
Security and Protection Architectures for
Large-Scale Content Distribution

A Thesis
Presented to

The Academic Faculty

by

Paul Q. Judge

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology
November 2002

Copyright © 2002 by Paul Q. Judge

Security and Protection Architectures for
Large-Scale Content Distribution

Approved:
A

7 Dr. Mostafal H. Ammar (Advisor)
(College of Computing)

Dr. A^dre Dos Santpg' ~^
fColleEre of CoiiiDutinff)

Jun Xu
(College of Computing)

"TJrTTmen W. Zegura
(0Q3Je}5e-Qf Computing)

^ B r i ^ N . Levine
(U. ;̂ ĉlss. Amherst)

Date Approved l^J21l2:^C2^

Acknowledgement s

I give thanks to my advisor, Dr. Mostafa Ammar. Mostafa has become a close friend

and provided much needed guidance and encouragement. Without his undying

support and advice, I surely would not have made it to this point. Along the way,

he has helped me learn not only the science of networking, but also the art of

research, and most importantly, many lessons of life.

Thanks to Dr. Ellen Zegura who has provided advise and encouragement. I

thank Dr. Jim Xu and Dr. Andre Dos Santos who have provided excellent feedback

about many of the information security related questions and ideas. I thank Dr.

Brian Levine, of U. Mass. Amherst, for agreeing to serve on my thesis committee

and taking time from his busy schedule to provide insightful feedback and attend

my thesis defense.

Members of the Networking and Telecommunications Group have provided sup

port throughout my time here. I thank Dr. John Limb for his guidance in my early

years here. I also thank Dr. Russell Clark for his encouragement and feedback. The

students, specifically Lenitra Clay, Jinliang Fan, Richard Liston, Matt Sanders, and

Minaxi Gupta have been my friends and collaborators.

Past and current members of the Georgia Tech Information Security Center,

specifically Mustaque Ahamad, Blaine Burnham, Michael Covington, Matt Moyer,

and Phyllis Schneck have encouraged and supported me.

ni

Contents

Acknowledgements iii

List of Tables x

List of Figures xi

Summary xiii

Chapter

1 Introduction 1

1.1 Applications 2

1.2 Content Distribution Methods 3

1.2.1 Evolution of Content Distribution 4

1.2.1.1 Evolution of Caching and Storage Infrastructure . , . 4

1.2.1.2 Evolution of Delivery Model 5

1.2.2 Multicast 6

1.2.3 Content Distribution Networks 6

1.2.4 Anycast 7

1.2.5 Peer-to-Peer 8

1.3 Security Goals 8

1.3.1 Security Services 9

1.3.2 Security Attacks 10

1.3.3 Security Mechanisms 10

1.4 Thesis Outline 11

1.5 Organization of Dissertation 12

iv

2 Overview of Content Protect ion 13

2.1 Causes of Multicast Security Issues 15

2.1.1 Properties of Multicast 15

2.1.2 Security Issues and Solutions 16

2.2 Multicast Receiver Access Control 19

2.2.1 Objectives 20

2.2.2 Proposed Solutions 20

2.3 Group Key Management 23

2.3.1 Objectives 24

2.3.2 Proposed Solutions 25

2.4 Group Source Authentication 29

2.4.1 Objectives 30

2.4.2 Proposed Solutions 31

2.5 Multicast Fingerprinting 34

2.5.1 Objectives 34

2.5.2 Proposed Solutions 36

2.6 Other Multicast Security Research Areas 39

2.7 Video Watermarking 41

2.7.1 Compressed Techniques 41

2.7.2 Uncompressed 43

2.8 Related Network Security Work 44

3 Theft Deterrence using Fingerprinting in Mult icast Environments 47

3.1 Objectives 49

3.2 WHIM Architecture Overview 50

3.3 WHIM Backbone (WHIM-BB) 52

3.3.1 Architecture 52

3.3.2 Distributed Watermarking Algorithms 53

3.3.3 Logging 56

3.4 WHIM Last-Hop (WHIM-LH) 57

3.4.1 Methods of Transporting the Video Data 58

3.4.2 Methods of Choosing User ID 60

3.4.3 Discussion 61

3.5 Analysis 62

3.6 Implementation 67

3.7 Conclusions 69

4 Group Access Control for Content Distribution Tree Protection 71

4.1 Overview of Gothic 75

4.2 Group Member Authorization System 77

4.2.1 Authorization Protocol 78

4.2.2 Reauthorizations and Revocations in the Protocol 80

4.2.3 Discussion 81

4.3 Group Policy Management System 82

4.3.1 Group Owner Determination and Authentication Systems . . 83

4.3.2 Group Owner Determination and Authentication in Multicast

environments 84

4.3.3 Group Owner Determination and Authentication in Anycast

environments 86

4.4 Group Access Control Aware GKM 87

4.4.1 GACA-GKM Technique 88

4.4.1.1 Group Access Control and the Routing System . . . 88

4.4.1.2 Details of the Rekey Conditions 89

4.4.2 GACA-GKM System: Providing Topology Information 92

4.4.2.1 Traceroute-type Approach 92

4.4.2.2 Topology Inference-based Approach 92

4.4.2.3 Enhanced IGMP-based Approach 92

4.5 Evaluation 93

VI

4.5.1 Gothic Evaluation 93

4.5.2 GACA-GKM Evaluation 97

4.6 Conclusions 100

5 Rights Management in Peer-to-Peer Systems 101

5.1 The Benefits of Content Protection 103

5.2 The Case for an Overlay Security Layer 106

5.2.1 Our Approach 106

5.2.2 Environment Description 107

5.2.3 Problems with previous approaches 107

5.2.4 Overcoming those problems 109

5.3 Background and Design Issues 110

5.4 CITADEL Objectives 113

5.5 Overview of the CITADEL Architecture 115

5.5.1 Our Approach 115

5.5.2 CITADEL Components 116

5.5.2.1 File Sharing Software 117

5.5.2.2 Content Containers 118

5.5.2.3 Content Importation System 119

5.6 Detailed Operations of CITADEL Components 119

5.6.1 Token Distribution 121

5.6.1.1 Detailed Token Distribution Protocol 121

5.6.1.2 Access Control Model 123

5.6.2 Host Interaction during File Sharing 124

5.6.2.1 Detailed Host Interaction Protocol 124

5.6.2.2 Discussion 126

5.6.3 Compliant File Sharing Software 127

5.6.3.1 Operation Details 128

5.6.3.2 Policy updates and revocations 129

vi i

5.6.4 Content Importation System 130

5.6.4.1 Overview of Importing Content 130

5.6.4.2 Content Identification Process 131

5.6.4.3 Content Importation Process 133

5.7 Analysis 134

5.7.1 Threat Analysis 134

5.7.2 Additional Robustness using Software Protection 137

5.7.3 Related Protection Systems 137

5.7.4 Output Protection 138

5.8 Discussion 139

5.8.1 Interaction with different types of file retrieval 139

5.8.2 Interaction with different types of file location 140

5.9 Conclusions 141

6 CITADEL Evaluation and Implementation 142

6.1 Supporting Content Distribution Business Models 143

6.1.1 Common Business Models 143

6.1.2 CITADEL'S Support of Business Models 145

6.2 Evaluation 146

6.2.1 Analysis 146

6.2.2 Simulation Results 148

6.3 Practical Implementation 154

6.3.1 Authorization 155

6.3.2 Content Containers 156

6.4 Conclusions 158

7 Conclusions and Future Work 159

7.1 Future Work 160

Bibliography 163

V l l l

Vita 178

IX

List of Tables

1 Comparison of trust, scalability, and resolution provided by different

methods of fingerprinting content to a group 69

2 Cryptographic computation processing time 94

3 Summary of attacks on protection goals 134

4 Definition of Variables Used in Analysis 148

5 Cost of file exchange in CITADEL 148

6 Cost of file exchange in the Distributed System 149

7 Cost of file exchange in the Queried System 149

8 Cost of content importation in CITADEL 150

9 Cost of content importation in the Distributed System 150

10 Cost of content importation in the Queried System 153

11 Cryptographic computation processing time 153

X

List of Figures

1 Some Multicast Security Issues and Solutions 17

2 Multicast Receiver Authorization Systems 21

3 A Taxonomy of Group Key Management Solutions 25

4 A Classification of Multicast Source Authentication Schemes 31

5 Multicast Fingerprinting Solutions 36

6 The Hierarchy of Intermediaries as an Overlay Network 52

7 Packet transmitted between Intermediaries 56

8 The Bit-Embedding Algorithm at the Intermediary 56

9 WHIM-LH Architecture 58

10 WHIM 62

11 Definition of Variables Used in Analysis 63

12 Multicast Fingerprinting Data Overhead at the Source 64

13 Multicast Fingerprinting Cumulative Data Overhead 65

14 Gothic Architecture 76

15 Authorization System 78

16 Group Owner Determination and Authentication System 83

17 Gothic Trusted Routers form Trusted Subtrees 89

18 Network overhead at routers and hosts 95

19 Network overhead at ACS and overall 96

20 Group membership 97

21 Computational overhead at last hop routers 98

22 Group key management traffic overhead 99

23 File location and retrieval in different peer-to-peer systems 112

24 The CITADEL protected file sharing environment 117

25 The structure of a content container 120

xi

26 Content importation at a high-level 120

27 Role-based access control models 123

28 Host interaction during file sharing 125

29 Content upload 128

30 Content export 129

31 Content importation 131

32 Overhead as a function of the number of potential peers 151

33 Overhead as a function of the number of files shared by peers 152

34 CITADEL implementation 155

xn

Summary

The Internet is increasingly being depended upon to provide large-scale content

distribution. An important need is mechanisms to aid in the scalability of distri

bution services. These mechanisms include multicast, anycast, peer-to-peer, and

overlay-based content distribution networks. Multicast communication provides an

efficient transport mechanism for one-to-many and many-to-many communication.

Anycast aids in service discovery and replication by providing a mechanism for de

livering a single request to one of many servers servicing an address. Peer-to-peer

systems allow efficient content location and retrieval among large groups of users.

Overlay-based content distribution networks provide reliable and robust distribution

frameworks.

As content distribution on the Internet becomes more pervasive and the value

of the content being distributed increases, the security of this content and its dis

tribution channels has become a main concern of content creators, owners, and

providers. There have been significant advances in maturing the distribution mech

anisms; however, there are a number of distinct security issues in these technologies.

These issues exist because of two reasons: 1) the issues are introduced by the new

distribution mechanisms; or 2) the issues also exist in unicast, but the unicast solu

tions do not apply. To address these problems, our research aims to develop flexible

content protection architectures for large-scale content distribution.

Specifically, the contributions of this work are as follows.

• We developed WHIM, a scalable system that allows multicast content to be

securely marked with distinct information for distinct receivers. This system

introduces two new concepts: 1) generation of a watermark based on the re

ceiver's location in a tree overlaying the network; and 2) incremental insertion

xiii

of the watermark in the content as it traverses an overlay network. We pro

pose and evaluate several forms of this architecture and show how it improves

scalability while increasing security. We also develop an implementation of the

system that allows a multicast video stream to be watermarked by a hierarchy

of intermediaries.

• We generalize the problems of secure IGMP and secure anycast server adver

tisements into a problem of group access control and propose Gothic, a com

plete architecture for providing group access control. Gothic centers around

a novel authorization architecture. This is complemented by a proposal for a

group policy management system that allows the group owner to be authen

ticated before being allowed to specify the group access rights. This system

can be applied to other works that involve group policy. We show how Gothic

operates in a number of environments including application-layer multicast,

source-specific multicast, application-layer anycast and global IP-anycast. We

evaluate the security and scalability of the architecture and show that it im

proves scalability over previous solutions while maintaining or increasing the

level of security. We also propose methods of integrating Gothic with the

group key management system and content distribution tree. We propose and

evaluate a group-access-control-aware group-key management technique that

leverages the existence of a group access control system to substantially reduce

overhead.

• We describe and implement a rights management architecture for decentral

ized peer-to-peer file sharing systems called CITADEL. CITADEL builds a

protected file sharing environment over a normal peer-to-peer network using se

cured content objects and file sharing software enhanced to perform protection

operations. A flexible content importation system that is part of CITADEL

allows all users to insert new content as well as additional copies of protected

XIV

content. We explain how CITADEL provides the flexibility necessary to sup

port common content distribution business models. We also provide results

that show the performance of the system relative to other possible approaches.

Finally, we describe an implementation of CITADEL that uses the Gnutella

network, LimeWire file sharing software and standards-based security tools.

XV

Chapter 1

Introduction

As content distribution on the Internet becomes more pervasive and the value of

the content being distributed increases, the security of this data has become a main

concern of content providers. Content distribution has become pervasive in part due

to the deployment of scalable networked services and architectures. These mech

anisms range from network services such as multicast and anycast to networked

architectures such as content distribution networks (CDNs) and peer-to-peer sys

tems. The availability of such systems has sparked the interest of end-users and

content providers. End-users are attracted to such distribution method's ability to

locate and obtain a wide variety of content. Content distributors are drawn to such

system's large distribution channel and low cost.

There is significant interest by content creators and owners in the protection of

the content that is distributed in these systems. Content protection in any envi

ronment is a formidable challenge due to the complex protection goals and range of

possible attacks. Additionally, content protection in large-scale content distribution

environments introduces a number of issues that do not exist in client-server sys

tems. There has been previous research in understanding and solving security issues

in client-server environments. However, the introduction of decentralized systems,

group-based systems, and multicast systems brings about a new set of problems. For

example, confidentiality, integrity, trust management, and non-repudiation mecha

nisms in unicast systems do not translate to large-scale content distribution systems.

1.1 Applications

Innovation and the human imagination have repeatedly led to applications that

stretch the limits of the computing capabilities of the day. As the demands of appli

cations increase, we have developed sustaining technologies to increase the lifetime

of the current technologies. More significantly, it is said that disruptive applications

stimulate disruptive technologies that introduce a new value proposition [45]. For

example, many of the advances in website technology is considered sustaining tech

nology while the introduction of peer-to-peer content distribution can be considered

a disruptive technology.

There are four forces that drive applications: the types of content that users

deisre, the ways that users wish to access the content, the bandwidth that is available

to users, and the format in which content is available. Content types include movies,

music, pay-per-view events, software, business information such as stock quotes,

news data such as weather or world events, and real-time conversations.

Another factor is the formats in which the content has been made available.

This is influenced heavily by advances in compression and storage. For example,

over the years video compression has advanced from MPEG-1 to MPEG-2 [191] to

MPEG-4, MPEG-7, MPEG-21 \ and Windows Media Video 2. Similarly audio has

progressed from WAV to MPS and Ogg Vorbis [202]. Such changes have significant

impact on the applications. For example, the emergence of the MPS compression

format made it possible to transport audio content over the Internet in a amount of

time that users found reasonable. This made applications such as Napster possible.

Similarly, MPEG-4 and Windows Media Video codecs allow movies and other video

content to be compressed to a size that allows such files to be exchanged over the

Internet. Diff"erent multimedia streaming formats also have infleunced applications.

The increase in available bandwidth is also a driving force. Over the last few

years, the amount of bandwidth available to home users rise from 28.8 kbps to 33.6

^ http://mpeg.telecomitalialab.com/
^http://www.microsoft.com/windows/windowsmedia/

http://mpeg.telecomitalialab.com/
http://www.microsoft.com/windows/windowsmedia/

kbps to 56 kbps and then drastically increase to 1.5 mbps and up for some users.

This has made significant changes in the number of users capable of participating

in Internet content distribution and the expectations of those users.

The ubiquity of devices has changed the places and times that users are able to

access content. The recent popularity of wireless devices and portable entertainment

devices has influenced applications. We have witnessed computing devices move

from the office into the home office with PCs and then throughout the home with

laptops and computerized entertainment centers. Now with wireless devices, PDAs,

and portable entertainment devices, computing and content devices are able to move

with the user outside the home.

1.2 Content Distribution Methods

The Internet has succeeded at supporting wide-scale communication in the form of

e-mail and web pages. That success has led to technical growth issues, users that ex

pect more, and providers that want to deliver more. Growth issues are a result of the

current size and use of the Internet exceeding the original design goals. Therefore,

there are some technical barriers such as limited scalability resource bottlenecks and

the lack of inherent quality of service (QoS) due to the best-effort model. Higher

user expectations have come as a result of the Internet's success. Users expect higher

speeds and higher quality. Providers have seen proof of the Internet's potential and

now aim to deliver even richer content and offer new services.

These are not new issues. Every since the invent of the Internet, users have

pushed it beyond its intended limits and along the way there are technical barriers.

Today, we are again asking more of the Internet than it was designed to give. So

again we must overcome the technical issues to meet our demands.

Years ago, there was a need for applications that would sent data to large groups.

Multicast was developed as an efficient delivery mechanism to ease that strain. Other

work resulted in the use of caches in networks to increase efficiency. Recently, we

have built upon our earlier gains and discovered ways to supplement the Internet

to provide the resources to meet our demands. This has resulted in mechanisms

such as content distribution networks (CDNs). Other efforts have sought to provide

efficient content location and retrieval to end-users; this has lead to the popularity

of peer-to-peer systems.

1.2.1 Evolution of Content Distribution

Content distribution as it is today is a result of years of evolution. The evolution

is sometimes driven by technology, but often driven by applications. Content dis

tribution consists of storage and caching mechanisms and delivery mechanisms. In

this section we briefly discuss the evolution that has taken place in these two areas.

1.2.1.1 Evolution of Caching and Storage Infrastructure

It was realized early on that scalability can be increased by allowing popular requests

to be handled with some sort of aggregation [24]. Frequently requested objects could

be stored in a manner that did not require a full operation to service a user with that

object. Similar concepts have been used in other areas such as memory caching.

As the world wide web increased in popularity, Internet Service Providers (ISPs)

began to seek ways to lower their bandwidth costs and many used forward proxy

caches to cache web pages and other objects that were requested by their customers.

This concept advanced to include mechanisms such as co-operative caching that

allow multiple caches to exchange information for increased efficiency [207].

Later, content providers used forward proxies when seeking ways to provide bet

ter QoS for their customers. However, many of these were maintained by the content

provider rather than the ISP and served that provider's most popular content.

As content storage was pushed further to the edge of the network, it finally

reached the actual edge: the end-users' computers. This is the underlying concept

behind peer-to-peer content distribution. Files are stored at peer computers and

exchanged directly between peers.

As content became more distributed, mechanisms that allowed the efficient lo

cation of these resources became important. These mechanisms include server se

lection, request redirection, content location, and service location [200]. Server

selection involves an enduser choosing a particular server from a group of servers

based on some metrics. Request redirection allows a host to send a request to a gen

eral address and have it redirected to a specific server. This usually involves some

form of server selection algorithm. Anycast is an important mechanism in providing

server selection, server location, and request redirection. Content location allows a

host to efficiently locate content within a distributed system and is an important

component of peer-to-peer systems.

1.2.1.2 Evolution of Delivery Model

Multicast was developed to provide scalability by allowing a server to service mul

tiple requests with a single response. Multicast enables efficient large-scale con

tent distribution by providing an efficient transport mechanism for one-to-many

and many-to-many communication. Over the years, multicast has been the topic

of many research, engineering, and deployment efforts. These efforts have contin

ued to transform multicast into a technology that can be relied upon by many

applications. Work has been done in reliability, manageability, scalability, quality-

of-service, address allocation, inter-domain multicast, pricing/billing, and ease of

deployment [60].

There have been a number of multicast routing protcols proposed including

DVMRP [164], MOSPF [143], PIM-DM [57], PIM-SM [64], and CBT [23]. Re

cently, single source multicast (SSM) [100, 98] has been proposed that simplfies

some of the problems faced by normal any-source multicast (ASM), but it is too

soon to determine how widespread its use will be.

The industry has come to require a multicast model that is ready for deployment

in commercial applications. Thus, to provide the necessary components, the new

paradigm is to add layers to the infrastructure instead of engineering the mecha

nisms into the existing layers. This has lead to the use of overlay networks and

application-layer multicast to provide the missing pieces. Other reasons for interest

in overlay networks is that they can offer increased QoS, more robustness, and better

manageability [47]. The use of application-layer multicast does not rule out the use

of or replace the need for IP multicast. Application-layer multicast allows rapid de

ployment and a platform to build additional services on top of the multicast model.

However, application-layer multicast is not as efficient of a delivery method as IP

multicast. In many environments, application-layer multicast and IP multicast can

co-exist.

Another advancement in content delivery is the ability to provide enhanced ser

vices during content distribution. This allows distributed applications to act on the

content as it is being delivered. Such work includes active services, overlay services,

and web services. The added functionality may include video smoothing, transcod

ing, content personalization, advertisement insertion, or content protection.

1.2.2 Multicast

There are a number of available multicast routing protocols that provide the efficient

transport mechanisms of multicast by routing packets with one group destination

address to multiple recipients. The routing protocols must be aware of group mem

bers in the network in order to deliver packets to them. The mechanism provided

for doing this is the Internet Group Membership Protocol (IGMP) [33]. A host uses

this protocol to notify an edge router that it should deliver packets from a particular

multicast group to that host.

1.2.3 Content Distribution Networks

Content distribution networks (CDNs) are network infrastructures that are deployed

to deliver content reliably and quickly [200]. The idea is that on top of network

layer connectivity we utilize transport through application-layer resources to provide

improved and novel services.

CDNs utilize various mechanisms to overcome common problem areas of the

Internet. These problem areas include network congestion and content server bot

tlenecks. CDNs allow higher levels of service and new levels of scalability. Due

to the nature of placing functionality at higher levels, deployment of new services

becomes can occur more rapidly.

CDNs involve a number of components. Content routing systems utilize infor

mation known by the application to achieve intelligent routing. Content transport

can be achieved with application-layer multicast, IP multicast, or unicast. The con

tent distribution system may also include content caching mechanisms. The proxy

execution environment allows services to be deployed within the network. Content

peering involves the internetworking of seperately managed CDNs. The redirection

fabric maps the client request to the CDN to be served. Content network manage

ment involves managing the overlay network including the deployment, routing, and

monitoring of the network. This allows a number of powerful features such as mon

itoring of application usage, integration with the pricing model, application-layer

quality of service (QoS).

There have been a number of research efforts that proposed application-layer

multicast systems [72, 47, 42] and systems for deploying and managing overlay

networks [197]. There have been a number of deployed content distribution net

works ncluding commercial networks like Inktomi [103] and Akamai [13] and non-

commercical networks like Internet2 Distributed Storage Infrastructure (I2-DSI) [104].

1.2.4 Anycast

Anycast allows multiple servers to provide a service at a single address called the

anycast address. Each anycast server lets the routing protocol know that it is

listening to the anycast address. Then when a host wishes to contact a server

providing that particular service, it simply sends a request to the anycast address.

The routing system knows which servers said that they are providing that service,

so it chooses one of those servers and forwards the request to it. Besides the basic IP

model of anycast [155), global IP anycast [116] and application-layer anycast [212]

have been proposed.

1.2.5 Peer-to-Peer

Peer-to-peer networks are formed as a logical connection of endhosts over the phys

ical network. Peer-to-peer file sharing systems consist of two components, the file

locat ion process and the file retrieval process. In most peer- to-peer systems, the

file retrieval process is decentralized. That is, files are transferred directly between

peers rather than through a client-server model. However, peer-to-peer systems dif

fer in the file location process. There are two main types of peer-to-peer systems.

Centralized systems such as Napster ^ provide indexing and searching functions at

a centrally managed location (or a set of replicated locations), while decentralized

systems depend on the peers themselves to manage content indexing and search func

tions in a distributed manner. Among the decentralized systems, there are naive

broadcast query systems such as Gnutella [78] and distributed hash table (DHT)-

based systems such as CAN, Chord, Pastry and Tapestry [170, 194, 179, 214].

1.3 Security Goals

Information security has been an active area for the last thirty years. The focus

has sometimes shifted depending on the computing environment at the time. Early

work focused on system security in multi-user and multi-process systems [125, 25].

Then there was work that oflPered formal definitions of security properties and mod

els [126]. Later work began to examine security issues in distributed systems such

'http://www.napster.com

'http://www.napster.com

as encryption, authentication, authorization, and trust management [119, 150, 26).

The focus then shifted to protecting data over large networked systems and also pro

tecting the systems. As new types of networked systems are proposed, we still are

working on defining models to represent our goals and threats, methods to perform

authentication and authorization, mechanisms to protect the data on the system,

and ways to protect the system itself.

In this section we briefly discuss some fundamentals of information security such

as the diflferent types of security services that may be desired in a particular en

vironment, the attacks that aim to deny these security services, and the classes of

mechanisms to defend against these attacks.

1.3.1 Security Services

A security service is a property that may be desired in a particular environment to

enhance the security of information. These services counter the diflferent security

attacks and use some security mechanism to do so.

A common classification of security services defines six distinct services [117]:

• Confidentiality: Protects data from release of contents.

• Access control: Limits and controls access to objects.

• Availability: Ensures continuous service for intended users.

• Authentication: Ensures the identity of an entity or of the source of data.

• Integrity: Ensures that the data received is the data that was sent.

• Nonrepudiation: Ensures that neither party participating in communciation

can deny the occurence of the communciation.

1.3.2 Security Attacks

The most common classification of security attacks defines four general categories

of attack [119):

• Interruption: A component of the system is damaged or otherwise made un

available for authorized users.

• Interception: An entity gains access to information that it is not authorized

to receive.

• Modification: An entity modifies some component of the system such as mes

sage contents or modifying the behavior of a program.

• Fabrication: An entity creates unauthentic objects such as messages or data

files.

We highlight the types of attack that are dealt with in this thesis and show

the particular security service that they attack. Interception and eavesdropping are

attacks on confidentiality. Theft-of-service and redistribution are attacks on access

control. Interruption or denial-of-service are attacks on availability. Masquerading

is an attack on authentication and integrity.

1.3.3 Security Mechanisms

We classify security mechansims by the role they play in defeating attacks:

• Prevention: These mechanisms aim to protect resources in order to deny the

ability to perform a security attack or to provide deterrence to decrease the

likelihood of an attack.

• Detection: These mechanisms are designed to detect the presence or occurence

of an attack so that some measures can be taken.

10

• Response: The role of these mechanisms is to respond to an attack in a passive

or active manner. Passive responses include increasing security by enforcing

a more stringent policy. Active responses may include executing a reciprocal

attack.

In this thesis, we concentrate on preventive mechanisms. There are two types of

preventive mechanisms: protection mechanims and deterrence mechanisms. Protec

tion mechanisms aim to shield systems from exposure. Deterrence mechanisms aim

to discourage attackers from acting. Protection mechanisms can be compared with

a lock on a door while deterrence mechanisms are similiar to a security camera.

1.4 Thesis Outline

This thesis seeks to define security and content protection issues in large-scale con

tent distribution and propose architectures to solve a range of the issues. We identify

the content protection and security goals and methods used to achieve these goals

in traditional client-server environments. We discuss the mechanisms used for large-

scale content distribution and examine cases in which the traditional mechanisms

cannot be utilized in large-scale systems. Additionally, we identify new issues that

appear due to the nature of certain large-scale distribution systems. We then pro

pose solutions for a range of these issues. Our set of solutions provides a flexible

architecture for content protection for various distribution methods. Specifically, we

address the following issues:

• Theft deterrence: In unicast environments, fingerprinting is achieved by

watermarking the content at the source then distributing it. In a multicast

environment, this approach offers no security since all receivers will share a

common fingerprint. We explore methods to securely watermark multicast

multimedia content while maintaining the scalability advantages of multicast.

11

• Distribution tree protection: In multicast content distribution, users at

tach to tlie distribution tree using the Internet Group Membership Protocol

(IGMP). In the current model, any host can use IGMP to become a member

of any IP multicast group causing eavesdropping, theft-of-service, or resource

utilization leading to denial-of-service. In this work, we explore a method to

provide access control within IGMP without introducing heavy loads on the

network infrastructure such as routers.

• Rights management: The popularity of decentralized peer-to-peer file shar

ing systems has led to environments that require content protection but lack

a central authority to enforce the protection. How can content protection be

provided and enforced without a central authority? How can the open peer-to-

peer sharing experience be maintained in the presence of a content protection

system? In this work, we describe a content protection architecture for de-

centraHzed peer-to-peer file sharing systems that is designed to answer these

questions.

1.5 Organization of Dissertation

The remainder of this thesis is organized as follows. In Chapter 2 we provide

an overview of content protection. Chapter 3 summarizes our work in developing

WHIM, a scalable fingerprinting for multicast environments. Chapter 4 describes a

group access control architecture for secure multicast and anycast called GOTHIC.

Chapter 5 motivates the need for content protection in peer-to-peer systems and

discusses CITADEL, an architecture for content protection in peer-to-peer systems.

In Chapter 6 we describe practical issues involving CITADEL including its support

of common business models, simulation results, and an implementation of the sys

tem. Finally, chapter 7 summarizes the contributions of the work presented in this

dissertation and outlines some future directions for this research.

12

Chapter 2

Overview of Content Protection

There are numerous works in content protection that cover many environments, dis

tribution methods, content types, and protection goals. The goals within content

protection are sometimes referred to as copy protection, conditional access, or digi

tal rights management. Digital rights management is a more generic term that can

be used to describe some set of content protection schemes that compose a partic

ular system for value chain participants from content creators to consumers. Three

phases of content protection that are common across different distribution methods

and content formats are protected distribution, protected storage and output protec

tion. Protected distribution deals with providing conditional access or enforcing an

access policy in the distribution model. This essentially controls access to protected

objects. Protected storage deals with controlling access to the actual content in a

protected object. This essentially controls playback of protected objects. Output

protection deals with protecting content after an authorized user is accessing the

content. This focuses on restricting access to the content as it is played by the user.

Output protection work includes Digital Transmission Content Protection (DTCP) [11]

for protecting content during transmission between devices using IEEE 1394 or Uni

versal Serial Bus (USB), Macrovision Copy Protection [132], High-bandwidth Digital

Content Protection (HDCP) [59] for protecting content during transmission to digi

tal displays, and Microsoft's Secure Audio Path [140] for protecting content on PCs

during transmission to audio devices such as sound cards.

Protected storage work includes Content Protection for Pre-recorded Media

13

(CPPM) [8] for protection pre-recorded DVD-Audio, Content Protection for Record

able Media (CPRM) [9] for protecting content stored on recordable media such as

DVD-R or flash memory, Content Scrambling System (CSS) [10] for protecting pre

recorded DVD video, and copy-protected CD solutions such as the Cactus Data

Shield [141] for protecting pre-recorded CDs from replication or extraction to files

such as MP3s.

Protected distribution work takes many forms differing greatly depending on the

distribution method. In cable and satellite, conditional access is provided by set-

top boxes enforcing subscription and pay-per-view models; see for example the NDS

VideoGuard [149]. In CD and DVD sales, conditional access simply means that

the person that pays for the content receives the media containing the content. On

websites that sell content, protected distribution is performed in the client-server

model of purchasing rights and obtaining content. In multicast or group communi

cations, protected distribution is provided by using group keys to access encrypted

content [35] and by controlling access to the multicast distribution tree [110].

In this section, we provide an overview of security issues and research in con

tent distribution. We first discuss the causes behind the multicast security issues

in Section 2.1.2. We then provide more detailed explanations of security problems

in multicast and proposed solutions. We discuss four areas of multicast security re

search: receiver access control, group key management, source authentication, and

multicast fingerprinting. For each area, we further explain the vulnerabilities that

it introduces, outline the objectives of solutions, and survey work in the area. In

Section 2.6, we briefly highlight other security issues in multicast content distri

bution including source access control, secure multicast routing, and group policy

specification. Section 2.7 explains work in video watermarking. In Section 2.8 we

discuss related network security and content protection work.

