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initial 230Th. Horizontal gray contours are lines of constant initial d234U, 
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black diagonal line is the infinite age line. Measured isotopic data from all 
age samples (see Table B-S1) are plotted as ‘+’ data points – SC02 
(navy), SC03 (red), SCH02 (green), and BA02 (purple). 

  
Figure B-S11.  Osmond type isochrons for (left) Secret Cave at Gunung Mulu, 

(middle) Snail Shell Cave at Gunung Buda, and (right) Bukit Assam Cave 
at Gunung Buda. Colors distinguish measured isochrons at different 
depths (values for each listed in Table B-S2). Error ellipses are not shown 
because they are too small to be seen on this plot (see Table B-S2). The 
initial 230Th/232Th concentration is calculated using a maximum-
likelihood estimation (MLE) XY-XZ isochron algorithm that finds the 
best line of fit to the set of XY (230Th/238U-232Th/238U) and XZ 
(234Th/238U-232Th/238U) points. 
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Figure B-S12. Plot of calculated initial 230Th/232Th concentration with 2σ error 

determined from each isochron, separated by cave: (a) Secret Cave (3 
total), (b) Snail Shell Cave (5 total), and (c) Bukit Assam Cave (6 total). 
Black data points have 2σ error less than 10 ppm, gray data points have 
2σ error greater than 10 ppm. Mean initial 230Th/232Th concentration 
plotted as colored dash line, with 2σ error shown as shaded rectangle. 
Note the colored 2σ error touches all black data  
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Figure C-S1. (left) Caves of Gunung Mulu National Park with cave study sites 

indicated. From J. Wooldridge and T. Waltham, in Encyclopedia of Caves 
2nd Ed. (2012) (right) View looking eastward toward Gunung Api (Credit: 
Syria Lejau) 
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Figure C-S2. Mapped isochron drill spots along a single growth layer within a 

stalagmite collected from Whiterock (WR12-12). 
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Figure C-S3. (230Th/238U) v. (232Th/238U) Osmond Type-II isochron diagrams for 

each sampling spot, with best line of fit and analytical elliptical error bars 
shown. Isochron’s calculated (230Th/232Th)init value and the square 
√(MSWD), computed using ISOPLOT 3.72 (Ludwig and Titterington, 
1993), is listed in each scatter plot. Isochron diagrams organized by cave 
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Figure C-S4. (A) High-resolution scan image of lower SC03, showing original U-

series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011).  
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Figure C-S5. (A) High-resolution scan image of FC12-14, showing original U- 111 
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series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011). 

  
Figure C-S6. (A) High-resolution scan image of FC12-12, showing original U-

series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011). 
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Figure C-S7. (A) High-resolution scan image of FC12-15, showing original U-

series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011). 
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Figure C-S8. (A) High-resolution scan image of WR12-01, showing original U-

series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011). 
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Figure C-S9. (A) High-resolution scan image of lower SC03, showing original U-

series dates reported in kyr. (B) Age-depth plot. Data points not included 
in age model are in red in panel A and not shown in panel B (see Table C-
S1). Error bars represent 2σ dating uncertainties. Black line indicates the 
StalAge age-depth model. Grey outer curves indicate 95% confidence 
interval endpoints for an ensemble of age models produced using StalAge 
(Scholz and Hoffman, 2011). 
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Figure C-S10. Summary of age-depth plots, provided in Figures C-S4 through C-

S9. 
116 

  
Figure C-S11. Percent power density from single-taper method spectral analysis 
on Mulu δ18O composite stalagmite 160 ky record (100yr sampling resolution) 
(upper left), ice- volume corrected Mulu δ18O composite stalagmite 160 ky 
record (100yr sampling resolution) (lower), and Chinese δ18O composite 
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stalagmite 160 ky record (200yr sampling resolution). Citations provided in 
Figure 3.4. 
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SUMMARY 
 
 
 
 Variability in the tropical ocean-atmospheric system causes global scale climate 

anomalies, most evident in the El Niño-Southern Oscillation’s coupled climate feedbacks. 

Despite being an area of high interest, many questions still remain regarding the tropical 

Pacific’s response to external forcing, particularly its response to increases in 

anthropogenic greenhouse gases. Paleoclimate reconstructions coupled with model 

simulations provide insight into the tropical Pacific’s role in past climate variability. 

Most paleoclimate records, however, still lack the resolution, length, and chronological 

control to resolve rapid variability against a background of orbital-scale variations. In this 

study we present stalagmite oxygen isotope (δ18O) reconstructions that provide 

reproducible centennial-scale records of western Pacific hydrologic variability that are 

U/Th-dated and continuous throughout most of the late Pleistocene.  

 In Chapter 2 we use four overlapping stalagmite δ18O records to investigate 

millennial-scale climate variability in the last glacial period. We find that regional 

convection likely decreased during the six massive iceberg discharges defined in the 

North Atlantic sediment records (so-called “Heinrich events”). The inferred western 

tropical Pacific dry events aligned with all six Heinrich events are consistent with a 

southward shift of the Intertropical Convergence Zone, the dominant paradigm to explain 

global climate anomalies originating in the north Atlantic. However, any hydrologic 

variability related to Dansgaad-Oeschgar (D/O) events, millennial-scale sawtooth 

temperature anomalies of the last glacial period first evident in the Greenland ice records, 
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is notably absent in the tropical stalagmite records. The absence of any coherent D/O 

signal in the Mulu stalagmites suggests D/O events and Heinrich events may be 

characterized by fundamentally different climate mechanisms and feedbacks.  

 In Chapter 3 we extend the record back through 160kybp to comprise an entire 

glacial-interglacial cycle, enabling the investigation of orbital-scale climate forcings as 

well as the comparison of two well-dated glacial terminations in the western tropical 

Pacific. The ice-volume-corrected stalagmite δ18O records suggest that glacial forcing, 

characterized by lower atmospheric CO2 and cooler global temperatures, did not drive 

significant changes in Mulu rainfall δ18O. Further, no significant correlation exists 

between Borneo stalagmite δ18O and either global sea level shifts or Sunda Shelf areal 

exposure. The Borneo record does vary in phase with local mid-fall equatorial insolation, 

suggesting that precessional forcing may impart a strong influence on hydroclimate 

variability in the West Pacific Warm Pool. The dominance of precessional forcing is best 

illustrated across Glacial Termination II, when the oscillation of equatorial fall insolation 

is large and out of phase with ice sheet decay.  

 In Chapter 4 we summarize two areas of ongoing and future research: (1) 

investigating the climate effects of the Toba super-eruption through geochemical tracers 

in Mulu stalagmites, and (2) modeling the Mulu karst hydrologic system to explore why 

Mulu stalagmites are so depleted in 234U relative to most other karst settings.  

 Appendix A presents a summary of best-practices in U-series dating used to 

minimize analytical errors. Appendix B and C provide the Supplementary Materials to 

Chapter 2, “Varied response of western Pacific hydrology to climate forcings during the 
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last glacial period” and Chapter 3, “0-160kybp multi-stalagmite δ18O record from 

northern Borneo.” 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

1.1 Tropical Pacific Warm Pool: a paleoclimate target 
 

Variability of the West Pacific Warm Pool (WPWP) hydrologic cycle today 

causes global scale climate anomalies through teleconnections within the coupled ocean-

atmosphere system (eg., Ropelewski and Halpert, 1987), most evident during El Niño 

Southern Oscillation (ENSO) extremes. The disruption of zonal sea surface temperature 

(SST) and sea level pressure (SLP) gradients, and the adjustment of the thermocline 

depth in the tropical Pacific that occur during El Niño (warm phase) and La Niña (cool 

phase) events, have dramatic impacts on large-scale atmospheric heating, meridional and 

zonal atmospheric circulation, and global hydrology (eg. Cane and Clement, 1999). 

Despite decades of research on the ENSO cycle, many questions still remain regarding 

the tropical Pacific’s response to variable internal and external forcings on lower 

frequencies. Indeed, our understanding of the tropical Pacific’s role in past climate 

change is poorly resolved by most existing paleoclimate records from this region, which 

are relatively low-resolution, short, and poorly dated.  

 Over the past decade, many paleoclimate studies have sought to reconstruct 

tropical Pacific temperature and hydrology. Several WPWP marine sediment records 

have investigated SST and sea surface salinity (SSS) variability at high-resolution 

targeting the last glacial maximum through the Holocene (Stott et al., 2002, 2007; 

Koutavas et al., 2002; Rosenthal et al., 2003; Visser et al., 2003; Lea et al., 2005; Levi et 

al., 2007; Steinke et al., 2008; Xu et al., 2008; Gibbons et al., 2013), or at lower-
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resolution targeting multiple glacial cycles (Lea et al., 2000; Oppo et al., 2003). More 

recently, stalagmite records, which can be absolutely dated via U-series dating and 

sampled at relatively high temporal resolution, have examined rainfall variability that 

spans most of the last glacial period at multiple sites around the tropical western Indo-

Pacific (Partin et al., 2007; Griffiths et al., 2009; Meckler et al., 2012; Carolin et al., 

2013; Denniston et al., 2013a,b,c; Ayliffe, et al., 2013).  

 Modeling studies provide an important complement to paleoclimate 

reconstructions, as they focus on comparing the existing archive of paleoclimate data 

with model output to probe the mechanisms of past climate change, and to test the 

accuracy of climate models (eg. Clement et al., 1999, 2004; Zhang and Delworth, 2005; 

Timmerman et al., 2007; DiNezio et al., 2011; DiNezio and Tierney, 2012). For example, 

comparison studies relate stalagmite hydrologic reconstructions along a meridional 

transect in the western Pacific to Zhang and Delworth’s (2005) hosing experiments and 

modeled shifting of the ITCZ. This comparison plays a key role in strategies to improve 

state-of-the-art global circulation climate models’ accuracy in projecting future climate 

change (see Schmidt et al., 2013). 

 
1.2 Orbital-scale hydroclimate variability 

 Global climate over the past two million years has been dominated by glacial 

cycles with periods of 23ky, 41ky, and 100ky (eg. Imbrie et al., 1984; Mix et al., 1995; 

Petit et al., 1999; Lisiecki and Raymo, 2005; Luethi et al, 2008). The statistical 

correlations between global temperature or atmospheric pCO2 and the parameters of 

earth’s orbit (precession, obliquity, and eccentricity) support the Milankovitch theory that 

insolation variations cause significant changes in climate (Milankovitch, 1941). The polar 
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temperature, pCO2, and global ice volume have been found to all vary concurrently in the 

canonical 100ky G-IG sawtooth pattern (abrupt deglaciation followed by gradual trend 

toward maximum glaciation).  

 Glacial-interglacial cycles in the tropics allow us to investigate the response of the 

coupled tropical ocean-atmosphere system to orbital-scale glacial forcing (ice volume, 

global temperature, CO2). Long tropical marine records examine the coupling of 

greenhouse gas levels and tropical SSTs. Late Pleistocene alkenone-based SST records 

from global tropical sites (Herbert et al., 2010) and Mg/Ca-derived SST records from the 

equatorial east and west Pacific (Lea et al., 2000) show consistent SST changes 

synchronized with the atmospheric pCO2 cycle, linking orbital-scale SST variations to the 

high latitudes (Lea et al., 2004; Herbert et al., 2010). Lea et al. (2004) suggests that on 

orbital time scales varying atmospheric CO2 is the dominant forcing on tropical climate. 

Other higher-resolution western tropical SST records from glacial terminations agree, 

with the SST rise aligned with the rise in atmospheric CO2 (eg. Stott et al., 2007; Visser 

et al., 2003). Notably, one last deglaciation SST record from the cold tongue found SST 

to instead vary most coherently with precession-induced changes in seasonality, instead 

of the CO2 rise (Koutavas et al., 2002).  

 Relatively few paleodata studies resolve orbital-scale hydrologic variability in the 

tropical Pacific. Tropical to subtropical cave stalagmite records (25-32oN) from China 

resolve several glacial-interglacial cycles and show east Asian summer monsoon (EASM) 

strength to strongly correlate with northern hemisphere (NH) summer precession (Wang 

et al., 2008; Cheng et al., 2009). Clement at al.’s (2004) modeling study comparing 

precession (modern boundary conditions) experiments and Last Glacial Maximum 
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experiments found that tropical hydrology responded equally to glacial forcing and 

precessional forcing. 

 Variations in ENSO frequency/strength and meridional shifts in the Intertropical 

Convergence Zone (ITCZ) drive a large portion of modern-day hydrological variability in 

the tropical Pacific. Forcing of tropical hydrological variability due to past variations in 

ENSO frequency/strength is still highly debated. A compilation of Pacific and east Indian 

SST records of the last deglaciation suggests the tropical Pacific moves between an 

“amplified ENSO” state and a “damped ENSO” state driven by orbital precession 

(Koutavas and Joanides, 2012). A compilation of Pacific and east Indian ice-volume 

adjusted δ18Osw-ice records of the last deglaciation, however, do not support a significant 

role for an ENSO-like mechanism on glacial–interglacial time scales, or during millennial 

events of the last deglaciation (Gibbons et al., 2013).  

 
1.3 Glacial millennial-scale hydroclimate variability 

Studies of north Atlantic sediments show that the circulation of surface and deep 

waters were repeatedly perturbed during the glacial period of Marine Isotope Stages 2 – 4 

(~12 thousand years before the present (kybp) to ~74kybp) by massive surges and 

melting of icebergs, known as “Heinrich events” (eg. Heinrich, 1988). The duration of 

the discharge of icebergs from the Laurentide Ice Sheet through the Hudson Straight 

ranges from ~500 to ~2000 years, depending on the event and the sample core 

(Hemming, 2004). Heinrich events are characterized by an extreme millennial-scale cold 

period followed by an abrupt warming in the North Atlantic. The massive iceberg 

discharge suggests an abrupt large influx of freshwater to the North Atlantic and a 
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subsequent shutdown of north Atlantic deep water (NADW) production (eg. Hemming 

2004).  

Large millennial-scale sawtooth temperature anomalies in the Greenland ice cores 

occurred repeatedly throughout the last glacial period (Dansgaard, 1993), and have been 

observed in a wide range of NH records (eg., Clement and Peterson, 2008), yet the 

mechanisms surrounding these abrupt climate change events remain unclear. D/O events 

are defined differently than Heinrich events: the former refers to NH temperature 

anomalies derived from ice cores, while the latter is defined by the amount of ice rafted 

debris in marine sediments. The decadal-scale abrupt warming of a D/O event may 

follow a Heinrich event stadial period. Glacial records from proxies across the NH show 

similar recorded variability to these termed “Dansgaard-Oeschgar (D/O) events” (e.g., 

Sachs and Lehman, 1999; Hendy and Kennett, 2000; Shackleton et al., 2000; Peterson et 

al., 2000; Altabet et al., 2002; Schulz et al., 1998; Wang et al., 2001). Other studies show 

evidence of D/O events in the southern hemisphere (SH) tropics (Kanner et al., 2012; 

Cheng et al, 2013b; Denniston et al 2013) and Antarctica (EPICA Community Members, 

2005).   

Several studies suggest that the north Atlantic region may be the dominant driver 

of millennial-scale tropical hydroclimate anomalies. Studies suggest that a weakening of 

the Atlantic meridional overturning circulation (AMOC) and/or a dramatic increase in 

north Atlantic albedo due to sea ice cover would drive a southward shift of the ITCZ 

(Zhang and Delworth, 2005; Chiang and Bitz, 2005). Further, analysis of inter-

hemisphere ice core records reveals an interesting coupling between the two poles: a 

strong and consistent inverse relationship exists, whereby Antarctic warming leads 



!

 6!

Greenland cooling (EPICA Community Members, 2005). The reigning paradigm for 

explaining the “bipolar seesaw” of climate signals invokes a collapse of the ocean’s 

meridional overturning circulation (Broecker, 1998).  

Recent stalagmite records from the western tropical Pacific region have begun to 

provide insight on the mechanisms responsible for glacial millennial-scale hydroclimate 

variability in the western tropical Pacific. Together with the Chinese stalagmite δ18O 

records, stalagmite δ18O records from Liang Luar cave in Flores, Indonesia (8oS, 120oE) 

(Ayliffe et al., 2013) and Ball Gown cave in tropical northern Australia (17oS, 125oE) 

(Griffiths et al., 2013a) form a meridional transect (Wang et al., 2001). The 0-31kybp 

Flores δ18O record suggests abrupt southward shifts in the Australian-Indonesian 

monsoon (IASM) synchronous with north Atlantic cold intervals of the deglaciation, with 

the most pronounced signal directly in phase with Heinrich stadial 1 (14.6-17.6kybp). 

The tropical northern Australia study resolves 8-27kybp and 31-40kybp, and also 

suggests increased IASM rainfall to be coincident with Heinrich stadials and the Younger 

Dryas. The Australian δ18O record further claims to have found decreased rainfall 

coincident with D/O event interstadials.  

Marine records of the tropical western Pacific provide insight into tropical Pacific 

hydrology by reconstructing seawater δ18O from forams, which is sensitive to changes in 

precipitation minus evaporation (P-E). A high-resolution glacial record on the eastern 

edge of the Philippines (6oN, 125oE) contains evidence that D/O events impacted WPWP 

hydrology, with higher (lower) salinities corresponding to high latitude cooling 

(warming) (Stott et al., 2002). Another high-resolution glacial marine record from the 

Sulu Sea (8oN, 121oE) found that millennial-scale variations in planktonic δ18O were out 
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of phase with Mg/Ca-derived SST, suggesting that seawater δ18O (and by extension, sea 

surface salinity (SSS)) varied over D/O events, in agreement with Stott et al. (2002). 

Evidence for D/O events in both marine records, however, is somewhat marginal given 

the relatively low resolution of the records with respect to the millennial-scale signals of 

interest (100-300yr/sample in the Sulu Sea record and 500yr/sample in the Philippine 

record). 

 
1.4 Glacial terminations 

 
Over the course of a deglaciation, sea levels rise approximately 125 meters due to 

ice sheet melting (eg. Waelbroeck et al., 2002), atmospheric CO2 increases by ~100 

ppmv (eg. Petit et al., 1999), and global average temperatures increase by ~3oC (Shakun 

et al., 2012). The trigger for this massive reorganization of earth’s climate and the 

sequence and timing of ice age terminations from region to region remain highly debated. 

The Milankovitch orbital forcing theory (Milankovitch, 1941) of ice sheet growth and 

decay does not completely explain glacial terminations, as there are some intervals in the 

glacial record in which northern summer insolation increases without a coupled glacial 

termination, and other full terminations, such as Termination 2 (130kybp) and 4 

(340kybp), that occur while northern summer insolation is low. Denton et al.’s (2010) 

“Essential Elements of a Termination” begins with a large and isostatically depressed NH 

ice sheet and rising NH summer insolation. The increased insolation causes ice sheet 

melting that delivers fresh water to the North Atlantic. The ensuing reduced AMOC 

produces cold NH stadials and shifts the ITCZ south, weakening monsoon strength in 

east Asia. A bipolar seesaw ensues which warms Antarctica and raises atmospheric CO2 

above the threshold needed to sustain interglacial conditions. Denton et al. (2010) 
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propose that the critical climate threshold for an ice age termination involves (1) rising 

NH summer insolation and (2) large NH ice sheets prone to instabilities, with a key factor 

that the delivery of freshwater to the Atlantic must have persisted for long enough to raise 

CO2 above a minimum level.  

 Multiple overlapping stalagmite δ18O records from tropical and subtropical China 

cover the last 380ky, resolving four glacial-interglacial terminations (Cheng et al. 2009, 

Yuan et al., 2004; Dykoski et al., 2005). The authors found that all EASM terminations 

originated with a multiple-thousand year “weak monsoon interval” that began when NH 

summer insolation was low but increasing. They concluded that rising summer insolation 

triggers the disintegration of the massive ice sheet, leading to a slowing of the AMOC, 

southern shift of the ITCZ, rising Antarctic temperature, stronger southern hemisphere 

(SH) westerlies, and release of CO2, in agreement with the Denton et al. (2010) 

termination theory.   

 Whether tropical ocean-atmosphere dynamics have any influence on the proposed 

Termination mechanisms is still unresolved. Lea et al. (2000) found tropical SST to lead 

planktonic δ18O during Terminations by 3kyr, while the SST shift rise aligned with 

Antarctic temperature and atmospheric CO2 from the Vostok ice core. Kawamura et al.’s 

(2007) Dome Fuji O2/N2 orbitally-tuned age scale places the midpoint of Antarctic 

temperature and global CO2 Termination II at 135 kybp. Stott et al. (2007) sampled a 

high-resolution Termination 1 marine sediment core from 2114m in the western Pacific, 

whose benthic forams are bathed in upper Pacific Deep Water representative of Southern 

Ocean temperature and salinity. The authors suggest glacial deep water warming 

preceded deglacial warming in the tropical Pacific and increases in CO2 concentration, 
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therefore concluding the mechanism responsible for initiating deglaciation does not lie 

directly in the tropics and cannot be explained solely by CO2 forcing. Finally, a last 

deglaciation stalagmite δ18O record from Borneo began its trend toward more enriched 

values (drier conditions) while tropical SST and CO2 began to rise (Partin et al., 2007; 

Lea et al., 2000; Stott et al., 2007; Monnin et al., 2001). The Borneo stalagmite record 

reached maximum δ18O values during Heinrich event 1, not the LGM (Partin et al., 

2007). The authors suggest climatic feedbacks in the tropical Pacific may have played a 

part in driving the variability of the AMOC across H1, which in turn affected tropical 

Pacific hydrology (Partin et al., 2007). The deglaciation in the Borneo record may be 

described as 2-step, with first decreasing convective activity during temperature and CO2 

rise, followed by increasing convective activity through the latter half of the deglaciation.  

