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1. 	INTRODUCTION 

This Final Report discusses the developments and findings during the 

period September 15 - December 2, 1974, for the BPA-sponsored project en-

titled "Investigation of Methods for Optimizing the Performance of State 

Estimation for Real-Time Applications at BPA's Dittmer Control Center." 

These developments were totally related to problems of implementation of 

the BPA on-line state estimator whereby actual data from a portion of the 

main-grid system was obtained and analyzed. The tests made relied heavily 

on developments under the National Science Foundation (NSF) sponsored pro- 

. 	(6) 
ject' ' during the summer of 1973 and 1974 with BPA's endorsement and 

provision of facilities. Hence, the attempt is made here to provide an 

integrated picture of all these developments for the purpose of clarity 

and proper understanding of these projects. 

The main problem of on-line implementation relates to the theoretical 

modeling assumptions used in all the formulations of state estimation tech-

niques. In one approach, the state estimator is tested with actual system 

data to see if it performs according to theoretical predictions. If it 

does, there is no modeling problem and the issue is resolved. This approach 

was not followed since apriori engineering judgement as well as previous 

studies ( 9)  indicated that modeling problems exist to a certain extent. 

Hence, the approach that was followed consisted first, of studying the ef-

fect of modeling inaccuracy on state estimation performance, and second, of 

developing the computational tools to validate and tune the models in order 

to achieve acceptable performance. 

As the problem of performance acceptability is resolved, the issue 

centers on the other aspects of on-line implementation. Two primary aspects 

are treated. The first is that of the overall role of state estimation in 
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the control center. And the second is that of computational requirements. 

The modeling problem with its implications is treated in Section 2. In 

Section 3, the techniques of parameter estimation used are developed mathe-

matically and commented upoJ::. Test results of a part of BPA's main-grid are 

presented and discussed in Section 4. And in Section 5, an integrated set of 

procedures for on-line implementation is developed and elaborated on. Con-

clusions and recommendations follow ii Section 6. 

2. THE MODELING PROBLEM 

2.1 Sources  -.lid    of Modeling Inaccuracies  

Two sets of model parameters are used in state estimation. The 

first set is that of admittances in the equivalent pi-section representation 

of transmission lines and transformers. The second set corresponds to the 

statistical parameters describing measurement and sensor errors. 

Reasons for network parameter errors are several. Baumann (9) 

reports in a German study that standard formulas used to compute transmission 

line impedences contain errors to the extent of N5%. These can bA due to 

truncation errors in the Taylor series expansion formulas. The exclusive 

use of positive-sequence impedences to represent untransposed lines and the 

neglect of mutual coupling between parallel lines can cause modeling problems. 

As for transformers, knowledge of the leakage impedences and its dependence on 

tap-settings is another problem. Certainly, agingl weather, and temperature 

effects are neglected. The end result is a network model with parameter 

errors of perhaps 10% in some bad cases. 

In the case 02 the statical parameters of measurement errors 

one is interested in reliable information on sensor and meter calibration 

curves. Since these are not always available, a thorough analysis of the 
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sources of sensor errors is required. Internal studies at BPA have indi-

cated that sensor errors are due primarily to two components. One is trans-

ducer bias and the othe is potential and current transformer bias. The 

errors themselves are primarily bias errors in the sense that they do not 

change appreciably from one time instant to the next, or even over long 

periods of time. 

An important problem here is to distinguish between the two types 

of modeling errors. They both reflect themselves as bias-type errors. In 

our efforts and formulations below the attempt has been and will be made to 

resolve this question. 

2.2 Treatment of Modeling Problems  

The approach taken in our work relies on a three-stage approach to 

the treatment of modeling problems. 

Stage 1: Model Validity Assessment 

The Chi-Square test provides the quickest means to see if the 

overall model is sufficiently accurate. Here one Looks at the function 

1 	i 	i 	' 	• 
J = 	E 

i=1 	a.
2 

1 

(1) 

where 

th. 
z. A 	measurement, i=1,...,m 

= 
A 
x 	state-vector estimate, dim [X]=n 

P A parameter vector 

a.
2

A error vaziance of i
th 

measurement 
1 = 

and where 

z.
1 	1 

h.(x,p)+v. (2) 
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with 

v. A measurement error with zero mean and variance a. 
= 

and 

h.
1
(x,p)A nonlinear function relating the measured quantity z.

1 
 to 

the n state vector x and parameter vector p. 

