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SUMMARY

In this thesis a few neural-inspired branch prediction architectures are presented and

discussed. Inspired by the successful Hashed Perceptron predictor, and digging further

into the depth of machine learning, a multiple layer neural network is applied to the realm

of branch prediction. These predictors are categorized as Shallow Online Neural (SON)

Predictors as they make use of shallow neural networks and are trained online as opposed

to a large number of prior neural inspired approaches.. The first model is a theoretical

design that shows that a very large neural network with a single hidden layer is quite adept

at learning branch patterns. This is due in part to the ability for neural networks to learn

non-linear relationships and expose inter-branch correlations that may not be perceivable to

TAGE or the Hashed Perceptron based predictor. The next model considers combining the

large neural predictor with existing state of the art prediction mechanisms such as GShare,

Perceptron, and TAGE predictors. A basic predictor selection mechanism is discussed

and more complex mechanisms are explored. As a network’s data storage budget scales

linearly with the number of inputs, it requires substantial reduction in both size of network

and number of networks to reduce the network’s memory footprint to a reasonable size.

Following this, substantial effort is made to transform the computational complexity of

the network to a more physically implementable state. The final model is a physically

realizable hybrid predictor that is competitive with the current state of the art in certain

workloads. Key insights regarding classification of TAGE mispredictions are discussed

and an alternative predictor is explored with aims to predict the correctness of TAGE rather

than the outcome of branch instructions. The possibility and scope of further work that

may be used to improve prediction accuracy, decrease implementation overhead, or further

classify TAGE mispredictions is also discussed.

x



CHAPTER 1

INTRODUCTION

1.1 The State of Branch Prediction

Branch mispredictions continue to be a substantial limiting factor in the performance and

energy efficiency of modern Out-of-Order processors with deep pipelines. Despite efforts

to identify and classify Hard-to-Predict branches, performance is still limited [1]. Branch

predictor designs have largely stagnated and recent approaches have only sought to aug-

ment the TAgged GEometric (TAGE) [2] predictor with correction mechanisms [3, 4], or

with convolutional neural mechanisms [5] that must be trained on a per-program basis and

only impact a small subset of branches.

The majority of branch predictors explored and in use today utilize an online learning

approach, largely disqualifying approaches that follow the footsteps of BranchNet from

likely inclusion in new processor designs. Online trained predictors largely fall into three

categories, History-based, Tag-based, and Neural-based. All three of these categories op-

erate using vectors based on global and local branch outcome histories and branch path

histories to identify and learn any correlations with subsequent branch encounters.

• History-based predictors: These predictors use a function of the common input vec-

tors to index into tables of counters

• Tag-based predictors: These predictors attempt to hash the common input vectors

and store direction, confidence, and usefulness as entries

• Neural-based predictors: These predictors take inspiration from neural-networks and

machine learning and apply them to the context of branch prediction.

Online predictors are able to quickly adapt to changes in program flow and path diver-
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gence; however, they still have some shortcomings. The Hashed Preceptron predictor [6]

struggles to scale to larger histories that TAGE is able to use and experiences substantial

branch address aliasing on account of a limited number of perceptrons. Additionally, the

Perceptron predictor is not able to learn non-linear branch relations due to fundamental

limitation of perceptrons. The TAGE predictor is unable to capture some branch relations

due to conflict misses in the tagged tables and capturing some relations that are not purely

tag based. These realizations led to the development of BranchNet, an attempt to augment

TAGE with a small convolutional neural network that is trained offline to resolve 16-48

hard-to-predict branches. However, due to the offline training approach, BranchNet re-

quires extensive training times with multiple GPUs, apriori knowledge of the workload,

and an exceptionally large storage budget (∼ 1 Kilo-Byte per branch).

1.2 Neural Network Predictors

We define Neural Network Predictors as a multi-layer neural network with binary inputs

and online training applied to branch prediction. In 1991, [7] showed that a feed forward

neural network with multiple layers is capable of universal approximation, inspiring neural

approaches in many domains, including image classification [8] and network security [9].

Applying binary inputs to neural networks allows them to be made more feasible in the

computer architecture realm. Due to the importance of correct prediction and the ability to

learn both linear and non-linear branch relations, neural network predictors are a good fit

for this application. With adequate activation functions and well tuned hyper-parameters,

it is highly likely that a large neural network predictor can learn any branch relationship

given enough time.

