

Ablation of PICA-like Materials Surface or Volume phenomenon?

Jean Lachaud*, Ioana Cozmuta^x, and Nagi N. Mansour⁺

* NASA Ames Research Center : Nagi.N.Mansour@nasa.gov
 * NASA Postdoctoral Fellow at Ames : Jean.Lachaud@gadz.org
 *ELORET Corporation : Ioana.Cozmuta@nasa.gov

Sponsored by NASA's Fundamental Aerodynamic Hypersonic Program

6th International Planetary Probe Workshop, Atlanta, June 2008

. Introduction and Objective

"The time to study and fully understand the limits of PICA is NOW" B. Laub and E. Venkatapathy, IPPW5, 2007.

- Introduction :
 - The ablation of the char layer in ablative material is usually described in term of recession velocity. This "surface" description is valid for dense materials.
 - However, the recession of the average surface in porous materials may not recede uniformly but matrix and fibers may progressively vanish in depth inside the structure : "volume ablation".
 - PICA-like materials are porous and may undergo volume ablation with two important consequences :
 - The material weakens in volume and is possibly subject to mechanical erosion (Spallation)
 - The ablation enthalpy distributed in volume modifies the thermal response

• Objectives of this presentation:

- Model and understand ablation using a porous medium model
- Estimate whether volume ablation is an important phenomenon or not
- Decide if an elaborated model taking into account a volume ablation fully coupled with pyrolysis have to be developed (many years of development). If it is the case, a first model will be presented.

1. Modeling of the structure of PICA-like materials

2. Modeling of the Ablation of porous materials

- Microscopic model
- Numerical Simulation at microscopic scale
- Homogenization \rightarrow macroscopic behavior

3. Application to Stardust Reentry Conditions

- Macroscopic model including blowing effects
- Volume or Surface Ablation?
- 4. Possible ablation model for a volumetric coupling with Pyrolysis
- 5. Conclusion & Next steps

1. Modeling of the structure of PICA-like materials

Structure of "PICA-like" materials

- Preform :
 - Random arrangement of carbon fibers
 - High porosity
- Matrix :
 - Phenolic resin
 - Low mass fraction
- Material type :
 - Ablator
 - Low density

M. Stackpoole et al., AIAA 2008-1202 (Reno 2008)

1. Modeling of the structure of PICA-like materials

Fibrous preform : fiber size / orientation / porosity (statistical)

- Random drawing of non-overlapping cylinders (Monte-Carlo algorithm)
- Cylinders more or less parallel to the surface (Bias on azimuthal angle)
- Choice of a Length/Radius ratio (around 50 for PICA-like materials)

Totally RandomComplementary Azimutal angle : +/- 15°Interesting result : limit porosity = 0.85 for totally random structures / 0.9 for parallel

Matrix

- Before pyrolysis : different possibilities
 - Thin layer of matrix surrounding the fibers
 - "Fluffy" matrix occupying the pores of the fibrous structure
- After pyrolysis : matrix structure is modified
 - Due to an important mass loss during pyrolysis
 - Resulting structure varies with experimental conditions
- Models :

Thin matrix layer around the fibers

Virgin fluffy matrix homogeneous at fiber scale

Objective and assumptions

- Objective :
 - Estimate whether volume ablation is an important phenomenon or not using a simple model
 - In order to decide if an elaborated model taking into account a volume ablation fully coupled with pyrolysis have to be developed
- Main Hypothesis :
 - If volume ablation occurs, it occurs mainly in the char layer
 - Ablation model loosely coupled with pyrolysis
- Approach :
 - Multiscale modeling: microscopic scale (fibers) → macroscopic scale (composite)
 - Numerical models to provide guidelines and accurate results
 - Simplified analytical models to provide understanding
 - Application of the models to flight conditions (includes a loosely coupling with pyrolysis)

