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Summary 

The Internet is increasingly being depended upon to provide large-scale content 

distribution. An important need is mechanisms to aid in the scalability of distri

bution services. These mechanisms include multicast, anycast, peer-to-peer, and 

overlay-based content distribution networks. Multicast communication provides an 

efficient transport mechanism for one-to-many and many-to-many communication. 

Anycast aids in service discovery and replication by providing a mechanism for de

livering a single request to one of many servers servicing an address. Peer-to-peer 

systems allow efficient content location and retrieval among large groups of users. 

Overlay-based content distribution networks provide reliable and robust distribution 

frameworks. 

As content distribution on the Internet becomes more pervasive and the value 

of the content being distributed increases, the security of this content and its dis

tribution channels has become a main concern of content creators, owners, and 

providers. There have been significant advances in maturing the distribution mech

anisms; however, there are a number of distinct security issues in these technologies. 

These issues exist because of two reasons: 1) the issues are introduced by the new 

distribution mechanisms; or 2) the issues also exist in unicast, but the unicast solu

tions do not apply. To address these problems, our research aims to develop flexible 

content protection architectures for large-scale content distribution. 

Specifically, the contributions of this work are as follows. 

• We developed WHIM, a scalable system that allows multicast content to be 

securely marked with distinct information for distinct receivers. This system 

introduces two new concepts: 1) generation of a watermark based on the re

ceiver's location in a tree overlaying the network; and 2) incremental insertion 

xiii 



of the watermark in the content as it traverses an overlay network. We pro

pose and evaluate several forms of this architecture and show how it improves 

scalability while increasing security. We also develop an implementation of the 

system that allows a multicast video stream to be watermarked by a hierarchy 

of intermediaries. 

• We generalize the problems of secure IGMP and secure anycast server adver

tisements into a problem of group access control and propose Gothic, a com

plete architecture for providing group access control. Gothic centers around 

a novel authorization architecture. This is complemented by a proposal for a 

group policy management system that allows the group owner to be authen

ticated before being allowed to specify the group access rights. This system 

can be applied to other works that involve group policy. We show how Gothic 

operates in a number of environments including application-layer multicast, 

source-specific multicast, application-layer anycast and global IP-anycast. We 

evaluate the security and scalability of the architecture and show that it im

proves scalability over previous solutions while maintaining or increasing the 

level of security. We also propose methods of integrating Gothic with the 

group key management system and content distribution tree. We propose and 

evaluate a group-access-control-aware group-key management technique that 

leverages the existence of a group access control system to substantially reduce 

overhead. 

• We describe and implement a rights management architecture for decentral

ized peer-to-peer file sharing systems called CITADEL. CITADEL builds a 

protected file sharing environment over a normal peer-to-peer network using se

cured content objects and file sharing software enhanced to perform protection 

operations. A flexible content importation system that is part of CITADEL 

allows all users to insert new content as well as additional copies of protected 
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content. We explain how CITADEL provides the flexibility necessary to sup

port common content distribution business models. We also provide results 

that show the performance of the system relative to other possible approaches. 

Finally, we describe an implementation of CITADEL that uses the Gnutella 

network, LimeWire file sharing software and standards-based security tools. 
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Chapter 1 

Introduction 

As content distribution on the Internet becomes more pervasive and the value of 

the content being distributed increases, the security of this data has become a main 

concern of content providers. Content distribution has become pervasive in part due 

to the deployment of scalable networked services and architectures. These mech

anisms range from network services such as multicast and anycast to networked 

architectures such as content distribution networks (CDNs) and peer-to-peer sys

tems. The availability of such systems has sparked the interest of end-users and 

content providers. End-users are attracted to such distribution method's ability to 

locate and obtain a wide variety of content. Content distributors are drawn to such 

system's large distribution channel and low cost. 

There is significant interest by content creators and owners in the protection of 

the content that is distributed in these systems. Content protection in any envi

ronment is a formidable challenge due to the complex protection goals and range of 

possible attacks. Additionally, content protection in large-scale content distribution 

environments introduces a number of issues that do not exist in client-server sys

tems. There has been previous research in understanding and solving security issues 

in client-server environments. However, the introduction of decentralized systems, 

group-based systems, and multicast systems brings about a new set of problems. For 

example, confidentiality, integrity, trust management, and non-repudiation mecha

nisms in unicast systems do not translate to large-scale content distribution systems. 



1.1 Applications 

Innovation and the human imagination have repeatedly led to applications that 

stretch the limits of the computing capabilities of the day. As the demands of appli

cations increase, we have developed sustaining technologies to increase the lifetime 

of the current technologies. More significantly, it is said that disruptive applications 

stimulate disruptive technologies that introduce a new value proposition [45]. For 

example, many of the advances in website technology is considered sustaining tech

nology while the introduction of peer-to-peer content distribution can be considered 

a disruptive technology. 

There are four forces that drive applications: the types of content that users 

deisre, the ways that users wish to access the content, the bandwidth that is available 

to users, and the format in which content is available. Content types include movies, 

music, pay-per-view events, software, business information such as stock quotes, 

news data such as weather or world events, and real-time conversations. 

Another factor is the formats in which the content has been made available. 

This is influenced heavily by advances in compression and storage. For example, 

over the years video compression has advanced from MPEG-1 to MPEG-2 [191] to 

MPEG-4, MPEG-7, MPEG-21 \ and Windows Media Video 2. Similarly audio has 

progressed from WAV to MPS and Ogg Vorbis [202]. Such changes have significant 

impact on the applications. For example, the emergence of the MPS compression 

format made it possible to transport audio content over the Internet in a amount of 

time that users found reasonable. This made applications such as Napster possible. 

Similarly, MPEG-4 and Windows Media Video codecs allow movies and other video 

content to be compressed to a size that allows such files to be exchanged over the 

Internet. Diff"erent multimedia streaming formats also have infleunced applications. 

The increase in available bandwidth is also a driving force. Over the last few 

years, the amount of bandwidth available to home users rise from 28.8 kbps to 33.6 

^ http://mpeg.telecomitalialab.com/ 
^http://www.microsoft.com/windows/windowsmedia/ 

http://mpeg.telecomitalialab.com/
http://www.microsoft.com/windows/windowsmedia/


kbps to 56 kbps and then drastically increase to 1.5 mbps and up for some users. 

This has made significant changes in the number of users capable of participating 

in Internet content distribution and the expectations of those users. 

The ubiquity of devices has changed the places and times that users are able to 

access content. The recent popularity of wireless devices and portable entertainment 

devices has influenced applications. We have witnessed computing devices move 

from the office into the home office with PCs and then throughout the home with 

laptops and computerized entertainment centers. Now with wireless devices, PDAs, 

and portable entertainment devices, computing and content devices are able to move 

with the user outside the home. 

1.2 Content Distribution Methods 

The Internet has succeeded at supporting wide-scale communication in the form of 

e-mail and web pages. That success has led to technical growth issues, users that ex

pect more, and providers that want to deliver more. Growth issues are a result of the 

current size and use of the Internet exceeding the original design goals. Therefore, 

there are some technical barriers such as limited scalability resource bottlenecks and 

the lack of inherent quality of service (QoS) due to the best-effort model. Higher 

user expectations have come as a result of the Internet's success. Users expect higher 

speeds and higher quality. Providers have seen proof of the Internet's potential and 

now aim to deliver even richer content and offer new services. 

These are not new issues. Every since the invent of the Internet, users have 

pushed it beyond its intended limits and along the way there are technical barriers. 

Today, we are again asking more of the Internet than it was designed to give. So 

again we must overcome the technical issues to meet our demands. 

Years ago, there was a need for applications that would sent data to large groups. 

Multicast was developed as an efficient delivery mechanism to ease that strain. Other 

work resulted in the use of caches in networks to increase efficiency. Recently, we 



have built upon our earlier gains and discovered ways to supplement the Internet 

to provide the resources to meet our demands. This has resulted in mechanisms 

such as content distribution networks (CDNs). Other efforts have sought to provide 

efficient content location and retrieval to end-users; this has lead to the popularity 

of peer-to-peer systems. 

1.2.1 Evolution of Content Distribution 

Content distribution as it is today is a result of years of evolution. The evolution 

is sometimes driven by technology, but often driven by applications. Content dis

tribution consists of storage and caching mechanisms and delivery mechanisms. In 

this section we briefly discuss the evolution that has taken place in these two areas. 

1.2.1.1 Evolution of Caching and Storage Infrastructure 

It was realized early on that scalability can be increased by allowing popular requests 

to be handled with some sort of aggregation [24]. Frequently requested objects could 

be stored in a manner that did not require a full operation to service a user with that 

object. Similar concepts have been used in other areas such as memory caching. 

As the world wide web increased in popularity, Internet Service Providers (ISPs) 

began to seek ways to lower their bandwidth costs and many used forward proxy 

caches to cache web pages and other objects that were requested by their customers. 

This concept advanced to include mechanisms such as co-operative caching that 

allow multiple caches to exchange information for increased efficiency [207]. 

Later, content providers used forward proxies when seeking ways to provide bet

ter QoS for their customers. However, many of these were maintained by the content 

provider rather than the ISP and served that provider's most popular content. 

As content storage was pushed further to the edge of the network, it finally 

reached the actual edge: the end-users' computers. This is the underlying concept 

behind peer-to-peer content distribution. Files are stored at peer computers and 



exchanged directly between peers. 

As content became more distributed, mechanisms that allowed the efficient lo

cation of these resources became important. These mechanisms include server se

lection, request redirection, content location, and service location [200]. Server 

selection involves an enduser choosing a particular server from a group of servers 

based on some metrics. Request redirection allows a host to send a request to a gen

eral address and have it redirected to a specific server. This usually involves some 

form of server selection algorithm. Anycast is an important mechanism in providing 

server selection, server location, and request redirection. Content location allows a 

host to efficiently locate content within a distributed system and is an important 

component of peer-to-peer systems. 

1.2.1.2 Evolution of Delivery Model 

Multicast was developed to provide scalability by allowing a server to service mul

tiple requests with a single response. Multicast enables efficient large-scale con

tent distribution by providing an efficient transport mechanism for one-to-many 

and many-to-many communication. Over the years, multicast has been the topic 

of many research, engineering, and deployment efforts. These efforts have contin

ued to transform multicast into a technology that can be relied upon by many 

applications. Work has been done in reliability, manageability, scalability, quality-

of-service, address allocation, inter-domain multicast, pricing/billing, and ease of 

deployment [60]. 

There have been a number of multicast routing protcols proposed including 

DVMRP [164], MOSPF [143], PIM-DM [57], PIM-SM [64], and CBT [23]. Re

cently, single source multicast (SSM) [100, 98] has been proposed that simplfies 

some of the problems faced by normal any-source multicast (ASM), but it is too 

soon to determine how widespread its use will be. 

The industry has come to require a multicast model that is ready for deployment 

in commercial applications. Thus, to provide the necessary components, the new 



paradigm is to add layers to the infrastructure instead of engineering the mecha

nisms into the existing layers. This has lead to the use of overlay networks and 

application-layer multicast to provide the missing pieces. Other reasons for interest 

in overlay networks is that they can offer increased QoS, more robustness, and better 

manageability [47]. The use of application-layer multicast does not rule out the use 

of or replace the need for IP multicast. Application-layer multicast allows rapid de

ployment and a platform to build additional services on top of the multicast model. 

However, application-layer multicast is not as efficient of a delivery method as IP 

multicast. In many environments, application-layer multicast and IP multicast can 

co-exist. 

Another advancement in content delivery is the ability to provide enhanced ser

vices during content distribution. This allows distributed applications to act on the 

content as it is being delivered. Such work includes active services, overlay services, 

and web services. The added functionality may include video smoothing, transcod

ing, content personalization, advertisement insertion, or content protection. 

1.2.2 Multicast 

There are a number of available multicast routing protocols that provide the efficient 

transport mechanisms of multicast by routing packets with one group destination 

address to multiple recipients. The routing protocols must be aware of group mem

bers in the network in order to deliver packets to them. The mechanism provided 

for doing this is the Internet Group Membership Protocol (IGMP) [33]. A host uses 

this protocol to notify an edge router that it should deliver packets from a particular 

multicast group to that host. 

1.2.3 Content Distribution Networks 

Content distribution networks (CDNs) are network infrastructures that are deployed 

to deliver content reliably and quickly [200]. The idea is that on top of network 



layer connectivity we utilize transport through application-layer resources to provide 

improved and novel services. 

CDNs utilize various mechanisms to overcome common problem areas of the 

Internet. These problem areas include network congestion and content server bot

tlenecks. CDNs allow higher levels of service and new levels of scalability. Due 

to the nature of placing functionality at higher levels, deployment of new services 

becomes can occur more rapidly. 

CDNs involve a number of components. Content routing systems utilize infor

mation known by the application to achieve intelligent routing. Content transport 

can be achieved with application-layer multicast, IP multicast, or unicast. The con

tent distribution system may also include content caching mechanisms. The proxy 

execution environment allows services to be deployed within the network. Content 

peering involves the internetworking of seperately managed CDNs. The redirection 

fabric maps the client request to the CDN to be served. Content network manage

ment involves managing the overlay network including the deployment, routing, and 

monitoring of the network. This allows a number of powerful features such as mon

itoring of application usage, integration with the pricing model, application-layer 

quality of service (QoS). 

There have been a number of research efforts that proposed application-layer 

multicast systems [72, 47, 42] and systems for deploying and managing overlay 

networks [197]. There have been a number of deployed content distribution net

works ncluding commercial networks like Inktomi [103] and Akamai [13] and non-

commercical networks like Internet2 Distributed Storage Infrastructure (I2-DSI) [104]. 

1.2.4 Anycast 

Anycast allows multiple servers to provide a service at a single address called the 

anycast address. Each anycast server lets the routing protocol know that it is 



listening to the anycast address. Then when a host wishes to contact a server 

providing that particular service, it simply sends a request to the anycast address. 

The routing system knows which servers said that they are providing that service, 

so it chooses one of those servers and forwards the request to it. Besides the basic IP 

model of anycast [155), global IP anycast [116] and application-layer anycast [212] 

have been proposed. 

1.2.5 Peer-to-Peer 

Peer-to-peer networks are formed as a logical connection of endhosts over the phys

ical network. Peer-to-peer file sharing systems consist of two components, the file 

locat ion process and the file retrieval process. In most peer- to-peer systems, the 

file retrieval process is decentralized. That is, files are transferred directly between 

peers rather than through a client-server model. However, peer-to-peer systems dif

fer in the file location process. There are two main types of peer-to-peer systems. 

Centralized systems such as Napster ^ provide indexing and searching functions at 

a centrally managed location (or a set of replicated locations), while decentralized 

systems depend on the peers themselves to manage content indexing and search func

tions in a distributed manner. Among the decentralized systems, there are naive 

broadcast query systems such as Gnutella [78] and distributed hash table (DHT)-

based systems such as CAN, Chord, Pastry and Tapestry [170, 194, 179, 214]. 

1.3 Security Goals 

Information security has been an active area for the last thirty years. The focus 

has sometimes shifted depending on the computing environment at the time. Early 

work focused on system security in multi-user and multi-process systems [125, 25]. 

Then there was work that oflPered formal definitions of security properties and mod

els [126]. Later work began to examine security issues in distributed systems such 

'http://www.napster.com 

'http://www.napster.com


as encryption, authentication, authorization, and trust management [119, 150, 26). 

The focus then shifted to protecting data over large networked systems and also pro

tecting the systems. As new types of networked systems are proposed, we still are 

working on defining models to represent our goals and threats, methods to perform 

authentication and authorization, mechanisms to protect the data on the system, 

and ways to protect the system itself. 

In this section we briefly discuss some fundamentals of information security such 

as the diflferent types of security services that may be desired in a particular en

vironment, the attacks that aim to deny these security services, and the classes of 

mechanisms to defend against these attacks. 

1.3.1 Security Services 

A security service is a property that may be desired in a particular environment to 

enhance the security of information. These services counter the diflferent security 

attacks and use some security mechanism to do so. 

A common classification of security services defines six distinct services [117]: 

• Confidentiality: Protects data from release of contents. 

• Access control: Limits and controls access to objects. 

• Availability: Ensures continuous service for intended users. 

• Authentication: Ensures the identity of an entity or of the source of data. 

• Integrity: Ensures that the data received is the data that was sent. 

• Nonrepudiation: Ensures that neither party participating in communciation 

can deny the occurence of the communciation. 



1.3.2 Security Attacks 

The most common classification of security attacks defines four general categories 

of attack [119): 

• Interruption: A component of the system is damaged or otherwise made un

available for authorized users. 

• Interception: An entity gains access to information that it is not authorized 

to receive. 

• Modification: An entity modifies some component of the system such as mes

sage contents or modifying the behavior of a program. 

• Fabrication: An entity creates unauthentic objects such as messages or data 

files. 

We highlight the types of attack that are dealt with in this thesis and show 

the particular security service that they attack. Interception and eavesdropping are 

attacks on confidentiality. Theft-of-service and redistribution are attacks on access 

control. Interruption or denial-of-service are attacks on availability. Masquerading 

is an attack on authentication and integrity. 

1.3.3 Security Mechanisms 

We classify security mechansims by the role they play in defeating attacks: 

• Prevention: These mechanisms aim to protect resources in order to deny the 

ability to perform a security attack or to provide deterrence to decrease the 

likelihood of an attack. 

• Detection: These mechanisms are designed to detect the presence or occurence 

of an attack so that some measures can be taken. 

10 



• Response: The role of these mechanisms is to respond to an attack in a passive 

or active manner. Passive responses include increasing security by enforcing 

a more stringent policy. Active responses may include executing a reciprocal 

attack. 

In this thesis, we concentrate on preventive mechanisms. There are two types of 

preventive mechanisms: protection mechanims and deterrence mechanisms. Protec

tion mechanisms aim to shield systems from exposure. Deterrence mechanisms aim 

to discourage attackers from acting. Protection mechanisms can be compared with 

a lock on a door while deterrence mechanisms are similiar to a security camera. 

1.4 Thesis Outline 

This thesis seeks to define security and content protection issues in large-scale con

tent distribution and propose architectures to solve a range of the issues. We identify 

the content protection and security goals and methods used to achieve these goals 

in traditional client-server environments. We discuss the mechanisms used for large-

scale content distribution and examine cases in which the traditional mechanisms 

cannot be utilized in large-scale systems. Additionally, we identify new issues that 

appear due to the nature of certain large-scale distribution systems. We then pro

pose solutions for a range of these issues. Our set of solutions provides a flexible 

architecture for content protection for various distribution methods. Specifically, we 

address the following issues: 

• Theft deterrence: In unicast environments, fingerprinting is achieved by 

watermarking the content at the source then distributing it. In a multicast 

environment, this approach offers no security since all receivers will share a 

common fingerprint. We explore methods to securely watermark multicast 

multimedia content while maintaining the scalability advantages of multicast. 
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• Distribution tree protection: In multicast content distribution, users at

tach to tlie distribution tree using the Internet Group Membership Protocol 

(IGMP). In the current model, any host can use IGMP to become a member 

of any IP multicast group causing eavesdropping, theft-of-service, or resource 

utilization leading to denial-of-service. In this work, we explore a method to 

provide access control within IGMP without introducing heavy loads on the 

network infrastructure such as routers. 

• Rights management: The popularity of decentralized peer-to-peer file shar

ing systems has led to environments that require content protection but lack 

a central authority to enforce the protection. How can content protection be 

provided and enforced without a central authority? How can the open peer-to-

peer sharing experience be maintained in the presence of a content protection 

system? In this work, we describe a content protection architecture for de-

centraHzed peer-to-peer file sharing systems that is designed to answer these 

questions. 

1.5 Organization of Dissertation 

The remainder of this thesis is organized as follows. In Chapter 2 we provide 

an overview of content protection. Chapter 3 summarizes our work in developing 

WHIM, a scalable fingerprinting for multicast environments. Chapter 4 describes a 

group access control architecture for secure multicast and anycast called GOTHIC. 

Chapter 5 motivates the need for content protection in peer-to-peer systems and 

discusses CITADEL, an architecture for content protection in peer-to-peer systems. 

In Chapter 6 we describe practical issues involving CITADEL including its support 

of common business models, simulation results, and an implementation of the sys

tem. Finally, chapter 7 summarizes the contributions of the work presented in this 

dissertation and outlines some future directions for this research. 
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Chapter 2 

Overview of Content Protection 

There are numerous works in content protection that cover many environments, dis

tribution methods, content types, and protection goals. The goals within content 

protection are sometimes referred to as copy protection, conditional access, or digi

tal rights management. Digital rights management is a more generic term that can 

be used to describe some set of content protection schemes that compose a partic

ular system for value chain participants from content creators to consumers. Three 

phases of content protection that are common across different distribution methods 

and content formats are protected distribution, protected storage and output protec

tion. Protected distribution deals with providing conditional access or enforcing an 

access policy in the distribution model. This essentially controls access to protected 

objects. Protected storage deals with controlling access to the actual content in a 

protected object. This essentially controls playback of protected objects. Output 

protection deals with protecting content after an authorized user is accessing the 

content. This focuses on restricting access to the content as it is played by the user. 

Output protection work includes Digital Transmission Content Protection (DTCP) [11] 

for protecting content during transmission between devices using IEEE 1394 or Uni

versal Serial Bus (USB), Macrovision Copy Protection [132], High-bandwidth Digital 

Content Protection (HDCP) [59] for protecting content during transmission to digi

tal displays, and Microsoft's Secure Audio Path [140] for protecting content on PCs 

during transmission to audio devices such as sound cards. 

Protected storage work includes Content Protection for Pre-recorded Media 
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(CPPM) [8] for protection pre-recorded DVD-Audio, Content Protection for Record

able Media (CPRM) [9] for protecting content stored on recordable media such as 

DVD-R or flash memory, Content Scrambling System (CSS) [10] for protecting pre

recorded DVD video, and copy-protected CD solutions such as the Cactus Data 

Shield [141] for protecting pre-recorded CDs from replication or extraction to files 

such as MP3s. 

Protected distribution work takes many forms differing greatly depending on the 

distribution method. In cable and satellite, conditional access is provided by set-

top boxes enforcing subscription and pay-per-view models; see for example the NDS 

VideoGuard [149]. In CD and DVD sales, conditional access simply means that 

the person that pays for the content receives the media containing the content. On 

websites that sell content, protected distribution is performed in the client-server 

model of purchasing rights and obtaining content. In multicast or group communi

cations, protected distribution is provided by using group keys to access encrypted 

content [35] and by controlling access to the multicast distribution tree [110]. 

In this section, we provide an overview of security issues and research in con

tent distribution. We first discuss the causes behind the multicast security issues 

in Section 2.1.2. We then provide more detailed explanations of security problems 

in multicast and proposed solutions. We discuss four areas of multicast security re

search: receiver access control, group key management, source authentication, and 

multicast fingerprinting. For each area, we further explain the vulnerabilities that 

it introduces, outline the objectives of solutions, and survey work in the area. In 

Section 2.6, we briefly highlight other security issues in multicast content distri

bution including source access control, secure multicast routing, and group policy 

specification. Section 2.7 explains work in video watermarking. In Section 2.8 we 

discuss related network security and content protection work. 
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2.1 Causes of Multicast Security Issues 

Multicast enables efficient large-scale content distribution by providing an efficient 

transport mechanism for one-to-many and many-to-many communication. Over the 

years, multicast has been the topic of many research, engineering, and deployment 

efforts. These efforts have continued to transform multicast into a technology that 

can be relied upon by many applications. Work has been done in reliability, man

ageability, scalability, quality-of-service, and ease of deployment. As these areas 

become more mature, there is increased potential for multicast to be used as the 

underlying distribution mechanism for content distribution applications. Therefore, 

security in multicast content distribution is an concern. The maturity of multicast 

security solutions has the potential to enable the use of multicast for confidential 

and high-value content and help spark the use of multicast by new applications. 

There are a number of security issues in multicast content distribution that are 

directly related to the properties of multicast that make it efficient and attractive. 

There has been research that provides solutions to many of these security issues. 

Some of these solutions are ready for deployment, some are nearing maturity, and 

others are only in the early phases of research. The maturity and deployment of 

these solutions will help increase the ability of multicast technology to deliver new 

applications and more content. In the next few sections, we examine these various 

issues and solutions for providing secure multicast content distribution. ^ 

2.1.1 Properties of Multicast 

The definition of the host group model [43] provides a summary of the key properties 

of multicast: "a host group is a set of network entities sharing a common identifying 

multicast address, all receiving any data packets addressed to this multicast address 

by senders (sources) that may or may not be members of the same group and have 

no knowledge of the groups' membership." This definition highlights the three main 

^An appreviated version of this taxonomy will appear [112]. 
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properties of multicast: 

• All members receive all packets sent to the address: Multicast routing delivers 

all packets sent to the multicast address to all members of the multicast group. 

• Open group membership: Multicast provides an open group model and allows 

group membership to be transparent to the source. 

• Open access to send packets to the group: Any host can send data to the 

multicast address and it will be delivered to the multicast group without regard 

for the source of these packets. 

We note that we focus here on the host-group native-IP multicast model which 

allows so called Any Source Multicast (ASM) as the most general multicast model 

available. As such it also represents the most challenging context in which to pro

vide content-distribution security functions. Other multicast models provide more 

restrictive frameworks that may make it easier to deal with some security aspects. 

For example in the Small Group Multicast [166] model the source needs to know 

the identity of the multicast group members. Another example is the use of Source-

Specific Multicast (SSM) [99] in which groups are associated with a single source 

and only that source can transmit to the multicast group. Another example is 

Application-Layer Multicast[49, 106] that utilizes an overlay network to implement 

multicast functionality including group management and packet forwarding. These 

more restrictive models, however, while possibly alleviating some aspect of securing 

multicast distribution, continue to possess other multicast properties (for exam

ple, the lack of distinction of received data among the receivers) and therefore, the 

security techniques surveyed here continue to be relevant. 

2.1.2 Security Issues and Solutions 

These properties of multicast lead to security issues and vulnerabilities because 

of two reasons: 1) the issues are multicast-specific; or 2) the issues also exist in 
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unicast, but the unicast solutions do not apply. Figure 1 shows how each of the 

three multicast properties leads to vulnerabilities and it shows the areas of research 

that provide solutions to these issues. 
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Figure 1; Some Multicast Security Issues and Solutions 

• The open group model is beneficial in many environments because it provides 

a lightweight join operation, the source is not required to maintain state for 

all group members, and it allows some anonymization for group members. 