The historic problem with the implementation of neural architectures for branch pre-

diction and other schemes in a processor is the cost of implementation in terms of area and

power. This is largely due to the cost of the back-propagation phase of training networks as

this phase requires floating point arithmetic or very high precision fixed point arithmetic.
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Many previous works have attempted to mitigate this [5, 10, 11], however they either re-

quire offline training [5, 10] or analog computation [11]. Analog computation would allow

for substantially faster computation and lower area implementations, but remains infeasible

due to the latency of the bi-directional Analog-Digital Conversions and the complexity of

embedding analog computing hardware within a digital chip on the same substrate.

This thesis presents a neural network prediction architecture built off of BRanch pre-

diction via Adaptive Training (BRAT) [12] and refines its design. The network is re-

engineered to act as a supplement to a stronger primary predictor, namely the 32KB TAGE

predictor. This new predictor retains the flexibility of online approaches while mitigating

many overheads of offline training and large neural networks. This model takes inspiration

from the Perceptron predictor by utilizing binary inputs and a table of networks.

First this paper will establish the background and related works for branch predictors

(chapter 2). Then, chapter 3 gives a brief introduction to neural networks for branch predic-

tion, followed by chapter 4, which goes through the design of three neural network models,

concluding with a physically realizable model, the Quantized Shallow Online Neural (Q-

SON) predictor. Experimentation and evaluation procedures are discussed in chapter 5 and

chapter 6. An alternative application of the neural architecture is discussed in chapter 7,

followed by future works in chapter 8 and finally the conclusion in chapter 9.
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CHAPTER 2

BACKGROUND AND RELATED WORK

We categorize branch predictors based on how and when their state is modified or trained,

namely Online-trained and Offline-trained. Online training has been the standard for branch

prediction due to its ability to quickly respond to changes in patterns, however they struggle

to capture extremely variable relationships based on complex or noisy histories; as such,

they are unable to capture more intricate relationships despite ballooning in size. Offline

trained predictors attempt to capture only these complex relationships and filter predic-

tions based on these relationships. The offline approach works well, but requires immense

training time and substantial memory footprint to make reasonable performance improve-

ments. Additionally, current designs for these predictors require substantial Instruction Set

Architecture (ISA) changes and do not yet have physical implementations.

The timeliness of predictions must also be considered, deep convolutinoal networks

with high accuracy cannot be used in this context due to the very long latency of compu-

tation, instead prediction latency should be limited to 3-5 cycles in order to be reasonably

used for branch prediction in modern multi-processors.

2.1 Classical Online Trained Predictors

Classical Online Trained Predictors are typically organized as tables of predictor entries

indexed by a combination of Global History Register (GHR) and path histories in the form

of Local History Register (LHR). Current state of the art predictors are built on TAGE and

the hashed perceptron predictors.
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2.1.1 Counter-Based Predictors

The simplest predictors are built on tables of 2-bit saturating counters, letting the higher

bit provide a direction prediction for Taken (1) and Not-Taken (0). The Bimodal Predictor

utilizes the branch address as an index into this table. This approach only considers the

locality of the branch and as such suffers from aliasing and many entries are unused. In

an attempt to reduce aliasing and establish a basic relation with global history, GShare

computes an index by taking the xor of the branch address (Program Counter or PC) and

GHR. Modern predictors do not use the counter based approach in entirety doe to XOR’s

inability to capture many relationships. The two level predictor [13] uses the PC to index

into a table of local histories (LHR), then uses this local history as an index into the table

of 2-bit saturating counters.

2.1.2 TAGE

The TAGE predictor uses a partial match compression technique to fold the PC, very long

GHRs, and a small LHR into indices that are used to search a series of tables for an entry

with a matching tag. Aside from the tag, predictor entries consist of wide counters, flags,

and usefulness counters. Each table corresponds to a unique geometric history length,

where there are more tables for shorter history lengths and fewer tables for longer more

complex history lengths that are used when short history tables are unable to effectively

capture branch behavior. When longer histories are necessary, whether from noise on

account of unrelated branches or non-deterministic subsections of history being relevant,

these long-history tables are oversaturated and suffer from capacity misses. These condi-

tions result in the associated branches performing equivalently to a small 2-level predictor.

