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NOMENCLATURE 

English 
Symbols 

2 
a Thermal diffusivity, m /s. 

2 
A Area, cm . 

A ,A ,A Coefficients of second order equation used in least square 

fitting. 

A Amplitude of an oscillatory quantity. 

c Reduced wave velocity, cm. 

c Reduced wave velocity, cm, c = c/U*. 

C , ...,C Coefficients of the assumed asymptotic solutions. 
•L 8 

C ,C?,C„,C, Coefficients of the asymptotic solutions. 

C Plate thermal capacity. 

C Specific heat, Ws/KgC. 

d Probe or heating wire diameter, u. 

D Cylinder diameter, cm. 

E Anemometer or heating wire voltage, volt. 

E Mean value of the wire voltage, volt. 

e Oscillatory voltage component, volt. 

F(ri) Dimensionless normal component of basic velocity. 

f(x ) Function defined by Hermann and by equation (A-18). 

f Frequency, Hertz. 

T Correction factor for E, given by equation (E-7). 

g(x ) Function defined by Hermann and by equation (A-19). 
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2 , 
g Gravitation acceleration, cm /s. 

+ 1/4 G Instability parameter, defined by G =: f(x )N , 
dimensionless 

2 
h Heat transfer coefficient, W/m C. 

— 2 
h Mean value of the heat transfer coefficient, W/m C. 

2 
h Oscillatory part of the heat transfer coefficient, W/m C. 

H(n) Dimensionless basic temperature difference 

k Thermal conductivity, W/m C. 

I Variable distance on the wire sensor, measured from the 
wire support, mm. 

L Physical length, or wave length. 

M Frequency response parameter, defined by M = 4h/pC d,s 

n Normal distance from the cylinder, cm. 

N Biot number, defined by hd/k. 
Bi 

3 2 
N Grashof number, defined by g$ATd /v . 

3 2 N Grashof number defined by g$ATr'/v . Ur, r 

N„ Nusselt number, defined by hL/k. 
Nu 

ISL Prandtl number 
Pr 

N Reynolds number, defined by ud/v. 

p Perimeter, cm. 

p* Dynamic total pressure, Newton/cm . 

2 
P Mean value of the dynamic pressure, Newton/cm . 

2 
P Disturbance component of the pressure, Newton/cm 

3 
q Volumetric rate of heat generation, W/m . 

Q* Relative thermal capacity factor, defined by Q = (C/A)/pC 6 

r Radian coordinate. 

r Cylinder radius, cm. 
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R Electric resistance, ohm. 

S Tangential distance over the circumference of the cylinder, 
measured from the lower stagnation point. 

t Time, S. 

T Temperature, C 

u Tangential velocity component, cm/s 

U Basic tangential velocity component, cm/s. 

u Disturbed tangential velocity component, cm/s. 

•k ~^~ A 

U (x ) Function defined by U = fg 

v Normal velocity component, cm/s. 

V Basic normal velocity component, cm/s. 

v Disturbance normal velocity component, cm/s. 

x Position angle, measured from the lower stagnation radius, 
rad. 

y Reduced normal distance, y = n/r. 

Greek 
Symbols 

a Wave number, cm 

a Dimensionless wave number. 

an,a0,a»,a. Correction factors for R , (40 + R ), k, v due to variation 
1 2 J 4 w w 

in temperature, dimensionless. 

3 Dimensionless frequency 

_ — JL 

3 Dimensionless frequency, 3 = 3 <$ /U . 
_1 

3 Coefficient of thermal expansion C 

1"*"Y6 
Roots of auxiliary equations, equations (C-3 and 5). 

Y-,,Y9,Y- Roots of auxiliary equations, having negative real parts. 

5 Boundary layer thickness, dimensionless. 

e Small error. 



C, C Amplitude of temperature oscillations, t, = £, dimensionless 

r, , C T T , ^ T T T Asymptotic solutions for ~Qn 

n Dimensionless normal distance. 

9 Temperature difference, C. 

0 Basic temperature difference, C. 

0 Temperature difference between the hot wire and the sur
rounding air, C. 

0 Oscillatory temperature difference, C. 

0 Dimensionless temperature oscillations. 

2 
v Kinematic viscosity, m /s. 

E, Dimensionless tangential distance, £ x/S. 

3 
p Density Kg/m . 

a Reduced frequency, dimensionless 

— 2 
T Reduced time, x = tv/r , dimensionless. 

— A 

x Reduced time, T = TU /T6, dimensionless. 

cj) Amplitude of normal disturbance velocity, dimensionless 

cj) Amplitude of normal disturbance velocity, <j> = $/6U , 
dimensionless. 

cj) , cj) , cj) Asymptotic solutions for cj). 

<3> Position angle, defined by $ = x- 90, degrees. 

ip Mean stream function, dimensionless. 

2 
ij; Disturbance stream function, m /s. 

\p* Reduced disturbance stream function, I/J* = 4>*/y, dimen
sionless . 

a) Angular velocity, rad./s. 

~ Of order of. 
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Superscripts 

Disturbance quantity. 

Differentiation with respect to n. 

+ Designates the coordinates associated with a basic quantity. 

Subscripts 

a Air. 

A Amplitude of a disturbance quantity. 

c Cylinder. 

e Edge of the boundary layer, or experimental value of. 

i Imaginary part. 

m Means. 

N Points of neutral stability. 

n,r,s,x,y Differentiation with respect to these quantities. 

0 At reference or calibration conditions. 

r Real part. 

w Wire. 

°° Far from the cylinder. 
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SUMMARY 

The coupled Orr-Sommerfeld equations for natural convection flow 

around horizontal cylinders are derived and solved for air for Grashof 

9 
numbers up to 4 x 10 , with the neutral stability curves determined. The 

favorite frequency band which the fluid amplifies most was found to vary, 

with variation of the total Grashof number, the cylinder radius, and the 

kinematic viscosity v. 

Experiments were carried out to check the analysis. A hot wire 

sensor was used to measure the basic temperature and velocity profiles. 

It was also used to detect temperature oscillations induced in the boundary 

layer. Neutral stability points were determined for different frequencies 

and found to agree well with the analytic results. 
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CHAPTER I 

INTRODUCTION 

The problem of natural convection is one of the oldest in heat 

transfer. Work was done to determine the local and average heat transfer 

coefficients, the temperature and velocity profiles, and to study the flow 

instability. 

In the case of vertical and inclined plates, these three sides of 

the problem are well covered in literature. For horizontal cylinders, the 

only works available are those carried out to determine the velocity and 

temperature profiles, and the local and average heat transfer coefficients. 

jr. 

Earliest experiments are those of Jodlbauer [42] , while the earliest analy

sis was that of Hermann [16]. More recent analyses were carried out using 

Blasius series by Chiang and Kaye [43], Saville and Churchill [44] and Lin 

and Chao [45]. This latter method did not improve on Hermann's results; 

however, it is more suited to some of the more complicated problems where 

the surface is non-isothermal, or of a more complicated geometry. 

Instability of natural convection flow around horizontal cylinders 

does not seem to have been studied before, it is studied here both analytic

ally and experimentally. 

In the present analysis, the coupled Orr-Sommerfeld differential 

equations that govern small disturbances in velocity and temperature were 

derived, assuming the disturbances to be two-dimensional. These equations 

were solved by the method devised by Kaplan [22] and Mach [29] . The solution 

References are listed in the Bibliography. 
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revealed information about the behaviour of a disturbance of certain fre

quency as it travels streamwise. Points where the. amplitude of a disturb

ance attains its minimum value were determined; they designate locations 

where the disturbances neither amplify nor dampen with infinitesimal stream-

wise travel. These are the neutral stability points and their locus at 

various frequencies is the neutral stability curve. The importance of this 

curve is that it gives locations beyond which instabilities would amplify. 

Before these locations, instabilities would be damped. 

In the present study, neutral stability curves were determined for 

9 
air and for values of total Grashof number N up to 4 x 10 . The flow 

br ,r 

was found, as in the case of flow adjacent to a vertical plate, to be sen

sitive to a certain band of frequencies. The solution also gives the 

favorite frequency band that amplifies most and, hence, characterizes the 

flow instability. 

In the present case, the favorite band of frequencies was found to 

depend on the value of the total Grashof number, the cylinder radius and 

the kinematic viscosity, whereas the favorite frequency band does not change 

along a flat plate, except with inclination. 

Experiments were carried out to check the analytic results. A 

boundary layer type hot wire probe with a long wire sensor (8 mm length), 

specially designed for the present work, was used to measure both tempera

ture and velocity. The probe was designed to minimize the error in temper

ature measurements due to conduction in wire supports, and to pick temper

ature and velocity fluctuations in the frequency range expected. Basic 

temperature and velocity profiles were measured and the results were found 

to agree well with previous theoretical and experimental data of Hermann [16] 
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and Jodlbauer [42]. 

To determine points of neutral stability, instabilities were gen

erated by a heating wire placed in the boundary layer. This wire was 

used in conjunction with a function generator to induce sinusoidal temper

ature oscillations of controlled frequency and amplitude in the boundary 

layer. A neutral stability curve was thus obtained by measuring the 

temperature oscillations. The experimental results agreed well with those 

analytically obtained. 
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CHAPTER II 

LITERATURE REVIEW 

The Orr-Sommerfeld equations governing the amplification or damp

ing of disturbances in flow fields have been solved for many flow situa

tions, due to both forced and natural convection. The present problem, 

instability of natural convection flow around horizontal cylinders, has not 

been considered before. The following review, therefore, deals only with 

natural convection flows over vertical and inclined plates or cases perti

nent to this problem. 

Analytic Work 

The coupled Orr-Sommerfeld equations for a buoyancy driven flow 

adjacent to a vertical plate were first derived by Plapp [32] and widely 

used thereafter in similar problems. He obtained a neutral stability 

curve; nevertheless, the agreement with the available data of onset of 

turbulence for such flow was considerably poor because of computational 

limitations and inadequacies in assumptions. 

Szewczyk [39] used a series solution for the uncoupled equations, 

i.e. with temperature disturbances neglected, for natural convection from 

isothermal vertical flat plates. He assumed the velocity profile to be 

parabolic. The results obtained were higher than the known values for the 

onset of turbulence. Kurtz and Crandall [26] used a computer aided finite 

difference technique to obtain a solution for the uncoupled equations. They 

found values lower than those of Szewczyk. 
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Nachtsheim [30] seems to be the first to solve the coupled equations, 

i.e. with the temperature disturbances taken into consideration. He 

solved them in the region extending from the outer edge of the boundary 

layer into the unaffected fluid far from the plate. The equations in this 

region are linear differential equations with constant coefficients and 

are relatively easy to solve. This "asymptotic" solution of the Orr-

Sommerfeld equations served as a boundary condition at the outer edge of 

the boundary layer. He then used this condition as a check for an itera

tive method where the coupled equations were solved within the boundary 

layer of an isothermal vertical plate using step-by-step integration start

ing from the plate. Nachtsheim obtained the neutral stability curves for 

air (N = .733) and water (N = 6.7). His results showed that instability 

starts much earlier than predicted by Szewczyk and by Kurtz and Crandall. 

Nachtsheim solution of the coupled equations gave results that differed 

considerably from those of the uncoupled equations as could be seen from 

Figure (2-1) which presents his results for the two cases. 

Polymerpolous and Gebhart [33] used Nachtsheim method to solve the 

uncoupled equations for a vertical plate of constant heat flux density. 

Their theoretical findings were in reasonable agreement with their experi

mental results [34] in which controlled velocity oscillations were intro

duced in the flow field. 

Kaplan [22] introduced a new method for calculating points of neu

tral stability in isothermal flow. The method is similar to that of 

Nachtsheim except that integration starts from the outer edge of the bound

ary layer. This allowed him to use a two-dimensional search procedure 

whereas a six-dimensional search procedure is needed with Nachtsheim's method. 
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Mach [29] extended this method to coupled equations in supersonic flow 

problems. As a result of these contributions later workers in natural 

convection were able to consider higher Grashof numbers with relative 

ease. 

Knowles and Gebhart [24] presented a thorough study of the effects 

of coupling, of the fluid Prandtl number, and of the relative thermal 

*t 

capacity factor Q on neutral stability. Disturbance velocity and temp

erature profiles in the normal directions were also computed. Their phase 

angles were found to vary with the normal distance from the plate, and 

with the streamwise travel. 

Dring and Gebhart [6] were the first to report the "frequency filter

ing phenomenon" for vertical flat plates in natural convection. This is 

best explained by Figure (2-2) as follows. The curves of this figure rep

resent constant amplification (or damping) ratio. A disturbance with fre-

quency f is the first to amplify; however, this would reach a low maximum. 

On the other hand, a disturbance of frequency f starts amplification fur

ther downstream but acquires the highest amplification rate. Thus, further 

along the plate, f„ dominates. Therefore f9, and a small neighboring band, 

represent the favorite frequencies which would characterize the flow 

instability. Gebhart and Mahajan [46] correlated the available data of the 

characteristic frequency for natural convection flow over vertical flat 

plates, with Prandtl number. 

Q* = (C/A)/p c 6. It designates the ratio between the thermal 
capacities of the plate and the fluid where (C/A) is the plate thermal 
capacity per unit area, and 6 is the boundary layer thickness. 
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Hieber and Gebhart [17] extended the analysis to higher Grashof 

12 

numbers in the vicinity of 10 . They also discovered two modes of oscil

lations, one due to hydrodynamic instability and the other due to tempera

ture coupling. For moderate and large values of Prandtl number, a loop 

appears in the neutral stability curve as a result of the merging of two 

unstable modes, Figure (2-3). The nose shape of Nachtsheim's curve is 

attributed to that. 