14

2.1 Causes of Multicast Security Issues

Multicast enables efficient large-scale content distribution by providing an efficient

transport mechanism for one-to-many and many-to-many communication. Over the

years, multicast has been the topic of many research, engineering, and deployment

efforts. These efforts have continued to transform multicast into a technology that

can be relied upon by many applications. Work has been done in reliability, man

ageability, scalability, quality-of-service, and ease of deployment. As these areas

become more mature, there is increased potential for multicast to be used as the

underlying distribution mechanism for content distribution applications. Therefore,

security in multicast content distribution is an concern. The maturity of multicast

security solutions has the potential to enable the use of multicast for confidential

and high-value content and help spark the use of multicast by new applications.

There are a number of security issues in multicast content distribution that are

directly related to the properties of multicast that make it efficient and attractive.

There has been research that provides solutions to many of these security issues.

Some of these solutions are ready for deployment, some are nearing maturity, and

others are only in the early phases of research. The maturity and deployment of

these solutions will help increase the ability of multicast technology to deliver new

applications and more content. In the next few sections, we examine these various

issues and solutions for providing secure multicast content distribution. ^

2.1.1 Properties of Multicast

The definition of the host group model [43] provides a summary of the key properties

of multicast: "a host group is a set of network entities sharing a common identifying

multicast address, all receiving any data packets addressed to this multicast address

by senders (sources) that may or may not be members of the same group and have

no knowledge of the groups' membership." This definition highlights the three main

^An appreviated version of this taxonomy will appear [112].

15

properties of multicast:

• All members receive all packets sent to the address: Multicast routing delivers

all packets sent to the multicast address to all members of the multicast group.

• Open group membership: Multicast provides an open group model and allows

group membership to be transparent to the source.

• Open access to send packets to the group: Any host can send data to the

multicast address and it will be delivered to the multicast group without regard

for the source of these packets.

We note that we focus here on the host-group native-IP multicast model which

allows so called Any Source Multicast (ASM) as the most general multicast model

available. As such it also represents the most challenging context in which to pro

vide content-distribution security functions. Other multicast models provide more

restrictive frameworks that may make it easier to deal with some security aspects.

For example in the Small Group Multicast [166] model the source needs to know

the identity of the multicast group members. Another example is the use of Source-

Specific Multicast (SSM) [99] in which groups are associated with a single source

and only that source can transmit to the multicast group. Another example is

Application-Layer Multicast[49, 106] that utilizes an overlay network to implement

multicast functionality including group management and packet forwarding. These

more restrictive models, however, while possibly alleviating some aspect of securing

multicast distribution, continue to possess other multicast properties (for exam

ple, the lack of distinction of received data among the receivers) and therefore, the

security techniques surveyed here continue to be relevant.

2.1.2 Security Issues and Solutions

These properties of multicast lead to security issues and vulnerabilities because

of two reasons: 1) the issues are multicast-specific; or 2) the issues also exist in

16

unicast, but the unicast solutions do not apply. Figure 1 shows how each of the

three multicast properties leads to vulnerabilities and it shows the areas of research

that provide solutions to these issues.

Properties Properties

(
Open group
membership

f
All receive same

packets
Senders may not

be members

Seamtylssues

• ^

Open access to
distributed

content

r ^
No

individualization
of received data

_ _ I ^
Open access to

send data to
group

t 1
.. i ,. 1 1 •• • .-i

Security Vulnsrabilities Denial-o(-Setvic8 Eavesdropping
f

Nothett
deterrence

Denial-of-StJrvice Masquerading

^ ' .' ' ^ ' .' ' • 1 ' • . ' V . .v

Se(nii%So)bli6i3S

Multicast
Receiver Access

Control

Group Key
Management

Mulitcast
Fingerprinting

Multicast Source
Access Control

•

Muticast Source
Authentication

1

Figure 1; Some Multicast Security Issues and Solutions

• The open group model is beneficial in many environments because it provides

a lightweight join operation, the source is not required to maintain state for

all group members, and it allows some anonymization for group members.

However, this same property of multicast also causes security issues since it

is not possible to restrict communication to a set of authorized hosts. In

the IP-multicast model, any host can use the Internet Group Membership

Protocol (IGMP) [33] to become a member of any IP multicast group—

possibly leading to eavesdropping, theft of service, or denial of service. The

latter attack can be caused by a malicious host joining a number of multicast

groups, thereby utilizing large amounts of bandwidth or router resources. To

defend against these threats, two classes of solutions have been proposed:

group data encryption with group key management and multicast receiver

17

access control.

• The multicast model delivers any traffic sent to the multicast address to the en

tire group. This means that any host can send data to the multicast group.This

leads to two problems. First, group members need to able to verify that mes

sages received are from the intended source. Multicast source authentication

solutions have been proposed to provide this functionality. Secondly, there

should be mechanisms to restrict unauthorized sources from sending data to

multicast groups due to the potential for denial-of-service attacks. Multicast

sender access control solutions are necessary to defend against this threat.

• The fact that all members receive all packets sent to the group is a funda

mental feature and benefit of multicast; however, this property also causes

some security mechanisms that are used in unicast to not work in multicast

environments. One reason for this is that there is no individualization of the

received data. Traditionally, this individualization has sometimes been used

to provide security. For example, fingerprinting [203] is the embedding of

receiver identifying information in content to deter unauthorized duplication

and propagation. However, fingerprinting techniques used in unicast environ

ments do not work in multicast environments because all users receive the

same data. Therefore, multicast fingerprinting [46, 32, 198, 109] solutions

have been proposed to achieve unique fingerprinting in a multicast environ

ment while maintaining the efficiency of multicast.

As stated above, most of these issues exist across the different multicast models.

However, some of the multicast schemes may be immune to some of these issues

due to their design. For example, Single-Source Multicast inherently provides some

source access control since the group address is based on the source's unicast ad

dress .̂ Small Group Multicast provides some receiver access control since the source

'This is actually a side effect of reverse path forwarding, not intentional security.

18

knows the group membership. In Application-Layer Multicast, the receiver access

control problem differs since group management may not be based on IGMP.

In addition to the various models, multicast content distribution involves a num

ber of potential environments composed of different Internet Protocol (IP) versions,

routing protocols, address allocation schemes, and inter-domain requirements. The

security issues that we discuss are relevant to these many flavors of multicast, but

may vary slightly across the particular environments.

In the following sections, we discuss these areas of multicast security research:

receiver access control, group key management, source authentication, and multicast

fingerprinting. For each area, we further explain the vulnerabilities that it intro

duces, outline the objectives of solutions, and survey work in the area. In Section 2.6

we briefly highlight other security issues in multicast content distribution including

source access control, secure multicast routing, and group policy specification.

2.2 Multicast Receiver Access Control

There are a number of available multicast routing protocols that provide the efficient

transport mechanisms of multicast by routing packets with one group destination

address to multiple recipients. The routing protocols must be aware of group mem

bers in the network in order to deliver packets to them. The mechanism provided for

doing this is the Internet Group Membership Protocol (IGMP) [33]. A host uses this

protocol to notify the routing system that it should deliver packets for a particular

multicast group to this host. In the current model, any host can use IGMP to be

come a member of any IP multicast group causing eavesdropping or theft of service.

The traditional method used to protect the information is to encrypt the multicast

data and provide decryption keys only to authorized members (as discussed in Sec

tion 2.3). In some cases, encrypted communication is not possible for any number

of reasons including legal issues or technical reasons. Even if encryption is used,

there are still risks involved with unauthorized users receiving encrypted data such

19

as traffic analysis and possibly cryptanalysis. The current model is also vulnerable

to a denial-of-service attack in which malicious hosts join a number of multicast

groups utilizing large amounts of bandwidth or router resources.

Solving these problems requires controlling the ability of hosts to join the multi

cast group. We call this multicast receiver access control. The need for a solution to

these problems is well-known and was first stated in [81]. The term secure IGMP

has been used to refer to the protocol that would provide the solution.

2.2.1 Objectives

The primary objective of a multicast receiver access control system is to provide

a means of restricting hosts' ability to join the multicast group. The secondary

objective is to maintain scalability.

• Security: The system should be able to effectively restrict unauthorized re

ceivers from joining the multicast group. This means restricting the ability of

these users to access the data being delivered to the multicast group as well

as stopping the users from establishing any state in the multicast routers.

• Message overhead: The system must also minimize communication overhead

for each of the entities involved as well as minimze the overall network traffic

overhead that is introduced.

• Computational overhead at the routers: In order to achieve scalability and

to remain a lightweight system, the system must minimize the amount of

computational overhead that is required of the routers.

2.2.2 Proposed Solutions

Figure 2 shows a classification of multicast receiver authorization solutions based

on how they provide revocations. Some systems do not provide revocation, some

systems leverage the authorization state maintained by some outside system, some

20

systems must query a centralized server to maintain authorization state, other sys

tems distribute access control lists to routers, and some systems efficiently provide

revocation using time-limited authorizations.

(
Receiver ""
Access
Control ; 1

1 1
None Outside

system Centralized ACL-
supported

Time-limited
tokens

.__j__
1 1 1 1

Basic
Cryptographic

Addresses

Group
Encryption

Key scheme
HASM Ballardle and

Crowcroft
Hardjono and

Cain GOTHIC
Cert-based

Cryptographic
Addresses

SMRAC

Figure 2: Multicast Receiver Authorization Systems

• Hardjono and Cain

Hardjono and Cain [87] present a method for delivering keys to enable IGMP

authentication and suggest a method of authorizing group members. The au

thorization server provides capability-like access-tokens to group members and

access control list-like token lists to the routers. The host sends a join request

including the access-token to the router that verifies that the access-token is in

the token list. There are two vulnerabilities in the system: 1) Malicious users

can perform a replay attack by presenting another user's access-token because

the access-tokens are not related to the identity of the user. The system at

tempts to protect against this by having each router only accept a particular

access-token once; however the same access-token can be used on any other

router. 2) Malicious users can cause the router to accept fake access tokens

because the issuer signature is not verified by the router. One inefficiency

of this system is that all membership changes require distributing new token

lists to all routers because of the use of a distributed ACL-based design for

revocation.

21

• Ballardie and Crowcroft

Ballardie and Crowcroft [22] provide an early survey of multicast security

threats and present some countermeasures. Within the discussion, they present

a version of IGMP that allows receivers to be authorized before joining the

group. The architecture includes authorization servers that possess ACLs dis

tributed by an initiator. The host sends a request to an authorization server to

obtain an authorization stamp (AS) that is included in the join request sent to

the router. The router forwards the host's request to the authorization server

for approval. There are two vulnerabilities in the system: 1) An unauthorized

user can obtain an authorization stamp by authenticating as itself, but then

providing the spoofed address of an authorized user for authorization. This

vulnerability is due to the fact that the AS uses the distinguished name to

authenticate the host, but uses the IP source address to authorize the host.

2) An unauthorized user can cause the AS to accept an invalid authorization

stamp such as one from a different group or one for a different user. This is

because the AS only verifies the signature of the authorization stamp without

verifying the information in it. One inefficiency of this system is that many

of the authorizations and verifications are unnecessary because the authoriza

tion server actually only uses the router's interface address to authorize the

request. This does happen to limit the damage of the two flaws mentioned

above and causes them to not directly lead to unauthorized access.

• Standards work in progress

Recently, there have been a number of efforts within the Internet Engineering

Task Force(IETF) to standardize a multicast receiver authorization system.

Castelluccia and Montenegro [36] propose the use of cryptographically gener

ated addresses to restrict access to the multicast group. The authors propose

a basic scheme that provides no revocation and a certificate-based scheme that

provides time-limited revocation. He, et al. [93] discuss the simple multicast

22

receiver access control(SMKKC) system that also uses time-limited tokens.

Coan, et al. [50] describe HASM, a multicast receiver and sender access con

trol system that utilizes Kerberos tokens.

2.3 Group Key Management

In unicast, two users can provide confidentiality by encrypting data with a shared

key. In multicast, group key encryption is used in which the multicast traffic is en

crypted with a symmetric key and every authorized member of the group is given the

decryption key. This becomes complicated by the case in which group membership

is dynamic. Upon a change in membership, it is often necessary to change the group

key so that the leaving member cannot access new broadcasts or so that the new

member can not access old broadcasts. The term leave is used to describe the act

of a voluntary leave or a forced leave. It is necessary to reduce the cost of updating

the group key in these situations. When a new member joins, the new group key

can be sent to the original group members using the old group key. However, when

a member leaves, the solution involves more work. The simplest approach is, upon

each leave, compute a new group key and send it to each user encrypted with its

individual key. This is not acceptable because it requires n separate encryptions and

transmissions for each join or leave. A simple improvement is to encrypt the new

key with each user's individual key (resulting in n encryptions), but send all of the

keys in one message to the entire group. This reduces transmission costs, but still

requires n encryptions and causes the users to be able to detect their key among

the group of keys in the received message. Work in group key management aims to

provide efficient rekeying schemes for dynamic group memberships.

23

2.3.1 Objectives

• Scalability: A group key management solution should be able to handle large

Internet groups. This requires low requirements for support infrastructure as

well as low message and computational overhead.

• Forward and backward secrecy: Forward secrecy is the ability to keep leav

ing members from accessing future communication. Backward secrecy is the

ability to keep new members from from accessing past communication. Some

systems require forward secrecy but not backward secrecy.

• Collusion resistance: Collusion is when a set of authorized or unauthorized

members work together to gain access to communication that they are not au

thorized to access. A scheme should be able to state its resistance to collusion

of a group of c members.

• Message overhead for rekeying: Schemes should aim to provide efficient rekey-

ing by reducing the message overhead necessary for rekeying on a join or leave

to less than 0(n) as in the naive approach.

• Computational overhead for rekeying: In addition to reducing the message

overhead, schemes should maintain minimum computational overhead for rekey

operations.

• Storage overhead: Some schemes add storage requirements in order to reduce

message overhead. Such schemes should maintain reasonable storage require

ments for group members as well as for the group key controller.

• Reliability requirements: Many schemes make use of multicast to rekey the

group. Schemes should account for the fact that multicast is unreliable by

being robust to packet loss.

24

Group Key
Management

1
1 r" r 1

Basic
Schemes

Hierarchical
Schemes

Batching
Schemes

c >
Tradeott
Schemes

1 1 1 1
1 1 1 1 1 1 1

GKMP SMKD
Group

Hierarchies
Logical

Hierarchies
Chang et. a! MARKS CVA HySOR

1
1 1

lolus
Logical Key
Hierarchy

One-way
Function

Trees

Figure 3: A Taxonomy of Group Key Management Solutions

2.3.2 Proposed Solutions

Work in group key management schemes includes basic schemes, hierarchical schemes,

batching schemes and tradeoff schemes as shown in Figure 3. Basic schemes include

the earlier work in group key management and did not focus on efficient rekey-

ing. Hierarchical schemes include the first attempts at reducing rekeying overhead.

Batching schemes attempt to further reduce rekeying overhead by not changing the

key on every join or leave, but instead batching a number of joins or leaves before

rekeying. It has been generally accepted and recently proven that O(logri) is the

lowest overhead achievable by a group key management scheme if strict non-member

confidentiaUty and non-collusion are required [193]. Tradeoff schemes attempt to

provide lower than 0(log?7,) overhead by trading off some collusion resistance.

• Basic Schemes

- Group Key Management Protocol (GKMP) [89] assigns a group controller

(GC) to manage the keys for each multicast group. The controller gener

ates and maintains symmetric keys for each member. The GC selects a

group member to generate the keys with. Then, it validates each group

member's permissions and sends the group key encrypted by the individ

ual key. This scheme does not provide a solution for efficient rekeying.

It simply provides a method to avoid a single central key controller by

25

allowing a group controller per multicast group.

- Scalable Multicast Key Distribution (SMKD) [21] is based on the Core-

Based Tree (CBT) routing protocol. This scheme takes advantage of the

hard-state of the core based tree to provide secure joining for the CBT

group tree. CBT is hard-state since each router knows its neighbor and

the configuration does not change. The core of the tree performs the

duties of a group controller and generates the group session keys and the

key distribution keys. As the tree expands and new routers are added,

the key distribution tasks are assigned to the routers. They are given

the ability to authenticate joining members and give them the group

key. This technique only works with core-based tree and requires trusted

routers. It does not propose a solution to efficient rekeying.

Group Hierarchies

- lolus [142] is a framework that divides the multicast group into a hi

erarchy of subgroups. The central or top group is managed by a group

security controller (GSC) and group security intermediaries (GSIs) are

used to manage the other subgroups. Each subgroup uses a separate

subgroup key. Since there is no single group key and only subgroup keys,

it is only necessary to generate a new subgroup key for the subgroup that

is involved in the membership change. Each user in the subgroup must

be transmitted a new subgroup key using its individual key. lolus can

also be used for encrypting and delivering the traffic. The GSI for each

subgroup knows the keys for the neighboring subgroups. To send a mes

sage, the member sends the message to its local GSI using its individual

key, the GSI sends the message to the group using the group's subkey

and sends the message to the GSIs of any neighboring groups using that

group's subkey. Instead of actually re-encrypting the message to send

it to other subgroups, a random key is chosen to encrypt the message

26

and the GSI encrypts the key and sends it along with the message to the

neighboring GSI. This reduces the computation costs of a message being

sent through multiple GSIs.

Logical Hierarchies

- Logical key hierarchies [204, 209) use a hierarchy of keys to obtain a

scalable solution rather than a hierarchy of groups. Each user that joins

the group receives a secret key shared with the group key controller. The

controller maintains a /c-ary tree structure in which the root is the group

key, the leaves are the n individual keys of the group members, and the

intermediate keys are auxiliary keys used for key updates. Each member

stores the set of keys in the path from its individual key to the root key

This scheme allows the number of rekey messages to be reduced by al

lowing the new keys to be encrypted with subgroup keys rather than

individual keys for the majority of the group. The operation of rekeying

upon a join is similar. This scheme reduces overhead to klogkU messages

for a rekey operation and requires members to store log^n keys.

- One-way Function Tree (OFT) [20] is also based on tree hierarchy but

uses a different method to generate keys for the logical subgroups. Keys

at interior nodes in the logical hierarchy are derived from other keys using

one-way functions and mixing functions. This allows group members to

compute the new subgroup keys upon a group rekey. This scheme reduces

the message overhead to 0(log2 n) for a key update, but requires members

to store up to 0(21og2n) keys.

Tradeoff Schemes

- HySOR [68] considers a range of protocols with varying message costs

and vulnerability to collusion. In one extreme is logical key hierarchy

that has O(logn) overhead and is resistant to collusion. On the other

27

extreme is a protocol based on the Linear Ordering of Receivers (LORE),

which requires 0(1) messages for rekeying, but is vulnerable to any two

receivers colluding. LORE uses two sets of auxiliary keys: forward keys

denoted by fi and backward keys denoted by 6̂ . All users are ordered

and assigned a rank between 1 and n. A receiver with rank i, ui, holds

keys /i to fi and keys hi to bn- In order to rekey the group when ui leaves,

the new group key is multicast to the group twice: once encrypted with

/^+i and once encrypted with hi^^. Thus, all users with ranks higher

than i and lower than i can decrypt the rekeying message. The authors

present a scheme using a hybrid structuring of receivers(HySOR) which

is tunable between the logical key hierarchy and LORE. HySOR uses a

key graph where each leaf is a division of receivers and LORE is used to

manage keys within each division. The authors show how an operator can

tune the performance and collusion resistance by changing the number

of divisions.

— Complementary Variable Approach (CVA) [204] is able to reduce message

overhead to 0(1) but is vulnerable to collusion attacks. The controller

generates n complementary variables j . Each member is assigned a rank i,

\ <i <n. Each member i receives the group key and all complementary

variables except ji. To remove a member i from the group, a message is

sent to all members stating "remove member i". The current group key

and complementary variable ji are used to create a new group key with

some deterministic key variable generation process. Thus, all members

except i are able to compute the new group key. This scheme reduces

message overhead to 0(1), but is vulnerable to collusion and requires a

storage overhead at the group members of n.

• Batching Schemes

- Boolean function minimization technique [38] batches membership changes

28

to reduce rekey overhead. The authors refer to this as cumulative member

removal. The authors also present a new logical key hierarchy algorithm

for rekeying that uses a set of auxiliary keys and dynamically generates a

logical key hierarchy by composing different keys. This rekeying scheme

achieves the same O(logn) overhead as the other logical key hierarchy

approaches, but reduces the storage overhead at the group controller to

O(logn) as opposed to 0(n).

- MARKS [31] divides the group session into time slots, assigns one key

for each slot, and changes the group key every time slot. MARKS also

presents the technique of generating condensable key space with binary

hash trees. MARKS involves no message overhead for rekeying during the

group session. However, MARKS is limited in that it requires receivers

to determine their leave time when they join the group; this cannot be

met in many applications. Also, MARKS has problems with situations in

which a receiver may join and leave a group multiple times over a given

session.

2.4 Group Source Authentication

Source authentication is the ability of group members to verify the identity of the

sender of a received packet. In unicast, a shared secret-key message authentication

code (MAC) is used to provide authentication. In multicast, the group key provides

a shared secret-key; however, performing message authentication with this key only

verifies that the sender is a member of the group, but not necessarily the intended

source. Many applications require a level of authentication that allows a receiver

to identify the individual sender of a message. There has been work that aims to

efficiently provide this level of source authentication.

29

2.4.1 Objectives

The design objectives of a source authentication scheme should include the following:

• Authenticity: The receiver must be able to verify the identity of the data's

source. One level of functionality is that the receiver can verify that the data

is from a group member. The next level of functionality is that the receiver

can verify that it is from an authorized sender. The most precise functionality

is that the receiver can determine the exact identity of the sender.

• Integrity: The receiver should be able to verify that the received data has not

been modified. Some schemes provide only authentication without integrity

checking.

• Non-repudiation: Non-repudiation requires the ability to prove that a host

sent a particular message. This prevents the sender from later denying the

transmission of the message.

• Efficiency: The efficiency of the solution is based on communication, storage,

and computation overhead at the source and the receivers.

• Collusion resistance: The scheme should provide protection against collusion

or at least be able to state in a provable manner the level of protection against

c-collusion.

• Minimal latency: Some schemes require a certain number of packets to be

stored before they can be signed or verified. For some real-time applications,

this can introduce an intolerable delay.

• Robustness against unreliable communication: Some designs are based on

an assumption of reliable communication. Some multicast environments do

not provide reliable multicast communications; therefore such schemes are

unsuitable for these environments.

30

Hash-based
Schemes

Multicast ^
Source

Authentication

MAC-based
Schemes

Packet
Chaining

Tree Chaining
Golle and
Modadugu

Efficient
MACS

TESLA
'v J

Figure 4: A Classification of Multicast Source Authentication Schemes

2.4.2 Proposed Solutions

As shown in Figure 4, there have been two approaches in multicast source authen

tication schemes: hash-based schemes and MAC-based schemes.

• Hash-based Schemes

Digital signatures provide a simple method of individual authentication. How

ever, due to the computational costs of computing and verifying digital signa

tures, signing each packet is not a practical solution.

- Packet Chaining

Gennaro and Rohatgi proposed packet chaining, a solution to efficiently

authenticating digital streams [77] that allows only the first block to be

signed and contain an association with subsequent packets. The stream

of data packets is partitioned into chains and each packet in the chain

contains a hash of the next packet in the chain. Thus only the first packet

in the chain must be signed. This works for streams that are finite and

in which the data is known in advance. For infinite streams, multiple

one-time signatures are used.

31

Tree chaining

Wong and Lam [210] proposed tree chaining, a technique that partitions

the stream of data packets into blocks and forms a tree structure to per

form authentication. Each block of n messages can be authenticated with

one signature. It differs from Gennaro and Rohatgi's approach because

the association made between packets is a tree-based association rather

than a linear one. Each leaf node is a message digest of a data packet

and the parent nodes are message digests of the two children nodes. The

root node is the message digest for the block which is signed once for the

entire group. The data packet is sent along with the block signature, the

packet position in the block, and the siblings of each node in the packet's

path to the root. In order for the receiver to verify the received packet, it

recreates the path from the received packet up to the root. The digest of

the received packet is computed and is used to recreate each node along

the path. If the root that is computed by the receiver is the same as the

signed one that was received with the packet, then the packet is verified.

The receiver can cache the nodes so that it is possible to verify all the

packets in the tree by computing each node in the authentication tree no

more than once.

Golle and Modadugu

Due to the association between packets, the above approaches are sensi

tive to data loss. Golle and Modadugu [79] proposed a hash-based scheme

that aims to be robust against bursty packet loss. It achieves robustness

by replicating packet signatures across multiple packets in the stream.

The final packet also includes a signature. The authors provide results

that show the burst tolerance of the scheme based on the efficiency re

sources,

32

- Hybrid Signatures

Rohatgi later proposed a scheme that makes use public key digital sig

natures as well as faster one-way function-based k-t'ime signatures [178].

The scheme creates sets of k-time key pairs offline and uses the normal

digital signature to certify the public /c-time keys. Message signatures are

created online using a /c-time private key and the certified /c-time public

key. The scheme avoids the need for reliable communication by sending

the /c-time keys more than once.

• MAC-based schemes

There have been schemes proposed that use message authentication codes to

provide authentication rather than digital signatures to increase efficiency.

- Efficient MACs

Cannetti, et al. proposed a scheme that makes use of efficient MACs [35].

In this scheme, the sender holds a set of I MAC keys and each group

member holds a subset of the / keys. Each message is then MACed with

each of the / keys and the recipient verifies the MAC with the keys that

it holds. The authors show that appropriate choice of subsets provides a

high probability of protection against c-collusion.

- TESLA

Perrig, et al. proposed TESLA, a MAC-based scheme that provides au

thentication without regards for the packet loss rate [158]. The scheme

involves the source signing the first packet and providing notification of

a chain of MAC keys. Each packet Pi is authenticated with a MAC using

a key Ki. Later packets reveal each Ki. The scheme requires some time

synchronization between the sender and the receivers since each packet

must be received before the next packet is sent.

33

2.5 Multicast Fingerprinting

Encryption is generally used to safeguard the content while it is being transmitted

so that unauthorized persons can not read the stream from the network, but this

offers no protection after the intended receiver receives the data. There is no pro

tection against unauthorized duplication and propagation by the intended receiver.

Watermarking can provide protection in the form of theft deterrence. Watermarking

is the embedding of some identifying information into the content in such a manner

that it can not be removed by the user but it can be extracted or read by the appro

priate party. Watermarks can be used for copyright protection or for identification

of the receiver. Copyright protection watermarks embed some information in the

data to identify the copyright holder or content provider, while receiver-identifying

watermarking, commonly referred to as fingerprinting [203], embeds information to

identify the receiver of that copy of the content. Thus, if an unauthorized copy of

the content is recovered, extracting the fingerprint will show who the initial receiver

was.

In multicast environments, traditional fingerprinting or embedding the receiver's

identification as the watermark at the source will not work since all the receivers

will share the same watermark. It is necessary to watermark content with unique

information for distinct receivers of the same multicast stream. A simple method

to achieve unique watermarks for each receiver would be to watermark the stream

differently for each receiver and to unicast the watermarked streams. Of course, the

inefficiency of such a scheme calls for a better solution. The goal is to maintain the

security of this approach while achieving scalability.

2.5.1 Objectives

The design objectives of a system to fingerprint multicast content should be security

and scalability. We outline the concepts involved in achieving these goals. The

features and components of the system necessary to accomplish these goals should

34

be designed into the solution.

• Security:

- Robustness of the fingerprinting method: The fingerprint is what dis

tinguishes one user from another. This can be a particular pattern of

frames or a particular pattern embedded in a frame. The method used

must be robust to efforts of a user to remove this distinguishing infor

mation. There has been significant work in multimedia watermarking.

A scheme extending these efforts into fingerprinting multicast content is

desirable since it assures a robust fingerprinting method.

- Collusion problem: Collusion is when a set of group members work to

gether to use the set of differently watermarked streams to create a copy

of the content which cannot be determined to contain the fingerprint of

any of those receivers. The solution must be based on a fingerprinting

scheme that is not susceptible to collusion.

- Asymmetric fingerprinting: Schemes should be able to provide asymmet

ric fingerprinting. This allows the sender to identify the receiver of a re

covered copy of data without previously knowing the fingerprinted data.

Thus, the sender is not capable of distributing the data and accusing an

innocent receiver [161].

- Protection Granularity: The granularity of protection is the amount of

content that is needed for the protocol to be able to determine the receiver

of the content. Schemes should be able to provide the smallest possible

protection granularity but also be flexible so that this can be changed

depending on the needs of the appHcation.

• Scalability:

- Logging Requirements; Logging is necessary because once the content is

recovered and the fingerprint is extracted, there must be some record of

35

what receiver was represented by the ID recovered from the watermark

at that instant in time. The storage and processing overhead of logging

should be minimum.

- Efficiency: The efficiency of the solution is based on the amount of data

that the source must transmit and encrypt and the amount of data in

troduced into the network.

2.5.2 Proposed Solutions

Figure 5 shows that there have been four classes of multicast fingerprinting solutions

depending on where the watermarking takes place. Client-side marking schemes

involve some client software that watermarks the content. Application-level schemes

add logic to the application to deliver unique versions of the content. Network-level

schemes involve computation in the network that causes each user to receive a unique

version of the content. Overlay-based schemes involve intermediaries in the content

distribution path that uniquely watermark the content for receivers.

i Multicast 1
\ Fingerprinting |

1
1 1 1

Client-side
Marking

r
Application-

level
Network-level Overiay-

based

1 1 1 1
WHIML

Hop
ast Br< jssii et al Qiao et al S

Wat
elective
ernnari<ing Wate roast Wh

Back
ilM 1
bone

Figure 5: Multicast Fingerprinting Solutions

Text Content

Brassil, Low, and Maxemchuck [30] proposed one of the first solutions for mul

ticast fingerprinting. This system is designed for text documents and involves

36

multicasting the text documents and marking them at the chent's machine.

The source then unicasts to each user a decryption program that contains the

user's unique identification number. The program decrypts the document and

inserts the identifying mark for that user. The authors note that since it is

possible to reverse engineer the program and extract the decryption key, the

key must be changed periodically which means that the entire program must

be changed. One inefficiency is that in order to rekey the group, the docu

ments are encrypted with a new key and programs with the new key built in

must be unicast to every group member.

• Application-based approach

Chu, Qiao, and Nahrstedt [46] proposed a protocol to provide a different ver

sion of a multicast video stream to each group member. The protocol creates

two watermarked MPEG streams, assigns a unique random binary sequence to

each user, and uses this sequence to arbitrate between those two watermarked

streams. For the zth watermarked frame in stream j(j = 0,1), a different key

KEY^ is used to encrypt it. Then user n is given either KEY^ or KEY^ de

pending on the random bit sequence of user n. The efficiency of this protocol

is hampered by the need to watermark, encrypt, and transmit two copies of

the stream and by the significant amount of key messages sent. The ability of

the protocol to detect a collusion is dependent on the length of the retrieved

data stream. Even with a retrieved data stream of sufficient length, the algo

rithm to determine a collusion is so complex that there is not a known length

of retrieved stream that can guarantee a c-collusion detection, where c is the

number of coUuders. The protection granularity of this protocol is large since

it is based on the number of receivers.