 
1.5 Gunung Mulu National Park hydroclimate and karst 

Gunung Mulu National Park on the northern side of Borneo island (4oN) is situated in the 

center of the Indian and west Pacific Warm Pools (115oE), and is an ideal field site for 

investigating past tropical Pacific climate variability using stalagmite proxies. An outcrop 

of Melanau limestone, covered with dense tropical rainforest, forms a band of limestone 

hills on the eastern shale and sandstone slopes of 2375m high Gunung Mulu (Figure 1.1), 

and receives over 5 m of rainfall per year percolating into the rock and throughout the 

vast cave chambers, 295 km explored (Figure 1.2) (Mulu Caves 2009 Expedition Report). 

There is little seasonal variability in both temperature and rainfall amount at our site 

(Moerman et al., 2013) due to the present annual meridional migration of the ITCZ in the 

western Pacific (Xie and Arkin, 1997). Presently, the largest shifts in convective activity 

occur during ENSO extremes. During an El Niño event, warm SSTs in the central and 
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eastern Pacific drive convective activity eastward, leading to drier conditions over the 

Warm Pool.  During a La Niña event, convection strengthens over Borneo (eg. Cobb et 

el., 2007).       
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Fig. 1.1. Caves of Gunung Mulu National Park with cave study sites indicated. From J. 
Wooldridge and T. Waltham, in Encyclopedia of Caves 2nd Ed. (2012)  
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Figure 1.2. Selected Secret Chamber (high ceiling) and Whiterock Cave (low ceiling) 
calcite collection sites. (Credit: Syria Lejau) 
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1.6 Mulu rainwater and dripwater δ18O variability 
 
 Rainfall δ18O variability at Mulu tracks the strength of regional convective 

activity (Moerman et al., 2013). Consistent with the tropical amount effect (Dansgaard 

1954; Rozanski et al.,1992), rainfall δ18O variations measured at Mulu airport from 2005-

2011 are significantly anti-correlated with regional precipitation amount at monthly and 

longer timescales, closely tracking the Madden-Julian Oscillation and ENSO (Moerman 

et al., 2013). Notably, a correlation between monthly averages of satellite precipitation 

and Mulu rainfall δ18O reveals significant basin-wide correlations (Moerman et al., 

2013). Additionally, a weak semi-annual seasonal cycle in rainfall δ18O is characterized 

by relative minima in June-July and November-January, and relative maxima in 

February-April and August-October. Such a pattern suggests that the twice-yearly 

passage of the ITCZ over the site is associated with shifts in the moisture sources and/or 

trajectories that drive the observed seasonal fractionations (Moerman et al., 2013). 

Dripwater δ18O values match rainfall δ18O values averaged over the preceding 3-9 

months (Moerman et al, in prep), suggesting a short residence time of dripwater δ18O 

relative to our centennial-scale sampling of stalagmite δ18O.  
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1.7 Mulu stalagmite δ18O proxy 
 
At equilibrium conditions, the isotopic composition of calcite formed from super-

saturated drip waters is dependent on the temperature and isotopic composition of the 

dripwater.  An expression for the oxygen isotope fractionation between calcite and water 

at low temperatures is determined experimentally by Kim and O’Neil (1997), and is 

provided in Equation 1.1, where α is the fractionation factor and T is in kelvin. 

 (1.1) 

 

δcalcite is calculated with respect to VPDB standard, and δH2O is with respect to SMOW 

standard. Hendy (1971) outlined the various equilibrium and nonequilibrium processes 

that govern oxygen isotope variability during calcite stalagmite formation. Dorale and 

Liu (2009) argue that the only method that can be used to ensure isotopic equilibrium is 

maintained during calcite formation is to replicate oxygen isotopic values in two or more 

stalagmites. If the isotopic profiles correlate they conclude that the calcite formed under 

equilibrium conditions.  

 Several lines of evidence support the equilibrium precipitation of calcite in the 

Borneo stalagmites. A modern 5-year continuous study at Mulu measures present-day 

amount weighted mean rainwater δ18O equal to -8.5‰ SMOW and average fast and slow 

drip water (3 total) δ18O equal to -8.2 ± 1‰ (1σ) SMOW, which agree within error 

(Moerman et al., 2014, in prep). Modern calcite from one of the stalagmites used for this 

project is approximately -9.1‰ VPDB measured, which is in good agreement with 

calculated δ18Ocalcite (-8.5‰ VPDB) at equilibrium with Tcave = 25°C (299K), as measured 

in Cobb et al. (2007).  Further evidence of calcite precipitation under equilibrium 
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conditions at our site is provided in Partin et al. (2007), where it was demonstrated that 

δ18O values in three different stalagmites did not vary significantly across a single growth 

layer (the “Hendy” test). Finally, the sub-millennial scale δ18O variability between 

multiple stalagmites extracted from several caves at most 20 km apart is also strongly 

correlated (Partin et al., 2007; Meckler et al., 2012; Carolin et al., 2013). This further 

indicates that calcite δ18O variability is due to regional climate changes associated with 

rainfall δ18O variability and not a result of precipitation at disequilibrium states.   

  
1.8 Research scope and objectives 

 
 In this thesis, mass spectrometry is used to generate multiple overlapping δ18O 

records coupled to well-dated U-Th age models. These reconstructions allow us to 

address the following research questions: 

1. What global-scale mechanisms can be invoked to explain millennial-scale 

climate changes in the Warm Pool during the last glacial period? 

2. What are the relevant roles of greenhouse gases, precession, and Sunda 

Shelf exposure on western Pacific hydrological variability over multiple 

glacial-interglacial cycles? 

  
 Chapter 2 presents four stalagmite δ18O records spanning 0-100kybp and 

comments on the suggested hydroclimate variability in the western tropical Pacific 

associated with north Atlantic millennial-scale events. A preliminary investigation into 

the magnitude of precessional and glacial forcing is also presented. 

 Chapter 3 presents a large compilation of overlapping U/Th-dated Gunung Mulu 

stalagmite δ18O records spanning 0-160 kybp. We comment on the complex response of 



!

 16!

northern Borneo convection to both polar and tropical forcings and external insolation as 

demonstrated in the record. Lastly, we present a detailed multi-record comparison 

between Termination I and II to investigate the timing of Mulu δ18O variability during 

deglaciations. 
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CHAPTER 2 

 
. VARIED RESPONSE OF WESTERN PACIFIC HYDROLOGY TO 

CLIMATE FORCINGS OVER THE LAST GLACIAL PERIOD  

.  
This is a reprint of an article whose final and definitive form has been published in 

Science, authored by S.A. Carolin, K.M. Cobb, J.F. Adkins, B. Clark, J.L. Conroy, S. 

Lejau, J. Malang, and A.A. Tuen entitled Varied response of western Pacific hydrology to 

climate forcings over the last glacial period. 

Copyright 2013 

 
 

2.1 Abstract 
 

 Atmospheric deep convection in the west Pacific plays a key role in the global 

heat and moisture budgets, yet its response to orbital and abrupt climate change events is 

poorly resolved. Here we present four absolutely-dated, overlapping stalagmite oxygen 

isotopic records from northern Borneo that span most of the last glacial cycle. The 

records suggest that northern Borneo hydroclimate shifted in phase with precessional 

forcing, but was only weakly affected by glacial-interglacial changes in global climate 

boundary conditions. Regional convection likely decreased during Heinrich events, but 

other northern hemisphere abrupt climate change events are notably absent. The new 

records suggest that the deep tropical Pacific hydroclimate variability may have played an 

important role in shaping the global response to the largest abrupt climate change events. 
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2.2 Climate record and discussion 
 

 The response of the tropical Pacific to changes in the earth’s climate system 

remains highly uncertain. The most recent glacial-interglacial cycle encompasses several 

precessional cycles, changes in ice volume, sea level, global temperature, and 

atmospheric pCO2, and millennial-scale climate events, and thus provides insights into 

the tropical Pacific response to a variety of climate forcings. Chinese stalagmites show 

that East Asian monsoon strength closely tracks precessional insolation forcing over 

several glacial-interglacial cycles, and exhibits prominent millennial-scale variability 

(Wang et al., 2001; 2008). The timing and structure of these abrupt climate changes are 

nearly identical to millennial-scale events recorded in the Greenland ice cores (so-called 

Dansgaard-Oeschger (D/O) events) (Dansgaard, 1993), and in sediment records that 

document ice-rafted debris across the North Atlantic (so-called Heinrich events) 

(Heinrich, 1988; Hemming, 2004). A relatively smooth Borneo stalagmite record of the 

last 27,000 years provides a markedly different view of hydrology in the western tropical 

Pacific, showing a dominant Heinrich 1 excursion with the absence of other abrupt 

climate events, and sensitivity to boreal spring/fall precessional forcing (Partin et al., 

2007). At its most basic, this finding illustrates the complexity of regional responses to 

various climate forcings, especially at sites located far from the North Atlantic, and 

demands a more exhaustive tropical Pacific hydrologic record encompassing a full 

glacial-interglacial cycle.  

 Here we present four overlapping stalagmite oxygen isotopic (δ18O) records from 

Gunung Buda and Gunung Mulu national parks, located in northern Borneo (4°N, 115°E) 

(Figure B-S1, Appendix B), that together span most of the last glacial cycle. The research 
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site is located near the center of the West Pacific Warm Pool (WPWP), where changes in 

sea surface temperatures (SST) and sea level pressure have significant impacts on large-

scale atmospheric circulation and global hydrology (Cane and Clement, 1999). Using 

multiple stalagmites from different caves, we distinguish shared climate-related features 

from cave-specific signals in the overlapping δ18O records. 

 The four stalagmite records span portions of the last glacial cycle with many 

intervals of overlap, based on U-series dates (Figure 2.1). Stalagmites were recovered 

from Secret Cave at Gunung Mulu (SC02, 37-94 kybp (thousands of years before 

present) and SC03, 32-100 kybp), and from Bukit Assam (BA02, 15-46 kybp) and Snail 

Shell Cave (SCH02, 31-73 kybp) at Gunung Buda, 20 km distance from Gunung Mulu 

(Figure B-S2, Appendix B). The deglacial and Holocene δ18O records from stalagmite 

SCH02 were presented in Partin et al., 2007. Eighty-six new U/Th dates measured across 

the 4 stalagmites fall in stratigraphic order within 2σ errors (see Appendix A, 

Supplementary Materials). Large uncertainties in the 230Th/232Th ratio of the contaminant 

phases translate into large uncertainties associated with the correction for detrital thorium 

contamination. Fourteen isochrons measured across stalagmites from three separate caves 

give initial 230Th/232Th atomic ratios of 56 ± 11 (2σ) for Bukit Assam Cave, 59 ± 13 (2σ) 

for Snail Shell Cave, and 111 ± 41 (2σ) x 10-6 for Secret Cave (see Appendix A, 

Supplementary Materials), which fall within the range of previously published values 

from our site (Partin et al., 2007). Absolute age errors for each U/Th date were calculated 

with a Monte Carlo approach that combined multiple sources of error. The resulting 

dating errors average ±200, ±250, ±400, and ±500 yrs (2σ) for BA02, SCH02, SC02, and 

SC03, respectively. Age models were initially constructed by linearly interpolating 
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Figure 2.1. Comparison of four overlapping stalagmite δ18O records from northern 
Borneo. (A) δ18O records from SC02 (navy), SC03 (red), SCH02 (green), and BA02 
(purple) are overlain after aligning five major millennial-scale δ18O excursions shared 
across all four stalagmites to within 2σ dating errors (see Appendix A, Supplementary 
Materials), plotted with previously published stalagmite δ18O data from our site (black) 
(Partin et al., 2007). SC03 and SC02 mean d18O have been offset +0.2‰ and BA02 mean 
δ18O has been offset -0.45‰ to match the absolute value of SCH02, consistent with the 
prior use of SCH02 as a benchmark for the deglacial/ Holocene Borneo records (Partin et 
al., 2007). (B) The δ18O record for SC02, plotted using its raw age model (navy), plotted 
with the three other overlapping Borneo stalagmite δ18O records using their raw age 
models (grey). (C) Same as (B), but for SC03 (red). (D) Same as (B), but for SCH02 
(green). (E) Same as (B), but for BA02 (purple). U–Th-based age model used to 
construct the aligned composite δ18O record plotted in corresponding colors at top, shown 
with 2σ uncertainty limits (see Appendix A, Supplementary Materials). 
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between each date, and were refined by aligning five major millennial-scale δ18O 

excursions visible across all four records within age error (see Appendix A, 

Supplementary Materials). The fact that both chronologies fall nearly completely within 

the StalAge (Scholz and Hoffman, 2011) algorithm’s 95% confidence interval (Figures 

B-S3 through B-S6) adds confidence to our assigned chronologies and associated error 

estimates.  With our 1mm sampling interval, the temporal resolution of the associated 

δ18O records average 60 yrs/sample for faster-growing stalagmites BA02 and SCH02 and 

200 yrs/sample for slower-growing stalagmites SC02 and SC03. During the 50kybp to 

38kybp interval, SC02 and SC03 were sampled at 0.5mm-resolution to achieve ~100 

yrs/sample resolution. Ultra-slow growth intervals (<10 µm/yr for the faster-growing 

stalagmites and <3 µm/yr for the slower growing stalagmites) may represent unresolved 

hiatuses and as such were excluded from the resulting paleoclimate reconstructions, 

following Partin et al., 2007 (see Appendix A, Supplementary Materials). 

 The stalagmite δ18O records provide reconstructions of rainfall δ18O variability at 

the research site, which in turn tracks the strength of regional convective activity 

(Moerman et al., 2013). Consistent with the tropical amount effect (Dansgaard, 1964; 

Rozanski et al., 1992), rainfall δ18O variations measured at the site from 2006-2011 are 

significantly anti-correlated with regional precipitation amount, and closely track the El 

Niño Southern Oscillation on monthly timescales (Moerman et al., 2013). A weak semi-

annual seasonal cycle in rainfall d18O is characterized by relative minima in June-July 

and November-January, and relative maxima in February-April and August-October. 

Such a pattern suggests that the twice-yearly passage of the Intertropical Convergence 

Zone (ITCZ) over the site is associated with shifts in the moisture sources and/or 
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trajectories that drive the observed seasonal fractionations (Moerman et al., 2013). 

Dripwater δ18O values match rainfall δ18O values averaged over the preceding 2-6 

months (Cobb et al, 2007), suggesting a short residence time of dripwater d18O relative to 

our centennial-scale sampling of stalagmite d18O. Timeseries of Buda and Mulu 

stalagmite δ18O are highly reproducible (Partin et al., 2007; Meckler et al., 2012), 

strongly supporting their interpretation as rainfall δ18O reconstructions and, by extension, 

as records of past regional convective activity.  

 The overlapping Borneo stalagmite δ18O records show orbital-scale variability 

related to precessional insolation forcing and glacial-interglacial (G-I) changes (Figure 

2.2). The similarity of our stalagmite δ18O timeseries to indices of G-I variability greatly 

diminishes after removing the mean δ18O of seawater due to changes in ice volume (see 

Appendix A, Supplementary Materials; Waelbroeck et al., 2012) from the Borneo d18O 

records (Figure 2.2, B-S7, Appendix B). After this correction, Last Glacial Maximum 

(LGM) d18O values are nearly identical to d18O values at ~85kybp, despite the presence 

of significantly larger ice sheets, cooler regional temperatures (Zhao et al., 2006; Oppo et 

al., 2005), and a completely exposed Sunda Shelf during the LGM. In particular, Sunda 

Shelf emergence has been implicated in shaping glacial western tropical Pacific 

hydroclimate in previous studies (Partin et al., 2007; Bush and Fairbanks, 2003; DiNezio 

et al., 2011). However, we find little correspondence between Borneo stalagmite d18O 

and an index of Sunda Shelf areal extent over the entire glacial cycle (Figure B-S7, 

Appendix B). For example, significant Borneo stalagmite d18O variations in the 70-

90kybp interval bear little resemblance to reconstructed sea level changes, especially 

from ~76-71kybp (Cutler et al., 2003), when a large drop in sea level almost  
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Figure 2.2. Comparison of Borneo stalagmite δ18O records to climate forcings and 
records of paleoclimate from key regions. (A) Greenland NGRIP ice core δ18O (grey; 
NGRIP, 2004) with 100yr averages (black), plotted using the GICC05modelext age 
model (Wolff et al., 2010). (B) Hulu/Sanbao cave stalagmite δ18O records from China 
(Wang et al., 2001; 2008); where Sanbao has been offset by +1.6‰ to match Hulu), 
plotted with July insolation at 65°N (Berger and Loutre, 1991). (C) Borneo stalagmite 
δ18O records, plotted with age models aligned and adjusted to account for changes in ice 
volume-related changes in global seawater δ18O (see Appendix A, Supplementary 
Materials). Also plotted are October insolation at 0°N (black) (Berger and Loutre, 1991) 
and non-ice-volume-corrected versions of the Borneo stalagmite δ18O records (grey). (D) 
Coral-based estimates of paleo-sea level record (Cutler et al., 2003; Bard et al., 1990a,b) 
(black symbols) and derived global mean sea level record (Waelbroeck et al, 2002) (solid 
line: average, dotted line: minimum and maximum). (E) Sulu Sea planktonic foraminifera 
δ18O (Dannenmann et al., 2003), plotted with revised age model using updated IntCal09 
calibration curve 41kybp-modern and aligning 60kybp d18O excursion to the 
Hulu/Sanbao stalagmite d18O records. (F) EPICA Dronning Maud Land (EDML) ice core 
δ18O (grey; Barbante et al., 2006) with 7-year averages (black). Vertical blue bars 
indicate the timing of Heinrich events H1-H6 (Hemming et al., 2004) as recorded by the 
Hulu/Sanbao stalagmite δ18O records (Wang et al., 2001; 2008). 
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doubled the size of the exposed shelf (Figure B-S7, Appendix B). As such, the new 

Borneo d18O records suggest that the cumulative influence of G-I boundary conditions, 

including changes in global temperature and CO2, did not drive significant changes in 

rainfall d18O at our site. That said, the complexity of influences on rainfall d18O 

(Moerman et al., 2013) means that LGM climate may have been characterized by two or 

more competing influences on regional rainfall d18O.  For example, regional drying 

during the LGM inferred from WPWP sediment cores (De Deckker et al., 2002) and 

modeling studies (DiNezio et al., 2011) may have increased rainfall d18O, while longer 

moisture trajectories associated with the emergence of the Sunda Shelf may have 

decreased rainfall d18O. 

 The Borneo stalagmite d18O records vary in phase with insolation at the equator 

during boreal fall in Stage 5 and the Holocene, when precessional forcing is relatively 

strong (Figure 2.2c). The impact of precessional forcing on Borneo stalagmite d18O is 

weak during Stage 3, in part owing to reduced precessional amplitude during this time. 

Precessional forcing is also apparent in older glacial-interglacial stalagmite δ18O 

reconstructions from Borneo (Meckler et al., 2012). Taken together, the Borneo records 

suggest that precession may be the dominant source of orbital-scale hydroclimate 

variability in the WPWP. The implied sensitivity of northern Borneo hydrology to boreal 

fall insolation is consistent with results from a previous modeling study (Tierney et al., 

2012). Moreover, results from a long-term rainfall d18O monitoring program at Mulu 

demonstrate that mean annual rainfall d18O values depend, in part, on the magnitude of 

rainfall d18O enrichments during the boreal spring/fall seasons (Moerman et al., 2013). In 

this sense, the observed sensitivity to boreal fall insolation may represent a direct 
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response of mean annual rainfall d18O to local changes in seasonal moisture sources and 

trajectories. However, ENSO and the Madden-Julian Oscillations (Madden and Julian, 

1972) have large impacts on modern Mulu rainfall d18O variability (Moerman et al., 

2013), such that Borneo stalagmite d18O signals may represent a combination of one or 

more climatic influences.  

 The Borneo stalagmite δ18O records are dominated by six millennial-scale 

increases in δ18O that coincide with Heinrich events, inferring a decrease in regional 

convection during these abrupt climate changes (Figure 2.2). Indeed, a nearby Sulu Sea 

sediment core (Figure 2.2e) also documents increased planktonic foraminiferal d18O 

values during Heinrich events (Dannenmann et al., 2003), consistent with a reduction in 

regional convective activity. The dominant paradigm to explain millennial-scale tropical 

hydroclimate anomalies is that they are driven from the North Atlantic region, either from 

weakening of the Atlantic thermohaline circulation or from a dramatic albedo change due 

to sea ice cover, both of which drive a southward migration of the ITCZ that dries most 

of the northern tropics (Zhang and Delworth, 2005; Chiang and Bitz, 2005). A similar 

chain of events is used to describe D/O abrupt climate changes that are well-documented 

outside of the tropical Pacific, most notably in Chinese and Peruvian stalagmite δ18O 

records (Wang et al., 2001, 2008; Kanner et al., 2012) and in a high-resolution ice core 

δ18O record from the south Atlantic sector of Antarctica (Barbante et al., 2006). However, 

the Borneo stalagmite d18O records lack any coherent signature of D/O events (Figure 2.2 

and Figure B-S8, Appendix B). The Borneo stalagmite d18O records show no consistent 

response to D/O events 8 and 12, the prominent D/O events that occur on the heels of 

Heinrich events 4 and 5 (Figure B-S8, Appendix B). Of particular note, the records show 
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little millennial-scale variability from ~30-40kybp across D/O events 5-8 (Figure B-S8, 

Appendix B). The records do bear a strong resemblance to the Chinese d18O records 

during the 50-60kybp interval, as both records contain a significant d18O increase at 

~55kybp. This shared d18O enrichment may reflect the influence of an additional 

Heinrich event, referred to as “Heinrich 5a” in one study (Rashid and Hesse, 2003), or 

may indicate a regional hydrological sensitivity to the relatively prolonged D/O events 

that occurred during this time interval. Contrary to inferences drawn from a deglacial 

Borneo stalagmite d18O record (Partin et al., 2007), there is no evidence for a southern 

hemisphere influence on millennial-scale variability in Borneo hydroclimate over the last 

glacial cycle (Figure B-S8, Appendix B).   