Reaction/Transport & Recession model in a carbon felt

- Idea : Use a simplified model to try and understand the Ablation of porous media
- Hypotheses :
 - Simplified structure : carbon fibers randomly oriented
 - Simple chemistry (C_s oxidized by 0_2 or sublimated)
- <u>Starting point</u>: differential recession of a heterogeneous surface **S** by gasification

$$\frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla S = 0$$

$$\mathbf{v} = \mathbf{\Omega} \cdot J \cdot \mathbf{n}$$

$$\mathbf{J} = \mathbf{k}_{\mathrm{f}} \mathbf{C}$$

$$\frac{\partial C}{\partial t} + \nabla \cdot (-D\nabla C) + \overrightarrow{v}_{g} \cdot \nabla C = 0$$

N.B.: oxidation notations BUT sublimation is mathematically equivalent

IPPW6, Atlanta, June 2008

Reaction/Diffusion : Simulation (1/2) : diffusion << reaction (D/L << k_f)

PICA-like materials : Surface or Volume ablation ?

9/25

Reaction/Diffusion : Simulation (2/2) : diffusion >> reaction (D/L >> k_f)

Surface or Volume ? \rightarrow depends on experimental conditions

Surface Ablation (D/L << k_f)

IPPW6, Atlanta, June 2008

Homogenization and Analytical solution (hyp. : no recession)

- Volume or surface? →Key information : C, oxidant concentration
- 1D model to obtain an analytical solution : C (z) = f (experimental conditions)

Mass balance in steady state :

$$\begin{split} q_{z}(z) - q_{z}(z + dz) &= q_{y}(z) \\ -D\nabla(C(z) - C(z + dz))S_{p} &= k_{f}C(z)P_{f}dz & S_{p}/P_{f} = \varepsilon/s \\ &s \ (m^{2}/m^{3}): \text{specific surface} \\ \hline C(z) &= C_{0} \frac{\cosh\left[\Phi(z/L_{s}-1)\right]}{\cosh\Phi} & \text{Thiele number}: \Phi = \frac{L_{s}}{\sqrt{\frac{D_{eff}}{sk_{f}}}} & \text{Hyp., bulk diffusion} \\ &\text{between perpendicular fibers: } D_{eff} = \varepsilon D \\ &\text{BUT...} \end{split}$$

IPPW6, Atlanta, June 2008

PICA-like materials : Surface or Volume ablation ?

12/25

2. Volume Ablation model

Validity domain of the continuous regime hypothesis

- Knudsen number : $Kn = \overline{\lambda} / d_p$ (continuous regime for Kn < 0.02)
- Pore size around 50 μ m \rightarrow Knudsen regime for mean free path < 1 μ m

Model still correct in Kn regime but with a modified diffusion coefficient

• Knudsen effects : Diffusion coefficient in a capillary (Bosanquet model)

 $\frac{1}{D_{ref}} = \frac{1}{D_B} + \frac{1}{D_K} = \frac{1}{\frac{1}{\sqrt[1]{3} v \lambda}} + \frac{1}{\frac{1}{\sqrt[1]{3} v d_p}} \qquad \text{(harmonic average)}$

• Fibers randomly oriented : tortuosity effects non negligible in *Kn* regime

 Tortuosity has to be obtained by Monte Carlo simulation inside the porous media (not available yet in the literature for non-overlapping fibers)

 $D_{eff} = \frac{\varepsilon}{\eta} D_{ref}$

Determination of the effective diffusion coefficient D_{eff}

- Monte Carlo Simulation :
 - Random Walk rules :
 - (T,P) fixed = $(\overline{\lambda}, D)$ fixed
 - λ : Maxwell-Boltzmann distribution
 - constant velocity norm $(D = 1/3 \overline{v} \overline{\lambda})$ with 3D random direction drawing

1) Displacement ξ of 10000 walkers followed during τ (chosen for convergence)