However, this same property of multicast also causes security issues since it 

is not possible to restrict communication to a set of authorized hosts. In 

the IP-multicast model, any host can use the Internet Group Membership 

Protocol (IGMP) [33] to become a member of any IP multicast group— 

possibly leading to eavesdropping, theft of service, or denial of service. The 

latter attack can be caused by a malicious host joining a number of multicast 

groups, thereby utilizing large amounts of bandwidth or router resources. To 

defend against these threats, two classes of solutions have been proposed: 

group data encryption with group key management and multicast receiver 
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access control. 

• The multicast model delivers any traffic sent to the multicast address to the en

tire group. This means that any host can send data to the multicast group.This 

leads to two problems. First, group members need to able to verify that mes

sages received are from the intended source. Multicast source authentication 

solutions have been proposed to provide this functionality. Secondly, there 

should be mechanisms to restrict unauthorized sources from sending data to 

multicast groups due to the potential for denial-of-service attacks. Multicast 

sender access control solutions are necessary to defend against this threat. 

• The fact that all members receive all packets sent to the group is a funda

mental feature and benefit of multicast; however, this property also causes 

some security mechanisms that are used in unicast to not work in multicast 

environments. One reason for this is that there is no individualization of the 

received data. Traditionally, this individualization has sometimes been used 

to provide security. For example, fingerprinting [203] is the embedding of 

receiver identifying information in content to deter unauthorized duplication 

and propagation. However, fingerprinting techniques used in unicast environ

ments do not work in multicast environments because all users receive the 

same data. Therefore, multicast fingerprinting [46, 32, 198, 109] solutions 

have been proposed to achieve unique fingerprinting in a multicast environ

ment while maintaining the efficiency of multicast. 

As stated above, most of these issues exist across the different multicast models. 

However, some of the multicast schemes may be immune to some of these issues 

due to their design. For example, Single-Source Multicast inherently provides some 

source access control since the group address is based on the source's unicast ad

dress .̂ Small Group Multicast provides some receiver access control since the source 

'This is actually a side effect of reverse path forwarding, not intentional security. 
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knows the group membership. In Application-Layer Multicast, the receiver access 

control problem differs since group management may not be based on IGMP. 

In addition to the various models, multicast content distribution involves a num

ber of potential environments composed of different Internet Protocol (IP) versions, 

routing protocols, address allocation schemes, and inter-domain requirements. The 

security issues that we discuss are relevant to these many flavors of multicast, but 

may vary slightly across the particular environments. 

In the following sections, we discuss these areas of multicast security research: 

receiver access control, group key management, source authentication, and multicast 

fingerprinting. For each area, we further explain the vulnerabilities that it intro

duces, outline the objectives of solutions, and survey work in the area. In Section 2.6 

we briefly highlight other security issues in multicast content distribution including 

source access control, secure multicast routing, and group policy specification. 

2.2 Multicast Receiver Access Control 

There are a number of available multicast routing protocols that provide the efficient 

transport mechanisms of multicast by routing packets with one group destination 

address to multiple recipients. The routing protocols must be aware of group mem

bers in the network in order to deliver packets to them. The mechanism provided for 

doing this is the Internet Group Membership Protocol (IGMP) [33]. A host uses this 

protocol to notify the routing system that it should deliver packets for a particular 

multicast group to this host. In the current model, any host can use IGMP to be

come a member of any IP multicast group causing eavesdropping or theft of service. 

The traditional method used to protect the information is to encrypt the multicast 

data and provide decryption keys only to authorized members (as discussed in Sec

tion 2.3). In some cases, encrypted communication is not possible for any number 

of reasons including legal issues or technical reasons. Even if encryption is used, 

there are still risks involved with unauthorized users receiving encrypted data such 
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as traffic analysis and possibly cryptanalysis. The current model is also vulnerable 

to a denial-of-service attack in which malicious hosts join a number of multicast 

groups utilizing large amounts of bandwidth or router resources. 

Solving these problems requires controlling the ability of hosts to join the multi

cast group. We call this multicast receiver access control. The need for a solution to 

these problems is well-known and was first stated in [81]. The term secure IGMP 

has been used to refer to the protocol that would provide the solution. 

2.2.1 Objectives 

The primary objective of a multicast receiver access control system is to provide 

a means of restricting hosts' ability to join the multicast group. The secondary 

objective is to maintain scalability. 

• Security: The system should be able to effectively restrict unauthorized re

ceivers from joining the multicast group. This means restricting the ability of 

these users to access the data being delivered to the multicast group as well 

as stopping the users from establishing any state in the multicast routers. 

• Message overhead: The system must also minimize communication overhead 

for each of the entities involved as well as minimze the overall network traffic 

overhead that is introduced. 

• Computational overhead at the routers: In order to achieve scalability and 

to remain a lightweight system, the system must minimize the amount of 

computational overhead that is required of the routers. 

2.2.2 Proposed Solutions 

Figure 2 shows a classification of multicast receiver authorization solutions based 

on how they provide revocations. Some systems do not provide revocation, some 

systems leverage the authorization state maintained by some outside system, some 
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systems must query a centralized server to maintain authorization state, other sys

tems distribute access control lists to routers, and some systems efficiently provide 

revocation using time-limited authorizations. 
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Figure 2: Multicast Receiver Authorization Systems 

• Hardjono and Cain 

Hardjono and Cain [87] present a method for delivering keys to enable IGMP 

authentication and suggest a method of authorizing group members. The au

thorization server provides capability-like access-tokens to group members and 

access control list-like token lists to the routers. The host sends a join request 

including the access-token to the router that verifies that the access-token is in 

the token list. There are two vulnerabilities in the system: 1) Malicious users 

can perform a replay attack by presenting another user's access-token because 

the access-tokens are not related to the identity of the user. The system at

tempts to protect against this by having each router only accept a particular 

access-token once; however the same access-token can be used on any other 

router. 2) Malicious users can cause the router to accept fake access tokens 

because the issuer signature is not verified by the router. One inefficiency 

of this system is that all membership changes require distributing new token 

lists to all routers because of the use of a distributed ACL-based design for 

revocation. 
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• Ballardie and Crowcroft 

Ballardie and Crowcroft [22] provide an early survey of multicast security 

threats and present some countermeasures. Within the discussion, they present 

a version of IGMP that allows receivers to be authorized before joining the 

group. The architecture includes authorization servers that possess ACLs dis

tributed by an initiator. The host sends a request to an authorization server to 

obtain an authorization stamp (AS) that is included in the join request sent to 

the router. The router forwards the host's request to the authorization server 

for approval. There are two vulnerabilities in the system: 1) An unauthorized 

user can obtain an authorization stamp by authenticating as itself, but then 

providing the spoofed address of an authorized user for authorization. This 

vulnerability is due to the fact that the AS uses the distinguished name to 

authenticate the host, but uses the IP source address to authorize the host. 

2) An unauthorized user can cause the AS to accept an invalid authorization 

stamp such as one from a different group or one for a different user. This is 

because the AS only verifies the signature of the authorization stamp without 

verifying the information in it. One inefficiency of this system is that many 

of the authorizations and verifications are unnecessary because the authoriza

tion server actually only uses the router's interface address to authorize the 

request. This does happen to limit the damage of the two flaws mentioned 

above and causes them to not directly lead to unauthorized access. 

• Standards work in progress 

Recently, there have been a number of efforts within the Internet Engineering 

Task Force(IETF) to standardize a multicast receiver authorization system. 

Castelluccia and Montenegro [36] propose the use of cryptographically gener

ated addresses to restrict access to the multicast group. The authors propose 

a basic scheme that provides no revocation and a certificate-based scheme that 

provides time-limited revocation. He, et al. [93] discuss the simple multicast 
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receiver access control(SMKKC) system that also uses time-limited tokens. 

Coan, et al. [50] describe HASM, a multicast receiver and sender access con

trol system that utilizes Kerberos tokens. 

2.3 Group Key Management 

In unicast, two users can provide confidentiality by encrypting data with a shared 

key. In multicast, group key encryption is used in which the multicast traffic is en

crypted with a symmetric key and every authorized member of the group is given the 

decryption key. This becomes complicated by the case in which group membership 

is dynamic. Upon a change in membership, it is often necessary to change the group 

key so that the leaving member cannot access new broadcasts or so that the new 

member can not access old broadcasts. The term leave is used to describe the act 

of a voluntary leave or a forced leave. It is necessary to reduce the cost of updating 

the group key in these situations. When a new member joins, the new group key 

can be sent to the original group members using the old group key. However, when 

a member leaves, the solution involves more work. The simplest approach is, upon 

each leave, compute a new group key and send it to each user encrypted with its 

individual key. This is not acceptable because it requires n separate encryptions and 

transmissions for each join or leave. A simple improvement is to encrypt the new 

key with each user's individual key (resulting in n encryptions), but send all of the 

keys in one message to the entire group. This reduces transmission costs, but still 

requires n encryptions and causes the users to be able to detect their key among 

the group of keys in the received message. Work in group key management aims to 

provide efficient rekeying schemes for dynamic group memberships. 
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2.3.1 Objectives 

• Scalability: A group key management solution should be able to handle large 

Internet groups. This requires low requirements for support infrastructure as 

well as low message and computational overhead. 

• Forward and backward secrecy: Forward secrecy is the ability to keep leav

ing members from accessing future communication. Backward secrecy is the 

ability to keep new members from from accessing past communication. Some 

systems require forward secrecy but not backward secrecy. 

• Collusion resistance: Collusion is when a set of authorized or unauthorized 

members work together to gain access to communication that they are not au

thorized to access. A scheme should be able to state its resistance to collusion 

of a group of c members. 

• Message overhead for rekeying: Schemes should aim to provide efficient rekey-

ing by reducing the message overhead necessary for rekeying on a join or leave 

to less than 0(n) as in the naive approach. 

• Computational overhead for rekeying: In addition to reducing the message 

overhead, schemes should maintain minimum computational overhead for rekey 

operations. 

• Storage overhead: Some schemes add storage requirements in order to reduce 

message overhead. Such schemes should maintain reasonable storage require

ments for group members as well as for the group key controller. 

• Reliability requirements: Many schemes make use of multicast to rekey the 

group. Schemes should account for the fact that multicast is unreliable by 

being robust to packet loss. 
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Figure 3: A Taxonomy of Group Key Management Solutions 

2.3.2 Proposed Solutions 

Work in group key management schemes includes basic schemes, hierarchical schemes, 

batching schemes and tradeoff schemes as shown in Figure 3. Basic schemes include 

the earlier work in group key management and did not focus on efficient rekey-

ing. Hierarchical schemes include the first attempts at reducing rekeying overhead. 

Batching schemes attempt to further reduce rekeying overhead by not changing the 

key on every join or leave, but instead batching a number of joins or leaves before 

rekeying. It has been generally accepted and recently proven that O(logri) is the 

lowest overhead achievable by a group key management scheme if strict non-member 

confidentiaUty and non-collusion are required [193]. Tradeoff schemes attempt to 

provide lower than 0(log?7,) overhead by trading off some collusion resistance. 

• Basic Schemes 

- Group Key Management Protocol (GKMP) [89] assigns a group controller 

(GC) to manage the keys for each multicast group. The controller gener

ates and maintains symmetric keys for each member. The GC selects a 

group member to generate the keys with. Then, it validates each group 

member's permissions and sends the group key encrypted by the individ

ual key. This scheme does not provide a solution for efficient rekeying. 

It simply provides a method to avoid a single central key controller by 
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allowing a group controller per multicast group. 

- Scalable Multicast Key Distribution (SMKD) [21] is based on the Core-

Based Tree (CBT) routing protocol. This scheme takes advantage of the 

hard-state of the core based tree to provide secure joining for the CBT 

group tree. CBT is hard-state since each router knows its neighbor and 

the configuration does not change. The core of the tree performs the 

duties of a group controller and generates the group session keys and the 

key distribution keys. As the tree expands and new routers are added, 

the key distribution tasks are assigned to the routers. They are given 

the ability to authenticate joining members and give them the group 

key. This technique only works with core-based tree and requires trusted 

routers. It does not propose a solution to efficient rekeying. 

Group Hierarchies 

- lolus [142] is a framework that divides the multicast group into a hi

erarchy of subgroups. The central or top group is managed by a group 

security controller (GSC) and group security intermediaries (GSIs) are 

used to manage the other subgroups. Each subgroup uses a separate 

subgroup key. Since there is no single group key and only subgroup keys, 

it is only necessary to generate a new subgroup key for the subgroup that 

is involved in the membership change. Each user in the subgroup must 

be transmitted a new subgroup key using its individual key. lolus can 

also be used for encrypting and delivering the traffic. The GSI for each 

subgroup knows the keys for the neighboring subgroups. To send a mes

sage, the member sends the message to its local GSI using its individual 

key, the GSI sends the message to the group using the group's subkey 

and sends the message to the GSIs of any neighboring groups using that 

group's subkey. Instead of actually re-encrypting the message to send 

it to other subgroups, a random key is chosen to encrypt the message 
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and the GSI encrypts the key and sends it along with the message to the 

neighboring GSI. This reduces the computation costs of a message being 

sent through multiple GSIs. 

Logical Hierarchies 

- Logical key hierarchies [204, 209) use a hierarchy of keys to obtain a 

scalable solution rather than a hierarchy of groups. Each user that joins 

the group receives a secret key shared with the group key controller. The 

controller maintains a /c-ary tree structure in which the root is the group 

key, the leaves are the n individual keys of the group members, and the 

intermediate keys are auxiliary keys used for key updates. Each member 

stores the set of keys in the path from its individual key to the root key 

This scheme allows the number of rekey messages to be reduced by al

lowing the new keys to be encrypted with subgroup keys rather than 

individual keys for the majority of the group. The operation of rekeying 

upon a join is similar. This scheme reduces overhead to klogkU messages 

for a rekey operation and requires members to store log^n keys. 

- One-way Function Tree (OFT) [20] is also based on tree hierarchy but 

uses a different method to generate keys for the logical subgroups. Keys 

at interior nodes in the logical hierarchy are derived from other keys using 

one-way functions and mixing functions. This allows group members to 

compute the new subgroup keys upon a group rekey. This scheme reduces 

the message overhead to 0(log2 n) for a key update, but requires members 

to store up to 0(21og2n) keys. 

Tradeoff Schemes 

- HySOR [68] considers a range of protocols with varying message costs 

and vulnerability to collusion. In one extreme is logical key hierarchy 

that has O(logn) overhead and is resistant to collusion. On the other 
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extreme is a protocol based on the Linear Ordering of Receivers (LORE), 

which requires 0(1) messages for rekeying, but is vulnerable to any two 

receivers colluding. LORE uses two sets of auxiliary keys: forward keys 

denoted by fi and backward keys denoted by 6̂ . All users are ordered 

and assigned a rank between 1 and n. A receiver with rank i, ui, holds 

keys /i to fi and keys hi to bn- In order to rekey the group when ui leaves, 

the new group key is multicast to the group twice: once encrypted with 

/^+i and once encrypted with hi^^. Thus, all users with ranks higher 

than i and lower than i can decrypt the rekeying message. The authors 

present a scheme using a hybrid structuring of receivers(HySOR) which 

is tunable between the logical key hierarchy and LORE. HySOR uses a 

key graph where each leaf is a division of receivers and LORE is used to 

manage keys within each division. The authors show how an operator can 

tune the performance and collusion resistance by changing the number 

of divisions. 

— Complementary Variable Approach (CVA) [204] is able to reduce message 

overhead to 0(1) but is vulnerable to collusion attacks. The controller 

generates n complementary variables j . Each member is assigned a rank i, 

\ <i <n. Each member i receives the group key and all complementary 

variables except ji. To remove a member i from the group, a message is 

sent to all members stating "remove member i". The current group key 

and complementary variable ji are used to create a new group key with 

some deterministic key variable generation process. Thus, all members 

except i are able to compute the new group key. This scheme reduces 

message overhead to 0(1), but is vulnerable to collusion and requires a 

storage overhead at the group members of n. 

• Batching Schemes 

- Boolean function minimization technique [38] batches membership changes 
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to reduce rekey overhead. The authors refer to this as cumulative member 

removal. The authors also present a new logical key hierarchy algorithm 

for rekeying that uses a set of auxiliary keys and dynamically generates a 

logical key hierarchy by composing different keys. This rekeying scheme 

achieves the same O(logn) overhead as the other logical key hierarchy 

approaches, but reduces the storage overhead at the group controller to 

O(logn) as opposed to 0(n). 

- MARKS [31] divides the group session into time slots, assigns one key 

for each slot, and changes the group key every time slot. MARKS also 

presents the technique of generating condensable key space with binary 

hash trees. MARKS involves no message overhead for rekeying during the 

group session. However, MARKS is limited in that it requires receivers 

to determine their leave time when they join the group; this cannot be 

met in many applications. Also, MARKS has problems with situations in 

which a receiver may join and leave a group multiple times over a given 

session. 

2.4 Group Source Authentication 

Source authentication is the ability of group members to verify the identity of the 

sender of a received packet. In unicast, a shared secret-key message authentication 

code (MAC) is used to provide authentication. In multicast, the group key provides 

a shared secret-key; however, performing message authentication with this key only 

verifies that the sender is a member of the group, but not necessarily the intended 

source. Many applications require a level of authentication that allows a receiver 

to identify the individual sender of a message. There has been work that aims to 

efficiently provide this level of source authentication. 
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2.4.1 Objectives 

The design objectives of a source authentication scheme should include the following: 

• Authenticity: The receiver must be able to verify the identity of the data's 

source. One level of functionality is that the receiver can verify that the data 

is from a group member. The next level of functionality is that the receiver 

can verify that it is from an authorized sender. The most precise functionality 

is that the receiver can determine the exact identity of the sender. 

• Integrity: The receiver should be able to verify that the received data has not 

been modified. Some schemes provide only authentication without integrity 

checking. 

• Non-repudiation: Non-repudiation requires the ability to prove that a host 

sent a particular message. This prevents the sender from later denying the 

transmission of the message. 

• Efficiency: The efficiency of the solution is based on communication, storage, 

and computation overhead at the source and the receivers. 

• Collusion resistance: The scheme should provide protection against collusion 

or at least be able to state in a provable manner the level of protection against 

c-collusion. 

• Minimal latency: Some schemes require a certain number of packets to be 

stored before they can be signed or verified. For some real-time applications, 

this can introduce an intolerable delay. 

• Robustness against unreliable communication: Some designs are based on 

an assumption of reliable communication. Some multicast environments do 

not provide reliable multicast communications; therefore such schemes are 

unsuitable for these environments. 
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Figure 4: A Classification of Multicast Source Authentication Schemes 

2.4.2 Proposed Solutions 

As shown in Figure 4, there have been two approaches in multicast source authen

tication schemes: hash-based schemes and MAC-based schemes. 

• Hash-based Schemes 

Digital signatures provide a simple method of individual authentication. How

ever, due to the computational costs of computing and verifying digital signa

tures, signing each packet is not a practical solution. 

- Packet Chaining 

Gennaro and Rohatgi proposed packet chaining, a solution to efficiently 

authenticating digital streams [77] that allows only the first block to be 

signed and contain an association with subsequent packets. The stream 

of data packets is partitioned into chains and each packet in the chain 

contains a hash of the next packet in the chain. Thus only the first packet 

in the chain must be signed. This works for streams that are finite and 

in which the data is known in advance. For infinite streams, multiple 

one-time signatures are used. 
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Tree chaining 

Wong and Lam [210] proposed tree chaining, a technique that partitions 

the stream of data packets into blocks and forms a tree structure to per

form authentication. Each block of n messages can be authenticated with 

one signature. It differs from Gennaro and Rohatgi's approach because 

the association made between packets is a tree-based association rather 

than a linear one. Each leaf node is a message digest of a data packet 

and the parent nodes are message digests of the two children nodes. The 

root node is the message digest for the block which is signed once for the 

entire group. The data packet is sent along with the block signature, the 

packet position in the block, and the siblings of each node in the packet's 

path to the root. In order for the receiver to verify the received packet, it 

recreates the path from the received packet up to the root. The digest of 

the received packet is computed and is used to recreate each node along 

the path. If the root that is computed by the receiver is the same as the 

signed one that was received with the packet, then the packet is verified. 

The receiver can cache the nodes so that it is possible to verify all the 

packets in the tree by computing each node in the authentication tree no 

more than once. 

Golle and Modadugu 

Due to the association between packets, the above approaches are sensi

tive to data loss. Golle and Modadugu [79] proposed a hash-based scheme 

that aims to be robust against bursty packet loss. It achieves robustness 

by replicating packet signatures across multiple packets in the stream. 

The final packet also includes a signature. The authors provide results 

that show the burst tolerance of the scheme based on the efficiency re

sources, 
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- Hybrid Signatures 

Rohatgi later proposed a scheme that makes use public key digital sig

natures as well as faster one-way function-based k-t'ime signatures [178]. 

The scheme creates sets of k-time key pairs offline and uses the normal 

digital signature to certify the public /c-time keys. Message signatures are 

created online using a /c-time private key and the certified /c-time public 

key. The scheme avoids the need for reliable communication by sending 

the /c-time keys more than once. 

• MAC-based schemes 

There have been schemes proposed that use message authentication codes to 

provide authentication rather than digital signatures to increase efficiency. 

- Efficient MACs 

Cannetti, et al. proposed a scheme that makes use of efficient MACs [35]. 

In this scheme, the sender holds a set of I MAC keys and each group 

member holds a subset of the / keys. Each message is then MACed with 

each of the / keys and the recipient verifies the MAC with the keys that 

it holds. The authors show that appropriate choice of subsets provides a 

high probability of protection against c-collusion. 

- TESLA 

Perrig, et al. proposed TESLA, a MAC-based scheme that provides au

thentication without regards for the packet loss rate [158]. The scheme 

involves the source signing the first packet and providing notification of 

a chain of MAC keys. Each packet Pi is authenticated with a MAC using 

a key Ki. Later packets reveal each Ki. The scheme requires some time 

synchronization between the sender and the receivers since each packet 

must be received before the next packet is sent. 

33 



2.5 Multicast Fingerprinting 

Encryption is generally used to safeguard the content while it is being transmitted 

so that unauthorized persons can not read the stream from the network, but this 

offers no protection after the intended receiver receives the data. There is no pro

tection against unauthorized duplication and propagation by the intended receiver. 

Watermarking can provide protection in the form of theft deterrence. Watermarking 

is the embedding of some identifying information into the content in such a manner 

that it can not be removed by the user but it can be extracted or read by the appro

priate party. Watermarks can be used for copyright protection or for identification 

of the receiver. Copyright protection watermarks embed some information in the 

data to identify the copyright holder or content provider, while receiver-identifying 

watermarking, commonly referred to as fingerprinting [203], embeds information to 

identify the receiver of that copy of the content. Thus, if an unauthorized copy of 

the content is recovered, extracting the fingerprint will show who the initial receiver 

was. 

In multicast environments, traditional fingerprinting or embedding the receiver's 

identification as the watermark at the source will not work since all the receivers 

will share the same watermark. It is necessary to watermark content with unique 

information for distinct receivers of the same multicast stream. A simple method 

to achieve unique watermarks for each receiver would be to watermark the stream 

differently for each receiver and to unicast the watermarked streams. Of course, the 

inefficiency of such a scheme calls for a better solution. The goal is to maintain the 

security of this approach while achieving scalability. 

2.5.1 Objectives 

The design objectives of a system to fingerprint multicast content should be security 

and scalability. We outline the concepts involved in achieving these goals. The 

features and components of the system necessary to accomplish these goals should 
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be designed into the solution. 

• Security: 

- Robustness of the fingerprinting method: The fingerprint is what dis

tinguishes one user from another. This can be a particular pattern of 

frames or a particular pattern embedded in a frame. The method used 

must be robust to efforts of a user to remove this distinguishing infor

mation. There has been significant work in multimedia watermarking. 

A scheme extending these efforts into fingerprinting multicast content is 

desirable since it assures a robust fingerprinting method. 

- Collusion problem: Collusion is when a set of group members work to

gether to use the set of differently watermarked streams to create a copy 

of the content which cannot be determined to contain the fingerprint of 

any of those receivers. The solution must be based on a fingerprinting 

scheme that is not susceptible to collusion. 

- Asymmetric fingerprinting: Schemes should be able to provide asymmet

ric fingerprinting. This allows the sender to identify the receiver of a re

covered copy of data without previously knowing the fingerprinted data. 

Thus, the sender is not capable of distributing the data and accusing an 

innocent receiver [161]. 

- Protection Granularity: The granularity of protection is the amount of 

content that is needed for the protocol to be able to determine the receiver 

of the content. Schemes should be able to provide the smallest possible 

protection granularity but also be flexible so that this can be changed 

depending on the needs of the appHcation. 

• Scalability: 

- Logging Requirements; Logging is necessary because once the content is 

recovered and the fingerprint is extracted, there must be some record of 
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what receiver was represented by the ID recovered from the watermark 

at that instant in time. The storage and processing overhead of logging 

should be minimum. 

- Efficiency: The efficiency of the solution is based on the amount of data 

that the source must transmit and encrypt and the amount of data in

troduced into the network. 

2.5.2 Proposed Solutions 

Figure 5 shows that there have been four classes of multicast fingerprinting solutions 

depending on where the watermarking takes place. Client-side marking schemes 

involve some client software that watermarks the content. Application-level schemes 

add logic to the application to deliver unique versions of the content. Network-level 

schemes involve computation in the network that causes each user to receive a unique 

version of the content. Overlay-based schemes involve intermediaries in the content 

distribution path that uniquely watermark the content for receivers. 
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Figure 5: Multicast Fingerprinting Solutions 

Text Content 

Brassil, Low, and Maxemchuck [30] proposed one of the first solutions for mul

ticast fingerprinting. This system is designed for text documents and involves 
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multicasting the text documents and marking them at the chent's machine. 

The source then unicasts to each user a decryption program that contains the 

user's unique identification number. The program decrypts the document and 

inserts the identifying mark for that user. The authors note that since it is 

possible to reverse engineer the program and extract the decryption key, the 

key must be changed periodically which means that the entire program must 

be changed. One inefficiency is that in order to rekey the group, the docu

ments are encrypted with a new key and programs with the new key built in 

must be unicast to every group member. 