A study of the effect of having a very large Prandtl number was 

carried out by Gill and Davy [13] for a double-infinite buoyancy layer, 

and by Hieber and Gebhart [18] for a vertical plate of constant heat flux 

density. The primary source of instability is shown to arise from the 

temperature coupling effect. 

Haaland [14] included in the coupled Orr-Sommerfeld equations some 

terms that have been previously neglected; namely the derivatives with 

respect to the distance along the plate. His results showed the apprecia

ble effect of these terms on the neutral stability curve as shown in Figure 

(2-4). Better agreement with experimental results was obtained. Haaland's 

solution was given for different inclination angles ranging from -45° to 

45° with the vertical for water, and 0° and 30° for air. 

Iyer and Kelley [20], and Khawita and Meroney [23] deduced the 

governing equations for small oscillations assuming longitudinal vortices 

that were discovered earlier in experiments by Sparrow and Husar [37]. 

They concluded that three dimensional vortices dominate the flow field for 

angles more than 17 degrees with the vertical, in agreement with Sparrow and 

Husar findings. 
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Experimental Work 

Experiments were carried out to study the randomly occurring dis

turbances, or to determine the response of the flow to induced oscilla

tions of controlled amplitude and frequency. 

The first successful experiment for introducing controlled oscil

lations in the boundary layer and measuring spatial rate of amplification 

seems to be that carried out by Schubauer and Skra.mstad [36] for forced 

flow over flat plate. A vibrating ribbon was used to oscillate the boundary 

layer, and two hot wire probes were used to detect the oscillatory velocity 

components together with their phase lag. Neutral stability curves and 

disturbance velocity profiles were determined and found in good agreement 

with the available analytical data. 

In natural convection, Birch [2] used an electrically pulsed 0.001 

inch diameter wire to introduce artificial disturbances in the boundary 

layer over a vertical isothermal plate in air. A Mach-Zehnder interferome

ter was used to detect these disturbances as they travelled downstream; 

jf 

the study was essentially qualitative in nature. Gartrell [12] carried 

out a similar study; however, no direct comparison between the two investi

gations could be made. 

Eckert, Hartnett and Irvine [9] employed smoke threads for the 

visualization of natural convection flow over a flat vertical plate in air. 

Two-dimensional waves appeared first with wave fronts essentially normal 

to the flow direction and parallel to the flat surface in the third direc

tion. Vortices with axes in the flow direction were also observed; these 

Comments on Birch and Gartrell works are quoted from Polymeropoulos 
and Gebhart work [34]. 
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latter longitudinal vortices indicate the presence of transverse effects 

in the process. Therefore, it is inferred that the disturbances were 

initially predominantly two-dimensional and that, at some stage, trans

verse effects become significant. 

Czewczyk [39] used dye injection in water to observe instability 

waves arising from random disturbances. A double row of longitudinal 

vortices was noticed. His work was the first trial to compare theory with 

experiment, however, the comparison was inconclusive. 

Colak-Antic [4,5] reported observations on the breakdown of two-

dimensional waves which would then be replaced by three—dimensional dis

turbances in the flow of air and water over a vertical isothermal plate. 

An electrically pulsed wire was used to induce disturbances in the flow 

field. Most of the study was qualitative in nature; however, some data 

were obtained for air using a hot wire anemometer. Due to a lack of sen

sitivity of the hot wire system, the measurements were made in a region 

where disturbances had undergone considerable amplification. 

It was not until the carefully controlled experiments of Polymero-

poulos and Gebhart [34] that the agreement between the linear stability 

theory and experimental results for natural convection was demonstrated. 

With pressurized nitrogen as the fluid and a vibrating ribbon to induce 

controlled oscillations, a Mach-Zehnder interferometer was used to determine 

the neutral stability curve. 

Knowles and Gebhart [25] used a hot-wire anemometer together with a 

Mach-Zehnder interferometer. Silicone oil (of Prandtl number 7.7) was used 

Quoted by Knowles and Gebhart [25]. 
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to limit the temperature difference needed to achieve the required values 

of Grashof number. The thermal boundary layer thickness was very small, 

and the overall influence of temperature variations on the hot wire read

ings was limited. The hot-wire was calibrated against the theoretical 

results previously established for the case of natural convection flow 

adjacent to a vertical plate with constant heat flux density. The import

ance of coupling the disturbance momentum and energy equations was demon

strated by the agreement between the coupled theoretical results and the 

experimental data. The magnitude and phase of the disturbance velocity and 

temperature were also measured. 

Dring and Gebhart [8] developed a new precise method for calibrating 

the hot-wire anemometer. They used the carefully calibrated probe to 

determine the disturbance velocity and temperature profiles along a uni

formly heated plate. Good agreement with their theoretical results [7] 

was obtained. 

Lock, Gort and Pond [28], and Lloyed and Sparrow [27] plotted criti

cal local Grashof number against angle of inclination of flat plates for 

natural disturbances to present the results of their experiments with air 

and water. It was generally noticed that an increase in the inclination 

from the vertical of heated plates facing upwards stimulates instability 

and eddying. 

Using.a technique developed by Baker [1] for measuring fluid veloci

ties in the range 0-5 cm/s, Sparrow and Husar [37] discovered a row of 

longitudinal vortices for plates inclined to the vertical by an angle 17 

degrees or more. 
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Motivated by the results of Eckert, Hartnett and Irvine and by 

those of Sparrow and Husar, Jaluria and Gebhart [21] introduced two-

dimensional oscillations with transverse variations into the boundary 

layer adjacent to a vertical uniformly heated plate. Results confirmed 

that the two-dimensional effects dominate initially, and that transverse 

variations do not appear quickly. However, further downstream, these 

instabilities begin to amplify and lead to strong secondary flows in the 

form of a double longitudinal vortex system, through non-linear interac

tions. No contradiction is noticed between the results of Jaluria and 

Gebhart, and those of Sparrow and Husar; two dimensional oscillations 

precede three-dimensional longitudinal vortices to an angle of 17 degrees 

to the vertical. Beyond this angle, vortices dominate the flow before 

two-dimensional instability sets in. 
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CHAPTER III 

ANALYSIS 

The coupled Orr-Sommerfeld equations for the considered case of 

buoyancy-driven flow around a horizontal cylinder are derived following 

the steps Plapp [32] used for the case of a vertical flat plate. A thor

ough order of magnitude investigation is carried out to determine the terms 

of significance to be considered in the analysis. Asymptotic solutions 

for these simplified equations are obtained for the "basically stagnant" 

fluid region to serve as boundary conditions at the outer edge of the 

boundary layer. The method devised by Kaplan [22] and Mach [29] to solve 

instability problems is used to solve the present one. 

Computations are carried out for air (N = .733), for position 

angles x = 30 to 150 degrees measured from the lowermost point, and for 

values of the instability parameter G which is mainly a function of the 

local Grashof number of 0 to 200. The results are presented in two types 

of graphs, one of them with G versus either the dimensionless frequency (3 

+ 
or wave number a , and with the angle x as parameter. The second type 

shows a single flow situation as indicated by Grashof number; the stability 

+ + 
curves are drawn on x versus a or x versus (3 planes. 

r r 

To determine the effect of curvature on the critical values of the 

instability parameter G as given by the neutral stability curves, compari

son is made between the obtained results and those for inclined plates 

given by Haaland [14]. A study of frequency-filtering is also carried out 

for the present problem. 
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Derivation of the Differential Equations Governing Disturbances 

The considered problem would be an unsteady two-dimensional flow 

problem in which the energy dissipation term is neglected and the proper

ties are taken as constants. Following Bird, Stewart and Lightfoot [3], 

the governing equations in polar coordinates, with body forces substituted 

for with normal expressions of natural convection, are: Mass balance 

equation and tangential momentum balance equation 

T < ^ + T~ u* s ° (3-la) 

U J. AT U U U. *U 
1 r r t fj- f* + $pe> *'"<«» 

+ v i{r(fu)r[ 
r 

U xx + ?<>] (3- lb) , 

normal momentum balance equation 

vt*«"t + f "* ~4- - -rpt -tie cosC*' 

[{f(f^l + f 4- V 

and energy equation 

V. XX _ 2 - J (3-lc) 

•i A ^ * V X 
' (f ftU 
0 V t T 

e XX 
(3-ld) 

The coordinate system may now be changed to that of the circum

ferential distance s measured from the lower stagnation point and the 

Time and spatial coordinate subscripts denote differentiation wxth 
respect to the subscript. 
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normal distance n measured from the cylinder surface. Defining, also, 

X - -=r , and r s= f +- m (3-2) 

gives, respectively, 

Ue + IT + _ j £ =. 0 (3-3a) l 5 + ^rf + r •+•* * " r + n 

*«• TTTT ""* - ^a- + -%£ =-f- 5*-fer + s7e ^(f^ 

• v[«„. * T W ^ M^r)*«„ - j u ^ + ^ s j (3-3b) 

*t - - ^ " v* + " ^ - T£T = - T p«* - I f <°st-^ 

+ v i V - * TT^ v» * (TT̂ r)2 «** '£& - ( f e r u. J <3-30 

0t +TV5T « *« + V 0„ . a (ertrt + 7 ! _ ©„ + (^rfe^ J (3-3d) 

These equations are similar to those of Hermann [16] except for the unsteady 

terms u , v , and 9 which are present here. 

For disturbed flows, the situation is mathematically modeled by con

sidering unstable flow components superimposed on the basic or "undisturbed" 

ones, i.e. 

U(!T,n>t) - U(S,rf) +• u (s>*,t) -x 
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\r(s,*,i) a V(s^) -f At(s}r\,i ) 

eis,*,t) = © ^ + 5 < s ^ n 

P*(s,n,0 =r P(s^n) +. ?ls>»,t) 

> (3-4) 

-<• 

where U, V, 0 , and P are the basic tlow components, while u, v, 9, and 

P are the disturbance components. By this, the governing equations 

include two groups of equations; the basic equations and the disturbance 

equations. The basic equations were handled by Hermann [16]; they are: 

f 7 * Vs+
 + V"+ + 77^ a 0 (3-5a) 

r - r r r + * y ^ r >+ n r 

r__av5+ + wn+ _ ^L_ x - J _ P ! _S££oS(f+) 

i* + ^-¥^*tef)^t rwt'w -
_ , .. ££__, </• \ 

Cr+^1 ( r^T? s J 

(3-5c) 

(3-5d) 

An outline of Hermann's solution is given in Appendix. A, it contains many 

q u a n t i t i e s t h a t a r e used in t he p r e s e n t a n a l y s i s . 
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Subtracting the basic flow equations, equations (3-5), from the 

overall governing equations, equations (3-3), gives the disturbance gov

erning equations. The latters are further linearized according to the 

linear stability theory by neglecting terms containing multiples of disturb

ance quantities. The whole procedure is explained by the following example 

uus =(u+5)(Us«.us) _ - u u + + u c £ + +zsu+Z5s 

Subtracting the basic flow term UU +, and neglecting the term uu , the 

disturbance term due to uu left in the disturbance, equations would, 

therefore, be Uu + U u. s s 

As explained later, the "+" superscript over s and n indicates the 

length scales used with the basic components, as distinct from those used 

with the disturbance components. The disturbance equations would, there

fore, be 

T7Z U* + "» + T+f - ° <3-6a) 

u. +-£- 5<v + J— uu + i/;„ + z u„+ + o£. + i £ _ =.Lp r 
t r+r\ r+n > r+rt T ^ T fr* v f ' v* 

+ tt3«»W * v [ « - * + ^ ^ + ^ A ^ + f e . s j < 3 -6b) 

If "I*™ j 

* v [ v ^ + - i _ « „ «•(•£•*>*%, - ^ - ^ ", f o-6c) 
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2 l 

= a I ®"- + - W ®- "f^sH 9SJ j (3-6d) 

It should be noted that the largest disturbance would acquire a 

size or, in other words, a length scale of order 6, the boundary layer 

thickness. Therefore s and n for the disturbance components are of order 5, 

For the basic flow, Hermann's analysis gives s of order 1 and n of 

order 5. This would give compatible time scales for both the basic flow 

4 - / 4 - * 

and disturbances, where the time scale for basic flow is sVU = nvV ~ 15 

and the time scale for the disturbance is s/ti = n/v z 1. 

The same result could have been obtained through the disturbance 

mass balance equation, equation (3-6a). Substituting v ~ u * 5, and n ~ 6 
•k-k 

gives s ~ 6. 

The order of magnitude of s as associated with disturbance quanti

ties was also analyzed by Hieber and Gebhart [17] with the same result. 
A further step in the development of the final mathematical form of 

the problem is to replace the mass balance equation, equation (3-6a) by 

defining the functions i and i> as follows 
s n 

- Xiil AS = V, , and U , ^ (3-7) 

As usual in boundary layer analysis, equations (3-6b and c) are cross 

The sign ~ indicates "of order of magnitude of." 

•k-k _ 

The other alternative is that v and v are negligible which means 
n 

that the disturbances are one dimensional. 
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differentiated to cancel out the pressure terra; this reduces the two momen

tum equations to the following single equation 

tx_$jsSs»Vi<fl+&pef««*tf)-A.$p5s!».&. +-*{±r%nn + aa t . » 

4 l_5 " £ r t o > "i, j^g < r <J 

I - (£* *'" + ̂ *""• * ̂* *»" + ( ^ ̂"s } (3"8a) 
The energy equation (3-6d) remains unchanged, namely; 

\ + - ^ r i®** + - r _ i/aj, - - t — % ®„* + v/<?„ 

= a i ® - + - ^ r i •t-Sssrf *« ) (3-8b> 

Order of Magnitude Analysis 

With the previous discussion of the order of magnitude of n, n+, s 

and s+ kept in mind; together with Hermann's analysis, the following could 
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be concluded 

U * I 

V*6 

S*x 

6/AT s 

u * S V » 6 

a £<* 

" i2 

I f s * t s s l 

S/fcT ~& 

f\%& 

s-s^fi 

(3-9) 

The order of magnitude of the terms of equation (3-8) are derived and 

listed in Appendix B. 