The function J is chi-square distributed with m-n degrees of freedom. This 

implies that 

E[J1= 1111  <1. 	 ( 3 ) 

The test itself consists of computing the state estimate X and then evaluating 

J. If J is of the order of 	then the model is valid and state estimation 
m 

is adequate. However, ifJ>>--- -12in7
m 

then a modeling problem is present. 

If a modeling problem is detected the next step is to attempt to 

pinpoint the source of the trouble. The simplest procedure is to examine 

the vector of residuals r whose i
th 

component is 

(z i-h i (X,p)) 

c7  • 1 

On the average, Iri < 1. Hence, if Lrd>>1 then the parameters associated 
1 

with 11.1
(x,p) are in question. These could be parameters which appear in the 

function h.(x,p), as well as, parameters of measured quantities that are 

strongly coupled with z
i . From this one draws a candidate list of parameters 

that may be erroneous to a significant extent. 

An alternative approach to identifying erroneous parameters is the 

one proposed in Ref.'s (13, 16). However this approach is of the "bad-data 

suppression" type which is primarily geared to detect a single highly erroneous 

* 
parameter. 

Actually two or more erroneous parameters can be detected provided 
they are highly uncoupled. 

r. A 
1 = 

(4) 
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Stage 2: Checking of Individual Components 

In this stage careful analysis is undertaken to see if improve-

ments in parameter values can be obtained. This is a stage of directly 

"measuring" individual parameters. The easiest parameters to check here are 

those of measurement errors. Suspected meters can be field-tested and cali-

brated in a rather routine manner. Next, one considers transformer parameters 

with special emphasis on leakage impedences, tap settings at both sides of the 

transformer and the effect of tap settings on leakage impedences. This can 

be best achieved through a careful evaluation of manufacturers design and test 

data. Direct tests on installed transformers cannot be ruled out especially 

when serious anomalies are still present in the model. As for transmission 

line data, the cases to watch for are those of parallel lines with mutual 

coupling. Otherwise, little can be done other than to check the accuracy of 

calculations provided in the data book. 

Stage 3: Parameter Estimation 

Parameter estimation provides the means to improve on the accuracy 

of the system models using masses of actual system data over representative 

operating conditions. It represents an important tuning process which ascer-

tains the statistical validity of the models used over a wide range of opera-

ting conditions. In our assessment, this has the following advantages: 

a. For on-line state estimation, the estimated and 

measured quantities will correspond closely to 

each other within the statistical accuracy of 

measuring instruments. This is essential to 

develop operator or dispatcher confidence in 

state estimation calculations and predictions. 
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b. Bad-data rejection and identification will be- 

come much easier to perform. As will be shown 

later, modeling errors can seriously degrade state 

estimator performance. This can cause the bad- 

data detection algorithm to be almost useless. 

c. Improvements on some network models can be achieved. 

These can now be used in the applications or plan-

ning programs. 

d. Once the software is developed, parameter estimation 

can become a routine function requiring only little 

man-hour effort and some computer time. 

2.3 Sensitivity Analysis  

Through sensitivity analysis one can determine those parameters 

which can cause serious errors in state estimation calculations. This can 

provide a further refinement over the results obtained in model validity 

assessments, thus limiting the set of parameters to be estimated. 

Mathematical derivations of sensitivity analysis formulas showing 

sensitivity of state estimates to various sets of parameters are available 

in several references and will not be attempted here.
(11) 
 Instead, by means 

of a simple illustrative example, the contribution of parameter errors to 

the overall error in a given measurement is computed. 

Denoting by Ap the expected error in the parameter vector one 

can write 

z = h(x, p+Ap)+v 

= h(x,p)+ 
6x 

 ! 
x,p 

 Ap+v. 	 (5) 

The vector 	Ap represents a bias-type error which is added to metering 
x,p 
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Y
SH 

= jB 
SH. 

Y
SH 

= jB 
SH. 

of 

error v. In the example chosen we consider a pi-section representation of a 

line or a transformer as shown in figure 1. 

8. = 0 	 . 	.1 radian 

vi l = 1.0 
	

=Iv .1 	1.0 

Y ij 

Fig. 1: Pi-Section Representation of a Typical Network Element 

In the case of a transmission line, the following typical values are 

selected: 

B = 100 pu 

G = 10 pu 

BSH. = BSH. 
 = .01 pu. 