• Application-based approach 

Chu, Qiao, and Nahrstedt [46] proposed a protocol to provide a different ver

sion of a multicast video stream to each group member. The protocol creates 

two watermarked MPEG streams, assigns a unique random binary sequence to 

each user, and uses this sequence to arbitrate between those two watermarked 

streams. For the zth watermarked frame in stream j(j = 0,1), a different key 

KEY^ is used to encrypt it. Then user n is given either KEY^ or KEY^ de

pending on the random bit sequence of user n. The efficiency of this protocol 

is hampered by the need to watermark, encrypt, and transmit two copies of 

the stream and by the significant amount of key messages sent. The ability of 

the protocol to detect a collusion is dependent on the length of the retrieved 

data stream. Even with a retrieved data stream of sufficient length, the algo

rithm to determine a collusion is so complex that there is not a known length 

of retrieved stream that can guarantee a c-collusion detection, where c is the 

number of coUuders. The protection granularity of this protocol is large since 

it is based on the number of receivers. 

• Watercast 

Brown, Perkins, and Crowcroft [32] proposed a technique that has each group 

member receive a slightly different version of the multicast video stream. For 
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a multicast group with a tree of depth d, the source creates n differently wa

termarked copies of each packet such that n > d. On receiving a transmission 

group of packets, each router forwards all but one of the packets. The last hop 

router then forwards exactly one packet to the subnet with the receiver(s). The 

goal is that each receiver then receives a stream that consists of a unique com

bination of watermarked packets. The original receiver of a recovered stream 

can be determined by simulating the operation of various network components 

during the time that clip was originally transmitted. This makes the logging 

requirements high since the log must keep the state of the entire network from 

the start to the end of the transmission. The requirement that the source 

watermark, encrypt, and transmit n copies of the stream makes this solution 

inefficient. The scheme does not offer a solution for having multiple receivers 

on the same subnet since they will have the same User ID. The protection 

granularity is large because as the length of the clip increases, the probability 

of being able to specify a single receiver increases. Also, the ability to deter

mine collusions is dependent on the length of the clip and requires extensive 

computation to determine what users could have possibly had access to the 

frames in the recovered stream. 

Selective Watermarking 

Wu and Wu [198] proposed a technique that multicasts most of the video and 

uniquely watermarks and unicast a portion of the video. Depending on the spe

cific selection scheme used, the chosen segments could be from 90% to less than 

1% of the original video. There is a tradeoff between efficiency and security. 

As smaller amounts of the video are chosen for encryption and watermarking, 

the ability of persons outside of the group to obtain the video increases due 

to the proposal of not encrypting the video that is not watermarked and the 

ability of group members to obtain video that is not watermarked increases 

due to the fact that if only I frames are watermarked, then unwatermarked 
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I-blocks found in P and B frames can provide some degree of quality video. As 

larger percentages of the video are chosen to be watermarked, encrypted, and 

unicast, the security increases, but the efficiency of the protocol begins to re

semble that of the simple unicast model. Since only I frames are watermarked, 

the protection granularity is each set of the I-frame pattern. 

2.6 Other Multicast Security Research Areas 

• Secure Multicast Routing 

Shields and Garcia-Luna-Aceves [188] proposed Keyed HIP (KHIP), a secure 

hierarchical multicast routing protocol. The authors show that multicast rout

ing protocols are vulnerable to attacks against the routing infrastructure that 

can cause denial-of-service by creating routing loops or blackholes. KHIP pro

vides authentication mechanisms that allow only trusted routers to join the 

multicast tree. The authors also state the need for a multicast receiver access 

control architecture and explain that it would complement KHIP. 

There has been work that aims to add security mechanisms to the PIM-SM 

multicast routing protocol [199]. This work is still in progress, but aims to 

provide protection for PIM-SM similar to that provided by KHIP. 

• Sender Access Control 

The problem of controlling which hosts can send data to a group is a separate 

problem from receiver access control. This is because IGMP is not used to 

register multicast senders. 

Ballardie and Crowcroft [22] proposed a scheme to detect and prevent unau

thorized multicast traffic. This scheme requires each packet to include a times-

tamp and an authorization stamp. Upon noticing multicast traffic from a new 

source, a router forwards a copy of the packet to the authorization service that 

verifies that the authorization stamp was created by a host that has the rights 
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to send data for that particular multicast group and verifies that the times-

tamp is current. If the verifications fail, the router is notified and is required 

to send an alert upstream towards the source in order to have all routers block 

traffic from the unauthorized source. 

One viewpoint is that sender access control is becoming less of a problem 

with recent multicast schemes such as source-specific multicast (SSM) [99] 

that inherently provide sender access control. Recent discussions within the 

Internet Engineering Task Force (IETF) have maintained that receiver and 

sender access control should be solved separately but have considered a scheme 

similar to secure IGMP for sender access control. 

• Group Security Policy 

Multicast group policy is an important element of securing multicast content 

distribution. It deals with specifying the parameters and mechanisms involved 

with securing the group. 

McDaniel, et al. [136] presented requirements for policy management in se

cure groups. This work explains that requirements include the specification, 

distribution, evaluation, and enforcement of policy. The authors show that 

previously there were two types of systems with regard to group policy. Trust 

management systems specified and evaluated policy in a well-defined manner, 

but lacked the ability to enforce them. Policy directed secure group communi

cation systems defined and implemented policies, but do not always maintain 

secure distribution and composition of the policies. 

Another problem in group security policy is verifying the entity that is allowed 

to specify the group's policy. This entity is usually the group owner, but 

determining who is the group owner and authenticating an entity to be the 

group owner can be a complex task. In [110], the authors examine this problem 

and propose two solutions for a group owner determination and authentication 

5?/5^em (CODAS). 
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2.7 Video Watermarking 

This section reviews proposed video watermarking schemes and mentions the ad

vantages and disadvantages of each. This section is divided into two sections based 

on the domain in which the watermark is inserted for each scheme. The first section, 

compressed, reviews schemes that embed the watermark in the compressed video 

stream. The second section, uncompressed, reviews schemes that embed the water

mark in a raw or uncompressed video stream. Another classification of watermarking 

systems is based on the information that is needed to retrieve the watermark. Pri

vate marking systems require at least the original unwatermarked image. Whereas, 

public marking systems do not require the original unwatermarked images. Petit-

colas, et. al. [160] provide a survey of information hiding. 

2.7.1 Compressed Techniques 

Dittman, Stabenau and Steinmetz [61] proposed a technique that inserts a robust 

watermark in MPEG video while avoiding artifacts. First, a position sequence is 

generated from the user key as a seed with a secure random number generator. This 

sequence is used for hiding the watermark in the frame. Second, smooth and edge 

blocks are detected to improve the visual quality, then the watermark information is 

coded with error corrections and redundancy. Finally, three coefficients are selected 

to be used to embed each bit of the watermark information in a block as in the 

Zhao-Koch algorithm [123]. The Zhao-Koch scheme involves selecting two or three 

coefficients in the block and modifying the values of these coefficients so that the 

relationship between the values denotes the bit that is embedded in that block. This 

scheme has the advantages that it is a public marking system, artifacts are avoided 

by using smooth block and edge recognition schemes, and error correcting codes 

and redundancy is used to increase the robustness of the watermark. It also has the 

disadvantage that StirMark [159, ?] causes high error rates. 
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Hartung and Girod [90] proposed an idea that embeds the watermark in com

pressed video. Let ttj(—lorl) be a sequence of information bits we want to hide in the 

video stream. We then make the spread sequence bi = aj,j *Cr <= i < 0 + 1) * Cr, 

where Cr is the chip-rate. The watermark is constructed as Wi = Alpha^bi^pi, where 

Alpha is an amplitude factor and pi( — lorl) is a binary pseudo-noise sequence. In 

order to add a watermark, we process the encoded video block by block. For each 

block, we do a zigzag scan, yielding a l2;64-vector of re-scanned DOT coefficients. 

For the DC-coefficient, we add the DC-coefficient of the watermark block to that 

of the encoded video block, obtaining the DC-coefficient of the watermarked block. 

For the AC- coefficients, we do the same add operation as long as the number of bits 

to transmit for the watermarked AC-coefficient does not increase. Hence, usually 

only few DCT coefficients of the watermark can be incorporated per 8x8 block. The 

scheme has the advantages that the watermark does not increase the bit rate. It has 

disadvantages such as the vulnerability to collusion and limited amount of embed

ded information due to the bit-rate constraint. Also, since it is a private marking 

system, recovery of the hidden information requires the use of the same pseudo-noise 

sequence pi that was used in the coder, 

In Holliman, Memon, Yeo, and Yeung [101] proposed an adaptive scheme to 

embed watermark information in DCT blocks of image data. The scheme makes 

use of an algorithm to select the appropriate blocks for watermark insertions and a 

block-dependent seed generation algorithm to determine which coefficients to modify 

in a particular block. The algorithm attempts to reduce artifacts by not marking 

smooth and edge blocks. Smooth blocks are those that the number of non-zero 

coefficients in the lower right half of the DCT block are less than a threshold miriz-

Edge blocks are those that contain any unquantized coefficients with an absolute 

value exceeding a threshold miriE- To determine which coefficients of a particular 

block are modified, the authors suggest selecting bits of that block and concatenated 

with bits from some previous blocks and the private key, to be used as the seed to the 

pseudo-random number generator. The bit is embedding in the block in the same 
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way as the Zhao-Koch scheme using two coeffiecients [123]. Advantages of this 

scheme are that it is a public marking system, it avoids artifacts by using smooth 

block and edge recognition schemes, and does not significantly increase the bit rate. 

The disadvantage is that it is only shown to be robust against JPEG compression 

attacks 

2.7.2 Uncompressed 

Hartung and Girod [91] propose an algorithm that allows public retrieval of the wa

termark. One problem for most watermarking techniques based on spread spectrum 

communications is that retrieval of the watermark requires the same pseudo-noise 

sequence pi used for embedding of the watermark. Hence, decoding of the water

mark is not public since this would potentially allow attacks on the watermark. The 

algorithm resolves this problem by making only parts of the pseudo-noise sequence 

pi public. At the same time, the hidden information can be retrieved in the same 

manner. A modified pseudo-sequence is public where each n-th coefficient is taken 

from the original pseudo-sequence pi and all other coefficients are arbitrary random 

values with the same distribution as pi. The advantage of this scheme is that the 

watermark can be retrieved and verified publicly. However, the disadvantage is that 

the robustness of the publicly decodable watermark is lower than the robustness of 

the non-publicly decodable watermark. 

Dittman, Stabenau, and Steinmetz [61] suggested a way to embed a watermark 

in the spatial domain of an image. The algorithm overlays a 8x8 pattern over every 

8x8 block of the frame. First, a position sequence is generated to determine the 

blocks will be modified. Second, for each block a user key dependent pattern is 

made based on the inserted bit. Lastly, the created pattern is added to the original 

block. The advantages of this scheme are that it is a public marking system, it is 

resistant to the collusion attack, and it can embed a large amount of bits. It also 

has the disadvantage that StirMark [159, ?] causes high error rates. 
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Qiao [165] proposed a solution to embed a watermark in an uncompressed video 

stream that resolves the rightful ownership problem. Given an original image V, 

a key KEY is chosen. Then the watermark W = (wi) is created by applying a 

standard encryption function such as DES, i.e., Wi = DESkey{vi)i where Vi is the z-th 

pixel of V. Watermarked V^ is constructed as: vwi = Vix(l -\- AlphaxWi), Alpha = 

1. This solution has the advantage that it is non-invertible and it resolves the 

rightful ownership problem. The rightful ownership problem is when an attacker 

can manipulate the watermarked video and claim that he/she also is the original 

owner. The disadvantage of the scheme is that it is a private marking system. 

Hartung and Girod [90] proposed a solution to embed a watermark in raw video 

using ideas from direct-sequence spread spectrum communications. Let aj{—lorl) 

be a sequence of information bits we want to hide in the video stream. The spread 

sequence bi = aj,j * Cr <= z < (j' + 1) * Cr, where Cr is the chip-rate is created. 

The watermark is constructed as Wi = Alpha * bi ̂ Pi, where Alpha is an amplitude 

factor and pi(—lorl) is a binary pseudo-noise sequence. Then the watermark is 

added to the line-scanned digital video signal Vi yielding a watermarked video signal 

vwi = Vi -\- Wi. The advantages of this scheme is htat it is more robust than the 

scheme presented in this same paper that inserts the watermark in the compressed 

domain. The disadvantages are that it is a private marking system and it does not 

solve the collusion problem. 

2.8 Related Network Security Work 

There has been previous work in rights management or content protection for cen

tralized peer-to-peer system, but not for decentralized peer-to-peer system. Outside 

of peer-to-peer, there has been work that does not share the same goal as CITADEL 

but is somewhat related. Related work includes authentication, authorization, and 

trust management systems for distributed environments as well as other rights man

agement work. 
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• Centralized Peer-to-Peer Content Protection: The content protection system 

that was implemented as part of Napster was one of the most well-known [122]. 

This system relied on the central authority that maintains the indexing and 

location functions to provide content protection. Content identification was 

done based on the file name of the content. This approach used a blacklist 

of forbidden content. The system controlled the sharing of blacklisted files 

by not allowing users to locate these files. This was accomplished by either 

not allowing users to add these files to the index or not responding to queries 

for these files. This approach proved to be easily bypassed by users simply 

changing the file names. Ultimately, the content providers insisted that this 

system did not provide adequate protection and Napster was forced to shut 

down until it can provide adequate content protection functions [51]. 

• Peer-to-Peer Security: There have been a few different types of work in se

curity for peer-to-peer security. These systems either focus on protecting the 

system, the file retrievers, or the file providers. Work in security of the peer-

to-peer infrastructure includes work by Sit and Morris [192] and Castro, et 

al. [37]. Secure Overlay Services [121] provides a proactive system for pre

venting denial of service attacks and is also relevant to peer-to-peer systems. 

Work in anonymous systems include Anonymous Peer-to-Peer File Sharing 

(APFS) [185] and Freenet [74]. Work in censorship resistant peer-to-peer sys

tems include Publius [131] and Eternity [15]. 

• Digital Rights Management (DRM) A number of commercial DRM solutions 

are offered such as Microsoft Rights Manager '̂ ; however, the details of most 

of the systems are not published. Park, et. al. [154] provide a taxonomy of 

architectures for controlling the dissemination of digital information. Judge 

and Ammar [111] discuss how watermarking technology can be used to achieve 

various DRM goals in peer-to-peer systems. Feigenbaum, et. al. [70] discuss 

'http://www.microsoft.com 
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privacy issues in DRM systems. 

Protected Content Formats: The idea of protection labels and attaching pro

tection labels to the objects that they describe has been in the security lit

erature for some time [25]. Slightly more recent work extended this into the 

concept of a secure package for storing content and its controls [113, 190]. 

Authentication and Authorization in Distributed Systems: There has been 

much work in access control models including traditional mandatory and dis

cretionary access control (MAC and DAC) [162] and works that extend be

yond MAC and DAC such as role based access control [181] and the dissem

ination control model [135]. Neumann proposed an authorization system for 

distributed systems [150]. Wong and Lam describe a distributed authorization 

service [211]. Hayton, et al. proposed the Oasis architecture for access control 

in distributed environments [92]. 

Representation of Authorization Information in Distributed Systems: Ap

proaches to representing authorization information in distributed system in

clude extensible rights markup language (XrML) [67], extensible media com

merce language (XmCL) [66] and generalized access control list (GACL) [211]. 

Trust Management in Decentralized Systems: The trust management prob

lem involves creating security policies, verifying that certain credentials are 

adequate based on the security poHcy, and deferring trust to third parties. 

Key Note [26] provides a comprehensive system for trust management. 
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Chapter 3 

Theft Deterrence using Fingerprinting in 
Multicast Environments 

Encryption is generally used to safeguard the content while it is being transmitted 

so that unauthorized persons cannot read the stream from the network. However, 

end-to-end encryption offers no protection against unauthorized duplication and 

propagation by the intended receiver. This additional protection can be obtained 

by watermarking the content. Watermarking is the embedding of some identifying 

information into the content in such a manner that it cannot be easily removed by 

the user but it can be extracted or read by the appropriate party. Watermarks can 

be used for copyright protection or for identification of the original receiver after the 

data is propagated. Copyright protection watermarks embed some information in the 

data to identify the copyright holder or content provider, while receiver-identifying 

watermarking, commonly referred to as fingerprinting [203], embeds information to 

identify the receiver of that copy of the content. Thus, if an unauthorized copy of 

the content is recovered, extracting the fingerprint will show who the initial receiver 

was. 

Problems arise when attempting to fingerprint content in a multicast environ

ment that do not arise in copyright protection watermarking. If copyright protection 

watermarks are embedded in the data at the source, then the watermarked data is 

multicast to the group of receivers. For fingerprinting, embedding the receiver's 

identification as the watermark at the source will not work since all the receivers 

will share the same watermark. It is necessary to watermark content with unique 
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information for distinct receivers of the same multicast stream. A simple method 

to achieve unique watermarks for each receiver would be to watermark the stream 

differently for each receiver and to unicast the watermarked streams. Of course, the 

inefficiency of such a scheme calls for a better solution. We aim to maintain the 

security of this approach while achieving scalability. 

We propose WHIM [109], a scalable system that allows multicast content to 

be securely marked with distinct information for each receivers. This system in

troduces two new concepts: l)generation of a watermark based on the receiver's 

location in the network; and 2) incremental insertion of the watermark in content 

as it traverses the network. WHIM makes use of a hierarchy of intermediaries for 

creating and embedding the fingerprint. This allows security and scalability. The 

use of a hierarchy allows a new type of security by having a User ID based on the 

user's location in an overlay network. Security is also maintained by using proven 

watermarking algorithms to embed this User ID. The hierarchy leads to scalability 

by capitalizing on the efficiency of multicast distribution and by distributing the 

watermark embedding load from the source to the different intermediaries. 

This chapter proceeds as follows. In Section 3.1 we enumerate the design objec

tives of WHIM. Section 3.2 gives an overview of the WHIM architecture. Section 3.3 

discusses the WHIM-Backbone component which is based on a hierarchy of inter

mediaries that provide an efficient distribution architecture that fingerprints the 

streaming content. Section 3.4 describes the WHIM-Last Hop component, a secure 

protocol that fingerprints and distributes content between an intermediary and a 

group of receivers. Section 3.5 presents an analysis and simulation results of the 

efficiency of WHIM, and a comparison with previous solutions. Finally, Section 3.7 

presents conclusions. 
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3.1 Objectives 

The design objectives of a system to fingerprint multicast content should be secu

rity and scalability. We outline the concepts involved in achieving these goals. The 

features and components of the system necessary to accomplish these goals should 

be designed into the solution. 

Security: 

Robustness of the fingerprinting method: 

The fingerprint is what distinguishes one user from another. This can be a partic

ular pattern of frames or a particular pattern embedded in a frame. The method used 

must be robust to efforts of a user to remove this distinguishing information. There 

has been significant work in video watermarking see for example [61, 165, 90, 101]. 

A scheme extending these efforts into fingerprinting multicast content is desirable 

since it assures a robust fingerprinting method. 

Collusion problem: Collusion is when a set of group members work together 

to use the set of differently watermarked streams to create a copy of the content 

which cannot be determined to contain the fingerprint of any of those receivers. 

The solution must be based on a fingerprinting scheme that is not susceptible to 

collusion. 

Asymmetric fingerprinting: Schemes should be able to provide asymmetric 

fingerprinting. This allows the sender to identify the receiver of a recovered copy 

of data without previously knowing the fingerprinted data. Thus, the sender is not 

capable of distributing the data and accusing an innocent receiver. [161] 

Protection Granularity: The granularity of protection is the amount of con

tent that is needed for the protocol to be able to determine the receiver of the 

content. Schemes should be able to provide the smallest possible protection gran

ularity but also be flexible so that this can be changed depending on the needs of 

the application. 
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Scalability: 

Logging Requirements: Logging is necessary because once a video is recov

ered and the fingerprint is extracted, there must be some record of what receiver 

was represented by the ID recovered from the watermark at that instant in time. 

The storage and processing overhead of logging should be minimal. 

Efficiency: The efficiency of the solution is based on the amount of data that 

the source must transmit and encrypt and the amount of data introduced into the 

network. 

3.2 WHIM Architecture Overview 

Our system has two components, WHIM Backbone (WHIM-BB) and WHIM Last 

Hop (WHIM-LH). WHIM-BB introduces a hierarchy of intermediaries into the net

work and forms an overlay network between them. Figure 6 illustrates how the 

hierarchy is formed as an overlay network in the physical network. We distinguish 

each intermediary by its unique path from the source. This Path ID composed of 

intermediary IP addresses is embedded into the content to identify the path that 

it traveled. Each intermediary embeds its portion of the Path ID into the content 

it forwards the content. This embedding is performed using modified versions of 

existing video watermarking algorithms. This is along the lines of the recent trend 

towards introducing a hierarchy of entities into the network to provide active ser

vices, such as reliable multicast [130, 156], Internet caching [69, 39, 114], multimedia 

proxy servers [187], and layered video multicast [128]. 

Each intermediary can have a set of child intermediaries and receivers. We 

call this set of child receivers the intermediary's domain. A watermark embedded 

by WHIM-BB identifies the domain of a receiver. Some literature suggests that 

identifying the domain of the receiver or the last hop before the receiver is adequate 

protection [32]; however, we feel that it is necessary in many applications to identify 
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the individual receiver. So, we propose WHIM-LH, which allows intermediaries to 

mark the content distinctly for any children receivers that they might have. WHIM-

LH forms a domain-wide secure distribution and fingerprinting system including key 

distribution and logging. 

A central component of WHIM-LH is a secure client-side fingerprint insertion 

program that communicates with the intermediary for registration and to receive 

the decryption keys and the stream. The security of this component can be achieved 

by using techniques such as Mobile Cryptography [180] and Time-Limited Blackbox 

Protection [97]. Clients join and register for the group at the domain level. This 

type of control is ideal for applications in which domains are responsible for the 

activity of its members. For example, a university might subscribe to a site-wide 

license for a broadcast then have students subscribe individually to receive it. 

WHIM-LH is a building block that when merged with WHIM-BB forms a robust 

layered solution for fingerprinting multicast content distinctly for each receiver in 

the group. Used together, WHIM-BB and WHIM-LH allow content to be marked to 

pinpoint the location of the receiver in the overlay network as well as to identify the 

individual receiver. WHIM protects against attacks in which receivers join a group 

using a fake IP address or name. Even if the WHIM-LH registration fails to lead to 

the actual receiver, the WHIM-BB Path ID will pinpoint the responsible domain. 

It should be noted that either of these can be used alone as a suitable fingerprinting 

system. WHIM-BB, alone, offers a fingerprinting system that identifies the domain 

of the receiver, but not the individual receiver. WHIM-LH can be used between 

the source and the group of receivers to fingerprint the content uniquely for each 

receiver. However, it lacks the scalability of the combined solution due to the lack 

of the distributed architecture and it does not provide any information regarding 

the location of the receiver. 
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Figure 6: The Hierarchy of Intermediaries as an Overlay Network 

3.3 WHIM Backbone (WHIM-BB) 

WHIM-BB makes use of a hierarchy of intermediaries for creating and embedding 

the fingerprint. The fingerprint is based on the path from the source to the interme

diary. This increases the security of the system and the scalabiUty of the watermark 

embedding. Use of a hierarchy allows a new type of security by having the user's fin

gerprint based on the user's location in the network. Security is also maintained by 

using proven watermarking algorithms to embed this identifying information. The 

hierarchy allows scalable watermark embedding by distributing the embedding load 

from the source to the different intermediaries and by easing logging requirements. 

This section first describes the architecture of intermediaries, then discusses the dis

tributed watermarking algorithms used by the intermediaries, and finally, discusses 

the logging necessary to maintain the path information. 

3.3.1 Architecture 

Our architecture consists of a hierarchy of intermediaries positioned as end systems 

in the network. Each intermediary is assigned a unique ID either manually or 
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using some prefix labeling algorithm [19]; so to identify the intermediary, there 

exists a unique ID that identifies each path from the source to each intermediary. 

As the content traverses the network, every intermediary through which it passes 

concatenates its ID to the Path ID already embedded in the content. 

The amount of computation required to insert the watermark is more than 

routers today are capable of and possibly even more than the amount of processing 

power proposed by advocates of active networking [34, 195]. Therefore, WHIM-BB 

places a hierarchy of intermediaries as end-systems in the network and forms an 

overlay network between them. This overlay architecture lends itself to end-system 

or application-layer multicast [72, 47, 42]. There has been research that makes 

a case for application-layer multicast stating that it can help avoid many of the 

problems involved in using an IP multicast distribution model such as congestion 

control and end-to-end reliability and even increase security. These works have pro

posed protocols for enabling application-layer multicast. Other works such as the 

X-bone [197] propose systems for dynamically deploying and managing overlay net

works. W H I M ' S architecture can use application-layer multicast rather than rely on 

global IP multicast support while still using IP multicast where available, especially 

within domains. 

This idea can be extended to allow the intermediaries to be coupled with existing 

machines in the network that perform computation. Infrastructures in place for 

multimedia applications [48], multimedia proxy servers [187], server replication, and 

caching [39, 114, 69] provide ideal locations for WHIM intermediaries to be located. 

3.3.2 Distributed Watermarking Algorithms 

The fingerprint is the information embedded into the content to uniquely identify 

the recipient. The identifying information consists of a timestamp and the concate

nation of all the IDs of the intermediaries on the path. This identifying information 

is embedded into each frame of the multimedia content. WHIM-BB embeds the 
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fingerprint incrementally at each intermediary. Existing watermarking methods are 

designed to embed an entire watermark at once. We propose distributed water

marking algorithms that allow existing watermarking algorithms to be used in a 

distributed manner securely and efficiently. 

Example 1 The watermarking algorithm described by Dittmann, et al. [61] 

works as follows. For each frame, a pseudo random sequence is calculated 

to determine the order in which the blocks will be marked. In the determined 

order, the blocks are discrete cosine transformed; smoothness and edge detec

tion is done; and the blocks are quantitized with Qm/Qf accordingly. For each 

block, the information is embedded as in the Zhao-Koch algorithm [123]. 