TAGE-SC-L [4] is the best performing predictor in the state-of-the-art. It combines TAGE

with a Loop Predictor (L) and a Statistical Corrector (SC). The loop predictor is used to

count the iterations of a looping branch and establish a confidence in the number of iter-

ations; this is helpful for filtering out and correctly predicting the outcomes of branches
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in loops with a fixed number of iterations (matrix multiply, etc). The statistical corrector

tracks and corrects errors in the base TAGE by using a small perceptron-like structure.

2.1.3 Hashed Perceptron

The hashed perceptron predictor uses perceptrons to compute the branch outcome. Percep-

trons are the most basic form of neural architecture and capture linear relationships between

the inputs by computing a linear combination of the inputs using a set of weights and ap-

plying a bias. However, it is fundamentally incapable of learning non-linear relations and

suffers from the same issue of non-deterministic branch orderings.

2.2 Offline Trained Predictors

Offline predictors such as BranchNet utilize program traces and profiling to augment pre-

diction accuracy for a baseline predictor [14, 15, 16, 17]. Other offline methods use the

compiler to learn the statistical bias of certain branches or perform value range propagation

to improve the performance of a predictor. Another example, the Spotlight predictor [18]

augments GShare with useful history segments.

BranchNet uses traces from the runtime of a program to train a convolutional neural

network (CNN) on up to 41 of the highest MisPredictions per Kilo-Instruction (MPKI)

branches. A set of 100 highest MPKI branches are identified and used for initial training,

of which up to 41 are then selected and encoded into the CNN based predictor. Then a

filter is developed that is used to direct a very small subset of branches to the BranchNet

portion at runtime. Branchnet is quite limited in that it can only learn a small number

of branches, these branches each take ∼ 1 KB of SRAM based storage. The predictor

as defined is unrealistic to implement in physical systems due to the prohibitively costly

computation and the unlimited size TAGE that it is paired with. As mentioned before,

offline training is not a solution for general purpose environments where many programs

are constantly context switched and moved from core to core and apriori knowledge of
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workloads and program conditions is not available. This style of predictor may be feasible

for task specific systems, however other compiler efforts are likely to increase performance

beyond the limits of BranchNet.

2.3 Combining Predictors

BranchNet is not the first prediction mechanism to combine 2 predictors, in fact a hybrid

predictor approach was proposed in 1993 [19] and used in the Alpha 21264 processor [20]

as combined a local history predictor (two level predictor) and a GHR indexed bimodal

table, deciding between the 2 with a smaller counter table indexed by the GHR. The small

counter table is used as a tournament. The Intel P6 processor also implemented a combined

predictor approach inspired by the PAs predictor [21].

2.4 Fixed Point

Neural networks rely on floating point multiply and add units that are impossible to im-

plement given the resource constraints of a branch predictor. In order to reduce the cost

and latency of a neural network implementation, Fixed point representations are used [22].

Fixed point values can be represented as Q[I].[F], where a 2’s compliment binary number of

consisting of I+F bits represents a integer dynamic range defined by I bits and a fractional

precision of 2−F . By utilizing Fixed Point, we avoid the cost of normalization and barrel-

shifters present in floating point hardware and can instead use integer arithmetic. While

these representations are unable to represent the dynamic range or arbitrary precision of

sub-normal values, experiments in the context of this application indicate that substantial

storage reductions and area reductions are feasible without sacrificing accuracy when using

a 16-24 bit fixed point representation as opposed to a 32 bit floating point value.

7



CHAPTER 3

A BRIEF OVERVIEW OF NEURAL PROCESSES

A neural architecture is comprised of a series of layers. These layers can either perform

a linear or non-linear operation. The layers are used in the forwards order for inferencing

and computing a prediction, and in the backwards order for updating the weights and pa-

rameters of layers. This following section explains terms and features of neural networks

that will be used for the specific topology used for this application.

3.1 Key Structures

Figure 3.1: Perceptron

• Perceptron: A perceptron (Figure 3.1) is the smallest example of a neural process,

it takes a vector of inputs, performs a dot product with a vector of weights and adds

a bias component. the resultant value is the output of the process. These are the
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fundamental piece of the Perceptron Predictor [6], which uses the bits of the GHR as

an input vector.