 The unambiguous signature of Heinrich events in the Borneo stalagmite d18O 

records stands in stark contrast to the lack of consistent D/O-related signals in the 

records, implying a selective response of WPWP hydrology to high-latitude abrupt 

climate change forcing Specifically, the absence of any readily identifiable D/O signals in 

the Borneo δ18O record represents a clear challenge to our understanding of abrupt 

climate change mechanisms. Indeed, the new Borneo records suggest that one of two 

possibilities must be true: i) if D/O events reflect a similar mechanism to Heinrich events, 

then they must not be strong enough to significantly affect northern Borneo hydrology, or 

ii) D/O events and Heinrich events are characterized by fundamentally different climate 

mechanisms and feedbacks.   

 The largest millennial-scale anomaly in the Borneo records is not a Heinrich 

event, but rather an abrupt increase in δ18O that occurs at 73.42±0.30(2σ) kybp, 

coincident with a similarly large and abrupt increase in Chinese stalagmite δ18O (Figure 
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2.2). Whether this event is associated with the Toba super-eruption, dated at 

73.88±0.64(2σ) kybp) (Storey et al., 2012), and/or a prominent early abrupt climate 

change event visible in Greenland ice core d18O (Figure 2.2a) merits investigation in 

additional high-resolution paleoclimate records from the Indo-Pacific. 

 The Borneo composite records demonstrate the sensitivity of western equatorial 

Pacific hydrology to both high-latitude and low-latitude forcings. However, the response 

of northern Borneo hydroclimate to these forcings is not uniform: glacial conditions and 

D/O events apparently had much smaller impacts on regional hydrology than either 

insolation or Heinrich-related forcing. Our results imply that once the hydrological 

response threshold is reached, then climate feedbacks internal to the tropics may serve to 

amplify and prolong a given climate change event, whether the trigger originates from 

internal dynamics or external radiative forcing.  
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CHAPTER 3 
 

0-160KYBP MULTI-STALAGMITE δ18O RECORD FROM NORTHERN 
BORNEO 

 
 
 

3.1 Abstract 

 The tropical hydrologic response to variations in greenhouse gas and global 

temperate changes over glacial-interglacial cycles in the past is still poorly-constrained. 

Paleoclimate records of past variations in tropical hydrology and temperature are useful 

in validating the accuracy of climate model simulations in the tropics. Most paleoclimate 

records, however, still lack the resolution, length, and chronological control to resolve 

rapid variability against a background of orbital-scale variations. Here we present a large 

compilation of overlapping U/Th-dated Gunung Mulu stalagmite δ18O records spanning 

0-160 kybp, the first tropical Pacific terrestrial record to resolve multiple glacial-

interglacial cycles at decadal to centennial resolution. The fact that the ice-volume 

corrected Mulu stalagmite δ18O reconstruction does not exhibit a linear relationship with 

glacial boundary conditions suggests that glacial forcing is not the dominant driver of 

orbital-scale hydrologic variability in the western tropical Pacific. Pronounced deglacial 

δ18O enrichments that occur prior to the major deglaciations coincident with implied 

drying events out of the north Atlantic are the largest signals in the 570 ky composite 

Mulu stalagmite δ18O record. The composite Mulu δ18O record varies in phase with 

equatorial mid-fall insolation, suggesting that precessional forcing is a strong driver of 

western Pacific hydroclimate on orbital timescales. This is best illustrated across 

Termination II, when the equatorial insolation change is large and out of phase with both 

pCO2 and ice sheet decay. As a whole, the Mulu stalagmite δ18O records demonstrate the 
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significant differences that existed between tropical sea surface temperature and tropical 

hydrologic response to greenhouse gas forcing on orbital timescales. The lack of a linear 

relationship between Mulu stalagmite δ18O and CO2 suggests that the hydrologic cycle is 

influenced by a variety of mechanisms, including monsoonal and El Niño Southern 

Oscillation dynamics. Trends in western tropical Pacific hydrology may be only weakly 

related to increasing anthropogenic CO2.  

 
3.2 Introduction 

 
 Past changes in tropical Pacific hydrology are poorly constrained by available 

records, making it difficult to assess the relationship between past climate forcings and 

hydrological response in this region. Studies show the strength of the late Pleistocene east 

Asian summer monsoon (EASM) strongly correlates with northern hemisphere (NH) 

summer precession (Wang et al., 2008; Cheng et al., 2009), while tropical sea surface 

temperature (SST) has strong coherence with the CO2 record at the 41ky and 100ky 

periods (Lea, 2004). A tropical Pacific nitrogen isotope record has a strong linear 

relationship between relative nitrate utilization and seasonal insolation over the past 1 

million years (Rafter and Charles, 2012). A comparison of the tropical Indo-Pacific Last 

Glacial Maximum (LGM) climate in six coupled general circulation models (GCM) 

found the tropical atmospheric overturning circulation to strengthen in all models in 

response to tropical SST cooling due to lower greenhouse gas levels, in agreement with 

the Held and Soden (2006) mechanism (DiNezio et al., 2011). Clement et al.’s (2004) 

modeling study found that tropical hydrology responded equally to glacial forcing and 

precessional forcing.  
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 How tropical climate responds to glacial terminations, and if tropical ocean-

atmosphere dynamics have any influence on the timing and structure of terminations, is 

still unresolved. Tropical SST leads planktonic δ18O during Terminations by 3kyr, while 

the SST shift aligns with Antarctic temperature and atmospheric CO2 (Lea, 2000). A 

high-resolution Termination 1 marine sediment core in the western Pacific suggests deep 

water warming preceded increases in CO2 concentration and deglacial warming in the 

tropical Pacific (Stott et al., 2007). Cheng et al. (2009) found that all EASM terminations 

originated with a multiple-thousand year “weak monsoon interval” that began when NH 

summer insolation was low but increasing. The authors suggested that rising summer 

insolation triggers the disintegration of massive ice sheets, leading to a slowing of the 

Atlantic Meridional Overturning Circulation (AMOC), southern shift of the Intertropical 

Convergence Zone (ITCZ), rising Antarctic temperature, stronger southern hemisphere 

(SH) westerlies, and release of CO2, in agreement with Denton et al. (2010). Denton et al. 

(2010) proposed that the critical climate threshold for an ice age termination involves (1) 

rising NH summer insolation and (2) large NH ice sheets prone to instabilities, with a key 

factor that the delivery of freshwater to the Atlantic must have persisted for long enough 

to raise CO2 above a minimum level. The deglacial Borneo stalagmite δ18O record 

reached its peak dry conditions at Heinrich event 1, not the LGM (Partin et al., 2007). 

The deglaciation in the Borneo record may be described as a 2-step deglaciation, with 

decreasing convective activity while temperatures and CO2 rise, followed by increasing 

convective activity through the latter half of the deglaciation. 

  As a proxy for terrestrial hydroclimate variability, tropical stalagmite δ18O are 

well-suited for the reconstruction of tropical climate's sensitivity to a variety of different 
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forcings. Stalagmites accrete for many thousands to tens of thousands of years, can be 

precisely-dated with U-Series dating (eg. Edwards et al., 1987), and provide a 

reconstruction of rainfall δ18O variability through time closely tied to rainfall amount in 

the tropics (Dansgaard, 1964). The Chinese stalagmites have demonstrated the utility of 

generating long, overlapping stalagmite δ18O records spanning many ice age cycles, but it 

has been difficult to extend this approach to other tropical sites. Robust reconstructions of 

the tropical terrestrial hydrologic cycle over many orbital cycles are lacking and are 

sought in order to complete a comprehensive assortment of tropical climate data proxies 

at the level of the ice core reconstructions.  

 Here we present a high-resolution 160ky multi-stalagmite δ18O record to 

investigate the terrestrial response of west Pacific Warm Pool convection on glacial-

interglacial timescales. We collected the stalagmites from Gunung Mulu National Park, 

where present-day rainfall and dripwater δ18O reflects regional scale convection 

(Moerman et al., 2013, in prep). We extend two stalagmite records from previously 

published data (Carolin et al., 2013), and analyze five new stalagmites to create a sub-

centennial scale composite record spanning two glacial terminations and seven 

precessional cycles. We compare our new record to other regional and global 

paleorecords as well as relevant climate model output in order to provide insights into the 

mechanisms responsible for western tropical Pacific hydroclimate variability on 

millennial to orbital scales.  
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3.3 Location and sample collection 
 
 
3.3.1 Gunung Mulu National Park hydroclimate and karst 
 

Gunung Mulu National Park on the northern side of Borneo island (4oN, 115oE) is 

an ideal field site to investigate past tropical Pacific climate variability using stalagmite 

proxies. An outcrop of Melanau limestone, covered with dense tropical rainforest, forms 

a band of hills on the eastern shale and sandstone slopes Gunung Mulu (2376 masl), and 

receives over 5 m of rainfall per year. The sample collection chambers are ~120-200masl. 

There is little seasonal variability in both temperature and rainfall amount at our site 

(Moerman et al., 2013) due to the present annual meridional migration of the ITCZ in the 

western Pacific (Xie and Arkin, 1997). Presently, the largest shift in convective activity 

occurs during El Niño Southern Oscillation (ENSO) extremes. During an El Niño event, 

warm SSTs in the central and eastern Pacific drive convective activity eastward, leading 

to drier conditions over the Warm Pool.  During a La Niña event, convection strengthens 

over Borneo (eg. Cobb et al., 2007).  

 A 5-year daily rainfall collection study in Mulu shows present-day rainfall δ18O 

variability to reflect regional precipitation amount with significant basin-wide 

correlations at monthly and longer timescales (Moerman et al., 2013), in agreement with 

isotope-enabled climate model simulations (Lewis et al., 2010). Dripwater δ18O values 

match rainfall δ18O values averaged over the preceding 3-9 months (Moerman et al, in 

prep), suggesting a short residence time of dripwater δ18O relative to our centennial-scale 

sampling of stalagmite δ18O.  
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3.3.2 Sample Collection 
 
 Stalagmites have been collected from Gunung Mulu National Park (4o6’N, 

114o53’E) over multiple expedition trips: 2003-2006 (Gunung Buda limestone) and 2005-

2012 (Gunung Mulu limestone). After preliminary test sampling, broken fallen 

stalagmites were selected from the cave floors with targeting based on common criteria 

used for uranium-series dating methods: measurable quantity of uranium, minimal 

daughter-nuclide present at the time of deposition or introduced through diagenesis, and 

no post-deposition migration of radionuclides. Samples were visually inspected before 

collection for permeability, evidence of dissolution or secondary calcite precipitation, and 

extent of detrital contamination.  

 Stalagmites analyzed in this study include FC12-12, FC12-14, and FC12-15 from 

Fairy City chamber, within 1 km of Secret Chamber stalagmites published in Carolin et 

al. (2013), and WR12-01 and WR12-12 from Whiterock Cave. Cave chamber location 

maps and descriptions provided in Supplementary Materials (Appendix C). 

3.4. Analytical methods 

 
3.4.1 Stable oxygen isotope measurements 
 
 Oxygen isotopic analyses were conducted on 70-100 µg sample powders drilled at 

0.2-1mm increments, depending on individual stalagmite growth rates, along the central 

growth axis of the stalagmites using a 1.6 mm drill bit. The δ18O ratios were analyzed on 

either a Finnigan 253 or a Delta V Plus equipped with Kiel devices at Georgia Institute of 

Technology (long-term reproducibility of less than ±0.07‰ (1σ)). Small sections of the 

stalagmite were run twice on both instruments to confirm calibration and reproducibility. 
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Two in-house aragonite powder oxygen/carbon isotope standards bracket every 10-12 

samples to monitor instrument drift. All δ18O data are reported with respect to VPDB. 

 
3.4.2 U-Series isotope measurement and age calculation 

 
Age models were constructed for each stalagmite using U-series disequilibrium 

(238U-234U-230Th) measurements with the isotopic compositions of the U and Th fractions 

determined using a Finnigan Neptune MC-ICPMS at California Institute of Technology. 

Calcite powder (150-400mg, depending on U concentration) for each U-series sample 

was drilled along visual growth bands. U-series chemistry and MC-ICP-MS data 

collection methods follow those described in Partin et al., 2007. At least three spiked 

procedural blanks were included with each batch of U-series samples. The standard 

deviation (2σ) for the population of procedural blank values within a batch is added in 

quadrature with the internal instrument error standard deviation (2σ). The half-lives of 

234U and 230Th are provided in Cheng et al (2013). Measured concentrations and activity 

ratios are reported in Table C-S1 (Appendix C) for all samples. U-234 samples ranged 

from 1e9 - 2.7e10 total atoms with average procedural blanks <1e6 atoms, and Th-230 

samples 1e8 - 4e9 total atoms with average procedural blanks <1e5 atoms.    

The reported ages and their 2σ uncertainties (see Table C-S1, Appendix C) were 

estimated using a Monte Carlo simulation that accounts for the errors in all isotope ratios 

and the uncertainty in the initial 230Th/232Th ratio (see Section 3.4.3). If the relative age 

error is greater than 2% of the calculated age, the date was not used in constructing a 

stalagmite’s age model. Also, if a repeat dating sample was drilled directly above or 

below a previously analyzed sample, the date with the smaller age error is used in 

constructing the age model.  
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3.4.3 Isochrons and 230Th-Corrected Age Model 

 Isochrons were used to correct for the non-carbonate invasive 238U, 234U, and 

230Th isotopes. Three or more co-precipitated samples with variable (238U/232Th) were 

analyzed on multiple stalagmites from multiple cave chambers for a total of 25 isochron-

derived initial (230Th/232Th) ratios (see Supplementary Materials, Appendix C). A large 

scatter of 230Th/232Th values in our individual isochrons is an indication that more than 

one source of initial 230Th exists in our system and we therefore take a conservative 

approach (i.e. larger error bars) in estimating a detrital 230Th/232Th ratio. We assign 

detrital atomic 230Th/232Th ratios as follows (previously published in Partin et al. (2007) 

and Carolin et al. (2013)): SSC01 = 127 ± 20 ppm; SCH02 = 59 ± 13 ppm; BA04 = 55 ± 

5 ppm; BA02 = 56 ± 11 ppm; SC03 and SC02 = 111 ± 41 ppm (2σ errors). Fairy City 

stalagmites are assigned a detrital atomic 230Th/232Th ratio = 78 ± 42 ppm (2σ errors) (see 

Supplementary Materials, Appendix C). 

 Due to high (238U/232Th) activity ratios, Whiterock stalagmite isochrons could not 

to be used confidently to calculate an initial detrital 230Th/232Th ratio. To circumvent this 

problem, we compared plots of each of the Whiterock stalagmite δ18O timeseries with 

age models constructed from various initial (230Th/232Th) ratios. Figure 3.1 compares the 

Termination 2 WR12-01 (top) and WR12-12 (bottom) δ18O records using initial 

(230Th/232Th) equal to 60 ppm (red) and 4 ppm (black). If the two records overlapped, we 

concluded that detrital Th does not have a significant effect on the age model during that 

period and that the overlapping records highlight robust age model control sections. 

Experimenting with different initial 230Th/232Th ratios and comparing the δ18O timeseries 
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amongst other overlapping U-series dated Mulu stalagmite records, we assigned the 

Whiterock initial 230Th/232Th to be 60 ± 20 ppm. 

 The age models for the stalagmites in this study were constructed using the 

StalAge algorithm (Scholz and Hoffman, 2011) (see Supplemental Materials, Appendix 

C). Age-depth profiles for FC12-12, FC12-14, FC12-15, WR12-01, WR12-12, and new 

lower section SC03 are provided in Figure C-S4 through C-S10, Appendix C. Secret and 

Whiterock stalagmites have the greatest U concentration (100-200ppb and 200-500ppb, 

respectively) and the least detrital contamination, and therefore are associated with the 

most robust age models (0.4-1.0% (2σ) relative age error, and ±520 years (2σ) at 

Termination II). FC12-14 and FC12-15 stalagmites have low U concentration (40-80ppb) 

and larger detrital contamination, resulting in significantly larger age errors (0.7-4.2% 

(2σ) relative).  
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Figure 3.1. (top) WR12-01 and (bottom) WR12-12 δ18O timeseries plotted against 2 age 
models, initial 230Th/232Th = 4ppm (black) and initial 230Th/232Th = X ppm (red). U-Th 
ages plotted as triangles at top of both plots. Vertical dotted lines indicate peaks in the 
respective δ18O timeseries. Note areas where the black and red curves overlap for a given 
stalagmite record. 
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3.5. Results 

 
3.5.1 Composite 160-ky Mulu δ18O record construction 

 This study presents five new Mulu stalagmite δ18O records to extend the 

previously published Mulu records to 160kybp. They are as follows: WR12-01 (115.7-

153.8kybp), WR12-12 (113.9-144.4kybp), FC12-12 (109.0-121.5kybp), FC12-14 (73.8-

87.3kybp and 129.4-161.6kybp), and FC12-15 (139.9-164.0kybp). We also extend 

previously published stalagmites SC03 (103.5-119.5kybp) and SC02 (94.1-99.0kybp). 

Figure 3.2 shows the individual stalagmite δ18O records in separate panels with their 

associated U-series sample ages, along with the combined composite 0-160kybp Mulu 

δ18O record. To overlap new Mulu stalagmite δ18O records with previously published 

records, individual stalagmite δ18O values were offset by the following amounts: WR12-

01 and WR12-12, +0.3‰; FC12-12 and FC12-14, +0.35‰; FC12-15, +0.6‰. 

 !
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Figure 3.2. Comparison of overlapping Mulu stalagmite δ18O!records using Stalage age 
models (see text): SC03 (red), SC02 (navy), FC12-14 (dark red), WR12-12 (dark green), 
WR12-01 (orange), FC12-12 (pink), FC12-15 (royal blue) plotted with previously 
published stalagmite δ18O!data from our site (Partin et al., 2007; Carolin et al., 2013). 
WR12-01 and WR12-12 have been offset +0.3‰; FC12-12 and FC12-14, +0.35‰; 
FC12-15, +0.6‰ to match the absolute value of SCH02, consistent with the prior use of 
SCH02 as a benchmark for the deglacial/ Holocene Borneo records (Partin et al., 2007). 
U–Th-based age samples plotted in corresponding colors, shown with 2σ uncertainty 
limits. 
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 To create a continuous, evenly-spaced composite record, averages of all measured 

Mulu stalagmites’ δ18O were calculated using 100-yr boxcar bins. Any gap in the 

composite record was filled by linearly interpolating between filled boxcar bins. An 

evenly-spaced ice-volume corrected composite record was created following the 

procedure in Carolin et al. (2013). The two composite records are shown in Figure 3.3.  

 

 
Figure 3.3. (dotted grey) Composite Mulu stalagmite δ18O record, created by averaging 
all measured Mulu stalagmites’ δ18O in 100-yr intervals using 100-yr boxcar bins. Any 
gap in the composite record was filled by linearly interpolating between filled boxcar 
bins. (solid blue) Same as above, but ice-volume corrected (see text). Black bars below 
indicate how many overlapping stalagmite records are used to create the composite at 
each timestep. 
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3.5.2 Features of the 160-ky Mulu δ18O record 

 
3.5.2.1 Glacial-interglacial variability 

 The overlapping stalagmite records allow for absolute δ18O comparisons between 

different Marine Isotope Stages. Stage 5a (~74-85 kybp) is the most depleted period of 

the 160ky record, ~4‰ more depleted than the greatest enrichment at H11 (130 kybp), 

and ~1‰ more depleted than average 0-1 kybp (both original and ice-volume corrected). 

The last interglacial (~115-131 kybp), alternatively, is ~0.5‰ more enriched than present 

day, and only slightly more depleted than the LGM (~20-22kybp), after ice-volume 

corrections. 