1 

Forthecasewhere8.=.1r and parameter errors are 5% of nominal values one 

obtains: 

6T 4  
CBI =  .5 p.u. 

6B 

6T. 
1 — 1  6G AGI= .25 x 10 -4 p.u. 1- 

 

61144  
AB1=.25 x 10

-3 
p.u. 

6B 

6̀U. . -2 
 AG1-Y .5 x 10

-2 
6G 	

p.u. 



--=.L A 	I = .5 x 10 -3 
OB 	BSH. SH. 

where Tij  and u ij  are the real and reactive flows from bus i to bus j 

respectively. 

In the case of a transformer the following values are selected: 

B = 100 p.u. 

G = 0.0 

E = Tap Ratio = 1.0. 

Assuming 9 j  =.1r and 5% parameter errors one obtains: 

OT 4  
AB' = . 5 p.u. oB 

I OB  --=1  ABI = 
v 

.25 x 10
-3

p.u. 

6U 44 I --=J- AEI = 5p.u. OE 

The conclusions of the above results are 

a. For transmission lines the sensitivity of real-

flow to line susceptance errors is at least two 

orders of magnitude larger than the sensitivity 

to errors in all other parameters. 

b. If the measurement error standard deviation has 

the reasonable value of .1 p.u., then the error 

due to line susceptance is five standard devia- 

tions which is quite unacceptable. 

c. In the case of transformers, sensitivity to 

an error in tap positions is at least an order 
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of magnitude larger than that with respect to 

leakage susceptance. 

Therefore, the order of priority in estimating network parameters 

should be: 

1. Tap settings of transformers 

2. Line susceptance for transmission lines or leakage 
susceptance of transformers 

3. (Possibly) line conductance of transmission lines. 

All other parameter errors can be reasonably neglected. 

The above results are consistent with findings in Ref.(11) and also 

with our own simulations as will be discussed later in the report. (For a 

detailed derivation of all sensitivity relations refer to Appendix A) 

3. PARAMETER ESTIMATION  

3.1 Problem Formulation 

Denoting by z(k) the vector of measurements at time sample k, k=1,... 

N, one can write 

z(k) = h(x(k),p) + v(k); k=1,...,N 	 (6) 

where 

x(k) A state vector with dimension n 

p A parameter vector with dimension e 

v(k) A error in z(k) with zero mean and diagonal covariance 
matrix R(k). 

Given value of the parameter vector is denoted by p° . This can be related 

to the true (but unknown) parameter vector p by 

0 
P = p w ( 7 ) 

where w represents the error in the knowledge of p and is modeled as a zero-

mean random vector with diagonal covariance matrix M. 
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Denoting by X(k) and P the weighted least squares estimates of 

x(k) and p, k=1,...,N, then by definition X(k) and P should minimize 

N 
J =E E(z(k)-h(X(k),P) TR

-1 
 (k)(z(k)-h(X(k),P)] + (p

o-P)M-1 (p
o
43). 

k=1 

3.2 Solution Methods  

(a) Suboptimal Kalman Filter Approach 

In this state and parameter estimates are updated with every new 

n 	
p
n A 	A  

snap-shot measurement vector z(k). Let x (n) and 	be the estimates of 

X(n) and P at the minimum of 
j n = 

‘v 	
)+ E (z(k)-h(X(i),P) TR-1 (i)(z(i)-h(X(i),P)) 

i=1 

A 
Also let Mn be the covariance of p

n 
 then, it can be shown that ,e+1(.04) 

An+1 
and p 	will minimize. 

An n+1 -1 An+1 

	

n+1 = (P -170 	)M CP - P 	) n  

n+1 A 

	

+ (z(n+1)-h(X
n+1

(n+1), p 	)R 
-1 
 (n+1)(z(n+1)- 

h(sln+1 (n+1), IT+1)).  

A 	A Minimization of Ln+1 w. 	p
n+1 	

x
n+1 

and 	(n+1) can be accomplished via a 

Netwon-Raphson type algorithm. For simplicity let P i  and Xi  represent the 
th . 	. 	 . 	An+1 	An+1 i 	iteration in computing p and x 	(n+1), then this algorithm is given by, 

       

     

   

1 
(z(n+1)-h(X 

 

1 

 

T 
H
i
R 

T 
G
i
R 

 

11 1.+1 

  

E 1
(z(n+1)-h(X 

iii))414-16114i  

       

       

       

where 

  

i 
(Hk)T 

1 
 R Hk  

(Gk )
T 
 R 

1 
 (k)Hk 

i T 1 	i 
(Hk) R (k)Gk 

i T -1 	i -1 
(Gk) R (k)Gk

+M
n 

- 1 

     

     

This is true using linearized equations only. 