Our distributed version of this algorithm performs as follows. The source 

creates the pseudo random sequence in which the blocks will be watermarked, 

does smooth and edge detection for each block, and quantitizes with Qm/Qf. 

The watermark begins with a timestamp inserted by the source. It then sends 

the new frame and the sequence towards the receivers. As each intermediary 

receives the stream, it uses the sequence to determine the next blocks to water

mark, adds its ID to the watermark, and sends the remainder of the sequence 

and new frame towards the group. 

Example 2 The watermarking algorithm proposed by Holliman, et al. [101] 

works as follows. An adaptive scheme is used to choose the blocks to be 

watermarked. Smooth and edge detection is done to determine the blocks 

that can withstand watermarking. Also, within each block, coefficients to be 

used to embed the bit are chosen pseudo-randomly based on properties of the 

block. The information is embedded by modifying these chosen coefficients 

based on the Zhao-Koch algorithm. 

Modified to perform in a distributed environment, the algorithm operates 
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as follows. The source does smooth and edge detection and selects coefficients 

for each block. After beginning the watermark with a timestamp, the source 

sends the sequence of blocks to be watermarked and which coefficients are to 

be changed along with the stream towards the receivers. As each intermedi

ary receives the stream, it uses the sequence to determine the next blocks to 

watermark and which coefficients in that block to use. The intermediary then 

adds its ID to the watermark and sends the rest of the block sequence and 

coefficient information along with the altered frame towards the group. 

Though each frame contains the entire string of identifying information, it does 

not imply concentration of the watermark. It simply means that the entire piece of 

identifying information is embedded into each frame. The embedding algorithm is 

still based on a secure watermarking algorithm that effectively hides the embedded 

information inside of that frame data. Therefore, this results in no reduction in the 

level of security. 

If there is not a need to safeguard single frames or very short clips, selective 

watermarking [198] can be used to increase the performance. This involves a trade

off in the strength of the security because the length of video clip that is necessary 

to extract the watermark is increased. Instead of inserting the fingerprint in every 

frame, it can be inserted in every n-th frame. This translates into about a n-fold 

increase in performance with a tradeoff of n times the length of the clip that is 

necessary to extract the watermark. For example, with an MPEG stream, it is 

possible to fingerprint only the I frames. If the MPEG stream has the repeating 

IBBPBBPBB pattern, this will reduce the computational overhead by reducing the 

numbers of frames that are fingerprinted by 89%. 

The information exchanged by the intermediaries is encrypted with an interme

diary group key, lyt, while the content data is encrypted with some session key, Gyt, 

as shown in Figure 7. In cases in which the intermediary does not already have 
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Control Data Content Data 

IP UDP Sequence Path Id Data 

Encrypted with 11̂  Encrypted with G ̂ ^ 

Figure 7: Packet transmitted between Intermediaries. 

Repeat 
Extract Picture ? 
Repea t 

Extract Slice ? 
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Extract Macroblock ? 
Repeat 

Extract Luminance Block ? 
Transform VLC To Integers 
Embed Bit By Altering Coefficients For This Block 
Convert Integers Back To VLC 

Until (Finished Inserting Bits) 
Or (No More Luminance Blocks In This Macroblock) 

Until (Finished Inserting Bits) Or (No More Macroblocks In This Slice) 
Until (Finished Inserting Bits) Or (No More Shces In This Picture) 

Until (Finished Inserting Bits) Or (No More Pictures In This Sequence Layer) 

Figure 8: The Bit-Embedding Algorithm at the Intermediary. 

the compressed video data available, it will need to perform the necessary decap

sulations, possibly including RTP [186], UDP, and IP, to extract the video data. 

Once the video data is available, the intermediary must perform the steps to locate 

the necessary blocks and embed the watermark. An example of this algorithm for 

MPEG video is shown in Figure 8. 

3.3.3 Logging 

To determine the domain of the receiver from retrieved watermarks, the log must 

have enough information so that it can determine which nodes were represented by 

that Path ID at that particular instant in time. Previously, there has not been much 

attention to the logging aspect of such a watermarking system. We have identified 
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it as a key requirement of the system and an important factor in the scalabihty of 

the system with regard to actually determining the party associated with a copy of 

content. While previous schemes for fingerprinting multicast video require extended 

periods of the fingerprinted video in order to extract enough information about the 

embedded fingerprint to determine the recipient, WHIM requires only one frame 

since the entire label is inserted in each frame. Thus, WHIM can safeguard each 

frame of a video. With some other schemes, if a user illegally redistributes a single 

image or a very short clip from a video, there is no way of determining the perpetra

tor, Also, our logging system requires only minimal information and uses a simple 

and straightforward algorithm to determine receivers. 

Our logging system operates as follows. Each intermediary sends to the logging 

system, the Path ID that has accumulated in the packet (including its own ID). 

This Path ID also includes the timestamp inserted by the source. Depending on 

the overlay management used, the intermediary might also send its IP address or 

some other identifying information. This includes some authentication information 

and a timestamp so that the logging system is assured that the information is being 

received from a legitimate intermediary. This logging information is sent to the 

logger every time that the Path ID of the intermediary changes. Therefore updates 

are only sent when the overlay topology changes, not every time the underlying 

routing topology changes. When a watermark has been extracted and the receiver 

must be determined, only a simple table lookup algorithm is necessary to access this 

information from the log. 

3.4 WHIM Last-Hop (WHIM-LH) 

Whereas WHIM-BB marks the content to identify the last hop intermediary of a 

receiver, WHIM-LH allows a single intermediary to embed distinct User IDs for 

each of its children receivers. This section first explains the WHIM-LH architecture 

and the variations that are allowed by the different types of User IDs. Then, the 
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Figure 9: WHIM-LH Architecture 

different methods that are available for choosing User IDs are explained. 

3.4.1 Methods of Transporting the Video Data 

The architecture we describe here maintains the efficiency of multicast routing while 

enforcing necessary security at endpoints, intermediaries and client. There is signif

icant research in the area of video watermarking, so we provide a framework that 

allows any watermarking algorithm to be used to fingerprint multicast streams effi

ciently. We introduce a secure client-side fingerprint insertion program that contains 

a watermarking module that can be based on any chosen watermarking algorithm. 

Figure 9 shows the interaction between the modules of the architecture. The in

termediary distributes the fingerprinting program with a built-in decryption key, 

which we subsequently denote as program[Kj„ierna/]- The cHent registers with the 

logging and key distribution system to join the group and receives decryption keys 
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and possibly a User Id, The client program then receives the stream encrypted with 

the session key, denoted as {stream}Kp/Qy, from the intermediary and securely adds 

the watermark before making the stream available to the user. The remainder of 

this subsection explains the variations of this architecture that depend on the type 

of User ID used. 

The Assigned User ID scheme has the intermediary communicate with the group 

using the following steps: 

Intermediary to Receivers: 

Multicast: {stream}Kp/Qy 

Multicast: program iKintemai^ 

M u l t i c a s t : {{Kp/ay ,Use r lT>l}Kinternal}Kserl > 

{{Kpiay, User ID2}K 

internal j'^user2 > • - • 

W'^play > u s e r i-y'^J'^internali^usern 

Each User ID and key packet is encrypted with the user's public key or symmetric 

key shared by the logging system and the user, so the same level of security is 

achieved as if they were unicast. A significant portion of the traffic that is sent is 

the User ID information. 

For applications that would benefit from the decrease in traffic that would result 

from not sending this information, we propose a method that allows the user to 

provide her own User ID information to the program. This Local User ID method 

only requires the intermediary to send the following messages to the group: 
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Intermediary to Receivers: 

Multicast: {streain}Kp;ay 

Multicast: program [Kî êrna J 

M u l t i c a s t : {^playf^internal 

The Authentication module authenticates the user and signals the decryption mod

ule. This approach is used when the logging system already has a mapping between 

the User ID and the actual receiver or can determine the receiver based on the User 

ID, such as when the User ID is derived from the public key as explained in the next 

subsection. 

3.4.2 Methods of Choosing User ID 

The User ID information that is embedded by the intermediaries as the watermark 

uniquely identifies each receiver. While previous literature simply refers to the 

User ID as some unique identifier, perhaps randomly assigned, we propose a new 

technique for creating User IDs. By using cryptographic means, we compose a 

User ID that is more closely bound to a user than a randomly assigned User ID. 

As shown in the previous subsection, this also allows a more efficient distribution 

method. Possible methods of forming a User ID include the following ways: 

• Assigned User ID: This simple scheme involves each user registering with 

the source, authenticating with the source, and the source assigning some 

unique value as a User ID. 

• Public Key-based User ID: This approach allows the User ID to be based 

on the public key of the receiver. This requires the user to have a public key 

certificate [124], a signed message from a trusted certification authority (CA) 

that specifies the user's name and the corresponding public key, such as a 
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X.509 certificate [102]. The fingerprinting program must be assured that the 

public key used is the one assigned to this user by the CA. We suggest two 

methods of doing this. The fingerprinting program requests the user's pubHc 

key from the CA and then uses a nonce to confirm that the user knows the 

corresponding private key. The second method is that the user provides the 

program with the pubUc key certificate and signs it with the private key. Thus, 

the program can verify the public/private key pair and that it was assigned 

by the CA. 

3.4.3 Discussion 

WHIM-LH provides a framework that allows proven watermarking algorithms to be 

used efficiently in a multicast environment. It allows efficient rekeying, introduces 

a new type of secure User ID construction, and has the smallest possible protection 

granularity. It also is capable of being used with selective watermarking [198] to 

increase its efficiency at the cost of an increase in protection granularity. Figure 10 

shows the how the WHIM-LH architecture is combined with WHIM-BB. 

We propose means of preventing the risk of the fingerprinting program being 

reverse engineered to reveal the decryption key or otherwise altered to disallow the 

desired results. There are a number of attacks that malicious users can perform 

against mobile agents including spying out code and data and manipulation of code 

and data [96]. Mobile Cryptography can be used to guard against these attacks [180]. 

This involves executing encrypted functions to guarantee code privacy and code 

integrity. Time Limited Black box Protection [97] can be used to protect the code 

and data of a mobile agent from being read or modified for at least some minimal 

time interval. 
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3.5 Analysis 

In this section, we examine the efficiency of WHIM in terms of data transmission 

and encryption overhead. We look at this relative to the performance of some of 

the other multicast watermarking schemes reviewed in the related work section; in 

particular Brown, et al, and Chu, et al. Figure 11 shows the definitions of variables 

used in this section. 

In WHIM, the source transmits s -\- p -\- cku bytes and encrypts s + (n){ku) 

bytes. The overhead of the Chu, et al. scheme involves the sender transmitting 

nf[2(f) + 2(A;/)] bytes, then the group leader transmits nf[(n){md + bit + kf)] 

bytes. This system also has significant encryption overhead, nf[2{f) -\- kf -\- msg\ 

bytes for the sender and nf[{hit + kf){n)-^msg] bytes for the leader. In the protocol 

of [32], the amount of transmitted data is increased substantially by the amount of 
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s — stream 
nf = number of frames in the stream 

/ = frame 

P = program 
n = number of group members 

ku = key/User ID message 
cku = combined key/User ID messages 

k = decryption key 
uid = User ID 
bit = signifies which stream the user receives 
kf = decryption key for a particular frame 

Figure 11: Definition of Variables Used in Analysis 

necessary redundant data. For a stream of size, s, the amount of data that is 

transmitted is at least ns, where n > d and d is the depth of the multicast tree. 

We seek to analyze the performance of these schemes with two different types of 

group behavior, theater style and dynamic. Theater style involves all of the group 

members arriving or joining the group and leaving the group at approximately the 

same time, as at a movie theater. This allows all of the set up overhead to be 

multicast to the entire group at once. Dynamic groups involve users joining and 

leaving the group at anytime throughout the session and may involve members 

leaving and re-joining. This also involves rekeying of the group. 

To analyze the performance for theater style groups, we created multicast groups 

within transit-stub internetwork topologies using GT-ITM [213]. We performed the 

simulation with group sizes of 1,000, 5,000, 10,000, and 20,000 receivers. For each 

group size, the depth of the tree used in our data is based on the average depth of 

the 10 random shortest path multicast trees that were created. These calculations 

are based on the source multicasting a one hour session of MPEG-2 video at 4 Mbps 

at a framerate of 30 fps. The size of the keys in our simulation are 128 bits for 

WHIM as well as for the scheme of Chu, et al. In our simulation of Chu, et al., the 

source is also the group leader. The size of the insertion program in WHIM was 

determined by adding the size of a common decryption program and the size of a 

watermarking program to be 1 MB; however, the total amount of data transmitted 
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and encrypted by the architecture is orders of magnitude above the size of the 

program so the accuracy of this value becomes insignificant. We compared the total 

amount of data transmitted and encrypted by the multicast source in WHIM with 

the schemes of Brown, et al. and Chu, et al. and the results are shown in Figure 12. 

The amount of data transmitted by the source in WHIM is about 1.5 GB for all 

group sizes. In the other schemes, the amount of data increases linearly as the size 

of the group increases. In Brown, Perkins, and Crowcroft's scheme, the amount of 

data is almost 25 GB for the smallest group size and continues to increase as the 

group size increases reaching over 35 GB for the 20,000-member-sized group. In 

Chu, Qiao, and Nahrstedt's scheme, the amount of data transmitted is a little over 

5 GB for the 1,000 member group and increases sharply to about 40 GB for the 

20,000 member group. 

For dynamic groups, we used data collected by the Mlisten tool [14] over several 

days for the Mbone multicast of the Space Shuttle Mission STS-80 in November 

1996. This session has a duration of 13 days and has over 1600 join requests. 

We used these traces to simulate the performance of the fingerprinting solutions. 

Figure 13 shows the cumulative amount of data transmitted over the network by 

these schemes and the number of receivers in the group over time. The cumulative 

amount of data transmitted by WHIM is about 80 GB while the total for Chu, Qiao, 

and Nahrstedt's scheme is about 120 GB. The total amount of data for Brown, 

Perkins, and Crowcroft's scheme is about 650 GB. There is a sharp increase in the 

amount of data transmitted using Brown, Perkins, and Crowcroft's scheme between 

500,000 and 600,000 seconds. This is because a group member joined that was a 

considerable number of hops from the source and the number of copies of the content 

that is transmitted by the scheme is based on the depth of the tree. 

One factor that allows WHIM to provide greater scalability than previous so

lutions is the intermediaries that are used to provide security functionality. In our 

analysis, we do not consider the cost of deploying these intermediaries. This cost 

includes not only the monetary cost but also may possibly include delay. We do 
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not provide quantitative results that show the incurred delay; however, we imple

mented a prototype of the system to examine this and other issues. As we discuss 

in subsequent sections, the delay incurred was reasonable. We believe that with ap

propriate buffering, the delay is negligible. Also, many systems utilize content dis

tribution networks or infrstructures that have introduced intemediaries to perform 

some functionality. Ideally, WHIM's intermediaries will leverage an architecuture 

that is already in place. 

3.6 Implementation 

We developed a prototype implementation of WHIM-BB. The architecture involves 

having multicast video delivered through a hierarchy of intermediaries and marked 

uniquely for each recipient. Our prototype used H.261 [4] video and RTP [186]. The 

rtpplay ^ tool was used as the video source to multicast the original video. Vic was 

used as the client to receive the multicast stream and play the video [134]. 

The WHIM intermediaries utilized rtpgw [18], an application level RTP gate

way, to provide basic video proxying. The prototype implemented our distributed 

version of the watermarking algorithm presented by Dittmann, et al. [61] to mark 

the content. 

We developed a C4-+ class that performs watermarking as a filter on the video 

content. This allows our functionality to be used within other frameworks such as 

Open Mash [133]. We implemented a base class called WM_Filter and two more 

specific classes called InsertWM_Filter and ExtractWM_Filter. 

We changed the rtpgw's H261Transcoder class to pass the video through the 

watermarking filter. Within the H261Transcoder class, wmJilter() is called from 

the recv() function before the video is re-encoded for retransmission. 

The following code is added to the recv() function to access the watermark filter 

class: 

^ http://www.cs.columbia.edu/IRT/software/rtptools/ 
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InsertWM_Filter *iwmf; 

iwmf = new InsertWM_Filter 

(outw_, outh_, decimation_, wmspot_, wmid_); 

iwmf—>wm_filter (decoder,—>fraine()); 

delete iwmf; 

wm_filter() steps through the group of blocks in a frame and for each group of 

block, traverses each of the macroblocks. For each macroblock, wmJilter_mb() is 

called. wmJilter_mb calls wmJilter_blk() for each block of the four luminance blocks 

in the macroblock. wmJilter_blk() implements Dittmann's watermarking scheme. 

It chooses the three coefficients in the block to be marked. It determines the bit that 

must be encoded in this block by shifting the string to be embedded by the number 

of bits that it has inserted in previous blocks. The new coefficients are determined 

based on a Zhao-Koch type algorithm. The coefficients are then re-quantitized and 

the new values are placed in the block. wmJilter() returns after a given frame is 

successfully marked and the watermarked frame is then passed to the encoder to be 

forwarded. 

We also implemented a watermark extraction tool that can be used to iden

tify embedded information within a recovered video copy. It was also useful for 

debugging. It is called from the recv() function as follows: 

ExtractWM_Filter *ewmf; 

ewmf = new ExtractWM_Filter 

(outw_, outh_, decimation., wmpathlength_); 

ewmf —>wm_f ilter(decoder_—>fraine()); 

delete ewmf; 
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We were able to multicast video to a number of receivers and have the content 

watermarked uniquely based on the receivers location in the network. Notable 

observations were that the watermark insertion did not require buffering and did 

not introduce any noticable delay. 

3.7 Conclusions 

There has been a significant amount of work geared toward developing algorithms 

to securely embed watermarks into multimedia content. The work presented in this 

paper complements these efforts by providing an architecture that allows these al

gorithms to be used in multicast multimedia. We have presented two architectures, 

WHIM-Backbone, a hierarchy of intermediaries that provides an efficient distribu

tion architecture that fingerprints the streaming content, and WHIM-Last Hop, a 

secure client/server protocol that fingerprints and distributes content between a 

single entity and a group of receivers, which form WHIM. Our analysis shows the 

efficiency gains of WHIM over previous solutions. 

Transmission 
of Video 

Unicast Multicast 

Marking Location Source Source Client 
(WHIM-LH) 

Intermediary 
(WHIM-BB) 

Intermediary and 
Client (WHIM) 

Trust High High Medium High High 
Scalability Low High Medium High High 
Resolution High Low High Medium High 

Table 1: Comparison of trust, scalability, and resolution provided by different meth
ods of fingerprinting content to a group 

Table 1 compares the trust, scalability, and resolution achieved by solutions 

based on the type of transmission of the video and the marking location of the data. 

The first column shows the simple case of marking at the source and unicasting. 

This achieves high trust and resolution but low scalability. The next column shows 
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multicast video that is marked at the source. This results in high trust and scala

bility but low resolution. The third column shows WHIM-LH which multicasts the 

video and marks at the client. This achieves medium trust and scalability and high 

resolution. The fourth column shows WHIM-BB which multicasts the video and 

marks at the intermediaries. This achieves high trust and scalability and medium 

resolution. The last column shows WHIM which combines WHIM-LH and WHIM-

BB to achieve the scalability of multicast with the trust and resolution of a unicast 

approach. 

In addition to the architecture presented in this chapter, the idea of identifying 

a user by his position in the network can be carried over into other applications 

to offer increased security and the use of a trusted hierarchy to provide scalable 

security functionality can be used in other areas including group key management, 

firewalls, and defending denial-of-service attacks. 
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Chapter 4 

Group Access Control for Content 
Distribution Tree Protection 

The Internet is increasingly being viewed as a medium providing not just connectiv

ity but also services. This is due to the increase in mechanisms within the network 

to support networked services. An important need is mechanisms to aid in the 

scalability of networked services. Two such mechanisms have received considerable 

attention over the years—multicasting and anycasting. Multicast communication 

provides an efficient transport mechanism for one-to-many and many-to-many com

munication [56]. Anycast provides a means for a host to send a request to one ad

dress and have it serviced by one of many servers servicing that address [155]. This 

aids service discovery. There has been significant advances in maturing both of the 

paradigms. There are distinct and significant security problems in both the multi

cast and anycast models including denial-of-service, theft-of-service, eavesdropping, 

and masquerading. 

We first explain the multicast problem. There are a number of available multicast 

routing protocols that provide the efficient transport mechanisms of multicast by 

routing packets with one group destination address to multiple recipients. The 

routing protocols must be aware of group members in the network in order to deliver 

packets to them. The mechanism provided for doing this is the Internet Group 

Membership Protocol (IGMP) [33]. A host uses this protocol to notify the routing 

system that it should deliver packets for a particular multicast group to this host. In 

the current model, any host can use IGMP to become a member of any IP multicast 
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group causing eavesdropping or theft of service. The common method used to 

protect the information is to encrypt the multicast data and provide decryption 

keys only to authorized members. In some cases, encrypted communication is not 

possible for any number of reasons including legal issues or technical reasons. Even 

if encryption is used, there are still risks involved with unauthorized users receiving 

encrypted data such as traffic analysis and possibly cryptanalysis. The current 

model is also vulnerable to a denial-of-service attack in which malicious hosts join 

a number of multicast groups. This causes potentially large amounts of data to be 

forwarded to it utilizing network resources. 

The anycast paradigm has a different security problem that can be equally as 

damaging. Anycast allows multiple servers to provide a service at a single address 

called the anycast address. This is accomplished by each of these anycast servers 

letting the routing protocol know that it is listening to the anycast address. Then 

when a host wishes to contact a server providing that particular service, it simply 

sends a request to the anycast address. The routing system knows which servers 

said that they are providing that service so it chooses one of those servers and 

forwards the request to it. Besides the basic IP model of anycast [155], global IP 

anycast [116] and application-layer anycast [212] have been proposed. The problem 

in each of these models is that any system can pretend it is providing a service by 

telling the routing system that it is listening to that anycast address. This problem 

has two potential outcomes: denial-of-service or masquerading. The fake server can 

simply attract requests and ignore them causing a denial-of-service attack. Or, the 

fake server can actually respond to the request with false information which can 

lead to a number of additional problems. 

Solving the problems described in the multicast model requires controlling the 

ability of hosts to join the multicast group. We call this multicast group access 

control. The need for a solution to these problems is well known. Gong and 

Shacham first stated the need [81], and the need has been restated by Ballardie and 

Crowcroft [22] Shields and Garcia-Luna-Aceves [188], and Hardjono and Cain [87]. 
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The term secure IGMP has been used to refer to the protocol that would provide 

the solution. Solving the problems described in the anycast model requires control

ling the ability of a host to advertise itself for the anycast address. This requires 

controlling membership to the anycast server group. We call this anycast server 

group access control. The need for a solution to the anycast problems is also well 

known. Partridge, et al. [155], and Katabi and Wroclawski [116] state the need for 

a solution. Previously, the multicast and anycast problems were viewed as separate 

problems requiring separate solutions. In reality, the problems in multicast and 

anycast can be generalized the same group access control problem. 

In this work, we propose Gothic, a comprehensive architecture for providing 

group access control. The design goals are to maintain security while providing a 

scalable system that involves low computation overhead at the routers, low message 

overhead, and low support infrastructure requirements. The architecture combines 

some novel techniques with some known systems security concepts. We evaluated 

our system relative to two previously proposed systems and find that Gothic main

tains or increases the level of security relative to previous work while increasing 

scalability. We also propose a group policy management system that allows the 

group owner to be authenticated before being allowed to specify the group access 

rights. This system can be applied to other group policy work. Finally, we propose 

and evaluated group access control aware group key management (GACA-GKM), 

which is a protocol that leverages trust built into an group access control system to 

reduce the requirements of group key management (GKM) and obtain substantial 

overhead reductions. 

For each of the multicast and anycast problems, there are a number of potential 

environments composed of different Internet Protocol (IP) versions, different routing 

protocols, different address allocation schemes, and different inter-domain require

ments. We call the particular combination of these the implementation environment. 

The proposed architecture is relevant to many flavors of multicast and anycast on 

the Internet such as Global IP-Anycast (GIA) [116], application-layer anycast [212], 
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source-specific multicast [99], and application-layer multicast [49, 106]. This chapter 

freely uses standard terminology from the network and systems security literature 

without further definition [126]. 

This chapter is organized as follows. Section 4.1 gives an overview of the Gothic 

architecture and discusses the two subsystems: the group member authorization 

system and the group policy management system. Section 4.2 describes the autho

rization system. Section 4.3 discusses the group policy management system spec

ifying it for multicast and for anycast. Section 4.4 discusses group access control 

aware group key management and Gothic's interaction with the routing system. 

Section 4.5 presents an evaluation and simulation results of the architecture and a 

comparison with previously proposed solutions. We also provide simulation results 

comparing traditional GKM to our group access control aware GKM technique. 

Finally, section 4.6 presents conclusions and discusses possible future work. 
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4.1 Overview of Gothic 

Several functions are necessary to provide controlled access to a group including the 

following: 

1) Group policy specification functions: These involve a host requesting to spec

ify a group policy, authenticating the host, and verifying that the host is the group 

owner. The group policy is an access control policy that specifies which hosts have 

access rights to become members among other characteristics. The group owner is 

the entity that has been assigned ownership of the multicast group and is therefore 

authorized to specify the group policy. 

2) Access request functions: These involve a host notifying the system that it 

wishes to become a member of a certain group. 

3) Access control functions: These involve receiving a host's request, authenti

cating the host and performing authorization. Authorization requires checking the 

group policy to determine if that host has the access rights to become a member of 

the requested group. 

Gothic controls the group of hosts that can receive data destined to a specific 

multicast group address; however, Gothic does not control multicast sources. Con

trolling which hosts can send data to a group is a separate problem. Some solutions 

have been proposed for multicast sender access control [22]. Sender access control 

is becoming less of a problem with recent multicast schemes such as source-specific 

multicast (SSM) [99] that inherently provide sender access control—though they rely 

on traits of the reverse path forwarding and the security is a side effect. 

Gothic is composed of two systems: the group policy management system and the 

group member authorization system. Figure 14 shows Gothic and its two subsystems. 