 With the addition of the new records, the Borneo cave δ18O records resolve 

tropical hydrologic variations across the last five glacial-interglacial cycles. The 100-

160ky Mulu stalagmite δ18O record addition (this study) plotted with all other published 

Mulu stalagmite δ18O records (Partin et al., 2007; Meckler et al., 2012; Carolin et al., 

2013) is provided in Figure 3.4 to form an extended tropical hydrologic strength 

reconstruction that resolves multiple glacial-interglacial cycles with five glacial 

terminations (I-V). The stalagmite δ18O records in Figure 3.4D are not ice-volume 

corrected due to the dating uncertainty in the Meckler et al., 2012 record (210-570 kybp) 

and the uncertainty in older global mean δ18Osw estimations (in both age and δ18O). The 

full Mulu stalagmite δ18O reconstruction shows some evidence of a glacial-interglacial 

100-ky cycle. 
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Figure 3.4. (A) Insolation forcing (W/m2) at 65N boreal summer (Berger, 1978). (B) 
Hulu, Dongge, Sanbao, and Linzhu stalagmite δ18O records on published age model 
(Wang et al., 2001; Dykoski, et al., 2005; Wang et al., 2008; Cheng et al., 2009). (C) 
Insolation forcing (W/m2) at 0N October 15 (Berger, 1978). (D) Mulu stalagmite δ18O 
records (Partin et al., 2007; Carolin et al., 2013, in prep; Meckler et al., 2012). (E) Marine 
sediment δ18OSW and (F) Mg/Ca SST reconstructions from WEP site ODP 806b (dark 
yellow) (Lea et al., 2000) and EEP site TR163-19 (light blue) (Lea et al., 2000) on 
original published age model. (H) Coral relative sea level estimates (same citations as 
Figure 6) plotted on top of Waelbroeck et al. (2002) sea level derivation from benthic 
foraminifera compilation. (I) EDC (Monnin et al., 2001; Siegenthaler et al., 2005) and 
Vostok (Petit et al., 1999) CO2 records on the EDC3 timescale (Parrenin 2007), and 
composite EDML and Talos Dome CO2 record on the EDML1_Sc4 gas age scale 
(Bereiter et al. 2012). 
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After ice volume effects are removed, however, there is little evidence that glacial 

boundary conditions affected Mulu stalagmite δ18O. In general, Mulu stalagmite δ18O 

variability reflects changes in seawater δ18O (whether related to ice volume or regional 

hydrological effects), temperature, and changes in rainfall δ18O. Therefore, we infer that 

either i) none of these various contributions changed appreciably during glacial times, or 

2) that the changes in these parameters may have cancelled each other out. Assuming 

calcite precipitation under equilibrium conditions (see Supplementary Materials, 

Appendix C), the remaining variability in rainwater isotopes (δ18Orw) is due to either 

variability in ocean source δ18Osw, rainwater trajectory from source to site, and/or 

changes in seasonality effects.  

 
3.5.2.2 Glacial terminations 

 We compare our extended Mulu stalagmite δ18O record to other well-dated 

records from Termination I and II in order to place the unique features that we see in the 

Mulu records in a global climate context. A notable peak in the Mulu δ18O record is at 

130.6 ± 0.6 (2σ) kybp near the Stage 6-5e transition (Figure 3.5). Partin et al. (2007) 

found the significant Mulu δ18O peak at 16.3 ± 0.3 ky to correspond within error to the 

δ18O peak in the Hulu cave records attributed to Heinrich event 1 (H1) (Wang et al., 

2001). As such, we propose that the significant 640 yr Mulu δ18O peak beginning at 

130.6 ± 0.6 (2σ) kybp corresponds to Heinrich event 11 (H11), in agreement with the 

alignment of north Atlantic records in Cheng et al. (2006). Prior to the H11 maximum in 

stalagmite δ18O, Mulu stalagmite δ18O plateaus from ~136-140kybp, similar to the 

plateau in variability shown in the Mulu record at the LGM, before it gradually trends to 
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the most enriched values at H11. Finally, in both terminations the Mulu stalagmite δ18O 

trends into and out of the Heinrich-related maximum smoothly, with no sign of 

subsequent reversals during the deglaciation. 
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Figure 3.5. (left) Comparison of records over Termination 1. (A) Insolation forcing 
(W/m2) at 20N boreal summer (red), 20S austral summer (blue), and 0N October 15 
(Berger 1978). (B) Hulu (grey) and Dongge (black) δ18O stalagmite records on published 
age model (Wang 2001; Dykoski 2005). (C) Composite Mulu stalagmite δ18O records, 
original published (red) and ice-volume corrected (blue) (Partin et al, 2007; Carolin 
2013) averaged in 100yr boxcar bins. (D) Liang Luar (Flores) stalagmite δ18O records on 
published age model (Griffiths 2009). (E) 231Pa/230Th in marine sediment core GGC5 
near the Bermuda Rise, North Atlantic (McManus 2004). (F) Marine sediment Mg/Ca 
SST reconstructions and (G) δ18OSW reconstructions from WEP site ODP 806b (dark 
yellow) (Lea et al., 2000) and EEP site TR163-22 (dark blue) (Lea et al., 2006) on 
published age model. (H) EDC CO2 records (black) (Monnin et al., 2001) on the EDC3 
timescale (Parrenin et al., 2007) and Taylor Dome CO2 records (black) (Indermühle et al., 
1999) on the st9810 timescale (Steig et al., 2000). (I) Coral relative sea level estimates 
(Bard, 1996, 1990; Yokoyama 2000; Edwards 1993; Cutler 2003; Fleming et al., 1998; 
Peltier and Fairbanks, 2006) plotted on top of Waelbroeck (2002) sea level derivation 
from benthic foraminifera compilation. (right) Comparison of records over Termination 
2. (A) same as left. (B) Dongge δ18O stalagmite records on published age model (Kelly et 
al., 2006). (C) Composite Mulu stalagmite δ18O records, original (red) and ice-volume 
corrected (blue) (Carolin et al., in prep). (D) Marine sediment Mg/Ca SST 
reconstructions and (E) δ18OSW reconstructions from WEP site ODP 806b (dark yellow) 
(Lea et al., 2000) and EEP site TR163-22 (dark blue) (Lea et al., et al., 2006) on 
published age model. (F) Dome Fuji wet extraction CO2 concentration on DFO-2006 
timescale (Kawamura et al., 2007). (G) Coral relative sea level estimates (Stirling et al., 
1995, 1998; Thomas et al., 2009; Gallup et al., 2002) plotted on top of the Waelbroeck et 
al. (2002) sea level derivation from benthic foraminifera compilation. Blue shading 
indicates the north Atlantic stadial, interpreted as the enriched Chinese δ18O event (eg. 
Wang et al., 2001, Cheng et al., 2009). The vertical dashed line marks the initial increase 
in NH summer insolation (Berger, 1978). Arrows point to the maximum deglaciation 
peaks in Mulu stalagmite δ18O, which we interpret as coincident with Heinrich events H1 
and H11. 
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 A notable difference between glacial Terminations I and II is the timing of the 

Heinrich event with respect to the rise in atmospheric CO2 and sea level. During 

Termination I, H1 occurs near the midpoint of the deglacial rise in CO2, temperature, and 

sea level (eg. Denton et al., 2010), while the Mulu 130.6 ± 0.6 (2σ) kybp δ18O peak 

suggests the maximum iceberg discharge event occurs nearer to the end of the rise in 

CO2. The ice-volume corrected Mulu records are 3‰ greater than present day at H11, 

while only 2‰ greater at Heinrich 1, with a portion of the difference due to ice-volume 

correction: ~0.9‰ at the H1 peak and only ~0.2‰ at the H11 peak. In comparison, Mulu 

stalagmite δ18O enrichment anomalies associated with glacial Stage 3 Heinrich events 2-6 

are <1‰. At H1, WPWP SSTs were a few degrees cooler than present, while at the H11 

peak WPWP SST had already risen to present-day values (Lea et al., 2000; 2006; Visser 

et al., 2003). With a temperature-dependent calcite fractionation of -0.22 ‰/°C (Epstein 

et al., 1953) the difference in Mulu precipitation δ18O from today (ice volume effects 

removed) is roughly twice as enriched at H11 than H1. 

 
3.5.2.3 Precessional control on Mulu δ18O 

Previous studies have established that precessional insolation forcing exerts a 

primary control on Mulu stalagmite δ18O (Meckler et al., 2012; Carolin et al., 2013), and 

our new records are likewise coherent with precession. Mulu stalagmite δ18O is in phase 

with equatorial fall insolation, and China stalagmite δ18O is in phase with NH summer 

insolation (Wang et al., 2001) (Figure 3.6). Spectral analysis confirms that the Chinese 

stalagmite δ18O records are more heavily influenced by precession than the Mulu δ18O 

records (see Supplementary Materials, Appendix C), but the Mulu records may contain 
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an influence from obliquity that is not present in the Chinese stalagmite δ18O records. 

The Mulu stalagmite δ18O record has a small 41ky peak at the obliquity frequency that is 

above red noise but below the red noise 95% confidence interval (see Supplementary 

Materials, Appendix C) (Figure 3.6). 
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Figure 3.6. (A) Insolation forcing (W/m2) at 65oN boreal summer (Berger, 1978). (B) 
Composite Hulu, Dongge, and Sanbao stalagmite δ18O records (Wang et al., 2001; 
Dykoski et al., 2005; Kelly et al., 2006; Wang et al., 2008) constructed by averaging in 
200ky boxcar bins. (C) Obliquity variability and insolation forcing (W/m2) at 0oN 
October 15 (Berger, 1978). (D) Composite Mulu stalagmite δ18O records, original (red) 
and ice-volume corrected (blue) (Partin et al., 2007; Carolin et al., 2013, in prep) 
averaged in 100yr boxcar bins.  
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3.6. Discussion 

 
3.6.1 Tropical hydrologic response to glacial-interglacial variations 

The full Mulu stalagmite δ18O reconstruction shows no evidence of a glacial-

interglacial 100-ky cycle, similar to the Chinese monsoon record and opposite to the west 

Pacific SST sawtooth pattern (Lea et al., 2000) (Figure 3.4). This observation is in 

agreement with climate model simulations suggesting annual mean temperature response 

to glacial forcing to be an order of magnitude greater than the temperature response to 

precessional forcing, while the response of the hydrologic cycle to both forcings is 

comparable (Clement et al., 2004). We conclude that over the span of our record orbital 

forcing strength is similar to or greater than glacial-interglacial forcing. 

Sunda shelf exposure from lowered sea levels suggests potential alterations in the 

rainfall δ18O-to-rainfall amount relationship, possibly resulting from changes in source 

water and/or source trajectory. Other nearby stalagmite hydrologic studies in Flores, 

Indonesia (8oS, 120oE) suggest increased convection coupled to the inundation of the 

Sunda shelf (Griffiths et al., 2013; Ayliffe et al., 2013). Further, analysis of tropical LGM 

model simulations suggests that the mechanisms responsible for strengthening the 

tropical overturning circulation in response to tropical glacial cooling also weakens 

vertical motion over the exposed Sunda shelf land area (DiNezio et al., 2011; DiNezio 

and Tierney, 2013). Carolin et al. (2013), however, found no isolated evidence of a first-

order influence of Sunda shelf areal exposure on local rainfall δ18O in the 0-100ky Mulu 

stalagmite δ18O record. Signals coincident with Meltwater Pulse 1A (~14.0 kybp, ~20m 

rise to 80 mbsl) and 1B (~11.3 kybp, ~12m rise to 45 mbsl) (Fairbanks, 1989; Reimer et 

al., 2013) are also not distinct in the Mulu deglaciation record (Partin et al., 2007). We 
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therefore note that as of yet there is no proxy evidence directly linking Mulu rainfall δ18O 

to shelf exposure. 

  
3.6.2 Glacial terminations: western tropical hydrology 
 

Deglacial δ18O enrichments coincident with north Atlantic millennial-scale 

stadials are the largest signal throughout the entire 570 ky Mulu composite stalagmite 

record, suggesting that the combination of forcings responsible for the large Heinrich 

enrichments are particular to western tropical Pacific hydrology. The large deglacial 

excursions are not mirrored in either the long EASM stalagmite records or the tropical 

SST reconstructions (Figure 3.4).  

Mulu stalagmite δ18O records provide the opportunity to compare two robustly-

dated terrestrial deglaciation records of the Warm Pool hydrologic cycle. There are 

notable similarities in both Termination I and II records. Warm Pool convection (Partin et 

al., 2007; this study) is not strongly affected by the abrupt shifts into and out of stadial 

conditions HS1 (14.6-17.4kybp) and HS11 (129.0-135.5kybp) (ages chosen from Wang 

et al., 2001; Kelly et al., 2005). We attribute this trend into and out of the Heinrich events 

to two complementary forcings: (1) AMOC strength and north or south shifting of the 

ITCZ to cause a maximum dry event at the peak Heinrich event (eg. Zhang and 

Delworth, 2005), and (2) equatorial fall insolation, which reaches a minimum coincident 

with the Heinrich event to force the gradual trend in and out of the Heinrich event 

(Berger, 1978). Carolin et al. (2013) found no evidence of polar SH influence on Borneo 

convection during MIS 2-4, and indeed Termination II Antarctic temperatures rise several 

thousand years prior to the Mulu record’s H11 δ18O maximum (Kawamura et al., 2007).  
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 Based on the timing of Mulu stalagmite δ18O variability to north Atlantic climate 

forcings during Termination I, Partin et al. (2007) suggested climatic feedbacks in the 

tropical Pacific may have played a part in driving the variability of the AMOC across H1. 

Per this study’s Termination record comparison, we suggest that Mulu stalagmite δ18O is 

strongly driven by a mechanism(s) relatable to equatorial mid-fall insolation (see Section 

3.6.3) during Terminations, which is the primary cause of the more gradual trends into 

and out of deglaciation Heinrich events. 

 Our records suggest that reductions in Warm Pool convective activity at H11 were 

approximately twice as large as those during H1. Lack of additional hydrologic records 

north and south of the equator that span Termination II makes it difficult to resolve what 

is forcing twice as large drier conditions at the end of Heinrich stadial 11 versus Heinrich 

event 1. Records from the Ontong Java Plateau (0oN, 159oE) and just north of the 

Galapagos islands (0oN, 92oW) indicate the SST gradient between western equatorial 

Pacific (WEP) and eastern equatorial Pacific (EEP) sites is ~2-3oC less than present day 

over Termination II and ~0-1oC less over Termination 1 (Lea et al., 2000; 2006) (Figure 

3.5), possibly suggesting an increase in ENSO variance weighted toward a modern 

Pacific El Niño-like state during Termination II. Using an extrapolated timeseries of 

collected Mulu dripwater δ18O, Moerman et al. (2014, in prep) suggests an increase in 

ENSO variance similar in magnitude to the maximum variance observed in 20th century 

measurements and Holocene proxy data would likely enrich Mulu stalagmite δ18O <1‰ 

when sampled at 30-yr-average resolution. Equatorial mid-fall insolation was at a local 

minimum of 411 W/m2 (17 W/m2 less than mean) during Heinrich 1 compared to 395 

W/m2 (33 W/m2 less than mean) during Heinrich 11. Equatorial mid-fall insolation 
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strength is in phase with the Mulu δ18O 0-160ky record and the related fall insolation 

mechanism may be a dominant driver of west Pacific hydrology. We therefore propose 

the combination of low equatorial mid-fall insolation plus a large southward shift in 

ITCZ as the primary cause of the H11 3‰ enrichment, with a possible smaller fraction of 

enrichment resulting from increased ENSO variance. 

 We note that Esat et al. (1999) found corals within Aladdin’s Cave on the terraces 

of Huon Peninsula in PNG to imply a drop in sea level of 60-80 m at 130 ± 2 kyr, exactly 

coincident with our peak in stalagmite δ18O at H11. Assuming +1.0 ± 0.1‰/125m sea 

level drop (eg. Schrag et al., 2002), 80 m ≈ +0.65‰, which would adjust the SL-

corrected Mulu records to +2.35‰ more enriched than today, excluding any temperature 

differences, which is more equivalent to the H1 enrichment (~+2‰). 

 
3.6.3 Precession and seasonality forcing 

 
 The Mulu hydrologic record’s strong coherence and minimal phase lag with the 

fall equatorial precessional cycle (see Supplementary Materials, Appendix C) 

demonstrates greater fall insolation on orbital timescales (Figure 3.6) in general 

correspondence to wetter, “La Niña-like”, conditions in Mulu. The Mulu record is in 

agreement with Clement et al. (1999): late summer/early fall insolation strength 

variability (a tropical zonally uniform forcing) produces a more zonally asymmetric 

response, El Niño or La Niña-like, due to seasonal shifts in ITCZ location. The authors 

suggest that the coupled system may amplify this signal on inter-annual timescales, to 

result in precession-driven signals in tropical Pacific climate records. Other authors, 

however, found a lack of ENSO-variability in compiled marine δ18OSW records from the 

Indo-Pacific Warm Pool (IPWP) and the EEP over the LGM or deglaciation (Gibbons et 
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al., 2013). The authors proposed large-scale variations in tropical hydrology to more 

closely parallel the NH-SH temperature gradient, strengthening the idea that the tropical 

atmosphere responds directly to AMOC variability (Gibbons et al., 2013). On the other 

hand, Tierney et al. (2012) hypothesized the alignment of the Holocene Buda stalagmite 

δ18O record (Partin et al., 2007) with local mid-fall insolation to reflect a balance between 

two mechanisms: the direct effect of local summer insolation and the indirect effect of 

local summer insolation on the Indian Walker circulation manifest during the September-

October-November season. Future high-resolution glacial-interglacial (G-IG) records 

from the IPWP at varying latitudes and in the Indian Ocean in addition to simple-model 

experiments that span orbital timescales with many G-IG cycles are needed to 

complement the Mulu stalagmite δ18O record and discriminate between the various 

theories regarding the origins of precessional hydrological variability in the western 

Pacific.  

 Although equatorial fall insolation does not have an obliquity signal, the small 

obliquity peak in the 160ky Mulu record spectral analysis suggests a possible correlation 

between western tropical hydrology and obliquity variations (see Supplementary 

Materials, Appendix C). Because obliquity influences the meridional gradient of annual 

mean insolation there is likely to be a response in the mean meridional circulation with 

some effect on the hydrologic cycle (Clement et al., 2004). A cross-spectral analysis 

between the obliquity curve and the Mulu stalagmite record, however, found little 

coherence at the obliquity period (see Supplementary Materials, Appendix C). The lack 

of coherence may be due to the limitations of the relatively short 160ky record, which 

spans only four obliquity cycles. Alternatively, a portion of the tropical response to 
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obliquity forcing may be nonlinear and undetectable in a cross-spectral analysis. For 

example, because an increase in the earth’s tilt increases annual mean insolation at higher 

latitudes and increases the amount of insolation in the summer season in both 

hemispheres, an increase in earth’s tilt would extend the span of the north-south ITCZ 

annual migration to higher latitudes. Presently, at close to mean obliquity, Mulu sits 

beneath the ITCZ year round with an absence of a hydrologic seasonal cycle. At greater 

tilt, the ITCZ may have moved further north and south in the Warm Pool region during 

boreal and austral summers, respectively, introducing a seasonal rainfall pattern to Mulu 

and altering the mean annual δ18O. Additionally, modeling studies have found the 

strength of the Indonesian-Australian monsoon (AISM) to be sensitive to both precession 

and obliquity (Wyrwoll et al., 2007), providing another means for obliquity to influence 

Mulu stalagmite δ18O that is not local. Simple isotope-enabled climate simulations with 

the addition or removal of obliquity v. precessional forcing will be investigated in the 

future to quantify response to different orbital forcings. 

 
3.7 Conclusions 

 The Mulu stalagmite δ18O record demonstrates that western tropical Pacific 

hydrology is sensitive to a wide variety of climate forcings. Once ice-volume corrected, 

the full Mulu stalagmite δ18O reconstruction shows no evidence of a G-IG 100-ky cycle, 

confirming that climate variability related to hydrologic activity in the western tropical 

Pacific is either not strongly sensitive to greenhouse gas forcing or contributions from 

multiple forcings work in opposition. Pronounced deglacial δ18O enrichments coincident 

with millennial-scale north Atlantic events are the largest signal throughout the entire 570 

ky Mulu composite stalagmite record and are absent in other regional hydrologic records. 
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This suggests that the combination of forcings responsible for the anomalous Heinrich 

δ18O enrichments are particular to western tropical Pacific hydrology. When insolation 

signals are not muted, the composite Mulu δ18O record varies in phase with equatorial 

mid-fall insolation, suggesting that the mechanism(s) responsible for the coupling of 

Mulu stalagmite δ18O and mid-fall insolation is the dominant cause of western Pacific 

hydroclimate variability on orbital timescales. This is best illustrated across Termination 

II, when Mulu δ18O tracks fall insolation that is out of phase with the timing of the 

deglaciation.  

 The composite Mulu δ18O record at the penultimate deglaciation shares 

similarities with Termination 1 regarding the timing of deglaciation events, but the ice-

volume corrected Mulu records are 1‰ larger at H11 than H1. We propose the 

combination of low equatorial mid-fall insolation plus a large southward shift in ITCZ as 

the primary cause of the significant enrichment at H11, and to a lesser extent, H1. 

 As a whole, the Mulu stalagmite δ18O records suggest a limited role for 

greenhouse gas forcing in driving western tropical Pacific hydrology over the last G-IG 

cycle. This observation, when combined with the unique structure of millennial-scale 

deglacial enrichments in stalagmite δ18O, makes the Mulu stalagmite δ18O records 

compelling targets for paleoclimate modeling studies aimed at resolving the mechanisms 

of G-IG variability. This is a significant addition to our understanding of the response of 

tropical hydrology to greenhouse forcing, and useful to data-model simulation 

comparisons used to validate future climate change projections. 
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CHAPTER 4 
 

CONCLUDING REMARKS AND FUTURE WORK 
 
 
 An understanding of the mechanisms responsible for variability in the tropical 

hydrologic cycle is a crucial component in projecting future changes in rainfall patterns. 