• Fully Connected Layer: A Fully Connected Layer can be thought of as a set of

perceptrons that are used to calculate many linear combinations based on their weight

vectors.

• ReLU: Rectified Linear Unit (ReLU) is an activation function that introduces non-

linearity by truncating all non-positive values to zero, leaving positive values unmod-

ified.

• LeakyReLU: Leaky Rectified Linear Unit (LeakyReLU) is an activation function that

introduces non-linearity by multiplying all non-positive values by a small constant,

leaving positive values unmodified.

• Max Pooling: Max-Pooling is a layer that groups values into pairs, retaining the

largest value.

• Sigmoid: Sigmoid is an activation function that performs an exponential based map-

ping of values in the real number space to the finite range [0,1]. This is especially

helpful for binary classification problems where a network is tasked with producing

a binary decision. this is well fit for applications such as branch prediction. For

the sake of clarity, the equation for Sigmoid (Equation 3.1) and its derivative (Equa-

tion 3.2) are included.

1

1 + e−x
(3.1)

1

1 + e−x

(
1− 1

1 + e−x

)
(3.2)
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• Binary Cross Entropy: Binary Cross Entropy (BCE) is a loss function well suited

for binary classification. The Binary Cross Entropy Loss function’s derivative is

Equation 3.3 and while seemingly simple, utilizes division which is untenable for

latency sensitive applications.

−T0

S0

+
1− T0

1− S0

(3.3)

• Learning Rate: The Learning Rate (LR) is a scaling factor applied to the error cal-

culation used to prevent the network from over-correcting and converging on local

minima or maxima.

3.2 Topology of a Shallow Neural Network
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A<B
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Figure 3.2: A Neural Network with LeakyReLU Activation Layer and Max-Pooling

Figure 3.2 depicts the Forwards Propagation for a neural network that will be the initial

model for the branch prediction application. In order to provide clarity a heavy reduction

in number of inputs is used to scale the number of nodes to a readable level. The first
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layer is a fully connected layer, producing the vector of values H1. A LeakyReLU layer is

applied with a leakiness factor of 1/8 which is represented as a right-shift by 3, producing

H2. After this a MaxPooling layer is applied that either allows a value to pass through or

be replaced with 0, producing H3. The final Fully connected layer is applied condensing

the output to a single value. Here, we can use the sign of the value as the output, in a

traditional model, the sigmoid activation function would be applied before retrieving the

output. However, because sigmoid is a zero-centered function, it can be applied afterwards.

Sigmoid

Sigmoid'

Sigmoid Prime

Sigmoid

BCE Loss

X

Loss

Learning Rate

L0

L1

Error

E0

O0

O0

S'0

S0

T0

Figure 3.3: Error calculation flow for Sigmoid with BCE Loss

In Figure 3.3 first the sigmoid is computed and then the Binary Cross Entropy Loss is

computed. In parallel, training values such as the derivative of sigmoid and learning rate

are applied. A final error value E0 is computed with a multiplication.

In Backwards-Propagation (Figure 3.4) the calculated error/loss is applied by taking

the derivative of each of the layers and applying it to the weights to calculate the updated

weights which will be used for subsequent predictions.

11



Layer 2
Weights

...

E0

Layer 2
Inputs

...

Layer 2
Weights

...

X
Layer 2

 Δ Weights 

...

X
ReLU Error

Filter Pooling

...

Layer 2
Weights

...

>0 ?

0>> 3

Layer 1 Error

...

ReLU Error

Layer 2 Weight Delta

X

Layer 1
 Δ Weights 

Layer 1
Weights

...

ReLU Inputs

... Layer 1
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Layer 1 Error

Layer 2 Weight Update Layer 1 Weight Delta Layer 1 Weight Update

Layer 1
 Δ Weights 

Layer 1
Inputs

...

Figure 3.4: Training for Figure 3.2

3.3 Input selection for Branch Prediction Applications

For Branch Prediction, we utilize a combination of Global History and a table of Local His-

tories that will be used as a bit-vector input to the network. Like the Perceptron predictor,

bipolar binary inputs may be used, meaning that in the input vector, 0 is replaced with −1.

This allows not taken branches to provide a negative input to the network instead of having

a non-impact as is the case with traditional binary inputs.