• Watercast

Brown, Perkins, and Crowcroft [32] proposed a technique that has each group

member receive a slightly different version of the multicast video stream. For

37

a multicast group with a tree of depth d, the source creates n differently wa

termarked copies of each packet such that n > d. On receiving a transmission

group of packets, each router forwards all but one of the packets. The last hop

router then forwards exactly one packet to the subnet with the receiver(s). The

goal is that each receiver then receives a stream that consists of a unique com

bination of watermarked packets. The original receiver of a recovered stream

can be determined by simulating the operation of various network components

during the time that clip was originally transmitted. This makes the logging

requirements high since the log must keep the state of the entire network from

the start to the end of the transmission. The requirement that the source

watermark, encrypt, and transmit n copies of the stream makes this solution

inefficient. The scheme does not offer a solution for having multiple receivers

on the same subnet since they will have the same User ID. The protection

granularity is large because as the length of the clip increases, the probability

of being able to specify a single receiver increases. Also, the ability to deter

mine collusions is dependent on the length of the clip and requires extensive

computation to determine what users could have possibly had access to the

frames in the recovered stream.

Selective Watermarking

Wu and Wu [198] proposed a technique that multicasts most of the video and

uniquely watermarks and unicast a portion of the video. Depending on the spe

cific selection scheme used, the chosen segments could be from 90% to less than

1% of the original video. There is a tradeoff between efficiency and security.

As smaller amounts of the video are chosen for encryption and watermarking,

the ability of persons outside of the group to obtain the video increases due

to the proposal of not encrypting the video that is not watermarked and the

ability of group members to obtain video that is not watermarked increases

due to the fact that if only I frames are watermarked, then unwatermarked

38

I-blocks found in P and B frames can provide some degree of quality video. As

larger percentages of the video are chosen to be watermarked, encrypted, and

unicast, the security increases, but the efficiency of the protocol begins to re

semble that of the simple unicast model. Since only I frames are watermarked,

the protection granularity is each set of the I-frame pattern.

2.6 Other Multicast Security Research Areas

• Secure Multicast Routing

Shields and Garcia-Luna-Aceves [188] proposed Keyed HIP (KHIP), a secure

hierarchical multicast routing protocol. The authors show that multicast rout

ing protocols are vulnerable to attacks against the routing infrastructure that

can cause denial-of-service by creating routing loops or blackholes. KHIP pro

vides authentication mechanisms that allow only trusted routers to join the

multicast tree. The authors also state the need for a multicast receiver access

control architecture and explain that it would complement KHIP.

There has been work that aims to add security mechanisms to the PIM-SM

multicast routing protocol [199]. This work is still in progress, but aims to

provide protection for PIM-SM similar to that provided by KHIP.

• Sender Access Control

The problem of controlling which hosts can send data to a group is a separate

problem from receiver access control. This is because IGMP is not used to

register multicast senders.

Ballardie and Crowcroft [22] proposed a scheme to detect and prevent unau

thorized multicast traffic. This scheme requires each packet to include a times-

tamp and an authorization stamp. Upon noticing multicast traffic from a new

source, a router forwards a copy of the packet to the authorization service that

verifies that the authorization stamp was created by a host that has the rights

39

to send data for that particular multicast group and verifies that the times-

tamp is current. If the verifications fail, the router is notified and is required

to send an alert upstream towards the source in order to have all routers block

traffic from the unauthorized source.

One viewpoint is that sender access control is becoming less of a problem

with recent multicast schemes such as source-specific multicast (SSM) [99]

that inherently provide sender access control. Recent discussions within the

Internet Engineering Task Force (IETF) have maintained that receiver and

sender access control should be solved separately but have considered a scheme

similar to secure IGMP for sender access control.

• Group Security Policy

Multicast group policy is an important element of securing multicast content

distribution. It deals with specifying the parameters and mechanisms involved

with securing the group.

McDaniel, et al. [136] presented requirements for policy management in se

cure groups. This work explains that requirements include the specification,

distribution, evaluation, and enforcement of policy. The authors show that

previously there were two types of systems with regard to group policy. Trust

management systems specified and evaluated policy in a well-defined manner,

but lacked the ability to enforce them. Policy directed secure group communi

cation systems defined and implemented policies, but do not always maintain

secure distribution and composition of the policies.

Another problem in group security policy is verifying the entity that is allowed

to specify the group's policy. This entity is usually the group owner, but

determining who is the group owner and authenticating an entity to be the

group owner can be a complex task. In [110], the authors examine this problem

and propose two solutions for a group owner determination and authentication

5?/5^em (CODAS).

40

2.7 Video Watermarking

This section reviews proposed video watermarking schemes and mentions the ad

vantages and disadvantages of each. This section is divided into two sections based

on the domain in which the watermark is inserted for each scheme. The first section,

compressed, reviews schemes that embed the watermark in the compressed video

stream. The second section, uncompressed, reviews schemes that embed the water

mark in a raw or uncompressed video stream. Another classification of watermarking

systems is based on the information that is needed to retrieve the watermark. Pri

vate marking systems require at least the original unwatermarked image. Whereas,

public marking systems do not require the original unwatermarked images. Petit-

colas, et. al. [160] provide a survey of information hiding.

2.7.1 Compressed Techniques

Dittman, Stabenau and Steinmetz [61] proposed a technique that inserts a robust

watermark in MPEG video while avoiding artifacts. First, a position sequence is

generated from the user key as a seed with a secure random number generator. This

sequence is used for hiding the watermark in the frame. Second, smooth and edge

blocks are detected to improve the visual quality, then the watermark information is

coded with error corrections and redundancy. Finally, three coefficients are selected

to be used to embed each bit of the watermark information in a block as in the

Zhao-Koch algorithm [123]. The Zhao-Koch scheme involves selecting two or three

coefficients in the block and modifying the values of these coefficients so that the

relationship between the values denotes the bit that is embedded in that block. This

scheme has the advantages that it is a public marking system, artifacts are avoided

by using smooth block and edge recognition schemes, and error correcting codes

and redundancy is used to increase the robustness of the watermark. It also has the

disadvantage that StirMark [159, ?] causes high error rates.

41

Hartung and Girod [90] proposed an idea that embeds the watermark in com

pressed video. Let ttj(—lorl) be a sequence of information bits we want to hide in the

video stream. We then make the spread sequence bi = aj,j *Cr <= i < 0 + 1) * Cr,

where Cr is the chip-rate. The watermark is constructed as Wi = Alpha^bi^pi, where

Alpha is an amplitude factor and pi(— lorl) is a binary pseudo-noise sequence. In

order to add a watermark, we process the encoded video block by block. For each

block, we do a zigzag scan, yielding a l2;64-vector of re-scanned DOT coefficients.

For the DC-coefficient, we add the DC-coefficient of the watermark block to that

of the encoded video block, obtaining the DC-coefficient of the watermarked block.

For the AC- coefficients, we do the same add operation as long as the number of bits

to transmit for the watermarked AC-coefficient does not increase. Hence, usually

only few DCT coefficients of the watermark can be incorporated per 8x8 block. The

scheme has the advantages that the watermark does not increase the bit rate. It has

disadvantages such as the vulnerability to collusion and limited amount of embed

ded information due to the bit-rate constraint. Also, since it is a private marking

system, recovery of the hidden information requires the use of the same pseudo-noise

sequence pi that was used in the coder,

In Holliman, Memon, Yeo, and Yeung [101] proposed an adaptive scheme to

embed watermark information in DCT blocks of image data. The scheme makes

use of an algorithm to select the appropriate blocks for watermark insertions and a

block-dependent seed generation algorithm to determine which coefficients to modify

in a particular block. The algorithm attempts to reduce artifacts by not marking

smooth and edge blocks. Smooth blocks are those that the number of non-zero

coefficients in the lower right half of the DCT block are less than a threshold miriz-

Edge blocks are those that contain any unquantized coefficients with an absolute

value exceeding a threshold miriE- To determine which coefficients of a particular

block are modified, the authors suggest selecting bits of that block and concatenated

with bits from some previous blocks and the private key, to be used as the seed to the

pseudo-random number generator. The bit is embedding in the block in the same

42

way as the Zhao-Koch scheme using two coeffiecients [123]. Advantages of this

scheme are that it is a public marking system, it avoids artifacts by using smooth

block and edge recognition schemes, and does not significantly increase the bit rate.

The disadvantage is that it is only shown to be robust against JPEG compression

attacks

2.7.2 Uncompressed

Hartung and Girod [91] propose an algorithm that allows public retrieval of the wa

termark. One problem for most watermarking techniques based on spread spectrum

communications is that retrieval of the watermark requires the same pseudo-noise

sequence pi used for embedding of the watermark. Hence, decoding of the water

mark is not public since this would potentially allow attacks on the watermark. The

algorithm resolves this problem by making only parts of the pseudo-noise sequence

pi public. At the same time, the hidden information can be retrieved in the same

manner. A modified pseudo-sequence is public where each n-th coefficient is taken

from the original pseudo-sequence pi and all other coefficients are arbitrary random

values with the same distribution as pi. The advantage of this scheme is that the

watermark can be retrieved and verified publicly. However, the disadvantage is that

the robustness of the publicly decodable watermark is lower than the robustness of

the non-publicly decodable watermark.

Dittman, Stabenau, and Steinmetz [61] suggested a way to embed a watermark

in the spatial domain of an image. The algorithm overlays a 8x8 pattern over every

8x8 block of the frame. First, a position sequence is generated to determine the

blocks will be modified. Second, for each block a user key dependent pattern is

made based on the inserted bit. Lastly, the created pattern is added to the original

block. The advantages of this scheme are that it is a public marking system, it is

resistant to the collusion attack, and it can embed a large amount of bits. It also

has the disadvantage that StirMark [159, ?] causes high error rates.

43

Qiao [165] proposed a solution to embed a watermark in an uncompressed video

stream that resolves the rightful ownership problem. Given an original image V,

a key KEY is chosen. Then the watermark W = (wi) is created by applying a

standard encryption function such as DES, i.e., Wi = DESkey{vi)i where Vi is the z-th

pixel of V. Watermarked V^ is constructed as: vwi = Vix(l -\- AlphaxWi), Alpha =

1. This solution has the advantage that it is non-invertible and it resolves the

rightful ownership problem. The rightful ownership problem is when an attacker

can manipulate the watermarked video and claim that he/she also is the original

owner. The disadvantage of the scheme is that it is a private marking system.

Hartung and Girod [90] proposed a solution to embed a watermark in raw video

using ideas from direct-sequence spread spectrum communications. Let aj{—lorl)

be a sequence of information bits we want to hide in the video stream. The spread

sequence bi = aj,j * Cr <= z < (j' + 1) * Cr, where Cr is the chip-rate is created.

The watermark is constructed as Wi = Alpha * bi ̂ Pi, where Alpha is an amplitude

factor and pi(—lorl) is a binary pseudo-noise sequence. Then the watermark is

added to the line-scanned digital video signal Vi yielding a watermarked video signal

vwi = Vi -\- Wi. The advantages of this scheme is htat it is more robust than the

scheme presented in this same paper that inserts the watermark in the compressed

domain. The disadvantages are that it is a private marking system and it does not

solve the collusion problem.

2.8 Related Network Security Work

There has been previous work in rights management or content protection for cen

tralized peer-to-peer system, but not for decentralized peer-to-peer system. Outside

of peer-to-peer, there has been work that does not share the same goal as CITADEL

but is somewhat related. Related work includes authentication, authorization, and

trust management systems for distributed environments as well as other rights man

agement work.

44

• Centralized Peer-to-Peer Content Protection: The content protection system

that was implemented as part of Napster was one of the most well-known [122].

This system relied on the central authority that maintains the indexing and

location functions to provide content protection. Content identification was

done based on the file name of the content. This approach used a blacklist

of forbidden content. The system controlled the sharing of blacklisted files

by not allowing users to locate these files. This was accomplished by either

not allowing users to add these files to the index or not responding to queries

for these files. This approach proved to be easily bypassed by users simply

changing the file names. Ultimately, the content providers insisted that this

system did not provide adequate protection and Napster was forced to shut

down until it can provide adequate content protection functions [51].

• Peer-to-Peer Security: There have been a few different types of work in se

curity for peer-to-peer security. These systems either focus on protecting the

system, the file retrievers, or the file providers. Work in security of the peer-

to-peer infrastructure includes work by Sit and Morris [192] and Castro, et

al. [37]. Secure Overlay Services [121] provides a proactive system for pre

venting denial of service attacks and is also relevant to peer-to-peer systems.

Work in anonymous systems include Anonymous Peer-to-Peer File Sharing

(APFS) [185] and Freenet [74]. Work in censorship resistant peer-to-peer sys

tems include Publius [131] and Eternity [15].

• Digital Rights Management (DRM) A number of commercial DRM solutions

are offered such as Microsoft Rights Manager '̂ ; however, the details of most

of the systems are not published. Park, et. al. [154] provide a taxonomy of

architectures for controlling the dissemination of digital information. Judge

and Ammar [111] discuss how watermarking technology can be used to achieve

various DRM goals in peer-to-peer systems. Feigenbaum, et. al. [70] discuss

'http://www.microsoft.com

45

'http://www.microsoft.com

privacy issues in DRM systems.

Protected Content Formats: The idea of protection labels and attaching pro

tection labels to the objects that they describe has been in the security lit

erature for some time [25]. Slightly more recent work extended this into the

concept of a secure package for storing content and its controls [113, 190].

Authentication and Authorization in Distributed Systems: There has been

much work in access control models including traditional mandatory and dis

cretionary access control (MAC and DAC) [162] and works that extend be

yond MAC and DAC such as role based access control [181] and the dissem

ination control model [135]. Neumann proposed an authorization system for

distributed systems [150]. Wong and Lam describe a distributed authorization

service [211]. Hayton, et al. proposed the Oasis architecture for access control

in distributed environments [92].

Representation of Authorization Information in Distributed Systems: Ap

proaches to representing authorization information in distributed system in

clude extensible rights markup language (XrML) [67], extensible media com

merce language (XmCL) [66] and generalized access control list (GACL) [211].

Trust Management in Decentralized Systems: The trust management prob

lem involves creating security policies, verifying that certain credentials are

adequate based on the security poHcy, and deferring trust to third parties.

Key Note [26] provides a comprehensive system for trust management.

46

Chapter 3

Theft Deterrence using Fingerprinting in
Multicast Environments

Encryption is generally used to safeguard the content while it is being transmitted

so that unauthorized persons cannot read the stream from the network. However,

end-to-end encryption offers no protection against unauthorized duplication and

propagation by the intended receiver. This additional protection can be obtained

by watermarking the content. Watermarking is the embedding of some identifying

information into the content in such a manner that it cannot be easily removed by

the user but it can be extracted or read by the appropriate party. Watermarks can

be used for copyright protection or for identification of the original receiver after the

data is propagated. Copyright protection watermarks embed some information in the

data to identify the copyright holder or content provider, while receiver-identifying

watermarking, commonly referred to as fingerprinting [203], embeds information to

identify the receiver of that copy of the content. Thus, if an unauthorized copy of

the content is recovered, extracting the fingerprint will show who the initial receiver

was.

Problems arise when attempting to fingerprint content in a multicast environ

ment that do not arise in copyright protection watermarking. If copyright protection

watermarks are embedded in the data at the source, then the watermarked data is

multicast to the group of receivers. For fingerprinting, embedding the receiver's

identification as the watermark at the source will not work since all the receivers

will share the same watermark. It is necessary to watermark content with unique

47

information for distinct receivers of the same multicast stream. A simple method

to achieve unique watermarks for each receiver would be to watermark the stream

differently for each receiver and to unicast the watermarked streams. Of course, the

inefficiency of such a scheme calls for a better solution. We aim to maintain the

security of this approach while achieving scalability.

We propose WHIM [109], a scalable system that allows multicast content to

be securely marked with distinct information for each receivers. This system in

troduces two new concepts: l)generation of a watermark based on the receiver's

location in the network; and 2) incremental insertion of the watermark in content

as it traverses the network. WHIM makes use of a hierarchy of intermediaries for

creating and embedding the fingerprint. This allows security and scalability. The

use of a hierarchy allows a new type of security by having a User ID based on the

user's location in an overlay network. Security is also maintained by using proven

watermarking algorithms to embed this User ID. The hierarchy leads to scalability

by capitalizing on the efficiency of multicast distribution and by distributing the

watermark embedding load from the source to the different intermediaries.

This chapter proceeds as follows. In Section 3.1 we enumerate the design objec

tives of WHIM. Section 3.2 gives an overview of the WHIM architecture. Section 3.3

discusses the WHIM-Backbone component which is based on a hierarchy of inter

mediaries that provide an efficient distribution architecture that fingerprints the

streaming content. Section 3.4 describes the WHIM-Last Hop component, a secure

protocol that fingerprints and distributes content between an intermediary and a

group of receivers. Section 3.5 presents an analysis and simulation results of the

efficiency of WHIM, and a comparison with previous solutions. Finally, Section 3.7

presents conclusions.

48

3.1 Objectives

The design objectives of a system to fingerprint multicast content should be secu

rity and scalability. We outline the concepts involved in achieving these goals. The

features and components of the system necessary to accomplish these goals should

be designed into the solution.

Security:

Robustness of the fingerprinting method:

The fingerprint is what distinguishes one user from another. This can be a partic

ular pattern of frames or a particular pattern embedded in a frame. The method used

must be robust to efforts of a user to remove this distinguishing information. There

has been significant work in video watermarking see for example [61, 165, 90, 101].

A scheme extending these efforts into fingerprinting multicast content is desirable

since it assures a robust fingerprinting method.

Collusion problem: Collusion is when a set of group members work together

to use the set of differently watermarked streams to create a copy of the content

which cannot be determined to contain the fingerprint of any of those receivers.

The solution must be based on a fingerprinting scheme that is not susceptible to

collusion.

Asymmetric fingerprinting: Schemes should be able to provide asymmetric

fingerprinting. This allows the sender to identify the receiver of a recovered copy

of data without previously knowing the fingerprinted data. Thus, the sender is not

capable of distributing the data and accusing an innocent receiver. [161]

Protection Granularity: The granularity of protection is the amount of con

tent that is needed for the protocol to be able to determine the receiver of the

content. Schemes should be able to provide the smallest possible protection gran

ularity but also be flexible so that this can be changed depending on the needs of

the application.

49

Scalability:

Logging Requirements: Logging is necessary because once a video is recov

ered and the fingerprint is extracted, there must be some record of what receiver

was represented by the ID recovered from the watermark at that instant in time.

The storage and processing overhead of logging should be minimal.

Efficiency: The efficiency of the solution is based on the amount of data that

the source must transmit and encrypt and the amount of data introduced into the

network.

3.2 WHIM Architecture Overview

Our system has two components, WHIM Backbone (WHIM-BB) and WHIM Last

Hop (WHIM-LH). WHIM-BB introduces a hierarchy of intermediaries into the net

work and forms an overlay network between them. Figure 6 illustrates how the

hierarchy is formed as an overlay network in the physical network. We distinguish

each intermediary by its unique path from the source. This Path ID composed of

intermediary IP addresses is embedded into the content to identify the path that

it traveled. Each intermediary embeds its portion of the Path ID into the content

it forwards the content. This embedding is performed using modified versions of

existing video watermarking algorithms. This is along the lines of the recent trend

towards introducing a hierarchy of entities into the network to provide active ser

vices, such as reliable multicast [130, 156], Internet caching [69, 39, 114], multimedia

proxy servers [187], and layered video multicast [128].

Each intermediary can have a set of child intermediaries and receivers. We

call this set of child receivers the intermediary's domain. A watermark embedded

by WHIM-BB identifies the domain of a receiver. Some literature suggests that

identifying the domain of the receiver or the last hop before the receiver is adequate

protection [32]; however, we feel that it is necessary in many applications to identify

50

the individual receiver. So, we propose WHIM-LH, which allows intermediaries to

mark the content distinctly for any children receivers that they might have. WHIM-

LH forms a domain-wide secure distribution and fingerprinting system including key

distribution and logging.

A central component of WHIM-LH is a secure client-side fingerprint insertion

program that communicates with the intermediary for registration and to receive

the decryption keys and the stream. The security of this component can be achieved

by using techniques such as Mobile Cryptography [180] and Time-Limited Blackbox

Protection [97]. Clients join and register for the group at the domain level. This

type of control is ideal for applications in which domains are responsible for the

activity of its members. For example, a university might subscribe to a site-wide

license for a broadcast then have students subscribe individually to receive it.

WHIM-LH is a building block that when merged with WHIM-BB forms a robust

layered solution for fingerprinting multicast content distinctly for each receiver in

the group. Used together, WHIM-BB and WHIM-LH allow content to be marked to

pinpoint the location of the receiver in the overlay network as well as to identify the

individual receiver. WHIM protects against attacks in which receivers join a group

using a fake IP address or name. Even if the WHIM-LH registration fails to lead to

the actual receiver, the WHIM-BB Path ID will pinpoint the responsible domain.

It should be noted that either of these can be used alone as a suitable fingerprinting

system. WHIM-BB, alone, offers a fingerprinting system that identifies the domain

of the receiver, but not the individual receiver. WHIM-LH can be used between

the source and the group of receivers to fingerprint the content uniquely for each

receiver. However, it lacks the scalability of the combined solution due to the lack

of the distributed architecture and it does not provide any information regarding

the location of the receiver.

51

Source

Overlay Network

Physical Network

WHIM-BB

Domain

Figure 6: The Hierarchy of Intermediaries as an Overlay Network

3.3 WHIM Backbone (WHIM-BB)

WHIM-BB makes use of a hierarchy of intermediaries for creating and embedding

the fingerprint. The fingerprint is based on the path from the source to the interme

diary. This increases the security of the system and the scalabiUty of the watermark

embedding. Use of a hierarchy allows a new type of security by having the user's fin

gerprint based on the user's location in the network. Security is also maintained by

using proven watermarking algorithms to embed this identifying information. The

hierarchy allows scalable watermark embedding by distributing the embedding load

from the source to the different intermediaries and by easing logging requirements.

This section first describes the architecture of intermediaries, then discusses the dis

tributed watermarking algorithms used by the intermediaries, and finally, discusses

the logging necessary to maintain the path information.

3.3.1 Architecture

Our architecture consists of a hierarchy of intermediaries positioned as end systems

in the network. Each intermediary is assigned a unique ID either manually or

52

using some prefix labeling algorithm [19]; so to identify the intermediary, there

exists a unique ID that identifies each path from the source to each intermediary.

As the content traverses the network, every intermediary through which it passes

concatenates its ID to the Path ID already embedded in the content.

The amount of computation required to insert the watermark is more than

routers today are capable of and possibly even more than the amount of processing

power proposed by advocates of active networking [34, 195]. Therefore, WHIM-BB

places a hierarchy of intermediaries as end-systems in the network and forms an

overlay network between them. This overlay architecture lends itself to end-system

or application-layer multicast [72, 47, 42]. There has been research that makes

a case for application-layer multicast stating that it can help avoid many of the

problems involved in using an IP multicast distribution model such as congestion

control and end-to-end reliability and even increase security. These works have pro

posed protocols for enabling application-layer multicast. Other works such as the

X-bone [197] propose systems for dynamically deploying and managing overlay net

works. W H I M ' S architecture can use application-layer multicast rather than rely on

global IP multicast support while still using IP multicast where available, especially

within domains.

This idea can be extended to allow the intermediaries to be coupled with existing

machines in the network that perform computation. Infrastructures in place for

multimedia applications [48], multimedia proxy servers [187], server replication, and

caching [39, 114, 69] provide ideal locations for WHIM intermediaries to be located.

3.3.2 Distributed Watermarking Algorithms

The fingerprint is the information embedded into the content to uniquely identify

the recipient. The identifying information consists of a timestamp and the concate

nation of all the IDs of the intermediaries on the path. This identifying information

is embedded into each frame of the multimedia content. WHIM-BB embeds the

53

fingerprint incrementally at each intermediary. Existing watermarking methods are

designed to embed an entire watermark at once. We propose distributed water

marking algorithms that allow existing watermarking algorithms to be used in a

distributed manner securely and efficiently.

Example 1 The watermarking algorithm described by Dittmann, et al. [61]

works as follows. For each frame, a pseudo random sequence is calculated

to determine the order in which the blocks will be marked. In the determined

order, the blocks are discrete cosine transformed; smoothness and edge detec

tion is done; and the blocks are quantitized with Qm/Qf accordingly. For each

block, the information is embedded as in the Zhao-Koch algorithm [123].

Our distributed version of this algorithm performs as follows. The source

creates the pseudo random sequence in which the blocks will be watermarked,

does smooth and edge detection for each block, and quantitizes with Qm/Qf.

The watermark begins with a timestamp inserted by the source. It then sends

the new frame and the sequence towards the receivers. As each intermediary

receives the stream, it uses the sequence to determine the next blocks to water

mark, adds its ID to the watermark, and sends the remainder of the sequence

and new frame towards the group.

Example 2 The watermarking algorithm proposed by Holliman, et al. [101]

works as follows. An adaptive scheme is used to choose the blocks to be

watermarked. Smooth and edge detection is done to determine the blocks

that can withstand watermarking. Also, within each block, coefficients to be

used to embed the bit are chosen pseudo-randomly based on properties of the

block. The information is embedded by modifying these chosen coefficients

based on the Zhao-Koch algorithm.

Modified to perform in a distributed environment, the algorithm operates

54

as follows. The source does smooth and edge detection and selects coefficients

for each block. After beginning the watermark with a timestamp, the source

sends the sequence of blocks to be watermarked and which coefficients are to

be changed along with the stream towards the receivers. As each intermedi

ary receives the stream, it uses the sequence to determine the next blocks to

watermark and which coefficients in that block to use. The intermediary then

adds its ID to the watermark and sends the rest of the block sequence and

coefficient information along with the altered frame towards the group.

Though each frame contains the entire string of identifying information, it does

not imply concentration of the watermark. It simply means that the entire piece of

identifying information is embedded into each frame. The embedding algorithm is

still based on a secure watermarking algorithm that effectively hides the embedded

information inside of that frame data. Therefore, this results in no reduction in the

level of security.

If there is not a need to safeguard single frames or very short clips, selective

watermarking [198] can be used to increase the performance. This involves a trade

off in the strength of the security because the length of video clip that is necessary

to extract the watermark is increased. Instead of inserting the fingerprint in every

frame, it can be inserted in every n-th frame. This translates into about a n-fold

increase in performance with a tradeoff of n times the length of the clip that is

necessary to extract the watermark. For example, with an MPEG stream, it is

possible to fingerprint only the I frames. If the MPEG stream has the repeating

IBBPBBPBB pattern, this will reduce the computational overhead by reducing the

numbers of frames that are fingerprinted by 89%.

The information exchanged by the intermediaries is encrypted with an interme

diary group key, lyt, while the content data is encrypted with some session key, Gyt,

as shown in Figure 7. In cases in which the intermediary does not already have

55

Control Data Content Data

IP UDP Sequence Path Id Data

Encrypted with 11̂ Encrypted with G ̂ ^

Figure 7: Packet transmitted between Intermediaries.

Repeat
Extract Picture ?
Repea t

Extract Slice ?
Repea t

Extract Macroblock ?
Repeat

Extract Luminance Block ?
Transform VLC To Integers
Embed Bit By Altering Coefficients For This Block
Convert Integers Back To VLC

Until (Finished Inserting Bits)
Or (No More Luminance Blocks In This Macroblock)

Until (Finished Inserting Bits) Or (No More Macroblocks In This Slice)
Until (Finished Inserting Bits) Or (No More Shces In This Picture)

Until (Finished Inserting Bits) Or (No More Pictures In This Sequence Layer)

Figure 8: The Bit-Embedding Algorithm at the Intermediary.

the compressed video data available, it will need to perform the necessary decap

sulations, possibly including RTP [186], UDP, and IP, to extract the video data.

Once the video data is available, the intermediary must perform the steps to locate

the necessary blocks and embed the watermark. An example of this algorithm for

MPEG video is shown in Figure 8.

3.3.3 Logging

To determine the domain of the receiver from retrieved watermarks, the log must

have enough information so that it can determine which nodes were represented by

that Path ID at that particular instant in time. Previously, there has not been much

attention to the logging aspect of such a watermarking system. We have identified

56

it as a key requirement of the system and an important factor in the scalabihty of

the system with regard to actually determining the party associated with a copy of

content. While previous schemes for fingerprinting multicast video require extended

periods of the fingerprinted video in order to extract enough information about the

embedded fingerprint to determine the recipient, WHIM requires only one frame

since the entire label is inserted in each frame. Thus, WHIM can safeguard each

frame of a video. With some other schemes, if a user illegally redistributes a single

image or a very short clip from a video, there is no way of determining the perpetra

tor, Also, our logging system requires only minimal information and uses a simple

and straightforward algorithm to determine receivers.

Our logging system operates as follows. Each intermediary sends to the logging

system, the Path ID that has accumulated in the packet (including its own ID).

This Path ID also includes the timestamp inserted by the source. Depending on

the overlay management used, the intermediary might also send its IP address or

some other identifying information. This includes some authentication information

and a timestamp so that the logging system is assured that the information is being

received from a legitimate intermediary. This logging information is sent to the

logger every time that the Path ID of the intermediary changes. Therefore updates

are only sent when the overlay topology changes, not every time the underlying

routing topology changes. When a watermark has been extracted and the receiver

must be determined, only a simple table lookup algorithm is necessary to access this

information from the log.

3.4 WHIM Last-Hop (WHIM-LH)

Whereas WHIM-BB marks the content to identify the last hop intermediary of a

receiver, WHIM-LH allows a single intermediary to embed distinct User IDs for

each of its children receivers. This section first explains the WHIM-LH architecture

and the variations that are allowed by the different types of User IDs. Then, the

57

INTERMEDIARY

KEY DISTRIBUTION & LOGGING SYSTEM Enrrypled
ConlenI

User Registration Module
(optional)

User

User Id Creation Module
(optional)

Infonnalion

User Id and Key
Distribution Module

User Id Log

Decryption

Distributed
Watermarking Module

\
Encryption

Aulhenlicalion

Infonnalion

Userld and
Decryption Keys A\

Fingerprinled
Encrypted

ConlenI

Group Registration Module
(optional)

Authentication Module
(optional) Posilive

/\cknowledgmenl

Decryption Module

Decrypled
ConlenI

Watermarking Module

FINGERPRINTING PROGRAM

Fingerprinled Slreani

CLIENT

Figure 9: WHIM-LH Architecture

different methods that are available for choosing User IDs are explained.

3.4.1 Methods of Transporting the Video Data

The architecture we describe here maintains the efficiency of multicast routing while

enforcing necessary security at endpoints, intermediaries and client. There is signif

icant research in the area of video watermarking, so we provide a framework that

allows any watermarking algorithm to be used to fingerprint multicast streams effi

ciently. We introduce a secure client-side fingerprint insertion program that contains

a watermarking module that can be based on any chosen watermarking algorithm.

Figure 9 shows the interaction between the modules of the architecture. The in

termediary distributes the fingerprinting program with a built-in decryption key,

which we subsequently denote as program[Kj„ierna/]- The cHent registers with the

logging and key distribution system to join the group and receives decryption keys

58

and possibly a User Id, The client program then receives the stream encrypted with

the session key, denoted as {stream}Kp/Qy, from the intermediary and securely adds

the watermark before making the stream available to the user. The remainder of

this subsection explains the variations of this architecture that depend on the type

of User ID used.

The Assigned User ID scheme has the intermediary communicate with the group

using the following steps:

Intermediary to Receivers:

Multicast: {stream}Kp/Qy

Multicast: program iKintemai^

M u l t i c a s t : {{Kp/ay ,Use r lT>l}Kinternal}Kserl >

{{Kpiay, User ID2}K

internal j'^user2 > • - •

W'^play > u s e r i-y'^J'^internali^usern

Each User ID and key packet is encrypted with the user's public key or symmetric

key shared by the logging system and the user, so the same level of security is

achieved as if they were unicast. A significant portion of the traffic that is sent is

the User ID information.