Past tropical hydroclimate variability, however, is a poorly-constrained system currently 

subject to multiple climate forcings. In this thesis we present a large compilation of 

overlapping U/Th-dated Gunung Mulu stalagmite δ18O records spanning 0-160 kybp, the 

first tropical Pacific terrestrial record to resolve a complete G-IG cycle at high resolution 

(predominantly less than 100yr/sample) with the majority of relative age errors <1%. The 

extended Mulu stalagmite 160ky δ18O record allows us to draw conclusions on the extent 

of different forcings on millennial and orbital timescales. The full Mulu stalagmite δ18O 

reconstruction shows no evidence of a G-IG 100-ky cycle, suggesting that a linear 

relationship does not exist between CO2 and western Pacific rainfall variability on orbital 

timescales. The composite Borneo δ18O record does vary in phase with equatorial mid-

fall insolation, suggesting that the mechanism(s) responsible for the coupling of Mulu 

stalagmite δ18O and mid-fall insolation is the dominant cause of western Pacific 

hydroclimate variability on orbital timescales. Simple models able to simulate orbital 

scale variability of tropical hydrology will be used in the future to investigate different 

insolation, CO2, and Sunda shelf exposure effects in coupled scenarios to investigate 

possible mechanisms. Finally, the glacial record implies a selective response of WPWP 

hydrology to high-latitude abrupt climate change forcing, challenging the idea that the 

mechanisms responsible for Heinrich events and D/O events have similar global effects. 
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4.1 Future and ongoing research 

4.1.1. Mulu karst system modeling 

 The depleted (234U/238U) found in almost every stalagmite sample in this thesis is 

a puzzling observation. Uranium disequilibrium in waters can be caused by two different 

mechanisms, (1) alpha recoil of 234U directly into solution, or (2) preferential leaching of 

234U from crystal lattice sites disrupted from alpha decay (Rosholt in Ivanovich and 

Harmon, 1982), both of which input additional 234U into the karst waters, increasing 

(234U/238U) > 1. Mulu bedrock samples reveal the sampled overlying limestone to be 

enriched in 234U, leading to the “Mulu limestone conundrum” of apparent depleted 

stalagmite-forming waters and enriched overlying bedrock. One proposed theory to 

explain the bedrock/stalagmite enrichment/depletion is that the Mulu karst system is 

composed of mixed previously weathered limestone (depleted) and secondary 

precipitated calcite (enriched), and that the collected stalagmites are forming from 

dripwaters in contact with the weathered limestone and not the secondary calcite 

precipitate. Construction of a box model that incorporates uranium isotopes, Mg, and Sr 

(trace elements related to prior calcite precipitation) should be done to investigate 

uranium isotope transport through a karst system with varying flow rates and residence 

times in order to quantify expected dripwater and stalagmite uranium disequilibrium to 

test this theory. 

 
4.1.2. Climate effects of the Toba super-eruption 

 The largest millennial-scale anomaly in the Borneo records is not a Heinrich 

event, but rather an abrupt increase in δ18O coincident with a similarly large and abrupt 

increase in Chinese stalagmite δ18O, possibly associated with the Toba super-eruption. 
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Climate models suggest that climate anomalies associated with a large Toba-sized 

eruption should dissipate within a few decades (Timmreck, 2012). However, the Borneo 

and Chinese stalagmite records imply that anomalously dry conditions ensued 

immediately following the Toba super-eruption, suggesting that the eruption triggered at 

least a regional shift in large-scale climate patterns that persisted for a millennium. If the 

eruption caused a millennial-scale hydroclimate shift that reached throughout Southeast 

Asia and the Indo-Pacific, then the climate models may be missing an important source 

of multi-century persistence in the region’s climate response. Additional high-resolution 

records from across the tropics, as well as a better understanding of the radiative effects 

of an eruption the size of Toba, would better constrain Toba’s role in global climate 

during this time period.  

 The amount of sulfur gas injected into the stratosphere, and consequently the 

extent to which earth’s atmospheric albedo was perturbed, is one key component to the 

discussion surrounding Toba’s global and regional impact on climate that remains highly 

uncertain. Sulfur incorporated into stalagmites has the potential to provide a wealth of 

new information, including a record of regional volcanic eruptions and an additional vote 

on the magnitude of sulfur emissions from large stratospheric eruptions. A first-pass 

SIMS analysis of sulfur concentration variability in sample SC03 (200-yr resolution δ18O 

measurements around the Toba super-eruption published in Carolin et al. (2013)) reveals 

promising results. Some evident sulfur peaks are within age error of the sulfur peaks in 

the ice cores (Svennson et al., 2013), though an extended record and demonstrated 

reproducibility is needed before any conclusions can be made. 
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APPENDIX A: 

METHODS FOR MINIMIZING AGE ERROR 
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U-series age model constraints in Mulu calcite 

 U/Th age model construction is a distinct attribute of stalagmite paleorecords that 

distinguishes them from other radiocarbon-dated climate proxy records. A stalagmite 

with substantial uranium concentration and minimal detrital contamination can produce 

U/Th ages to constrain the age and growth rate of the calcite formation to <0.5% over the 

past several glacial cycles. Several stalagmites collected from Gunung Mulu National 

Park, however, have either low uranium concentrations (<200 ppb), high detrital 

contamination, or both, leading to much greater age errors and necessitating a robust 

approximation of initial thorium isotope ratios at deposition. Here we present a summary 

of best-practices that result in the lowest relative age errors for a particular sample with 

specified constraints, developed over the past several years by dating over 450 Mulu 

stalagmite samples.  

 
1. Introduction 

The equation used to calculate the age of carbonate from nuclides 230Th, 234U, and 

238U is provided below, with an initial 230Th correction term included (eg., Ivanovich and 

Harmon 1992). Round parentheses indicate activity ratios. 230Th and 234U half-lives are 

provided in Cheng et al. (2013) (75,584 yrs and 245,520 yrs, respectively). 

 
230
238 = 1 − !!!!"#! + 234

238 − 1 !!"#
!!"# − !!"#

1 − ! !!"#!!!"# ∙! + 232
238

230
232 !"!#

!!!!"#! 

    
As shown in the age model equation, age errors result from 3 measured isotopic ratios, 

(230Th/238U), (234U/238U), and (232U/238U), and one set value, (230U/232U)init. The total error 

for each age is estimated using a Monte Carlo simulation (n=10,000). Isotope ratio errors 
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are a combination of chemical procedure blank errors and internal ICP-MS errors. Initial 

230Th/232Th error is an artifact of the isochron analysis.  

 Minimizing analytical errors and accurately constraining the initial 230Th/232Th 

ratio are the two key components to constructing a robust age model with small relative 

age errors. An analysis of the initial 230Th/232Th ratio is provided in Partin et al. (2007), 

Carolin et al. (2013), and Chapter 3 of this thesis. Here we describe best-practices that 

result in the lowest relative age errors for a particular sample with specified constraints, 

developed over the past several years by dating over 450 Mulu stalagmite samples.  

 
2. Minimizing analytical errors 

Table A-S1 lists example measured isotopic ratios and the associated overall 

relative age error calculated using a Monte Carlo simulation. Figure A-S1. visually 

demonstrates age error contributions from the measured isotope ratios, excluding detrital 

isotope contamination. On the left are plotted the 192 measured U-series samples from 

the 9 stalagmites used in this thesis, and on the right are example error bars in the x- and 

y-axis correlated to ±10ky for three different ages with measured (234U/238U) ≈ 0.9. While 

at younger ages (234U/238U) has almost no influence in the age equation, for older samples 

errors associated with both (230U/238U) and (234U/238U) contribute significantly to the total 

age error. Stalagmites used in Chapters 2 and 3 are particularly disadvantaged, as all 

samples’ measured (234U/238U) are depleted in 234U, making an already tiny measurement 

even smaller, several factors less than most other published stalagmite concentrations. 
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Table A-S1. Example measured isotopic ratios and the associated overall relative age 
error calculated using a Monte Carlo simulation. Yellow highlight indicates lowest age 
error in scenario pool for specified age of sample. 
 

Sample 234
238

 2σ 
err. 

230
238

 2σ 
err. 

232
238

 2σ 
err. 

230
232

!init 2σ 
err. 

Total 
2σ Err 

Age = 35 ky        

Ex. 1A 0.900 1 ‰ 0.250 1 ‰ 8.0 e-4 10 ‰ 50 20 390 yr  (11 ‰) 

Ex. 1B 0.900 0.5 ‰ 0.250 1 ‰ 8.0 e-4 10 ‰ 50 20 375 yr  (11 ‰) 

Ex. 1C 0.900 1 ‰ 0.250 0.5 ‰ 8.0 e-4 10 ‰ 50 20 380 yr  (11 ‰) 

Ex. 1D 0.900 0.5 ‰ 0.250 0.5 ‰ 8.0 e-4 10 ‰ 50 20 355 yr  (10 ‰) 

Ex. 1E 0.900 1 ‰ 0.250 1 ‰ 4.0 e-4 10 ‰ 50 20 220 yr  (5 ‰) 

Ex. 1F 0.900 1 ‰ 0.250 1 ‰ 8.0 e-4 10 ‰ 50 5 155 yr  (5 ‰) 

Ex. 1G 0.900 1 ‰ 0.250 1 ‰ 4.0 e-4 10 ‰ 50 5 130 yr  (4 ‰) 

Ex. 1H 0.900 0.5 ‰ 0.250 0.5 ‰ 4.0 e-4 10 ‰ 50 20 195 yr  (5 ‰) 

Age = 90 ky        
Ex. 2A 0.900 1 ‰ 0.500 1 ‰ 8.0 e-4 10 ‰ 50 20 575 yr  (5 ‰) 

Ex. 2B 0.900 0.5 ‰ 0.500 1 ‰ 8.0 e-4 10 ‰ 50 20 500 yr  (5 ‰) 

Ex. 2C 0.900 1 ‰ 0.500 0.5 ‰ 8.0 e-4 10 ‰ 50 20 515 yr  (5 ‰) 

Ex. 2D 0.900 0.5 ‰ 0.500 0.5 ‰ 8.0 e-4 10 ‰ 50 20 430 yr  (5 ‰) 

Ex. 2E 0.900 1 ‰ 0.500 1 ‰ 4.0 e-4 10 ‰ 50 20 470 yr  (5 ‰) 

Ex. 2F 0.900 1 ‰ 0.500 1 ‰ 8.0 e-4 10 ‰ 50 5 445 yr  (5 ‰) 

Ex. 2G 0.900 1 ‰ 0.500 1 ‰ 4.0 e-4 10 ‰ 50 5 435 yr  (5 ‰) 

Ex. 2H 0.900 0.5 ‰ 0.500 0.5 ‰ 4.0 e-4 10 ‰ 50 20 275 yr  (3 ‰) 
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Figure A-S1. Variation of (234U/238U) and (230Th/238U) with time in a closed system 
assuming initial 230Th = 0. Green lines are isochrons, lines of constant age over various 
(234U/238U) activity ratios. The solid diagonal black line is the infinite age line, and the 
solid horizontal black line is (234U/238U) = 1, secular equilibrium. Measured sample ratios 
are plotted in the left plot. Visual error bars between isochrons in the x- and y-direction 
are shown in the right plot. 
 
  
 If uranium concentration is low, drilled sample size can have a significant effect 

on analytical errors due to counting statistics. In this thesis, the uranium content of the 

nine stalagmites ranges from 35 – 1,490 ppb, resulting in a large range in individual 

sample weight requirements. Smaller sample size is ideal, as it allows for targeting the 

“purest” calcite while avoiding areas with visually evident detrital contamination. 

Additionally, smaller calcite samples average over fewer layers of precipitated calcite, an 

important advantage when sampling slower growing stalagmites. Table A-S2 shows a 

rough approximation of the internal error (1/√N) associated with (234U/238U) and 

(230Th/238U) isotope ratios given 3 stalagmite uranium concentrations: 500 ppb, 100 ppb, 

and 50 ppb in a 200 mg sample. The average recovery rate used is based on column 
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elution chemistry that has been refined and perfected using hand-made PTFE heat-shrink 

tubing columns, and U and Th fraction analysis carried out on a Finnigan Neptune ICP-

MS with an Aridus II Desolvating Nebulizer injection system. 234U is measured with a 

Secondary Electron Multiplier (SEM) and 230Th with a Multi Ion Counter (MIC). 

 
Table A-S2. Internal error (1/√N) associated with (234U/238U) and (230Th/238U) isotope 
ratios given 3 stalagmite uranium concentrations: 500 ppb, 100 ppb, and 50 ppb in a 200 
mg sample. 
 

Isotope Conc. Weight Counter Total 
Atoms 

Recovery N 1/√N 

238-U = 500 ppb 
234-U 25 ppt 200 mg SEM 1.3 e10 3.0‰ 3.9 e7 0.2 ‰ 
230-Th 5 ppt 200 mg MIC 2.5 e9 3.5‰ 9.2 e5 0.3 ‰ 

238-U = 100 ppb 
234-U 5 ppt 200 mg SEM 2.5 e9 3.0‰ 7.7 e5 0.4 ‰ 
230-Th 1 ppt 200 mg MIC 5.2 e8 3.5‰ 1.8 e5 0.7 ‰ 

238-U = 50 ppb 
234-U 2.5 ppt 200 mg SEM 1.3 e9 3.0‰ 3.8 e7 0.5 ‰ 
230-Th 0.5 ppt 200 mg MIC 2.5 e8 3.5‰ 9.2 e5 1.0 ‰ 

 
 

Under ideal conditions, the target intensity loading onto an SEM is 35,000 cps 

(1.5e7 counts over 420 sec, 1/√N = 0.3‰), while the maximum intensity loading onto an 

MIC is 25,000 cps (1.0e7 counts over 420 sec, 1/√N = 0.3‰). Thus, for example, as 

shown in Table A-S2, samples with [U] greater than 500 ppb should not be drilled for 

more than 200 mg of calcite, as any weight greater would not lower counting statistic 

errors on the SEM or MICs based on the maximum intensity limit. For stalagmites with 

lower concentrations, each sampling spot must be analyzed individually to determine the 

sample size that will result in the least risk of detrital contamination while also 

minimizing counting statistic errors. 
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Finally, the added spike amount can also significantly effect sample size due to 

possible dilution necessity. For this thesis, the lab’s internal 236U/229Th mixed spike has 

[236U] ≈ 8 ppm and [229Th] ≈ 40 ppt, with the uranium fraction measured on a faraday cup 

and the thorium fraction measured on a second MIC. Caution must be taken when spiking 

the sample so that the thorium fraction is not overloaded with 229Th, forcing unnecessary 

dilution before sample loading and loss of critical 230Th counts. Analysis of individual 

stalagmite uranium concentrations at depths along the growth axis assists greatly in 

determining best-case spike amount with the given sample size.  
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APPENDIX B: 

SUPPLEMENTARY MATERIALS FOR 

“VARIED RESPONSE OF WESTERN PACIFIC HYDROLOGY TO CLIMATE 

FORCINGS OVER THE LAST GLACIAL PERIOD” 
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Methods and Materials 

 
I. General Description of Stalagmites 

The four stalagmites were collected from Gunung Mulu and Gunung Buda 

National Parks (4°N, 115°E) (Fig. B-S1). SCO2 and SC03 were recovered from Secret 

Cave at Gunung Mulu in 2006, SCH02 from Snail Shell Cave at Gunung Buda in 2003, 

and BA02 from Bukit Assam Cave at Gunung Buda in 2003. Borneo stalagmites are 

particularly difficult to date because they have relatively low 238U concentrations, 

negative δ234U values, and contain appreciable levels of detrital thorium. For this reason, 

we overlap four δ18O records from separate stalagmites with different growth rates from 

caves 20 km apart in order to confirm reproducibility and robustness of the resulting 

composite oxygen isotopic record. 101 dates were measured across 4 stalagmites, of 

which 5 fell out of chronological order. 95 of the 101 dates have relative 2σ age errors 

less than 2.0%, and 77 dates have relative 2σ age errors less than 1.0%. The new Borneo 

δ18O record is unique in that of the 85ky-period covered by the reconstruction, over 50ky 

are covered by 2 separate overlapping stalagmite records, 30ky by 3 overlapping 

stalagmite records, and 8ky by all 4 overlapping stalagmite records. As expected, 

comparing multiple δ18O records for a given time period allows for a clear visual 

identification of age model errors associated with dating uncertainties. This is evident by 

comparing the timing of five major δ18O excursions that are shared across all of the 

stalagmite d18O. To correct for small offsets in the timing of such events between the 

individual stalagmite d18O records, we align these events across the four records within 

the 2σ age errors associated with each stalagmite age model. We also plot the original age 

model in Figure 1 of the main paper, which differs only slightly from the corrected age 
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model (see Table B-S4). Our main conclusions are not dependent on the choice of raw 

versus aligned age models.  

II. U-Series Age Model Construction 

Age models were constructed for each stalagmite using U-series disequilibrium 

(238U-234U-230Th) measurements with the isotopic compositions of the U and Th fractions 

determined with a Finnigan Neptune MC-ICPMS at Caltech (see Methods from Partin et 

al., 2007).  We report measured [238U], [232Th], δ234U, and (230Th/238U)A in Table B-S1 for 

all samples. The Secret Cave samples (SC03 and SC02) have the lowest 238U and detrital 

Th concentrations, and the measured δ234U ratios are negative and close to zero 

(234U/238U activity closer to secular equilibrium). The Snail Shell Cave (SCH02) and 

Bukit Assam Cave (BA02) samples have greater 238U and detrital Th concentrations, with 

more depleted measured δ234U ratios.  A triple isotope plot (Figure B-S10), which 

graphically displays the range of δ234U and 230Th/238U values for each stalagmite, shows 

that sample BA02 is particularly difficult to date as its initial δ234U values place it close 

to the infinite age line.  

A. Calculating Detrital 230Th/232Th Contamination 

We analyzed seven isochrons for this study, which are added to the 4 isochrons 

previously published for stalagmites from Bukit Assam cave and 3 isochrons previously 

published for stalagmites from Snail Shell cave (see Partin et al., 2007). The isotopic 

ratios used to create Osmond Type-II isochrons, (232Th/238U)A, (230Th/238U)A, and  

(234U/238U)A, and their associated analytical 2σ errors are provided in Table S2.  Osmond 

Type-II diagrams were used to determine detrital 230Th/232Th concentrations because 

normalizing to 238U makes deviation from a linear fit much more evident than 
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normalizing to 232Th (Ludwig and Titterington, 1994). We implemented ISOPLOT 3.72 

(37) to calculate the detrital 230Th/232Th concentration, which utilizes a maximum-

likelihood estimation (MLE) XY-XZ isochron algorithm and a simple 232Th correction 

algorithm (Ludwig and Titterington, 1994). These algorithms simultaneously determine 

the best fit to a set of XY (230Th/238U-232Th/238U) points and a set of XZ (234Th/238U-

232Th/238U) points.  Error ellipses in the XY-XZ isochron diagrams are dominated by 

234U, 230Th, and 232Th measurement uncertainties.  However, it is almost always the 

degree of scatter of points about a line, coupled to the spread of the data points along the 

axes (rather than the analytical error bars), that determines the uncertainty in the initial 

230Th/232Th ratio.  All isochrons for each cave system are plotted on the same Osmond 

Type-II plot in Figure B-S11. The age, planar intercepts, and detrital 230Th/232Th 

concentrations for each isochron calculated using the ISOPLOT 3.72 program are 

provided in Table B-S3, along with uncertainties.   

The large scatter of 230Th/232Th values from the individual isochrons (Table B-S3) 

is an indication that more than one source of initial 230Th exists in our system and 

motivates us to take a conservative approach (i.e. larger error bars) to estimating a detrital 

230Th/232Th ratio that is representative of our cave system.  The weighted means and 

standard deviations for the detrital 230Th/232Th concentration are calculated for each 

stalagmite using the inverse of the 1σ errors from each isochron as the weighting factor 

(Table B-S3). The weighted standard deviation is equal to the inverse of the sum of the 

weights for each cave system.  Un-weighted means and standard deviations (for the 

population of isochron results from the same stalagmite) are also calculated for 

comparison. There is a large difference between the weighted standard deviation and the 
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spread of the initial values from each line (the “un-weighted standard deviation”).  For 

the final estimate of the detrital 230Th/232Th ratio we use the calculated weighted means 

and an uncertainty that lies between the simple population spread and the weighted 

uncertainty (Fig. B-S12). The final 2σ uncertainty was chosen so that (a) it overlaps the 

mean 230Th/232Th calculated from isochrons with 2σ error bars less than 10 ppm and (b) it 

overlaps the 2σ uncertainty of the mean 230Th/232Th calculated from isochrons with 2σ 

error bars greater than 10 ppm. We assign detrital atomic 230Th/232Th ratios as follows: 

BA02 = 56 ± 11 ppm; SCH02 = 59 ± 13 ppm; SC03 and SC02 = 111 ± 41 ppm (2σ 

errors; Fig. S12).  These ratios are greater than the typical detrital bulk earth ratio (4 ± 2 

ppm 2σ) frequently used in other stalagmite U-series dating applications. The greater 

detrital atomic 230Th/232Th ratio is likely due to the lack of other source rocks besides the 

Melinau Limestone in the Buda and Mulu cave. Our sampling site is essentially a 

rainforest draped over limestone with no other mineral sources of U or Th. 