3.4 The Many Network Problem/Solution

The Perceptron predictor shows us that a single network is not capable of learning all

branch behaviors and instead uses a table of networks such that the structure of the network

is the same but many sets of weights are stored. The same logic can be applied here,

however due to the width of weights and larger number of weights for a neural network, far

fewer networks are used.
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3.5 High Level Design Concerns

With a neural network design in place, the application and use of it is highly impactful

to overall performance. Improper use of neural or overtraining could largely affect the

accuracy.

3.5.1 Criteria for Training

The neural network can be trained in one of 3 ways:

• Train Always: The network is trained always despite the performance of the base

predictor

• Train When Used: The network is trained only when the tournament or choice pro-

cess selects the neural network

• Train When Almost Used: The network is trained when the tournament selects the

neural network or when the tournament selects the assistive predictor with low con-

fidence.

3.5.2 Criteria for Utilization

The neural network can be selected based on a small tournament as in [20] or based on other

criteria. For example, misses in TAGE’s tagged tables or when TAGE has low confidence.

A basic example with a pc indexed 2-bit counter table can be seen in Figure 3.5.

3.5.3 Base Predictors

The Neural predictor is used in conjunction with a performant base-predictor. We consider

utilization in conjunction with GShare and with 32 KB TAGE-SC-L.
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CHAPTER 4

DESIGN OF A NEURAL ARCHITECTURE FOR BRANCH PREDICTION

In order to establish a theoretical bound for performance of a neural inspired predictor, we

consider a very large neural network. This predictor fits the criteria of a Shallow Online

Network (SON) Predictor. We slowly condense and improve on the network until we arrive

at a physically realizable network.

4.1 A 128 MB Neural Network

We construct a SON network with inputs comprised of a GHR length of 128 and a 512 entry

32-bit Local History table. With 80 Hidden Layer Nodes, LeakyRelu with a coefficient

of 1/8, MaxPooling, Sigmoid activation function, Learning Rate of 1/64, and full fp32

precision. While impossible to construct, this network allows us to explore the bounds of

neural learning. This network follows the model of Figure 3.2 with 212 networks indexed

by the PC. We also consider appending a 32KB GShare with a clairvoyant tournament. The

tournament utilizes apriori knowledge of the branch outcome to decide best between the 2

predictors.

4.2 A 16MB Model

From the 128MB model we filter the structure down to use a 48-bit GHR and the same 512-

entry 16-bit Local History Table, however, we introduce bipolar inputs as opposed to the

normal inputs. This network has 16 Hidden Layer Nodes, LeakyReLU with a coefficient

of 1/8, Sigmoid activation function, Learning Rate of 1/64, and full fp32 precision. There

are 212 networks in this model (Figure 4.1). This network, while still unrealizable is a

substantial reduction in size with similar performance characteristics. We pair this predictor
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Figure 4.1: Network for 16MB configuration

with a 32KB GShare and a 32KB TAGE-SC-L and apply a tournament comprising of either

a 2-bit counter table or using the confidence and table index from a TAGE hit.

4.3 A 64KB Model

This is the most realizable model, It is very similar to the 16MB model, but utilizes 24

networks and 8 hidden layer nodes instead. The neural aspect of the model uses ∼ 20KB

of the area, the remaining area is occupied by a 32KB TAGE-SC-L. We find that the accu-

racy is largely unaffected despite the substantial increase in aliasing from the reduction in

networks.
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4.4 Realizability of the 64KB Model

The 64KB model now utilizes fixed point arithmetic to substantially reduce arithmetic hard-

ware. In order to reduce latency, a Q6.6 fixed point representation is used for the forward

propagation. A Q6.18 fixed point representation is used for the backwards propagation to

maintain higher precision required for training. The Sigmoid activation function, derivative

of sigmoid, and BCE loss function are approximated by using piecewise linear functions

that eliminate all division and exponentiation replacing it with multiplication and addition.

By quantizing the network for the forward pass and even with the backwards propagation

steps and general weight storage, we transform the SON-Predictor into a Q-SON Predictor,

or Quantized Shallow Online Neural Predictor.