For applications that would benefit from the decrease in traffic that would result

from not sending this information, we propose a method that allows the user to

provide her own User ID information to the program. This Local User ID method

only requires the intermediary to send the following messages to the group:

59

Intermediary to Receivers:

Multicast: {streain}Kp;ay

Multicast: program [Kî êrna J

M u l t i c a s t : {^playf^internal

The Authentication module authenticates the user and signals the decryption mod

ule. This approach is used when the logging system already has a mapping between

the User ID and the actual receiver or can determine the receiver based on the User

ID, such as when the User ID is derived from the public key as explained in the next

subsection.

3.4.2 Methods of Choosing User ID

The User ID information that is embedded by the intermediaries as the watermark

uniquely identifies each receiver. While previous literature simply refers to the

User ID as some unique identifier, perhaps randomly assigned, we propose a new

technique for creating User IDs. By using cryptographic means, we compose a

User ID that is more closely bound to a user than a randomly assigned User ID.

As shown in the previous subsection, this also allows a more efficient distribution

method. Possible methods of forming a User ID include the following ways:

• Assigned User ID: This simple scheme involves each user registering with

the source, authenticating with the source, and the source assigning some

unique value as a User ID.

• Public Key-based User ID: This approach allows the User ID to be based

on the public key of the receiver. This requires the user to have a public key

certificate [124], a signed message from a trusted certification authority (CA)

that specifies the user's name and the corresponding public key, such as a

60

X.509 certificate [102]. The fingerprinting program must be assured that the

public key used is the one assigned to this user by the CA. We suggest two

methods of doing this. The fingerprinting program requests the user's pubHc

key from the CA and then uses a nonce to confirm that the user knows the

corresponding private key. The second method is that the user provides the

program with the pubUc key certificate and signs it with the private key. Thus,

the program can verify the public/private key pair and that it was assigned

by the CA.

3.4.3 Discussion

WHIM-LH provides a framework that allows proven watermarking algorithms to be

used efficiently in a multicast environment. It allows efficient rekeying, introduces

a new type of secure User ID construction, and has the smallest possible protection

granularity. It also is capable of being used with selective watermarking [198] to

increase its efficiency at the cost of an increase in protection granularity. Figure 10

shows the how the WHIM-LH architecture is combined with WHIM-BB.

We propose means of preventing the risk of the fingerprinting program being

reverse engineered to reveal the decryption key or otherwise altered to disallow the

desired results. There are a number of attacks that malicious users can perform

against mobile agents including spying out code and data and manipulation of code

and data [96]. Mobile Cryptography can be used to guard against these attacks [180].

This involves executing encrypted functions to guarantee code privacy and code

integrity. Time Limited Black box Protection [97] can be used to protect the code

and data of a mobile agent from being read or modified for at least some minimal

time interval.

61

SOURCE

Path Id 1
Logging
System

Fingeiprinling Program
Distribution Module

Content Transmission
Module

Proijram

1 Encrypled

Content

Intermediary

Routers

Figure 10: WHIM

3.5 Analysis

In this section, we examine the efficiency of WHIM in terms of data transmission

and encryption overhead. We look at this relative to the performance of some of

the other multicast watermarking schemes reviewed in the related work section; in

particular Brown, et al, and Chu, et al. Figure 11 shows the definitions of variables

used in this section.

In WHIM, the source transmits s -\- p -\- cku bytes and encrypts s + (n){ku)

bytes. The overhead of the Chu, et al. scheme involves the sender transmitting

nf[2(f) + 2(A;/)] bytes, then the group leader transmits nf[(n){md + bit + kf)]

bytes. This system also has significant encryption overhead, nf[2{f) -\- kf -\- msg\

bytes for the sender and nf[{hit + kf){n)-^msg] bytes for the leader. In the protocol

of [32], the amount of transmitted data is increased substantially by the amount of

62

s — stream
nf = number of frames in the stream

/ = frame

P = program
n = number of group members

ku = key/User ID message
cku = combined key/User ID messages

k = decryption key
uid = User ID
bit = signifies which stream the user receives
kf = decryption key for a particular frame

Figure 11: Definition of Variables Used in Analysis

necessary redundant data. For a stream of size, s, the amount of data that is

transmitted is at least ns, where n > d and d is the depth of the multicast tree.

We seek to analyze the performance of these schemes with two different types of

group behavior, theater style and dynamic. Theater style involves all of the group

members arriving or joining the group and leaving the group at approximately the

same time, as at a movie theater. This allows all of the set up overhead to be

multicast to the entire group at once. Dynamic groups involve users joining and

leaving the group at anytime throughout the session and may involve members

leaving and re-joining. This also involves rekeying of the group.

To analyze the performance for theater style groups, we created multicast groups

within transit-stub internetwork topologies using GT-ITM [213]. We performed the

simulation with group sizes of 1,000, 5,000, 10,000, and 20,000 receivers. For each

group size, the depth of the tree used in our data is based on the average depth of

the 10 random shortest path multicast trees that were created. These calculations

are based on the source multicasting a one hour session of MPEG-2 video at 4 Mbps

at a framerate of 30 fps. The size of the keys in our simulation are 128 bits for

WHIM as well as for the scheme of Chu, et al. In our simulation of Chu, et al., the

source is also the group leader. The size of the insertion program in WHIM was

determined by adding the size of a common decryption program and the size of a

watermarking program to be 1 MB; however, the total amount of data transmitted

63

50

45
m
o
,c 40
0
o
3
o

35
w
0

£1

>> 30

^ •o
0
c

25
F
w
c
2 20
H
3
to
Q

15

o
c 10
o
F
< 5

Q.

o

LU

Q

100

80 F

60 h

40 h

20 b

WHIM - ^
Chu, Qiao and Nahrstedt -->—

Brown, Perkins and Crowcroft a-

5000 10000
Group Size

15000 20000

. . . . 1

WHIiVI
Ciiu, Qiao and Nahrstedt

Brown, Perkins and Crowcroft
- H

- I — - - — r 1

r J-

[- ^ . ' ' • ' ' ' \

^ ,, , + ' ' 1

0 1 -^ , \
5000 10000

Group Size
15000 20000

Figure 12: Multicast Fingerprinting Data Overhead at the Source

64

o

uuu 1 1 1 1 1 1
WHIM

Chu, Qiao and Nahrstedt
Brown, Perkins and Crowcroft

800 -

600 , . - ' • • ' -

400 ;

200 / • '

rv 1 H-
...^^

100000 200000 300000 400000 500000 600000

time

100000 200000 300000

time

400000 500000 600000

Figure 13: Multicast Fingerprinting Cumulative Data Overhead

65

and encrypted by the architecture is orders of magnitude above the size of the

program so the accuracy of this value becomes insignificant. We compared the total

amount of data transmitted and encrypted by the multicast source in WHIM with

the schemes of Brown, et al. and Chu, et al. and the results are shown in Figure 12.

The amount of data transmitted by the source in WHIM is about 1.5 GB for all

group sizes. In the other schemes, the amount of data increases linearly as the size

of the group increases. In Brown, Perkins, and Crowcroft's scheme, the amount of

data is almost 25 GB for the smallest group size and continues to increase as the

group size increases reaching over 35 GB for the 20,000-member-sized group. In

Chu, Qiao, and Nahrstedt's scheme, the amount of data transmitted is a little over

5 GB for the 1,000 member group and increases sharply to about 40 GB for the

20,000 member group.

For dynamic groups, we used data collected by the Mlisten tool [14] over several

days for the Mbone multicast of the Space Shuttle Mission STS-80 in November

1996. This session has a duration of 13 days and has over 1600 join requests.

We used these traces to simulate the performance of the fingerprinting solutions.

Figure 13 shows the cumulative amount of data transmitted over the network by

these schemes and the number of receivers in the group over time. The cumulative

amount of data transmitted by WHIM is about 80 GB while the total for Chu, Qiao,

and Nahrstedt's scheme is about 120 GB. The total amount of data for Brown,

Perkins, and Crowcroft's scheme is about 650 GB. There is a sharp increase in the

amount of data transmitted using Brown, Perkins, and Crowcroft's scheme between

500,000 and 600,000 seconds. This is because a group member joined that was a

considerable number of hops from the source and the number of copies of the content

that is transmitted by the scheme is based on the depth of the tree.

One factor that allows WHIM to provide greater scalability than previous so

lutions is the intermediaries that are used to provide security functionality. In our

analysis, we do not consider the cost of deploying these intermediaries. This cost

includes not only the monetary cost but also may possibly include delay. We do

66

not provide quantitative results that show the incurred delay; however, we imple

mented a prototype of the system to examine this and other issues. As we discuss

in subsequent sections, the delay incurred was reasonable. We believe that with ap

propriate buffering, the delay is negligible. Also, many systems utilize content dis

tribution networks or infrstructures that have introduced intemediaries to perform

some functionality. Ideally, WHIM's intermediaries will leverage an architecuture

that is already in place.

3.6 Implementation

We developed a prototype implementation of WHIM-BB. The architecture involves

having multicast video delivered through a hierarchy of intermediaries and marked

uniquely for each recipient. Our prototype used H.261 [4] video and RTP [186]. The

rtpplay ^ tool was used as the video source to multicast the original video. Vic was

used as the client to receive the multicast stream and play the video [134].

The WHIM intermediaries utilized rtpgw [18], an application level RTP gate

way, to provide basic video proxying. The prototype implemented our distributed

version of the watermarking algorithm presented by Dittmann, et al. [61] to mark

the content.

We developed a C4-+ class that performs watermarking as a filter on the video

content. This allows our functionality to be used within other frameworks such as

Open Mash [133]. We implemented a base class called WM_Filter and two more

specific classes called InsertWM_Filter and ExtractWM_Filter.

We changed the rtpgw's H261Transcoder class to pass the video through the

watermarking filter. Within the H261Transcoder class, wmJilter() is called from

the recv() function before the video is re-encoded for retransmission.

The following code is added to the recv() function to access the watermark filter

class:

^ http://www.cs.columbia.edu/IRT/software/rtptools/

67

http://www.cs.columbia.edu/IRT/software/rtptools/

InsertWM_Filter *iwmf;

iwmf = new InsertWM_Filter

(outw_, outh_, decimation_, wmspot_, wmid_);

iwmf—>wm_filter (decoder,—>fraine());

delete iwmf;

wm_filter() steps through the group of blocks in a frame and for each group of

block, traverses each of the macroblocks. For each macroblock, wmJilter_mb() is

called. wmJilter_mb calls wmJilter_blk() for each block of the four luminance blocks

in the macroblock. wmJilter_blk() implements Dittmann's watermarking scheme.

It chooses the three coefficients in the block to be marked. It determines the bit that

must be encoded in this block by shifting the string to be embedded by the number

of bits that it has inserted in previous blocks. The new coefficients are determined

based on a Zhao-Koch type algorithm. The coefficients are then re-quantitized and

the new values are placed in the block. wmJilter() returns after a given frame is

successfully marked and the watermarked frame is then passed to the encoder to be

forwarded.

We also implemented a watermark extraction tool that can be used to iden

tify embedded information within a recovered video copy. It was also useful for

debugging. It is called from the recv() function as follows:

ExtractWM_Filter *ewmf;

ewmf = new ExtractWM_Filter

(outw_, outh_, decimation., wmpathlength_);

ewmf —>wm_f ilter(decoder_—>fraine());

delete ewmf;

68

We were able to multicast video to a number of receivers and have the content

watermarked uniquely based on the receivers location in the network. Notable

observations were that the watermark insertion did not require buffering and did

not introduce any noticable delay.

3.7 Conclusions

There has been a significant amount of work geared toward developing algorithms

to securely embed watermarks into multimedia content. The work presented in this

paper complements these efforts by providing an architecture that allows these al

gorithms to be used in multicast multimedia. We have presented two architectures,

WHIM-Backbone, a hierarchy of intermediaries that provides an efficient distribu

tion architecture that fingerprints the streaming content, and WHIM-Last Hop, a

secure client/server protocol that fingerprints and distributes content between a

single entity and a group of receivers, which form WHIM. Our analysis shows the

efficiency gains of WHIM over previous solutions.

Transmission
of Video

Unicast Multicast

Marking Location Source Source Client
(WHIM-LH)

Intermediary
(WHIM-BB)

Intermediary and
Client (WHIM)

Trust High High Medium High High
Scalability Low High Medium High High
Resolution High Low High Medium High

Table 1: Comparison of trust, scalability, and resolution provided by different meth
ods of fingerprinting content to a group

Table 1 compares the trust, scalability, and resolution achieved by solutions

based on the type of transmission of the video and the marking location of the data.

The first column shows the simple case of marking at the source and unicasting.

This achieves high trust and resolution but low scalability. The next column shows

69

multicast video that is marked at the source. This results in high trust and scala

bility but low resolution. The third column shows WHIM-LH which multicasts the

video and marks at the client. This achieves medium trust and scalability and high

resolution. The fourth column shows WHIM-BB which multicasts the video and

marks at the intermediaries. This achieves high trust and scalability and medium

resolution. The last column shows WHIM which combines WHIM-LH and WHIM-

BB to achieve the scalability of multicast with the trust and resolution of a unicast

approach.

In addition to the architecture presented in this chapter, the idea of identifying

a user by his position in the network can be carried over into other applications

to offer increased security and the use of a trusted hierarchy to provide scalable

security functionality can be used in other areas including group key management,

firewalls, and defending denial-of-service attacks.

70

Chapter 4

Group Access Control for Content
Distribution Tree Protection

The Internet is increasingly being viewed as a medium providing not just connectiv

ity but also services. This is due to the increase in mechanisms within the network

to support networked services. An important need is mechanisms to aid in the

scalability of networked services. Two such mechanisms have received considerable

attention over the years—multicasting and anycasting. Multicast communication

provides an efficient transport mechanism for one-to-many and many-to-many com

munication [56]. Anycast provides a means for a host to send a request to one ad

dress and have it serviced by one of many servers servicing that address [155]. This

aids service discovery. There has been significant advances in maturing both of the

paradigms. There are distinct and significant security problems in both the multi

cast and anycast models including denial-of-service, theft-of-service, eavesdropping,

and masquerading.

We first explain the multicast problem. There are a number of available multicast

routing protocols that provide the efficient transport mechanisms of multicast by

routing packets with one group destination address to multiple recipients. The

routing protocols must be aware of group members in the network in order to deliver

packets to them. The mechanism provided for doing this is the Internet Group

Membership Protocol (IGMP) [33]. A host uses this protocol to notify the routing

system that it should deliver packets for a particular multicast group to this host. In

the current model, any host can use IGMP to become a member of any IP multicast

71

group causing eavesdropping or theft of service. The common method used to

protect the information is to encrypt the multicast data and provide decryption

keys only to authorized members. In some cases, encrypted communication is not

possible for any number of reasons including legal issues or technical reasons. Even

if encryption is used, there are still risks involved with unauthorized users receiving

encrypted data such as traffic analysis and possibly cryptanalysis. The current

model is also vulnerable to a denial-of-service attack in which malicious hosts join

a number of multicast groups. This causes potentially large amounts of data to be

forwarded to it utilizing network resources.

The anycast paradigm has a different security problem that can be equally as

damaging. Anycast allows multiple servers to provide a service at a single address

called the anycast address. This is accomplished by each of these anycast servers

letting the routing protocol know that it is listening to the anycast address. Then

when a host wishes to contact a server providing that particular service, it simply

sends a request to the anycast address. The routing system knows which servers

said that they are providing that service so it chooses one of those servers and

forwards the request to it. Besides the basic IP model of anycast [155], global IP

anycast [116] and application-layer anycast [212] have been proposed. The problem

in each of these models is that any system can pretend it is providing a service by

telling the routing system that it is listening to that anycast address. This problem

has two potential outcomes: denial-of-service or masquerading. The fake server can

simply attract requests and ignore them causing a denial-of-service attack. Or, the

fake server can actually respond to the request with false information which can

lead to a number of additional problems.

Solving the problems described in the multicast model requires controlling the

ability of hosts to join the multicast group. We call this multicast group access

control. The need for a solution to these problems is well known. Gong and

Shacham first stated the need [81], and the need has been restated by Ballardie and

Crowcroft [22] Shields and Garcia-Luna-Aceves [188], and Hardjono and Cain [87].

72

The term secure IGMP has been used to refer to the protocol that would provide

the solution. Solving the problems described in the anycast model requires control

ling the ability of a host to advertise itself for the anycast address. This requires

controlling membership to the anycast server group. We call this anycast server

group access control. The need for a solution to the anycast problems is also well

known. Partridge, et al. [155], and Katabi and Wroclawski [116] state the need for

a solution. Previously, the multicast and anycast problems were viewed as separate

problems requiring separate solutions. In reality, the problems in multicast and

anycast can be generalized the same group access control problem.

In this work, we propose Gothic, a comprehensive architecture for providing

group access control. The design goals are to maintain security while providing a

scalable system that involves low computation overhead at the routers, low message

overhead, and low support infrastructure requirements. The architecture combines

some novel techniques with some known systems security concepts. We evaluated

our system relative to two previously proposed systems and find that Gothic main

tains or increases the level of security relative to previous work while increasing

scalability. We also propose a group policy management system that allows the

group owner to be authenticated before being allowed to specify the group access

rights. This system can be applied to other group policy work. Finally, we propose

and evaluated group access control aware group key management (GACA-GKM),

which is a protocol that leverages trust built into an group access control system to

reduce the requirements of group key management (GKM) and obtain substantial

overhead reductions.

For each of the multicast and anycast problems, there are a number of potential

environments composed of different Internet Protocol (IP) versions, different routing

protocols, different address allocation schemes, and different inter-domain require

ments. We call the particular combination of these the implementation environment.

The proposed architecture is relevant to many flavors of multicast and anycast on

the Internet such as Global IP-Anycast (GIA) [116], application-layer anycast [212],

73

source-specific multicast [99], and application-layer multicast [49, 106]. This chapter

freely uses standard terminology from the network and systems security literature

without further definition [126].

This chapter is organized as follows. Section 4.1 gives an overview of the Gothic

architecture and discusses the two subsystems: the group member authorization

system and the group policy management system. Section 4.2 describes the autho

rization system. Section 4.3 discusses the group policy management system spec

ifying it for multicast and for anycast. Section 4.4 discusses group access control

aware group key management and Gothic's interaction with the routing system.

Section 4.5 presents an evaluation and simulation results of the architecture and a

comparison with previously proposed solutions. We also provide simulation results

comparing traditional GKM to our group access control aware GKM technique.

Finally, section 4.6 presents conclusions and discusses possible future work.

74

4.1 Overview of Gothic

Several functions are necessary to provide controlled access to a group including the

following:

1) Group policy specification functions: These involve a host requesting to spec

ify a group policy, authenticating the host, and verifying that the host is the group

owner. The group policy is an access control policy that specifies which hosts have

access rights to become members among other characteristics. The group owner is

the entity that has been assigned ownership of the multicast group and is therefore

authorized to specify the group policy.

2) Access request functions: These involve a host notifying the system that it

wishes to become a member of a certain group.

3) Access control functions: These involve receiving a host's request, authenti

cating the host and performing authorization. Authorization requires checking the

group policy to determine if that host has the access rights to become a member of

the requested group.

Gothic controls the group of hosts that can receive data destined to a specific

multicast group address; however, Gothic does not control multicast sources. Con

trolling which hosts can send data to a group is a separate problem. Some solutions

have been proposed for multicast sender access control [22]. Sender access control

is becoming less of a problem with recent multicast schemes such as source-specific

multicast (SSM) [99] that inherently provide sender access control—though they rely

on traits of the reverse path forwarding and the security is a side effect.

Gothic is composed of two systems: the group policy management system and the

group member authorization system. Figure 14 shows Gothic and its two subsystems.

The group policy management system performs group policy specification functions.

The group member authorization system involves access request functions and access

control functions. Gothic also interacts with the routing system and any group key

management system that may be in place.

75

Group Policy Management System

. - ' ' ' • ' ~ ^ - .

GODAS

0-) <
Group ~̂"--̂ ,̂ '̂ 1
Owner j * ^ "

1 1
ACS

Routing System

Host

Group Member Authorization System

Figure 14: Gothic Architecture

Group Policy Management System

The group policy management system involves a group owner providing the list of

authorized members and possibly other security policy for the group to the access

control server (ACS). Previous work has presented requirements for specifying group

policy [136]. The task of a host specifying the policy to the system is understood.

The problem that remains unanswered is how the system verifies that the host is

the group owner. We propose two solutions for a group owner determination and

authentication system (GODAS), described subsequently.

Group Member Authorization System

The group member authorization system provides the core functionality of Gothic

by controlUng access to the group. Previous proposals for authorization systems that

handle multicast were proposed by Ballardie and Crowcroft [22] and Hardjono and

Cain [87]. The design goals of our authorization system are to maintain security and

to achieve scalability. The main scalability objective is to reduce the computational

load on network routers and the second objective is to reduce the message overhead.

We provide evaluation results that show our system improves scalability relative to

76

network and processing overhead while maintaining or increasing the level of security

of previous systems.

A Gothic Scenario

Figure 14 provides an illustrative overview of the operation of Gothic.

First, the group owner contacts the ACS; the ACS then performs authentication

and authorization functions; and the group owner states the group policy. Sec

ond, hosts wishing to join the group request access and the system performs access

control functions allowing authorized members to join. Finally, use of the group

by sources and receivers may begin. In anycast routing, initiation means that the

anycast address may be distributed and requests sent to it. In multicast, initia

tion means that the source may begin transmitting data even if receivers have yet

to join the group. We provide this scenario to show the order of operations: the

group policy management system's operations take place before the operations of

the group member authorization system. However, the presentation of the paper

does not follow that order. We will first discuss the core of the architecture, the

group member authorization system, and then explain the supporting component,

the group policy management system.

4.2 Group Member Authorization System

This section describes the group member authorization system that allows autho

rization to be performed before the host is allowed to become a member of the

group. The first subsection presents the base protocol. The second subsection dis

cusses the operation of the system including reauthorizations and revocations. The

third subsection elaborates on the interesting design features of the system and how

they relate to prior work.

77

ACS

f
1 Authorization 4

REQ

\ '

2 Authentication

3 Authorization

4 Authorization
ACK

^ 5 Join REQ

7 Join ACK
H <^ j ^ j 6 Authentication

Figure 15: Authorization System

4.2.1 Authorization Protocol

The Gothic authorization system involves a host H, a router R, and the access

control server ACS. In reality, the ACS can be a single server or a group of dis

tributed servers. Since the authorization protocol takes place between a host and

a single ACS, our discussion here only involves a single access control server. We

assume the presence of a public-key infrastructure (PKI) [102]. Hosts and the ACS

possess public-key pairs and certificates; we do not require that the routers possess

key pairs or certificates. Also, for environments without a public-key infrastructure,

we describe how the system can operate without host key pairs and certificates.

In general, the host and the access control server each have public keys, K+u and

K+Acs respectively and the corresponding private key, K-H and K^ACS- The cer

tificate issued by a trusted authority containing a public-key K+x is denoted by

CERTK^^ These are used to digitally sign messages and verify those signatures.

Digitally signed messages are shown in brackets with the key used to sign it as a

subscript [message]K_x^

Figure 15 diagrams the operation of the base protocol. The protocol begins

with the host wishing to join a group sending an authorization request to the access

control server. The authorizationrequest (AR) contains the group ID (GID) of the

78

group the host wishes to join, the host's public key certificate, and is signed with the

host's private key. Where key pairs are not available, an alternative authentication

method can be used such as a password. Also, the AR can be coupled with the

receiver obtaining the group key from the group key management system. In this

case, the host is authenticated and authorized once and receives the group key as

well as the capability.

1. H -> ACS:

AR=[GID,CERTK^,]K_^

The ACS authenticates the host and checks the group policy to determine if

the host has access rights to join the requested group. The ACS returns an autho

rization acknowledgment (AA) specifying a successful or unsuccessful authorization.

If successful, the AA is a capability that includes the host's IP address IPH, the

host's distinguished name DNH, the multicast group address, the expire time, the

public-key certificate of the ACS, and the digital signature of the ACS. The use of

timestamps to indicate the expire time of the capability requires clocks that are at

least loosely synchronized.

2. ACS -> H:

AA = CAP =

[IPH. DNH.GID, T,,,]K_,CS^CERTK + ACS

The receiver's IP address serves as an identifier and provides propagation control.

The receiver sends a join request (JR) containing the capability(CAP) to the router.

This join request is formed by including the capability in the IGMP Membership

Report message [33] or the MLD Multicast Listener Report message [82, 201].

3. H -> R:

JR = CAP

79

The router checks the validity of the capability. This includes verifying the

ACS's signature, checking the expiration time, and verifying that this capability

came from the receiver it was assigned to. This can be done by authenticating the

host and checking the authenticated identity against the identity in the capability.

Or, the router can simply lookup the IP address in its routing table to confirm that

the request arrived from the interface leading to that address. This eliminates the

need to authenticate the host. Section 4.4 discusses how Gothic can be extended to

integrate with the security of the routing system to provide controlled propagation.

After verifications, the router sends the host a join acknowledgment (JA) stating a

successful or unsuccessful join.

4 . R ^ H:

J A = Status

To allow for groups with no access control, if a router receives a join request

that does not include a capability, then the router queries the ACS to verify that

the requested group is unrestricted.

4.2.2 Reauthorizations and Revocations in the Protocol

This section discusses the reauthorizations and revocations that are part of the

operation of the system. We explain how we achieve efficient revocations while

maintaining the desired level of security. We also describe a method for multicast

groups to achieve greater efficiency by leveraging the GKM system.

Our base protocol uses time-limited capabilities to provide revocation. Requir

ing members to refresh their membership state coincides well with the soft-state

of the IGMP group membership reports and of the routing protocols. However,

refreshing authorization state is a heavyweight operation compared to a routing or

IGMP update. Therefore, for efficiency one might consider extending the lifetime

of the capabilities. This reduces the load by reducing the frequency and number

80

of reauthorizations. However, this weakens the security by increasing the revoca

tion window. That is, if a member is ejected from the group, there will be some

vulnerable time where the ex-member still has access because the capability has

not expired and he has not been required to reauthorize. Therefore there exists a

tradeoff between reauthorization overhead and security. By changing the capability

lifetime, the system can be tuned to the desired tradeoff point.

The ideal system would allow a small revocation window and low reauthorization

overhead. We propose a method of obtaining this for multicast groups. Our goal

is to provide a more lightweight reauthorization phase: instead of reauthorizing

with the ACS to obtain a capability, the host uses the group (decryption) key as

the authenticator. Since only authorized group members possess the group key,

knowledge of it successfully authorizes a host as a member of the group. This

requires the router to possess the group key. In many cases, this is straightforward

because the router is part of the key distribution path and simply must store the

key as well as forwarding it. Since the GKM maintains current authorization state,

the authorization system piggyback on that functionality by using the group key

as the authenticator. The authorization system can use the group key not only for

reauthorizations, but for the initial authorization as well.

4.2.3 Discussion

This section discusses some of the interesting design features of Gothic's authoriza

tion system and mentions related designs in other security systems.

The authorization system is designed to gain efficiency by integrating security

functions with the current network system that is in place rather than adding bulky

components. Among the interesting design features of Gothic's authorization system

are:

• There is no need for propagation control components in the system because the

81

design inherently provides propagation control by using identity-based capabil

ities. Gong [80] describes an identity-based capability system. Neumann [150]

describes a similar concept called the delegated proxy.

• There is no need for additional components to provide revocation, because

we use time limited capabilities to provide implicit revocation ^ Explicit

revocation is heavyweight and is usually provided by the use of certificate

revocation lists (CRLs) or by supplementing capabilities with access control

lists (ACLs) that are checked upon access. The normal problem with implicit

revocation is that large time limits weaken the security and small time limits

require an increased number of heavyweight reauthorizations.

• We propose leveraging the GKM system to reduce the overhead of reautho

rizations; thus allowing the strong security of short lived capabilities without

the overhead normally involved.

• The design is simplified by not including complex properties of access control

models such as lattice security and the *-property [126, 115] that are unnec

essary for multicast and anycast groups.

4.3 Group Policy Management System

This section describes the group policy management system. This system involves

a group owner providing the list of authorized members and possibly other security

policy for the group to the ACS. McDaniel, et al. [136] proposed related work

that presented requirements for specifying group policy for the key management

and data handling building blocks of the Internet Research Task Force's secure

multicast framework [88]. The task of a host specifying the policy to the system is

understood. The problem that remains unanswered is how the system verifies that

'There has been previous work in efficient revocation schemes including re-acquisitions in
DNSSec [76] and the re-confirmation TTL used in the Simple Distributed Security Infrastructure
(SDSI) [176].

82

AA CA

1 REQ

\

2 ACK/CERT

^ 3 REQ/CERT

(H) '^

1
REQ

AA

2
ACK

GOS

5
REQ

5 ACK
ACS 4 Authentication

3 REQ

6
ACK

H <>-
8 ACK

ACS
4 Authentication

7 Verification

(a) Group Owner Certificates (b) Group Ownership Service

Figure 16: Group Owner Determination and Authentication System

the host is the group owner. We propose two solutions that provide group owner

determination and authentication. The first subsection describes the two solutions.

The second and third subsections discuss the use of the group owner determination

and authentication system in multicast and anycast environments.

4.3.1 Group Owner Determination and Authentication Sys

tems

The group owner is the host that has been allocated control of or use of a particular

group address. The purpose of the group owner determination and authentication

system is to allow the ACS to determine if the host that attempts to provide the

group policy is the group owner. We discuss two different systems that provide this

functionality.

The first solution is the use of group-owner certificates as shown in Figure 16(a).

These are similar to traditional digital certificates in that the certificate verifies the

83

identity of the entity that possesses the corresponding private key. With group-

owner certificates, the identity in the certificate is the group address .̂ The group-

owner certificate can be issued by a local Certificate Authority (CA) that is asso

ciated with the entity that allocates group addresses in each domain .̂ We specify

the association between the certificate authority and the address allocator for differ

ent environments in the next two subsections. The group owner presents the group

owner certificate to the ACS along with the request to specify the group policy. This

allows the ACS to verify that the host is indeed the group owner.

The second solution is the deployment of a group-ownership service as shown in

Figure 16(b). Rather than the host providing proof-of-ownership to the ACS, the

ACS queries the address allocator. It accepts queries specifying a particular group

address and responds with the identity of the host that owns the group. The group

ownership service is deployed on a system that is associated with the entity that

allocates group addresses in each domain. It is deployed at a common address and

port number to allow it to be located. Upon receiving a request from a host to specify

the group policy, the ACS authenticates the host then queries the group ownership

service and verifies that the reply matches the identity of the requesting host. We

specify how the group ownership service can be deployed in certain multicast and

anycast environments in the next two subsections.

4.3.2 Group Owner Determination and Authentication in

Multicast environments

In this section, we discuss how group owner determination and authentication can

take place for the different multicast address allocation schemes.

• Multicast Address Allocation Architecture (MAAA): MAAA [196] specifies

^For example, this can be accomplished with X.509 v3 certificates by specifying the group
address in the Subject Alternative Name Extension. [102]

"̂ To ease PKI requirements, the local certificate authority can possess a certificate issued by a
globally trusted certificate authority.

84

inter-domain and intra-domain address allocation methods . A well-known in

stance of this architecture includes MASC [167], AAP [83], and MADCAP [86].

Thus the owner of a multicast group is the host that is allocated that address

by MADCAP. The group ownership service can be added to the MADCAP

protocol. Or the MADCAP protocol can provide group owner certificates to

the host that is allocated the address.