B. Final U-series Age Models 

Table B-S1 lists the measured 238U and 232Th concentrations, the initial δ234U 

ratios, and the 230Th/238U activity ratios for all 101 samples drilled for U-series dating.  

The reported ages and their 2σ uncertainties were estimated using a Monte Carlo 

technique that accounts for the errors in all isotope ratios and the uncertainty in the initial 

230Th/232Th ratio. Analytical error contributions from (230Th/238U)A and δ234U 

measurements are typically much smaller than error contributions due to uncertainty in 

the calculated detrital 230Th/232Th. If the relative age error is greater than 2% of the 

calculated age, the date is not used in constructing a stalagmite age model. Also, if a 

repeat dating sample was drilled directly above or below a previously analyzed sample, 
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the date with the lower age error is used in the construction of a preliminary age model. 

Finally, the StalAge algorithm (Scholz and Hoffman, 2011) is used to determine if any 

additional U-series dates should be discarded as outliers. If a U-series date falls outside 

the StalAge model’s 95% confidence interval, it is withheld from the final age model. 

The dates that are withheld from the final age model construction (as well as all isochron 

samples excluding the sample from each isochrons line with the smallest age error) are 

listed in Table B-S1 in red (blue for an isochron’s data point). An age model was then 

constructed by linearly interpolating between consecutive ages. Our linearly interpolated 

model falls within the StalAge 95% confidence intervals for most of the record (Figure 

B-S3 through B-S6). 

1. Hiatus detection 

 A high-resolution scanned image of each stalagmite and the corresponding backlit 

image reveal intervals of clear calcite (light) interrupted by detrital-contaminated calcite 

(dark) (Figures S3-S6). The beginning and ending of inferred hiatuses are indicated with 

colored arrows on the age-depth plots. Most potential hiatuses are identified in the 

stalagmite slab from optical evidence of a cessation of the carbonate accumulation (dark 

or white layer), and by U-series ages drilled immediately above and below such layers. 

Additional hiatuses were inferred wherever growth rates dropped below 10 µm/yr in 

Bukat Assam or Snail Shell stalagmites (average growth rate ~17 µm/yr) or 3 µm/yr in 

Secret Cave stalagmites (average growth rate ~5 µm/yr). Any δ18O samples that fall on a 

potential hiatus were removed from the final oxygen isotope time series, as they are 

associated with large dating uncertainties. In the cases where hiatuses are inferred from 

dramatic changes in growth rate between two U-series dates, and where the culprit hiatus 
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is visible as a narrow band visible in the stalagmite images, growth rates from adjacent 

dates were linearly interpolated to the hiatus layer from both sides (see Partin et al., 2007; 

see Fig. B-S3 through B-S6). 

2. Alignment of major features in the stalagmite d18O records 

Because all four stalagmite samples were collected from caves within 20 km of 

each other we assume that large millennial-scale δ18O excursions that are shared between 

the overlapping δ18O records reflect contemporaneous climate events. We have thus 

adjusted the ages of those samples that have greater detrital contamination to the best-

constrained age model in a given interval, to within 2σ dating errors, so that in the five 

major millennial-scale d18O excursions that are shared among the four records are 

aligned. The final “wiggle-matched” age model depths and ages for each stalagmite are 

provided in Table B-S4, which shows that the “wiggle-matched” dates fall within the 2σ 

age errors of the U-series dates.  

As evident in Figure 4.1 and B-S8, the δ18O maximum in SCH02 at ~40kybp 

occurs roughly 1000 years earlier than the corresponding δ18O maxima in the other three 

stalagmites, even after shifting the SCH02 age tie points to the extent allowed by the 2σ 

dating errors. In general, SCH02 contains more detrital material and a larger number of 

visible hiatuses (some resolved by U/Th dates and some that are likely too small to be 

detected) than the other stalagmites (Figure B-S5). As such, we feel more confident in the 

age assignments from the other three stalagmites at the ~40kybp interval, as they agree 

remarkably well. 
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III. Stable isotope measurements 

Oxygen isotopic analyses were conducted on powders drilled every 0.5mm or 

1mm along the central growth axis of the stalagmites with a 1.6 mm drill bit. The δ18O 

were analyzed on a Finnigan 253 equipped with a Kiel device at Georgia Tech (long-term 

reproducibility of less than ±0.07‰ (1σ)). All δ18O data are reported with respect to 

VPDB.  

IV. Generation of a temperature-corrected sea level curve 

 Waelbroeck et al.’s (2002) mean ocean δ18O record derived from a temperature-

corrected benthic d18O stack was used to adjust the Borneo d18O record to account for 

change in the mean d18O of seawater due to changes in ice volume. The derived mean 

ocean δ18O record is plotted in Figure B-S7b. The individual stalagmite d18O records 

adjusted to account for the change in the d18O of the global ocean over the study interval 

are plotted in Figure B-S7c.  

V. Calculation of Sunda Shelf areal exposure 

 An index tracking changes in the areal extent of the Sunda Shelf over the last 

glacial period was derived to determine how shelf exposure influenced hydroclimate 

variability in northern Borneo. Sunda shelf areal exposure was determined by converting 

the Waelbroeck et al.’s (Waelbroeck et al., 2002) derived sea level curve to relative areal 

shelf exposure using the NOAA ETOPO1 dataset of modern regional ocean bathymetry 

(http://www.ngdc.noaa.gov/mgg/global/ global.html). In deriving our index of Sunda 

shelf area, we counted the number of 1x1 arc-minute grid boxes (1 minute of latitude = 

1.853 km at the equator) exposed in an area defined as 95°E-120°E and 10°S-10°N with 

every 1m lowering of global sea level down to -130m. We then calculated the fraction of 
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maximum Sunda shelf area exposure at each 1m interval. For example, if sea level is at -

60m, then 452,048 grid boxes out of 611,208 Sunda shelf grid boxes are exposed, i.e. 

74% of the Sunda shelf is above sea level. The resulting timeseries is plotted in brown in 

Figure B-S7d. 
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!
Figure B-S1. The location of Gunung Buda and Gunung Mulu National Parks relative to 
modern (top) and LGM (bottom) land/sea configurations. Topography and bathymetry 
provided in NOAA ETOPO1 dataset (http://www.ngdc.noaa.gov/mgg/global/ 
global.html). 
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Figure B-S2: From Partin, 2008. Topographic map of Gunung Mulu and Gunung Buda 
National Parks, Malaysia, showing cave locations (contour interval is 200m). Our new 
records come from Bukit Assam Cave (BA02), Snail Shell Cave (SCH02), and Secret 
Cave (SC02 and SC03; Secret is a chamber located inside Clearwater Cave). Topological 
data provided in SRTM30 (http://www2.jpl.n•asa.gov/srtm/). 
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! ! ! ! !
!
! ! ! ! ! !
!

!
!

!
Figure!S3.!!Reflected!and!backlit!images!for!SC03!with!its!age!versus!depth!plot.!(A)!
HighNresolution!images!of!SC03,!showing!original!UNseries!dates!reported!in!kyr.!

Scale!of!photo!matches!yNaxis!scale!used!in!ageNdepth!plot!in!(B).!!(B)!AgeNdepth!plot!
for!SC03.!Data!points!in!white!are!not!included!in!age!model!(see!Table!S1).!Data!

points!in!color!are!final!ages!used!in!age!model!(Table!S4).!Error!bars!represent!2σ!

dating!uncertainties.!Black!line!indicates!our!δ18ONaligned!ageNdepth!model!for!SC03.!
Grey!outer!curves!indicate!95%!confidence!interval!endpoints!for!an!ensemble!of!

age!models!produced!using!StalAge!(9).!The!duration!of!an!identified!hiatus!is!
indicated!by!colored!arrows.!!!!

!

!
! !

A B 
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! ! ! ! ! !

!

!
!
Figure!S4.!!Same!as!Fig.!S3!but!for!SC02.!Two!hiatuses!are!indicated.!!
!

! !

A B 
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! ! ! ! ! !

!

!
!
Figure!S5.!!Same!as!Fig.!S3!but!for!SCH02.!!UNseries!dates!from!0N30kyrp!are!
previously!published!(Partin!et!al.,!2007).!Three!hiatuses!are!indicated.!

! !

A B 
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! ! ! ! ! !

!

!
!
!
Figure!S6.!!Same!as!Fig.!S3!but!for!BA02.!No!hiatuses!were!found.!!!

  
  

A B 
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Figure S7. Timeseries of sea level and Sunda shelf areal exposure. (A) Borneo stalagmite 
d18O records. (B) Derived mean ocean d18O from temperature-adjusted benthic 
foraminifera stack (Waelbroeck et al., 2002) (C) The Borneo stalagmite d18O records 
after removing the influence of mean ocean d18O change due to ice volume (colors), 
plotted with the uncorrected Borneo stalagmite d18O records (grey). See Supplemental 
text for details. (D) Areal Sunda Shelf exposure extrapolated non-linearly from calculated 
sea level variability (brown), plotted with ice volume-corrected Borneo stalagmite d18O 
records from panel (C).  
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 Figure S8. A detailed view of Stage 3 abrupt climate events as recorded in polar ice 
cores and in Chinese and Borneo stalagmite d18O records. (A) Greenland NGRIP ice core 
δ18O (grey; NGRIP members, 2004) with 100yr averages (black), plotted using the 
GICC05modelext age model (Wolff et al., 2010). Numbered D/O events are indicated. 
(B) Hulu/Sanbao cave stalagmite δ18O records from China (Wang et al., 2001; 2008); The 
Sanbao δ18O record has been offset by +1.6‰ for comparison. (C) The Borneo stalagmite 
δ18O composite records and individual separated records: SC02 (navy), SC03 (red), 
SCH02 (green), BA02 (purple). U–Th dates used to construct age model used for the 
aligned composite record plotted in corresponding colors; error bars represent 2σ error 
(8). Raw U-Th dates are the midpoint of the plotted 2σ error bars, and are not shown. (D) 
EPICA Dronning Maud Land (EDML) ice core δ18O (grey; EPICA members, 2006) with 
7-year averages (black). Antarctica Isotope Maxima (AIM) are indicated. 
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Figure S9. The Borneo stalagmite d18O records plotted with a variety of western tropical 
Pacific sediment core δ18O and SST records. (A) Borneo stalagmite d18O records 
(uncorrected for ice volume). (B) Sulu Sea planktonic foraminifera δ18O (Dannenmann et 
al., 2003), plotted using an updated age model using IntCal09 calibration curve 41kybp-
modern and aligning 60kybp d18O excursion to the Hulu/Sanbao stalagmite d18O records. 
(C) Sulu Sea planktonic foraminiferal Mg/Ca SST record (Dannenmann et al., 2003), 
plotted using same updated age model as (B) (D) Site MD98-2181 planktonic 
foraminiferal δ18O (Stott et al., 2002). (E) Site MD98-2181 planktonic foraminiferal 
Mg/Ca SST record (Stott et al., 2002). (F) South China Sea Site MD97-2151 UK′37 SST 
(Zhao et al., 2006). (G) South China Sea ODP Site 1145 planktonic foraminifera δ18O 
(17). (H) ODP Site 1145 planktonic foraminifera Mg/Ca SST record (Oppo and Sun, 
2005). Grey vertical bars reflect the timing of Heinrich events H1-H6 (Hemming et al., 
2004) as recorded in the well-dated Chinese stalagmite δ18O age models (Wang et al., 
2001; 2008). 
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Figure B-S10.  Diagram of the 238U-234U-230Th age equation, assuming zero initial 230Th. 
Horizontal gray contours are lines of constant initial d234U, and vertical gray lines are 
lines of constant time, at 20kyr intervals. The black diagonal line is the infinite age line. 
Measured isotopic data from all age samples (see Table B-S1) are plotted as ‘+’ data 
points – SC02 (navy), SC03 (red), SCH02 (green), and BA02 (purple). 
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Figure B-S11.  Osmond type isochrons for (left) Secret Cave at Gunung Mulu, (middle) 
Snail Shell Cave at Gunung Buda, and (right) Bukit Assam Cave at Gunung Buda. 
Colors distinguish measured isochrons at different depths (values for each listed in Table 
B-S2). Error ellipses are not shown because they are too small to be seen on this plot (see 
Table B-S2). The initial 230Th/232Th concentration is calculated using a maximum-
likelihood estimation (MLE) XY-XZ isochron algorithm that finds the best line of fit to 
the set of XY (230Th/238U-232Th/238U) and XZ (234Th/238U-232Th/238U) points. 
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xxx !!!!!!!!!!!

xxx !

xxx !
 
Figure B-S12. Plot of calculated initial 230Th/232Th concentration with 2σ error 
determined from each isochron, separated by cave: (a) Secret Cave (3 total), (b) Snail 
Shell Cave (5 total), and (c) Bukit Assam Cave (6 total). Black data points have 2σ error 
less than 10 ppm, gray data points have 2σ error greater than 10 ppm. Mean initial 
230Th/232Th concentration plotted as colored dash line, with 2σ error shown as shaded 
rectangle. Note the colored 2σ error touches all black data  

a 

b 

c 
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Table B-S1. Original U-Series calculated ages. Shading indicates isochrons. Data in red 
have been excluded from final age model (see Supp. Info.). 

 
a  Batch ID identifies Multi-Collector ICP-MS batch (2 letters) and sample run order 
within batch (1-24)  
b  2σ errors are Monte Carlo derived, with the following initial 230/232 ratios: SCH02 = 
59 ± 13 ppm; BA02 = 56 ± 11 ppm; SC03 and SC02 = 111 ± 41 ppm 
 
 
 
  

Uncorr

Stal Batch Core [238U] [238U] [232Th] [232Th] δ234U(T) δ234U(T) (230Th/ (230Th/ 2σ 2σ 

ID IDa
Depth error error error         238U)A

        238U)A Age Age Error (-) Error (+)
(mm) (ppb) (ppb) (pptr) (pptr) (‰) (‰) error (kybp) (kybp) (kyr) (kyr)

SC03 ce10 10 114.3 0.1 150 9.2 -79.2 0.6 0.0992 0.0008 12.47 11.41 0.41 0.41

SC03 ck15 20.5 150.6 0.1 288 2.0 -69.0 0.6 0.1539 0.0005 19.77 18.25 0.57 0.56

SC03 ck09 27 117.7 0.1 29 2.4 -78.3 0.7 0.1819 0.0007 24.09 23.89 0.13 0.13

SC03 ci09 43 167.2 0.4 147 3.3 -111.9 3.0 0.2395 0.0020 34.55 33.81 0.47 0.46

SC03 cc19 58.5 174.4 0.1 239 5.8 -99.0 0.4 0.2749 0.0008 40.05 38.91 0.45 0.45

SC03 ci19 75 107.1 0.4 158 3.5 -107.2 5.1 0.2889 0.0034 43.06 41.83 0.82 0.83

SC03 cl11 84.5 115.2 0.1 141 4.1 -103.4 0.7 0.3028 0.0004 45.41 44.38 0.39 0.39

SC03 ci01 91.5 133.6 0.4 153 3.3 -128.6 3.8 0.3022 0.0026 47.06 46.07 0.67 0.67

SC03 cc15 103.5 128.8 0.1 140 5.0 -106.6 0.5 0.3235 0.0009 49.59 48.68 0.39 0.38

SC03 cc06 103.5 143.3 0.1 239 5.5 -111.2 0.7 0.3256 0.0008 50.37 48.95 0.56 0.55

SC03 cc08 103.5 158.8 0.1 330 4.9 -108.2 1.3 0.3285 0.0007 50.72 48.96 0.67 0.69

SC03 cc04 103.5 131.7 0.1 790 5.5 -96.9 0.7 0.3478 0.0009 53.65 48.58 1.98 1.93

SC03 ck23 125 157.6 0.1 234 1.8 -102.9 0.6 0.3556 0.0005 55.76 54.52 0.49 0.48

SC03 ci06 127 119.6 0.4 216 3.5 -96.9 4.5 0.3601 0.0031 56.15 54.64 0.92 0.94

SC03 ci17 147.5 133.9 0.4 241 3.4 -118.0 4.0 0.3730 0.0028 60.94 59.39 0.95 0.95

SC03 ck07 148.5 131.5 0.1 221 2.1 -120.0 0.6 0.3728 0.0006 61.11 59.66 0.57 0.54

SC03 ci12 168 131.4 0.5 254 3.8 -101.2 4.5 0.4146 0.0032 68.53 66.90 1.10 1.08

SC03 ck03 195 140.4 0.1 203 1.9 -93.7 0.6 0.4336 0.0006 72.10 70.89 0.48 0.47

SC03 cc14 201.5 211.0 0.1 245 4.9 -95.8 0.3 0.4386 0.0006 73.57 72.60 0.39 0.39

SC03 ci16 217 130.6 0.4 188 3.3 -92.4 4.0 0.4563 0.0029 77.47 76.26 1.01 1.01

SC03 ck11 237 191.4 0.1 87 1.9 -111.8 0.5 0.4586 0.0005 80.93 80.54 0.21 0.21

SC03 ck06 237 199.5 0.1 822 2.1 -111.6 0.5 0.4622 0.0005 81.86 78.29 1.37 1.34

SC03 ck01 237 215.3 0.1 194 2.1 -109.7 0.6 0.4628 0.0005 81.73 80.96 0.32 0.33

SC03 cd22 242.5 147.0 0.1 40 29.1 -107.3 0.6 0.4670 0.0012 82.49 82.26 0.40 0.39

SC03 cd12 252.5 147.2 0.1 99 30.6 -110.8 0.5 0.4720 0.0013 84.41 83.84 0.46 0.44

SC03 ck24 266 140.7 0.1 176 1.8 -101.5 0.6 0.4937 0.0005 88.88 87.82 0.42 0.44

SC03 ck04 270 139.2 0.1 428 1.9 -89.1 0.5 0.5078 0.0006 90.67 88.09 0.98 0.97

SC03 ci14 277.5 113.4 0.4 69 3.6 -109.0 4.9 0.4953 0.0036 90.69 90.16 1.41 1.41

SC03 ck21 279.5 116.4 0.1 69 2.0 -107.1 0.6 0.5009 0.0007 92.00 91.49 0.30 0.31

SC03 ce07 293.5 163.4 0.1 83 8.0 -108.1 0.5 0.5071 0.0006 94.00 93.57 0.27 0.27

SC03 ck20 294 141.0 0.1 75 1.9 -107.7 0.6 0.5043 0.0006 93.09 92.64 0.27 0.27

SC03 ci04 301.5 159.5 0.5 38 4.1 -102.4 4.0 0.5099 0.0029 93.75 93.55 1.17 1.18

SC03 ck18 302.5 150.1 0.1 83 2.1 -102.8 0.6 0.5110 0.0007 94.14 93.67 0.28 0.28

SC03 cd11 356.5 144.9 0.1 185 32.2 -89.6 0.5 0.5325 0.0014 97.99 96.93 0.63 0.62

SC03 ck10 381.5 119.3 0.1 65 1.9 -85.7 0.6 0.5424 0.0007 100.23 99.78 0.29 0.29

MC-ICP-MS Measured Values Calculated Ageb
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Table B-S1. (cont’d) 

 
a  Batch ID identifies Multi-Collector ICP-MS batch (2 letters) and sample run order 
within batch (1-24) 
b  2σ errors are Monte Carlo derived, with the following initial 230/232 ratios: SCH02 = 
59 ± 13 ppm; BA02 = 56 ± 11 ppm; SC03 and SC02 = 111 ± 41 ppm 
  

Uncorr

Stal Batch Core [238U] [238U] [232Th] [232Th] δ234U(T) δ234U(T) (230Th/ (230Th/ 2σ 2σ 

ID IDa
Depth error error error         238U)A

        238U)A Age Age Error (-) Error (+)
(mm) (ppb) (ppb) (pptr) (pptr) (‰) (‰) error (kybp) (kybp) (kyr) (kyr)

SC02 cd19 274 161.2 0.1 100 30.0 -94.8 0.6 0.2283 0.0011 31.91 31.40 0.31 0.29

SC02 cd03 280 169.3 0.1 238 30.0 -99.8 0.5 0.2686 0.0010 38.97 37.80 0.51 0.47

SC02 ck13 316 153.9 0.1 354 2.1 -106.5 0.5 0.3056 0.0005 46.14 44.20 0.75 0.72

SC02 ck02 338 111.2 0.1 86 1.9 -87.3 0.6 0.3245 0.0007 48.36 47.73 0.27 0.27

SC02 ck08 343 145.0 0.1 256 2.1 -109.2 0.5 0.3286 0.0005 50.80 49.31 0.57 0.56

SC02 cd01 371.5 127.4 0.1 137 32.3 -108.6 0.6 0.3494 0.0015 54.98 54.07 0.52 0.49

SC02 cd10 388.5 162.2 0.1 154 29.0 -118.2 0.5 0.3838 0.0011 63.37 62.55 0.43 0.42