The group policy management system performs group policy specification functions. 

The group member authorization system involves access request functions and access 

control functions. Gothic also interacts with the routing system and any group key 

management system that may be in place. 
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Figure 14: Gothic Architecture 

Group Policy Management System 

The group policy management system involves a group owner providing the list of 

authorized members and possibly other security policy for the group to the access 

control server (ACS). Previous work has presented requirements for specifying group 

policy [136]. The task of a host specifying the policy to the system is understood. 

The problem that remains unanswered is how the system verifies that the host is 

the group owner. We propose two solutions for a group owner determination and 

authentication system (GODAS), described subsequently. 

Group Member Authorization System 

The group member authorization system provides the core functionality of Gothic 

by controlUng access to the group. Previous proposals for authorization systems that 

handle multicast were proposed by Ballardie and Crowcroft [22] and Hardjono and 

Cain [87]. The design goals of our authorization system are to maintain security and 

to achieve scalability. The main scalability objective is to reduce the computational 

load on network routers and the second objective is to reduce the message overhead. 

We provide evaluation results that show our system improves scalability relative to 
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network and processing overhead while maintaining or increasing the level of security 

of previous systems. 

A Gothic Scenario 

Figure 14 provides an illustrative overview of the operation of Gothic. 

First, the group owner contacts the ACS; the ACS then performs authentication 

and authorization functions; and the group owner states the group policy. Sec

ond, hosts wishing to join the group request access and the system performs access 

control functions allowing authorized members to join. Finally, use of the group 

by sources and receivers may begin. In anycast routing, initiation means that the 

anycast address may be distributed and requests sent to it. In multicast, initia

tion means that the source may begin transmitting data even if receivers have yet 

to join the group. We provide this scenario to show the order of operations: the 

group policy management system's operations take place before the operations of 

the group member authorization system. However, the presentation of the paper 

does not follow that order. We will first discuss the core of the architecture, the 

group member authorization system, and then explain the supporting component, 

the group policy management system. 

4.2 Group Member Authorization System 

This section describes the group member authorization system that allows autho

rization to be performed before the host is allowed to become a member of the 

group. The first subsection presents the base protocol. The second subsection dis

cusses the operation of the system including reauthorizations and revocations. The 

third subsection elaborates on the interesting design features of the system and how 

they relate to prior work. 

77 



ACS 

f 
1 Authorization 4 

REQ 

\ ' 

2 Authentication 

3 Authorization 

4 Authorization 
ACK 

^ 5 Join REQ 

7 Join ACK 
H <^ j ^ j 6 Authentication 

Figure 15: Authorization System 

4.2.1 Authorization Protocol 

The Gothic authorization system involves a host H, a router R, and the access 

control server ACS. In reality, the ACS can be a single server or a group of dis

tributed servers. Since the authorization protocol takes place between a host and 

a single ACS, our discussion here only involves a single access control server. We 

assume the presence of a public-key infrastructure (PKI) [102]. Hosts and the ACS 

possess public-key pairs and certificates; we do not require that the routers possess 

key pairs or certificates. Also, for environments without a public-key infrastructure, 

we describe how the system can operate without host key pairs and certificates. 

In general, the host and the access control server each have public keys, K+u and 

K+Acs respectively and the corresponding private key, K-H and K^ACS- The cer

tificate issued by a trusted authority containing a public-key K+x is denoted by 

CERTK^^ These are used to digitally sign messages and verify those signatures. 

Digitally signed messages are shown in brackets with the key used to sign it as a 

subscript [message]K_x^ 

Figure 15 diagrams the operation of the base protocol. The protocol begins 

with the host wishing to join a group sending an authorization request to the access 

control server. The authorizationrequest (AR) contains the group ID (GID) of the 
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group the host wishes to join, the host's public key certificate, and is signed with the 

host's private key. Where key pairs are not available, an alternative authentication 

method can be used such as a password. Also, the AR can be coupled with the 

receiver obtaining the group key from the group key management system. In this 

case, the host is authenticated and authorized once and receives the group key as 

well as the capability. 

1. H -> ACS: 

AR=[GID,CERTK^,]K_^ 

The ACS authenticates the host and checks the group policy to determine if 

the host has access rights to join the requested group. The ACS returns an autho

rization acknowledgment (AA) specifying a successful or unsuccessful authorization. 

If successful, the AA is a capability that includes the host's IP address IPH, the 

host's distinguished name DNH, the multicast group address, the expire time, the 

public-key certificate of the ACS, and the digital signature of the ACS. The use of 

timestamps to indicate the expire time of the capability requires clocks that are at 

least loosely synchronized. 

2. ACS -> H: 

AA = CAP = 

[IPH. DNH.GID, T,,,]K_,CS^CERTK + ACS 

The receiver's IP address serves as an identifier and provides propagation control. 

The receiver sends a join request (JR) containing the capability(CAP) to the router. 

This join request is formed by including the capability in the IGMP Membership 

Report message [33] or the MLD Multicast Listener Report message [82, 201]. 

3. H -> R: 

JR = CAP 
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The router checks the validity of the capability. This includes verifying the 

ACS's signature, checking the expiration time, and verifying that this capability 

came from the receiver it was assigned to. This can be done by authenticating the 

host and checking the authenticated identity against the identity in the capability. 

Or, the router can simply lookup the IP address in its routing table to confirm that 

the request arrived from the interface leading to that address. This eliminates the 

need to authenticate the host. Section 4.4 discusses how Gothic can be extended to 

integrate with the security of the routing system to provide controlled propagation. 

After verifications, the router sends the host a join acknowledgment (JA) stating a 

successful or unsuccessful join. 

4 . R ^ H: 

J A = Status 

To allow for groups with no access control, if a router receives a join request 

that does not include a capability, then the router queries the ACS to verify that 

the requested group is unrestricted. 

4.2.2 Reauthorizations and Revocations in the Protocol 

This section discusses the reauthorizations and revocations that are part of the 

operation of the system. We explain how we achieve efficient revocations while 

maintaining the desired level of security. We also describe a method for multicast 

groups to achieve greater efficiency by leveraging the GKM system. 

Our base protocol uses time-limited capabilities to provide revocation. Requir

ing members to refresh their membership state coincides well with the soft-state 

of the IGMP group membership reports and of the routing protocols. However, 

refreshing authorization state is a heavyweight operation compared to a routing or 

IGMP update. Therefore, for efficiency one might consider extending the lifetime 

of the capabilities. This reduces the load by reducing the frequency and number 
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of reauthorizations. However, this weakens the security by increasing the revoca

tion window. That is, if a member is ejected from the group, there will be some 

vulnerable time where the ex-member still has access because the capability has 

not expired and he has not been required to reauthorize. Therefore there exists a 

tradeoff between reauthorization overhead and security. By changing the capability 

lifetime, the system can be tuned to the desired tradeoff point. 

The ideal system would allow a small revocation window and low reauthorization 

overhead. We propose a method of obtaining this for multicast groups. Our goal 

is to provide a more lightweight reauthorization phase: instead of reauthorizing 

with the ACS to obtain a capability, the host uses the group (decryption) key as 

the authenticator. Since only authorized group members possess the group key, 

knowledge of it successfully authorizes a host as a member of the group. This 

requires the router to possess the group key. In many cases, this is straightforward 

because the router is part of the key distribution path and simply must store the 

key as well as forwarding it. Since the GKM maintains current authorization state, 

the authorization system piggyback on that functionality by using the group key 

as the authenticator. The authorization system can use the group key not only for 

reauthorizations, but for the initial authorization as well. 

4.2.3 Discussion 

This section discusses some of the interesting design features of Gothic's authoriza

tion system and mentions related designs in other security systems. 

The authorization system is designed to gain efficiency by integrating security 

functions with the current network system that is in place rather than adding bulky 

components. Among the interesting design features of Gothic's authorization system 

are: 

• There is no need for propagation control components in the system because the 
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design inherently provides propagation control by using identity-based capabil

ities. Gong [80] describes an identity-based capability system. Neumann [150] 

describes a similar concept called the delegated proxy. 

• There is no need for additional components to provide revocation, because 

we use time limited capabilities to provide implicit revocation ^ Explicit 

revocation is heavyweight and is usually provided by the use of certificate 

revocation lists (CRLs) or by supplementing capabilities with access control 

lists (ACLs) that are checked upon access. The normal problem with implicit 

revocation is that large time limits weaken the security and small time limits 

require an increased number of heavyweight reauthorizations. 

• We propose leveraging the GKM system to reduce the overhead of reautho

rizations; thus allowing the strong security of short lived capabilities without 

the overhead normally involved. 

• The design is simplified by not including complex properties of access control 

models such as lattice security and the *-property [126, 115] that are unnec

essary for multicast and anycast groups. 

4.3 Group Policy Management System 

This section describes the group policy management system. This system involves 

a group owner providing the list of authorized members and possibly other security 

policy for the group to the ACS. McDaniel, et al. [136] proposed related work 

that presented requirements for specifying group policy for the key management 

and data handling building blocks of the Internet Research Task Force's secure 

multicast framework [88]. The task of a host specifying the policy to the system is 

understood. The problem that remains unanswered is how the system verifies that 

'There has been previous work in efficient revocation schemes including re-acquisitions in 
DNSSec [76] and the re-confirmation TTL used in the Simple Distributed Security Infrastructure 
(SDSI) [176]. 
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Figure 16: Group Owner Determination and Authentication System 

the host is the group owner. We propose two solutions that provide group owner 

determination and authentication. The first subsection describes the two solutions. 

The second and third subsections discuss the use of the group owner determination 

and authentication system in multicast and anycast environments. 

4.3.1 Group Owner Determination and Authentication Sys

tems 

The group owner is the host that has been allocated control of or use of a particular 

group address. The purpose of the group owner determination and authentication 

system is to allow the ACS to determine if the host that attempts to provide the 

group policy is the group owner. We discuss two different systems that provide this 

functionality. 

The first solution is the use of group-owner certificates as shown in Figure 16(a). 

These are similar to traditional digital certificates in that the certificate verifies the 

83 



identity of the entity that possesses the corresponding private key. With group-

owner certificates, the identity in the certificate is the group address .̂ The group-

owner certificate can be issued by a local Certificate Authority (CA) that is asso

ciated with the entity that allocates group addresses in each domain .̂ We specify 

the association between the certificate authority and the address allocator for differ

ent environments in the next two subsections. The group owner presents the group 

owner certificate to the ACS along with the request to specify the group policy. This 

allows the ACS to verify that the host is indeed the group owner. 

The second solution is the deployment of a group-ownership service as shown in 

Figure 16(b). Rather than the host providing proof-of-ownership to the ACS, the 

ACS queries the address allocator. It accepts queries specifying a particular group 

address and responds with the identity of the host that owns the group. The group 

ownership service is deployed on a system that is associated with the entity that 

allocates group addresses in each domain. It is deployed at a common address and 

port number to allow it to be located. Upon receiving a request from a host to specify 

the group policy, the ACS authenticates the host then queries the group ownership 

service and verifies that the reply matches the identity of the requesting host. We 

specify how the group ownership service can be deployed in certain multicast and 

anycast environments in the next two subsections. 

4.3.2 Group Owner Determination and Authentication in 

Multicast environments 

In this section, we discuss how group owner determination and authentication can 

take place for the different multicast address allocation schemes. 

• Multicast Address Allocation Architecture (MAAA): MAAA [196] specifies 

^For example, this can be accomplished with X.509 v3 certificates by specifying the group 
address in the Subject Alternative Name Extension. [102] 

"̂ To ease PKI requirements, the local certificate authority can possess a certificate issued by a 
globally trusted certificate authority. 
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inter-domain and intra-domain address allocation methods . A well-known in

stance of this architecture includes MASC [167], AAP [83], and MADCAP [86]. 

Thus the owner of a multicast group is the host that is allocated that address 

by MADCAP. The group ownership service can be added to the MADCAP 

protocol. Or the MADCAP protocol can provide group owner certificates to 

the host that is allocated the address. 

• Source-Specific Multicast (SSM): In SSM [99] , a multicast group is specified 

by a tuple (5, G) where S is the IP address of the source and G is a SSM 

destination address from the assigned 232/8 range. This provides a straight

forward mapping between the group owner and the group address since a host 

S owns all multicast groups (S', *). When a host wishes to specify the policy 

for any group ( 5 , 0 ) , the access control server simply authenticates the host 

to verify that it is indeed host S. 

• GLOP: GLOP [139, 138] provides a method for statically assigning multicast 

group addresses to Autonomous Systems (AS). The identity of the autonomous 

system is encoded into the group address. Within each AS, different alloca

tion schemes can be used such as static allocation, MADCAP, or SAP. If the 

internal allocation scheme is also static allocation, then the AS can provide a 

group ownership service or provide a group owner certificate authority. 

• Session Announcement Protocol (SAP)/ Session Description Protocol (SDP): 

SAP [85] and SDP [84] provide mechanisms to describe a session and to an

nounce that session. The group owner is the host that advertises a session 

at a particular group address. A malicious user can disobey the protocol and 

advertise sessions that are not his, thereby making itself the group owner and 

obtaining the ability to specify access control policy. Therefore, for the high

est level of security, one of the previously described address allocation schemes 

should be used. 
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4.3.3 Group Owner Determination and Authentication in 

Anycast environments 

In this section, we discuss how group owner determination and authentication can 

take place with the different anycast schemes. 

• IP Anycast: IP anycast includes both IPv4 and IPv6 environments. IPv4 

anycast uses a separate class of addresses for anycast addresses [155]. For 

IPv4, group owner certificates can distributed to the host that is assigned the 

address. IPv6 anycast addresses are indistinguishable from unicast addresses 

and consist of a set of reserved addresses within each subnet prefix [94, 107]. 

For IPv6, group owner certificates can be used or a group ownership service 

can be used since the address is related to the unicast address and the domain. 

• Global IP Anycast (GIA): In GIA [116], anycast addresses consist of an any-

cast indicator, the home domains unicast prefix, and a group ID. Domains are 

allocated anycast addresses according to their allocated unicast address space. 

Thus, the domain owns its set of anycast addresses and may give control to 

some host. Each domain can provide a group ownership service or use group 

owner certificates. 

• Application-Layer Anycast: In Zegura's et al. application-layer anycast scheme [212], 

anycast services are referred to by anycast domain names (ADNs) that con

tain the domain of the authoritative resolver for the ADN. A group ownership 

service can be deployed at the authoritative resolver. Or, group owner certifi

cates can be used and the authoritative resolver can be the local certificate 

authority. 
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4.4 Group Access Control Aware GKM 

There has been a significant amount of work in group key management (GKM); 

see for example [38, 35, 209, 142]. Most of this work has been in creating efficient 

algorithms and systems for GKM for dynamic groups. These GKM solutions were 

designed around the assumption of an open Internet multicast group where all hosts 

have access to the multicast tree. This is due to the fact that IGMP allows any host 

to join a multicast group and receive the data being sent to that group. 

With multicast receiver access control deployed, this assumption no longer holds. 

Multicast receiver access control provides a means to restrict access to the multicast 

tree to authorized users. There have been proposals for systems providing multicast 

receiver access control in the research community as well as in the IETF. Since group 

access control changes the assumptions of GKM designers, the requirements and 

approach of GKM should be reconsidered. The goal of group key encryption is to 

prevent unauthorized receivers from obtaining the content. Group key management 

focuses on the dynamic group problem. That is, when a member joins or leaves, the 

group key must be changed so the new member cannot decrypt past content or so 

the former member can not decrypt future content. 

In traditional GKM, the key is changed upon a join because it is assumed that 

the new member could easily used IGMP to receive the encrypted content from 

before it was a member. Thus, giving the new member the old group key will allow 

it to decrypt the content from before it was a member. Now, with group access 

control in place, the host can use IGMP to receive the encrypted content before it 

is a member. If the host does not have the earlier content, then there is no need to 

rekey the group. There are similar implications for a member leave. In traditional 

key management, the key is changed upon a leave because it is assumed that the 

leaving member can use IGMP to easily continue to receive the encrypted content 

and not changing the key will allow it to decrypt it. With group access control 

in place, the leaving member can not use IGMP to access the distribution tree to 
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obtain the encrypted content. If the host can not continue to receive the content, 

then there is no need to rekey the group. 

With these new assumptions, we propose a new GKM technique that leverages 

the existence of multicast receiver access control. We show that even with the 

existence of GACA, the need to rekey is not abolished. There are certain issues that 

must be considered such as the lack of access control beyond the subnet or shared 

link level. Also, we discuss the risk associated with eavesdroppers. We will show 

that the system is robust against local eavesdropping attacks, but not against some 

more involved eavesdropping-based attacks. 

A GACA-GKM system requires the group key controller to have knowledge of 

the multicast topology and the placement of members in the tree. This information 

is not available in readily available in existing GKM systems. We will explore three 

methods of providing this functionality. The methods are: 

• Traceroute-type Approach 

• Topology Inference-based Approach 

• Enhanced IGMP-based Approach 

4.4.1 GACA-GKM Technique 

In the first subsection, we provide some definitions by explaining how Gothic in

tegrates with the multicast routing system. The second subsection discusses the 

GACA-GKM technique. 

4.4.1.1 Group Access Control and the Routing System 

For multicast group access control, after the router accepts the host, the router must 

forward the join request according to the multicast routing protocol. The routing 

protocol may require reauthorizations or provide its own message authentication 

methods. There have been a number of studies that propose secure multicast routing 
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Figure 17: Gothic Trusted Routers form Trusted Subtrees 

protocols [188, 205, 144]. Some routing protocols do not assume trust of the entire 

routing system but only of some subset that are considered trusted routers. In the 

context of Gothic, a trusted router is defined as a router that correctly authorizes 

all join requests according to the protocol. An untrusted router is a router that 

may accept unauthorized join requests or forward fabricated or unauthorized join 

requests. 

When a host sends a join request to its upstream router, the router forwards the 

request containing the capability according to the routing protocol. Any trusted 

router on the path will perform access control by verifying the capability. Thus, 

an untrusted router may accept and forward requests from unauthorized hosts but 

trusted routers on the path will provide access control. The scope of trust extends 

from the source to the multicast tree and is bordered by trusted routers. A trusted 

subtree is a subtree of the multicast tree rooted at a trusted router. A trusted 

subtree can exist within another trusted subtree. A host is a member of the trusted 

subtree of its first upstream trusted router. Figure 17 shows how trusted subtrees 

are formed. 

4.4.1.2 Detai ls of the Rekey Condit ions 

With the introduction of group access control, the goals and requirements of group 

key management must be reconsidered. The goal of group key encryption is to 



prevent unauthorized receivers from obtaining the content. Group key management 

(GKM) focuses on the dynamic group problem. That is, when a member joins or 

leaves, the group key must be changed so the new member cannot decrypt past 

content or so the former member cannot decrypt future content. There has been 

a significant amount of work in group key management; see for example [38, 35, 

209, 142]. These GKM solutions were designed around the assumption of an open 

Internet multicast group where all hosts had access to the multicast tree. With group 

access control in place, this assumption no longer holds. We propose a GACA-GKM 

technique that leverages the inclusion of a group access control system. 

We show how we are able to relax the requirements of GKM. In traditional 

GKM, the key is changed upon a join because it is assumed that the new member 

could have received the encrypted content from before it was a member. Thus, 

giving the new member the old group key will allow it to decrypt the content from 

before it was a member. Now, with group access control in place, the host can not 

receive the encrypted content before it is a member. If the host does not have the 

earlier content, there is no need to rekey the group. There are similar implications 

for a member leave. In traditional key management, the key is changed upon a 

leave because it is assumed that the leaving member can continue to receive the 

encrypted content and not changing the key will allow it to decrypt it. With group 

access control in place, the leaving member will not be able to access the distribution 

tree to obtain the encrypted content. So, there is no need to rekey the group. 

This simple example shows the significant impact of introducing group access 

control. However, we are not able to achieve such gains for every member join and 

leave. For example, if a new member, host A, is on a shared link with current group 

member, host B, then we must rekey when host A joins since she had access to the 

distribution tree before she became a member. Similarly, if leaving member, host 

C, is on a shared link with current member host D, then we must rekey when host 

C leaves because she will have access to the distribution tree after she is no longer 

a member. In reality, these cases include not only if the two users are on a shared 
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link but also if they are in the same trusted subtree. The GACA-GKM technique 

is stated as follows: 

KTSG is the set of known trusted subtrees for a multicast session G. 

TSfi is the trusted subtree of host h. 

riTSh is the current number of members in trusted subtree TSh-

For a join: // {TSh in KTSG) 

If [uTs > 0) 

rekey 

Else If {LastRekeyTime < LastMemberLeaveTime ) 

rekey 

For a leave: / / {riTSh ̂  ^) 

rekey 

1. If a host h joins multicast session G from a trusted subtree that has 

previously been part of the multicast tree for session G, then if the 

trusted subtree currently has session members or if the group has 

not been rekeyed since the last session member from this trusted 

subtree left the group, then rekey. 

2. If a host h leaves multicast session G from a trusted subtree that 

will remain part of the multicast tree for session G, then rekey must 

occur, 

3. Otherwise, there is no need to rekey. 
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4.4.2 GACA-GKM System: Providing Topology Informa

tion 

A GACA-GKM implementation would require the group key controller to know 

certain information such as the trusted subtree of each host, the trusted subtree 

hierarchy, and if the number of members of a trusted subtree is 0, 1, or greater. We 

propose three ways to obtain this information. 

4.4.2.1 Traceroute-type Approach 

The mtrace tool [71] allows multicast receivers to learn the route to a multicast 

source. It is an extension of the traceroute tool for unicast routes. Tracetree [183] 

allows a multicast source to receive mtrace data for each of its group members. The 

tracer protocol proposed by Levine, et al. [127] organizes receivers into a logical trees 

using mtrace packets. These techniques provide more information than is needed for 

GACA-GKM. We can reduce this topology information to just the trusted subtree 

hierarchy. Also, for each leaf trusted subtree, the system does not need the exact 

count of child receivers. It only needs to know if the count is 0, 1, or greater. 

4.4.2.2 Topology Inference-based Approach 

Topology inference techniques such as those proposed by Ratnasamy, et al. [171] 

and Duffield, et al. [62] observe network characteristics and make inferences about 

the multicast topology. This technique are not as accurate as traceroute-type ap

proaches. In general, these techniques are used when the receivers cannot be explic

itly polled to determine the topology. 

4.4.2.3 Enhanced IGMP-based Approach 

IGMP [33] does not send topology or membership information to the source. It 

only sends an indication there is some number of interested receivers downstream. 

EXPRESS multicast included a proposal for an enhanced IGMP that provides group 
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membership counts [100]. This approach provides only the count. GACA-GKM also 

needs the trusted subtree information. We propose changes in the IGMP protocol 

that allows the hierarchy information to be passed up the tree up to the source. 

4.5 Evaluation 

We now present separate evaluations of Gothic and of GACA-GKM. The first sub

section examines the efficiency of Gothic in terms of message overhead and compu

tational overhead. The second subsection presents evaluation results showing that 

GACA-GKM reduces message overhead by 50 

4.5.1 Gothic Evaluation 

We evaluate Gothic in the multicast environment because the number of users is 

larger than the number of anycast servers so this provides the best evaluation of 

the scalability of the architecture with regards to group size. This also allows the 

performance to be compared to Hardjono and Cain's and Ballardie and Crowcroft's 

secure IGMP schemes reviewed in the related work section. To simulate the perfor

mance of these schemes, we use data collected by the Mlisten [14] tool over several 

days for the Mbone multicast of the Space Shuttle Mission STS-80 in November 

1996. The session has a duration of 13 days and over 1600 join requests. Figure 20 

shows the group membership over the length of the session. 

Figure 18(a) shows the total network overhead at all last-hop routers involved 

in the system. The amount of data transmitted by Gothic and Hardjono and Cain's 

scheme is 1.2 KB compared to 138.1 KB by Ballardie and Crowcroft's scheme; 

therefore, they are not clearly visible in the figure. Figure 18(b) shows the total 

network overhead at all group members. Figure 19(a) shows the cumulative network 

overhead at the ACS. Figure 19(b) shows the overall network overhead. These 

figures show that Gothic involves less than half of the total network overhead of the 
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Operation Performance 

3DES encryption 4.75 MB/sec 
MD5 message digest 100.74 MB/sec 
HMAC/MD5 message digest 99.86 MB/sec 
RSA 1024 signature 10.29 sec 
RSA 1024 verification 0.30 sec 

Table 2: Cryptographic computation processing time 

other two schemes. The related work section above explains how such performance 

improvements were achieved. 

To analyze the computational overhead, we determine the number of computa

tional operations invoked by each of the schemes. We evaluate these operations at 

the router and access control server. We then translate the number of operations 

to the actual computation load by evaluating the processing time involved with 

these operations. The computation operations include host authentications, digital 

signatures creation and verifications, authorization lookups, and encryptions. The 

processing times for the computation operations are based on benchmarks published 

for the publicly available Crypto++ library [53]. The simulation used 128-bit Triple 

DES encryption, MD5 message digest, RSA 1024-bit digital signatures, and IPSec 

AH with HMAC-MD5 authentication. The performance of each of those operations 

is shown in Table 11. Figure 21 shows the computational overhead of the three 

schemes at the router in terms of processing time. The computational overhead of 

Gothic is an order of magnitude less than that of the other schemes. This shows 

that the Gothic authorization system achieved its goal of reducing the computational 

overhead at the router. Again, the related work section discusses the operations of 

these two schemes relative to Gothic and explains how such performance improve

ments were achieved. 
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Figure 18: Network overhead at routers and hosts 
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4.5.2 GACA-GKM Evaluation 

We next provide simulation results to show the efficiency gains of GACA-GKM over 

traditional approaches. In addition to the NASA session trace described above we 

also use a trace from a simulated multicast group. This allows us to simulate the 

performance for a range of trusted subtree sizes. The simulated multicast group 

model has the following parameters: 

1. The pool of potential receivers has 65, 536 receivers. Each receiver joins and 

leaves the group independently. 

2. The length of an individual active phase is an exponential distribution with 

an average of r. The length of an individual inactive phase is an exponential 

distribution with an average of lOr. The ratio of active to inactive duration 

is 1 : 10, so the average group size is approximately 5, 958 receivers during 

steady state. 