• Source-Specific Multicast (SSM): In SSM [99] , a multicast group is specified

by a tuple (5, G) where S is the IP address of the source and G is a SSM

destination address from the assigned 232/8 range. This provides a straight

forward mapping between the group owner and the group address since a host

S owns all multicast groups (S', *). When a host wishes to specify the policy

for any group (5 , 0) , the access control server simply authenticates the host

to verify that it is indeed host S.

• GLOP: GLOP [139, 138] provides a method for statically assigning multicast

group addresses to Autonomous Systems (AS). The identity of the autonomous

system is encoded into the group address. Within each AS, different alloca

tion schemes can be used such as static allocation, MADCAP, or SAP. If the

internal allocation scheme is also static allocation, then the AS can provide a

group ownership service or provide a group owner certificate authority.

• Session Announcement Protocol (SAP)/ Session Description Protocol (SDP):

SAP [85] and SDP [84] provide mechanisms to describe a session and to an

nounce that session. The group owner is the host that advertises a session

at a particular group address. A malicious user can disobey the protocol and

advertise sessions that are not his, thereby making itself the group owner and

obtaining the ability to specify access control policy. Therefore, for the high

est level of security, one of the previously described address allocation schemes

should be used.

85

4.3.3 Group Owner Determination and Authentication in

Anycast environments

In this section, we discuss how group owner determination and authentication can

take place with the different anycast schemes.

• IP Anycast: IP anycast includes both IPv4 and IPv6 environments. IPv4

anycast uses a separate class of addresses for anycast addresses [155]. For

IPv4, group owner certificates can distributed to the host that is assigned the

address. IPv6 anycast addresses are indistinguishable from unicast addresses

and consist of a set of reserved addresses within each subnet prefix [94, 107].

For IPv6, group owner certificates can be used or a group ownership service

can be used since the address is related to the unicast address and the domain.

• Global IP Anycast (GIA): In GIA [116], anycast addresses consist of an any-

cast indicator, the home domains unicast prefix, and a group ID. Domains are

allocated anycast addresses according to their allocated unicast address space.

Thus, the domain owns its set of anycast addresses and may give control to

some host. Each domain can provide a group ownership service or use group

owner certificates.

• Application-Layer Anycast: In Zegura's et al. application-layer anycast scheme [212],

anycast services are referred to by anycast domain names (ADNs) that con

tain the domain of the authoritative resolver for the ADN. A group ownership

service can be deployed at the authoritative resolver. Or, group owner certifi

cates can be used and the authoritative resolver can be the local certificate

authority.

86

4.4 Group Access Control Aware GKM

There has been a significant amount of work in group key management (GKM);

see for example [38, 35, 209, 142]. Most of this work has been in creating efficient

algorithms and systems for GKM for dynamic groups. These GKM solutions were

designed around the assumption of an open Internet multicast group where all hosts

have access to the multicast tree. This is due to the fact that IGMP allows any host

to join a multicast group and receive the data being sent to that group.

With multicast receiver access control deployed, this assumption no longer holds.

Multicast receiver access control provides a means to restrict access to the multicast

tree to authorized users. There have been proposals for systems providing multicast

receiver access control in the research community as well as in the IETF. Since group

access control changes the assumptions of GKM designers, the requirements and

approach of GKM should be reconsidered. The goal of group key encryption is to

prevent unauthorized receivers from obtaining the content. Group key management

focuses on the dynamic group problem. That is, when a member joins or leaves, the

group key must be changed so the new member cannot decrypt past content or so

the former member can not decrypt future content.

In traditional GKM, the key is changed upon a join because it is assumed that

the new member could easily used IGMP to receive the encrypted content from

before it was a member. Thus, giving the new member the old group key will allow

it to decrypt the content from before it was a member. Now, with group access

control in place, the host can use IGMP to receive the encrypted content before it

is a member. If the host does not have the earlier content, then there is no need to

rekey the group. There are similar implications for a member leave. In traditional

key management, the key is changed upon a leave because it is assumed that the

leaving member can use IGMP to easily continue to receive the encrypted content

and not changing the key will allow it to decrypt it. With group access control

in place, the leaving member can not use IGMP to access the distribution tree to

87

obtain the encrypted content. If the host can not continue to receive the content,

then there is no need to rekey the group.

With these new assumptions, we propose a new GKM technique that leverages

the existence of multicast receiver access control. We show that even with the

existence of GACA, the need to rekey is not abolished. There are certain issues that

must be considered such as the lack of access control beyond the subnet or shared

link level. Also, we discuss the risk associated with eavesdroppers. We will show

that the system is robust against local eavesdropping attacks, but not against some

more involved eavesdropping-based attacks.

A GACA-GKM system requires the group key controller to have knowledge of

the multicast topology and the placement of members in the tree. This information

is not available in readily available in existing GKM systems. We will explore three

methods of providing this functionality. The methods are:

• Traceroute-type Approach

• Topology Inference-based Approach

• Enhanced IGMP-based Approach

4.4.1 GACA-GKM Technique

In the first subsection, we provide some definitions by explaining how Gothic in

tegrates with the multicast routing system. The second subsection discusses the

GACA-GKM technique.

4.4.1.1 Group Access Control and the Routing System

For multicast group access control, after the router accepts the host, the router must

forward the join request according to the multicast routing protocol. The routing

protocol may require reauthorizations or provide its own message authentication

methods. There have been a number of studies that propose secure multicast routing

Trusted
Router

O Untrusted - / ^

Router / ' - i : /
A source y// \ : ^ _ ^^_^

K,.¥ Tree Link /' ' /TS-C' '
/ ' '̂ . TS-B "---'-''_

Trusted / ~" " '
Subtree ; TS-A

Figure 17: Gothic Trusted Routers form Trusted Subtrees

protocols [188, 205, 144]. Some routing protocols do not assume trust of the entire

routing system but only of some subset that are considered trusted routers. In the

context of Gothic, a trusted router is defined as a router that correctly authorizes

all join requests according to the protocol. An untrusted router is a router that

may accept unauthorized join requests or forward fabricated or unauthorized join

requests.

When a host sends a join request to its upstream router, the router forwards the

request containing the capability according to the routing protocol. Any trusted

router on the path will perform access control by verifying the capability. Thus,

an untrusted router may accept and forward requests from unauthorized hosts but

trusted routers on the path will provide access control. The scope of trust extends

from the source to the multicast tree and is bordered by trusted routers. A trusted

subtree is a subtree of the multicast tree rooted at a trusted router. A trusted

subtree can exist within another trusted subtree. A host is a member of the trusted

subtree of its first upstream trusted router. Figure 17 shows how trusted subtrees

are formed.

4.4.1.2 Detai ls of the Rekey Condit ions

With the introduction of group access control, the goals and requirements of group

key management must be reconsidered. The goal of group key encryption is to

prevent unauthorized receivers from obtaining the content. Group key management

(GKM) focuses on the dynamic group problem. That is, when a member joins or

leaves, the group key must be changed so the new member cannot decrypt past

content or so the former member cannot decrypt future content. There has been

a significant amount of work in group key management; see for example [38, 35,

209, 142]. These GKM solutions were designed around the assumption of an open

Internet multicast group where all hosts had access to the multicast tree. With group

access control in place, this assumption no longer holds. We propose a GACA-GKM

technique that leverages the inclusion of a group access control system.

We show how we are able to relax the requirements of GKM. In traditional

GKM, the key is changed upon a join because it is assumed that the new member

could have received the encrypted content from before it was a member. Thus,

giving the new member the old group key will allow it to decrypt the content from

before it was a member. Now, with group access control in place, the host can not

receive the encrypted content before it is a member. If the host does not have the

earlier content, there is no need to rekey the group. There are similar implications

for a member leave. In traditional key management, the key is changed upon a

leave because it is assumed that the leaving member can continue to receive the

encrypted content and not changing the key will allow it to decrypt it. With group

access control in place, the leaving member will not be able to access the distribution

tree to obtain the encrypted content. So, there is no need to rekey the group.

This simple example shows the significant impact of introducing group access

control. However, we are not able to achieve such gains for every member join and

leave. For example, if a new member, host A, is on a shared link with current group

member, host B, then we must rekey when host A joins since she had access to the

distribution tree before she became a member. Similarly, if leaving member, host

C, is on a shared link with current member host D, then we must rekey when host

C leaves because she will have access to the distribution tree after she is no longer

a member. In reality, these cases include not only if the two users are on a shared

90

link but also if they are in the same trusted subtree. The GACA-GKM technique

is stated as follows:

KTSG is the set of known trusted subtrees for a multicast session G.

TSfi is the trusted subtree of host h.

riTSh is the current number of members in trusted subtree TSh-

For a join: // {TSh in KTSG)

If [uTs > 0)

rekey

Else If {LastRekeyTime < LastMemberLeaveTime)

rekey

For a leave: / / {riTSh ̂ ^)

rekey

1. If a host h joins multicast session G from a trusted subtree that has

previously been part of the multicast tree for session G, then if the

trusted subtree currently has session members or if the group has

not been rekeyed since the last session member from this trusted

subtree left the group, then rekey.

2. If a host h leaves multicast session G from a trusted subtree that

will remain part of the multicast tree for session G, then rekey must

occur,

3. Otherwise, there is no need to rekey.

91

4.4.2 GACA-GKM System: Providing Topology Informa

tion

A GACA-GKM implementation would require the group key controller to know

certain information such as the trusted subtree of each host, the trusted subtree

hierarchy, and if the number of members of a trusted subtree is 0, 1, or greater. We

propose three ways to obtain this information.

4.4.2.1 Traceroute-type Approach

The mtrace tool [71] allows multicast receivers to learn the route to a multicast

source. It is an extension of the traceroute tool for unicast routes. Tracetree [183]

allows a multicast source to receive mtrace data for each of its group members. The

tracer protocol proposed by Levine, et al. [127] organizes receivers into a logical trees

using mtrace packets. These techniques provide more information than is needed for

GACA-GKM. We can reduce this topology information to just the trusted subtree

hierarchy. Also, for each leaf trusted subtree, the system does not need the exact

count of child receivers. It only needs to know if the count is 0, 1, or greater.

4.4.2.2 Topology Inference-based Approach

Topology inference techniques such as those proposed by Ratnasamy, et al. [171]

and Duffield, et al. [62] observe network characteristics and make inferences about

the multicast topology. This technique are not as accurate as traceroute-type ap

proaches. In general, these techniques are used when the receivers cannot be explic

itly polled to determine the topology.

4.4.2.3 Enhanced IGMP-based Approach

IGMP [33] does not send topology or membership information to the source. It

only sends an indication there is some number of interested receivers downstream.

EXPRESS multicast included a proposal for an enhanced IGMP that provides group

92

membership counts [100]. This approach provides only the count. GACA-GKM also

needs the trusted subtree information. We propose changes in the IGMP protocol

that allows the hierarchy information to be passed up the tree up to the source.

4.5 Evaluation

We now present separate evaluations of Gothic and of GACA-GKM. The first sub

section examines the efficiency of Gothic in terms of message overhead and compu

tational overhead. The second subsection presents evaluation results showing that

GACA-GKM reduces message overhead by 50

4.5.1 Gothic Evaluation

We evaluate Gothic in the multicast environment because the number of users is

larger than the number of anycast servers so this provides the best evaluation of

the scalability of the architecture with regards to group size. This also allows the

performance to be compared to Hardjono and Cain's and Ballardie and Crowcroft's

secure IGMP schemes reviewed in the related work section. To simulate the perfor

mance of these schemes, we use data collected by the Mlisten [14] tool over several

days for the Mbone multicast of the Space Shuttle Mission STS-80 in November

1996. The session has a duration of 13 days and over 1600 join requests. Figure 20

shows the group membership over the length of the session.

Figure 18(a) shows the total network overhead at all last-hop routers involved

in the system. The amount of data transmitted by Gothic and Hardjono and Cain's

scheme is 1.2 KB compared to 138.1 KB by Ballardie and Crowcroft's scheme;

therefore, they are not clearly visible in the figure. Figure 18(b) shows the total

network overhead at all group members. Figure 19(a) shows the cumulative network

overhead at the ACS. Figure 19(b) shows the overall network overhead. These

figures show that Gothic involves less than half of the total network overhead of the

93

Operation Performance

3DES encryption 4.75 MB/sec
MD5 message digest 100.74 MB/sec
HMAC/MD5 message digest 99.86 MB/sec
RSA 1024 signature 10.29 sec
RSA 1024 verification 0.30 sec

Table 2: Cryptographic computation processing time

other two schemes. The related work section above explains how such performance

improvements were achieved.

To analyze the computational overhead, we determine the number of computa

tional operations invoked by each of the schemes. We evaluate these operations at

the router and access control server. We then translate the number of operations

to the actual computation load by evaluating the processing time involved with

these operations. The computation operations include host authentications, digital

signatures creation and verifications, authorization lookups, and encryptions. The

processing times for the computation operations are based on benchmarks published

for the publicly available Crypto++ library [53]. The simulation used 128-bit Triple

DES encryption, MD5 message digest, RSA 1024-bit digital signatures, and IPSec

AH with HMAC-MD5 authentication. The performance of each of those operations

is shown in Table 11. Figure 21 shows the computational overhead of the three

schemes at the router in terms of processing time. The computational overhead of

Gothic is an order of magnitude less than that of the other schemes. This shows

that the Gothic authorization system achieved its goal of reducing the computational

overhead at the router. Again, the related work section discusses the operations of

these two schemes relative to Gothic and explains how such performance improve

ments were achieved.

94

o

140

120

100

80

60

40

20

0 ^

Gothic
Ballardie and Crowcroft

Hardjono and Cain

100000 200000 300000 400000 500000 600000 700000
Time

(a) Router

o

350

300

250

200

150 -

100 -

50 -

Gotliic
Ballardie and Crowcroft

Hardjono and Cain

100000 200000 300000 400000 500000 600000 700000
Time

(b) Host

Figure 18: Network overhead at routers and hosts

95

m

o

o

ouu 1 [1 1 • 1 , . . . - ,

Gothic
Ballardie and Crowcroft

Hardjono and Cain
250

200 J

150 _ _ , - • • • • • \

100 t \

50 / • ' \

]/""]/""
_ _ _ - - "^

n - ^ 1 1 1 1 1 1 1

100000 200000 300000 400000 500000 600000 700000
Time

(a) ACS

600

500

400

300

200

100 V

Gothic
Ballardie and Crowcroft

Hardjono and Cain

100000 200000 300000 400000 500000 600000 700000
Time

(b) Total

Figure 19: Network overhead at ACS and overall

96

w 50
45

fc 40
0)
E 3b
Q.
3

30
O 25
O) 20
o 15 o ^ 10
:3 5
Z 0

100000 200000 300000 400000 500000 600000 700000
Time

Figure 20: Group membership

4.5.2 GACA-GKM Evaluation

We next provide simulation results to show the efficiency gains of GACA-GKM over

traditional approaches. In addition to the NASA session trace described above we

also use a trace from a simulated multicast group. This allows us to simulate the

performance for a range of trusted subtree sizes. The simulated multicast group

model has the following parameters:

1. The pool of potential receivers has 65, 536 receivers. Each receiver joins and

leaves the group independently.

2. The length of an individual active phase is an exponential distribution with

an average of r. The length of an individual inactive phase is an exponential

distribution with an average of lOr. The ratio of active to inactive duration

is 1 : 10, so the average group size is approximately 5, 958 receivers during

steady state.

3. The length of the group session is lOOr.

We evaluate the GKM message overhead at the group key controller. We use a log

ical key hierarchy (LKH) [209, 204] as the underlying rekeying algorithm. Thus, we

compare traditional LKH to GACA-LKH, LKH using the GACA-GKM technique.

The best performance gains are achieved when the group access control system is

97

14000

Q5 12000

CO

o 10000

rt 8000

Z 6000

O

4000

2000

Gothic
Ballardie and Crowcroft

Hardjono and Cain

100000 200000 300000 400000
Time

500000 600000 700000

Figure 21: Computational overhead at last hop routers

widespread. This is the case when each router is trusted so each trusted subtree

includes one host. The other extreme is if the group access control system is not

present. In this case, the scope of trust only includes the source. Thus, the only

trusted subtree is the one rooted at the source and it includes all n group members.

This is equivalent to traditional GKM. We evaluate the scheme in a range of envi

ronments based on the average trusted subtree size which is denoted by t. Figure

22 shows the GACA-LKH (t = 1) performance in terms of GKM message overhead

at the group key controller as compared to traditional LKH {t = 65,536). Figure

22(a) shows the results for the actual mlisten trace data. GKM traffic overhead

is reduced from 171 KB with traditonal GKM to 19 KB with GACA-GKM. The

simulated trace results in Figure 22(b) show how the size of the trusted subtrees

affects the overhead. The graph shows GACA-LKH denoted as t = 1 as compared

to traditional LKH denoted as t = 65, 536 and a range of environments in between

consisting of various values of t. For traditional LKH where t = 1, the overhead is

98

250

200

150

100

Traditional LKH
GACA LKH

100000 200000 300000 400000 500000 600000 700000
Time

(a) Actual Trace

300

250

200

150

100

50 -

Normal LKH(t=65536)
GACALKH(t=16)

GACA LKH(t=4)
GACALKH(t=1)

(b) Simulated Trace

Figure 22: Group key management traffic overhead

99

267 MB. By introducing some trusted routers such that t = 16, the overhead is

reduced to 233 MB. In systems in which all routers are trusted, the overhead is

reduced to 128 MB.

4.6 Conclusions

The need for a solution for secure multicast group joins and secure anycast server ad

vertisements is well-known. We have generalized these problems into a single group

access control problem and proposed a secure and scalable solution, Gothic. We pre

sented a novel authorization system that improves the scalability and security over

previous solutions. We also presented solutions for group owner determination and

authentication. We have introduced GACA-GKM and evaluated the performance

improvements. We have presented Gothic in the context of many flavors of multicast

and anycast including Global IP-Anycast, application-layer anycast, Source-Specific

Multicast, and Application-Layer Multicast.

100

Chapter 5

Rights Management in Peer-to-Peer
Systems

Peer-to-peer file sharing systems allow content to be shared between distributed

end-systems. Files stored at peers are transferred directly between peers rather than

storage at or transmission through a central server. The last few years have seen

the popularity of such systems grow tremendously. One such system, Napster [148]

was the fastest growing application on the Internet, boasting a total of 50 million

users downloading its software. Users are drawn to peer-to-peer systems to locate

and retrieve a wide variety of content.

There are two main varieties of peer-to-peer systems. Centralized systems such

as Napster provide indexing and searching functions at a centrally managed location

or a set of replicated locations; while decentralized systems such as Gnutella [78] and

Freenet [74] depend on the peers themselves to manage content indexing and search

functions in a distributed manner. In both types of systems, content is exchanged

directly between peers.

The large number of users freely exchanging content has increased the interest

of content creators and owners in the protection of content that can be shared on

these systems. They, along with legal authorities are attempting to force peer-to-

peer system operators and users to control the exchange of content on their systems.

In this context we use the term content protection to refer to the ability to control

or restrict the exchange of content within a peer-to-peer file sharing environment.

We emphasize here the central importance that effective content protection will

101

play in the future success of many peer-to-peer systems. Napster faced many le

gal/court imposed obstacles to its operation because of its lack of

content protection, and will re-emerge only after implementing stringent content

protection functions [51]. Other existing decentralized peer-to-peer systems such

as Gnutella [78], Freenet [74], KaZaA[118] and Morpheus[146], continue to operate

without content protection, but some are constantly under legal pressure to imple

ment content protection [28]. We believe that it is a matter of time before many

peer-to-peer file sharing systems will have a need for content protection features.

While on one hand content providers are actively trying to stop these peer-to-peer

systems from allowing uncontrolled content distribution, at the same time, con

tent providers are actively seeking content protection technology that will allow

them to effectively leverage the popularity of peer-to-peer distribution. The content

providers interest and exploration shows in many forms including working groups

and requests for proposals [2, 1], creating new companies [163, 147], or acquiring

technology companies [6].

Some people are opposed to content protection systems because they feel that

such systems unfairly restrict the users ability to access content. We aim to pro

vide a system that provides the level of protection needed by content owners while

maintaining the flexibility that end-users desire. This is ultimately beneficial to

end-users because content owners will not make content available in the forms that

users want until adequate protection measures are in place. By providing a system

that meets the needs of both parties, this will ideally increase access to a greater

variety of content and flexible business models that users are accustomed to from

other distribution models.

Some content protection systems have been implemented or proposed for cen

tralized peer-to-peer systems [122]. Such systems rely on the central authority that

maintains the indexing and location functions to provide content protection and,

therefore, cannot be applied to decentralized peer-to-peer systems. In this paper

we present CITADEL, a novel content protection system designed specifically for

102

use within a decentralized peer-to-peer system \ CITADEL builds a protected file

sharing environment over a normal peer-to-peer network using secured content ob

jects and file sharing software enhanced to perform protection operations. A flexible

content importation system that is part of CITADEL allows all users to insert new

content as well as additional copies of protected content. Our work also includes an

implementation that shows that CITADEL is a practical and lightweight approach

to creating a protected peer-to-peer file sharing environment.

This chapter is organized as follows. We begin by discussing the benefits of

content protection in Section 5.1. We then motivate the approach of an overlay

security layer in Section 5.2. Section 5.3 provides some background discussion on

peer-to-peer environments and explains the design issues in a content protection

architecture for peer-to-peer file sharing systems. Section 5.5 presents an overview

of the CITADEL architecture. Section 5.8 presents the detailed operations of the

CITADEL components. We conclude in Section 5.9.

5.1 The Benefits of Content Protection

Some people are opposed to content protection systems because they feel that such

systems unfairly restrict the users' ability to access content. There are many in

teresting legal and policy questions concerning file sharing and "fair use". We do

not attempt to answer those questions or provide a technical solution to those ques

tions. Instead, we argue that in many environments the ability to provide content

protection will provide benefits to many different parties. Therefore, content protec

tion systems should be developed so that they are available for environments that

can benefit from them. The idea of providing protection in a content distribution

system is not new. Most content distribution systems are built upon the ability

to provide access control including cable television, video-on-demand, information

^The system can also be viewed as an alternative to current proposals for content protection in
a centralized system. We focus, in this paper, on its use in decentralized systems.

103

websites, and even print mediums.

It is often portrayed that the primary goal of content protection is to control

or stop file-sharing systems such as Gnutella and Freenet. We suggest that this is

not the single goal of content protection work and that these systems alone cannot

obtain this goal. For those interested in achieving this goal, there are two possible

ways that protection systems can help:

1. Protection systems for peer-to-peer systems alone cannot stop users from cre

ating new file-sharing networks and freely exchanging content. One view is

that along with other protection mechanisms such as secure audio compact

discs, operating systems and hardware, peer-to-peer protection may help pro

vide an overall, security-in-depth solution.

2. More importantly and more realistically, protection systems will allow the cre

ation of legitimate file-sharing systems. Most users are willing to pay for

access to content and the conveniences that accompany such a service [65].

They only use existing file sharing systems because there are no legitimate

alternatives. So even if rogue networks do exist, they will represent a minority

of the users and such practices have become accepted by content providers

in other distribution mediums [157]. Content providers aim to "keep honest

people honest" [27] and peer-to-peer content protection provides a solution to

achieve that goal.

The introduction of content protection systems for peer-to-peer networks will

allow content providers to safely take advantage of the numerous benefits of the

peer-to-peer distribution paradigm. This will lead to the availability of more con

tent, richer content, new applications, and traditional content distribution business

models in peer-to-peer systems. Thus, content protection will benefit peer-to-peer

network operators, content providers, and end-users. We argue that the currently

popular file-sharing networks are only the tip of the iceberg in peer-to-peer content

104

distribution systems and that future systems will build upon the foundation pro

vided by content protection to allow rich, flexible, on-demand content location and

access functionality.

Content protection can provide benefits for the different parties involved:

• Network Operators: Eff"ective content protection will play a central importance

in the future success of many peer-to-peer file-sharing systems. Systems such

as Morpheus and Napster were shut down after legal pressures due to their

lack of content protection. Other existing systems continue to operate without

content protection, but some are constantly under legal pressure to implement

content protection [28]. It may be only a matter of time before operators

of many peer-to-peer file sharing systems are obligated to provide content

protection features.

• Content Providers: There are a number of parties ranging from individual

musicians and producers to large content providers that desire to utilize peer-

to-peer distribution, but require the ability to protect their content. Content

providers are actively trying to stop peer-to-peer systems from allowing un

controlled content distribution. At the same time, however, content providers

are actively seeking content protection technology that will allow them to

eff"ectively leverage the benefits and popularity of peer-to-peer distribution.

The content providers' interest is evident in their participation in working

groups [2], requests for proposals [1], creation of new companies [163, 147],

and acquisition of technology companies [6].

• End-users: We argue that the lack of content protection is currently hindering

the introduction of richer content distribution systems. Content protection

is ultimately beneficial to end-users because content owners will not make

content available in the variety, quality, and formats that users want until

adequate protection measures are in place. Content protection will enable

providers to off"er flexible business models that users are accustomed to from

105

other types of distribution systems. These systems will possibly offer more

reliability and convenience than systems not supported by providers. Protec

tion systems should aim to provide the level of protection needed by content

owners while maintaining the flexibility that end-users desire.

5.2 The Case for an Overlay Security Layer

In this section, we describe current peer-to-peer environments, discuss the problems

with previous approaches to content protection for peer-to-peer systems and describe

how an overlay security layer-based approach overcomes these problems.

5.2.1 Our Approach

We argue that previous peer-to-peer content protection systems are inadequate and

we propose a new approach based on the use of an Overlay Security Layer (OSL)

that is a secondary overlay layer that is built on top of the existing peer-to-peer

network and below the application. Due to this layering, the OSL is able to provide

content protection by securing the content and controlling all user access to content.

Previous attempts at content protection for peer-to-peer systems have included pro

prietary systems designed for centralized peer-to-peer systems. These systems are

not portable across different peer-to-peer systems; thus, each peer-to-peer applica

tion developer must create a custom content protection solution. Furthermore, these

systems cannot be utilized for decentralized peer-to-peer systems such as Gnutella,

Morpheus, and KaZaa. Also, these systems only provide the ability to enforce sim

ple all-or-none access policies; therefore they provide limited protection and do not

provide the flexibility to support traditional business models.

We propose the use of an OSL to provide solutions to these issues and de

scribe CITADEL [108] as an example of an architecture based on this approach.

106

C I T A D E L ' S O S L builds a protected file-sharing environment over a normal peer-

to-peer network by being a secondary overlay situated on top of the existing peer-

to-peer overlay infrastructure. We explain four benefits of the OSL: portability

including use in decentralized peer-to-peer systems, reusability, increased security,

and support of new applications and business models.

5.2.2 Environment Description

Peer-to-peer file sharing systems consist of two components, the file location process

and the file retrieval process. In most peer-to-peer systems, the file retrieval process

is decentralized. That is, files are transferred directly between peers rather than

through a client-server model. However, peer-to-peer systems differ in the file loca

tion process. As previously defined, there are centralized and decentralized systems.

Among the decentralized systems, there are naive broadcast query systems such as

Gnutella [78] and distributed hash table (DHT)-based systems such as CAN, Chord,

Pastry and Tapestry [170, 194, 179, 214].

Peer-to-peer networks are formed as a logical connection of endhosts over the

physical network. Thus, peer-to-peer systems currently add one layer over the nor

mal network. We refer to this as the distribution layer and it includes content

location, routing, and retrieval mechanisms. We propose a protection layer that

provides security services independently of the specifics of the distribution layer.

We show that the functionality provided by the protection layer enables greater ap

plication functionality and consequently further defining the application layer for

peer-to-peer systems.

5.2.3 Problems with previous approaches

One of the most well-known attempts at a content protection system for peer-to-peer

was implemented by Napster [148]. Napster's centralized design requires information

about shared files to be sent to the central server where they are indexed. All

107

queries are sent to the central server which replies with the location of the file.

This design provides two points to restrict the ability to distribute certain content:

upon indexing and upon querying. To restrict content upon indexing, when a user

attempts to share a file that is not approved, the central server does not index the

file. To restrict content upon querying, when a user searches for an unapproved file,

the central server does not return a valid response.

One issue is that Napster's content protection system relies on the central server

to store and enforce the access control policy. Therefore, this approach cannot be

applied to decentralized peer-to-peer systems because there is no central server that

can be used. The most widely used peer-to-peer systems today are decentralized

and therefore lack any means of providing content protection.

A second problem that peer-to-peer distribution has faced is the lack of service

models and business models from traditional content distribution methods. Systems

have been unable to offer these models because of the absence of the protection

functionality required to support them. Previous content protection systems can

only enforce simple all-or-none access control policies which is not enough to support

popular business models that require a more granular and flexible access control

policy.

A third issue is that these content protection systems are not portable across

different peer-to-peer systems; thus, each peer-to-peer application developer must

create a custom content protection solution. One reason these systems lack porta

bility is that they are situated in the middle of the file location process. As we

have shown earlier, the file location process varies across different types of systems.

However, the file retrieval process maintains common features across all peer-to-

peer systems. So, in order to achieve greater portability content protection systems

should be implemented as part of the file retrieval process rather than the file loca

tion process.

108

5.2.4 Overcoming those problems

We propose the CITADEL architecture that provides solutions to these issues.

CITADEL is based on an overlay security layer that builds a protected file-sharing

environment over a normal peer-to-peer network. This protection layer is a sec

ondary overlay that is layered on top of the existing peer-to-peer overlay infras

tructure. There are at least four advantages to using an OSL to provide content

protection in peer-to-peer systems:

L Decentralized approach: A primary goal of the OSL is to provide a content

protection system that can be used in decentralized peer-to-peer systems. This

is achieved by pushing the required functionality from the central server to the

peers. The OSL allows decentralized storage of the access control policy by

storing the policy at the peers along with the content and allows decentralized

enforcement of the policy by providing the protection mechanisms at the peers.

2. Reusability: The OSL provides an architecture that can easily be integrated

into different peer-to-peer systems and applications. The protection function

ality provided by the OSL is built into applications as an underlying library or

API making it transparent and easy to incorporate. Thus, peer-to-peer appli

cation developers can include protection functionality with minimal effort and

without significant application changes. This also allows applications to con

tinue to take advantage of specialized functionality such as lookup and routing

functionality without interference from content protection mechanisms.

3. Enhanced Security: The overlay security layer is able to create a protected file-

sharing environment. Thus, only protected objects can be exchanged within

this peer-to-peer system. Additionally, all content objects in the system are

protected and all access to these objects is controlled. In the past, the goal of

content protection in peer-to-peer systems has been to restrict certain content

from being exchanged within the system. Thus, these systems only provided

109

all-or-none access; if content was allowed in the system, then anyone in the

system could access it. Due to the efficiency provided by the OSL, the pro

tection goals can be expanded to be able to control access to content on a

per user basis. Due to the placement of the content protection mechanisms

between the application and the distribution mechanisms, the system is able

to provide protected distribution by controlling the user's ability to retrieve

the content and provide protected storage by controlling the user's ability to

access the plaintext content within a local copy of the content.

4. Enables new applications and support business models: While content control

has been criticized in some circles as spelling the end of true peer-to-peer

file sharing, we suggest that it may actually be beneficial in that it has the

potential to enable many different and desirable service models. As we have

mentioned, there are a number of common content distribution business mod

els that peer-to-peer systems have been unable to support because they lack

enhanced protection functionality. The OSL provides flexible protection func

tionality that the application can interact with thereby enabling new appli

cation functionality and business models. We describe three such models in

Section 6.1.