SC02 ck16 412.5 130.6 0.1 98 2.1 -80.9 1.0 0.4233 0.0007 68.17 67.55 0.30 0.30

SC02 cj15 446 205.7 0.1 174 5.0 -100.0 0.5 0.4371 0.0004 73.76 73.05 0.29 0.28

SC02 cj23 446 208.5 0.1 194 6.2 -99.7 0.6 0.4384 0.0004 74.04 73.25 0.32 0.32

SC02 cj09 446 212.7 0.1 277 5.1 -98.0 0.5 0.4418 0.0004 74.65 73.55 0.42 0.43

SC02 ce04 472.5 176.4 0.1 54 8.1 -111.6 0.5 0.4590 0.0006 81.02 80.76 0.21 0.19

SC02 cl03 478 98.4 0.1 99 4.4 -91.4 1.0 0.5116 0.0006 92.16 91.32 0.39 0.39

SC02 cl14 581 105.2 0.1 67 5.2 -84.4 0.8 0.5428 0.0006 100.10 99.57 0.31 0.32

SC02 cl05 639 148.2 0.1 14 4.6 -111.5 0.6 0.5406 0.0005 105.41 105.33 0.22 0.22

Calculated Ageb
MC-ICP-MS Measured Values
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Table B-S1. (cont’d) 

 
a  Batch ID identifies Multi-Collector ICP-MS batch (2 letters) and sample run order 
within batch (1-24) 
b  2σ errors are Monte Carlo derived, with the following initial 230/232 ratios: SCH02 = 
59 ± 13 ppm; BA02 = 56 ± 11 ppm; SC03 and SC02 = 111 ± 41 ppm 
 
 
 

Uncorr

Stal Batch Core [238U] [238U] [232Th] [232Th] δ234U(T) δ234U(T) (230Th/ (230Th/ 2σ 2σ 

ID IDa
Depth error error error         238U)A

        238U)A Age Age Error (-) Error (+)
(mm) (ppb) (ppb) (pptr) (pptr) (‰) (‰) error (kybp) (kybp) (kyr) (kyr)

SCH02 ca03 306.5 492.2 0.2 6174 3.8 -298.4 0.2 0.2109 0.0002 40.19 32.62 1.73 1.72

SCH02 cj04 318.5 598.1 0.3 7850 7.3 -317.8 0.3 0.2197 0.0002 43.96 35.71 1.87 1.87

SCH02 cj17 326.5 534.7 0.2 10510 7.4 -306.5 0.3 0.2781 0.0002 58.66 46.06 2.88 2.90

SCH02 cj14 340.5 694.5 0.3 1962 5.2 -331.3 0.3 0.1781 0.0001 34.80 33.05 0.39 0.39

SCH02 ca23 366.5 495.0 0.2 1956 11.5 -322.6 0.2 0.1906 0.0003 37.15 34.73 0.54 0.54

SCH02 ca09 393 688.9 0.3 1891 3.4 -333.6 0.2 0.1928 0.0002 38.51 36.80 0.39 0.39

SCH02 ca11 414 603.6 0.2 2758 3.2 -323.9 0.2 0.2086 0.0002 41.67 38.84 0.61 0.62

SCH02 cr04 428 603.6 0.2 1263 3.2 -312.5 0.3 0.2136 0.0004 41.97 40.30 0.38 0.38

SCH02 cr03 435 603.6 0.2 1409 2.7 -312.6 0.4 0.2147 0.0003 42.25 40.59 0.37 0.37

SCH02 ch15 441 545.5 0.2 2456 5.2 -309.1 0.3 0.2219 0.0019 43.75 41.02 0.78 0.78

SCH02 ch06 441 526.4 0.2 3551 5.6 -309.5 0.3 0.2254 0.0021 44.64 40.52 1.06 1.07

SCH02 ch19 441 510.6 0.2 6929 5.9 -312.6 0.2 0.2725 0.0019 57.84 49.18 2.09 2.02

SCH02 ch02 441 491.9 0.2 5650 6.2 -309.6 0.3 0.2398 0.0023 48.39 41.25 1.74 1.68

SCH02 ca20 457.5 640.0 0.3 1297 3.2 -328.1 0.2 0.2125 0.0002 43.02 41.76 0.29 0.28

SCH02 ca17 485 570.5 0.2 770 3.2 -332.4 0.2 0.2149 0.0002 44.05 43.20 0.20 0.20

SCH02 ca13 506.5 582.5 0.2 1382 3.4 -311.5 0.2 0.2335 0.0003 46.92 45.47 0.33 0.33

SCH02 ca24 514 590.1 0.3 1796 8.1 -316.1 0.8 0.2361 0.0004 48.07 46.19 0.44 0.43

SCH02 cj08 527.5 595.9 0.3 460 5.8 -329.5 0.3 0.2248 0.0002 46.40 45.91 0.12 0.12

SCH02 cj13 557.5 686.6 0.3 464 5.4 -332.7 0.2 0.2275 0.0002 47.43 47.00 0.11 0.11

SCH02 cj24 567 738.0 0.3 824 5.4 -332.4 0.3 0.2324 0.0001 48.73 48.03 0.16 0.16

SCH02 ca06 585 1053.7 0.4 1447 3.0 -334.6 0.2 0.2428 0.0002 51.91 51.03 0.20 0.20

SCH02 cj02 599 716.6 0.3 547 4.9 -318.3 0.3 0.2506 0.0002 52.26 51.78 0.12 0.12

SCH02 ci03 603.5 774.1 0.6 875 4.1 -324.6 0.8 0.2509 0.0005 53.05 52.34 0.24 0.24

SCH02 ca15 640 913.0 0.3 454 3.0 -327.6 0.2 0.2509 0.0002 53.41 53.10 0.09 0.09

SCH02 ca05 646 597.2 0.2 4414 4.1 -300.4 0.2 0.2857 0.0003 60.10 55.54 1.03 1.03

SCH02 ca22 646 546.5 0.2 676 3.3 -300.4 0.2 0.2693 0.0003 55.39 54.65 0.18 0.18

SCH02 ca04 646 595.3 0.2 279 3.2 -301.0 0.2 0.2661 0.0003 54.58 54.29 0.10 0.10

SCH02 cj10 670 800.0 0.3 1448 5.1 -334.0 0.2 0.2582 0.0002 56.37 55.20 0.26 0.26

SCH02 cj16 674 656.9 0.3 1186 5.0 -339.7 0.3 0.2569 0.0002 56.72 55.55 0.27 0.27

SCH02 cb07 714 991.3 0.5 1708 3.4 -337.4 0.3 0.2649 0.0003 58.87 57.74 0.27 0.26

SCH02 cb05 734 866.8 0.5 404 3.6 -293.1 0.4 0.2852 0.0002 58.97 58.69 0.11 0.11

SCH02 cb13 742 745.8 0.4 654 3.4 -292.0 0.4 0.2890 0.0005 59.91 59.39 0.19 0.19

SCH02 ci07 758 883.2 0.6 331 3.7 -295.8 0.6 0.2868 0.0004 59.78 59.56 0.16 0.16

SCH02 ci13 765 788.9 0.6 569 4.2 -310.0 0.8 0.2847 0.0006 61.10 60.65 0.22 0.23

SCH02 cb16 780 780.1 0.5 217 3.5 -299.9 0.5 0.2921 0.0002 61.91 61.74 0.10 0.11

SCH02 cb02 849 717.9 0.5 433 3.9 -301.7 0.5 0.2985 0.0003 64.11 63.74 0.15 0.14

SCH02 cb08 877 700.1 0.4 814 3.4 -327.7 0.4 0.3104 0.0004 72.41 71.65 0.24 0.23

SCH02 cb12 897 792.0 0.4 818 3.3 -321.6 0.4 0.3183 0.0005 74.03 73.36 0.23 0.24

MC-ICP-MS Measured Values Calculated Ageb
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Table B-S1. (cont’d) 

 
a  Batch ID identifies Multi-Collector ICP-MS batch (2 letters) and sample run order 
within batch (1-24)  
b  2σ errors are Monte Carlo derived, with the following initial 230/232 ratios: SCH02 = 
59 ± 13 ppm; BA02 = 56 ± 11 ppm; SC03 and SC02 = 111 ± 41 ppm 
  

Uncorr

Stal Batch Core [238U] [238U] [232Th] [232Th] δ234U(T) δ234U(T) (230Th/ (230Th/ 2σ 2σ 

ID IDa
Depth error error error         238U)A

        238U)A Age Age Error (-) Error (+)
(mm) (ppb) (ppb) (pptr) (pptr) (‰) (‰) error (kybp) (kybp) (kyr) (kyr)

BA02 cb17 129 984.1 0.5 296 3.4 -598.4 0.2 0.0514 0.0001 15.50 15.20 0.07 0.07

BA02 cj19 147.5 1112.3 0.5 592 5.2 -600.3 0.2 0.0543 0.0001 16.55 16.02 0.11 0.11

BA02 ch10 184 1295.5 0.5 183 4.7 -586.7 0.1 0.0614 0.0008 18.29 18.15 0.25 0.26

BA02 ch18 184 1280.1 0.5 272 5.0 -593.1 0.1 0.0612 0.0008 18.57 18.36 0.29 0.29

BA02 ch16 184 1220.7 0.5 752 4.8 -594.1 0.1 0.0628 0.0008 19.16 18.55 0.31 0.31

BA02 ch03 184 1167.9 0.5 2075 5.3 -592.8 0.2 0.0811 0.0009 25.75 23.93 0.50 0.50

BA02 cb10 215 1173.6 0.6 432 3.5 -587.5 0.2 0.0686 0.0001 20.81 20.45 0.09 0.09

BA02 cb15 251 1099.6 0.5 496 3.4 -590.0 0.2 0.0717 0.0001 22.07 21.62 0.10 0.10

BA02 cb18 278 942.0 0.5 767 5.8 -583.6 0.3 0.0815 0.0001 25.16 24.36 0.17 0.17

BA02 cb01 283 943.2 0.5 779 3.5 -583.7 0.2 0.0828 0.0001 25.66 24.83 0.17 0.17

BA02 cj21 315 1249.8 0.5 552 4.7 -574.4 0.2 0.0911 0.0001 27.94 27.51 0.09 0.09

BA02 cg03 353 1192.8 0.5 492 5.8 -574.3 0.2 0.0970 0.0008 30.20 29.79 0.31 0.31

BA02 cg20 353 1194.5 0.6 817 6.7 -574.6 0.3 0.0975 0.0009 30.39 29.72 0.36 0.37

BA02 cg21 353 1272.2 0.6 2342 6.6 -575.3 0.3 0.1023 0.0008 32.35 30.50 0.48 0.49

BA02 cg09 353 1197.1 0.6 4238 7.2 -574.8 0.3 0.1124 0.0009 36.44 32.80 0.81 0.81

BA02 cb04 397.5 1228.4 0.6 446 3.6 -567.4 0.2 0.1042 0.0001 32.28 31.92 0.09 0.09

BA02 cc03 411.8 998.6 0.4 1520 5.6 -565.3 0.1 0.1093 0.0001 34.03 32.53 0.30 0.30

BA02 cc07 425.3 1092.8 0.4 1510 5.4 -564.3 0.1 0.1106 0.0001 34.46 33.10 0.27 0.27

BA02 cc13 432 986.5 0.4 840 5.5 -564.4 0.1 0.1109 0.0003 34.58 33.74 0.20 0.20

BA02 cj06 463.5 1002.0 0.5 915 5.6 -560.9 0.2 0.1175 0.0001 36.79 35.89 0.18 0.18

BA02 cc18 488 989.9 0.4 644 5.3 -556.1 0.1 0.1227 0.0001 38.34 37.70 0.13 0.14

BA02 cc10 495.5 1045.2 0.4 3593 5.4 -557.0 0.1 0.1310 0.0001 41.93 38.49 0.68 0.68

BA02 cc01 512.5 1077.2 0.4 1014 5.2 -554.9 0.1 0.1286 0.0001 40.60 39.68 0.19 0.19

BA02 cc11 516 1041.0 0.4 670 5.3 -554.6 0.1 0.1279 0.0001 40.26 39.63 0.14 0.14

BA02 cj11 539 1078.8 0.4 2014 5.0 -551.0 0.2 0.1368 0.0001 43.52 41.68 0.37 0.36

BA02 cb20 565.5 1487.8 0.7 360 4.6 -550.1 0.3 0.1366 0.0001 43.31 43.07 0.08 0.08

BA02 cj20 580 1036.6 0.4 3226 5.3 -548.3 0.2 0.1444 0.0001 46.45 43.35 0.63 0.61

BA02 cj07 595 1275.8 0.5 463 4.8 -547.4 0.1 0.1419 0.0001 45.21 44.85 0.09 0.08

Calculated Ageb
MC-ICP-MS Measured Values
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Table B-S2. Osmond-type activity ratios used in isochron calculations. Plotted in Figure 
S12 by cave type. 

 
(*) indicates new isochrons not previously published.  

Cave Stal Isochron Batch (232/ 2σ (230/ 2σ (234/ 2σ 
ID No. ID 238)A error 238)A error 238)A error

Bukat BA04 Iso-1 sc02 5.21E-03 6.12E-06 6.47E-02 4.02E-04 3.89E-01 3.26E-04
Assam BA04 sc03 5.77E-03 8.21E-06 6.25E-02 3.23E-04 3.88E-01 2.80E-04

BA04 sc04 1.17E-02 1.46E-05 1.24E-01 3.25E-04 4.00E-01 2.60E-04
BA04 sc05 1.32E-02 1.87E-05 1.29E-01 4.79E-04 4.01E-01 2.17E-04

BA04 Iso-2 sd06 3.38E-04 1.09E-07 6.06E-02 1.33E-04 4.05E-01 8.22E-04
BA04 sd07 7.66E-04 3.10E-07 6.54E-02 1.66E-04 4.05E-01 8.79E-04
BA04 sd08 1.01E-03 3.08E-07 7.21E-02 1.57E-04 4.07E-01 8.59E-04

BA04 Iso-3 sc09 1.10E-02 8.48E-06 1.84E-01 2.48E-04 4.26E-01 1.85E-04
BA04 sc10 6.18E-04 6.37E-07 7.23E-02 2.17E-04 4.06E-01 2.06E-04
BA04 sc11 1.39E-04 3.20E-07 6.88E-02 2.23E-04 4.05E-01 2.24E-04
BA04 sc12 1.91E-04 4.25E-07 6.94E-02 2.68E-04 4.06E-01 2.07E-04

BA04 Iso-4 sg20 6.92E-04 8.46E-07 3.68E-02 7.05E-05 3.89E-01 1.47E-04
BA04 sg23 2.51E-04 8.19E-07 3.27E-02 7.01E-05 3.88E-01 1.54E-04
BA04 sg36 3.59E-04 7.70E-07 3.39E-02 6.47E-05 3.88E-01 1.58E-04
BA04 sg15 8.89E-04 1.15E-06 3.80E-02 8.85E-05 3.89E-01 1.65E-04

BA02 Iso-5 cg03* 1.35E-04 2.02E-06 9.65E-02 3.51E-03 4.26E-01 2.48E-04
BA02 cg20* 2.24E-04 2.30E-06 9.69E-02 3.99E-03 4.26E-01 2.71E-04
BA02 cg21* 6.03E-04 2.14E-06 1.02E-01 3.69E-03 4.25E-01 2.63E-04

BA02 Iso-6 ch10* 4.62E-05 1.18E-06 6.15E-02 7.55E-04 4.14E-01 1.46E-04
BA02 ch18* 6.95E-05 1.28E-06 6.13E-02 8.18E-04 4.07E-01 1.43E-04
BA02 ch16* 2.02E-04 1.28E-06 6.28E-02 8.21E-04 4.06E-01 1.39E-04

Snail SCH02 Iso-1 se17 1.81E-04 7.14E-07 8.79E-02 1.20E-04 6.63E-01 2.07E-04
Shell SCH02 se18 1.24E-04 6.55E-07 8.63E-02 1.07E-04 6.63E-01 1.95E-04

SCH02 se19 1.40E-03 8.83E-07 1.03E-01 1.16E-04 6.63E-01 2.35E-04

SCH02 Iso-2 se20 7.19E-04 8.67E-07 7.87E-02 1.38E-04 6.51E-01 2.68E-04
SCH02 se21 3.05E-04 7.19E-07 7.39E-02 9.99E-05 6.54E-01 2.25E-04
SCH02 se22 4.30E-04 7.48E-07 7.53E-02 1.08E-04 6.58E-01 2.67E-04

SCH02 Iso-3 se23 1.14E-03 5.59E-07 9.13E-02 8.77E-05 6.46E-01 1.97E-04
SCH02 se24 3.38E-04 4.44E-07 8.32E-02 8.46E-05 6.46E-01 2.20E-04
SCH02 se25 8.89E-04 4.81E-07 9.15E-02 8.58E-05 6.47E-01 2.34E-04

SCH02 Iso-4 ca05* 2.42E-03 2.03E-06 2.86E-01 3.28E-04 7.00E-01 2.30E-04
SCH02 ca22* 4.05E-04 1.96E-06 2.70E-01 3.19E-04 7.00E-01 2.02E-04
SCH02 ca04* 1.54E-04 1.76E-06 2.66E-01 3.14E-04 7.00E-01 2.38E-04

SCH02 Iso-5 ch15* 1.48E-03 3.05E-06 2.22E-01 1.92E-03 6.91E-01 2.78E-04
SCH02 ch06* 2.21E-03 3.34E-06 2.26E-01 2.07E-03 6.91E-01 2.59E-04
SCH02 ch19* 4.45E-03 1.01E-05 2.73E-01 2.03E-03 6.88E-01 2.71E-03
SCH02 ch02* 3.76E-03 3.78E-06 2.40E-01 2.29E-03 6.91E-01 3.12E-04

Secret SC03 Iso-1 cc15* 3.56E-04 1.27E-05 3.24E-01 8.55E-04 8.94E-01 5.36E-04
SC03 cc06* 5.48E-04 1.27E-05 3.26E-01 8.49E-04 8.90E-01 6.51E-04
SC03 cc08* 6.81E-04 1.01E-05 3.29E-01 7.19E-04 8.93E-01 1.27E-03
SC03 cc04* 1.96E-03 1.38E-05 3.48E-01 9.18E-04 9.04E-01 6.66E-04

SC03 Iso-2 cc15* 1.49E-04 3.31E-06 4.59E-01 4.83E-04 8.89E-01 4.86E-04
SC03 cc06* 1.35E-03 3.39E-06 4.62E-01 5.05E-04 8.89E-01 4.81E-04
SC03 cc08* 2.96E-04 3.18E-06 4.63E-01 4.50E-04 8.91E-01 5.78E-04

SC02 Iso-3 cc15* 2.77E-04 7.95E-06 4.37E-01 3.94E-04 9.01E-01 5.41E-04
SC02 cc06* 3.04E-04 9.72E-06 4.39E-01 4.14E-04 9.01E-01 5.98E-04
SC02 cc08* 4.27E-04 7.83E-06 4.42E-01 3.90E-04 9.03E-01 5.31E-04
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T
able B

-S3.  C
alculation of detrital 230/232 concentration for each cave system

 (B
A

02 and B
A

04; SC
H

02; SSC
01; and SC

03). Final 
detrital 230/232 concentration used for each stalagm

ite is: B
A

02 = 56 ± 11 ppm
; SC

H
02 = 59 ± 13 ppm

; SC
03 and SC

02 = 111 ± 41 
ppm

 (see Supp. Info.). 

 
a  (*) indicates new

 isochrons not previously published.  
b  A

ge, intercepts, and detrital 230/232 calculated using ISO
PLO

T 3.72 (Ludw
ig, 1993).  The 230/238 and 234/238 intercepts are the 

Y
-Z plane intercepts of the linear 3-D

 isochron used to calculate an age and initial 234/238 using X
 = 232/238,  Y

 = 230/238,  Z = 
234/238 (Ludw

ig and Titterington, 1994).  
c  W

eights calculated as inverse of 1 standard deviation of the detrital 230/232 for each isochron.   
d  W

eighted standard deviation is the inverse of the sum
 of the w

eights for each cave system
.  

e  U
n-w

eighted standard deviation is the standard deviation of the n-isochron 230/232 for each cave system
.  