2) Einstein relation on diffusion process :

$$D_{ej} = \frac{\left\langle \xi_j^2 \right\rangle}{2\tau}$$

• Tortuosity as a function of *Kn* for the fibrous material of this study

Illustration : path of a walker in a periodic cell

• Concentration gradient (1D model) as a function of Thiele number

• Steady state equation including the convective term (continuous regime)

$$\frac{\partial^2 C}{\partial z^2} + \frac{1}{L_C} \frac{\partial C}{\partial z} + \frac{1}{L_R^2} C = 0 \quad \text{with} \quad L_C = \frac{D}{v_g} \text{ and } L_R = \sqrt{\frac{D_{eff}}{sk_f}}$$

• Solution (of the quadratic ODE with one Dirichlet B.C. : C(z=0)=C₀)

$$C(z) = C_0 \exp\left[-\frac{z}{L_C} \left(1 + \sqrt{1/4 + \left(\frac{L_C}{L_R}\right)^2}\right)\right]$$

 $L_C > 10L_R \longrightarrow$ Blowing effect negligible (on concentration gradient)

Example : Stardust peak heating

 $L_C / L_R = 0.145 \longrightarrow$ Blowing effect almost negligible

IPPW6, Atlanta, June 2008

• **model including blowing effects + thermal gradients** (data from FIAT simulations) : Concentration in the char layer (FE solution: FlexPDE code)

IPPW6, Atlanta, June 2008

3. Application to Stardust Reentry Conditions

Stardust trajectory (stagnation point)

IPPW6, Atlanta, June 2008

4. Volume coupling of Pyrolysis & Ablation

Integration of ablation in the pyrolysis model : first ideas

Mass balance

$$\frac{\partial \varepsilon \rho_g}{\partial t} + \nabla \cdot (\varepsilon \rho_g \vec{v}_g) = -\frac{\partial \varepsilon_m \rho_m}{\partial t} - \frac{\partial \varepsilon_f \rho_f}{\partial t} \qquad \varepsilon + \varepsilon_m + \varepsilon_f = 0$$

Momentum balance

$$\varepsilon \vec{v}_g = -\frac{\overline{K}}{\mu} \cdot \nabla p$$

Energy balance

$$(\varepsilon\rho_g c_g + \varepsilon_f \rho_f c_f + \varepsilon_m \rho_m c_m) \frac{\partial T}{\partial t} = \nabla \cdot (\vec{k} \cdot \nabla T) - \varepsilon\rho_g c_g \vec{v}_g \cdot \nabla T + \delta h_p \frac{\partial \varepsilon_m \rho_m}{\partial t} + \delta h_{abl} \frac{\partial \varepsilon_f \rho_f}{\partial t}$$

Pyrolysis law

$$\rho_m = \rho_v - \sum_{i=1}^{n_laws} (\rho_{v,i} - \rho_{p,i}) \xi_i \quad with \quad \frac{\partial \xi_i}{\partial t} = (1 - \xi_i)^{n_i} A_i \exp\left(-\frac{E_{A_i}}{RT}\right)$$

Ablation law (fibers)

$$\rho_f = const. \qquad \frac{\partial \mathcal{E}_f}{\partial t} = ?$$

IPPW6, Atlanta, June 2008

20/25

4. Volume coupling of Pyrolysis & Ablation

Multiscale modeling of the ablation of the carbon felt

- Ablation : surface phenomenon at microscopic scale, but volumetric at macroscopic scale
 Local approach
 - Mean fiber diameter evolution

$$\frac{\partial d_f(z,t)}{\partial t} = -\Omega_s 2k_f(T)C(z,t)$$

- Homogenization : fiber diameter \rightarrow mean porosity

Convenient variable for ablation modeling : ε

$$\varepsilon(z,t) = 1 - (1 - \varepsilon_0) \left(\frac{d_f(z,t)}{d_{f_0}} \right)$$

$$\frac{\partial \varepsilon C(z,t)}{\partial t} - div(D_{eff}(T,P)grad(C(z,t))) = \frac{4 k_{f}(T) C(z,t)}{d_{f_{0}}} \left[(1-\varepsilon(z,t))(1-\varepsilon_{0}) \right]^{0.5}$$