In equations (3-8), n may be neglected with respect to r, terms 

of order <5 or smaller may be neglected in equation (3-8a), and those of 

2 
orderg and smaller may be also neglected in equation (3-8b). Further 

using the basic mass balance equation., U + V = 0, reduce equations 
s+ n + 

(3-8a and b) to 

*„e + % <W +°%»* + V < U - <W % -±*k%+±u $sAt*Uis 

^„ f J *# ft.si* ( i ) * 5p ©s ̂ ( f ) * > | v, + 2 ^ „ + /irt/ii* nrtfs K 1 
ssss j 

\ «. 0> ® + + uey _ ^ $,* + \ZS„ = Q { e w H-S„ j 

(3.10a) 

(3-10b) 

These disturbance equations are rendered dimensionless by using 

equations (A-20 to 24) together with the following dimensionless varia

bles 

X«.S_ ,8-21 , £» *4 , <*>*= 9/y , 
r r ya 

and e* = a / A T 
r (3-11) 

The dimensionless form of these disturbance equations, equations (3-10) 
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x * 

would then be 

. r J ^ - F ^ ^ r ^ * *„e * rV v„ 

- i . (SF-F'*1 «J*, = <V («J */"M* 9* mo>) + *;tgi 

"4"2 *yjr*X * ^XJCXX (3-12a) 

e? ~ V " ' 77. + riy* e* - V * H ' T - -^-^-r?) eJ 

- I J A* „* ? (3-12b) 

where F, F', F", F m , H, Hf, and n are defined in Appendix A, and N is 

the fluid Prandtl number. 

Substitution for Disturbance Quantities 

Generally, two-dimensional disturbances seem to be the first 

unstable mode to appear. That was theoretically proved by Squire [38] for 

forced flow, and by Knowles and Gebhart [24] for natural convection insta

bility for flat plates. Experiments of Eckert, Hartnett and Irvine [9], 

together with those of Jaluria and Gebhart [21] show that two dimensional 

waves are the first mode of instability to appear. However, three dimen

sional longitudinal vortices dominate the field for plates inclined more 

than 17 degrees to the vertical as found by Sparrow and Husar [37], Iyer 

and Kelley [20], and Khawita and Meroney [23]. This inclination corre

sponds, in the present case to position angles beyond 107 degrees. For the 
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case of horizontal cylinders, two-dimensional waves are, therefore, 

expected to be the first unstable mode to appear. 

The assumed two-dimensional waves are given after Nachtshein [30] 

from 

y* s <p (*0 e 
i<x(x- cc) 

(3-13a) 

where a and c are complex quantities. Similarly, it is usual to express 

the temperature oscillations in the same form, with the same frequency and 

amplification, namely: 

0 ' - COO e 
ice (x- c f) 

(3-13b) 

The following dimensionless quantities may now be defined 

*l« jj/6 , £ * x/S , r~ru*/£, *(i) = ?(*)/<<* o); 

C(V) = ̂ ? ) , C = C J U* , and cc=*& 

substitution from these relations into expressions (3-13) gives: 

* < ; * ( * - c r > _ * « u * * ' ( * * - r t ; 
vj/ & <t> 5 C/ £ = 0 A U £ 

0 = C * = C <? * r ' r 

(3-14) 

(3-15) 

where 3 = etc is also complex. It should be noted that the quantity a x, 

where the subscript r denotes the real part of a, indicates the phase angle 

that would be acquired by the disturbance due to streamwise travel for a 

distance x. In this expression we can characterize the wave by some wave 
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-lct.x 

length L through the relation a = 2TT/L. The term e , where the 

subscript i denotes the imaginary part of a, implies amplification (a. < 0) 

or damping (a. > 0) due to streamwise travel. Naturally a. = 0 indicates 

no amplification or damping due to streamwise travel. The quantity 3 T 

indicates a phase shift with 3 being the angular velocity of wave propaga-

i3.T 
tion. The term e denotes amplification (for 3. > 0) or damping (for 

3. < 0) with time, whereas 3. = 0 stands for locally stable oscillations. 
I i 

It should be noted from above that neutrally stable oscillations require 

that a. = 3. = 0. 
l l 

Substituting into equations (3-12), and using equations (A-15,25, 

and 26), give: 

(<?""_ 2ccz<p"+(Z4<p) + (TT^ i'«c?«0<0nU i*G[(FLc){+"-cc1<p) -F'V -?"<?& 

* F V * j + (F'iF'Vl*' - f**-*V.)l»F-F#7J (3-16a) 

- O F - F ^ ' j (3-i6b) 

14 
whe <? « f(X) ^ (3-17) 

Equations (3-16) are the coupled Orr-Sommerfeld equations for the case of 

natural convection flow around horizontal cylinders. They constitute a 

sixth order complex problem, with <f>, <J>1, $"., <J>"', C»C? as variables and 

a, G, N , and 3 as parameters. 
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Method of Solution 

Equations (3-16) have solution only for certain combined values of 

the parameters a, G, N , and 3. These constitute eigenvalues for the 

problem to be determined as outlined below. An'asymptotic solution" is then 

obtained for the domain outside the boundary layer where there is no basic 

streamwise flow while oscillations still exist. This asymptotic solution 

is finally used as a boundary condition for the solution within the bound

ary layer. 

The Eigenvalue Problem 

Following Kaplan [22] and Mach [29], for given values of G and N , 

values are assumed for a. and 3. whereas a and 3 are left to be deter-
1 1 r r 

mined as eigenvalues. It should be noted that while N is a fluid property, 

G depends on the temperature difference and position angle. The zero values 

of a. and 3. stand for points on the neutral stability curves where insta

bilities are neither amplified nor damped. As 3 represents the dimension-

less frequency, results can be displayed in the form of a position angle 

versus frequency graph for neutrally stable oscillations. 

In Kaplan's method, a step-by-step integration method is used; it 

starts at the outer edge of the boundary layer, with the asymptotic solu

tions serving as starting values for this integration. 

Since, in the present problem, instabilities are induced into a 
time steady basic flow, they are not expected to acquire any time amplifi
cation rates. 3. is, therefore, taken zero in the analysis. This assump
tion is supported by the experimental results of Gebhart and his coworkers 
for vertical flat plates and also by the present experimental results. 



28 

The Asymptotic Solution 

At large distances from the cylinder (r\ _> r\ ) , basic flow quanti

ties F, F', F", F"', H and H' acquire constant values and some terms drop 

from the governing equations, while others acquire constant coefficients. 

The resulting "asymptotic" equations are linear differential equations 

with constant coefficients; for which methods of solutions are readily 

available in classical mathematical references. Because the tangential 

velocity component and the temperature difference diminish together with 

their derivatives beyond the edge of the boundary layer, i.e. for n ^_ n , 

we must have FT = F" = FMI = H = H = 0. The normal velocity component 

acquires a constant value F in this region, hence F = F . Substitution 
e e 

of these values into equations (3-16) gives, for the region outside the 

boundary layer, 

*"" + 3% <pm
 + ( i$$4cc7) <*>"- 3reCC*<p' + ( a 4 - iecQf) 4 

= - ( t T + i<Xlf cot(x)) ( 3 - 1 8 a ) 

an d £-% 3ff ti?r*z' + (<' »rrGp -oc?) r; ^ 0 (3-i8b) 

The solution of the above equations is obtained following conventional 

mathematical procedures as given in Appendix C, where the solution is 

obtained as equations (C-12a and b), namely: 

* « <r,/'? + C W
M +C,?* (3-19a) 
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and € - c r T» + 3 ^ T33 • <jg g- * « 2 ) *? - ? £ A + fa4-<*^ 1 
3 [ ^ <* cv>*00 " 

(3-19b) 

In these equations 

*,= -KI^*; (3-20a) 

«/2 

1 2 = - 3/2 F€ ±1/2 [g.O 5%4(0C 2 - - t ' Qf)j (3-20b) 

2 2 ^ z 

*3 r - 5/2 Fe N^ ± l/2 [ 9-0 | MJJ + 4(dC2^ 4 ^ NPf) ] (3-20c) 

Only roots with negative real parts should be chosen for the y values to 

give the actual case of "damped solution" outside the boundary layer. 

Solution Within the Boundary Layer 

The method outlined by Kaplan [22] for solving the Orr-Sommerfeld 

equations and by Mach [29] for solving the coupled equations is used. 

Starting by assuming C. = 1 and C„ = C = 0 and n = n , an assumption of 

a and 3 would give, from equations (3-19 and 20) values of <J> and c, 
r r -*-»e -•- > ̂  

at the edge of the boundary layer. Using their values and a fourth order 

Runge-Kutta integration method, a solution of equations (3-16) for (j> and 

C within the boundary layer is obtained. This gives also the derivatives 

tf>j, <J>", <j>"' and C-J- from which the values of the functions <J> and £ and 

their derivatives are determined at the surface (n = 0). This is repeated 

to determine <J> and r for C = 1 and C = C. = 0 ; and <j> and c for 

C = 1 and C = C = 0 and their respective derivatives. 
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The next step is to determine the constants C , C and C„. This 

could be obtained from the values of the functions and derivatives at the 

surface from the following boundary conditions that denote, respectively, 

the absence of the tangential and normal disturbance velocities, and of 

the temperature disturbance at the surface, namely: 

<p(o= c;*r+ c , £ + c3<Pm =o (3_21a) 

$'(0) r Cf <f/ + C2 \ + C3 <PM ~ Q (3-21b) 

t;(0) = 0 (3-21c) 

The last expression is evaluated from the values £ , £ and CTTT calcu-

lated through the relatively complex expression of equation (3.19b). 

However, a simultaneous solution of the above three equations for 

C , C„ and C, would give zero values to these constants. To have a non-

trivial solution a normalizing condition is used to replace one of the 

above homogeneous equations, namely: 

* < * , ) = c, e*'7e
 + c2 / ' * • + c3 fi** = | (3-22) 

Equations (3-21a,b) and (3-22) would then be used to determine the unknown 

coefficients. A check on the validity of the solution, and hence on the 

It should be noted that whereas £ = £ „ = 0 at the edge of the 

boundary layer, they have finite values at the surface. 
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correctness of the initial assumption of the eigenvalues a and 3 , is the 

verification of the deleted relation, equation (3-21c). 

For computations initial guessing for a and 3 is made, and an 

iterative technique is used to obtain their correct values that correspond 

to the assumed values of the other parameters, namely, G, N , a., and 3.. 

The standardized Quasi Newton subroutine of the C.D.C. computer was used 

for this iteration; fast convergence was always achieved with convergence 

i i - 4 

criterion taken to be |z;(0)| <_ 10 . Computer program is given in Appen

dix I. 

Computational Results 

Neutral stability curves were computed for position angles x 

ranging from 30 to 150 degrees and the instability parameter G going up 

to 200. This range of position angles was chosen because Hermann's solu

tion is not very accurate outside this range as described in Appendix A. 

Indeed, the flow at x < 30 degrees is highly stable under normal condi

tions and there seems to be no point in considering it in an instability 

analysis. On the other hand, highly unstable separated flow is expected 

at positions of x > 150 degrees. 

Since instability for the considered range of position angles x 

starts at values of the instability parameter G less than 200, the insta

bility information sought is obtained in the range of G from 0 - 200. 

Also, highly unstable flow is expected for values of G larger than 200 

due to disturbance amplification and the assumptions of linear stability 

theory are no longer valid. 
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Results for the considered range are shown in Figures (3-1 and 2). 

These curves show the trend noted by Hieber and Gebhart [17], namely that 

two modes of neutral stability exist and merge to give the nose shaped 

curves shown. The upper part of the curve is attributed to the hydro-

dynamically amplified oscillations, i.e., oscillations that would be 

amplified has the temperature oscillations been negligible. For this 

reason this part represents the "hydrodynamic instability mode." The 

lower curve is obtained because of temperature instability effects, and 

this part is, therefore, called the "thermal instability mode." 

Present results are compared with those of Haaland [14] for inclined 

plates. It should be noted that the comparison bears no physical signifi

cance. This is because flow over a cylinder is actually a flow over a sur

face of varying inclination angle. The comparison is held, therefore, 

between the neutral stability curves obtained by solving the governing 

equations for fixed angles for both cases. It was found, however that flow 

around horizontal cylinders gives more unstable "solutions," and that the 

difference is more pronounced for the hydrodynamically amplified oscilla

tions as shown by Figure (3-3). This increased instability is due to the 

added centrifugal force on the fluid. 

Results for a physical flow situation, given by N = 2.5 x 10 , 
Gr, r 

are shown in Figures (3-4 and 5). In Figure (3-4) the Neutral Stability 

curve and constant a. curves are shown on the x - $ plane. Constant 
I r r 

frequency lines are also drawn; they are determined from equations (3-11, 

14, and 15) as follows: 

B * £ - 2*f 
r r2« 
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Here f is the frequency in Hz, hence using equations (A-15,25, and 26) 

gives 

* 
2.V f «•' A > _ J <3"23) 
y N 3/4 r SSin(x) 

Taking 

7Trll± 
Sr 

^~ y^T^r <3-24) 

gives Pr - 5 si*C*) (3-25) 

Equation (3-25) is used to draw the constant reduced frequency, a, lines 

which represents to scale the physical frequency f. 