5.3 Background and Design Issues

Peer-to-peer file sharing systems have two parts, the file location process and the

file retrieval process. In most peer-to-peer systems, the file retrieval process is de

centralized. That is, files are transferred directly between peers rather than through

a client-server model. Peer-to-peer systems diflfer in the file location process. There

are centralized and decentralized file location systems. Among the decentralized sys

tems, there are naive broadcast query systems such as Gnutella [78] and distributed

hash table(DHT)-based systems such as CAlN, Chord, and Pastry [170, 194, 179].

110

In centralized file location systems such as Napster, information about shared

files is sent to the central server where they are indexed. All queries are sent to the

central server which replies with the location of the file as shown in Figure 23(a).

This design provides two points to restrict the ability to distribute certain content:

upon indexing and upon querying. To restrict content upon indexing, when a user

attempts to share a file that is not approved, the central server does not index the

file. To restrict content upon querying, when a user searches for an unapproved file,

the central server does not return a valid response.

The file sharing processes of a broadcast query-based file sharing system and a

DHT-based file sharing system are shown in Figures 23(b) and 23(c). These figures

show the absence of a central entity in the file location process. Thus, it is clear

that the content protection approach used in centralized systems cannot be directly

applied to decentralized peer-to-peer systems because there is no central location to

filter indexed files or searches.

For each type of file sharing system. Figure 23 shows the separation of the file

location process and the file retrieval process. It can be seen here that even though

these three systems vary significantly in the way that files are located, the file

retrieval processes of the systems are nearly identical.

In CITADEL, therefore we create a content protection system that focuses on

the file retrieval process. Because of its independence from the file location process,

CITADEL can be used in any peer-to-peer file sharing system including centralized,

query-based decentralized, DHT-based, or some hybrid systems

In developing our proposal for CITADEL, we start with an assumption that

content rights lists are provided by content owners. This assumption is based on the

involvement of content owners in recent real-world content protection issues [122].

These lists describe the access rights associated with each content object. The rights

described may be dynamic and can change over time.

I l l

Query

(a) Centralized

File Location
Process

(b) Decentralized, Query-Based

(c) Decentralized, DHT-Based

Figure 23: File location and retrieval in different peer-to-peer systems

112

5.4 CITADEL Objectives

We outline the design objectives of a content protection system for decentralized

peer-to-peer file sharing systems.

• Content Protection: In the past, the goal of content protection in peer-to-

peer systems has been to restrict certain content from being exchanged within

the system. Thus, these systems only provided all-or-none access; if content

was allowed in the system, then anyone in the system could access it. In

CITADEL, the fundamental content protection goal is to be able to control

access to content on a per user basis. Controlling access refers to providing

protected distribution by controlling the user's ability to retrieve the content

and providing protected storage by controlling the user's ability to access

the plaintext content within a local copy of the content. CITADEL does not

aim to provide output protection-protection for the analog or digital output

after access has been granted to an authorized user. Refer to section ?? for a

discussion of related work in these three areas of content protection.

• Maintain an open peer-to-peer sharing experience: We define an open

peer-to-peer environment as one in which, even in the face of content pro

tection, all peers are equally able to insert content into the system including

independent content and copies of protected content (including variations such

as different formats or compression rates). This requires the content protec

tion system to be able to appropriately secure all content that is introduced

into the system without regard to the peer inserting the content. Without

this ability, systems have struggled to find the correct balance of openness

and security [5]. We suggest that without the openness, the peer-to-peer sys

tem loses many of its attractive features and resembles a client-server model

in many respects. When most or all content is introduced by a central source,

a peer's role turns from content provider to content cache. At this point, the

system is effectively a client-server based distribution system with extensive

113

caching. In section 5.6.4, we discuss the content importation system that will

provide such functionality within CITADEL.

• Avoid dependency on trusted client software: Providing content protec

tion in a decentralized peer-to-peer system requires modifications or additions

to the file-sharing software. We assume the presence of malicious users that

wish to circumvent the content protection system. The system should be

robust against attacks by users with full access to the software and the oper

ating system on their computer. Additionally, the system should not rely on

the file-sharing software being tamper-proof or trusted software.

• Maintain privacy: The content protection system should at least maintain

the level of privacy that exists in the normal file-sharing environment. It

should be possible to allow a user to obtain access rights and to be authorized

without providing identifying information. Additionally, the system should be

able to interoperate with the work in anonymous systems such as anonymous

communication [189, 172, 173], anonymous authorization [40], anonymous pay

ment [41, 29], and anonymous peer-to-peer file sharing [185, 74].

• Avoid dependency on centralized security infrastructure: In a decen

tralized file-sharing system, the content protection system should not introduce

a single central authority. The protection system should allow a decentralized

security infrastructure that can support multiple separate hierarchies of trust

and control. For example, all content should not be controlled by a single

entity. A more realistic approach would be to allow all content providers to

establish independent trust systems. Also for a given trust system, the archi

tecture should allow decentralized entities to perform the necessary operations

rather than a central server. The security infrastructure should be flexible to

allow different types of authorization and payment systems depending on the

requirements of each content provider.

114

• Provide the flexibility to support common content distribution busi

ness models: There are a number of common content distribution business

models that peer-to-peer systems have been unable to support because they

lack enhanced protection functionality. While content control has been crit

icized in some circles as spelling the end of true peer-to-peer file sharing, we

suggest that it may actually be beneficial in that it has the potential to enable

many different and desirable service models. For example, we suggest three

such models: Pay-per-view and Subscription Models Syndication Model, and

Reseller Model. In chapter 6 we explain how CITADEL supports these models.

5.5 Overview of the CITADEL Architecture

In this section, we provide an overview of the CITADEL architecture. We discuss

possible approaches to a decentralized content protection system and motivate our

approach. We then introduce the components of CITADEL.

5.5.1 Our Approach

As explained above, due to the nature of decentralized peer-to-peer systems, there

is no central authority in the file sharing process, so policy enforcement must be

done at the peers. This implies that peers must know the access control policy The

question is, how do the peers securely and efficiently access the global content rights

list in order to enforce it? The content rights list is a form of an Access Control

List (ACL). In the distributed ACL approach, the content rights list is distributed

to all peers. However, there is significant overhead associated with distributing the

entire content rights list to all peers. An alternate approach, the queried ACL

approach, is to have the peers access the list by querying the content rights list

server as necessary for each access to a content object. However, there is significant

overhead associated with repeatedly querying the content rights list server .̂

^Section 6.2 presents an evaluation of CITADEL relative to these two approaches.

115

To avoid these types of overhead, our system takes a different approach in which

the access control poHcy for each content object is stored with the content object.

Thus, every access control policy that a peer must enforce is available and accessed

locally. Compared to the queried ACL approach, this approach behaves like a cache

of the relevant access control policy information. This provides greater scalability

than the other two approaches. In order to distribute the content rights list with

the content, we must protect the integrity of each object's access control policy.

To provide this and other protection, we introduce the concept of a protected file-

sharing environment. The system builds a protected environment over a normal

peer-to-peer network. Only protected objects can be exchanged within this peer-to-

peer system. Thus, all content objects in the system are protected and all access to

these objects is controlled.

Figure 24 shows the protected file-sharing environment. The system uses the

peer-to-peer network strictly as a means of file location and distribution. CITADEL

exists as the protection layer built upon this distribution layer. The service layer is,

in turn, built on top of the protection layer. Thus, service providers and application

developers can introduce new services and applications based on a peer-to-peer

distribution model by building the services on top of the CITADEL protection layer.

5.5.2 CITADEL Components

In this section, we introduce the components of the CITADEL architecture. The

components include the secured content objects, access tokens, the file sharing soft

ware, and the content importation system.

116

User's PC

Content
Containers

Access
Tokens

Compliant
File Sharing
Software

Application
Mechanisms

Protection
Mechanisms

Distribution
Mechanisms

Services Layer

Content Token Servers
Protection Layer

Content Rights List Server

Distribution Layer

Figure 24: The CITADEL protected file sharing environment.

5.5.2.1 File Sharing Software

We refer to file sharing software that is enhanced with content protection software

modules as compliant file sharing software(CFSS). Within Figure 24, there is a

high-level diagram of the compliant file sharing software. The CFSS provides three

types of operations: distribution operations, protection operations, and application

operations. Distribution operations involve normal duties of peer-to-peer file sharing

software such as interacting with the file location system and the file retrieval system.

Protection operations involve interacting with the secured content objects to control

access to the content. Protection operations also include periodic interactions with

the content rights list server and the content token server as necessary. Application

117

operations involve supporting the application and the service model interacting with

the protection layer to provide access to the content files in the secured content

objects. We assume the presence of malicious users that aim to gain unauthorized

access to content by circumventing the mechanisms in the CFSS. In Section 5.8, we

show that even without any software protection or tamper resistance, the design of

the system makes the CFSS robust against any such attacks.

5.5.2.2 Content Containers

Access to content is protected by the use of secured content objects or content

containers, cryptographically secured objects consisting of a protection label and an

encrypted content file. Figure 25 shows the elements of a content container. The

protection label contains a content label that provides content identification and

ownership information and the content's ACL. In Section 5.6.1.2, we explain that

the ACL only requires a small number of entries. The protection label is digitally

signed by the appropriate authority to ensure integrity. The content file is encrypted

with a random key, KR which is encrypted with K_fiTs_iDj a unique decryption key

associated with the token needed to access the content. This encrypted form of KR is

stored in the content container. Additionally, the encrypted KR and the protection

label are encrypted with KCFSSI the decryption key that is built-in the compliant

file sharing software. Thus, only the CFSS can access the content container, and

even the CFSS can not access the content file in the content container without

K-RTs_iD, which is provided to authorized users along with the content access

token. The idea of protection labels and attaching protection labels to the objects

that they describe has been in the security literature for some time [25]. Slightly

more recent work extended this into the concept of a secure package for storing

content and its controls [113, 190]. We utilize a similar concept and further define

the details of a secure content package; however, our contribution is a complete

architecture for content protection in decentralized peer-to-peer systems. Along

118

the way, we define the details of the content container and its interaction with its

reference monitor [125], in our case, the CFSS.

5.5.2.3 Content Importation System

The only objects that can be shared in this protected environment are objects that

have been imported into the system in the form of a content container with the

appropriate access rights. The CITADEL architecture includes a content importa

tion system{C\S) shown in Figure 26, that controls the insertion of objects into the

system. It functions as the secure gateway to import any objects into the protected

file-sharing environment. A key design goal of the CIS is that it allows content

providers to easily protect content and insert it into the distribution network. The

CIS enforces that content is identified correctly, labeled with the correct policy, and

encapsulated in a content container. The content importer is a person or entity that

inserts the content object into the protected environment. There are two classes of

content that is imported into the environment: new content and existing content.

New content is content that does not exist in the environment. The content im

porter that inserts new content is called the content provider. Existing content

includes copies or different versions of content that has already been imported into

the environment by the content provider. The CIS supports our goal of maintaining

an open peer-to-peer sharing experience by allowing all peers to insert new content

or existing content.

5.6 Detailed Operations of CITADEL Components

In this section we discuss the details of the different components of CITADEL. We

first discuss how hosts obtain access tokens. We then explain host interaction during

normal file sharing. Next, we present the details of the CFSS and the operations

that it supports. Then, we discuss the content importation process. We then discuss

119

Components Encrypted with:

Protection
Label

Encrypted
Content
Object

ACL

Content Name

Content Identification (CID)

Issuer name

Subject (RTS_ID1) Rights

Subject (RTS_ID2) Rights

• •^RI "^RTSjoi

' • ^ R ' "^RTS ID2

ACL Signature (by CRLS)

Content File

Figure 25: The structure of a content container.

Content Provider

Content Rights
Content
Token
Server

Content
Rights
List
Server

Protection Layer

Distribution Layer

Figure 26: Content importation at a high-level.

120

common content distribution models that can be supported with CITADEL.

5.6.1 Token Distribution

Token distribution is the process of a user obtaining or purchasing rights to some set

of content. This involves the user and the content token server. There are numerous

proposals for electronic payment systems that can be leveraged for user authorization

for token distribution; see for example [52, 177, 137, 41, 29]. Here, we explain the

basic functionality necessary for CITADEL. For example, A user contacts a content

seller and obtain a subscription to access all content on the network or perhaps all

content in a particular category. We discuss this further in Section 6.1; for now, the

point is that this process should be thought of as occuring infrequently and outside

of the normal file-sharing experience. It is similar to how a cable subscription is

set up for certain channels, but a user watches television regularly without dealing

with obtaining new rights. The system can involve different content token services

for different content providers. For each content provider, the content token service

can be a single server or a group of distributed servers.

5.6.1.1 Detailed Token Distribution Protocol

Since a single instance of the authorization protocol takes place between a host h and

a single content token server, CTS. The content token servers possess public-key cer

tificates [102] that are used for authentication and digitally signing messages. This

does not require a global public-key infrastructure; the key management require

ments are minimal and are equivalent to the common use of public-key certificates

for secure sockets layer/transport layer security (SSL/TLS) [58] web server authen

tication

The CTS has a public key certificate, CERTK^CTS ^̂ <̂ ^^^ corresponding pri

vate key, K-cTS- These are used to digitally sign messages and verify signatures.

Digitally signed messages are shown in brackets with the key used to sign it as a

121

subscript ['message]K_x -̂î d encrypted messages are shown in curly braces with the

key used to encrypt it as a subscript {message}Ks •

The host estabhshes a encrypted communication channel with the CTS and sends

an authorization request (AR). This secure communication channel can be achieved

with SSL, IPSEC [120] or any other secure communications protocol. We show the

communication encrypted with a session key, Kgess- The AR contains the content

rights ID(RTSJD) and the authorization information(AZJNFO). RTSJD is the

subject in the ACL; its format depends on the authorization language that is used.

We discuss this further subsequently. Also, the specifics of the authorization infor

mation depends on the payment system that is used by the content seller and may

include account information or an electronic cash payment. In some situations the

payment system may be out of band, and obtaining a rights token may only require

some sort of authentication, such as a username and password. In some situations,

no payment will be required to obtain certain rights tokens so the authorization

information will not be needed.

l.H -> CTS:

AR = {RTSJD,AZJNFO}Ksess

The CTS returns an authorization acknowledgment (AA) specifying a successful

or unsuccessful authorization of the user for the requested rights. If successful,

the AA contains an access token and the accompanying content decryption key,

K -RTS^D- The access token includes the RTSJD, the public-key for RTSJD, and

the expiration time, T^xp- K^RTS^D is used for the content decryption key and for

authentication. Recall that the content decryption key is required because it is used

by the CFSS to access the encrypted content file in the content container.

2.CTS -> H:

A A = {{[RTSJD,K+I{TS-ID,Texp]K_CTs}f<CFSS^{^'^-^S-ID}KcFSs}Kse.

122

User
Assignment

Role
Assignment

Roles /

(a) Flat RBAC

Role
Hierarchy

1

User

\

y-(Role
Assignment R] Assignment

Roles ^ \ Permissions/

(b) Hierarchical RBAC

Figure 27: Role-based access control models.

5.6.1.2 Access Control Model

To provide an efficient solution that reduces the size of the content ACL and re

duces the number of tokens needed by each user, we use role-based access control

(RBAC) [181]. The basic notion of RBAC is that permissions are assigned to roles,

users are assigned to appropriate roles, and users obtain permissions by being mem

bers of roles. The system can use flat RBAC or hierarchical RBAC [182].

Flat RBAC allows many-to-many relationships between user-role and permission-

role assignments. Thus, a user can be assigned to many roles and a single role can

have many users. Also, a single role can have multiple permissions and a certain per

mission can be assigned to multiple roles. Flat RBAC is illustrated in Figure 27(a)

froma work by Sandhu, et al. [181]. This allows a user, in CITADEL, to be assigned

to multiple roles. A particular role may have permission to access a particular con

tent object or a group of content objects. For example, assume a system that has

the following four roles: all content, jazz category content, contemporary jazz cat

egory (that is a subset of the jazz category), and jazz song X (that is a member

of the contemporary jazz category). The ACL of the content object for jazz song

123

X specifies entries for each of these four roles. This allows a user to gain access by

presenting a token that shows membership in any of the four roles.

Hierarchical RBAC allows role hierarchies, seniority relations between roles where

a senior role possesses the permissions of the junior roles. The hierarchy can be

expressed mathematically as a partial ordering: a reflexive, transitive and anti

symmetric relation. Hierarchical RBAC is illustrated in Figure 27(b) from [181].

In CITADEL, a hierarchical RBAC model allows a leaf role to have permissions

relating to a specific content object and then have senior roles acquire permissions

from these roles. This differs from the use of flat RBAC in that instead of role for

the jazz category having explicit permissions to every object in the jazz group, the

jazz role is a senior role that acquires permissions for jazz subcategory roles that

acquire permissions from specific content roles. Thus, the ACL of a content object

only needs to specify the single role corresponding to that object. In the CITADEL

prototype described in section 6.3, we implemented hierarchical RBAC.

5.6.2 Host Interaction during File Sharing

Figure 28 shows host interaction during file sharing. Note that the file location

process is not aflPected. For each file exchange, the user that receives the file is

called the downloader and the user that sends the file is called the uploader.

The downloader first locates the desired content and then sends a request including

the access token to a peer that has the content. The uploader verifies that the

downloader is authorized before providing access to the file.

5.6.2.1 Detailed Host Interaction Protocol

The process begins, as normal, with the downloader(D) sending a location query(LQ)

to the file location system(FLS) as normal. The actual contents of the LQ depends

on the file location system that is used. Here, we generaUze to say that the LQ

contains keywords(KW).

124

1. Query

Downloading
Peer

File
Location
System

2. Reply

3. Request and Token

4. Nonce

5. Encrypted Nonce

6. Content Container

Figure 28: Host interaction during file sharing,

l.D -> FLS:

LQ = [KW]

The file location system responds with a location reply(LR) specifies the location

of the content.

2.FLS -> D:

LR = [LOC]

The downloader sends a content request(CR) to the uploader(U) including the

identification of the requested content and the appropriate access token. To authen

ticate the downloader, the uploader sends a random nonce, Â , to the downloader

and the downloader responds with a copy of the nonce encrypted with private key

corresponding to the access token. This avoids the possibility of replay attacks by

eavesdroppers or by the uploader. We must avoid the uploader being able to replay

the authorization because the access token used by the downloader may contain

125

rights that the uploader does not have. This is the reason that tokens that require

no additional authentication or tokens that use password-based authentication could

not be used.

3.D -> U:

CR = [CID,TOKEN]

4.U -> D:

N

5.D -> U:

{N}K. -RTS-ID

Upon successfully authenticating the downloader, the uploader verifies the access

rights presented by the access token against the access rights specified in content's

ACL. The uploader first checks the validity of the token. This includes verifying

the CTS's signature and checking the expire time. The uploader then checks the

access rights. The ACL of the content contains the name of the content provider

or issuer, as shown in Figure 25. This is used to verify that the access token was

provided by the correct content provider. After verifications, the uploader sends

the downloader a content request acknowledgment(CRA) stating a successful or

unsuccessful request. Upon success, the CRA contains the requested content file or

instructions to obtain the file.

5.U -> D:

CRA — Status (file or failure)

5.6.2.2 Discussion

Policy enforcement at the peers can take place at two times: 1) the file location

process; or 2) the file retrieval process. Even though CITADEL can support both

methods, we suggest enforcement during retrieval for several reasons. First, it allows

126

independence of the content protection functions from search functions which can

differ widely among the different decentralized schemes as described earlier. Sec

ond, we feel that controlling the search functions without controlling the retrieval

functions makes the system vulnerable to users who may be able to determine file

locations by other means (e.g., users advertising file locations on web pages). So

controlling file retrieval functions is necessary at any rate. Third, it removes the

requirement of having to store access rights along with indexing information. Fi

nally from a commercial viewpoint, allowing users to see what is available on the

system without authorization might be an inducement for them to become paying

customers. The file location service could also provide information about the access

rights necessary to obtain the content. This access rights information could be pro

vided as metadata just as systems currently report information such as the quality

of the content of the size of the file.

5.6.3 Compliant File Sharing Software

In this section we describe the operations and security of the CFSS. The CFSS

supports three operations: content exchange, content import, and content export.

Content exchange is referred to as content download at the peer that is receiving

the file and content upload at the peer that is sending the file. Content upload

is the process of a user responding to a file request by transmitting the file to the

other peer. Content download is the process of a user obtaining a file that has

been requested. Content import is the process of a user inserting content into the

protected file sharing environment from a content file stored in a native file format.

Content export is the process of a user exporting content from the file sharing

system by creating a copy of the content in its unprotected file format. The first

subsection describes the details of the operations. The second subsection discusses

the techniques used to protect the CFSS from malicious users.

127

Figure 29: Content upload.

5.6.3.1 Operation Details

The content upload process is shown in Figure 29. During the content upload

process, the uploader receives the request and token from the downloader, validates

the token, checks the access rights, and then sends the file. The token verification

module receives the token, verifies its authenticity, retrieves the rights from the

token, and verifies these against the rights specified in the ACL of the requested

content. Upon success, the file delivery module sends the file to the downloader.

The content download process includes a number of protection schemes. Even

after the file is received, the user must possess the token and the content decryp

tion key to access the content. Since the content container is double encrypted, the

content's decryption key is required. This provides an extra layer of security by re

quiring the token and content key on both sides of the operation: 1) requesting the

content and 2) receiving or using the content. Additionally, to provide more imme

diate propagation of access rights changes and to confine any security breach that

may somehow occur, the administrator of CITADEL deployments can optionally

have the CFSS re-identify received files and retrieve the ACL. This step can protect

128

Filesystem Filesystem

Tokens Wrapped
Files

Native
Files

Filesystem

Figure 30: Content export.

against situations in which a user somehow bypasses the security of his CFSS, alters

the ACL of the content, and distributes content with illegitimate rights. With this

double checking of the ACL, the breach of the security is confined to an individual

user.

Content export will not be necessary by many applications because CITADEL

aims to provide as many of the functions related to the content as possible within the

protected file-sharing environment in order to reduce the need for content export.

For example, the CFSS allows the inclusion of a content player to allow content to

be viewed or listened to while still in the content container. If the user needs to

use the content for purposes other than this, then the file must be exported. The

content export process is shown in Figure 30. The CFSS decapsulates the content

file from the content container and stores a copy in the native unprotected format.

The system can be configured to completely disallow content export by default or

require additional access rights in order to export content; we discuss this further

in section 6.L

5.6.3.2 Policy updates and revocations

Here we discuss how the poHcy or the access rights for content can be updated

or revoked by the content owner. By updating the policy at the CRLS, the new

129

policy is reflected in all future copies of the content imported. Also, if the system

is configured with the option to perform ACL checking on file receipt, then all

future downloaded copies of the content will get the new policy. Using these two

methods, the system can update policy for all content objects imported after the

policy update as well as for each existing content object that is shared after the

policy update. Another approach is to use expiration times in the protection label

that causes the CFSS to retrieve an updated policy for the content object after a

certain period of time. These three methods do not provide the ability to explicitly

revoke rights for a particular user. This could be achieved by revoking outstanding

access tokens; however, due to the heavyweight operations of explicit revocation

schemes, we do not use this method. Instead, we provide implicit revocation based

on the use of time-limited tokens. The combination of these four methods provides a

flexible framework for performing policy updates and revocations without requiring

a heavyweight protocol.

5.6.4 Content Importation System

Content importation is the process of a user inserting a copy of content from a native

content file into the file sharing system. The content importation system(CIS) is

the secure gateway that assures the protection of content that is introduced into the

protected domain. It involves modules on the CFSS that identify the content and

retrieve the appropriate rights from the content rights service. This system is also

the means that allows end users to introduce new content or new copies and formats

of old content. We first provide an overview of the CIS. Then, we discuss the content

identification process. We then describe the content importation process.

5.6.4.1 Overview of Importing Content

During content importation, the system identifies the content, retrieves the ACL and

the necessary encryption keys, and encapsulates the content in a content container.

130

Request
Handler -^

Content
Identification
Module

-*
ACL
Reliieval
Module

1

)mDliant File /

Content
Wrapper
Module

Sharing Software

Filesystem

Peer System

Figure 31: Content importation.

Figure 31 shows this process. The first step, content identification, is performed

by a content identification module in the CFSS. The identity information is then

passed to the ACL retrieval module which sends it in a query to the content rights

service. The service responds with the protection label and the encryption keys for

the content. This information is passed to the content wrapper module that creates

the content container by encrypting the content with the supplied key and attaching

the protection label. The CFSS does not store the encryption key. To access the

content, a user must possess the appropriate token and decryption key.

5.6.4.2 Content Identification Process

In this section, we discuss possible methods of content identification and explain

why some are ideal candidates for CITADEL and some are not.

131

In order to protect content with the correct access rights, it is important to accu

rately identify content as it is imported into the system. Straightforward approaches

such as identifying content by the actual file name have been used by content protec

tion systems in the past and proved to be vulnerable. Many applications support the

identification of content using metadata, descriptive information about the content

such as artist, title, and publisher [145, 3, 206], that is usually stored as a header in

the content file [105, 151]. Due to the ability of the user to alter this information,

this is not sufficient for our system.

One method to provide metadata in a form that is not susceptible to alteration

by users is to embed the information as a watermark. Watermarking is the em

bedding of some identifying information into the content in such a manner that it

can not be removed by the user but it can be extracted or read by the appropriate

party. Use of this technology would allow the content identification to be securely

embedded by the content provider and read by the CFSS. Content creators could

embed watermarks in all content that is created and distributed via any means.

One problem with this approach is that there are millions of content files already in

distribution that are not watermarked.

A different approach is to not rely on metadata or watermarks to provide the

information, but to have the system determine the identity of the content. The

system examines the file to extract identifying properties and then determines the

actual identity of the content by comparing the properties with a database of all

known content files. We discuss this further in the next subsection. This is achieved

using a content-based identification algorithm. Content-based identification algo

rithms analyze the perceptual qualities of the content to derive a fingerprint of

the content. A number of such algorithms have been proposed for audio files; see

for example [75, 208]. These are different from cryptographic signatures such as

MD5 [175] and SHA-1 [7] that examine the bits of the file and can not correlate the

same content in two different formats or even different qualities of the same format.

132

5.6.4.3 Content Importation Process

The content importation process is independent of the identification algorithm that

is used. Recall that the two types of content that are imported into the environment

are: existing content and new content. We first describe how the system is used to

import additional copies of existing content. We then describe the additional steps

needed to import new content.

The first step in content importation is the content identification module execut

ing the identification algorithm on the content file and producing a set, 5, containing

n identification properties, ii to in- The ACL retrieval modules sends a query con

taining s to the content rights service. Upon receiving 5, the content rights lookup

module uses each i„ to search the content rights database for a match to a known

content entry. The matching process need not result in a binary decision, but can

result in a match and a certainty value, c, associated with the match. If c is above

the defined certainty threshold t then the match is considered valid and the content

rights service sends a response containing the rights for the content file.

To import new content, the process involves a few additional steps. The user

importing the content specifies the access control policy, p, including rights keys and

the content encryption key, KR. The user's CFSS performs content identification

and sends {S,P,KR) to the content rights service in a content importation request.

The content rights lookup module first searches the database for the content using

combinations of s. Upon a failed lookup, a new entry is added for (5,p, KR).

Essential to the effectiveness of this system is the establishment of a complete

database and maintaining the database by adding new content before it is made

available to the public. Although this may seem like a daunting task, we point to

some current efforts that are a creating catalogs of all available music content such

as CDDB [55] and Loudeye [54]. Alone, these efforts have made significant progress

and it is reasonable to suggest that a content database to support content protection

will have considerable support from content providers.

133

Goal Single User Attack Collusion Attack
Protected Distribution Forge Access Token

Replay Access Token
Bypass Authorization Checks
Re-distribute Tokens
Alter ACL

Protected Storage Determine KR
Determine KCFSS

Alter ACL

Re-distribute Tokens

Output Protection Obtain KRTS^D

Obtain Plaintext Content
Re-distribute Content

Table 3: Summary of attacks on protection goals

5.7 Analysis

In this section, we discuss how the system maintains the level of assurance relative

to its protection goals by being robust against compromise or circumvention. As in

any protection system, we assume the presence of malicious users that aim to gain

unauthorized access to content.

5.7.1 Threat Analysis

There are different levels of threats to content protection ranging from the casual

user to the hobbyist/hacker to the professional pirate [157]. These levels somewhat

parallel the following taxonomy of attackers described by the Abraham, et al. [12]:

class I (clever outsiders), class II (knowledgeable insiders), and class III (funded

organizations). The generally accepted practice in the content distribution industry

is that content protection technology is most effective for low to mid-level threats

from casual users and hobbyists/hackers while legal protection is most effective for

higher level attackers such as professional pirates. The goal of commercial content

protection is to "stop unauthorized, casual copying of commercial entertainment

content" [157]. This has also been phrased as "keeping honest people honest" [27].

These are somewhat modest goals compared to the protection goals in many military

and financial applications.

Table 3 shows the protection goals of the system and possible attacks on these

134

goals. We look at attacks by an individual user as well as attacks by a collusion.

Recall that CITADEL aims to provide protected distribution and protected storage.

We briefly mention extensions to CITADEL that can provide output protection.

Some of the attacks listed in the table provide no benefit to an attacker and some of

the attacks are sufficiently complex due to fundamental properties of cryptography.

For example, without an appropriate access token, determining Kfi can only be done

by brute force attack. For these reasons, we do not detail each of the attacks in this

section, but discuss the less obvious ones.

We assume a hobbyist/hacker end-user that has appropriate knowledge and re

sources. This user has full access to and control of the CFSS and the operating

system. Since users have access to the CFSS on their PC, it will be a target for

attackers seeking to circumvent the protection of the system. We will show that

even without software protection or tamper resistance, attackers can not defeat the

CFSS to obtain unauthorized access to content. Let us assume that the attacker

reverse engineers the CFSS or otherwise fully compromises the CFSS. We analyze

the risk associated with each attack. We show that the damage is limited and does

not defeat our protection goals.

We further discuss three of the potential threats:

1. Determine KCFSS- An attacker may obtain the decryption key, KCFSS, that

is used to access content containers.

2. Bypass Authorization Checks: An attacker may cause the authorization checks

to be bypassed so that the CFSS will allow unauthorized peers to download

content.

3. Alter ACL: An attacker may attempt to remove a protection label and replace

it with a protection label requiring lesser or no rights.

We now analyze the actual vulnerability associated with each of the above po

tential attacks.

135

Determine KCFSS Attack: If an attacker reverse engineers the CFSS to obtain

the decryption key, he only obtains the key used to access the protection label.

The actual content keys are encrypted with key for the rights role. Therefore, even

with the CFSS's decryption key, an attacker can not directly access the content file.

The attacker could attempt to alter the ACL in the content object, however, it is

digitally signed by the content rights list server, so any alterations will be noticed

by the CFSS and the content container will be rejected.

An attacker that legitimately obtains a content token and rights key, K-BTS-ID-,

can use the compromised KCFSS ^nd K_BTS-ID to obtain KR and consequently

obtain the decrypted content. However, since the user legitimately obtained a con

tent token, the user has the rights to access the content. As stated in section 5,

CITADEL does not provide output protection. In general, once access rights are

presented, the user is able to access the content in the content container. We discuss

output protection further in subsequent sections.

Bypass Authorization Checks Attack: If an attacker is able to alter the operation

of the CFSS to cause it to bypass authorization checks, then the CFSS will allow

unauthorized peers to download content containers. However, the content containers

can not be accessed at the receiving peer without the access token and key because

the CFSS requires the token to access the content container and the rights decryption

key to access the encrypted content.