- Density :

 $\rho_{material} = (1 - \varepsilon) \rho_f$

IPPW6, Atlanta, June 2008

4. Volume coupling of Pyrolysis & Ablation

Illustration of the proposed Ablation law for Stardust Peak Heating thermal conditions

• Simulation of the "oxidation part" of ablation (loosely coupled with pyrolysis) in the carbon felt

ablation_porous_therm_2_stardust_withgardterm_peakheating: Cycle=0 Time= 0.0000 dt= 3.0000e-4 P2 No Integral= 1.080000

IPPW6, Atlanta, June 2008

• Simulated in the carbon felt

IPPW6, Atlanta, June 2008

. Material Behavior Analysis (cont.)

Literature : Stardust Post-flight Analysis

- Overall behavior well predicted by current models (FIAT simulation presented below)
- BUT : char zone density overestimated

IPPW6, Atlanta, June 2008

. Conclusion / Next steps

- Porous media model for the ablation of fibrous materials
 - Importance of Thiele Number (diffusion/reaction competition in porous media)
 - Knudsen regime inside the porous media
 - Volume / Surface phenomenon? \rightarrow depends on experimental conditions
 - Stardust conditions:
 - Low effect of blowing on mass transfer inside the porous media
 - ablation by oxidation in volume for a carbon felt
 - Idea for volume coupling of pyrolysis and ablation at macroscopic scale
- Next steps :
 - Modeling
 - Improve material structure description
 - Sublimation
 - In depth equilibrium chemistry
 - Spallation model (more basic : density threshold)
 - Same approach for heat transfer in porous media (conduction, convection, radiation)
 - Specific experiments to validate the porous media model and the future pyrolysisablation coupled model

ANNEXES

IPPW6, Atlanta, June 2008

PICA-like materials : Surface or Volume ablation ?

26/25

. Simulation tool : AMA

Brownian Motion simulation technique / Marching Cube front tracking

Efficient, Robust, No matrix inversion

3 kinds of Experiments

Improvement & Validation of the models

	Device	Measured data	Dimension & scale	Time scale	Difficulty	Interest	Other comments
Microstructure	SEM* (Scanning Electron Microscopy)	Architecture (intuitive) resolution: 100 nm	2D surface micro to macro	1 month	Image analysis	Help into architecture modeling at all scales	Relatively low cost for fast preliminary results
	TOMO** (X-ray scanning micro- tomography)	Architecture (accurate) resolution : 1µm	3D micro	1+ year	- prepare samples - image segmentation	Enable an accurate direct numerical simulation	Key results -> master or PhD student in Bordeaux? +10kEuros
Physico-chemistry	TGA** (Thermo Gravimetric Analysis) + mass spectrometer	Chemistry Pyrolysis gas analysis Carbon fibers reactivity to these gas	1D micro	1+ year	- data analysis	Understandin g of heterogeneo us and homogeneou s chemistry	- No rush - Data from 1970 - Useful again for porous TPS
	Short ramp IR tests* 0-2500K	Effective conductivity k=f(T)	3D macro	6 month	-thermocoupl e position -data analysis	Useful for radiation analysis	Needed ASAP
idation	Long steady state IR tests** (+ tangential blowing)	Thermal gradient Density profile Recession	3D micro 2D ortho macro	1-2 years	-thermocou- ple position -quantify spallation= f(shear stress)	Ablation/pyro lysis coupling Spallation Model validation	Parametrical study on blowing and grad(T)
Val	Plasma tests**	idem	3D micro 2D ortho macro	2-3 years	-test conditions -data analysis	Global vali- dation fluid + mater	Parametrical study on P, T, v

* : to be done in priority with available funding / ** : to plan now and begin in 1 year

IPPW6, Atlanta, June 2008

The effective reactivity of the porous media is not intrinsic

Effective reactivity = reactivity of a flat and homogeneous material (cf graphite) that would lead to the same ablation rate under similar entry conditions