(8)  

(9)  

(10)  
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E i 	E i  
xx 	Xp 

E i 	
E
i 

px 	pp 

M 	A E
i 

n+1 = pp 

Ss( A xn  
o - • 

^ 	An 
Po P  

i = 0,1,2,... 

(b) Decoupled State Parameter Approach 

Minimization of J as expressed in Eq. (8) requires that at the 

solution X(k) and $ be zero i.e. 

6J (k) 	
T - 1 

0 = --A- 	= -2HkR (k)(z(k)-h(X(k),1))); k=1,...,N, ax 

asi 	
N  

0 = p = -2 E EGTR
1
(k)(z(k)-h(X(k),$))]-2M

1
(p

o
-P) 

k=1 

where 

6111 
aXlic(k) ,13 and 	

= 6 

Gk 6hi 

K 	1) X(k),13. 

In the decoupled approach one preceeds according to the following 

steps: 

Step 1: By holding 17. to be constant solve for X(k) using 

Eq. (9). This can be accomplished by means of the state estimation interative 

algorithm 

Ai+l 	Al 	i T -1 	i -1 i T -1 	Ai 
x 	(k) = x (k) + [(Hk) R (x)H1) (Hk) R (z(k)-h(x (k),P) 	(14) 

where i=1,2,..., and 

i _ ah(x,p)1 
lc 	ax 	'X (k),P 

Step 2: Hold x(k) at the values obtained in Step 1 and solve for 

(12)  

(13) 



P iteratively according to Eq. (10) by means of the algorithm 

i 
p 	= p + (E :(G1 )

T 
 R 
-1 
 (k)Gk1+M  1

) -1 -1 
(M (p

o 
 -p ) 

k=1 

N i T -1 	 i 
+ E (G

k
) R (k)(z(k)-h(a(k),p )) 

k=1 
(15) 

where 

i1-1(x,p)1 
Gk -  6p 	x(k),p 

The summation terms in Eq.(12) are obtained sequentially during step 1. This 

implies that only one iteration can be used in Eq. (15). 

i+1 / 
Step 3: If 1p 	-pAI <E, where E is a given positive constant, 

■ 	 then the process is stopped. Otherwise, go back to Step 1 with the new 

parameter values. 

If convergence occurs the necessary minimization conditions
(12) and (13) 

are 

obviously satisfied. Due to the nonlinearity of the equations, there is no 

guarantee that the global minimum is attained. However, by calculating the 

chi-square performance index J given in the previous section, one can de-

termine if a statistically acceptable solution has been obtained, In addition, 

engineering judgement as to the reasonableness of solutions can be exercised 

in order to make sure that adequate answers are obtained. 

3.3 Parameter Estimation Programs  

Two parameter estimation programs were developed during the summer 

of 1974 corresponding to the two approaches discussed above. With a few 

minor modifications the programs can be considered of the production type. 

Both programs are written for BPA's CDC-6400 computer using Fortran IV. In 

both cases sparsity techniques are employed to minimize the amount of com-

puter core storage and to increase computational speeds. 

The use of sparsity techniques poses no difficulties in the de-

coupled approach. However, for the recursive approach the matrix Mn  and its 
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inverse become full following the first snapshot. As a result an approximation 

is used whereby Mn  is diagonalized at the end of every snapshot computation. 

This is the main reason the Kalman Filter approach is called suboptimal. 

4. 	INITIAL TEST RESULTS  

4.1 Introduction 

During the summer of 1973 a limited number of computer simulations 

were conducted to study the issue of inaccurate modeling and the feasibility 

of parameter estimation. Results of this effort are provided in a technical 

(4 ) 
paper. 	In that paper two rather significant conclusions were obtained. 

First, inaccuracies in the network parameter models of the order of 5-10% 

can cause significant statistical degradation in state estimator performance. 

And second, these inaccuracies can be corrected for by means of parameter 

estimation leading to state estimator performance which is almost indistinguish-

able from that where a perfect model is used. 