Alter ACL Attack: If an attacker removes a protection label from a content

container and replaces it with a protection label that requires lesser rights, then this

will not work for a number of reasons. Let us assume that a user creates a content

container that includes content X and a protection label for content Y. Assume

the user attempts to access this content with only the access token and key for Y.

The user can use the content token for F , but the KR retrieved from the protection

label will not match the key used to encrypt content X. Therefore the user can not

access content X with only the rights for Y.

136

5.7.2 Additional Robustness using Software Protection

We have shown that the system's design includes protection mechanisms that are

robust even in the face of a completely compromised CFSS. We now point out that

there are mechanisms that can be used to make it more difficult for an attacker to

even compromise the CFSS. The CFSS can be considered to be a mobile agents

a program that is executed on an untrusted computing base. The authors of [96]

discuss a number of attacks that malicious users can perform against mobile agents

including spying out code and data (i.e. the CFSS's decryption key) and manip

ulation of code and data. One method that can be used to guard against these

attacks is mobile cryptography [180]. This involves executing encrypted functions

to guarantee code privacy and code integrity. Another method is time limited black

box protection [97] that can protect the code and data of a mobile agent from being

read or modified for at least some minimal time interval. Although there is work,

such as [16], that discusses the inability of these approaches to provide long-term

security against high-level attacks, it is understood that such approaches do protect

against casual attackers and also increase the cost of an attack by capable attackers.

A deployed implementation should employ these techniques to heighten the security

of the application; however, as we have shown, the security of CITADEL does not

rely on the protection of the CFSS.

5.7.3 Related Protection Systems

Protected distribution work takes many forms differing greatly depending on the

distribution method. In cable and satellite, conditional access is provided by set-

top boxes enforcing subscription and pay-per-view models; see for example [149].

In CD and DVD sales, conditional access simply means that the person that pays

for the content receives the media containing the content. On websites that sell

content, protected distribution is performed in the client-server model of purchasing

rights and obtaining content. In multicast or group communications, protected

137

distribution is provided by using group keys to access encrypted content [35] and by

controlling access to the multicast distribution tree [110].

Protected storage work includes Content Protection for Pre-recorded Media

(CPPM) [8] for protection pre-recorded DVD-Audio, Content Protection for Record

able Media (CPRM) [9] for protecting content stored on recordable media such as

DVD-R or flash memory, Content Scrambling System(CSS) [10] for protecting pre

recorded DVD-Video, and copy-protected CD solutions such as [141] for protecting

pre-recorded CDs from replication or extraction to files such as MP3s.

5.7.4 Output Protection

As stated previously, CITADEL has the primary goal of providing protected dis

tribution and storage. It is possible to add components to CITADEL to provide

output protection. Some of this requires integration with previous work in output

protection for devices. Other mechanisms can be leveraged to help provide output

protection and protection against some collusion attacks such as redistribution of

content or access tokens.

Fingerprinting provides an eflfective deterrence against redistribution of con

tent [203, 17]. Such systems can be integrated into the content importation system

or the compliant file-sharing software. Other systems such as digital signets [63] and

traitor tracing [44] can be used to discourage redistribution of access tokens.

Other output protection work includes Digital Transmission Content Protec-

tion(DTCP) [11] for protecting content during transmission between devices using

IEEE 1394 or Universal Serial Bus (USB), Macrovision Copy Protection [132], High-

bandwidth Digital Content Protection(HDCP) [59] for protecting content during

transmission to digital displays, and Microsoft's Secure Audio Path [140] for pro

tecting content on PCs during transmission to audio devices such as sound cards.

138

5.8 Discussion

Recent work in peer-to-peer systems have proposed different types of file retrieval

and file location systems. In this section, we discuss how CITADEL is aflPected by

such systems.

5.8.1 Interaction with different types of file retrieval

Most peer-to-peer systems allow content to be exchanged directly between peers

and require that content is stored only at the peer that is providing or sharing that

content. However, there are systems in which this is not the case and this can cause

problems with some content protection approaches. In some anonymous peer-to-

peer systems such as Freenet and APFS, files are delivered through the peer-to-peer

network in order to mask the identity of the responder and provide some caching. In

some peer-to-peer systems including some that are based on distributed hash tables,

peers' files are replicated and cached at other peers. This can be used to provide

cooperative mirroring, time shared storage, or increased scalability.

Some content protection approaches assume that the only hosts that will have

access to content is the sharing peer and the downloading peer. Therefore, these

content protection systems only enforce the policy upon file request, but do not

protect the file during download. This leads to vulnerabilities where unauthorized

users can gain access to files based on their location in the peer-to-peer network.

Furthermore, malicious users can aggressively participate in cooperative mirroring

and time shared storage in order to gain access to more content. The design of

CITADEL accounts for these systems that require other peers to have access to the

content file. In addition to performing authorization upon file request, CITADEL

also stores the file in a secure content container that can only be accessed by the

authorized users. Thus, even if other peers must cache or forward the file, there is

no vulnerability since only authorized users can access the actual content within the

content container.

139

Another variation of peer-to-peer systems that can cause problems for some con

tent protection system designs is parallel downloading. Parallel downloading allow a

host to retrieve different parts of a content file from diff'erent peers simultaneously.

There are two properties of parallel downloading that may cause issues: 1) for a

single file retrieval, there are multiple file requests involved and 2) software at the

retrieving peer creates a file that is a combination of parts from multiple files. In

CITADEL, parallel downloads are supported since authorization will be performed

for each file request and the retrieved parts will be combined to form a secure content

container.

5.8.2 Interaction with different types of file location

We have described an approach in which content protection is transparent to the

file location system and described how this assists portability and ease of imple

mentation. However, we also believe that in some situations gains in efficiency

and usability can be achieved by the location system and protection system having

knowledge of each other. For example, improved usability and efficiency can be

achieved by restricting query results to items that the user is authorized to access.

In systems such as Gnutella where query results only come from peers that

have access to the content and the access control policy this is straightforward. In

distributed hash table-based systems, the solution is more involved. Since many of

the lookup operations in these systems may be performed by entities that do not

possess the content or the access control policy, they are not able to restrict the query

results based on the access control policy. In these systems, it is important to be

able to restrict queries based on authorizations because of the resources that can be

wasted otherwise. If queries are not restricted at the first hop of the lookup process,

then this query can possibly traverse a number of nodes wasting computation and

bandwidth. The following questions are potential paths of future work:

1. How can decentralized hash table lookup systems be made aware of the access

140

control policy?

2. What are the design details of a system that restricts the hosts' ability to

lookup based on an access control policy?

3. How would such a system assist in making the lookup system more robust to

other types of attacks such as denial-of-service?

5.9 Conclusions

Predicting how peer-to-peer systems will evolve is difficult at best. What has become

clear, however, is that content protection will play an increasingly important role in

the success of such systems. The challenge has been how to design a system that

provides adequate content protection and yet maintains the openness of the peer-to-

peer model. In this work we explained the need for content protection in peer-to-peer

networks, argued that such functionality should be provided as an overlay security

layer, and proposed CITADEL as an example of such an architecture.

141

Chapter 6

CITADEL Evaluation and
Implementation

In this chapter, we further discuss, evaluate and define the CITADEL architecture

from a real world viewpoint. Now that the architecture has been motivated and de

fined, we examine the feasibility of the CITADEL as a real-world, content protection

architecture. We address three issues:

1. Can CITADEL be used to provide common content distribution business mod

els?

2. What is the overhead of CITADEL in terms of support infrastructure and at

the peers?

3. How feasible is the CITADEL architecture in terms of the ability to implement

the components and its ability to be used with common peer-to-peer networks?

This chapter is organized as follows. Section 6.1 describes how content protection

can allow common business models to be supported in a peer-to-peer environment.

Section 6.2 evaluates the costs of CITADEL in terms of message overhead and com

putation overhead. Section 6.3 describes our implementation of a working prototype

of CITADEL. We conclude in section 6.4.

142

6.1 Supporting Content Distribution Business Mod

els

There are a number of business and service models that are popular in other content

distribution methods that peer-to-peer systems have been unable to offer due to the

lack of the protection functionality required to support such models. We identify

three common content distribution business models and show how each of these

can be supported in a peer-to-peer distribution system by providing the appropriate

underlying content protection functionality. We then show how CITADEL supports

this additional content protection functionality.

6.1.1 Common Business Models

1. Pay-per-view and Subscription model

Description: The goal of this model is to allow users to subscribe to specific

content or set of content. This model follows the subscription by users to

particular channels or individual pay-per-view items. Current peer-to-peer

content protection systems can only control whether or not a file is allowed

in the system [122]; they cannot restrict access to files to certain users. Our

system supports this model and allows a user to purchase access to specific

content or groups of content. For example, in a music sharing system, music

from each record label could require a separate subscription. Another exam

ple supported by our model is where users can purchase access to individual

songs.

Underlying access control functionality: To support this model, our system

provides subject-based access rights such as user-based or group-based access

rights rather than only the default world-based access rights provided in cur

rent systems [122].

2. Syndication model

143

Description: The goal of this model is to only allow certain users to purchase

the right to redistribute content. This model aims to mimic the distribution of

syndicated television shows and pay-for-content services such as the services

used by retail stores to provide background music. In current peer-to-peer

systems, there is no way to specify different types of access rights for a file;

thus, all users have all possible access rights for every file. Our system supports

this model by allowing an access control policy that specifies multiple types of

access rights. Our system supports this model and allows a user to be granted

a subset of the possible access rights. For example, a user could have the right

to download a file, but not to share it.

Underlying access control functionality: To support this model, our system is

able to enforce multiple types of access rights. In a peer-to-peer system, the

different access rights include share, download, and export. Additionally, each

type of access right can have parameters in addition to "allow" and "disallow".

For instance, share rights can specify the number of times the file is allowed

to be distributed.

3. Reseller model

Description:The goal of this model is to allow certain users to act as resellers

and redistribute content for a fee. This model aims to mimic the distribution

of CDs and video via stores. Our system supports this model by building upon

the syndication model and adding the ability to have reseller peers perform

authorization of downloading peers.

Underlying access control functionality: To support this model, our system

provides delegated authorization. That is, end users are able to perform au

thorization for peers attempting to download content.

144

6.1.2 CITADEL'S Support of Business Models

The base CITADEL system, as described in previous sections, provides the subject-

based access rights necessary to support the pay-per-view and subscription model.

To support the syndication model, separate download and upload access rights

are specified in the access control policy and in the resulting access tokens. The

examples in previous sections depicted an environment that controls a peer's ability

to download certain content. We now describe how the system can support another

approach that involves controlling a peer's ability to upload or share certain content.

To enforce share rights with CITADEL, for each content container to be shared,

the user must possess an access token that specifies share rights for that content.

If the necessary rights are not provided for certain content, then the CFSS will

not allow sharing of this content container by either not responding to file location

requests or file retrieval requests for that content.

To support parameterized access rights such as share limits and time-restricted

downloads with CITADEL, a new field for each parameter is added to the ACL in

the content container or in the access token. For example, to control share limits, a

field is added to the ACL in the access token that specifies the number of authorized

shares. This field is initialized when the access token is received and decremented

at each file download. This portion of the access token is not be signed by the CTS,

but is edited and signed by the CFSS.

To provide delegated authorization to support the reseller model, we identify

two approaches: 1) Tokens are obtained from the content provider and submitted

to the reseller for verification when requesting the content. 2) Tokens are issued

by the reseller. CITADEL inherently supports the first approach. To support the

second approach, the reseller is issued a certificate by the content provider and the

reseller issues access tokens digitally signed with its private key. This allows tokens

issued by the reseller to be verified or traced back to the original content provider.

If necessary, a payment system can be integrated that allows the reseller to handle

145

payments.

6.2 Evaluation

We evaluate the performance of CITADEL relative to the performance of the dis

tributed ACL and queried ACL approaches to decentralized content protection that

we discussed in Section 5.5. We analyze the costs of operations in each system and

then present the results of a simulation based on these costs.

6.2.1 Analysis

We examine the costs associated with file exchange and content importation in

CITADEL, the distributed ACL system, and the queried ACL system. Table 4

shows the definitions of the variables used in the analysis.

Tables 5, 6 and 7 show computation and message costs for file exchanges at the

downloader, the uploader, and the ACS. For example, the table shows the computa

tion cost at the uploader in CITADEL is {v -f cl)x. This shows the digital signature

verification and content container ACL lookup for each file that is uploaded.

ACS computational costs are significantly greater in the queried system than in

the other two systems and slightly more in CITADEL than in the distributed system.

This is because in the queried system, the ACS must perform the operations for every

file exchange, while it must only perform such operations at most once per user in

the other systems. The cost is more in CITADEL than in the distributed system

because CITADEL authenticates the host, looks up the rights and digitally signs

the token for each user while the distributed system creates a single digitally signed

ACL for all users.

Computational costs at the uploader and downloader are interesting because one

may hypothesize that due to the computation required by the CFSS of CITADEL

the computational load and associated processing time may introduce some service

delay. However, as shown in Tables 5, 6, and 7, the computational costs at the

146

peers in all three systems are similar since all systems require the downloader to sign

the request and the uploader to verify the message from the downloader or ACS.

Message costs are significantly greater in the distributed system than in the other

two due to the distribution of the ACL. Even with compression, the ACL can be

quite a large file due to the number of entries in the list. Therefore, message costs

in the distributed system will remain higher since the ACL will be large relative to

the size of the token that is sent by CITADEL. Message costs in the queried system

are also higher than in CITADEL because message volume is proportionate to the

number of files exchanged since the ACS and uploader communicate on every file

exchange.

For each content importation, the user that imports the content is referred to as

the importer. Tables 8 , 9 and 10 show computation and message costs associated

with a single content importation at the importer, the ACS, and all other peers. For

example, the table shows that the message cost at the importer in the queried and

distributed ACL systems is CID and similarly CS in CITADEL. This is due to

the message costs of transmitting the content identification to the the ACS for each

content object that is imported.

Content importation involves computation cost at the CTS or CRLS for all

three schemes since each requires some lookup of the content identification. The

distributed system also involves an ACL update sent to all peers; thus, the compu

tational and message costs at the ACS are higher in the distributed system. Also

due to the ACL update, all peers in a distributed ACL system must verify the signa

ture on the ACL update; thus, the distributed system is the only one that requires

some computation by all peers for a content importation. An implementation could

somewhat reduce this cost by batching a number of ACL updates into a single ACL

update message depending on the frequency of content importations. CITADEL

requires a signature extraction at the importer; likewise, the other schemes require

some form of content identification at the importers as well.

147

System Parameters
n = number of peers
X = number of files exchanged by each peer

Message Transmission Costs
T = token

ACL = access control list
ACLMP = access control list update

AR == authorization request
AA = authorization acknowledgment
FR = file request

F = content file
CS = content signature tuple {s^r,k)

CID = CID tuple [CID.r)
SM = status message

Computational Costs
ds = digital signature

V = signature verification
I = ACL lookup

d = content container ACL lookup
cse = content signature extraction
csl = content signature lookup

cidl = CID lookup

Table 4: Definition of Variables Used in Analysis

CITADEL
Type of
Cost

File Exchange Costs Type of
Cost downloader uploader CTS
computation ids) {2v + cl)x {v + I -{- ds)n
message {FR + T)x + AR {F)x {T)n

Table 5: Cost of file exchange in CITADEL

6.2.2 Simulation Results

To better examine the file exchange costs that we have discussed, we provide simu

lation results that show the performance of the three systems. We use a simulated

peer-to-peer file sharing system based on a model that has the following parameters:

1. The pool of potential peers has n peers. (We show results for varying values

of n.)

148

Distributed System
Type of
Cost

File Exchange Costs Type of
Cost downloader uploader CTS
computation {ds)x {v-{-l)x ids)
message {FR)x (F)x {ACL)n

Table 6: Cost of file exchange in the Distributed System

Queried System
Type of
Cost

File Exchange Costs Type of
Cost downloader uploader CTS
computation {ds)x {v)x {v + I + ds){x)n
message {FR)x {F + AR)x {AA){x)n

Table 7: Cost of file exchange in the Queried System

2. An active phase refers to time in which the peer is connected to the peer-

to-peer system and an inactive phase refers to time in which the peer is not

connected to the peer-to-peer system. The length of an individual active phase

is an exponential distribution with an average of r. The length of an individual

inactive phase is an exponential distribution with an average of 23r. The

ratio of active to inactive duration is 1 : 23, so the average group size, g is

approximately n/24 during steady state. (This is proportionate to 1 hour a

day.)

3. The length of the group session is 168r. (This provides a session length that

is proportionate to 1 week. The figures provide information in terms of a 24r

period within the session.)

4. The number of files downloaded by a peer in an active phase is a discrete

value derived from an exponential distribution with an average of x. (We

show results for varying values oi x.)

5. The file size is 3.7 MB.

Many of the parameters of our model are derived from the results of a mea

surement study of two large peer-to-peer file sharing systems [184]. For example,

149

1 CITADEL
Type of
Cost

Content Importation Costs Type of
Cost importer CTS other peers

1 computation cse csl 0
message CS SM 0

Table 8: Cost of content importation in CITADEL

1 Distributed System
Type of
Cost

Content Importation Costs Type of
Cost importer CTS other peers
computation 0 cidl + ds V

message CID SM + {ACLVP)n 0

Table 9: Cost of content importation in the Distributed System

the authors of the study determined that the median session duration is about one

hour, thus our active to inactive ratio. The authors determined the average size

of a shared file is 3.7 MB. Our inactive phase includes the active and offline states

described in [184].

Our simulation results only examine file exchange costs and not content impor

tation costs. There are two reasons for this. First, as explained in the analysis

section, the costs of file exchange in the systems vary significantly and we aim to

better understand the magnitude of difference. However, the costs of content im

portation in the systems are fairly close; therefore we feel that the importance of

the magnitude of the difference is somewhat lessened. Secondly, we suggest that in

most environments file exchanges far outnumber content importations. Thus, the

cost of file exchanges is a more important measure.

The simulation calculates the computation load by evaluating the processing

time involved with cryptographic operations. The values for processing time for the

cryptographic operations are shown in table 11 and are based on benchmarks pub

lished for the publicly available Crypto++ library [53]. The simulation used 128-bit

Triple DES encryption, MD5 message digest, and RSA 1024-bit digital signatures.

150

CO

o o
a>
re

65536

16384

4096

1024 -

256

64

16

Distributed ACLs — ' —
Queried ACL —-x—

CITADEL -*-

X

10000 20000 30000 40000 50000

Number of Potential Peers

(a) Message Overhead

65536

16384

E 4096

I 1024

Q.
E
o
O

256

64 -

16 -

Distributed ACLs —•-
Queried ACL —-x-

CITADEL --^•

10000 20000 30000 40000 50000

Number of Potential Peers

60000

60000

(b) Computation Overhead

Figure 32: Overhead as a function of the number of potential peers

151

m

o
O
<x>
O)
(0

65536

16384

4096

1024

256

64

16

4

Distributed ACLs — ^ —
Queried ACL —-x—

CITADEL ^ -

8 10 12 14 16

Average Number of Files Shared per Peer

(a) Message Overhead

18 20

Q.
E
o
O

8192

4096

2048

1024

512

256

128

Distributed ACLs — i -
QueriedACL —->«-

CITADEL ^-

8 10 12 14 16

Average Number of Files Shared per Peer

(b) Computation Overhead

—i:

18 20

Figure 33: Overhead as a function of the number of files shared by peers

152

1 Queried System
Type of
Cost

Content Importation Costs Type of
Cost importer CTS other peers

1 computation 0 cidl 0
message CID SM 0

Table 10: Cost of content importation in the Queried System

1 Operation Performance
1 3DES encryption 4.748 MB/sec
1 MD5 message digest 100.738 MB/sec
1 HMAC/MD5 message digest 99.863 MB/sec

RSA 1024 signature 10.29 sec
1 RSA 1024 verification 0.30 sec

Table 11: Cryptographic computation processing time

Figure 32 shows the message overhead and computation overhead at the ACS

as a function of the number of potential peers. Figure 32(a) shows that the mes

sage overhead of the distributed ACL system is almost three orders of magnitude

greater than the other systems for small group sizes and continues to increase with

the number of peers. With 65, 536 potential peers, the message overhead of the

distributed ACL system is 60, 213.1MB compared to 219.3MB in the queried ACL

system and 31.6MB in CITADEL. Figure 32(b) shows that the computational over

head in the queried ACL system increases with the number of peers and becomes

an order of magnitude greater than the other systems. For a system with 6,5536

peers, the computation overhead of the queried ACL system is 10, 979.29ms com

pared to 1294.6ms in CITADEL and 674.4ms in the distributed ACL system. This

shows that as the number of peers in the system increases, the queried ACL and

distributed ACL approach have difficulties scaling due to computation costs and

message costs, respectively.

Figure 33 shows the message and computation overhead at the ACS as a function

of the average number of files shared per peer. For this particular simulation, the

number of potential peers was 16384. Figure 33(b) shows that the computation

overhead in the queried ACL system increases with the number of files shared in the

153

system. The computation overhead of the other two systems scales better with an

increase in the number of files shared. With peers sharing an average of 4 files each,

the computation overhead is 1371.9ms in the queried system, 301.8ms in CITADEL,

and 168.59ms in the distributed ACL system,. However, as the average number of

shared files increases to 20, the computation overhead of the queried system increases

fivefold to 6877.0ms while the others remain approximately the same. Figure 33(a)

shows that the message overhead of CITADEL maintains around 7.SMB and the

queried ACL system does increase fivefold from 27.3MB to 137.4MB, but they

both remain a couple of orders of magnitude less than the 15056.9MB of message

overhead in the distributed ACL system.

6.3 Practical Implementation

We have implemented a CITADEL prototype using open source components includ

ing the Gnutella network as the distribution layer [78] and the LimeWire graphical

user interface-based Gnutella client [129] as the filesharing software. One of the key

goals of the implementation efforts was to show that the CITADEL architecture

is a realistic and lightweight approach and that it can be implemented as part of

any popular file-sharing network. LimeWire is written in Java and runs on multiple

platforms including flavors of Windows and UNIX. Our prototype was developed on

Solaris machines and also runs on Linux.

Figure 34 depicts the CITADEL prototype. The implementation consisted of cre

ating a CFSS by providing download authorization and upload authorization mod

ules and creating a content insertion and exportation system including the content

wrapper and unwrapper. Rather than implement custom authorization protocols

and content container formats, we aimed to use standard security protocols to per

form these operations. Overall, our implementation involved creating authorization

modules that were added to the LimeWire software by modifying two LimeWire

modules to call our libraries and providing a program that allows content insertion

154

Content Exporter

Content
Unwrapperl

Token
Verification

MP3 and MPECJ
Native Files

Content Importer

Rights
Retrieval

Content
Wrapper

X.509 digital
ceriit'icate-based
Access Tokens

S/MIME-based
Content
Containers

Linux PC

Limewire File Shiiring Software

Java-based GUI

User
Download
Request

SSL Authentication
Module

Authorization
Module

HTTPDownloader

UploadManager

SSL-based
Download Request

Content
Container

SSL-based
Upload Request

Content
Container

Figure 34: CITADEL implementation

and exportation.

6.3.1 Authorization

Our design does authorization based on standard X.509 version 3 public-key certifi

cates [102] just like those used for web server authentication. The identity in the

public-key certificate directly specifies the role to which the holder is assigned. This

allows standard X.509 version 3 certificates to be used as the access token without

any new extensions. Alternatively, there have been proposals for extensions to X.509

certificates to allow the identity to specify the user and have new attributes that

specify the roles assigned to the user [153].

Our system currently provides hierarchical RBAC by creating leaf roles for each

content object and forming a role hierarchy. Membership in any senior role can

be shown by authenticating with the public-key certificate for that role. Instead of

155

specifying the role hierarchy in the ACL of the content object, we create a certifi

cate issuance hierarchy that reflects the role hierarchy. A role token also includes

the trusted certification path from the content's role certificate to the token's role

certificate. This allows the uploader to perform authorization by authenticating the

downloader then verifying the certificate chain.

We use the private key corresponding to the content role's public-key certificate

as the content decryption key, -AT-RTS-./D- TO perform authentication, we use the

strong client authentication that is part of the SSL/TLS protocol. This allows

the client to be cryptographically authenticated by the server based on the client's

public-key certificate. In the Gnutella protocol, a file download request is sent as

an HTTP GET request. Instead, in our system we use HTTPS [174], HTTP over a

SSL connection. This allows the uploader to utilize the SSL protocol to authenticate

the downloader upon receiving the GET request. The SSL protocol at the uploader

verifies the validity of the certificate and that the client possesses the corresponding

private key. The application then performs an authorization lookup based on the

authenticated identity. In our implementation, the authorization table is stored in

memory and is initialized at start-up by retrieving the rights from each shared file.

Since in the real world, users will share a large number of files, this authorization

table should cache only a certain amount and then lookup other files as necessary.

6.3.2 Content Containers

Content containers are created using S/MIME (Secure/Multipurpose Internet Mail

Extension) [169, 168]. Although S/MIME was designed for securing Internet mail,

we feel that it provides a simple and elegant example of content containers. MIME [73]

supports virtually any content type including MPEG, JPEG, GIF, and generic bi

nary application data. We create the encrypted content file using the S/MIME enve

lope functionality. This envelope function creates a MIME entity by first encrypting

the content data with a triple DES symmetric session key, KR and encrypting the

156

session key with a public key, In our system, this public key is K+RTS-ID, the public

key of the role identity that is authorized to access this content. The MIME entity

consists of the encrypted content and a header containing the sender's public-key

certificate, an identifier of the algorithm used to encrypt the session key, and the

encrypted session key. Now that we have the encrypted content file and KR, we add

the content rights list to complete the protection label of the content container. In

this design, we only need to specify the role identity and the rights. We achieve

this by attaching the public-key certificate of the role identity to the protection la

bel. To perform this, we create a new multipart MIME entity that includes a part

containing the public key certificate of the role identity and a part that contains

the S/MIME envelope. So after one S/MIME and one MIME operation, we have

a content container. For the content wrapper and unwrapper, we wrote shell script

programs that perform the content rights lookup, token verification, MIME opera

tions, and uses OpenSSL libraries [152] for S/MIME operations. The CFSS creates

the authorization lookup table using OpenSSL commands to retrieve the public-key

certificate from the protection label of each content container.

Also, since in our implementation, all authorized users for a certain content

object had the same set of rights on the object, we were able to only specify the

identities in the protection label and not the access rights. Our implementation can

be extended to support different access rights by using S/MIME security labels [95]

to create the protection label. Our implementation can also support flat RBAC

and its need for multiple content rights list entries in the protection label. This can

be achieved because S/MIME envelopes allow a single entity to be encrypted with

different decryption keys for a set of users. S/MIME does this by encrypting the

entity with a session key then generating a different encrypted version of the session

key for each user similarly to how we proposed.

157

6.4 Conclusions

One of our central premises is that content protection should be viewed as an oppor

tunity to enable new service functionality and not a nuisance that designers have to

deal with. This layered approach to content protection and the focus on providing a

flexible framework allows CITADEL to perform the role that we envision for it. This

point is illustrated in our work through the proposal and description of services and

business models that can be deployed on top of the CITADEL architecture. Our

work also considers the performance of CITADEL relative to other approaches that

can be used in decentralized systems. Our work also includes the description of a

prototype that shows a practical implementation and validates that CITADEL is

a realistic and lightweight approach to create a protected peer-to-peer file sharing

environment.

158

Chapter 7

Conclusions and Future Work

This thesis describes research in securing large-scale content distribution systems.

It addresses the security issues that are introduced by emerging content distribu

tion paradigms. It addresses the need for authentication and authorization, data

protection, and system security in such systems. Here we summarize the specific

contributions made in this research.

In multicast and content distribution network environments, there was a need for

a scalable system to provide theft deterrence. Chapter 3 describes the development

of WHIM, a system that uses a hierarchy of intermediaries to fingerprint multicast

multimedia content. We show the benefits of this approach as compared to previous

approaches that were implemented at the network-layer or within the application.

This work also proposed distributed and real-time watermarking of multimedia con

tent. We described a prototype of the system that validated the feasibility of these

techniques.

Chapter 4 describes the GOTHIC group access control architecture that provides

a solution to the secure IGMP problem in multicast and the secure anycast server

advertisement problem. This work generalized the two problems into a problem of

group access control and proposed a generic scalable architecture for Internet group

access control. We specify how the system can be used in a range of environments

including different flavors of multicast and anycast. This work also considers issues

in group policy. We identify the problem of group owner determination and authen

tication and propose two solutions. Within this work we also propose the possibility

of group access control-aware group key management and provide results that show

159

the performance improvements that it can achieve.

In the area of content protection in peer-to-peer systems, we propose the CITADEL

architecture that is presented in Chapter 5. We discuss the benefits of content pro

tection in peer-to-peer systems and define the objectives of such systems. We show

that the objectives of end-users and content providers conflict and propose a system

that is able to achieve both sets of objectives. We describe the details of the content

protection system including the content containers, the content importation system,

and the access control model that is used to maintain manageability. In chapter 6,

we explain that content protection can enable the support of common content dis

tribution service models. We provide an analysis and simulation results to show

the costs of providing content protection. We also describe an implementation of

the CITADEL architecture that shows how the system can be implemented as a

lightweight addition to current peer-to-peer systems.

7.1 Future Work

We provide a discussion of possible directions for future work based on this research.

• In Chapter 4 we described the performance improvements that could be gained

by a group access control aware group key management system. We proposed

three approaches to providing topology information. A potential area of future

work is the further definition and evaluation of these approaches. The evalu

ation must consider not only the costs of providing the topology information,

but also the varying performance improvements based on the trusted subtree

topology and the placement of receivers. One issue is the placement of trusted

routers for performance optimization. Further optimization can be achieved

based on the grouping of receivers within the group key management system

based on the receivers location in the trusted subtree topology.

• The CITADEL architecture as described in Chapter 5 is transparent to the

160

file location system and we described how this assists portability and ease of

implementation. However, we also believe that in some situations gains in

efficiency and usability can be achieved by the location system and protection

system having knowledge of each other. For example, improved usability and

efficiency can be achieved by restricting query results to items that the user

is authorized to access.

In systems such as Gnutella where query results only come from peers that

have access to the content and the access control policy this is straightforward.

In distributed hash table-based systems, the solution is more involved. Since

many of the lookup operations in these systems may be performed by entities

that do not possess the content or the access control policy, they are not able to

restrict the query results based on the access control policy. In these systems,

it is important to be able to restrict queries based on authorizations because

of the resources that can be wasted otherwise. If queries are not restricted

at the first hop of the lookup process, then this query can possibly traverse

a number of nodes wasting computation and bandwidth. Further research

could design a system that restricts a host's ability to perform lookups based

on an access control policy. This would involve detailing how decentralized

hash design a system that restricts a host's ability to perform lookups based

on an access control policy. This would involve detailing how decentralized

hash table lookup systems can be made aware of the access control policy.

Additionally, one could consider how such a system could assist in making the

lookup system more robust to other types of attacks such as denial-of-service.

Currently, if a single content distribution system needs some combination of

security services such as encryption, fingerprinting, and content protection, it

must utilize three different security systems. This requires the creation and

maintenance of multiple security policies. Our work has taken steps toward

this. For example. In GOTHIC, we showed how group key management and

161

group access control can benefit from each other. WHIM showed that data

encryption, distribution, and watermarking can be effectively joined. A desired

approach would be to allow a single framework that can accept a security policy

for a particular system and provide the necessary content security services.