 

2σ 
(230/

2σ 
(234/

2σ 
D

etrital
2σ 

W
td

W
td

U
n-w

td
U

n-w
td

Stal ID
Isochron

a
A

ge
error

238)A
error

238)A
error

230/232
error

W
eight c

M
ean

 2σ
d

M
ean

 2σ
e

(kyr)
(kyr)

Intercept
Intercept

(ppm
)

(ppm
)

B
A

04
Iso-1

3.6
4.5

0.0120
0.0150

0.3800
0.0110

50
9

0.2313
56

1
62

35
Iso-2

16.5
3.7

0.0547
0.0083

0.4040
0.0510

86
65

0.0308
Iso-3

20.5
0.5

0.0667
0.0013

0.4052
0.0011

57
1

1.4800
Iso-4

9.2
0.3

0.0308
0.0008

0.3875
0.0017

45
8

0.2643
B

A
02

Iso-5*
28.8

4.1
0.0940

0.0110
0.4258

0.0008
81

86
0.0231

Iso-6*
18.0

23.0
0.0610

0.0670
0.4130

0.0130
49

2973
0.0007

S
C

H
02

Iso-1
15.1

0.3
0.0852

0.0015
0.6626

0.0027
68

10
0.1947

59
4

64
27

Iso-2
12.4

1.7
0.0703

0.0085
0.6570

0.0180
65

97
0.0206

Iso-3
14.6

2.0
0.0800

0.0095
0.6460

0.0240
59

59
0.0336

Iso-4*
54.1

0.7
0.2656

0.0024
0.6999

0.0017
46

9
0.2313

Iso-5*
37.0

6.8
0.1950

0.0290
0.6917

0.0050
84

50
0.0398

S
C

03
Iso-1*

48.7
1.5

0.3181
0.0074

0.8892
0.0056

83
39

0.0507
111

11
86

153
Iso-2*

80.9
2.6

0.4607
0.0084

0.8898
0.0092

11
59

0.0336
S

C
02

Iso-3*
71.9

0.4
0.4293

0.0014
0.8970

0.0017
164

22
0.0925

D
etrital 230/232 (ppm

)
O

sm
ond Type

b
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Table B-S4.  Adjusted age model for SC03, SC02, SCH02, and BA02 used in Figure 
4.2. Adjusted age is within limits in all cases.  

 
a  Original calculated age with upper and lower limits (95% confidence interval 
calculated using Monte Carlo simulation)  
b  Linear growth rates for each interval between 2 consecutive U-series dates that do 
not include a hiatus. If a hiatus exists between two U-series dates, growth rate was 
assigned the same growth rate as adjacent age models either above or below (use of 
linear extrapolation) 
 
 
 
 
 
 

Stal Batch Core Lower Original Adjusted Upper Growth 
ID ID Depth Age (2s)a Agea Age Age (2s)a Rateb

(mm) (ybp) (ybp) (ybp) (ybp) (year/mm)

SC03 ck09 27 23,758 23,889 23,889 24,017

SC03 ci09 43 33,343 33,811 33,811 34,267 --hiatus--

SC03 cc19 58.5 38,462 38,910 38,910 39,356 329

SC03 ci19 75 41,007 41,828 41,828 42,656 177

SC03 cl11 84.5 43,992 44,381 44,381 44,773 269

SC03 ci01 91.5 45,406 46,075 46,075 46,749 242

SC03 cc15 103.5 48,294 48,679 48,679 49,058 217

SC03 ck23 125 54,030 54,515 54,515 55,000 271

SC03 ck07 148.5 59,092 59,657 59,657 60,200 219

SC03 ci12 168 65,803 66,898 66,898 67,976 371

SC03 ck03 195 70,417 70,893 71,353 71,359 165

SC03 cc14 201.5 72,213 72,602 72,902 72,988 238

SC03 ci16 217 75,258 76,265 76,265 77,271 217

SC03 ck11 237 80,338 80,543 80,543 80,749 214

SC03 cd22 242.5 81,863 82,261 82,261 82,651 312

SC03 cd12 252.5 83,375 83,835 83,835 84,275 157

SC03 ck24 266 87,404 87,823 87,523 88,261 273

SC03 ck04 270 87,113 88,092 88,592 89,059 267

SC03 ck21 279.5 91,188 91,491 91,391 91,803 295

SC03 ck20 294 92,368 92,637 92,837 92,907 100

SC03 ck18 302.5 93,389 93,673 93,673 93,957 98

SC03 cd11 356.5 96,300 96,926 97,326 97,542 68
SC03 ck10 381.5 99,482 99,776 99,776 100,069 98

SC02 cd03 280 37,290 37,799 37,799 38,274

SC02 ck13 316 43,451 44,198 44,198 44,916 178

SC02 ck02 338 47,461 47,731 47,731 47,997 161

SC02 ck08 343 48,741 49,309 49,309 49,868 316

SC02 cd01 371.5 53,544 54,068 54,068 54,554 167

SC02 cd10 388.5 62,119 62,552 62,552 62,972 169/ hiatus/ 214

SC02 ck16 412.5 67,256 67,554 67,554 67,851 208

SC02 cj15 446 72,760 73,054 73,054 73,339 164

SC02 ce04 472.5 80,549 80,758 80,758 80,951 194 / hiatus

SC02 cl03 478 90,935 91,322 91,322 91,709 hiatus / 80

SC02 cl14 581 99,257 99,569 99,569 99,887 80
SC02 cl05 639 105,115 105,333 105,333 105,551 99
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Table B-S4. (cont’d) 

 
a  Original calculated age with upper and lower limits (95% confidence interval 
calculated using Monte Carlo simulation)  
b  Linear growth rates for each interval between 2 consecutive U-series dates that do 
not include a hiatus. If a hiatus exists between two U-series dates, growth rate was 
assigned the same growth rate as adjacent age models either above or below (use of 
linear extrapolation) 

Stal Batch Core Lower Original Adjusted Upper Growth 
ID ID Depth Age (2s)a Agea Age Age (2s)a Rateb

(mm) (ybp) (ybp) (ybp) (ybp) (year/mm)

SCH02 cj14 340.5 32,666 33,052 32,852 33,440

SCH02 ca23 366.5 34,185 34,729 34,529 35,268 64

SCH02 ca09 393 36,408 36,797 36,497 37,182 74

SCH02 ca11 414 38,226 38,837 38,537 39,455 97

SCH02 cr04 428 39,923 40,298 39,998 40,681 104

SCH03 cr03 435 40,226 40,591 40,291 40,958 42

SCH02 ch15 441 40,234 41,017 40,417 41,794 21

SCH02 ca20 457.5 41,466 41,759 41,759 42,042 81

SCH02 ca17 485 43,008 43,205 43,205 43,401 53

SCH02 ca13 506.5 45,143 45,471 45,471 45,797 105

SCH02 cj08 527.5 45,790 45,913 45,913 46,036 21

SCH02 cj13 557.5 46,891 47,004 47,004 47,112 36

SCH02 cj24 567 47,863 48,026 47,926 48,190 97

SCH02 ca06 585 50,838 51,034 51,034 51,235 --hiatus--

SCH02 cj02 599 51,664 51,782 51,782 51,901 53

SCH02 ci03 603.5 52,105 52,343 52,113 52,579 74

SCH02 ca15 640 53,007 53,098 53,098 53,187 27

SCH02 ca04 646 54,193 54,293 54,293 54,391 --hiatus--

SCH02 cj10 670 54,940 55,204 55,204 55,465 38

SCH02 cj16 674 55,281 55,547 55,547 55,818 86

SCH02 cb07 714 57,476 57,743 57,743 58,004 55

SCH02 cb05 734 58,581 58,691 58,691 58,798 47

SCH02 cb13 742 59,201 59,388 59,208 59,574 65

SCH02 ci07 758 59,393 59,556 59,716 59,718 32

SCH02 ci13 765 60,428 60,652 60,432 60,880 102

SCH02 cb16 780 61,635 61,740 61,640 61,845 81

SCH02 cb02 849 63,597 63,742 63,887 63,887 33

SCH02 cb08 877 71,412 71,649 71,649 71,879 --hiatus--
SCH02 cb12 897 73,127 73,359 73,359 73,594 86

BA02 cb17 129 15,135 15,200 15,200 15,268

BA02 cj19 147.5 15,912 16,020 16,020 16,126 44

BA02 ch10 184 17,900 18,153 18,153 18,411 58

BA02 cb10 215 20,364 20,450 20,450 20,537 74

BA02 cb15 251 21,524 21,622 21,622 21,718 33

BA02 cb18 278 24,189 24,355 24,355 24,525 101

BA02 cb01 283 24,668 24,833 24,833 25,005 96

BA02 cj21 315 27,422 27,511 27,511 27,600 84

BA02 cg03 353 29,478 29,792 29,792 30,101 60

BA02 cb04 397.5 31,836 31,925 31,925 32,013 48

BA02 cc03 411.8 32,233 32,533 32,533 32,833 43

BA02 cc07 425.3 32,833 33,104 33,104 33,377 42

BA02 cc13 432 33,539 33,742 33,742 33,942 95

BA02 cj06 463.5 35,710 35,894 35,894 36,074 68

BA02 cc18 488 37,571 37,704 37,704 37,842 74

BA02 cc10 495.5 37,812 38,492 38,492 39,171 105

BA02 cc01 512.5 39,484 39,677 39,527 39,870 61

BA02 cc11 516 39,495 39,631 39,761 39,771 67

BA02 cj11 539 41,307 41,679 41,679 42,040 83

BA02 cb20 565.5 42,997 43,075 43,075 43,152 53

BA02 cj20 580 42,723 43,348 43,748 43,954 46
BA02 cj07 595 44,768 44,853 44,853 44,936 74
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APPENDIX C: 

SUPPLEMENTARY MATERIALS FOR 

“0-160KYBP MULTI-STALAGMITE δ18O RECORD FROM NORTHERN 

BORNEO ” 
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1. Gunung Mulu National Park hydroclimate and karst 
 
SC03, WR12-01, WR12-12, FC12-12, FC12-14, and FC12-15 were collected 

from Gunung Mulu and Gunung Buda National Parks (4°N, 115°E) (Fig. C-S1). An 

outcrop of Melanau limestone, covered with dense tropical rainforest, forms a band of 

hills on the eastern shale and sandstone slopes of 2375 m high Gunung Mulu (Figure 

C-S1), and receives over 5 m of rainfall per year percolating into the rock and 

throughout the vast cave chambers (295 km explored).  

 

  
Fig. C-S1. (left) Caves of Gunung Mulu National Park with cave study sites 
indicated. From J. Wooldridge and T. Waltham, in Encyclopedia of Caves 2nd Ed. 
(2012) (right) View looking eastward toward Gunung Api (Credit: Syria Lejau) 
 
 
2. U/Th ICP-MS measurements 

Measured [238U], [232Th], δ234U, (230Th/238U)A, and, (230Th/232U)A are reported in Table 

S1 for all samples in this study. 
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Table C
-S1. O

riginal U
-Series calculated ages used in this study. Shading indicates isochrons. (*) indicates ages included in final age m

odel. 
 

 
  

 

Stal
sam

ple
Distance

U
2381conc

U
2381conc

232Th11
232Th11

d234U
(T)

d234U
(T)

230Th/238U
230Th/238U

232Th/238U
232Th/238U

M
onte1Carlo

m
m

ppb
error

pm
ol/g

error
‰

error
activity

activity
activity

activity
Cor1Age

Error
Error

‰
error

error
U
ncorr

(years)
M
inus

Plus
init1d234U

SC03
ck10

381.5
119.3

0.1
0.28

0.01
-87.1

0.6
0.5432

6.54E-04
1.78E-04

5.21E-06
100604

100151
530

521
*

-115.5
SC03

ct02
397.5

130.0
0.1

0.40
0.02

-101.7
0.7

0.5446
4.75E-04

2.34E-04
8.87E-06

104297
103687

498
500

*
-136.3

SC03
cl10

430
147.9

0.1
0.11

0.02
-115.2

0.7
0.5404

5.70E-04
5.48E-05

1.01E-05
106078

105932
522

502
*

-155.4
SC03

ct03
454

143.5
0.1

0.84
0.02

-127.3
0.7

0.5434
5.38E-04

4.44E-04
8.73E-06

110190
108977

683
694

*
-173.2

SC03
cs01

476
102.7

0.1
0.31

0.01
-95.1

1.3
0.5823

9.22E-04
2.26E-04

6.83E-06
115655

115070
1007

1038
*

-131.6
SC03

cs02
505

88.5
0.1

0.14
0.01

-93.5
1.6

0.5917
1.11E-03

1.18E-04
8.41E-06

118679
118376

1196
1265

*
-130.6

SC03
cs03

522
122.3

0.1
0.18

0.01
-91.0

1.2
0.5960
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N
otes: 

^Sam
ple ID

 identifies M
ulti-C

ollector IC
P-M

S batch (2 letters) and sam
ple run order w

ithin batch (1-24)  
^A

ll activity ratios and ages are calculated using the U
-series half-lives provided in C

heng et al., 2013 
^2σ errors are M

onte C
arlo derived, w

ith the follow
ing initial 230/232 ratios: SC

H
02 = 59 ± 13 ppm

; B
A

02 = 56 ± 11 ppm
; SC

03 and SC
02 = 111 ± 41 ppm

; 
FC

12 all = 78 ± 42 ppm
; W

R
12 all = 60 ± 20 ppm 
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2. Isochrons 
 

Three or more co-precipitated samples with variable (238U/232Th) were analyzed 

on multiple stalagmites from multiple cave chambers for a total of 25 isochron-derived 

initial (230Th/232Th) ratios. Figure S2. shows an example of isochron sampling locations 

on a slabbed stalagmite. The idea is that samples drilled further from the central growth 

axis will have greater detrital contamination than the “cleaner” central samples. 

 
Figure C-S2. Mapped isochron drill spots along a single growth layer within a stalagmite 
collected from Whiterock (WR12-12). 
 

Drilling multiple stalagmite samples that were all precipitated at the same geologic time 

but with variable (238U/232Th) is challenging in Mulu stalagmites that have already low 

[U] and require larger sample size. Because growth layers pinch together away from the 

central growth axis, it becomes more likely that drilling near the edges will clip other 

growth layers and add additional scatter to the isochron plots.  

 Figure C-S3. shows one of the XY pairs of the Osmond Type-II isochron diagram 

((230Th/238U) v. (232Th/238U)) for each of the 25 sampling spots along with the isochron’s 

computed (230Th/232Th)init value and the square √(MSWD), computed using ISOPLOT 

3.72 (Ludwig and Titterington, 1993). 
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Figure C-S3. (230Th/238U) v. (232Th/238U) Osmond Type-II isochron diagrams for each 
sampling spot, with best line of fit and analytical elliptical error bars shown. Isochron’s 
calculated (230Th/232Th)init value and the square √(MSWD), computed using ISOPLOT 
3.72 (Ludwig and Titterington, 1993), is listed in each scatter plot. Isochron diagrams 
organized by cave chamber. 
 

Error ellipses capture analytical uncertainties, but the degree of scatter about the 

best-fit line, coupled to the spread of the data points along the axes, determines the 

uncertainty in the initial 230Th/232Th ratio. The large scatter of 230Th/232Th values from the 

individual isochrons (Figure 3.3) is an indication that more than one source of initial 

230Th exists in our system and motivates us to take a conservative approach (i.e. larger 

error bars) to estimating a detrital 230Th/232Th ratio that is representative of our cave 

system. The weighted means and standard deviations for the detrital 230Th/232Th 
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concentration are calculated for each stalagmite using the inverse of the 1σ errors from 

each isochron as the weighting factor. The weighted standard deviation is equal to the 

inverse of the sum of the weights for each cave system. Un-weighted means and standard 

deviations (for the population of isochron results from the same stalagmite) are also 

calculated for comparison. There is a large difference between the weighted standard 

deviation and the spread of the initial values from each line (the “un-weighted standard 

deviation”). For the final estimate of the detrital 230Th/232Th ratio we use the calculated 

weighted means and an uncertainty that lies between the simple population spread and 

the weighted uncertainty. We assign detrital atomic 230Th/232Th ratios as follows: BA02 = 

55 ± 11 ppm; SCH02 = 59 ± 13 ppm; SC03 and SC02 = 111 ± 41 ppm; Fairy City = 78 ± 

42 ppm (2σ errors; Fig. S12). These ratios are greater than the typical detrital bulk earth 

ratio (4 ± 2 ppm 2σ) frequently used in other stalagmite U-series dating applications. The 

greater detrital atomic 230Th/232Th ratio is likely due to a lack of other source rocks 

besides the Melinau Limestone in the Buda and Mulu cave.  

 
3. Age Models and growth hiatuses 

The age models for the stalagmites in this study were constructed using the StalAge 

algorithm (Scholz and Hoffman, 2011). One exception is FC12-14’s upper younger 

section, which is separated from the rest of the record by a 40-ky hiatus, and only 

contains two U-series ages of 74.4 and 87.8 kybp, making it unfit for a StalAge Monte 

Carlo simulation. This portion of the record overlapped with two other previously 

published stalagmite records (SCO3 and SC02 (Carolin et al., 2013)), and a linear 

interpolation between chosen ages within the original ages’ calculated 2σ age error (73.8 

and 87.3 kybp) produced a well-fit overlapping record.  



!

 109!

 Original U-series ages with 2σ age error are plotted on top of the calculated 

Stalage model with 95% confidence intervals shown. For all records, if a repeat dating 

sample was drilled directly above or below a previously analyzed sample, the date with 

the smaller age error was used in constructing the age model.  

 Following Carolin et al. (2013), most potential hiatuses were identified in the 

stalagmite slab from optical evidence of a cessation of the carbonate accumulation (dark 

or white layer), and by U-series ages drilled immediately above and below such layers. 

Additional hiatuses were inferred wherever growth rates fell below 0.5 µm/yr in 

Whiterock and Fairy City stalagmites, as calculated from the StalAge model. Any δ18O 

samples that fell on a potential hiatus were removed from the final oxygen isotope time 

series, as they are associated with large dating uncertainties. In the cases where hiatuses 

are inferred from dramatic changes in growth rate between two U-series dates, and where 

the hiatus is visible as a narrow band in the stalagmite images, growth rates from adjacent 

dates were linearly interpolated to the hiatus layer from both sides. 

  The age-depth plots for SC03, WR12-01, WR12-12, FC12-12, FC12-14, and 

FC12-15 are provided in Figure C-S4 through C-S9. 
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Figure C-S4. (A) High-resolution scan image of lower SC03, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011).  
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Figure C-S5. (A) High-resolution scan image of FC12-14, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011). 
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Figure C-S6. (A) High-resolution scan image of FC12-12, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011). 
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Figure C-S7. (A) High-resolution scan image of FC12-15, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011). 
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Figure C-S8. (A) High-resolution scan image of WR12-01, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011).   
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Figure C-S9. (A) High-resolution scan image of lower SC03, showing original U-series 
dates reported in kyr. (B) Age-depth plot. Data points not included in age model are in 
red in panel A and not shown in panel B (see Table C-S1). Error bars represent 2σ dating 
uncertainties. Black line indicates the StalAge age-depth model. Grey outer curves 
indicate 95% confidence interval endpoints for an ensemble of age models produced 
using StalAge (Scholz and Hoffman, 2011). 
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Figure C-S10. Summary of age-depth plots, provided in Figures C-S4 through C-S9. 
 
  

WR12-01 WR12-12

FC12-12 FC12-14 FC12-15

SC03
(lower section)
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4. Evidence of Mulu δ18O equilibrium calcite precipitation 
 

Dorale and Liu (2009) argue that the only method that can be used to ensure that 

isotopic equilibrium is maintained during calcite formation is to replicate oxygen isotopic 

values in two or more stalagmites.  If the isotopic profiles are the same then it can be 

concluded that the calcite was formed under equilibrium conditions.  A modern-day study 

at Gunung Buda and Gunung Mulu measures present-day rainwater δ18O equal to -6.8 ± 

1.1‰SMOW and fast and slow dripwaters to be -6.6 ± 1.0‰SMOW and -7.0 ± 

1.1‰SMOW, respectively, which agree within error.  Modern calcite from one of the 

stalagmites used for this project is approximately        -9.1‰PDB, which is in good 

agreement with the calculated δ18Ocalcite (-8.6‰PDB) at equilibrium with T = 26°C 

(299K) as measured in Cobb et al. (2007).  Further evidence of calcite precipitation under 

equilibrium conditions at Mulu is provided in Partin et al. (2007). Here it was 

demonstrated that all three Borneo stalagmites analyzed passed the “Hendy test”, 

meaning that δ18O did not vary significantly across a single growth layer.  Further, the 

millennial scale δ18O variability between the nine stalagmites in the 160ky composite 

record (extracted from caves spanning over 20 km) s also well aligned (Carolin et al., 

2013; this study), indicating that the variability is due to regional climate changes 

associated with rainfall δ18O variability and not a result of calcite precipitation at 

disequilibrium states. 

5. Spectral Analysis 

Spectral analysis (Thomson, 1982; Percival and Walden, 1993) was performed on 

100-yr average composite Mulu stalagmite record from 0-160kybp using a single discrete 

prolate spheroidal sequences (DPSS) taper method (Matlab script provided by Prof. Peter 
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Huybers, phuyber@mit.edu). The 95% confidence interval was computed by multiplying 

the power spectrum of a sequence of red noise samples of length N by the chi-squared 

value at the 95% confidence level with 2 degrees of freedom. The results of the spectral 

analysis are shown in Figure 5.4. A similar analysis performed on 15 overlapping 

Chinese stalagmite records averaged in 801 200-year boxcar bins (N = 801) is shown in 

Figure 4 in comparison. 

The spectral analysis confirms a strong precessional signal in the Mulu record, 

with a muted peak at the obliquity period, 41ky, though it is not greater than red noise 

power density equivalent. Multi-taper method coherence using adaptive weighting and 

corrections for inherent bias to coherence estimates was performed between the Mulu 

160ky record and the equatorial insolation time series (Berger, 1978) daily across all four 

seasons (Matlab script provided by Prof. Peter Huybers, phuyber@mit.edu; number of 

windows = 1.5). The calculated coherence-squared estimates at 23ky period did not 

significantly vary between the 12 months, as expected, though the coherence-squared 

value did move closer to 1.0 when using the ice-volume δ18O-corrected record. The best  
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Figure C-S11. Percent power density from single-taper method spectral analysis on Mulu 
δ18O composite stalagmite 160 ky record (100yr sampling resolution) (upper left), ice-
volume corrected Mulu δ18O composite stalagmite 160 ky record (100yr sampling 
resolution) (lower), and Chinese δ18O composite stalagmite 160 ky record (200yr 
sampling resolution). Citations provided in Figure 5.6. 
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precessional fit (based on smallest phase lag) for the uncorrected record is 1 month 

following fall equinox (mid-October) while the best precessional fit for the ice volume 

corrected record is later in early November. 
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