4.4.1 Forwards Propagation

By using the Q6.6 fixed point representation, each computed value will be within the range

(-33,32) and values that would pass the bounds will be saturated to the extremes. Inter-

estingly, using binary and bipolar binary inputs allows for substantial simplification of the

multiplication required in the first fully connected layer. With binary inputs, an input can

simply be ANDed with the associated weight to accomplish the multiplication. For bipolar

binary inputs, the logic is simply a multiplexer between the weight and its complement, the

remainder of the computation for valid 2’s compliment inversion can be precomputed with

ahead prediction and added inline easily due to the commutativity of addition. The wide

adder is comprised of carry look-ahead adders that are able to compute the sum quickly in

a small timeframe [23]. The sign bit of this value is used to select between the value and

1/8th of itself, applying LeakyReLU. The resultant values are then multiplied by the Q6.6

weights and added to produce the output. The sign bit of the value is adequate for appli-

cation as the prediction output. Sigmoid calculation is delayed until backward propagation

to reduce the latency of forward propagation. A pipeline register is inserted immediately
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following the LeakyReLU stage and another following the output calculation. Factoring in

the weight access penalties, the design will take 3 cycles to produce an output. However,

this will be resolved in subsection 4.5.1. The initial RTL model is able to operate the en-

tire forward propagation at 2GHz in 1 cycle ignoring weight access penalties, but a more

desirable 4GHz is attainable using the 2-cycle pipelined model.

4.4.2 Backwards Propagation

Backwards propagation is substantially more expensive than forwards propagation due to

the large number of multipliers and adders required. The multipliers for the first fully

connected layer would be prohibitively expensive to implement, thankfully a similar trick

to the one applied for the forwards propagation can be applied. The Sigmoid activation

functions and BCE loss function are prohibitively expensive to implement due to the ex-

ponential arithmetic and division operations. We replace these functions with piece-wise

linear approximations stored in slope intercept form and stored in a small table. The sig-

moid and its derivatives are calculated at the same time. A power of 2 learning rate is

applied to the sigmoid prime calculation by selecting lower precision bits from the wide

output of the multiplication. Instead of waiting for the true branch outcome T0, both op-

tions are applied and speculation is performed through to the E0 calculation and the correct

value is selected when it is available. The error for each layer is now calculated and ap-

plied using the inputs to the layer at time of prediction and the weights. These values are

maintained in the pipeline buffers. The inverse LeakyReLU is applied and the first layer

is finally updated. Again, the AND gate/multiplexer trick is applied to reduce the number

of necessary multipliers by 512. This design is pipelined into 8 stages to reach the desired

4GHz frequency.
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4.5 Side Effects of Realizability

Disregarding possible arithmetic rounding errors due to the optimizations, there are 2 major

concerns with the pipelined approach to the Q-SON predictor.

4.5.1 Prediction Latency

With substantial inference and update latencies there is a real concern regarding the time-

liness of predictions. TAGE [2] utilizes ahead prediction [24] to search the tagged tables

earlier than the branch address is known. This can be applied to the neural approach to also

limit the impact of the latency. Additionally it is found that ahead pipelining does not sub-

stantially impact the performance of branch predictors [25] and thus allows for timeliness.

4.5.2 Validity of Pipelining

Pipelining the architecture introduces an interesting dilemma. When the network is used

for inference, arithmetically, it should not be used for inference again until the weights

have been updated. This would make the predictor usable only once every 10 cycles. This

is clearly not desirable so we choose to allow weights to be modified by branches that

occurred before their most recent update. This is an unlikely event that only occurs if

more than one branch alias to the same network table index within a 10 cycle window.

Experiments show that this has a marginal effect on the predictor accuracy 0.05%.
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CHAPTER 5

METHODOLOGY

5.1 Trace Selection

Table 5.1: Selected Traces from SPEC2017 Integer

Trace Name simpoints 32KB TAGE 64KB TAGE 64KB Perceptron

Accuracy Accuracy Accuracy

MCF 14 7.32% 7.24% 8.53 %

XZ 19 5.63% 5.51% 7.48 %

exchange2 19 0.54% 0.45% 1.85 %

gcc 5 0.92% 0.85% 2.55 %

leela 29 10.05% 9.55% 13.73 %

omnetpp 5 2.63% 2.58% 3.46 %

perlbench 8 0.81% 0.65% 1.67 %

x264 10 0.84% 0.82% 2.03 %

Experiments are conducted using benchmarks from the SPEC 2017 Integer Suite [26].