3. The length of the group session is lOOr. 

We evaluate the GKM message overhead at the group key controller. We use a log

ical key hierarchy (LKH) [209, 204] as the underlying rekeying algorithm. Thus, we 

compare traditional LKH to GACA-LKH, LKH using the GACA-GKM technique. 

The best performance gains are achieved when the group access control system is 
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Figure 21: Computational overhead at last hop routers 

widespread. This is the case when each router is trusted so each trusted subtree 

includes one host. The other extreme is if the group access control system is not 

present. In this case, the scope of trust only includes the source. Thus, the only 

trusted subtree is the one rooted at the source and it includes all n group members. 

This is equivalent to traditional GKM. We evaluate the scheme in a range of envi

ronments based on the average trusted subtree size which is denoted by t. Figure 

22 shows the GACA-LKH (t = 1) performance in terms of GKM message overhead 

at the group key controller as compared to traditional LKH {t = 65,536). Figure 

22(a) shows the results for the actual mlisten trace data. GKM traffic overhead 

is reduced from 171 KB with traditonal GKM to 19 KB with GACA-GKM. The 

simulated trace results in Figure 22(b) show how the size of the trusted subtrees 

affects the overhead. The graph shows GACA-LKH denoted as t = 1 as compared 

to traditional LKH denoted as t = 65, 536 and a range of environments in between 

consisting of various values of t. For traditional LKH where t = 1, the overhead is 
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267 MB. By introducing some trusted routers such that t = 16, the overhead is 

reduced to 233 MB. In systems in which all routers are trusted, the overhead is 

reduced to 128 MB. 

4.6 Conclusions 

The need for a solution for secure multicast group joins and secure anycast server ad

vertisements is well-known. We have generalized these problems into a single group 

access control problem and proposed a secure and scalable solution, Gothic. We pre

sented a novel authorization system that improves the scalability and security over 

previous solutions. We also presented solutions for group owner determination and 

authentication. We have introduced GACA-GKM and evaluated the performance 

improvements. We have presented Gothic in the context of many flavors of multicast 

and anycast including Global IP-Anycast, application-layer anycast, Source-Specific 

Multicast, and Application-Layer Multicast. 
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Chapter 5 

Rights Management in Peer-to-Peer 
Systems 

Peer-to-peer file sharing systems allow content to be shared between distributed 

end-systems. Files stored at peers are transferred directly between peers rather than 

storage at or transmission through a central server. The last few years have seen 

the popularity of such systems grow tremendously. One such system, Napster [148] 

was the fastest growing application on the Internet, boasting a total of 50 million 

users downloading its software. Users are drawn to peer-to-peer systems to locate 

and retrieve a wide variety of content. 

There are two main varieties of peer-to-peer systems. Centralized systems such 

as Napster provide indexing and searching functions at a centrally managed location 

or a set of replicated locations; while decentralized systems such as Gnutella [78] and 

Freenet [74] depend on the peers themselves to manage content indexing and search 

functions in a distributed manner. In both types of systems, content is exchanged 

directly between peers. 

The large number of users freely exchanging content has increased the interest 

of content creators and owners in the protection of content that can be shared on 

these systems. They, along with legal authorities are attempting to force peer-to-

peer system operators and users to control the exchange of content on their systems. 

In this context we use the term content protection to refer to the ability to control 

or restrict the exchange of content within a peer-to-peer file sharing environment. 

We emphasize here the central importance that effective content protection will 
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play in the future success of many peer-to-peer systems. Napster faced many le

gal/court imposed obstacles to its operation because of its lack of 

content protection, and will re-emerge only after implementing stringent content 

protection functions [51]. Other existing decentralized peer-to-peer systems such 

as Gnutella [78], Freenet [74], KaZaA[118] and Morpheus[146], continue to operate 

without content protection, but some are constantly under legal pressure to imple

ment content protection [28]. We believe that it is a matter of time before many 

peer-to-peer file sharing systems will have a need for content protection features. 

While on one hand content providers are actively trying to stop these peer-to-peer 

systems from allowing uncontrolled content distribution, at the same time, con

tent providers are actively seeking content protection technology that will allow 

them to effectively leverage the popularity of peer-to-peer distribution. The content 

providers interest and exploration shows in many forms including working groups 

and requests for proposals [2, 1], creating new companies [163, 147], or acquiring 

technology companies [6]. 

Some people are opposed to content protection systems because they feel that 

such systems unfairly restrict the users ability to access content. We aim to pro

vide a system that provides the level of protection needed by content owners while 

maintaining the flexibility that end-users desire. This is ultimately beneficial to 

end-users because content owners will not make content available in the forms that 

users want until adequate protection measures are in place. By providing a system 

that meets the needs of both parties, this will ideally increase access to a greater 

variety of content and flexible business models that users are accustomed to from 

other distribution models. 

Some content protection systems have been implemented or proposed for cen

tralized peer-to-peer systems [122]. Such systems rely on the central authority that 

maintains the indexing and location functions to provide content protection and, 

therefore, cannot be applied to decentralized peer-to-peer systems. In this paper 

we present CITADEL, a novel content protection system designed specifically for 
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use within a decentralized peer-to-peer system \ CITADEL builds a protected file 

sharing environment over a normal peer-to-peer network using secured content ob

jects and file sharing software enhanced to perform protection operations. A flexible 

content importation system that is part of CITADEL allows all users to insert new 

content as well as additional copies of protected content. Our work also includes an 

implementation that shows that CITADEL is a practical and lightweight approach 

to creating a protected peer-to-peer file sharing environment. 

This chapter is organized as follows. We begin by discussing the benefits of 

content protection in Section 5.1. We then motivate the approach of an overlay 

security layer in Section 5.2. Section 5.3 provides some background discussion on 

peer-to-peer environments and explains the design issues in a content protection 

architecture for peer-to-peer file sharing systems. Section 5.5 presents an overview 

of the CITADEL architecture. Section 5.8 presents the detailed operations of the 

CITADEL components. We conclude in Section 5.9. 

5.1 The Benefits of Content Protection 

Some people are opposed to content protection systems because they feel that such 

systems unfairly restrict the users' ability to access content. There are many in

teresting legal and policy questions concerning file sharing and "fair use". We do 

not attempt to answer those questions or provide a technical solution to those ques

tions. Instead, we argue that in many environments the ability to provide content 

protection will provide benefits to many different parties. Therefore, content protec

tion systems should be developed so that they are available for environments that 

can benefit from them. The idea of providing protection in a content distribution 

system is not new. Most content distribution systems are built upon the ability 

to provide access control including cable television, video-on-demand, information 

^The system can also be viewed as an alternative to current proposals for content protection in 
a centralized system. We focus, in this paper, on its use in decentralized systems. 
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websites, and even print mediums. 

It is often portrayed that the primary goal of content protection is to control 

or stop file-sharing systems such as Gnutella and Freenet. We suggest that this is 

not the single goal of content protection work and that these systems alone cannot 

obtain this goal. For those interested in achieving this goal, there are two possible 

ways that protection systems can help: 

1. Protection systems for peer-to-peer systems alone cannot stop users from cre

ating new file-sharing networks and freely exchanging content. One view is 

that along with other protection mechanisms such as secure audio compact 

discs, operating systems and hardware, peer-to-peer protection may help pro

vide an overall, security-in-depth solution. 

2. More importantly and more realistically, protection systems will allow the cre

ation of legitimate file-sharing systems. Most users are willing to pay for 

access to content and the conveniences that accompany such a service [65]. 

They only use existing file sharing systems because there are no legitimate 

alternatives. So even if rogue networks do exist, they will represent a minority 

of the users and such practices have become accepted by content providers 

in other distribution mediums [157]. Content providers aim to "keep honest 

people honest" [27] and peer-to-peer content protection provides a solution to 

achieve that goal. 

The introduction of content protection systems for peer-to-peer networks will 

allow content providers to safely take advantage of the numerous benefits of the 

peer-to-peer distribution paradigm. This will lead to the availability of more con

tent, richer content, new applications, and traditional content distribution business 

models in peer-to-peer systems. Thus, content protection will benefit peer-to-peer 

network operators, content providers, and end-users. We argue that the currently 

popular file-sharing networks are only the tip of the iceberg in peer-to-peer content 
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distribution systems and that future systems will build upon the foundation pro

vided by content protection to allow rich, flexible, on-demand content location and 

access functionality. 

Content protection can provide benefits for the different parties involved: 

• Network Operators: Eff"ective content protection will play a central importance 

in the future success of many peer-to-peer file-sharing systems. Systems such 

as Morpheus and Napster were shut down after legal pressures due to their 

lack of content protection. Other existing systems continue to operate without 

content protection, but some are constantly under legal pressure to implement 

content protection [28]. It may be only a matter of time before operators 

of many peer-to-peer file sharing systems are obligated to provide content 

protection features. 

• Content Providers: There are a number of parties ranging from individual 

musicians and producers to large content providers that desire to utilize peer-

to-peer distribution, but require the ability to protect their content. Content 

providers are actively trying to stop peer-to-peer systems from allowing un

controlled content distribution. At the same time, however, content providers 

are actively seeking content protection technology that will allow them to 

eff"ectively leverage the benefits and popularity of peer-to-peer distribution. 

The content providers' interest is evident in their participation in working 

groups [2], requests for proposals [1], creation of new companies [163, 147], 

and acquisition of technology companies [6]. 

• End-users: We argue that the lack of content protection is currently hindering 

the introduction of richer content distribution systems. Content protection 

is ultimately beneficial to end-users because content owners will not make 

content available in the variety, quality, and formats that users want until 

adequate protection measures are in place. Content protection will enable 

providers to off"er flexible business models that users are accustomed to from 
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other types of distribution systems. These systems will possibly offer more 

reliability and convenience than systems not supported by providers. Protec

tion systems should aim to provide the level of protection needed by content 

owners while maintaining the flexibility that end-users desire. 

5.2 The Case for an Overlay Security Layer 

In this section, we describe current peer-to-peer environments, discuss the problems 

with previous approaches to content protection for peer-to-peer systems and describe 

how an overlay security layer-based approach overcomes these problems. 

5.2.1 Our Approach 

We argue that previous peer-to-peer content protection systems are inadequate and 

we propose a new approach based on the use of an Overlay Security Layer (OSL) 

that is a secondary overlay layer that is built on top of the existing peer-to-peer 

network and below the application. Due to this layering, the OSL is able to provide 

content protection by securing the content and controlling all user access to content. 

Previous attempts at content protection for peer-to-peer systems have included pro

prietary systems designed for centralized peer-to-peer systems. These systems are 

not portable across different peer-to-peer systems; thus, each peer-to-peer applica

tion developer must create a custom content protection solution. Furthermore, these 

systems cannot be utilized for decentralized peer-to-peer systems such as Gnutella, 

Morpheus, and KaZaa. Also, these systems only provide the ability to enforce sim

ple all-or-none access policies; therefore they provide limited protection and do not 

provide the flexibility to support traditional business models. 

We propose the use of an OSL to provide solutions to these issues and de

scribe CITADEL [108] as an example of an architecture based on this approach. 
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C I T A D E L ' S O S L builds a protected file-sharing environment over a normal peer-

to-peer network by being a secondary overlay situated on top of the existing peer-

to-peer overlay infrastructure. We explain four benefits of the OSL: portability 

including use in decentralized peer-to-peer systems, reusability, increased security, 

and support of new applications and business models. 

5.2.2 Environment Description 

Peer-to-peer file sharing systems consist of two components, the file location process 

and the file retrieval process. In most peer-to-peer systems, the file retrieval process 

is decentralized. That is, files are transferred directly between peers rather than 

through a client-server model. However, peer-to-peer systems differ in the file loca

tion process. As previously defined, there are centralized and decentralized systems. 

Among the decentralized systems, there are naive broadcast query systems such as 

Gnutella [78] and distributed hash table (DHT)-based systems such as CAN, Chord, 

Pastry and Tapestry [170, 194, 179, 214]. 

Peer-to-peer networks are formed as a logical connection of endhosts over the 

physical network. Thus, peer-to-peer systems currently add one layer over the nor

mal network. We refer to this as the distribution layer and it includes content 

location, routing, and retrieval mechanisms. We propose a protection layer that 

provides security services independently of the specifics of the distribution layer. 

We show that the functionality provided by the protection layer enables greater ap

plication functionality and consequently further defining the application layer for 

peer-to-peer systems. 

5.2.3 Problems with previous approaches 

One of the most well-known attempts at a content protection system for peer-to-peer 

was implemented by Napster [148]. Napster's centralized design requires information 

about shared files to be sent to the central server where they are indexed. All 
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queries are sent to the central server which replies with the location of the file. 

This design provides two points to restrict the ability to distribute certain content: 

upon indexing and upon querying. To restrict content upon indexing, when a user 

attempts to share a file that is not approved, the central server does not index the 

file. To restrict content upon querying, when a user searches for an unapproved file, 

the central server does not return a valid response. 

One issue is that Napster's content protection system relies on the central server 

to store and enforce the access control policy. Therefore, this approach cannot be 

applied to decentralized peer-to-peer systems because there is no central server that 

can be used. The most widely used peer-to-peer systems today are decentralized 

and therefore lack any means of providing content protection. 

A second problem that peer-to-peer distribution has faced is the lack of service 

models and business models from traditional content distribution methods. Systems 

have been unable to offer these models because of the absence of the protection 

functionality required to support them. Previous content protection systems can 

only enforce simple all-or-none access control policies which is not enough to support 

popular business models that require a more granular and flexible access control 

policy. 

A third issue is that these content protection systems are not portable across 

different peer-to-peer systems; thus, each peer-to-peer application developer must 

create a custom content protection solution. One reason these systems lack porta

bility is that they are situated in the middle of the file location process. As we 

have shown earlier, the file location process varies across different types of systems. 

However, the file retrieval process maintains common features across all peer-to-

peer systems. So, in order to achieve greater portability content protection systems 

should be implemented as part of the file retrieval process rather than the file loca

tion process. 
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5.2.4 Overcoming those problems 

We propose the CITADEL architecture that provides solutions to these issues. 

CITADEL is based on an overlay security layer that builds a protected file-sharing 

environment over a normal peer-to-peer network. This protection layer is a sec

ondary overlay that is layered on top of the existing peer-to-peer overlay infras

tructure. There are at least four advantages to using an OSL to provide content 

protection in peer-to-peer systems: 

L Decentralized approach: A primary goal of the OSL is to provide a content 

protection system that can be used in decentralized peer-to-peer systems. This 

is achieved by pushing the required functionality from the central server to the 

peers. The OSL allows decentralized storage of the access control policy by 

storing the policy at the peers along with the content and allows decentralized 

enforcement of the policy by providing the protection mechanisms at the peers. 

2. Reusability: The OSL provides an architecture that can easily be integrated 

into different peer-to-peer systems and applications. The protection function

ality provided by the OSL is built into applications as an underlying library or 

API making it transparent and easy to incorporate. Thus, peer-to-peer appli

cation developers can include protection functionality with minimal effort and 

without significant application changes. This also allows applications to con

tinue to take advantage of specialized functionality such as lookup and routing 

functionality without interference from content protection mechanisms. 

3. Enhanced Security: The overlay security layer is able to create a protected file-

sharing environment. Thus, only protected objects can be exchanged within 

this peer-to-peer system. Additionally, all content objects in the system are 

protected and all access to these objects is controlled. In the past, the goal of 

content protection in peer-to-peer systems has been to restrict certain content 

from being exchanged within the system. Thus, these systems only provided 
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all-or-none access; if content was allowed in the system, then anyone in the 

system could access it. Due to the efficiency provided by the OSL, the pro

tection goals can be expanded to be able to control access to content on a 

per user basis. Due to the placement of the content protection mechanisms 

between the application and the distribution mechanisms, the system is able 

to provide protected distribution by controlling the user's ability to retrieve 

the content and provide protected storage by controlling the user's ability to 

access the plaintext content within a local copy of the content. 

4. Enables new applications and support business models: While content control 

has been criticized in some circles as spelling the end of true peer-to-peer 

file sharing, we suggest that it may actually be beneficial in that it has the 

potential to enable many different and desirable service models. As we have 

mentioned, there are a number of common content distribution business mod

els that peer-to-peer systems have been unable to support because they lack 

enhanced protection functionality. The OSL provides flexible protection func

tionality that the application can interact with thereby enabling new appli

cation functionality and business models. We describe three such models in 

Section 6.1. 

5.3 Background and Design Issues 

Peer-to-peer file sharing systems have two parts, the file location process and the 

file retrieval process. In most peer-to-peer systems, the file retrieval process is de

centralized. That is, files are transferred directly between peers rather than through 

a client-server model. Peer-to-peer systems diflfer in the file location process. There 

are centralized and decentralized file location systems. Among the decentralized sys

tems, there are naive broadcast query systems such as Gnutella [78] and distributed 

hash table(DHT)-based systems such as CAlN, Chord, and Pastry [170, 194, 179]. 
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In centralized file location systems such as Napster, information about shared 

files is sent to the central server where they are indexed. All queries are sent to the 

central server which replies with the location of the file as shown in Figure 23(a). 

This design provides two points to restrict the ability to distribute certain content: 

upon indexing and upon querying. To restrict content upon indexing, when a user 

attempts to share a file that is not approved, the central server does not index the 

file. To restrict content upon querying, when a user searches for an unapproved file, 

the central server does not return a valid response. 

The file sharing processes of a broadcast query-based file sharing system and a 

DHT-based file sharing system are shown in Figures 23(b) and 23(c). These figures 

show the absence of a central entity in the file location process. Thus, it is clear 

that the content protection approach used in centralized systems cannot be directly 

applied to decentralized peer-to-peer systems because there is no central location to 

filter indexed files or searches. 

For each type of file sharing system. Figure 23 shows the separation of the file 

location process and the file retrieval process. It can be seen here that even though 

these three systems vary significantly in the way that files are located, the file 

retrieval processes of the systems are nearly identical. 

In CITADEL, therefore we create a content protection system that focuses on 

the file retrieval process. Because of its independence from the file location process, 

CITADEL can be used in any peer-to-peer file sharing system including centralized, 

query-based decentralized, DHT-based, or some hybrid systems 

In developing our proposal for CITADEL, we start with an assumption that 

content rights lists are provided by content owners. This assumption is based on the 

involvement of content owners in recent real-world content protection issues [122]. 

These lists describe the access rights associated with each content object. The rights 

described may be dynamic and can change over time. 
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Figure 23: File location and retrieval in different peer-to-peer systems 
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5.4 CITADEL Objectives 

We outline the design objectives of a content protection system for decentralized 

peer-to-peer file sharing systems. 

• Content Protection: In the past, the goal of content protection in peer-to-

peer systems has been to restrict certain content from being exchanged within 

the system. Thus, these systems only provided all-or-none access; if content 

was allowed in the system, then anyone in the system could access it. In 

CITADEL, the fundamental content protection goal is to be able to control 

access to content on a per user basis. Controlling access refers to providing 

protected distribution by controlling the user's ability to retrieve the content 

and providing protected storage by controlling the user's ability to access 

the plaintext content within a local copy of the content. CITADEL does not 

aim to provide output protection-protection for the analog or digital output 

after access has been granted to an authorized user. Refer to section ?? for a 

discussion of related work in these three areas of content protection. 

• Maintain an open peer-to-peer sharing experience: We define an open 

peer-to-peer environment as one in which, even in the face of content pro

tection, all peers are equally able to insert content into the system including 

independent content and copies of protected content (including variations such 

as different formats or compression rates). This requires the content protec

tion system to be able to appropriately secure all content that is introduced 

into the system without regard to the peer inserting the content. Without 

this ability, systems have struggled to find the correct balance of openness 

and security [5]. We suggest that without the openness, the peer-to-peer sys

tem loses many of its attractive features and resembles a client-server model 

in many respects. When most or all content is introduced by a central source, 

a peer's role turns from content provider to content cache. At this point, the 

system is effectively a client-server based distribution system with extensive 
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caching. In section 5.6.4, we discuss the content importation system that will 

provide such functionality within CITADEL. 

• Avoid dependency on trusted client software: Providing content protec

tion in a decentralized peer-to-peer system requires modifications or additions 

to the file-sharing software. We assume the presence of malicious users that 

wish to circumvent the content protection system. The system should be 

robust against attacks by users with full access to the software and the oper

ating system on their computer. Additionally, the system should not rely on 

the file-sharing software being tamper-proof or trusted software. 

• Maintain privacy: The content protection system should at least maintain 

the level of privacy that exists in the normal file-sharing environment. It 

should be possible to allow a user to obtain access rights and to be authorized 

without providing identifying information. Additionally, the system should be 

able to interoperate with the work in anonymous systems such as anonymous 

communication [189, 172, 173], anonymous authorization [40], anonymous pay

ment [41, 29], and anonymous peer-to-peer file sharing [185, 74]. 

• Avoid dependency on centralized security infrastructure: In a decen

tralized file-sharing system, the content protection system should not introduce 

a single central authority. The protection system should allow a decentralized 

security infrastructure that can support multiple separate hierarchies of trust 

and control. For example, all content should not be controlled by a single 

entity. A more realistic approach would be to allow all content providers to 

establish independent trust systems. Also for a given trust system, the archi

tecture should allow decentralized entities to perform the necessary operations 

rather than a central server. The security infrastructure should be flexible to 

allow different types of authorization and payment systems depending on the 

requirements of each content provider. 
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• Provide the flexibility to support common content distribution busi

ness models: There are a number of common content distribution business 

models that peer-to-peer systems have been unable to support because they 

lack enhanced protection functionality. While content control has been crit

icized in some circles as spelling the end of true peer-to-peer file sharing, we 

suggest that it may actually be beneficial in that it has the potential to enable 

many different and desirable service models. For example, we suggest three 

such models: Pay-per-view and Subscription Models Syndication Model, and 

Reseller Model. In chapter 6 we explain how CITADEL supports these models. 

5.5 Overview of the CITADEL Architecture 

In this section, we provide an overview of the CITADEL architecture. We discuss 

possible approaches to a decentralized content protection system and motivate our 

approach. We then introduce the components of CITADEL. 

5.5.1 Our Approach 

As explained above, due to the nature of decentralized peer-to-peer systems, there 

is no central authority in the file sharing process, so policy enforcement must be 

done at the peers. This implies that peers must know the access control policy The 

question is, how do the peers securely and efficiently access the global content rights 

list in order to enforce it? The content rights list is a form of an Access Control 

List (ACL). In the distributed ACL approach, the content rights list is distributed 

to all peers. However, there is significant overhead associated with distributing the 

entire content rights list to all peers. An alternate approach, the queried ACL 

approach, is to have the peers access the list by querying the content rights list 

server as necessary for each access to a content object. However, there is significant 

overhead associated with repeatedly querying the content rights list server .̂ 

^Section 6.2 presents an evaluation of CITADEL relative to these two approaches. 
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To avoid these types of overhead, our system takes a different approach in which 

the access control poHcy for each content object is stored with the content object. 

Thus, every access control policy that a peer must enforce is available and accessed 

locally. Compared to the queried ACL approach, this approach behaves like a cache 

of the relevant access control policy information. This provides greater scalability 

than the other two approaches. In order to distribute the content rights list with 

the content, we must protect the integrity of each object's access control policy. 

To provide this and other protection, we introduce the concept of a protected file-

sharing environment. The system builds a protected environment over a normal 

peer-to-peer network. Only protected objects can be exchanged within this peer-to-

peer system. Thus, all content objects in the system are protected and all access to 

these objects is controlled. 

Figure 24 shows the protected file-sharing environment. The system uses the 

peer-to-peer network strictly as a means of file location and distribution. CITADEL 

exists as the protection layer built upon this distribution layer. The service layer is, 

in turn, built on top of the protection layer. Thus, service providers and application 

developers can introduce new services and applications based on a peer-to-peer 

distribution model by building the services on top of the CITADEL protection layer. 

5.5.2 CITADEL Components 

In this section, we introduce the components of the CITADEL architecture. The 

components include the secured content objects, access tokens, the file sharing soft

ware, and the content importation system. 
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Figure 24: The CITADEL protected file sharing environment. 

5.5.2.1 File Sharing Software 

We refer to file sharing software that is enhanced with content protection software 

modules as compliant file sharing software(CFSS). Within Figure 24, there is a 

high-level diagram of the compliant file sharing software. The CFSS provides three 

types of operations: distribution operations, protection operations, and application 

operations. Distribution operations involve normal duties of peer-to-peer file sharing 

software such as interacting with the file location system and the file retrieval system. 

Protection operations involve interacting with the secured content objects to control 

access to the content. Protection operations also include periodic interactions with 

the content rights list server and the content token server as necessary. Application 
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operations involve supporting the application and the service model interacting with 

the protection layer to provide access to the content files in the secured content 

objects. We assume the presence of malicious users that aim to gain unauthorized 

access to content by circumventing the mechanisms in the CFSS. In Section 5.8, we 

show that even without any software protection or tamper resistance, the design of 

the system makes the CFSS robust against any such attacks. 

5.5.2.2 Content Containers 

Access to content is protected by the use of secured content objects or content 

containers, cryptographically secured objects consisting of a protection label and an 

encrypted content file. Figure 25 shows the elements of a content container. The 

protection label contains a content label that provides content identification and 

ownership information and the content's ACL. In Section 5.6.1.2, we explain that 

the ACL only requires a small number of entries. The protection label is digitally 

signed by the appropriate authority to ensure integrity. The content file is encrypted 

with a random key, KR which is encrypted with K_fiTs_iDj a unique decryption key 

associated with the token needed to access the content. This encrypted form of KR is 

stored in the content container. Additionally, the encrypted KR and the protection 

label are encrypted with KCFSSI the decryption key that is built-in the compliant 

file sharing software. Thus, only the CFSS can access the content container, and 

even the CFSS can not access the content file in the content container without 

K-RTs_iD, which is provided to authorized users along with the content access 

token. The idea of protection labels and attaching protection labels to the objects 

that they describe has been in the security literature for some time [25]. Slightly 

more recent work extended this into the concept of a secure package for storing 

content and its controls [113, 190]. We utilize a similar concept and further define 

the details of a secure content package; however, our contribution is a complete 

architecture for content protection in decentralized peer-to-peer systems. Along 
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the way, we define the details of the content container and its interaction with its 

reference monitor [125], in our case, the CFSS. 