Some of these lines are further mapped into the x - a , plane of 

Figure (3-5) which shows that constant frequency disturbances would propa

gate at an approximately constant wave number a and hence at a wavelength 

L = 2TT/ a = 2TTS/OI 
r r 

This wavelength L is, therefore, proportional to the boundary layer 

thickness 6, a fact which supports the initial assumption that s and n 

are of order 6. 

Figure (3-4) is further mapped into the x - f plane of Figure (3-6) 

It could be seen from these two figures that some of the constant-frequency 

lines of high values intersect the neutral stability curve and the constant 
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a. lines twice; they clear the amplifying region beyond some angle fur

ther downstream. This may be difficult to understand physically and may 

be attributed to the invalidity of Hermann's solution at large angular 

positions, as explained in Appendix A. 

Amplification rates are calculated for oscillations of different 

frequencies, where 

A/A^ = e
i a A x

 (3_26) 

In this relation A^ denotes the amplitude at point x of neutral sta

bility, and A the amplitude at a point x downstream of x^ and a distance 

Ax from it. Taking the limit as Ax vanishes, the above relation gives 

x 
A/A^ = Exp ( / a. dx ) (3-27) 

XN 

-j-
Amplification with position angle x are computed from equation (3-27) 

and plotted in Figures (3-7a and b) for different frequencies, i.e., dif

ferent values of reduced frequency a. As could be seen, oscillations with 

a = 0.08 to 0.09 have the highest amplification rates in the considered 

case, all others have less amplification rates. This is shown more clearly 

in Figure (3-8) which is a plot of the relative amplitude A/A.̂  at an angle 

of 150 degrees versus the reduced frequency a. The conclusion is that the 

frequency filtering phenomenon exists in the present case of natural con

vection around horizontal cylinders. 

It is noted that the reduced frequency a is a function of the total 

Grashof number N , the cylinder radius r and the kinematic viscosity v 
Gr, r 
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as could be seen from equation (3-24). The favorite frequency band is, 

therefore, a function of the cylinder radius and the temperatures of the 

surface of the cylinder and the surrounding fluid. Since N_, tends to 
\JT , r 

infinity gives a = 0, a unique value for the dominant frequency would be 

expected in this particular case. Indeed, this would be the case of a 

flat plate already worked out by Gebhart and his coworkers. 
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CHAPTER IV 

EXPERIMENTAL APPARATUS 

Experiments were carried out to determine the neutral stability 

curve of a natural convection flow around a horizontal cylinder in air 

to compare it with the theoretically determined one. 

The experimental cylinder used is made of aluminum; it is 152 mm 

(6 in.) diameter and 280 mm (11 in.) long. Hot water of practically con

stant temperature was used to heat this experimental cylinder. A hot wire 

probe with a 5u wire was used for velocity and temperature measurements. 

Two traverse mechanisms were used to adjust accurately the position of 

the hot wire sensor, both tangentially and radially. A 12.7urn (0.0005 in.) 

diameter alumel heating wire was placed in the boundary layer and used to 

introduce controlled temperature oscillations. An enclosure was built 

around the experimental cylinder to Isolate it from the uncontrolled dis

turbances of the room air. The details of the experimental set up are 

given below. 

Experimental Cylinder 

An aluminum tube 152 mm (6 in.) diameter and 9.5 mm. (3/8 in.) 

thick was used. Aluminum was preferred, being a good conductor, cheap, 

and readily available. A copper sheet is rolled, soldered, and placed as 

The hot wire was preferred to other methods such as dust particle 
trajectories [10] or quartz fibre anemometer [40], being a method for 
measuring both temperature and velocity and because it gives an elec
trical signal that can be easily recorded. 
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a core for the aluminum cylinder as shown in Figure (4-1). The result

ing 6.4 mm (1/4 in.) annulus forms the conduit for the heating water. 

This design results in high hot water velocity and, hence, the high heat 

transfer coefficient necessary for the uniformity of surface temperature; 

it further requires a small flow rate of heating water. This design 

together with the thick cylinder wall, succeeded in maintaining the sur

face temperature variation within ±0.08C (±0.15F) with reasonable hot 

water flow rates. 

Sixteen thermocouples are used to measure the surface temperature 

of the cylinder. Eight thermocouples are introduced in the cylinder wall 

from each side. They could be moved in the axial direction of the cylin

der to within 38 mm (1.5 in.) from the mid cross section. Copper constan-

tan thermocouples were cemented with 2,4 mm (3/32 in.) outside diameter 

brass tubes that can slide within corresponding 3.2 mm (1/8 in.) outside 

diameter similar tubes that are embedded in the cylinder wall. Seven 

thermocouples are placed 30 degrees apart, covering the 180 degrees of 

the circumference of one side of the cylinder. An eighth thermocouple is 

placed on the other side of the cylinder to check the symmetry of the flow. 

Hot Wire Probe 

A subminiature, boundary layer type probe was used to measure both 

velocity and temperature. It has curved supports to minimize conduction 

through them which is very important for the accurate measurements of 

temperature. The probe has a pin that protrudes 0.153 mm (0.06 in.) from 

the wire as shown in Figure (4.2). This allows an accurate measurement 

of distance from the cylinder surface. With the pin touching the cylinder 
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surface, the wire is calculated to be at 0.5 mm (0.02 in.) from the sur

face. The distance from the tip of the pin to the wire was measured by 

a traversing microscope with an accuracy of 0.005 mm. The sensor is a 

tungsten wire 5ym diameter and 8 mm long. These dimensions were calcu

lated to maintain the wire at practically uniform temperature and such 

that its frequency response would be much higher than needed for the 

experiments. These calculations are given in Appendix D. The probe sup

port is made of two brass tubes of different diameters matched to each 

other by a small brass sleave soldered to both tubes. The sensor stem is 

centered and cemented to the smaller tube. The electric leads are connec

ted to a subminiature audio plug cemented to the outer end of the larger 

tube. 

The probe was controlled and monitored by a T.S.I, model 1503A 

bridge in combination with a variable decade resistor, a monitor and power 

supply, and a signal conditioner. A digital voltmeter was used to take 

readings for velocity measurements. 

Traverse Mechanism 

A worm and gear of reduction ratio 180:1 are used for accurately 

placing the wire in the required angular position. An accuracy of 0.02 

degree could be achieved in determining this position. A vernier with a 

resolution of 0.25 mm (0.01 in.) was used for accurately locating the wire 

in the radial direction. The movement in this direction is obtained 

through a threaded rod moving through a fixed nut; as shown in Figure (4-3). 
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Heating Wire 

An alumel heating wire 12.7 y(0.0005 in.) diameter is used to 

induce temperature oscillations of controlled amplitude and frequency in 

the boundary layer. The wire is 240 mm (9 1/2 in.) long and placed 

parallel to the cylinder axis. Rough control of the radial and tangential 

location are only available. Since the exact location of the wire was 

believed, and proved, to be of little importance. The wire is coupled to 

an HP-3310 function generator which is capable of generating sinusoidally 

-4 
oscillating voltage of controlled frequency in the range from 5 x 10 to 

5 x 10 Hz. This wire was Ccilculated to respond, with very small damping, 

to frequencies in the needed range of 0 - 4 H2'.. These calculations are 

given in Appendix H. A sketch showing the cylinder, the traverse mech

anism, the hot wire and the heating wire support are given in Figure (4-1). 

Enclosure 

An enclosure 75 x 90 x 180 cm high is built using steel angles, 

plywood, carton boards and plexyglass in which the experimental cylinder 

was centered, 120 cm above the floor. The enclosure top is completely 

covered to isolate the experimental space from the rest of the room air. 

Two transverse openings 15 cm high are left at the bottom of the two sides 

to allow air to enter and circulate in the enclosure. The use of this 

enclosure, together with the closing of the air conditioning and ventilla

tion room grills were necessary to practically eliminate uncontrolled 

instabilities. 

Air temperature in the enclosure was measured by a copper-constan-

tan thermocouple placed about 22 cm from the cylinder surface. 
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Calibration of the Hot Wire Probe 

The hot wire probe was calibrated for both temperature and velocity 

measurements, the following procedures were followed. 

Temperature Calibration 

The hot wire was calibrated as a resistance thermometer in a water 

bath of constant temperature against a copper constantan thermocouple. 

The results are shown in Figure (4-4), Its sensitivity was found to be 

0.0475x (1 ± 0.01) ohm/F. 

Velocity Calibration 

The hot wire was placed on a rotating disk attached to a variable 

speed motor as shown in Figure (4-5). The anemometer was placed such 

that the wire was set radially at 10 cm (4 in.) from the center of the 

disk. The disk and the probe were placed in an enclosure to isolate them 

from the air currents in the room, and those due to the motor movement and 

heat dissipation. The rotational speed of the disc could be varied in the 

range of 0 to 50 rpm, and was measured by a stop watch. A voltage velocity 

curve was obtained and is given in Figure (4-6). Except for three extreme 

points, the reproducibility of these results was found to be within ±2 

percent. 

The hot wire was set at a constant temperature difference of 71 ± 

0.1C from the .surrounding. This was done by increasing the wire resistance 

by 6.07 ohm above its cold value. With the temperature difference between 

the wire and surroundings set constant at each reading, the power dissipa

tion from the wire would indicate the velocity. By this method, one cali

bration curve would be enough for velocity measurements in a non-isothermal 

flow, had the variation in properties be negligible. 
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According to Dring and Gebhart [8], natural convection from the 

2 
wire would have a negligible effect on the hot wire reading if N_ / .04N 

Gr >* Re 
•k 

for the wire. According to this, natural convection effects could be 

neglected in the present case for measured velocities larger than 1.6 

cm/s. As could be noted from the calibration curve, Figure (4-6), the 

zero velocity voltage and the voltage corresponding to a velocity of 2 cm/s 

are the same. This is attributed to the interaction between forced and 

natural convection from the wire. This limit of 2 cm/s was taken, there

fore, to represent the experimental lower limit of velocity measurement 

for the use of this probe. 

Diameter of the wire is taken to be the characteristic length. 
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CHAPTER V 

EXPERIMENTAL RESULTS 

Two groups of measurements were carried out. The first was to 

determine the basic temperature and velocity profiles; the other was to 

determine the neutral stability curve. The results showed reasonable 

agreement with theory. Details of the procedure and the obtained results 

are given below. 

Steady State Measurements 

Measurements were taken for temperature and velocity fields at 

position angles of 50 to 130 every 20 degrees. For each of these position 

angles, a profile was determined from readings at about 24 positions across 

the boundary layer. 

During any experiment, air and water temperatures were constant 

within ±0.1C (±0.2 F). The surface temperature varied within ±0.08C (±0.15 ). 

Consequently, the error in temperature difference measurements is within a 

maximum of ±0.275C (±0.55F). This corresponds to an error in the total 

Grashof number of less than ±1.5 percent. 

The error in angle measurements is taken to be half the resolution, 

i.e. ±0.02 degrees. The corresponding errors in the functions f(x ) and 

g(x ) are negligible. 

The dimensionless normal distance n is calculated from the expression 

n = — ISL g(x ) (5-1) 
1 r Gr,r 6V J v 
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and the error in n due to errors in n, N , and g(x ) could be calcu-
Gr, r 

la ted from 

Ari = An + ~ AN- + Ag (5-2) 
4 Gr , r ° 

The e r r o r in the normal d i s t a n c e n, i s taken to be ha l f the r e s o l u t i o n , 

i . e . , ±0.127 mm (±0.005 i n . ) . This gives an e r r o r of ±0.8 pe rcen t of t he 

boundary l ayer t h i c k n e s s . Hence, 

An = ±(0.008 + ~ x 0.015 + 0) = ±0.012 = ±1.2% 

Local Temperature Measurements 

The wire cold resistance was measured at each location. It was used, 

together with the reading of the air thermocouple and the results of the 

sensor temperature calibration to determine the local air temperature. 

The air in temperature measurements due to end effects on wire tempera

ture was estimated in Appendix D to be -1.3 percent of the total tempera

ture difference across the boundary layer. Resistances could be measured 

to within 0.01 ohm which leads to an error of ±0.2 percent. Uncertainty 

of wire temperature calibration was found to be of the order ±1 percent, 

and that of air and surface temperature to be of the order of ±1.5 percent. 

Total error in temperature measurements would, therefore, be 

AT = -1.3 ± .2 ± 1 ± 1.5 = -1.3 ± 2.7 percent. 

The dimensionless temperature profiles H(n) are calculated from the 

relation 

T-T 
oo 

H(n) = T - T 
c c 



59 

where T is the air temperature outside the boundary layer and T is the 

surface temperature. 

Dimensionless temperature profiles H(rj) are plotted versus r\ in 

Figure (5-1). Results are compared to the theoretical curve of Hermann 

and good agreement could be seen. The points are, however, slightly below 

the theoretical curve, this is the trend found experimentally by 

Jodlbauer [42]. 

Velocity Measurements 

A constant resistance of 6.07 ohm, corresponding to a temperature 

difference of 71 ± 0.1°C between the wire and the surrounding air, is 

added to the measured resistance at each location. The wire voltage is 

taken to indicate the local velocity; however, a correction for variation 

in the wire resistance and air properties from those of the velocity cali

bration curve, Figure (4-6) was made. This correction is explained in 

Appendix E. 