162

Bibliography

[1) Call for proposals for content protection and copy management technologies.
http://www.dvb.org/dvb_technology/pdf/cfp_cp_cm.pdf.

[2] Content Protection Technical Working Group (CPTWG).
http://www.cptwg.org.

[3] Resource Description Framework (RDF). http://www.w3.org/RDF/.

[4] Video codec for audiovisual services at p*64kb/s. Recommendation H.261,
ITU-T, 1993.

[5] Report: Napster users lose that sharing feeling.
http://www.cnn.com/2001/TECH/internet/06/28- /napster.usage/, June
2001.

[6] Report: Bertelsmann wants all of Napster.
http://www.usatoday.com/life/cyber/invest/2002/04/05/napster.htm, April
2002.

[7] FIPS PUB 180-1. Secure Hash Standard. NIST, U.S. Department of Com
merce, April 1995.

[8] 4C Entity, LLC. Content protection for pre-recordable media (CPPM).
http://www.4centity.com.

[9] 4C Entity, LLC. Content protection for recordable media (CPRM).
http://www.4centity.com.

[10) 4C Entity, LLC. Content scrambling system (CSS), http://www.dvdcca.org.

[11) 4C Entity, LLC. Digital Transmission Content Protection(DTCP) white pa
per. http://www.dtcp.com/data/wp_spec.pdf, July 1998.

[12] D.G. Abraham, CM. Dolan, G.P. Double, and J.V. Stevens. Transaction
security systems. IBM Systems Journal, 30:206-229, 1991.

[13] Akamai, http://www.akamai.com.

[14] K. Almeroth and M. H. Ammar. Multicast group behavior in the internet's
multicast backbone (MBone). IEEE Communications Magazine, 35(6), June
1997.

163

http://www.dvb.org/dvb_technology/pdf/cfp_cp_cm.pdf
http://www.cptwg.org
http://www.w3.org/RDF/
http://www.cnn.com/2001/TECH/internet/06/28-
http://www.usatoday.com/life/cyber/invest/2002/04/05/napster.htm
http://www.4centity.com
http://www.4centity.com
http://www.dvdcca.org
http://www.dtcp.com/data/wp_spec.pdf
http://www.akamai.com

[15] R. Anderson. The eternity service, 1996.

[16] R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In Second
Usenix Workshop on Electronic Commerce, pages 1-11, November 1996.

[17] R.J. Anderson and C. Manifavas. Chameleon - A new kind of stream cipher. In
IWFSE: International Workshop on Fast Software Encryption, LNCS, 1997.

[18] RTPGW: An application level RTP gateway.
http://daedalus.cs.berkeley.edu/software/rtpgw/.

[19] E.M. Bakker and R.B. Tan J van Leeuwen. Prefix routing schemes in dynamic
networks. Computer Networks and ISDN Systems, 26:403-421, 1993.

[20] D. Balenson, D. McGrew, and A. Sherman. Key management for large dy
namic groups: One-way function trees and amortized initialization. Internet
Draft, IETF, March 1999. Work in progress.

[21] A. Ballardie. Scalable multicast key distribution. RFC 1949, IETF, 1996.

[22] A. Ballardie and J. Crowcroft. Multicast-specific security threats and counter-
measures. In Proceedings of ISOC Symposium on Network and Distributed
System Security, pages 2-16, San Diego, California, February 1995.

[23] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT). In
Deepinder P. Sidhu, editor, SIGCOMM, pages 85-95, San Francisco, Cali
fornia, September 1993. ACM. also in Computer Communication Review 23
(4), Oct. 1992.

[24] G. Barish and K. Obraczka. World wide web caching: Trends and techniques.
IEEE Communications Magazine, May 2000.

[25] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition
and MULTICS interpretation. Technical Report MTR-2997, MITRE Corp.,
Bedford, Mass, March 1973.

[26] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In
IEEE Symposium on Security and Privacy, number 96-17, 28, 1996.

[27] J.A. Bloom, I.J. Cox, T. Kalker, J.P.M.G. Linnartz, M.L. Miller, and C.B.S.
Traw. Copy protection for DVD video. In Proceedings of the IEEE, volume 87,
July 1999.

[28] S. Bonisteel. RIAA sues Napster clones: Kazaa, Morpheus and Grokster.
http://www.newsbytes.com/news/01/170798.html, October 2001.

164

http://daedalus.cs.berkeley.edu/software/rtpgw/
http://www.newsbytes.com/news/01/170798.html

[29] S. Brands. Off-line electronic cash based on secret-key certificates. In Pro
ceedings of the Second International Symposium of Latin American Theoretical
Informatics (LATIN '95), Valparaiso, Chili, 1995.

[30] J. Brassil, S.H. Low, N. F. Maxemchuk, and L. O'Gorman. Electronic mark
ing and identification techniques to discourage document copying. In IEEE
Infocom, pages 1278-1287, Toronto, Canada, June 1994.

[31] B. Briscoe. Marks: Zero side-effect multicast key management using arbitrarily
revealed key sequences. In Proc First International Workshop on Networked
Group Communication (NGC'99), Pisa,Italy, November 1999.

[32] I. Brown, C. Perkins, and J. Crowcroft. Watercasting: distributed water
marking of multicast media. In Networked Group Communication '99, pages
286-300, Pisa, Italy, November 1999.

[33] B. Cain, S. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan. Internet
group management protocol, version 3. Internet Draft, IETF, March 2001.
Work in progress.

[34] K.L. Calvert, S. Bhattacharjee, E.W. Zegura, and J. Sterbenz. Directions
in active networks. IEEE Communications Magazine, 36(10):72-78, October
1998.

[35] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multi
cast security: A taxonomy and efficient constructions. In IEEE Infocom, New
York, March 1999.

[36] C. Castelluccia and G. Montenegro. Securing group management in ipv6 with
cryptographically generated addresses. Internet Draft, Internet Engineering
Task Force, July 2002. Work in progress.

[37] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Security
for structured peer-to-peer overlay networks. In Symposium on Operating
Systems Design and Implementation, December 2002.

[38] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key management
for secure internet multicast using boolean function minimization techniques.
In IEEE Infocom, New York, March 1999.

[39] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Wor
rell. A hierarchical internet object cache. In USENIX 1996 Annual Technical
Conference, San Diego, California, January 1996.

[40] D. Chaum. Blind signatures for untraceable payments. In Proceedings of
CRYPTO '82, pages 199-203, 1982.

165

[41] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. Lecture Notes
in Computer Science, pages 319-327, 1988.

[42] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Distribution
as an Infrastructure Service. PhD thesis, 2000.

[43] D.R. Cheriton and S.E. Deering. Host groups: A multicast extension for
datagram internetworks. In Data Communications Symposium, pages 172-
179, September 1985.

[44] B. Chor, A. Fiat, and M. Naor. Tracing traitors. Lecture Notes in Computer
Science, 839:257-270, 1994.

[45] C. M. Christensen. The Innovator's Dilemma: When New Technologies Cause
Great Firms to Fail. Harvard Business School Press, 1997.

[46] H. Chu, L. Qiao, and K. Nahrstedt. A secure multicast protocol with copyright
protection. In Proceedings of IS&T/SPIE's Symposium on Electronic Imaging:
Science and Technology, January 1999.

[47] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In ACM
Sigmetrics, June 2000.

[48] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing ap
plications on the internet using an overlay multicast architecture. In ACM
SIGCOMM, August 2001.

[49] Y.H. Chu, S.G. Rao, and H. Zhang. A case for end system multicast. In ACM
Sigmetrics, pages 1-12, Santa Clara, California, 2000.

[50] B. Coan, V. Kaul, S. Narain, and W. Stephens. Hasm: Hierarchical
application-level secure multicast. Internet Draft, Internet Engineering Task
Force, November 2001. Work in progress.

[51] P. Cohen. Napster remains closed following court order.
http://maccentral.macworld.com/news/0107- /12.napster.shtml, July 2001.

[52] B. Cox, D. Tygar, and M. Sirbu. Netbill security and transaction protocol. In
First USENIX Workshop of Electronic Commerce Proceedings, 1995.

[53] W. Dai. Crypto++. http://www.eskimo.com/~weidai/benchmarks.html,
June 2000.

[54] Loudeye Music Database, http://www.loudeye.com.

[55] Gracenote CD database (CDDB). http://www.cddb.com.

166

http://maccentral.macworld.com/news/0107-
http://www.eskimo.com/~weidai/benchmarks.html
http://www.loudeye.com
http://www.cddb.com

[56] S. Deering. Multicast routing m a datagram internetwork. PhD thesis, Stanford
University, Palo Alto, California, December 1991.

[57] S. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, C.G. Liu, and L. Wei. The
PIM architecture for wide-area multicast routing. IEEE/ACM Transactions
on Networking, 4(2):153-162, 1996.

[58] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, IETF,
January 1999.

[59] Digital Content Protection, LLC. High-bandwidth digital content protection
(HDCP). http://www.digital-CP.com.

[60] C. Diot, B. N. Levine, B. Lyles, H. Kassan, and D. Balsiefien. Deployment
issues for the ip multicast service and architecture. IEEE Network, special
issue on Multicasting, 2000.

[61] J. Dittmann, M. Stabenau, and R. Steinmetz. Robust MPEG video water
marking technologies. In Multimedia and Security Workshop at ACM Multi
media, 1998.

[62] N. Duffield, J. Horowitz, and F. L. Presti. Adaptive multicast topology infer
ence. In IEEE Infocom, Anchorage, Alaska, April 2001.

[63] C. Dwork, J. Lotspiech, and M. Naor. Digital signets: self-enforcing protection
of digital information (preliminary version), pages 489-498, 1996.

[64] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja
cobson, C. Liu, P. Sharma, and L. Wei. Protocol independent multicast-sparse
mode (PIM-SM): protocol specification. RFC 2362, IETF, June 1998.

[65] J. Evers. Napster to launch fee-based service.
http://www.cnn.com/2001/TECH/computing/01/29/fee.based.napster.idg/,
January 2001.

[66] extensible Media Commerce Language (XMCL). http://www.xmcl.org.

[67] extensible rights Markup Language(XrML). http://www.xrml.org.

[68] J. Fan, P.Q. Judge, and M.H. Ammar. HySOR: group ley management with
collusion-scalability tradeoffs using a hybrid structuring of receivers. In IEEE
ICCCN, 2002.

[69] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable
wide-area web cache sharing protocol. In ACM SIGCOMM, volume 28, pages
254-265, September 1998.

167

http://www.digital-CP.com
http://www.cnn.com/2001/TECH/computing/01/29/fee.based.napster.idg/
http://www.xmcl.org
http://www.xrml.org

[70] J. Feigenbaum, M.J. Freedman, T. Sander, and A. Shostack. Privacy engi
neering for digital rights management systems. In Digital Rights Management
Workshop, pages 76-105, 2001.

[71] W. Fenner and S. Casner. A traceroute facility for ip multicast. Internet
Draft, Internet Engineering Task Force, July 2000. Work in progress.

[72] P. Francis. Yoid: Your own internet distribution. Unrefereed report,
http://www.aciri.org/yoid/, April 2000.

[73] N. Freed and N. Borenstein. Multipurpose internet mail extensions (MIME)
part two: Media types. RFC 2046, IETF, November 1996.

[74] Freenet. http://freenet.sourceforge.net.

[75] TRM^^: Advanced Audio Fingerprinting from Relatable.
http://relatable.com/tech/trm.html.

[76] J. Galvin. Public key distribution with secure DNS. In Sixth, USENIX Security
Symposium, July 1996.

[77] R. Gennaro and P. Rohatgi. How to sign digital streams. Lecture Notes in
Computer Science, 1294, 1997.

[78] Gnutella, http://gnutella.wego.com.

[79] P. Golle and N. Modadugu. Authenticating streamed data in the presence of
random packet loss. In Network and Distributed System Security Symposium,
2001.

[80] L. Gong. A secure identity-based capability system. In IEEE Symposium on
Security and Privacy, pages 56-65, 1989.

[81] L. Gong and N. Shacham. Elements of trusted multicasting. In Proceedings of
the 2nd ACM Conference on Computer and Communications Security, pages
176-183, Fairfax, Virginia, 1994.

[82] B. Haberman and D. Thaler. Host-based anycast using MLD. Internet Draft,
IETF, February 2001. Work in progress.

[83] M. Handley and S. Hanna. Multicast address allocation protocol (AAP).
Internet Draft, IETF, June 2000. Work in progress.

[84] M. Handley and V. Jacobson. SDP: session description protocol. RFC 2327,
IETF, April 1998.

[85] M. Handley, C. Perkins, and E. Whelan. Session announcement protocol. RFC
2974, IETF, October 2000.

168

http://www.aciri.org/yoid/
http://freenet.sourceforge.net
http://relatable.com/tech/trm.html
http://gnutella.wego.com

[86] S. Hanna, B. Patel, and M. Shah. Multicast address dynamic chent allocation
protocol (MADCAP). RFC 2730, IETF, December 1999.

[87] T. Hardjono and B. Cain. Key establishment for IGMP authentication in
IP multicast. In IEEE European Conference on Universal Multiservice Net-
works(ECUMN), CREF, Colmar, France, 2000.

[88] T. Hardjono, R. Canetti, M. Baugher, and P. Dinsmore. Secure IP multi
cast: Problem areas, framework, and building blocks. Internet Draft, IETF,
September 2000. Work in progress.

[89] H. Harney and C. Muckenhirn. Group key management protocol (GKMP)
specification. RFC 2093, IETF, July 1997.

[90] F. Hartung and B. Girod. Digital watermarking of raw and compressed video.
In European EOS/SPIE Symposium on Advanced Imaging and Network Tech
nologies^ October 1996.

[91] F. Hartung and B. Girod. Fast public key watermarking of compressed video.
In IEEE International Conference on Image Processing^ Santa Barbara, Cali
fornia, October 1997.

[92] R. J. Hayton, J. M. Bacon, and K. Moody. Access control in an open dis
tributed environment. In IEEE Symposium on Security and Privacy, pages
3-14, May 1998.

[93] H. He, T. Hardjono, and B. Cain. Simple multicast receiver access control.
Internet Draft, Internet Engineering Task Force, November 2001. Work in
progress.

[94] R. Hinden and S. Deering. IP version 6 addressing architecture. RFC 2373,
IETF, July 1998.

[95] P. Hoffman. Enhanced security services for S/MIME. RFC 2634, IETF,
November 1999.

[96] F. Hohl. A model of attacks of malicious hosts against mobile agents. In ^th
Workshop on Mobile Object Systems: Secure Internet Mobile Computations,
1998.

[97] F. Hohl. Time Hmited blackbox security: Protecting mobile agents from mali
cious hosts. In Giovanni Vigna, editor. Mobile Agents and Security. Springer-
Verlag, 1998.

[98] H. Holbrook and B. Cain. Source-specific multicast for IP. Internet Draft,
IETF, March 2000. Work in progress.

169

[99] H. Holbrook and B. Cain. Source-specific multicast for IP. Internet Draft,
IETF, March 2001. Work in progress.

100] H. Holbrook and D. R. Cheriton. Ip multicast channels: EXPRESS support
for large-scale single-source applications. In SIGCOMM, Cambridge, Mas
sachusetts, August/September 1999.

101] M. J. Holliman, N. D. Memon, B.L. Yeo, and M. M. Yeung. Adaptive public
watermarking of dct-based compressed image. In Storage and Retrieval for
Image and Video Databases (SPIE), pages 284-295, 1998.

102] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key in
frastructure certificate and CRL profile. Request for Comments (Proposed
Standard) 2459, Internet Engineering Task Force, January 1999.

103] Inktomi, http://www.inktomi.com.

104] Internet 2 Distributed Storage Infrastructure, http://dsi.internet2.edu.

105] ISO/IEC JTC1/SC29/WG11. Overview of MPEG-7 Standard. ISO, March
2001.

106] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and Jr. J. O'Toole. Over
cast: Reliable multicasting with an overlay network. In Symposium on Oper
ating Systems Design and Implementation, San Diego, California, 2000.

107] D. Johnson and S. Deering. Reserved IPv6 subnet anycast addresses. RFC
2526, IETF, March 1999.

108] P. Q. Judge and M. H. Ammar. CITADEL: A content protection architecture
for decentralized peer-to-peer file-sharing systems. Submitted for publication,
http://www.cc.gatech.edu/~judge/papers/citadel.ps.

109] P. Q. Judge and M. H. Ammar. WHIM: watermarking multicast video with a
hierarchy of intermediaries. In Proc. International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV), Chapel
Hill, North Carolina, June 2000.

110] P. Q. Judge and M. H. Ammar. Gothic: Group access control architecture for
secure multicast and anycast. In IEEE Infocom, July 2002.

I l l] P. Q. Judge and M. H. Ammar. The role of watermarking in securing peer-to-
peer systems. In Workshop on Multimedia and Security at ACM Multimedia,
December 2002.

112] P. Q. Judge and M. H. Ammar. Security issues and solutions in multicast
content distribution: A survey. IEEE Network, special issue on Multicasting:
An Enabling Technology, 2003.

170

http://www.inktomi.com
http://dsi.internet2.edu
http://www.cc.gatech.edu/~judge/papers/citadel.ps

[113] M. Kaplan. IBM Cryptolopes^^, superdistribution and digital rights manage
ment. http.7/www.research.ibm.com/people/k/kaplan, 1996.

[114] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for re
lieving hot spots on the World Wide Web. In Proceedings of the Twenty-Nmth
Annual ACM Symposium on Theory of Computing, pages 654-663, El Paso,
Texas, 4-6 May 1997.

[115] P. Karger and A. J. Herbert. An augmented capability architecture to support
lattice security and traceability of access. In IEEE Symposium on Security and
Privacy, pages 2-12, 1984.

[116] D. Katabi and J. Wroclawski. A Framework for Global IP-Anycast (GIA).
Internet Draft, IETF, June 1999. Work in progress.

[117] C. Kaufman, R.Perlman, and M. Speciner. Network Security: Private Com
munication in A Public World. Prentice-Hall, 1995.

[118] KaZaA. http://www.kazaa.com.

[119] S. Kent. Encryption-based protection for interactive user/computer commu
nication. In Fifth Data Communications Symposium, September 1977.

[120] S. Kent and R. Atkinson. Security architecture for the internet protocol. RFC
2401, IETF, November 1998.

[121] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services. In
ACM SIGCOMM, August 2002.

[122] B. King. Napster to start filtering songs.
http:/ / www.wired.com/news/politics/0,1283,42140,00.html, March 2001.

[123] E. Koch and J. Zhao. Towards robust and hidden image copyright labeling.
In IEEE Workshop on Nonlinear Signal and Image Processing, 1995.

[124] L. Kohnfelder. Towards a practical public-key cryptosystem. Master's thesis,
M.I.T., May 1978.

[125] B. Lampson. Protection. In Proceedings of the 5th Annual Princeton Confer
ence on Information Sciences and Systems, pages 437-443, Princeton Univer
sity, 1971.

[126] C. E. Landwehr. Formal models for computer security. ACM Computing
Surveys, 13(3):247-278, 1981.

171

http://http.7/www.research.ibm.com/people/k/kaplan
http://www.kazaa.com
http://
http://www.wired.com/news/politics/0,1283,42140,00.html

[127] B. N. Levine, S. Paul, and J. J. Garcia-Luna-Aceves. Organizing multicast
receivers deterministically by packet-loss correlation. In ACM Multimedia,
pages 201-210, 1998.

[128] X. Li, S. Paul, and M. Ammar. Layered video multicast with retransmissions
(LVMR): evaluation of hierarchical rate control. In IEEE Infocom, page 1062,
San Francisco, California, March/April 1998.

[129] LimeWire. http.y/www.limewire.org.

[130] J. C. Lin and S. Paul. RMTP: a reliable multicast transport protocol. In
IEEE Infocom, San Fransisco, California, March 1996.

[131] A. D. Rubin M. Waldman and L. Faith Cranor. Publius: A robust, tamper-
evident, censorship-resistant, web publishing system. In Proc. 9th USENIX
Security Symposium, pages 59-72, August 2000.

[132] Macrovision Corp. Macrovision copy protection.
http://www.macrovision.com/solutions/video/copyprotect/.

[133] Open Mash, http://www.openmash.org.

[134] S. McCanne and V. Jacobson. vie: A flexible framework for packet video. In
ACM Multimedia, 1995.

[135] C. McCollum, J. Messing, and L. Notargiacomo. Beyond the pale of MAC
and DAC - defining new forms of access control. In IEEE Computer Society
Symposium on Security and Privacy, pages 190-200, May 1990.

[136] P. McDaniel, H. Harney, P. Dinsmore, and A. Prakash. Multicast security
policy. Internet Draft, IETF, November 2000. Work in progress.

[137] G. Medvinsky and B. C. Neuman. Netcash: A design for practical electronic
currency on the internet. In Proceedings of the First ACM Conference on
Computer and Communications Security, volume 1993, pages 102-106, 1993.

[138] D. Meyer. Extended allocations in 233/8. Internet Draft, IETF, April 2001.
Work in progress.

[139] D. Meyer and P. Lothberg. GLOP addressing in 233/8. RFC 2770, IETF,
February 2000.

[140] Microsoft Corp. Understanding secure audio path.
http://www.microsoft.com/windows/windowsmedia/wm7/WMRMsap_bro.pdf.

[141] Midbar Tech. Cactus data shield, http://www.midbartech.com.

172

http://http.y/www.limewire.org
http://www.macrovision.com/solutions/video/copyprotect/
http://www.openmash.org
http://www.microsoft.com/windows/windowsmedia/wm7/WMRMsap_bro.pdf
http://www.midbartech.com

[142] S. Mittra. lolus: A framework for scalable secure multicasting. ACM Computer
Communication Review, 27(4):277-288, October 1997. ACM SIGCOMM'97,
Sept. 1997.

[143] J. Moy. Multicast extensions to OSPF. RFC 1075, Internet Engineering Task
Force, 1991.

[144] S. Murphy, M. Badger, and B. Wellington. OSPF with digital signatures. RFC
2154, IETF, June 1997.

[145] MusicBrainz. http://musicbrainz.org.

[146] MusicCity. http://www.musiccity.com.

[147] MusicNet, http://www.musicnet.com.

[148] Napster, http://www.napster.com.

[149] NDS Limited. NDS VideoGuard. http://www.nds.com/solutions/videoguard.html.

[150] B. C. Neumann. Proxy-based authorisation and accounting for distributed
systems. In 13th International Conference on Distributed Computing Systems,
pages 283-291, Pittsburgh, Penn, may 1993.

[151] M. Nilsson. ID3 tag version 2.3.0. informal standard, February 1999.

[152] OpenSSL. http://www.openssl.org.

[153] J.S. Park and R. Sandhu. Smart certificates: Extending x.509 for secure at
tribute service on the web. National Information Systems Security Conference,
1999.

[154] J.S. Park, R. Sandhu, and J. Schifalacqua. Security architecture for controlled
digital information dissemination. In Annual Computer Security Applications
Conference (ACSAC), December 2000.

[155] C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. RFC
1546, IETF, November 1993.

[156] S. Paul, K. K. Sabnani, J.C.H. Lin, and S. Bhattacharyya. Reliable multicast
transport protocol (RMTP). IEEE Journal on Selected Areas in Communica
tions, 15(3):407-421, April 1997.

[157] B. Pearson. Digital transmission content protection.
http://www.dtcp.com/data/dtcp_tut.pdf, June 1999.

[158] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source
authentication for multicast. In Network and Distributed System Security
Symposium, February 2001.

173

http://musicbrainz.org
http://www.musiccity.com
http://www.musicnet.com
http://www.napster.com
http://www.nds.com/solutions/videoguard.html
http://www.openssl.org
http://www.dtcp.com/data/dtcp_tut.pdf

[159] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Attacks on copyright
marking systems. In D. Aucsmith, editor, Information Hiding, Second In
ternational Workshop, pages 219-239, Portland, Oregon, U.S.A.,, April 15-17
1998.

[160] F. A. P. Petitcolas and R. J.Anderson. Evaluation of copyright marking sys
tems. In D. Aucsmith, editor, IEEE Multimedia Systems (ICMCS'99), vol
ume 1, pages 574-579, Florence, Italy, June 7-11 1999.

[161] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions.
In ACM Conference on Computer and Communications Security, pages 151-
160, 1997.

[162] C. Pfleeger. Security in Computing. Prentice-Hall International, Inc., Engle-
wood Cliffs, NJ, 1997.

[163] PressPlay, http://www.pressplay.com.

[164] T. Pusateri. Distance vector multicast routing protocol. Internet Draft, In
ternet Engineering Task Force, March 1999. Work in progress.

[165] L. Qiao and K. Nahrstedt. Watermarking method for mpeg encoded video:
Towards resolving rightful ownership. In IEEE Multimedia Computing and
Systems, June 1998.

[166] C. Metz R. Boivie, N. Feldman. Small group multicast: A new solution for
multicasting on the internet. Internet Computing, 4(3):75-79, May/June 2000.

[167] P. Radoslavov, D. Estrin, R. Govindan, M. Handley, S. Kumar, and D, Thaler.
The multicast address-set claim (MASC) protocol. RFC 2909, IETF, Septem
ber 2000.

[168] B. Ramsdell. S/MIME version 3 certificate handling. RFC 2632, IETF, June
1999.

[169] B. Ramsdell. S/MIME version 3 message specification. RFC 2633, IETF,
June 1999.

[170] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In SIGCOMM, 2001.

[171] S. Ratnasamy and S. McCanne. Inference of multicast routing trees and bot
tleneck bandwidths using end-to-end measurements. In IEEE Infocom, New
York, March 1999.

[172] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Proxies for anonymouxs
routing. In Proceedings of the 12th Annual Computer Security Applications
Conference, pages 95-104, San Diego, CA, December 1996. IEEE CS Press.

174

http://www.pressplay.com

[173] M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions.
ACM Transactions on Information and System Security, l(l):66-92, 1998.

[174] E. Rescorla. HTTP over TLS. RFC 2818, IETF, May 2000.

[175] R. Rivest. The MD5 message-digest algorithm. RFC 1321, IETF, April 1991.

[176] R. Rivest and B. Lampson. SDSI — a simple distributed security infrastucture.
Technical report, M.I.T., April 1996.

[177] R. Rivest and A. Shamir. Payword and micromint: Two simple micropayment
schemes. In Security Protocols Workshop, pages 69-87, 1996.

[178] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet
authentication. In ACM Conference on Computer and Communications Se
curity, November 1999.

[179] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Middleware, 2001.

[180] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious
hosts. In Giovanni Vigna, editor. Mobile Agents and Security. Springer-Verlag,
1998.

[181] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 20(2):38-47, 1996.

[182] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access
control: Towards a unified standard. In ACM Workshop on Role-Based Access
Control, Berlin, Germany, July 2000.

[183] K. Sarac and K. Almeroth. Scalable techniques for discovering multicast tree
topology. In NOSSDAV, Port Jefferson, New York, June 2001.

[184] S. Saroiu, P. Krishna Gummadi, and S.D. Gribble. A measurement study
of peer-to-peer file sharing systems. In Multimedia Computing and Network-
ing(MMCN), 2002.

[185] V. Scarlata, B.N. Levine, and C. Shields. Responder anonymity and anony
mous peer-to-peer file sharing. In ICNP, November 2001.

[186] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport
protocol for real-time applications. Request for Comments (Proposed Stan
dard) 1889, Internet Engineering Task Force, January 1996.

[187] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia
streams. In IEEE Infocom, New York, March 1999.

175

[188] C. Shields and J. J. Garcia-Luna-Aceves. KHIP - a scalable protocol for secure
multicast routing. In SIGCOMM, pages 53-64, 1999.

[189] C. Shields and B.N. Levine. A protocol for anonymous communication over
the internet. In ACM Conference on Computer and Communication Security^
November 2000.

[190] O. Sibert, D. Bernstein, and D. Van Wie. The digibox: a self-protecting
container for electronic commerce. In USENIX Electronic Commerce, 1995.

[191] T. Sikora. Mpeg digital video-coding standards. In IEEE Signal Processing
Magazine, volume 14, pages 82-100, September 1997.

[192] E. Sit and R. Morris. Security considerations for peer-to-peer distributed hash
tables. In International Workshop on Peer-to-Peer Systems, March 2002.

[193] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key
distribution. In IEEE Infocom, Anchorage, April 2001.

[194] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord; A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM,
2001.

[195] D. L. Tennenhouse, J. M. W. Smith, D. Sincoskie, D. J. Wetherall, and
J. G. M. Minden. A survey of active network research. IEEE Communications
Magazine, 35(1):-, January 1997.

[196] D. Thaler, M. Handley, and D. Estrin. The Internet Multicast Address Allo
cation Architecture. RFC 2908, IETF, September 2000.

[197] J. Touch and S. Hotz. The X-bone. In Third Global Internet Mim-Conference
in conjunction with Globecom, Sydney, Australia, Nov 1998.

[198] T.Wu and S. Wu. Selective encryption and watermarking of mpeg video.
Technical report. North Carolina State University.

[199] A. Van Moffaert and O. Paridaens. Security issues in protocol independent
multicast - sparse mode (pim-sm). Internet Draft, IETF, February 2002. Work
in progress.

[200] D. Verma. Content Distribution Networks: An Engineering Approach. Wiley,
January 2002.

[201] R. Vida et al. Multicast Ustener discovery version 2 (MLDv2) for IPv6. In
ternet Draft, IETF, February 2001. Work in progress.

[202] Ogg Vorbis. http://www.vorbis.com.

176

http://www.vorbis.com

[203] N. R. Wagner. Fingerprinting. In Symposium on Security and Privacy, pages
18-22, April 1983.

[204] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues
and architectures. RFC 2627, IETF, June 1999.

[205] L. Wei. Authenticating PIM version 2 messages. Internet Draft, IETF, July
2000. Work in progress.

[206] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin core metadata for
resource discovery. RFC 2413, IETF, September 1998.

[207] D. Wessels and K. Claffy. Internet cache protocol (ICP), version 2. Request for
Comments (Informational) 2186, Internet Engineering Task Force, September
1997.

[208] E. Wold, T. Blum, D. Keislar, and J. Wheaton. Content-based classification,
search, and retrieval of audio. In IEEE Multim^edia, 1996.

[209] C.K. Wong, M. Gouda, and S.S. Lam. Secure group communications using
key graphs. ACM Computer Communication Review, 28(4):68-79, September
1998.

[210] C.K. Wong and S.S. Lam. Digital signatures for flows and multicasts.
IEEE/ACM Transactions on Networking, 7, 1999.

[211] T.Y.C. Woo and S. Lam. Designing a distributed authorization service. In
IEEE Infocom, San Francisco, CA, March 1998.

[212] E.W. Zegura, M.H. Ammar, Z. Fei, and S. Bhattacharjee. Application-layer
anycasting: a server selection architecture and use in a replicated web service.
IEEE/ACM Transactions on Networking, 8(4):455-466, August 2000.

[213] E.W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model
an internetwork. In IEEE Infocom, San Fransisco, California, March 1996.

[214] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
Computer Science Division, U. C. Berkeley, April 2001.

177

Vita

Paul Judge was born in Baton Rouge, Louisiana on March 5, 1977. He began

matriculation at Morehouse College in 1995 and received the B.S. in Computer

Science three years later in May 1998. Along the way, he held interns at NASA's

Stennis Space Center and was also a software developer at IBM from 1997 to 1998.

He continued in pursuit of a longtime goal of an advanced degree and performing

research in computer security. He began at the College of Computing in August 1998

and will receive his Ph.D. in December 2002. Along the way, he has also done work

with the research and development group at CipherTrust, a company that creates

Internet messaging security products.

178

