K. and R.A. Rapp. The
boiler could be controlledby the mount of solubilities of NiO, Co30 4, and ternary
water vapor in the incoming air to reduce the oxides in fused Na2SO4 at 1200°K. Journal
corrosion rate and provide significant cost of electrochemical society: solid-state
savings. The practicality of such an approach science and technology. 127(10): 2194-
wouldhave to be demonstrated.Addition 2656. (1980)
factors, such as the presence of and effect of 9. Hwang, Y.S. and R.A. Rapp. Synergistic
other metal oxides and chemical species should dissolution of oxides in molten sodium
be investigatedfurther, sulfate. Journalof electrochemicalsociety.

137(4): 1276-1280. (1990)
10. Jose, P.D., D.K. Gupta, and R.A. Rapp.

Acknowledgments Solubility of cz-A1203 in fused Na2SO4 at
1200°K. Journal of electrochemical society.

The authors thank Drs. Miroslav Marek, and Solid-state science and technology. 132(3):
Preet Singh for valuable discussions and 735-737. (1985)



11. Leblanc, P. and R.A. Rapp. Solubility of
Cr20 3 in Na2SO4-K2SO4-Fe2(SO4)3.
Progress report submitted to E.P.R.I.
(11): 1-8. (1991)

12. Leblanc, P. and R.A. Rapp. Solubility of
Cr20 3 in Na2SO4-K2SO4-Fe2(SO4)3.
Behavior of the SO 3 sensor in more reduced
environments. Progress report submitted to
E.P.R.I. (3): 14. (1992)

13. Rapp, R.A. and K.S. Goto. The hot
corrosion of metals by molten salts, in
molten salts. Ed. J. Braunstein and J.R.

Selman. Electrochemical society,
Pennington, NH. 81. (1981)

14. Zhang, Y.S. Solubilities of Cr20 3 in fused
Na2SO 4 at 1200°K. Journal of
electrochemical society: Solid-state science
and technology. 133(3): 655-657. (1986)

15. Zhang, Y.S. and R.A. Rapp. Solubility of
o_-Fe20 3 in Fused Na2SO 4 at 1200°K.
Journal of electrochemical society. Solid-
state science and technology. 13: 734-735.
(1985)

16. Ito, Y. Electrochemical studies on molten
sodium hydroxide. Journal of
electroanalytical chemistry. 124: 229-235.
(1981)

17. Petrie, A. Development of cation
substituted beta alumina solid electrolytes
and EMF measurement of the

thermodynamic properties of ionic alloys.
Ph.D. Thesis. University of Montreal.
(1987)

18. Schwerdtfeger, K. and E.T. Turkdogan.
Equilibria and transport phenomena.
Physicochemical measurements in metals
research. Ed. R.A. Rapp. Interscience
Publishers of John Wiley & Sons Inc., New
York. 321-355. (1970)

19. US EPA SW-846. Method for Physical and
Chemical Analysis of Solid Waste. Method
6010A. (1972)

20. Pourbaix, M. Arias of electrochemical
equilibria in aqueous solutions. NACE. pp.
257-271; 307-321; 330-342 (1974)

21. Cranston, R.E. and J.W. Murray. The
determination of chromium species in
natural waters. Analytica Chimica Acta.
99: 276-282. (1978)