It should be noted that the hot wire actually reads the vectorial 

sum of the tangential and radial velocities U and V. A correction is 

carried out for that using Hermann's expressions, namely 

U- f "C ?1r' (5-3) 

v« - f *C jfV * *f-IF' j (5.4) 

In Hermann [16]. 
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The ratio U//(U +V ) is calculated at each location using the above 

expressions and used as a correction factor to obtain the value of U 

2 2 
from the measured value, / u + V . Further, the value of the dimen-

sionless velocity F' could be obtained by using equation (5-3). 

The error in measuring U is determined from the reproducibility of 

the velocity calibration curve; i t was found to be within ±2 percent. The 

error in F' would, therefore, be given from equation (5-3) by 

A F S A U - I AM. - A F . A « 
2 <mr,r • 

= ±2 - ±(±U5 ) - 0 - O 

— 2" .2.75" percent 

Measured values of F' are plotted versus n in Figure (5-2) together 

with Hermann's theoretical solution. Experimental results for F1 (n) are 

higher than the theoretical values, a trend that was also found by 

Jodlbauer [42]. 

The present results are generally in good agreement with Hermann's 

and Jodlbauer's results. 

Determination of the Neutral Stability Curve 

Temperature oscillations of controlled frequency and amplitude were 

induced at a point in the boundary layer by placing a heating wire in it 

and subjecting the wire to sinusoidal voltage oscillations by a function 

generator. The positioning of the heating wire was not critical. Some

times, however, it was necessary to move it downstream when the probe 

failed to distinguish variations in amplitude due to excessive damping. 
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For each reading, the probe was moved in the radial direction to 

locate the point of maximum local disturbance amplitude changing the 

position angle at which the probe is set, other readings were taken for 

the same frequency. A local maximum amplitude was determined for each 

of these position angles. The minimum of these local maxima was used to 

designate the point sought for this frequency on the neutral stability 

curve. 

Hot Wire Response to Small Oscillations 

It was shown in Appendix D that the wire has a negligible heat 

capacity; the energy balance of the hot wire sensor is given by 

E2 

hAG = ~ (5-5) 

Due to the oscillatory flow situation, h, 0, and E are replaced in the 

above relation by a steady component plus an oscillatory one, namely 

h = h + A 

E ~ £ •*• € 

> (5-6) 

In the above the ba r s tands for the b a s i c components whi le the wiggle 

s tands for the o s c i l l a t o r y components. S u b s t i t u t i n g equa t ion (5-6) i n t o 

equat ion ( 5 - 5 ) , and n e g l e c t i n g second order terms i n o s c i l l a t o r y q u a n t i 

t i e s gives 

£ f l © 4- hf\6 + £ * @ = (£*+2£:e)/R (5-7) 

—2 
Here the steady electric power E /R. is the wire response for the "basic" 

term hA ^. The oscillatory voltage, e, therefore, indicates 
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^Rhfl® (H + ±) 
" 1 1 V 0 h (5-8) 

The term in parentheses is the sum of the relative temperature oscilla

tions 9/@ and the relative velocity oscillations as indicated by h/h. 

It should be noticed, however, that there exists a variable phase angle 

•k 

between the two. To achieve reliable measurements, one of the two terms 

should be made negligible with respect to the other. 

For (0/@) to be negligible, (57) should be taken very large. In 

this case natural convection currents from the wire itself would have 

appreciable effects on the basic velocity and temperature in the vicinity 

of the wire. On the other hand, one can reduce the effect of the term 

h/h by reducing @ to a negligible value. It was therefore, decided to 

take the temperature oscillations as a measure of instability. The temper

ature difference @ was reduced to almost zero by taking an overheat 

resistance AR = 0. Equation (5-8) would then give 

(£) - -§f e (5-9) 

A correction for variation of h with streamwise travel, due to variations 

in the mean velocity U is carried out in Appendix G. The corrected 

amplitude of the sinusoidal voltage output is then used to determine 

points of neutral stability. 

A sample of the hot wire response to temperature oscillations of 

a frequency of 1.8 Hz is shown in Figure (5-3). Oscillations were prac-

tically sinusoidal as could be seen from the recording at x = 135 degrees 

on extended time scale. The relative amplitudes were corrected for 

•k 

This could be seen from the theoretical results of Knowles and 
Gebhart [24]. 
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variations of h and the corrected results are given as an angle versus 

amplitude graph in Figure (5-4) for this particular frequency. 

Results of Stability Measurements 

Frequency Lower Limit: At a frequency of 0.8 Hz a second harmonic 

appeared in the probe output, and increased with the downstream travel as 

shown in Figure (5-5). The fact that a frequency of 1.6 Hz was sustained 

through the flow indicates that the latter frequency is more rapidly ampli

fied than that of 0.8 Hz. This is in accordance with the filtering phe

nomenon found theoretically. It also sets a lower limit for the experimen

tal points. The amplification rates of these lower frequencies are small, 

and only scattered readings of practically constant amplitude are obtained 

+ 
at different values of the position angle x . The presence of second 

harmonics in the output of the probe was also noticed by Dring and 

Gebhart [7]. For these reasons, points of the lower branch of the neutral 

stability curves are extremely difficult to locate experimentally, as could 

be seen from the results of Polymerpolous and Gebhart [34] and of Knowles 

and Gebhart [25] for the case of vertical uniformly heated plates. 

+ Results: In the stability measurements, the position angle x was 

changed by steps of 10 degrees. The error in measuring the position angle 

was previously estimated as 0.02 degrees; it is of negligible effect on 

the determination of the position angle. Error in frequency determination 

was found, from counting the number of cycles per centimeter on the chart 

paper, to be negligible. It was noticed that the mean flow fluctuates 

with time at large values of the position angle x . These fluctuations 

appear as variations in the envelope of the sinusoidal disturbances 6 as 
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could be seen from Figure (5-3). They may be attri! ted to the existence 

of some "natural" sources of instability that cannot be removed. These 

"natural" instabilities would amplify with streamwise travel, and their 

influence distinguishably appears at large position angles. It was 

noticed that these perturbations are irregular ones and generally acquire 

larger wavelengths. The maximum deviation in the values of 0 due to these 

perturbations are of the order of ±7.5 percent of 9 , the average value 
r e,av ° 

of 0 . However, the error in determining the position angle for neutral 

stability due to these perturbations is expected to vanish as explained in 

Appendix F. 

Experimental results are plotted in Figure (5-6) and compared with 

the present analytic results as obtained for the case of N = 1.05 x 10 
Gr,r 

which is approximately equivalent to the average total Grashof number for 

the different runs. It could be seen that the highest frequency on the 

experimental neutral stability curve is lower than the theoretically com

puted one. The flow encountered experimentally at these frequencies was 

found to be more stable than expected from analysis. This may be attribu

ted to the fact that energy is transfered to the amplified perturbations, 

previously mentioned, depriving the two dimensional oscillations from some 

energy and hence rendering them more stable. 
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CHAPTER VI 

CONCLUSIONS 

The governing coupled Orr-Sommerfeld equations for small, two 

dimensional disturbances were derived for the presenc case of natural con

vection around horizontal cylinders. The solution of these equations was 

carried out, using the method devised by Kaplan [22] and Mach [29]. 

Computations were made for air for the instability parameter G going up 

to 200. Neutral stability curves are presented graphically as relations 

between G and either the dimensionless frequency 3 or the wave number a 
r r 

with the position angle x as parameter. Values of x were taken from 30 

to 150 degrees excluding the vicinities of the stagnation points, irrele

vant to the present study. 

Comparison of the present results with the previous data for an 

inclined plate showed that curvature stimulates instability; its effect 

is more appreciable on the hydrodynamic instability mode than on the ther

mal instability mode. 

The flow was found as in the case of natural convection flow adja

cent to a vertical flat plate, to be sensitive only to disturbances within 

a small band of frequencies, i.e. these disturbances are the ones that are 

amplified. Further, this band is filtered to a more favorite band because 

some frequencies acquire larger amplification rates than the others and 

dominate the flow as they probagate downstream. In the case of vertical 

flat plates, this favorite frequency band was found, by Gebhart and 
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Mahajan [46] to be a function of the fluid Prandtl number only. By com

parison, in the present case, it was found that the favorite frequency 

or frequency band is function of the overall Grashof number, the cylinder 

radius and the value of kinematic viscosity v as could be seen from equa

tion (3-24) that shows the dependence of the value of the reduced fre

quency a on these factors. 

Experiments were carried out to check the analysis. Measurements 

were carried out to determine the basic temperature and velocity profiles 

using a hot wire probe. These profiles showed good agreement with the 

available theoretical and experimental data. 

A Neutral Stability curve was obtained by determining the points 

of least temperature oscillation amplitudes. It was compared to the pres

ent theoretical results for the same values of N„ and N_, ; good agree-
Pr Gr,r 

ment was found. 

Proposed Further Work 

The favorite frequency which dominates a natural convection flow 

around a horizontal cylinder was found to be function of the local Grashof 

number, the cylinder radius and the kinematic viscosity v, i.e. the physi-

- 2 
cal dimensionless frequency as given by fr /v is a function of N 

Gr, r 

Further investigation is suggested to correlate the relation between the 

two and to study its possible applications. 
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APPENDIX A 

BASIC VELOCITY AND TEMPERATURE PROFILES 

Basic velocity and temperature profiles of natural convection flow 

around horizontal cylinders were given by Hermann [16], and are needed 

here to compute the stability curves. Some details of Hermann's analysis 

are also needed in the derivation of the disturbance equations. Hermann's 

analysis is, therefore, outlined in this appendix. 

The governing equations for natural convection around horizontal 

cylinders, as given by Hermann, are: 

Mass balance equation: 

i—. yy* + v + -^-r - ° (A-D 
r+n r+n 

Tangential momentum balance equation: 

-£-«. U0+ + W* 4 UV = . ± . P J JL + S S @ ** (£.+ ) 
r + n* S " r + „ f * r+n+ a* f > 

+ v / K.*** * " ^ <V + /JE—f tk + - 4 . * ^ V f (A-2) 

Normal momentum balance equation: 

+ v [ W + -̂  V + (fcy ( W - fe,. " |Ly Uf* } (A.3) 
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Energy balance equation: 

L - U&s + V6, .afa^^* H^f^j (A-4) 

The above equations represent the mathematical model of a steady, two-

dimensional flow with constant properties. 

The plus sign over s and n indicates the finite length scale used 

in steady-state calculations as distinct from the much smaller distances 

that have to be considered in connection with disturbances. This is 

explained more fully in Chapter III. 

Following the order of magnitude analysis given by Hermann, we 

have* 

t/«l S tr V.\ n z,5 

VsJ ® & \ Pz6 

where <5 is the boundary layer thickness. Neglecting terms of order 6 with 

respect to those of order 1, equations (A-l to 4) become 

V + V„* =0 (A-5) 

U<V +VUn^ = yU„v„* + tjjfalmtjg) (A-6) 

- £ - -^-tf -ti*e»l£) (A-7) 

(J @s+ + V 0„* = a. ©„*„+ (A-8) 

The = sign indicates order of magnitude, 
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It should be noted that equation (A-7) is not necessary for the 

general solution of the problem, its only use is in obtaining the pressure 

gradient in the radial direction. It is, therefore, dropped in the follow

ing analysis. To render the remaining equations dimensionless, the fol

lowing substitutions were used by Hermann: 

<*=f
+ , AfH?, . u, v v H^ , 

(A-9) 

In these expressions x ,y ,ip, H are of order unity. With these, the con

tinuity equation (A-5) drops out and equations (A-6) and (A-8) become 

V *iv - ^ W - ¥ffr* - H * v u ^ (A-IO) 

. J _ /v. + ̂ + V 'V - ^ ty* • 7z- Hx7 
fr 

(A-11) 

Following Hermann, a similarity solution was obtained by defining 

.• -/_+ 
7 -- a <JC* ) 

m- F-COPC*^ I 
* - > (A-12) 
H - t»C«0 

Substitution of these quantities into equations (A-10) and (A-11) gives 

r ' * f p W v S'/Y'}- F r " t f f V ) =F*f|'> *Hrtr,00 (A-13) 

H"+- Alp f H7 -L = 0 (A-14) 

9 
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To achieve a similarity solution compatible with the original solution 

"k 

of Pohlhausen for vertical flat plates, Hermann set the following equa

tions 

F = a % (A-15a) 

f2q<j' = b S>"0O (A-15b) 

<fff' = C Sin (x) (A-15c) 

f f = d S / n C O (A-15d) 

where a = 3, b = - 1 , c = 3 , and d = 1. This gives 

If I t— .— " /2 

r +3FF ~ 2F + H = o (A-16) 

H"+ 3 A / p f r H ' S O (A-17) 

These are the well-known Pohlhausen equations, solutions for which are 

readily available. In particular, later accurate numerical evaluations 

obtained with computer by Ostrach [31] are used here. 

Solution of equations (A-15a to d) was carried out by Hermann, 

+ + 
and gives the following expressionf for f(x ) and g(x ) 

p(X*) = J . 4 2 8 4 | l * - 6 - 5 g l f - 0.o?C2fi § _ 0.0141? & _ 000/65 ? 

-o.ooote §*\ ( A_1 8 a ) 

where § » (X - 9 0 ) TT / I go (A-18b) 

•k 

Part of Schmidt and Beckman work [35], 
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C*M } 
^ 9C**> - \^f^\ 

'/3 

(A-19) 

It should be noted that three independent equations, namely 

equations (A-15b,c and d), are used to determine the functions f and g. 

A second expression could be obtained for g from the relation f' = ag, 

this differs from the present expression of equation (A-19) only near the 

lower stagnation point. At the upper stagnation point, the function 

g(x ) equals zero, which physically means that the boundary layer thick

ness goes to infinity. The situation could be interpreted as a representa

tion of separation with all assumptions of boundary layer flow invalid. 