5.5.2.3 Content Importation System 

The only objects that can be shared in this protected environment are objects that 

have been imported into the system in the form of a content container with the 

appropriate access rights. The CITADEL architecture includes a content importa

tion system{C\S) shown in Figure 26, that controls the insertion of objects into the 

system. It functions as the secure gateway to import any objects into the protected 

file-sharing environment. A key design goal of the CIS is that it allows content 

providers to easily protect content and insert it into the distribution network. The 

CIS enforces that content is identified correctly, labeled with the correct policy, and 

encapsulated in a content container. The content importer is a person or entity that 

inserts the content object into the protected environment. There are two classes of 

content that is imported into the environment: new content and existing content. 

New content is content that does not exist in the environment. The content im

porter that inserts new content is called the content provider. Existing content 

includes copies or different versions of content that has already been imported into 

the environment by the content provider. The CIS supports our goal of maintaining 

an open peer-to-peer sharing experience by allowing all peers to insert new content 

or existing content. 

5.6 Detailed Operations of CITADEL Components 

In this section we discuss the details of the different components of CITADEL. We 

first discuss how hosts obtain access tokens. We then explain host interaction during 

normal file sharing. Next, we present the details of the CFSS and the operations 

that it supports. Then, we discuss the content importation process. We then discuss 
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common content distribution models that can be supported with CITADEL. 

5.6.1 Token Distribution 

Token distribution is the process of a user obtaining or purchasing rights to some set 

of content. This involves the user and the content token server. There are numerous 

proposals for electronic payment systems that can be leveraged for user authorization 

for token distribution; see for example [52, 177, 137, 41, 29]. Here, we explain the 

basic functionality necessary for CITADEL. For example, A user contacts a content 

seller and obtain a subscription to access all content on the network or perhaps all 

content in a particular category. We discuss this further in Section 6.1; for now, the 

point is that this process should be thought of as occuring infrequently and outside 

of the normal file-sharing experience. It is similar to how a cable subscription is 

set up for certain channels, but a user watches television regularly without dealing 

with obtaining new rights. The system can involve different content token services 

for different content providers. For each content provider, the content token service 

can be a single server or a group of distributed servers. 

5.6.1.1 Detailed Token Distribution Protocol 

Since a single instance of the authorization protocol takes place between a host h and 

a single content token server, CTS. The content token servers possess public-key cer

tificates [102] that are used for authentication and digitally signing messages. This 

does not require a global public-key infrastructure; the key management require

ments are minimal and are equivalent to the common use of public-key certificates 

for secure sockets layer/transport layer security (SSL/TLS) [58] web server authen

tication 

The CTS has a public key certificate, CERTK^CTS ^̂ <̂  ^^^ corresponding pri

vate key, K-cTS- These are used to digitally sign messages and verify signatures. 

Digitally signed messages are shown in brackets with the key used to sign it as a 
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subscript ['message]K_x -̂î d encrypted messages are shown in curly braces with the 

key used to encrypt it as a subscript {message}Ks • 

The host estabhshes a encrypted communication channel with the CTS and sends 

an authorization request (AR). This secure communication channel can be achieved 

with SSL, IPSEC [120] or any other secure communications protocol. We show the 

communication encrypted with a session key, Kgess- The AR contains the content 

rights ID(RTSJD) and the authorization information(AZJNFO). RTSJD is the 

subject in the ACL; its format depends on the authorization language that is used. 

We discuss this further subsequently. Also, the specifics of the authorization infor

mation depends on the payment system that is used by the content seller and may 

include account information or an electronic cash payment. In some situations the 

payment system may be out of band, and obtaining a rights token may only require 

some sort of authentication, such as a username and password. In some situations, 

no payment will be required to obtain certain rights tokens so the authorization 

information will not be needed. 

l.H -> CTS: 

AR = {RTSJD,AZJNFO}Ksess 

The CTS returns an authorization acknowledgment (AA) specifying a successful 

or unsuccessful authorization of the user for the requested rights. If successful, 

the AA contains an access token and the accompanying content decryption key, 

K -RTS^D- The access token includes the RTSJD, the public-key for RTSJD, and 

the expiration time, T^xp- K^RTS^D is used for the content decryption key and for 

authentication. Recall that the content decryption key is required because it is used 

by the CFSS to access the encrypted content file in the content container. 

2.CTS -> H: 

A A = {{[RTSJD,K+I{TS-ID,Texp]K_CTs}f<CFSS^{^'^-^S-ID}KcFSs}Kse. 
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Figure 27: Role-based access control models. 

5.6.1.2 Access Control Model 

To provide an efficient solution that reduces the size of the content ACL and re

duces the number of tokens needed by each user, we use role-based access control 

(RBAC) [181]. The basic notion of RBAC is that permissions are assigned to roles, 

users are assigned to appropriate roles, and users obtain permissions by being mem

bers of roles. The system can use flat RBAC or hierarchical RBAC [182]. 

Flat RBAC allows many-to-many relationships between user-role and permission-

role assignments. Thus, a user can be assigned to many roles and a single role can 

have many users. Also, a single role can have multiple permissions and a certain per

mission can be assigned to multiple roles. Flat RBAC is illustrated in Figure 27(a) 

froma work by Sandhu, et al. [181]. This allows a user, in CITADEL, to be assigned 

to multiple roles. A particular role may have permission to access a particular con

tent object or a group of content objects. For example, assume a system that has 

the following four roles: all content, jazz category content, contemporary jazz cat

egory (that is a subset of the jazz category), and jazz song X (that is a member 

of the contemporary jazz category). The ACL of the content object for jazz song 
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X specifies entries for each of these four roles. This allows a user to gain access by 

presenting a token that shows membership in any of the four roles. 

Hierarchical RBAC allows role hierarchies, seniority relations between roles where 

a senior role possesses the permissions of the junior roles. The hierarchy can be 

expressed mathematically as a partial ordering: a reflexive, transitive and anti

symmetric relation. Hierarchical RBAC is illustrated in Figure 27(b) from [181]. 

In CITADEL, a hierarchical RBAC model allows a leaf role to have permissions 

relating to a specific content object and then have senior roles acquire permissions 

from these roles. This differs from the use of flat RBAC in that instead of role for 

the jazz category having explicit permissions to every object in the jazz group, the 

jazz role is a senior role that acquires permissions for jazz subcategory roles that 

acquire permissions from specific content roles. Thus, the ACL of a content object 

only needs to specify the single role corresponding to that object. In the CITADEL 

prototype described in section 6.3, we implemented hierarchical RBAC. 

5.6.2 Host Interaction during File Sharing 

Figure 28 shows host interaction during file sharing. Note that the file location 

process is not aflPected. For each file exchange, the user that receives the file is 

called the downloader and the user that sends the file is called the uploader. 

The downloader first locates the desired content and then sends a request including 

the access token to a peer that has the content. The uploader verifies that the 

downloader is authorized before providing access to the file. 

5.6.2.1 Detailed Host Interaction Protocol 

The process begins, as normal, with the downloader(D) sending a location query(LQ) 

to the file location system(FLS) as normal. The actual contents of the LQ depends 

on the file location system that is used. Here, we generaUze to say that the LQ 

contains keywords(KW). 
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Figure 28: Host interaction during file sharing, 

l.D -> FLS: 

LQ = [KW] 

The file location system responds with a location reply(LR) specifies the location 

of the content. 

2.FLS -> D: 

LR = [LOC] 

The downloader sends a content request(CR) to the uploader(U) including the 

identification of the requested content and the appropriate access token. To authen

ticate the downloader, the uploader sends a random nonce, Â , to the downloader 

and the downloader responds with a copy of the nonce encrypted with private key 

corresponding to the access token. This avoids the possibility of replay attacks by 

eavesdroppers or by the uploader. We must avoid the uploader being able to replay 

the authorization because the access token used by the downloader may contain 
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rights that the uploader does not have. This is the reason that tokens that require 

no additional authentication or tokens that use password-based authentication could 

not be used. 

3.D -> U: 

CR = [CID,TOKEN] 

4.U -> D: 

N 

5.D -> U: 

{N}K. -RTS-ID 

Upon successfully authenticating the downloader, the uploader verifies the access 

rights presented by the access token against the access rights specified in content's 

ACL. The uploader first checks the validity of the token. This includes verifying 

the CTS's signature and checking the expire time. The uploader then checks the 

access rights. The ACL of the content contains the name of the content provider 

or issuer, as shown in Figure 25. This is used to verify that the access token was 

provided by the correct content provider. After verifications, the uploader sends 

the downloader a content request acknowledgment(CRA) stating a successful or 

unsuccessful request. Upon success, the CRA contains the requested content file or 

instructions to obtain the file. 

5.U -> D: 

CRA — Status (file or failure) 

5.6.2.2 Discussion 

Policy enforcement at the peers can take place at two times: 1) the file location 

process; or 2) the file retrieval process. Even though CITADEL can support both 

methods, we suggest enforcement during retrieval for several reasons. First, it allows 
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independence of the content protection functions from search functions which can 

differ widely among the different decentralized schemes as described earlier. Sec

ond, we feel that controlling the search functions without controlling the retrieval 

functions makes the system vulnerable to users who may be able to determine file 

locations by other means (e.g., users advertising file locations on web pages). So 

controlling file retrieval functions is necessary at any rate. Third, it removes the 

requirement of having to store access rights along with indexing information. Fi

nally from a commercial viewpoint, allowing users to see what is available on the 

system without authorization might be an inducement for them to become paying 

customers. The file location service could also provide information about the access 

rights necessary to obtain the content. This access rights information could be pro

vided as metadata just as systems currently report information such as the quality 

of the content of the size of the file. 

5.6.3 Compliant File Sharing Software 

In this section we describe the operations and security of the CFSS. The CFSS 

supports three operations: content exchange, content import, and content export. 

Content exchange is referred to as content download at the peer that is receiving 

the file and content upload at the peer that is sending the file. Content upload 

is the process of a user responding to a file request by transmitting the file to the 

other peer. Content download is the process of a user obtaining a file that has 

been requested. Content import is the process of a user inserting content into the 

protected file sharing environment from a content file stored in a native file format. 

Content export is the process of a user exporting content from the file sharing 

system by creating a copy of the content in its unprotected file format. The first 

subsection describes the details of the operations. The second subsection discusses 

the techniques used to protect the CFSS from malicious users. 
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Figure 29: Content upload. 

5.6.3.1 Operation Details 

The content upload process is shown in Figure 29. During the content upload 

process, the uploader receives the request and token from the downloader, validates 

the token, checks the access rights, and then sends the file. The token verification 

module receives the token, verifies its authenticity, retrieves the rights from the 

token, and verifies these against the rights specified in the ACL of the requested 

content. Upon success, the file delivery module sends the file to the downloader. 

The content download process includes a number of protection schemes. Even 

after the file is received, the user must possess the token and the content decryp

tion key to access the content. Since the content container is double encrypted, the 

content's decryption key is required. This provides an extra layer of security by re

quiring the token and content key on both sides of the operation: 1) requesting the 

content and 2) receiving or using the content. Additionally, to provide more imme

diate propagation of access rights changes and to confine any security breach that 

may somehow occur, the administrator of CITADEL deployments can optionally 

have the CFSS re-identify received files and retrieve the ACL. This step can protect 
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against situations in which a user somehow bypasses the security of his CFSS, alters 

the ACL of the content, and distributes content with illegitimate rights. With this 

double checking of the ACL, the breach of the security is confined to an individual 

user. 

Content export will not be necessary by many applications because CITADEL 

aims to provide as many of the functions related to the content as possible within the 

protected file-sharing environment in order to reduce the need for content export. 

For example, the CFSS allows the inclusion of a content player to allow content to 

be viewed or listened to while still in the content container. If the user needs to 

use the content for purposes other than this, then the file must be exported. The 

content export process is shown in Figure 30. The CFSS decapsulates the content 

file from the content container and stores a copy in the native unprotected format. 

The system can be configured to completely disallow content export by default or 

require additional access rights in order to export content; we discuss this further 

in section 6.L 

5.6.3.2 Policy updates and revocations 

Here we discuss how the poHcy or the access rights for content can be updated 

or revoked by the content owner. By updating the policy at the CRLS, the new 
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policy is reflected in all future copies of the content imported. Also, if the system 

is configured with the option to perform ACL checking on file receipt, then all 

future downloaded copies of the content will get the new policy. Using these two 

methods, the system can update policy for all content objects imported after the 

policy update as well as for each existing content object that is shared after the 

policy update. Another approach is to use expiration times in the protection label 

that causes the CFSS to retrieve an updated policy for the content object after a 

certain period of time. These three methods do not provide the ability to explicitly 

revoke rights for a particular user. This could be achieved by revoking outstanding 

access tokens; however, due to the heavyweight operations of explicit revocation 

schemes, we do not use this method. Instead, we provide implicit revocation based 

on the use of time-limited tokens. The combination of these four methods provides a 

flexible framework for performing policy updates and revocations without requiring 

a heavyweight protocol. 

5.6.4 Content Importation System 

Content importation is the process of a user inserting a copy of content from a native 

content file into the file sharing system. The content importation system(CIS) is 

the secure gateway that assures the protection of content that is introduced into the 

protected domain. It involves modules on the CFSS that identify the content and 

retrieve the appropriate rights from the content rights service. This system is also 

the means that allows end users to introduce new content or new copies and formats 

of old content. We first provide an overview of the CIS. Then, we discuss the content 

identification process. We then describe the content importation process. 

5.6.4.1 Overview of Importing Content 

During content importation, the system identifies the content, retrieves the ACL and 

the necessary encryption keys, and encapsulates the content in a content container. 
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Figure 31: Content importation. 

Figure 31 shows this process. The first step, content identification, is performed 

by a content identification module in the CFSS. The identity information is then 

passed to the ACL retrieval module which sends it in a query to the content rights 

service. The service responds with the protection label and the encryption keys for 

the content. This information is passed to the content wrapper module that creates 

the content container by encrypting the content with the supplied key and attaching 

the protection label. The CFSS does not store the encryption key. To access the 

content, a user must possess the appropriate token and decryption key. 

5.6.4.2 Content Identification Process 

In this section, we discuss possible methods of content identification and explain 

why some are ideal candidates for CITADEL and some are not. 
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In order to protect content with the correct access rights, it is important to accu

rately identify content as it is imported into the system. Straightforward approaches 

such as identifying content by the actual file name have been used by content protec

tion systems in the past and proved to be vulnerable. Many applications support the 

identification of content using metadata, descriptive information about the content 

such as artist, title, and publisher [145, 3, 206], that is usually stored as a header in 

the content file [105, 151]. Due to the ability of the user to alter this information, 

this is not sufficient for our system. 

One method to provide metadata in a form that is not susceptible to alteration 

by users is to embed the information as a watermark. Watermarking is the em

bedding of some identifying information into the content in such a manner that it 

can not be removed by the user but it can be extracted or read by the appropriate 

party. Use of this technology would allow the content identification to be securely 

embedded by the content provider and read by the CFSS. Content creators could 

embed watermarks in all content that is created and distributed via any means. 

One problem with this approach is that there are millions of content files already in 

distribution that are not watermarked. 

A different approach is to not rely on metadata or watermarks to provide the 

information, but to have the system determine the identity of the content. The 

system examines the file to extract identifying properties and then determines the 

actual identity of the content by comparing the properties with a database of all 

known content files. We discuss this further in the next subsection. This is achieved 

using a content-based identification algorithm. Content-based identification algo

rithms analyze the perceptual qualities of the content to derive a fingerprint of 

the content. A number of such algorithms have been proposed for audio files; see 

for example [75, 208]. These are different from cryptographic signatures such as 

MD5 [175] and SHA-1 [7] that examine the bits of the file and can not correlate the 

same content in two different formats or even different qualities of the same format. 
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5.6.4.3 Content Importation Process 

The content importation process is independent of the identification algorithm that 

is used. Recall that the two types of content that are imported into the environment 

are: existing content and new content. We first describe how the system is used to 

import additional copies of existing content. We then describe the additional steps 

needed to import new content. 

The first step in content importation is the content identification module execut

ing the identification algorithm on the content file and producing a set, 5, containing 

n identification properties, ii to in- The ACL retrieval modules sends a query con

taining s to the content rights service. Upon receiving 5, the content rights lookup 

module uses each i„ to search the content rights database for a match to a known 

content entry. The matching process need not result in a binary decision, but can 

result in a match and a certainty value, c, associated with the match. If c is above 

the defined certainty threshold t then the match is considered valid and the content 

rights service sends a response containing the rights for the content file. 

To import new content, the process involves a few additional steps. The user 

importing the content specifies the access control policy, p, including rights keys and 

the content encryption key, KR. The user's CFSS performs content identification 

and sends {S,P,KR) to the content rights service in a content importation request. 

The content rights lookup module first searches the database for the content using 

combinations of s. Upon a failed lookup, a new entry is added for (5,p, KR). 

Essential to the effectiveness of this system is the establishment of a complete 

database and maintaining the database by adding new content before it is made 

available to the public. Although this may seem like a daunting task, we point to 

some current efforts that are a creating catalogs of all available music content such 

as CDDB [55] and Loudeye [54]. Alone, these efforts have made significant progress 

and it is reasonable to suggest that a content database to support content protection 

will have considerable support from content providers. 
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Goal Single User Attack Collusion Attack 
Protected Distribution Forge Access Token 

Replay Access Token 
Bypass Authorization Checks 
Re-distribute Tokens 
Alter ACL 

Protected Storage Determine KR 
Determine KCFSS 

Alter ACL 

Re-distribute Tokens 

Output Protection Obtain KRTS^D 

Obtain Plaintext Content 
Re-distribute Content 

Table 3: Summary of attacks on protection goals 

5.7 Analysis 

In this section, we discuss how the system maintains the level of assurance relative 

to its protection goals by being robust against compromise or circumvention. As in 

any protection system, we assume the presence of malicious users that aim to gain 

unauthorized access to content. 

5.7.1 Threat Analysis 

There are different levels of threats to content protection ranging from the casual 

user to the hobbyist/hacker to the professional pirate [157]. These levels somewhat 

parallel the following taxonomy of attackers described by the Abraham, et al. [12]: 

class I (clever outsiders), class II (knowledgeable insiders), and class III (funded 

organizations). The generally accepted practice in the content distribution industry 

is that content protection technology is most effective for low to mid-level threats 

from casual users and hobbyists/hackers while legal protection is most effective for 

higher level attackers such as professional pirates. The goal of commercial content 

protection is to "stop unauthorized, casual copying of commercial entertainment 

content" [157]. This has also been phrased as "keeping honest people honest" [27]. 

These are somewhat modest goals compared to the protection goals in many military 

and financial applications. 

Table 3 shows the protection goals of the system and possible attacks on these 
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goals. We look at attacks by an individual user as well as attacks by a collusion. 

Recall that CITADEL aims to provide protected distribution and protected storage. 

We briefly mention extensions to CITADEL that can provide output protection. 

Some of the attacks listed in the table provide no benefit to an attacker and some of 

the attacks are sufficiently complex due to fundamental properties of cryptography. 

For example, without an appropriate access token, determining Kfi can only be done 

by brute force attack. For these reasons, we do not detail each of the attacks in this 

section, but discuss the less obvious ones. 

We assume a hobbyist/hacker end-user that has appropriate knowledge and re

sources. This user has full access to and control of the CFSS and the operating 

system. Since users have access to the CFSS on their PC, it will be a target for 

attackers seeking to circumvent the protection of the system. We will show that 

even without software protection or tamper resistance, attackers can not defeat the 

CFSS to obtain unauthorized access to content. Let us assume that the attacker 

reverse engineers the CFSS or otherwise fully compromises the CFSS. We analyze 

the risk associated with each attack. We show that the damage is limited and does 

not defeat our protection goals. 

We further discuss three of the potential threats: 

1. Determine KCFSS- An attacker may obtain the decryption key, KCFSS, that 

is used to access content containers. 

2. Bypass Authorization Checks: An attacker may cause the authorization checks 

to be bypassed so that the CFSS will allow unauthorized peers to download 

content. 

3. Alter ACL: An attacker may attempt to remove a protection label and replace 

it with a protection label requiring lesser or no rights. 

We now analyze the actual vulnerability associated with each of the above po

tential attacks. 
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Determine KCFSS Attack: If an attacker reverse engineers the CFSS to obtain 

the decryption key, he only obtains the key used to access the protection label. 

The actual content keys are encrypted with key for the rights role. Therefore, even 

with the CFSS's decryption key, an attacker can not directly access the content file. 

The attacker could attempt to alter the ACL in the content object, however, it is 

digitally signed by the content rights list server, so any alterations will be noticed 

by the CFSS and the content container will be rejected. 

An attacker that legitimately obtains a content token and rights key, K-BTS-ID-, 

can use the compromised KCFSS ^nd K_BTS-ID to obtain KR and consequently 

obtain the decrypted content. However, since the user legitimately obtained a con

tent token, the user has the rights to access the content. As stated in section 5, 

CITADEL does not provide output protection. In general, once access rights are 

presented, the user is able to access the content in the content container. We discuss 

output protection further in subsequent sections. 

Bypass Authorization Checks Attack: If an attacker is able to alter the operation 

of the CFSS to cause it to bypass authorization checks, then the CFSS will allow 

unauthorized peers to download content containers. However, the content containers 

can not be accessed at the receiving peer without the access token and key because 

the CFSS requires the token to access the content container and the rights decryption 

key to access the encrypted content. 

Alter ACL Attack: If an attacker removes a protection label from a content 

container and replaces it with a protection label that requires lesser rights, then this 

will not work for a number of reasons. Let us assume that a user creates a content 

container that includes content X and a protection label for content Y. Assume 

the user attempts to access this content with only the access token and key for Y. 

The user can use the content token for F , but the KR retrieved from the protection 

label will not match the key used to encrypt content X. Therefore the user can not 

access content X with only the rights for Y. 
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5.7.2 Additional Robustness using Software Protection 

We have shown that the system's design includes protection mechanisms that are 

robust even in the face of a completely compromised CFSS. We now point out that 

there are mechanisms that can be used to make it more difficult for an attacker to 

even compromise the CFSS. The CFSS can be considered to be a mobile agents 

a program that is executed on an untrusted computing base. The authors of [96] 

discuss a number of attacks that malicious users can perform against mobile agents 

including spying out code and data (i.e. the CFSS's decryption key) and manip

ulation of code and data. One method that can be used to guard against these 

attacks is mobile cryptography [180]. This involves executing encrypted functions 

to guarantee code privacy and code integrity. Another method is time limited black 

box protection [97] that can protect the code and data of a mobile agent from being 

read or modified for at least some minimal time interval. Although there is work, 

such as [16], that discusses the inability of these approaches to provide long-term 

security against high-level attacks, it is understood that such approaches do protect 

against casual attackers and also increase the cost of an attack by capable attackers. 

A deployed implementation should employ these techniques to heighten the security 

of the application; however, as we have shown, the security of CITADEL does not 

rely on the protection of the CFSS. 

5.7.3 Related Protection Systems 

Protected distribution work takes many forms differing greatly depending on the 

distribution method. In cable and satellite, conditional access is provided by set-

top boxes enforcing subscription and pay-per-view models; see for example [149]. 

In CD and DVD sales, conditional access simply means that the person that pays 

for the content receives the media containing the content. On websites that sell 

content, protected distribution is performed in the client-server model of purchasing 

rights and obtaining content. In multicast or group communications, protected 
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distribution is provided by using group keys to access encrypted content [35] and by 

controlling access to the multicast distribution tree [110]. 

Protected storage work includes Content Protection for Pre-recorded Media 

(CPPM) [8] for protection pre-recorded DVD-Audio, Content Protection for Record

able Media (CPRM) [9] for protecting content stored on recordable media such as 

DVD-R or flash memory, Content Scrambling System(CSS) [10] for protecting pre

recorded DVD-Video, and copy-protected CD solutions such as [141] for protecting 

pre-recorded CDs from replication or extraction to files such as MP3s. 

5.7.4 Output Protection 

As stated previously, CITADEL has the primary goal of providing protected dis

tribution and storage. It is possible to add components to CITADEL to provide 

output protection. Some of this requires integration with previous work in output 

protection for devices. Other mechanisms can be leveraged to help provide output 

protection and protection against some collusion attacks such as redistribution of 

content or access tokens. 

Fingerprinting provides an eflfective deterrence against redistribution of con

tent [203, 17]. Such systems can be integrated into the content importation system 

or the compliant file-sharing software. Other systems such as digital signets [63] and 

traitor tracing [44] can be used to discourage redistribution of access tokens. 

Other output protection work includes Digital Transmission Content Protec-

tion(DTCP) [11] for protecting content during transmission between devices using 

IEEE 1394 or Universal Serial Bus (USB), Macrovision Copy Protection [132], High-

bandwidth Digital Content Protection(HDCP) [59] for protecting content during 

transmission to digital displays, and Microsoft's Secure Audio Path [140] for pro

tecting content on PCs during transmission to audio devices such as sound cards. 
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5.8 Discussion 

Recent work in peer-to-peer systems have proposed different types of file retrieval 

and file location systems. In this section, we discuss how CITADEL is aflPected by 

such systems. 

5.8.1 Interaction with different types of file retrieval 

Most peer-to-peer systems allow content to be exchanged directly between peers 

and require that content is stored only at the peer that is providing or sharing that 

content. However, there are systems in which this is not the case and this can cause 

problems with some content protection approaches. In some anonymous peer-to-

peer systems such as Freenet and APFS, files are delivered through the peer-to-peer 

network in order to mask the identity of the responder and provide some caching. In 

some peer-to-peer systems including some that are based on distributed hash tables, 

peers' files are replicated and cached at other peers. This can be used to provide 

cooperative mirroring, time shared storage, or increased scalability. 

Some content protection approaches assume that the only hosts that will have 

access to content is the sharing peer and the downloading peer. Therefore, these 

content protection systems only enforce the policy upon file request, but do not 

protect the file during download. This leads to vulnerabilities where unauthorized 

users can gain access to files based on their location in the peer-to-peer network. 

Furthermore, malicious users can aggressively participate in cooperative mirroring 

and time shared storage in order to gain access to more content. The design of 

CITADEL accounts for these systems that require other peers to have access to the 

content file. In addition to performing authorization upon file request, CITADEL 

also stores the file in a secure content container that can only be accessed by the 

authorized users. Thus, even if other peers must cache or forward the file, there is 

no vulnerability since only authorized users can access the actual content within the 

content container. 
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Another variation of peer-to-peer systems that can cause problems for some con

tent protection system designs is parallel downloading. Parallel downloading allow a 

host to retrieve different parts of a content file from diff'erent peers simultaneously. 