We simulate using SimPoints [27] such that enough simpoints are used that 90+% of each

trace is covered. If enough coverage is not achieved, the trace is not evaluated, deepsjeng

and xalancbmk are not considered because of this. Table 5.1 shows the selected bench-

marks.

5.2 Cost of Realizable implementation

In order to determine the area and resource utilization of the neural predictor, a cycle accu-

rate RTL model was developed. We determine the area of computation elements because

the cost of implementing multipliers and wide tree adders is substantially higher than the

cost of the xors and adders used by TAGE and perceptron predictors. The model is synthe-
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Table 5.2: Area of 64KB Q-SON Predictor

- Forward Backwards Weight Base Total
Propagation Propagation Storage Predictor

Size 154K 504K - - 658K
(Transistors)

Size 3.13KB 10.24KB 18.5KB 32KB 63.87KB
(Eq. SRAM size)

sized using Cadence Genus in tandem with the NanGate 15 FreePDK [28]. Combining the

model with area characteristics from HP Labs’ CACTI utility [29]. Converting the transis-

tor utilization of the model to an equivalent amount of SRAM (Table 5.2), we are able to

see that the area estimate is comparable to other 64KB predictors that we aim to compare

against. The predictor model is synthesizable at 4 GHz for a 2 cycle prediction latency us-

ing naive libraries in RTL synthesis. Factoring in weight access penalties and local history

lookups, it is expected that a prediction will be made in 3 cycles at 4 GHz. However, with

more advanced gate libraries and other optimizations, the frequency can likely reach be-

yond 4GHz or require fewer back propagation stages. With ahead-pipelining, a prediction

can likely be available within 1-2 cycles.

5.3 State of the Art Competitors

An evaluation of the state of the art predictors is made for use in comparisons with the

model. The predictors selected are: 64KB TAGE-SC-L, 32KB TAGE-SC-L, 64KB Per-

ceptron
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CHAPTER 6

EVALUATIONS
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Figure 6.1: Accuracy of the 128MB SON Predictor configuration compared to the state of
the art

In Figure 6.1 we see that the 128MB SON predictor is quite adept at determining the

outcomes of conditional branches. Data considering a clairvoyant tournament with a small

GShare is considered as well. We see with the clairvoyant tournament that an intelligent

choice prediction is likely to substantially improve performance compared to the state of

the art.

We explore the 16MB configuration when used in tandem with a base predictor. When

GShare is used, the 2KB tournament is a table of counters indexed by PC. When TAGE is
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Figure 6.2: Accuracy of the 16MB SON Predictor configuration compared to the state of
the art

used, the tournament is instead a logical function based on TAGE’s confidence and whether

or not there was a miss. We see in Figure 6.2 that the SON predictor performs admirably

compared to TAGE32 but does not outperform the TAGE32 model by itself. This is en-

tirely due to the tournament process as we see that a clairvoyant tournament gives admiral

performance improvement.

The 64KB theoretical model performs similarly to the 16MB model based on Fig-

ure 6.3, indicating that this model is quite close to the lower limit for the computational

complexity vs accuracy trade-off.

From Figure 6.4 we see that the 64KB Q-SON predictor performs quite admirably com-

pared to the state of the art, especially considering the substantial arithmetic changes made

to support physical implementation. However, it does not create appreciable deviations
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Figure 6.3: Accuracy of the 64KB SON Predictor configuration compared to the state of
the art

in accuracy whether helpful or unhelpful. This is again likely due to the choice predic-

tion mechanism. Here a clairvoyant tournament is not explored as it is not a physically

realizable concept.

Based on Figure 6.5, we see that when easy to predict branches are filtered out, the cost

reduction mechanisms are able to retain a substantial amount of the predictor performance.

Based on runtime analysis of simulations, we find that the neural portion of the pre-

dictor is used ∼ 30% of the time, and the accuracy is not as high as would be desirable.

With a more developed tournament, neural utilization should decrease and accuracy should

increase. The ideal ratio for this will likely result in improvements over TAGE.
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CHAPTER 7

TAGE FILTERING

It is apparent that determining when TAGE will be incorrect is a substantial factor in im-

proving the performance of Branch Prediction. Some interesting data is collected from a

subset of the SimPoints, amounting to 70% coverage of the entire SPEC 2017 integer suite

Table 7.1: Percentage of Mispredictions in groups of 4 tables

0 1 2 3 4 5 6 7 8

Mispredictions 3.1 1.6 16.2 32.5 25.7 6.2 3.3 2.0 0.8

From Table 7.1 we see that the majority of mispredictions occur in groups 2-6. These

groups span the 36 tagged tables in TAGE, partitioned into groups of 4, indexed from 0-8.