Hermann's solution is, therefore, considered valid throughout the flow 

domain except near the two stagnation points. 

The basic quantities that are necessary for the solution of the 

disturbance equations are listed below. They were originally derived by 

Hermann 

L/=2-F'C/* (A-20) 

v„* = y F"U7(<$<•*) (A-2i) 

( W - v r " / ( / V ( s V ) (A_22) 

u + rf - V(F"-F'"'Z ) /(*V) (A-23) 

^ . V (3F-F^) /(Sf ) (A-24) 

•k 

Equation (A-15a) could be obtained from equations (A-15c and d). 
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U'= F* N , £ (A-25) 

a n d & = ' / ( < ! ^ r V 4 ^ ( A " 2 6 ) 
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APPENDIX B 

ORDER OF MAGNITUDE ANALYSIS OF TERMS OF THE 

DISTURBANCE EQUATION 

Based on the order of magnitude of the terras of equation (3-9), 

analysis of different terms of equations (3-8a and b) is carried out. 

Equations (3-9) are 

U 55 I 

v~ a 

n s 5 

S* ~ I 

H = 0 M T Z I 

£*3 

Vul1 

e/AT * 8 

Szl 

1th2 

(3-9) 

The order of magnitude of terras of equations (3-8a and b) are given by 

the following: 

V. V 
nt oxfc 

V. 
* * « • * 

&X5SM 

£ <4+ «s -5 
Aln 4 r 

« 

Sx6 

<£ U^+ c iLt-L-n * n S u nS 

C-+ ^ 
" AS *-

i - K -5— s l/J 
& us 
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U %AC IK 1 X J -_ £ \/S 't\f\g <5<$x<J 

^ ^o* * fix 
<5x 2 

* S 

\J + ^ ^ & x 
6 S x i 

t l 

yf < C > „ * * x 
5 x. 5 x<5 

^ ' ^ B -sn- * f * "* 

""* ^ - -r' in "- "' 

5 

^ + ^ j£ J - A I f Sf I 
6 5 

o <£< * i x A - s i 
5X(5 

^ ^ i - A i ' f r i 
5 6 

^ «£„ » c3 x A— ^ £ 
5xS 

5 5 f 5 * 6 X 1 
fit I 

if,f v> *, j l _ x jL - j 

^ l/ r++ t i i . ? ) i i — e* &* 

u < + ^ * f « • £ * - " 



U <?r$.s •= i x J L — - « i/5 

J 6 5X& 

W •? - ^r * -r c * 

u) \/ t: J X & £ <3 
^ S>KS 

I 
y \f + *£ £ X A- ^ 3 

^ 5 V/s+ ~ j L L A i t ft: & 
axs » 

r- c * 

<*> V/ *r J_ X o *> I 
" " * x 6 x 6 

(J + U{, * i - x i ' ^ 

v ^ / ic *•* ' " r* 
& x 6 

V 5* * S*x A 
£X6x6 

s * x s z 

5 x S n & x 6 

-y < ^ „ ^ 6 x J! __ % 8 
6 *5 xfc 

y V ŝ-s- ^ 5 ' x - ** ^ 
K *** Sxixfi 
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y ^nnfS P * 
S x S U x S 

y ^ n # * x _A_ * <S 
6 

y *„„ & ^ A__- te 6 Z 

&xS 

y < * s &TX A - t 5 
5x8 

V < k " * ^ T ^ W * S 

*~ l z 
y V .̂. ^ 5 X * &x&x2x6 

V ^ AX » X » 

0 X £ i - ^ S 

4i ^ ^ i_ x JL ^S 

u ec z. i * i_ * i 
s & 

\/ Q„ * <s x - i - K 6 

5x& 

oc 0„ * I x * ti <5 

«• i * 5% J— * * 
£xfi 
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APPENDIX C 

SOLUTION OF THE ASYMPTOTIC EQUATIONS 

The asymptotic equations govern the instabilities outside the 

boundary layer; they are equations (3-18a and b ) , namely 

p"" + 3% <P'" +• (iC,l-1<X7 ) <p" _ 3fe ccz<p' + (cc4- iac*G,p ) <* 

- _ c^r+ <cct; cot c*+)) ( G - 1 ) 

and tf" + 3 ^ A/prC + ( if^pr Gp-.<x2)T? = 0 (C-2) 

An o u t l i n e of t h e i r s o l u t i o n i s given in t h i s appendix. The a u x i l i a r y 

form for equat ion (C-1) i s obta ined by r ep l ac ing the d e r i v a t i v e s of 4> with 

r e spec t to n by the symbol D, and omi t t ing the r i g h t hand s i d e which would 

be used to ob ta in i t s p a r t i c u l a r s o l u t i o n . 

The r e s u l t i n g a u x i l i a r y equat ion i s 

>'+ 3 £ D 3 + ( <<*Gp -2<x2} D 2 - 3% cc2D + (^oc4- <<o?Gp ) S Q (C-3) 

The roots of the above equation are 

Yl' Y 2 ' Y3 a n d Y4 w h e r e 

A 

>; ~ +. OC (C-4a) 

A 

Y* = - OC (C-4b) 
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?, =0.5 [-35+ h Fe + Aicc'- L**rf 4 ] (C-4c) 

(C-4d) 

Following the same procedure, the auxiliary form for equation (C-2) 

is given by 

D + 3FeNp.D + (c Np^Gp-ec*) a O (C-5), 

and i t s roo t s are 

Ys .- o.s [ • " ! "r r t { l 5*M* + 4 (<**- « A/Pr « p i P J (c-6a) 

* i— 2 2 ^2 1 

K< r o.S [-*£tfp#r - .[9 5 ^pf + 4 ( * a - ^ p r ^ P ) I J (C-6b) 

Solution of the simultaneous equations (C-1 and 2) would, therefore, 

be 

€ A ^ 

<P = Z C <? (C-7) 

A * 

*7 r ̂ 7 * -*- ̂  tf (C"8) 

Y5n Y6n 
It should be noted that the terms Cre and C.e are included in the 

5 6 

solution of equation (C-1) being its particular solution as obtained after 

the evaluation of £ by solving equation (C-2). 
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Out of the six exponents T., three have negative real parts. These 

are only considered because oscillations diminish far from the cylinder, 

a condition that can be only satisfied by such terms. Solutions of equa

tions (C-l) and (C-2) are, therefore, given by 

M M hi 
<p = c, e +. cz e + c3 e (c_9) 

C4e
 ( 

(C-10) 

where V , f and V are the roots having negative real parts among the 

/» 
Jf 's. The constant C, could be further estimated in terms of the other 
3 4 

constants C , C^ and C 3 by substituting equation (C-9 and 10) into 

equation (C-l); this gives 

C4 = - S y :—„,,,+ ) (c-ll) 

By t h i s , the asymptot ic s o l u t i o n s would be given by 

<? = dt e + C2 e + 4 e (c-i2a) 

C = - <? [" *, 4- 3 j ** + (^gfi-ao:1)^ „3F««**y3 + (««-<«'fift) 1 „ M 
3 I IT, + <tf Co/! (X*1) J 

(C-12b) 
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APPENDIX D 

DESIGN OF PROBE 

The hot wire probe was used to measure both temperature and velocity 

Its response as a thermometer is discussed in this appendix. As such, the 

probe is required to measure the local temperature accurately in a field 

with rather steep gradient. An error is expected because the wire sup

ports would be affected by temperatures in adjacent parts of the field 

and, therefore, attain a temperature different from the local one to be 

measured. This would heat (or cool) the ends of the wire sensor. 

The probe should also follow the local temperature fluctuations 

within the expected range of frequencies, and appropriately indicate them. 

For this, the wire should have the least possible heat capacity. 

Error in Temperature Measurements Due to End Effects of the Wire 

The wire sensor of the probe is used to measure the fluid tempera

ture T while its supports are assumed to be at some other temperature T . 
3. 

The wire would, therefore, act as a fin, and there would be a temperature 

distribution along its length. The reading obtained from the wire would, 

accordingly, indicate some average value in the range T to T . 
OO Q 

Assuming half the wire length to be a fin with insulated tip, 

the temperature distribution over it would be given by [11] 

9 r
 T~ Ik - cosh (ml) -. smh(#t£) ta»h (i-* L ) f v 

7~ T" (.D—l; 
*>- 'a 

where m = ( kp I k ft > (D-2) 
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and Z is the variable distance measured from the wire support. Integra

ting over the length of the wire gives 

o tan h (i" L ) 
U * ZZ (D-3) 

or 

f 7-- ̂  ) = ( ̂  - \ ) ——£ (D-4) 

Naturally, the relative error 6 increases as the heat transfer 

coefficient, or the fluid velocity, decreases. To limit the error to less 

than 10 percent at a velocity of 2 cm/s, it was found that for a tung

sten wire 5ym diameter, a length of 7 mm or more should be used. Actually 

the wire used is 8 mm long. Further, curved supports were used for the 

probe. This further reduces the temperature range (T - T ) over the last 

5 mm of the support length to about 3C. This, in turn, reduces the error 

T - T to about -.27C or -1.3 percent of the total temperature difference 
a 

across the boundary layer. 

Frequency Response of Probe Sensor 

A study of the frequency response of a hot wire probe was carried 

out to determine its ability to detect the highest frequencies encountered 

in the experiment. 

Calculations are based on the use of a tungsten wire 5ym diameter 

placed at a point of 2 cm/s velocity, the minimum detectable value. In 

the following analysis, it was assumed that the wire operates in air at 

about 300°K. 



In measurements of temperature oscillations, the wire tempera

ture was set at a constant value approximately equal to that of the mean 

temperature of the air at the wire location. In other words, the wire was 

operated as anemometer with an overheat resistance AR = 0. However, for 

estimating the frequency response of the wire to temperature oscillations, 

it was assumed that the control circuit is relaxed. By this, the wire 

temperature is expected to follow the sinusoidally varying air temperature 

except for some damping factor; calculations of that damping factor are 

given below. 

Under the above velocity and temperature condition, the value of 

the wire Reynolds number would be about 0.005. According to Collis and 

Williams [41], the heat transfer coefficient would be given by 

on 
h = JL (3^-) / ( M B - I.I I« 3(A/ R €} ••= 1577 W ) m a K 

d "Go 

For the tungsten hot wire used, the Biot number would be about 5 x 10 

Infinite thermal conductivity in the radial direction can, therefore, be 

assumed for the wire; i.e. that its temperature is practically uniform 

throughout its cross-section. For this case the energy balance gives 

h£u-s-T„)r f c ^ L J?- <D-« 

where T is the surroudning air temperature, T is the wire temperature, 

p the perimeter, and A the cross sectional area. Assuming air temperature 

to fluctuate sinusoidally with a mean value T , it could be represented by 
3. 

Ta =11 + 9* Sin tot (D-6) 



89 

And due to velocity oscillations, h will vary sinusoidally, around its 

mean value h; as given by following relation 

h x h + hfi Sin uit (D_7) 

The same frequency was assumed for both temperature and velocity oscilla

tions in equations (D-6 and 7). 

Substituting equations (D-6 and 7) in equation (D-5) and neglect

ing disturbance quantities of second order gives 

sL® = - M [® - 9fi sir, (uit) + (Q hfi/l ) si„ (uit) j ( D g ) 

a. t 

where 

A T" 

M * T7~a and ® s T*t-\ (D-9) 
T cp n 

For the considered case of using the hot wire for measuring the 

temperature oscillations, the difference between the wire temperature T 

and the mean air temperature T is expected to be very small. The term 
a. 

© h sin cot would, therefore, be negligible and equation (D-9) becomes 

(D-10) 

dt 

The solution of equation (D-10) together with the initial condition ®(0) = 0, 

which denotes a zero initial temperature difference between the wire and 

Velocity - heat transfer coefficient relation is assumed linear 
within the small amplitude of the disturbance velocity, hence h varies 
sinusoidally with time. 
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the surrounding air, is obtained by using Laplace Transforms; this solu-

txon is given by 

® _ Q J * [si«(u>t)-£ "U-CoS(o>t)\\ (D-11) 

The conditions that would be established after a relatively long period 

of time would, therefore, be 

® = 6> -M* - Sin (ot ) (D-12) 

In our case M = - --— = 4.8 x 10 sec whereas the maximum value of CO 
pC A 
P 

is expected to be within 20 rad/s. 

M2 

This gives — = 1 and 

MZ+<J 

Tw-% i 0A SU (tot) (D~13) 

Comparing this with equation (D-6) gives 

Tw r T* (D-14) 

As previously explained, in the actual measurements the wire temp

erature is kept constant by the anemometer controlling bridge. Conse

quently voltage indications would appropriately represent the temperature 

variations. 