There are two properties of parallel downloading that may cause issues: 1) for a 

single file retrieval, there are multiple file requests involved and 2) software at the 

retrieving peer creates a file that is a combination of parts from multiple files. In 

CITADEL, parallel downloads are supported since authorization will be performed 

for each file request and the retrieved parts will be combined to form a secure content 

container. 

5.8.2 Interaction with different types of file location 

We have described an approach in which content protection is transparent to the 

file location system and described how this assists portability and ease of imple

mentation. However, we also believe that in some situations gains in efficiency 

and usability can be achieved by the location system and protection system having 

knowledge of each other. For example, improved usability and efficiency can be 

achieved by restricting query results to items that the user is authorized to access. 

In systems such as Gnutella where query results only come from peers that 

have access to the content and the access control policy this is straightforward. In 

distributed hash table-based systems, the solution is more involved. Since many of 

the lookup operations in these systems may be performed by entities that do not 

possess the content or the access control policy, they are not able to restrict the query 

results based on the access control policy. In these systems, it is important to be 

able to restrict queries based on authorizations because of the resources that can be 

wasted otherwise. If queries are not restricted at the first hop of the lookup process, 

then this query can possibly traverse a number of nodes wasting computation and 

bandwidth. The following questions are potential paths of future work: 

1. How can decentralized hash table lookup systems be made aware of the access 
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control policy? 

2. What are the design details of a system that restricts the hosts' ability to 

lookup based on an access control policy? 

3. How would such a system assist in making the lookup system more robust to 

other types of attacks such as denial-of-service? 

5.9 Conclusions 

Predicting how peer-to-peer systems will evolve is difficult at best. What has become 

clear, however, is that content protection will play an increasingly important role in 

the success of such systems. The challenge has been how to design a system that 

provides adequate content protection and yet maintains the openness of the peer-to-

peer model. In this work we explained the need for content protection in peer-to-peer 

networks, argued that such functionality should be provided as an overlay security 

layer, and proposed CITADEL as an example of such an architecture. 
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Chapter 6 

CITADEL Evaluation and 
Implementation 

In this chapter, we further discuss, evaluate and define the CITADEL architecture 

from a real world viewpoint. Now that the architecture has been motivated and de

fined, we examine the feasibility of the CITADEL as a real-world, content protection 

architecture. We address three issues: 

1. Can CITADEL be used to provide common content distribution business mod

els? 

2. What is the overhead of CITADEL in terms of support infrastructure and at 

the peers? 

3. How feasible is the CITADEL architecture in terms of the ability to implement 

the components and its ability to be used with common peer-to-peer networks? 

This chapter is organized as follows. Section 6.1 describes how content protection 

can allow common business models to be supported in a peer-to-peer environment. 

Section 6.2 evaluates the costs of CITADEL in terms of message overhead and com

putation overhead. Section 6.3 describes our implementation of a working prototype 

of CITADEL. We conclude in section 6.4. 
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6.1 Supporting Content Distribution Business Mod

els 

There are a number of business and service models that are popular in other content 

distribution methods that peer-to-peer systems have been unable to offer due to the 

lack of the protection functionality required to support such models. We identify 

three common content distribution business models and show how each of these 

can be supported in a peer-to-peer distribution system by providing the appropriate 

underlying content protection functionality. We then show how CITADEL supports 

this additional content protection functionality. 

6.1.1 Common Business Models 

1. Pay-per-view and Subscription model 

Description: The goal of this model is to allow users to subscribe to specific 

content or set of content. This model follows the subscription by users to 

particular channels or individual pay-per-view items. Current peer-to-peer 

content protection systems can only control whether or not a file is allowed 

in the system [122]; they cannot restrict access to files to certain users. Our 

system supports this model and allows a user to purchase access to specific 

content or groups of content. For example, in a music sharing system, music 

from each record label could require a separate subscription. Another exam

ple supported by our model is where users can purchase access to individual 

songs. 

Underlying access control functionality: To support this model, our system 

provides subject-based access rights such as user-based or group-based access 

rights rather than only the default world-based access rights provided in cur

rent systems [122]. 

2. Syndication model 
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Description: The goal of this model is to only allow certain users to purchase 

the right to redistribute content. This model aims to mimic the distribution of 

syndicated television shows and pay-for-content services such as the services 

used by retail stores to provide background music. In current peer-to-peer 

systems, there is no way to specify different types of access rights for a file; 

thus, all users have all possible access rights for every file. Our system supports 

this model by allowing an access control policy that specifies multiple types of 

access rights. Our system supports this model and allows a user to be granted 

a subset of the possible access rights. For example, a user could have the right 

to download a file, but not to share it. 

Underlying access control functionality: To support this model, our system is 

able to enforce multiple types of access rights. In a peer-to-peer system, the 

different access rights include share, download, and export. Additionally, each 

type of access right can have parameters in addition to "allow" and "disallow". 

For instance, share rights can specify the number of times the file is allowed 

to be distributed. 

3. Reseller model 

Description:The goal of this model is to allow certain users to act as resellers 

and redistribute content for a fee. This model aims to mimic the distribution 

of CDs and video via stores. Our system supports this model by building upon 

the syndication model and adding the ability to have reseller peers perform 

authorization of downloading peers. 

Underlying access control functionality: To support this model, our system 

provides delegated authorization. That is, end users are able to perform au

thorization for peers attempting to download content. 
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6.1.2 CITADEL'S Support of Business Models 

The base CITADEL system, as described in previous sections, provides the subject-

based access rights necessary to support the pay-per-view and subscription model. 

To support the syndication model, separate download and upload access rights 

are specified in the access control policy and in the resulting access tokens. The 

examples in previous sections depicted an environment that controls a peer's ability 

to download certain content. We now describe how the system can support another 

approach that involves controlling a peer's ability to upload or share certain content. 

To enforce share rights with CITADEL, for each content container to be shared, 

the user must possess an access token that specifies share rights for that content. 

If the necessary rights are not provided for certain content, then the CFSS will 

not allow sharing of this content container by either not responding to file location 

requests or file retrieval requests for that content. 

To support parameterized access rights such as share limits and time-restricted 

downloads with CITADEL, a new field for each parameter is added to the ACL in 

the content container or in the access token. For example, to control share limits, a 

field is added to the ACL in the access token that specifies the number of authorized 

shares. This field is initialized when the access token is received and decremented 

at each file download. This portion of the access token is not be signed by the CTS, 

but is edited and signed by the CFSS. 

To provide delegated authorization to support the reseller model, we identify 

two approaches: 1) Tokens are obtained from the content provider and submitted 

to the reseller for verification when requesting the content. 2) Tokens are issued 

by the reseller. CITADEL inherently supports the first approach. To support the 

second approach, the reseller is issued a certificate by the content provider and the 

reseller issues access tokens digitally signed with its private key. This allows tokens 

issued by the reseller to be verified or traced back to the original content provider. 

If necessary, a payment system can be integrated that allows the reseller to handle 
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payments. 

6.2 Evaluation 

We evaluate the performance of CITADEL relative to the performance of the dis

tributed ACL and queried ACL approaches to decentralized content protection that 

we discussed in Section 5.5. We analyze the costs of operations in each system and 

then present the results of a simulation based on these costs. 

6.2.1 Analysis 

We examine the costs associated with file exchange and content importation in 

CITADEL, the distributed ACL system, and the queried ACL system. Table 4 

shows the definitions of the variables used in the analysis. 

Tables 5, 6 and 7 show computation and message costs for file exchanges at the 

downloader, the uploader, and the ACS. For example, the table shows the computa

tion cost at the uploader in CITADEL is {v -f cl)x. This shows the digital signature 

verification and content container ACL lookup for each file that is uploaded. 

ACS computational costs are significantly greater in the queried system than in 

the other two systems and slightly more in CITADEL than in the distributed system. 

This is because in the queried system, the ACS must perform the operations for every 

file exchange, while it must only perform such operations at most once per user in 

the other systems. The cost is more in CITADEL than in the distributed system 

because CITADEL authenticates the host, looks up the rights and digitally signs 

the token for each user while the distributed system creates a single digitally signed 

ACL for all users. 

Computational costs at the uploader and downloader are interesting because one 

may hypothesize that due to the computation required by the CFSS of CITADEL 

the computational load and associated processing time may introduce some service 

delay. However, as shown in Tables 5, 6, and 7, the computational costs at the 
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peers in all three systems are similar since all systems require the downloader to sign 

the request and the uploader to verify the message from the downloader or ACS. 

Message costs are significantly greater in the distributed system than in the other 

two due to the distribution of the ACL. Even with compression, the ACL can be 

quite a large file due to the number of entries in the list. Therefore, message costs 

in the distributed system will remain higher since the ACL will be large relative to 

the size of the token that is sent by CITADEL. Message costs in the queried system 

are also higher than in CITADEL because message volume is proportionate to the 

number of files exchanged since the ACS and uploader communicate on every file 

exchange. 

For each content importation, the user that imports the content is referred to as 

the importer. Tables 8 , 9 and 10 show computation and message costs associated 

with a single content importation at the importer, the ACS, and all other peers. For 

example, the table shows that the message cost at the importer in the queried and 

distributed ACL systems is CID and similarly CS in CITADEL. This is due to 

the message costs of transmitting the content identification to the the ACS for each 

content object that is imported. 

Content importation involves computation cost at the CTS or CRLS for all 

three schemes since each requires some lookup of the content identification. The 

distributed system also involves an ACL update sent to all peers; thus, the compu

tational and message costs at the ACS are higher in the distributed system. Also 

due to the ACL update, all peers in a distributed ACL system must verify the signa

ture on the ACL update; thus, the distributed system is the only one that requires 

some computation by all peers for a content importation. An implementation could 

somewhat reduce this cost by batching a number of ACL updates into a single ACL 

update message depending on the frequency of content importations. CITADEL 

requires a signature extraction at the importer; likewise, the other schemes require 

some form of content identification at the importers as well. 

147 



System Parameters 
n = number of peers 
X = number of files exchanged by each peer 

Message Transmission Costs 
T = token 

ACL = access control list 
ACLMP = access control list update 

AR == authorization request 
AA = authorization acknowledgment 
FR = file request 

F = content file 
CS = content signature tuple {s^r,k) 

CID = CID tuple [CID.r) 
SM = status message 

Computational Costs 
ds = digital signature 

V = signature verification 
I = ACL lookup 

d = content container ACL lookup 
cse = content signature extraction 
csl = content signature lookup 

cidl = CID lookup 

Table 4: Definition of Variables Used in Analysis 

CITADEL 
Type of 
Cost 

File Exchange Costs Type of 
Cost downloader uploader CTS 
computation ids) {2v + cl)x {v + I -{- ds)n 
message {FR + T)x + AR {F)x {T)n 

Table 5: Cost of file exchange in CITADEL 

6.2.2 Simulation Results 

To better examine the file exchange costs that we have discussed, we provide simu

lation results that show the performance of the three systems. We use a simulated 

peer-to-peer file sharing system based on a model that has the following parameters: 

1. The pool of potential peers has n peers. (We show results for varying values 

of n.) 
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Distributed System 
Type of 
Cost 

File Exchange Costs Type of 
Cost downloader uploader CTS 
computation {ds)x {v-{-l)x ids) 
message {FR)x (F)x {ACL)n 

Table 6: Cost of file exchange in the Distributed System 

Queried System 
Type of 
Cost 

File Exchange Costs Type of 
Cost downloader uploader CTS 
computation {ds)x {v)x {v + I + ds){x)n 
message {FR)x {F + AR)x {AA){x)n 

Table 7: Cost of file exchange in the Queried System 

2. An active phase refers to time in which the peer is connected to the peer-

to-peer system and an inactive phase refers to time in which the peer is not 

connected to the peer-to-peer system. The length of an individual active phase 

is an exponential distribution with an average of r. The length of an individual 

inactive phase is an exponential distribution with an average of 23r. The 

ratio of active to inactive duration is 1 : 23, so the average group size, g is 

approximately n/24 during steady state. (This is proportionate to 1 hour a 

day.) 

3. The length of the group session is 168r. (This provides a session length that 

is proportionate to 1 week. The figures provide information in terms of a 24r 

period within the session.) 

4. The number of files downloaded by a peer in an active phase is a discrete 

value derived from an exponential distribution with an average of x. (We 

show results for varying values oi x.) 

5. The file size is 3.7 MB. 

Many of the parameters of our model are derived from the results of a mea

surement study of two large peer-to-peer file sharing systems [184]. For example, 
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1 CITADEL 
Type of 
Cost 

Content Importation Costs Type of 
Cost importer CTS other peers 

1 computation cse csl 0 
message CS SM 0 

Table 8: Cost of content importation in CITADEL 

1 Distributed System 
Type of 
Cost 

Content Importation Costs Type of 
Cost importer CTS other peers 
computation 0 cidl + ds V 

message CID SM + {ACLVP)n 0 

Table 9: Cost of content importation in the Distributed System 

the authors of the study determined that the median session duration is about one 

hour, thus our active to inactive ratio. The authors determined the average size 

of a shared file is 3.7 MB. Our inactive phase includes the active and offline states 

described in [184]. 

Our simulation results only examine file exchange costs and not content impor

tation costs. There are two reasons for this. First, as explained in the analysis 

section, the costs of file exchange in the systems vary significantly and we aim to 

better understand the magnitude of difference. However, the costs of content im

portation in the systems are fairly close; therefore we feel that the importance of 

the magnitude of the difference is somewhat lessened. Secondly, we suggest that in 

most environments file exchanges far outnumber content importations. Thus, the 

cost of file exchanges is a more important measure. 

The simulation calculates the computation load by evaluating the processing 

time involved with cryptographic operations. The values for processing time for the 

cryptographic operations are shown in table 11 and are based on benchmarks pub

lished for the publicly available Crypto++ library [53]. The simulation used 128-bit 

Triple DES encryption, MD5 message digest, and RSA 1024-bit digital signatures. 
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Figure 32: Overhead as a function of the number of potential peers 
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1 Queried System 
Type of 
Cost 

Content Importation Costs Type of 
Cost importer CTS other peers 

1 computation 0 cidl 0 
message CID SM 0 

Table 10: Cost of content importation in the Queried System 

1 Operation Performance 
1 3DES encryption 4.748 MB/sec 
1 MD5 message digest 100.738 MB/sec 
1 HMAC/MD5 message digest 99.863 MB/sec 

RSA 1024 signature 10.29 sec 
1 RSA 1024 verification 0.30 sec 

Table 11: Cryptographic computation processing time 

Figure 32 shows the message overhead and computation overhead at the ACS 

as a function of the number of potential peers. Figure 32(a) shows that the mes

sage overhead of the distributed ACL system is almost three orders of magnitude 

greater than the other systems for small group sizes and continues to increase with 

the number of peers. With 65, 536 potential peers, the message overhead of the 

distributed ACL system is 60, 213.1MB compared to 219.3MB in the queried ACL 

system and 31.6MB in CITADEL. Figure 32(b) shows that the computational over

head in the queried ACL system increases with the number of peers and becomes 

an order of magnitude greater than the other systems. For a system with 6,5536 

peers, the computation overhead of the queried ACL system is 10, 979.29ms com

pared to 1294.6ms in CITADEL and 674.4ms in the distributed ACL system. This 

shows that as the number of peers in the system increases, the queried ACL and 

distributed ACL approach have difficulties scaling due to computation costs and 

message costs, respectively. 

Figure 33 shows the message and computation overhead at the ACS as a function 

of the average number of files shared per peer. For this particular simulation, the 

number of potential peers was 16384. Figure 33(b) shows that the computation 

overhead in the queried ACL system increases with the number of files shared in the 
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system. The computation overhead of the other two systems scales better with an 

increase in the number of files shared. With peers sharing an average of 4 files each, 

the computation overhead is 1371.9ms in the queried system, 301.8ms in CITADEL, 

and 168.59ms in the distributed ACL system,. However, as the average number of 

shared files increases to 20, the computation overhead of the queried system increases 

fivefold to 6877.0ms while the others remain approximately the same. Figure 33(a) 

shows that the message overhead of CITADEL maintains around 7.SMB and the 

queried ACL system does increase fivefold from 27.3MB to 137.4MB, but they 

both remain a couple of orders of magnitude less than the 15056.9MB of message 

overhead in the distributed ACL system. 

6.3 Practical Implementation 

We have implemented a CITADEL prototype using open source components includ

ing the Gnutella network as the distribution layer [78] and the LimeWire graphical 

user interface-based Gnutella client [129] as the filesharing software. One of the key 

goals of the implementation efforts was to show that the CITADEL architecture 

is a realistic and lightweight approach and that it can be implemented as part of 

any popular file-sharing network. LimeWire is written in Java and runs on multiple 

platforms including flavors of Windows and UNIX. Our prototype was developed on 

Solaris machines and also runs on Linux. 

Figure 34 depicts the CITADEL prototype. The implementation consisted of cre

ating a CFSS by providing download authorization and upload authorization mod

ules and creating a content insertion and exportation system including the content 

wrapper and unwrapper. Rather than implement custom authorization protocols 

and content container formats, we aimed to use standard security protocols to per

form these operations. Overall, our implementation involved creating authorization 

modules that were added to the LimeWire software by modifying two LimeWire 

modules to call our libraries and providing a program that allows content insertion 
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Figure 34: CITADEL implementation 

and exportation. 

6.3.1 Authorization 

Our design does authorization based on standard X.509 version 3 public-key certifi

cates [102] just like those used for web server authentication. The identity in the 

public-key certificate directly specifies the role to which the holder is assigned. This 

allows standard X.509 version 3 certificates to be used as the access token without 

any new extensions. Alternatively, there have been proposals for extensions to X.509 

certificates to allow the identity to specify the user and have new attributes that 

specify the roles assigned to the user [153]. 

Our system currently provides hierarchical RBAC by creating leaf roles for each 

content object and forming a role hierarchy. Membership in any senior role can 

be shown by authenticating with the public-key certificate for that role. Instead of 
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specifying the role hierarchy in the ACL of the content object, we create a certifi

cate issuance hierarchy that reflects the role hierarchy. A role token also includes 

the trusted certification path from the content's role certificate to the token's role 

certificate. This allows the uploader to perform authorization by authenticating the 

downloader then verifying the certificate chain. 

We use the private key corresponding to the content role's public-key certificate 

as the content decryption key, -AT-RTS-./D- TO perform authentication, we use the 

strong client authentication that is part of the SSL/TLS protocol. This allows 

the client to be cryptographically authenticated by the server based on the client's 

public-key certificate. In the Gnutella protocol, a file download request is sent as 

an HTTP GET request. Instead, in our system we use HTTPS [174], HTTP over a 

SSL connection. This allows the uploader to utilize the SSL protocol to authenticate 

the downloader upon receiving the GET request. The SSL protocol at the uploader 

verifies the validity of the certificate and that the client possesses the corresponding 

private key. The application then performs an authorization lookup based on the 

authenticated identity. In our implementation, the authorization table is stored in 

memory and is initialized at start-up by retrieving the rights from each shared file. 

Since in the real world, users will share a large number of files, this authorization 

table should cache only a certain amount and then lookup other files as necessary. 

6.3.2 Content Containers 

Content containers are created using S/MIME (Secure/Multipurpose Internet Mail 

Extension) [169, 168]. Although S/MIME was designed for securing Internet mail, 

we feel that it provides a simple and elegant example of content containers. MIME [73] 

supports virtually any content type including MPEG, JPEG, GIF, and generic bi

nary application data. We create the encrypted content file using the S/MIME enve

lope functionality. This envelope function creates a MIME entity by first encrypting 

the content data with a triple DES symmetric session key, KR and encrypting the 
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session key with a public key, In our system, this public key is K+RTS-ID, the public 

key of the role identity that is authorized to access this content. The MIME entity 

consists of the encrypted content and a header containing the sender's public-key 

certificate, an identifier of the algorithm used to encrypt the session key, and the 

encrypted session key. Now that we have the encrypted content file and KR, we add 

the content rights list to complete the protection label of the content container. In 

this design, we only need to specify the role identity and the rights. We achieve 

this by attaching the public-key certificate of the role identity to the protection la

bel. To perform this, we create a new multipart MIME entity that includes a part 

containing the public key certificate of the role identity and a part that contains 

the S/MIME envelope. So after one S/MIME and one MIME operation, we have 

a content container. For the content wrapper and unwrapper, we wrote shell script 

programs that perform the content rights lookup, token verification, MIME opera

tions, and uses OpenSSL libraries [152] for S/MIME operations. The CFSS creates 

the authorization lookup table using OpenSSL commands to retrieve the public-key 

certificate from the protection label of each content container. 

Also, since in our implementation, all authorized users for a certain content 

object had the same set of rights on the object, we were able to only specify the 

identities in the protection label and not the access rights. Our implementation can 

be extended to support different access rights by using S/MIME security labels [95] 

to create the protection label. Our implementation can also support flat RBAC 

and its need for multiple content rights list entries in the protection label. This can 

be achieved because S/MIME envelopes allow a single entity to be encrypted with 

different decryption keys for a set of users. S/MIME does this by encrypting the 

entity with a session key then generating a different encrypted version of the session 

key for each user similarly to how we proposed. 
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6.4 Conclusions 

One of our central premises is that content protection should be viewed as an oppor

tunity to enable new service functionality and not a nuisance that designers have to 

deal with. This layered approach to content protection and the focus on providing a 

flexible framework allows CITADEL to perform the role that we envision for it. This 

point is illustrated in our work through the proposal and description of services and 

business models that can be deployed on top of the CITADEL architecture. Our 

work also considers the performance of CITADEL relative to other approaches that 

can be used in decentralized systems. Our work also includes the description of a 

prototype that shows a practical implementation and validates that CITADEL is 

a realistic and lightweight approach to create a protected peer-to-peer file sharing 

environment. 
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Chapter 7 

Conclusions and Future Work 

This thesis describes research in securing large-scale content distribution systems. 

It addresses the security issues that are introduced by emerging content distribu

tion paradigms. It addresses the need for authentication and authorization, data 

protection, and system security in such systems. Here we summarize the specific 

contributions made in this research. 

In multicast and content distribution network environments, there was a need for 

a scalable system to provide theft deterrence. Chapter 3 describes the development 

of WHIM, a system that uses a hierarchy of intermediaries to fingerprint multicast 

multimedia content. We show the benefits of this approach as compared to previous 

approaches that were implemented at the network-layer or within the application. 

This work also proposed distributed and real-time watermarking of multimedia con

tent. We described a prototype of the system that validated the feasibility of these 

techniques. 

Chapter 4 describes the GOTHIC group access control architecture that provides 

a solution to the secure IGMP problem in multicast and the secure anycast server 

advertisement problem. This work generalized the two problems into a problem of 

group access control and proposed a generic scalable architecture for Internet group 

access control. We specify how the system can be used in a range of environments 

including different flavors of multicast and anycast. This work also considers issues 

in group policy. We identify the problem of group owner determination and authen

tication and propose two solutions. Within this work we also propose the possibility 

of group access control-aware group key management and provide results that show 
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the performance improvements that it can achieve. 

In the area of content protection in peer-to-peer systems, we propose the CITADEL 

architecture that is presented in Chapter 5. We discuss the benefits of content pro

tection in peer-to-peer systems and define the objectives of such systems. We show 

that the objectives of end-users and content providers conflict and propose a system 

that is able to achieve both sets of objectives. We describe the details of the content 

protection system including the content containers, the content importation system, 

and the access control model that is used to maintain manageability. In chapter 6, 

we explain that content protection can enable the support of common content dis

tribution service models. We provide an analysis and simulation results to show 

the costs of providing content protection. We also describe an implementation of 

the CITADEL architecture that shows how the system can be implemented as a 

lightweight addition to current peer-to-peer systems. 

7.1 Future Work 

We provide a discussion of possible directions for future work based on this research. 

• In Chapter 4 we described the performance improvements that could be gained 

by a group access control aware group key management system. We proposed 

three approaches to providing topology information. A potential area of future 

work is the further definition and evaluation of these approaches. The evalu

ation must consider not only the costs of providing the topology information, 

but also the varying performance improvements based on the trusted subtree 

topology and the placement of receivers. One issue is the placement of trusted 

routers for performance optimization. Further optimization can be achieved 

based on the grouping of receivers within the group key management system 

based on the receivers location in the trusted subtree topology. 

• The CITADEL architecture as described in Chapter 5 is transparent to the 
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file location system and we described how this assists portability and ease of 

implementation. However, we also believe that in some situations gains in 

efficiency and usability can be achieved by the location system and protection 

system having knowledge of each other. For example, improved usability and 

efficiency can be achieved by restricting query results to items that the user 

is authorized to access. 

In systems such as Gnutella where query results only come from peers that 

have access to the content and the access control policy this is straightforward. 

In distributed hash table-based systems, the solution is more involved. Since 

many of the lookup operations in these systems may be performed by entities 

that do not possess the content or the access control policy, they are not able to 

restrict the query results based on the access control policy. In these systems, 

it is important to be able to restrict queries based on authorizations because 

of the resources that can be wasted otherwise. If queries are not restricted 

at the first hop of the lookup process, then this query can possibly traverse 

a number of nodes wasting computation and bandwidth. Further research 

could design a system that restricts a host's ability to perform lookups based 

on an access control policy. This would involve detailing how decentralized 

hash design a system that restricts a host's ability to perform lookups based 

on an access control policy. This would involve detailing how decentralized 

hash table lookup systems can be made aware of the access control policy. 

Additionally, one could consider how such a system could assist in making the 

lookup system more robust to other types of attacks such as denial-of-service. 

Currently, if a single content distribution system needs some combination of 

security services such as encryption, fingerprinting, and content protection, it 

must utilize three different security systems. This requires the creation and 

maintenance of multiple security policies. Our work has taken steps toward 

this. For example. In GOTHIC, we showed how group key management and 
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group access control can benefit from each other. WHIM showed that data 

encryption, distribution, and watermarking can be effectively joined. A desired 

approach would be to allow a single framework that can accept a security policy 

for a particular system and provide the necessary content security services. 
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