Interestingly, within these buckets, a few tables are not very impactful. In fact there are 16

tables that account for the majority (75+%) of mispredictions.

Table 7.2: Percentage of Mispredictions for each Confidence Level

0 1 2

Mispredictions 41.4 19.8 38.8

From Table 7.2 we see that 50% of mispredictions from 32KB TAGE-SC-L occur when

the confidence level is Low or Medium

Combining these 2 categories could yield a good filter for deciding when TAGE will

mispredict. As a misprediction can be converted into a correct prediction by applying an

inversion to the prediction, a large logic element can be attributed to the filtering mechanism

and the secondary prediction trivialized.

We consider using the existing neural architecture to determine a much more complex

confidence in TAGE’s prediction. We must modify the inputs to the network to increase the
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likelyhood that a function learned by this model is viable. We call this network the Online

Branch Filtering Network (OBFN). We also modify the training scheme based on the filter.

The Bank ID for the matching entry in TAGE is retrieved early using ahead prediction,

and based on our observations across a majority of SimPoints, this ID is mapped to a value

between 0 and 15 and used as an index into the table of neural networks. Tag matches in

banks that are not commonly inaccurate are ignored. instead of using global branch history

and local branch history, a Global Correctness History Register (GCHR) and a table of

Local Correctness History Register (LCHR) are used. These are indexed by a function of

the BankID and branch address (PC). The neural network output is then used as a factor in

a function used to determine a secondary confidence in TAGE. If the tag matching entry in

TAGE has a low or medium confidence and the network predicts a TAGE inaccuracy, the

output of TAGE is inverted, otherwise the prediction is left unperturbed.

We see that the accuracy is again unperturbed from the baseline 32KB TAGE-SC-L pre-

dictor. It is apparent that this iteration of the OBFN is incapable of effectively determining

the likelyhood that TAGE will mispredict.

Another method of filtering would be to look at the cases when TAGE mispredicts a

branch that Neural is able to predict correctly. By isolating the cases where both predictors

mispredict and only TAGE mispredicts, we can establish a filter that is able to isolate a

majority of these events without conflicting in the set of correct TAGE predictions. Such a

filter could utilize path histories, microarchitectural state, register file values, etc. This is a

topic for future work.
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CHAPTER 8

FUTURE WORK

The neural prediction architecture, while not substantially improved compared to TAGE,

has given keen insights into neural inspired learning methods. Further cost reduction meth-

ods such as variable fixed-width weights, alternative input selection, analog computation,

and alternative activation functions may prove vital to improving the accuracy of the neural

portion of the predictor. If the area and implementation cost can be reduced substantially, a

larger input set can be considered. Further work may explore a Deep Online Neural (DON)

predictor that uses a much deeper network with more interesting activation functions to

learn complex relationships that the SON predictor cannot. in a similar vein the Convo-

lutional Online Neural (CON) predictor could be designed in such a manner that specific

hard to predict branches are isolated and analyzed at runtime to create a more nuanced

prediction engine.

As mentioned in chapter 7, Many other methods of filtering and making a better choice

predictor should be explored in a search for a better combined predictor.
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CHAPTER 9

CONCLUSION

The neural prediction method as defined in this thesis is able to near the performance of

TAGE with the ability to correctly predict branches TAGE is unable to. The current imple-

mentation is able to provide predictions 1-2 cycles prior to TAGE. The neural prediction

architecture as discussed can be applied to other binary classification problems as is evident

by the TAGE filtering mechanism (chapter 7) producing comparable results to the 64KB

theoretical model.

As a more advanced neural architecture than the hashed perceptron predictor, the neu-

ral model outperforms its predecessor in the Hashed Perceptron predictor with substantially

fewer networks, indicating that a neural approach is able to learn substantial relationships

despite aliasing. This is indicative that a deeper network may be capable of learning rela-

tionships that TAGE and perceptron cannot and by utilizing fewer networks and an exten-

sively precise filter that allows for more inputs and more complex layers, a more interesting

outcome may be achieved.
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