Reference [15] was used to determine the solution. 
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APPENDIX E 

CORRECTION OF VELOCITY MEASUREMENTS FOR 

LOCAL TEMPERATURE EFFECTS 

The hot wire anemometer was calibrated at a temperature of 24.7°C 

(76.4°F) and used at different temperatures depending on its position in 

the flow field. Although the temperature difference between the hot wire 

and air was maintained constant at 71C, a correction should be made for 

the change of the resistance o of the hot wire, and for the variation of 
w 

thermal conductivity k and kinematic viscosity v of the air. A change in 

the wire resistance R , changes the bridge arm ratio R /(R + 40) that 
w w w 

represents the ratio of the wire to bridge voltage (the bridge has a con

stant resistance of 40 ohms in series with the wire). 
The velocity-voltage calibration curve Figure (4-6) is reduced to 

the dimensionless form of Reynolds number N_ versus Nusselt number N̂ T 
J Re Nu 

of Figure (E-l) by using the following relations 

*« = «r > ««* * ^— 4 
e • u R„ A A T it 

In these relations, the properties are taken at the mean film temperature 

around the wire, namely (24.7 + 71)/2 = 47.9°C). The temperature differ

ence AT is taken here as 71C which corresponds to the overheat resistance 

AR = 6.07 ohm used, as mentioned in Chapter IV. A straight line approxi

mation of the graph in the expected velocity range (2 to 17 cm/s) gives 
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Figure E-l . Dimension]ess Velocity Calibration Curve 
and Its Straight Line Approximation. 
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V - A+ B N^ 

r i t h & ~ I.C95 and 9 s 11-75 
(E-l) 

All other variables are linear or considered so, hence 

So, = R e ( l ^ l S ) 

^4o+ *t0 ) = C40 4 Pe ) ( I + « ? 0 1 

fe = fe- ( »+ * , ^ 

t. V0 ( \+ x4 & ) 

(E-2a) 

(E-2b) 

(E-2c) 

(E-2d) 

where 9 is the difference between the local air temperature and the 

reference temperature 24.7°C of the calibration curve. The values of a 

through a, were determined and are given below 

a = .0034 C 
-1 

a2 = .00126 C -1 

a = .0027 < 
-1 

a, = .0054 C 4 
-1 

1 

> (E-3) 

The energy balance equation for the wire is 

= hf \AT ^ |i (ft + B tJe ) £_iLl (E-4) 

For measurements at different temperatures, substitution from equations 

(E-2) into equation (E-4) gives 
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(4o+fc 
^ f , + {cc,-2cc2-cct) e\ = J ? 0 { A + B ^ _ ( l - C C ^ j * * I (E-5) 

For measurements at the reference temperature, 0 vanishes and equation 

(E-5) becomes 

sLh . - k . (P + «£i) his. (E_6) 

For some velocity U, the wire reads E at the reference temperature and 

E for a change in temperature 6. The voltage E would thus be the cor

rected value of E to be used with the calibration curve, Figure (4-6). 

Manipulation of equations (E-5 and 6) gives the following relation 

4r s '+ &/2 ? * • ~2oc-2. -** + Bu6 *4- \ 

- \ - ? 6 (E-7) 

The right hand side of equation (E-7) is the required correction. 

The values of C? are plotted versus the velocity U in Figure (E-2). As 

could be seen, the corrections in the range of velocities and temperatures 

used in the experiments were within 1.6 percent, 

Knowing the approximate value of velocity and the temperature, the 

corrected velocity was obtained by trial and error. 
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APPENDIX F 

ERROR IN EVALUATING POSITION ANGLES OF 

POINTS OF NEUTRAL STABILITY 

Temperature oscillations were measured at different position angles 

x to determine the location of neutral stability points. As could be 

seen from Figure (5-3), the amplitudes 6 of the recorded temperature 

oscillations were found to fluctuate about a mean value 9 with a maxi-
e,av 

mum deviation e, i.e. 

\ * L\±e) \ a * (F-D 

It was found that e = 7.5 percent. The error in determining the position 

angle for a point of neutral stability due to these perturbations is esti

mated in this appendix. A least square fitting to a second order curve 

is performed on the readings of the disturbance temperature at different 

position angles x . The fitted curve equation is taken as 

e * * , +• fl2 x* + A , x4" (F-2) 

According to the well-known least square algorithm, the constants 

A ,A , and A are obtained from the following equations 

" n 2 i* ^ 
fit n + /?2 Z" * j t ^ ) , ^ X, s I fl | 

Jul J - ' J J r l * > J 



97 

Jc/ 

Jci 

">t, *' * Fj«*i I (F-3) 
n 4 t ^ 2 

where n is the number of experimental points. 

The error in the left hand terms of equation (F-3) is negligible, being 

dependent only on the precisely determined position angles x . The equa

tion includes an error of ±e in the right hand side due to the linear 

expressions m e , J 

Solving for A , A and A„ by Cramer's r u l e , the va lues of A , for 
1 ' 2 3 1 

example i s given by 

z 
j-x* 

fl, = 

f, % 
Js' 

Ji< 

n 

7L x; 
Jzi J 

I , I 
n f 

£ % * & *; 

r x/ 
Jr. J 

? *j 
Jel ' 

^ x / 

Zi X j 

n 

z : x.
2 

j * ' J 

27 *, £V 
jr. J J=i * 

21 A/ £, *j 
j - l * J*' 

r2 * r S 
? *j 2: */ J r ' 

(F-4) 

In the first column of the numerator determinant, 0 . 5: (l±e)0 
e,j e,j,av 

therefore 
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A, - (\te) x 

n ** 

av 

re . x-
j „ ' ' J * * " J 

£ 3* . x-
= 0 * 0 0, <W 

(F-5a) 

S imi l a r ly 

Plz = ( l ± € ) ^2 , f lV (F-5b) 

and flj = O i r f ) ^3,CH (F-5c) 

The value of the angle x . at which the minimum value of 0 occurs 
° mm e 

i s c a l c u l a t e d from 

intn. 
-jgg 
2 A 

£1 2»<*V ( i* e> 
2A3 ,a* n * * ^ 

(F-6) 

o r 
•t-

mi n 
- A * , d * 

5 A J,<W 
C I 4 2 0 (F-7) 

+ Assuming a normal distribution curve for x . , an error of utmost 
m m 

15% is expected with a probability of 100 percent, and an error of utmost 

Equation (F-6) is obtained by differentiation equation (F-2) with 

by zero. + d6 
respect to x and equating — 

dx 
+ 

nun 
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±8% is expected with probability 78.8 percent. 

However, as the perturbation in the experimental values 0 may be 

attributed to a naturally existing disturbance (of very large wavelength) 

which amplifies with streamwise travel, the peaks and valleys of these 

lie perturbations are expected to correspond to each other, hence - acquires 

an approximate value of unity. The error in x . due to these perturba

tions is, therefore, expected to vanish. 
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APPENDIX G 

CORRECTION OF THE DISTURBANCE TEMPERATURE AMPLITUDES FOR 

CHANGES OF BASIC VELOCITY U WITH STREAMWISE TRAVEL 

The hot wire probe is used to detect the temperature oscillations 

by operating it as "anemometer" with zero overheat resistance. In this 

case the energy balance is given by equation (5-9). The voltage read is 

that of the bridge; it should be further multiplied by the bridge arm 

ratio R /(R +40) to give the voltage across the probe, hence: 
w w 

2 E e R 

§ - -L r (G-l) 
(R + 40) 77 dL h 
w 

2E~ R 
The term x is constant since measurements were practically 

(R +40) 
w 

taken at radial positions corresponding to the same value of n(= 1.24 in 

the present case), hence at the same basic temperature. 

Equation (G-l) would then give 

e a — (G-2) 

A correction should, therefore, be carried out to account for the varia

tion of h due to variation of U, the tangential basic velocity component. 

This is carried out in this appendix. 

This value corresponds to locations of maximum temperature disturb
ances in the radial direction, as obtained from experiments. 
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For the specific radial location (n = 1.24) used, Ostrach's [31] 

numerical calculations give the dimensionless tangential velocity 

F' = 0.265. Using Hermann's [16] equation, namely 

F'vN^2
 + + 

U = r
 r'r f(x+)g(x+) (G-3) 

gives 

U = .06 fg 

and 

Re = .018 fg (G-4) 

Using the velocity calibration curve Figure (4-6), together with equa

tions (G-4) and (G-2), a variable correction factor should be multiplied 

by the resulting oscillatory voltage amplitude at different angles. This 

correction factor was calculated as outlined above and is given in Figure 

(G-l). 
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Figure G-l . Correction for the Measured Amplitude of 
Oscillatory Temperature due to 
Variations in h. 
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APPENDIX H 

HEATING WIRE RESPONSE TO SINUSOIDAL 

ELECTRIC POWER INPUT 

A heating wire is used to induce temperature oscillations of con

trolled frequency and amplitude. By adequately choosing the wire material 

and diameter, and the input voltage amplitude and frequency, the heating 

wire acquires sinusoidal temperature difference from the surrounding air. 

Calculations are carried out to choose the wire diameter such that small 

or no damping of sinusoidal signal is encountered. 

An alumel wire of 12.7pm (0.0005 in.) diameter was used in the 

experiment. It was placed at points of velocity 5 cm/s and temperature 

310°K approximately. The wire Reynolds number is calculated to be 0.0374. 

According to Collis and Williams [41], the heat transfer coefficient is 

given by 

k T °'17 4S ? 
h = 4 (TT- ) [0.24 + 0.56 N' ] = 794 W/m °K 

d 1 Re 
00 

For alumel wire, the Biot number would be 

N . = ^ = 0.33x 10"3 
Bi k 

This small value of N . indicates that infinite thermal conductivity in 
Bi 

the radial direction could be assumed for this wire. 
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Energy Balance Equation 

With a volumetric rate of heat generation q, the wire (of length L 

and diameter d) would acquire a temperature T different from the environ

mental temperature T , the energy balance of the wire gives 
3. 

±9 = -M 0 -h q / ( ? C r ) (H-l) 
dt 

where 

Kl = Ah I (?C fd) , and 0 S 1 - T d (H-2) 

The heat generation q is assumed to have a steady part q.. and a sinu

soidal part q9 sin cot, i.e. 

q ^ q, + qz Si>* (wtl 

Substituting into equation (H-l) gives 

A A 

(H-3) 

dO - _ M 0 + J— H + <L Sin t«»t ^ (H-4) 

Using Laplace t ransform to so lve the above equat ion gives 

A ^ 

^C P H ?CP M*+u)z £H . M* J e = 

This gives the following established state solution 

6 - i»_ + i J±_ 5m t*f 
<?Cptf <^CpH M'+cJ1 

or 
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,2 
A 

. 7Z , 1 ± + %± J£— si„Cu>t) 
4h <Jh M2+u>1 

For a sinusoidal voltage input of E = E sin u t, the volumetric rate of 

heat generation is given by 

2 ? 

or 

2 

<* = i-5-5- / I- cos (2ul,t ) } 
&7rJzL t ; 

hence, except for a phase s h i f t 

^ 9 T^/ 1 U »"«"] (H-7) 
R/Tct7L t 

It should be noted that OJ = 2w , i.e. the frequency of the sinusoidal 

heat generation is double that of the input voltage. Substituting equa

tion (H-7) into equation (H-6) gives 

r , - T ; - J * c ,4. M^ *;*t*t\ ? (H-8) G - 7 J = Ja ~ [ 14- JU - s7„<*0 ? 
2RhrrdL l M 1 * * 2 ' 

To have an e f f e c t i v e s i n u s o i d a l temperature d i f f e r ence wi thout r a i s i n g 

the wire temperature app rec i ab ly , M should be much l a r g e r than w. In 

our case 

K» = Ah s 5-XiO 
?CPd 
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This should be compared to the maximum expected value of u) of about 20. 

Therefore for the wire used 

2 
TW - Ta = _§? . / , + 5in(u>t)) (H-9) 

2R 7T<jh 

This means the steady state temperature rise of the wire is equal to the 

amplitude of its sinusoidal one. As could be seen from equation (H-8), a 

better situation is not attainable. It should also be noted that the power 

dissipated is small and would not affect the basic flow. On the other 

hand, the sinusoidal temperature rise would activate the required con

trolled disturbances. 
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APPENDIX I 

COMPUTER PROGRAM 

The computer program used to determine the stability curves in the 

x - ot or 3 planes, with a and 3 taken as eigenvalues is included in 
r r r r to 

this appendix. Similar programs were used for different stability planes 

and/or different eigenvalues. 
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F K O G K A M N C F C 1 N ( I N P U T , O U T P U T , T A P E 5 - i N P U T , T A P £ 6 = 0 U f P U T ) 

DIMENSION Y ( 3 ) , Y P ( 7 , i 2 1 J , X < 2 ) , R ( 2 ) , A J ( 2 , 2 l , d L ( 2 , ^ ) , l P ( 3 ) 
EXTERNAL FUN 
COMPLEX 'J , G , M , C , AP,CP " 
COMi lON/WZ l / Y P , N O , R E , P R , E T E , H S , M M , C T A , b , G 
UONi1uN/WZ2 / r t l 3 ,DL , A , C 
REAU<5 , 1111J GR,PR 

1 1 1 1 FORrtAl ( F 1 3 . 2 , I X , F 7 . 3 ) 
KEAJ ( 5 , 1 1 1 2 ) OTR 

1 1 1 2 FORMAT (Ft> . 1 ) 
L T L - b . C 
HS = - u . 1 
HB=.0-3 
M M 1 = - £ 1 E / H S + . 1 
HM=rfMj. + l 
M b l = t T L : / H 8 + G . 1 
MB=McU + l 
y (1 > = C . 0 
Y ( 2 ) = (J . G 

Y C i ) = G . o7m 
Y ( 4 ) = l . Q 
Y ( 5 ) = - J . 5 0 6 
X Z = L . 0 
DO 1 1 i K - 1 , 5 

1 1 1 Y P ( K , 1 ) - Y ( K J 
Y P ( o , 1 ) = - 1 . 1 
Y P ( 7 , i ) = 0 . 0 
0 0 1C 1 = 2 , M J 
CALL R K < Y , X Z , 5 , H B ) 
DO 11 K = l , 5 

11 Y P < K f I ) = Y ( K ) 
Y P ( 6 , I ) = - 3 . 0 * Y ( 1 ) + Y ( 3 > + 2 , C * Y { 2 ) * Y { 2 ) - Y ( < 4 > 
Y P ( 7 , 1 ) = - 3 . J * P K * Y C 1 ) * Y ( 5 ) 

ID CONTINUE 
A P = ( . 0 6 , . 0 ) 
C P = ( . 0 2 , . 0 ) 
DO 3 I I K - 1 , 7 
C1'A = C T K * 3 . 1<*1 5 9 2 6 5 ^ / 1 8 0 . C 
F Y = C T A - 1 . s ? G / 9 6 . j 2 7 
F F = 3 . *• 2 Uo / a b i k* ( 1 . G + F Y * ( 0 « 5 8 1 + F Y * C - 0 . O 5 o 2 6 + F Y 

1 * ( - . 0 i ^ l 2 * F Y * ( - D . y C A & S - f c . u J p b o * F Y ) > J > ) 
G G = ( S I N ( 0 T A ) / F F ) * * . 3 3 o 3 3 3 o o 3 3 3 o 3 3 
R t = F F * <GR** . 2 5 ) 
L L = F F / 1 G O * K E ) 

W R I T E ( b , 1 1 1 3 ) G R , P R , C T R 
1 1 1 3 F O R M A T ( S H l o A S t O F / H H G R = , F 1 U . 1 / H H P R = , F 7 . 3 / 

1 5H C T A = , F 5 . 1 / J 
A^AP 
C = CP 
X ( 1 ) - R E A L ( A ) 
X < 2 ) = R E A L ( C ) 
N = 2 
K=2 
P = 0 
NR=2 
TOL=.L)001 
I P ( 1 ) = 8 
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j = i 
b A L c F U ' U X , N , K , R t P ) 

S i < i - K ( 1 ) 

S i i ^ D 
A = A H + . J ii ^ u ''. 1 

X ( I ) - rxc AL ( A ) 

C A L L . t- U rvi i X , ;.N , K » K»R ) 

G k c ^ K ( 1 i 

S 1 ^ = R ( 2 ) 

A - A R 

0 - C R + . 0 0 J j f x 

X ( 1 ) = «i 4u ( A) 

X I L O ^ K M K 0 ) 

O A L L t- L I > U X , IN » K » I4 i H ) 

S R .i = R i 1 ) 
S i o - K 1 2 ) 

» J { l , i i - ( o r ^ - S r t l ) * l u O U o O . 

A j ( ^ , y ) - ihK j-$aii*iouicjo. 
A J i d . i ) = l S i 6 - S l i ) * i b j ^ 0 i ] O . 

A j i ^ t ^ ) - ( S i i - S l l ) * i J O C * » U C . 
X ( i ) ^ R L A L ( AR^ 
X ( 2 ) ~ R c A L ( OR J 
U A L L u IN W T ( X ) N , NK • F I) N * f- » T U L , 1 P I J » K , RH S » A J , BL ) 

l F n < h j . i_f . T J L J GOTO 9 a l 8 

GOTO - J 9 1 7 

' j 0 1 6 ^IRi'l L i o , S 0 1 o J 

J ' J i t ; !"Gi\MA] ( d l H O u N V c K ^ ^ N C t A G h l L V t C ) 

u I f \ - L I K ~5 . 

A R ^ A 

D R - L 
3 L O H I J i-4 U ^ 

•30 1 / C OiW i N u 1 

t .NQ 
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SUBROUTINE FUN(X ,N , K , R , P ) 
COMPLEX X R , M , I C , C , b , Z A ( o ) , ^ B ( b J , Z G < 6 ) , G , 3 S , S 

1 , A J , A U A , A J B , A J u , C C ( 3 ) 
COMMON/rJZl /YP , M U , R £ , P R f e i t t H S » « H t C T A * 8 , G 
C O M I 1 0 N / W Z 2 / H U , U L , M , C 
UlMc iNSi ON YP ( 7 , 1 2 1 J , X <NJ ,R ( K ) 
A = X ( 1 ) 

C = X<u) 
C COMPLEX R O O T S CF AUXILIARY E Q U A T I O N S 
G 

1C= lu.0 , 1.C ) 
X K = G 3 Q R T ( 9 . J*YF 11, HU.J* YP<1 »MB* *<t.-Q*C-A*A-Io*RE *C) ) 
B=0 . b* (-,} . u*VP ( 1 ,flB) -XR) 
I F C R L A L (Li) . l i t . C , u J d - 0 . b * < --> . L * Y P < 1 , MB) * XR) 
X R = U 5 u R l ( 9 . Q * Y P C i , M B ) * Y P U t H S ) * P R » P R + % » 0 * C A + A - I C * P K * K E * C ) ) 
G=u . 5 * ( - S . U * Y P < l f M l i » » P k - X R ) 
I F ( R E A L ( o ) . G £ . Q . u ) G = C . 5 * ( - 3 . G * Y P { 1 , M O ) * H R + X k ) 

G 
G D1STUKBE0 F L O W 

C 
h l i l f MM- 1 
Z A ( 1 ) - C c X P ( - E T E * A ) 
Z A ( 2 ) - - A + Z A { 1 ) 
Z A ( 3 ) = - A * Z A ( 2 ) 
Z A ( H ) - - A * Z A ( 4 ) 

Z A { c j ) = ( d . y , L ) . C ) 
Z A ( 6 ) = ( 0 . u , G . 0 ) 
XZ=ETE 
DO 1 J U 3 1 = 1 , M M 1 

C A L L C R K < Z A , X Z , 6 , n S ) 

1 0 0 3 CONTINUE 
G 

Z d ( l } = G E X P ( E T E * B ) 
Z B ( 2 ) ~ B * Z B ( 1 ) 

Z B ( o ) = B*ZB (2 ) 
Z d ( < + ) = U * Z ' d ( 3 ) 

Z B ( 5 ) = ( u . 0 , j . 0 ) 
Z B ( b i - ( o . b i O . 0 ) 
X Z = t T E 
DO Hit* 1 = 1 , MM1 
CALL C R K ( Z B , X Z , 6 , H S J 

100A CONTINUE 
C 

Z G ( l ) = L E X P ( i L T E » G J 
Z G < 2 > = G * Z G ( 1 ) 

Z G ( 3 ) = G * Z G ( 2 ) 

Z G ( A > = G * Z G ( 3 ) 

S S = t * & » G * G + 3 . 0 * Y P < i , M B ) * C * G » G + ( i C * R E » C - 2 . 0 * A * A ) + G » G 
1 - 3 . U * Y P ( l , M d ) * A * A * G + A * A * < A * A - I C * R E » C > 

3 3 = 3 ; ) / ( G + I C * A » C 0 5 ( C T A ) / 3 I N ( C T A ) ) 
Z G ( b i - - 5 S * L E X P ( E T c * G ) 
Z G ( b ) = G * Z o ( 5 ) 
X Z = E T t 
UO l u G 5 1 = 1 , M M 1 

CALL C R K ( Z G , X Z , 6 , H S > 
. 1 0 0 5 CONTINUE 

AJ=CEXP < - E l £ » A ) » ( Z b < l ) * Z G ( 2 ) - Z G ( i ) » Z d < 2 ) ) 
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1 - C r . X H i = r £ * u l * ( Z A ( U * Z a - l E ) - Z & < 1 ) * Z A . C 2 ) ) 
'<L f c ^ X P ( E T £ * G ) * ( Z A l i ) * Z L i l ^ ) - Z L J ( l ) v Z A ( 2 ) J 

A J A = Z L J ( l l * Z o ( 2 ) - Z G ( 1 » * Z t M 2 ) 
A J 1 ; = - Z H ( 1 ) * Z O ( 2 ) • • Z o ( l ) * Z A ( 2 ) 
M j u = Z A ( l ) * Z J ( 2 ) - Z J { l ) * Z A ( < : t 
L u l l ) - A J A / A J 
U ' - , ( 2 i = A j t J / r t J 

i ;c(5) - A J G / A J 
is-uC (1 ) *ZA (5) + C u ( 2 ) + £ t H 5 j * U : i 3 > *ZG(5J 
K ( 1 ) = r< E AL ( S J 

I < ( 2 > = M I M A G ( S J 

M I T : . ( b , J l l l ) S i U i A t r t c 
d i l l FORMAT W H S= ( , c l u . 4» l H t t c l O i J » , 7H> 

1 / H ) A M , L 1 J . / M H , , £ 1 C . < + , 7 H ) 

rtE'flKN 
END 

0 = ( l C l 3 . 7 » i i l M L l J , ' * | 

R t - t E l Q . H > 
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!J U 

I j ;j ^ 

L J L J 

^ i l ) 4 

^ 1 2 

SuP 

u i . 1 

J J 

p I i 

XP = 

U A L 

UO 

Q ( J 

F ( j 

X = X 

OAu 

uU 

u ( J 

F ( J 

C AL 

JO 

U <J 

F U 

A - X 

L - A L 

LiU 

u i J 

u ( J 

F ( J 

PF1 
L;NIU 

t v J 

_ H 

c L 

; = 
x 
L 

d '-

i -

i -

P + 

L 

L w 

) = 

; -

i_ 

i -

5 = 

P + 

L 

<l' U 

) -

> -

) -

UP 

U l iiMu. P \ ( F * X , n , H J 

, I O K F ( b ) , P ( 5 ) t Q I y ) , C F ( 5 i 

•^ x !--!<, M 

r ( i ) 

u U ( F , X , U M 

w c J = i , M 

r i * JF ( J ) 

r ( j ) + \. . p * C F { J » * H 

j . -> * H 

OU (F i X , u F ) 

u O J -' i » P 

U v J ) + H * .J F ( j J * 'c . C 

P ( j ) + n » j p ( j j * <;,, £. 

Uw IF , X » JF I 

L '-» J = i , 1 

u I J ) + h * J F ( J ) * c . 0 
P i J ) + H * L) F ( J ) 

Q (F , X , u F ) 

•i J = i » M 

i J i + u F ( J ) » H 

< J ) / F . L 

( J ) + U < J ) 
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b U L J K U U T I N t - J K K ( F t X r M f W J 

C U MP L c X F ( c ) , P I b I , U ( 6 ) » 0 F ( 6 ) 

uQ C C J X 1 = 1 , M 

^ U 1 P 41 ) - F ( I ) 
x p = x 
J L L F u (P , X , J F ) 

Li U .iiJoc: J - 1 , rl 

uj ( J i = M * U F < J ) 

2 G u 2 F ( J ) --r ( j ) + G . t?*CP (J ) * H 

X--XT i-u . 5 * H 
C A L L c u ( F , X , D F | 

u 0 L U U J J •- J. , M 

i j ( J ) = U < J ) + H * c J F < J » » 2 « L 

2 u G J h ( J ) = H ( j ; + H * U F i J ) » 0 » 5 
C A u L c u ( F , X , u F ) 

U U L . L U H J •= 1 , M 

U ( J t = U < J ) + ri * U F ( J i * c . D 
Z ^ l F (o)-i' i J ) + H * f } F ( J ) 

A = X P + H 

U A L L C U (F I X , U F ) 

i>u duib J = i i M 
U t J ) - u ( J ) + U F ( J I + H 
u i J ) = u ( J ) / o . J 

d^lb F (o ) - P ( J ) * U < J ) 
K L T U k N 
FNL 



S U d r c u J T I N t £ u < F , X , D F ) 
u OM A 0 N / rtZ 1 / Y P , M B , R E , P P , t T t t H S • M H , G TA • B < & 
L-UMnuN/WZ<i/Hd»t)L?A tC 
DIMEl r fb luH Y P ( 7 , 1 2 1 ) 
GOMHLEX F I c ) , 0 F ( 6 ) , G f A , B , G » I C 
J F ( 1 ) - F (2 ) 
u F ( ^ ) = h 13) 
uF 15) =F IU) 

L N - X / H l i f l . l 
I G = ( o . L ' t l . G ) 
U F ( H ) = C . U * A * A * F ( 3 ) - A * A * A * A * F ( 1 ) - { F ( 6 ) + I C * A * F ( 5 > * G 0 5 ( G T A ) / S I N ( C T A ) ) 

1 + ^ V K C M ( Y P < 2 , L N ; * A - C ) * < F ( J > - A * A * F ( 1 ) > - A * 
2 ( Y P ( b , . - l * ) * F ( l ) + Y P ( 3 * L N i » F U ) * D t . - Y P t 2 , L N ) *F < 2 ) * D L > ) 
3 M > f ( 3 , LNJ - Y P ( 6 , L N > * X i * F ( 2 ) - ( 3 • G * Y P < 1 , L N > - Y P ( 2 , L N ) * X ) * 
<• ( f ( U ) - A * A * F C 2 ) ) 

U F ( -J ) = F (b ) 
D F ( 6 J = A * A » M b ) + I C * P R * R F * ( ( Y P ( 2 » L N > * A - G } * F < : > ) - Y P ( 5 , L N ) * F ( l ) * A ) 

1 *P r \ * ( - Y P l i ? f L N ) * X * F ( 2 ) - l 3 . 0 * Y P l l » i - N ) - Y P < 2 f L N ) * X ) * F ( 6 ) ) 
k 11 u K rt 
r NJ 
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b U o K u d T i N d U U < F , X » 0 ' F J 
u i M L i - i o I UN F (J) , UF(5> 
r ^ U . 7~ J 
UF ( i > -F (2 J 
L> i- ( £ ) = F < 3 > 
b K ( o J - - i . . * F l l ) * F ( 3 . i + 2 . t C * f < c ) * f ( 2 ) - F < H ) 
U K i«+ -J = F ( b J 
Li I- i b ) = - j . C * P * * F < i ) *F(b>J 
K L I U K N 
FNO 
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