The above conclusions, however, were based on computer simulations 

and not on an actual system. Furthermore, parameter errors were introduced in 

a limited number of parameters. The limitation was mainly due to the fact 

that sparsity techniques were not implemented at that time. As soon as 

sparsity techniques were implemented in the summer of 1974, simulation tests 

were conducted whereby all network parameters contained a certain amount of 

error. Following that in November of 1974 data from eight remote stations of 

BPA's SCADA (Supervisory Control and Data Acquisition) system became available. 

This made it possible, for the first time, to test state estimation at BPA 

using adequate and reliable data. It is recalled here, that an earlier test 

in 1970 was made. However, at that time, SCADA was not in operation and many 
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1 p.1 2 
 

inadequacies in the data were present. Furthermore, parameter estimation 

programs were not available to improve on the network model. 

In the following discussion, results of simulations as well as 

tests using actual system data are presented. 

4.2 Simulation Results of Parameter Estimation Programs  

The use of sparsity techniques in the parameter estimation programs 

permitted more realistic simulation tests whereby all network parameters were 

inaccurate to a certain degree. Here, a Gaussian random number generator 

was used to introduce errors in each parameter p i , i=1,...t. The error had 

smesnofzerosildsstandsrddevistionofce„pd;wherea
1 
 ranged from 0.02 

to 0.1 for a particular test case. For the results shown below a i=0.05 for 

alltransmissionlineadmittancetermsandci.=0.02 for transformer tap ratios. 

The initial parameter covariance matrix M
o 
was diagonal with the i

th 
diagonal 

term given by: 

(M ).. = a. 
o 11 	1 

The network chosen for simulations is the same one used in Ref. (4 ) 

It is representative of a portion of BPA's main grid network and associated 

data acquisition system. 

In Figure (2), performance of the Kalman Filter algorithm is shown 

(dashed line). In the test simulated here, all transmission line parameters 

were randomly perturbed using a Gaussian random number generator. The errors 

had a mean of zero and a standard deviation of 5% of nominal value. As for trans-

formers, a 2% random error was introduced in the tap ratios. For the first four 

time samples, no parameter estimation was attempted. These samples were used 

primarily to determine the set of parameters that should be estimated. The 
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decision on which parameter to estimate was based on the analysis of residuals 

of line-flow measurements. Basically, if the residual of the real or reactive 

measurement became greater than 3 then the line susceptance and shunt capaci-

tance are included in the candidate set. In the case of transformers, tap 

ratios were included automatically. The use of several time samples (in this 

case four of them) to decide on the candidate parameter set tended to make 

this set slightly larger than the case of basing the candidate list on one 

sample. The idea here is to exclude any parameters to which the performance 

index is insensitive and include as many parameters otherwise. This process 

normally did eliminate most of the radial portions of the network from considera-

tion. And this is an expected result. 

Starting with the fifth time sample, the parameter estimator was 

turned on.  It is clear from Figure (2) that system performance immediately 

improves from values of the order 14-13 to values of the order of .6-.7. 

The improvement is attained at the first time sample parameter estimation is 

performed. However, this does not mean that the parameters become all accurate 

after one time sample. Parameter estimation at different operating conditions 

will continuously tend to improve the accuracy of parameter estimates. 

Performance of the Decoupled State-Parameter algorithm is shown in 

Figure (3). The performance at the last time sample (10 samples were used) 

is plotted as a function of major loop  iterations. Here all the line sus- 

ceptances and shunt capacitances, as well as, transformer ratios were estimated. 

After four iterations, the performance changed from a value of 14.0 to 0.52. 

This performance is slightly better than that of the Kalman Filter approach. 

4.3 Experimental Tests Using Actual Data  

4.3.1 Experimental Setup  

Data used for the reported results was collected on November 8, 1974. 

r 
-15- 
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Fig. 3: Performance of the Decoupled State-Parameter 
Algorithm Using Simulated as well as Actual 
Measurement Data 
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It consisted of three 10 minute scans. Each scan consisted of 40 snapshots 

taken at 15 second intervals. One scan was conducted at noon time, the 

second at 7:00 p.m., and the third around midnight in order to observe the 

system at widely different operating conditions. It was readily noted that 

during each of the 10 minute periods the system operating conditions hardly 

changed. Hence, only five snapshots were retained for each of the three time 

periods. 

At the time of conducting experimental tests, data from 8 remote 

stations became available. The network monitored by these stations is shown 

in Figure 4. It consists of 17 busses and 34 branches. 66 measurement 

quantities were transmitted every 15 seconds during a 10 minute interval upon 

request from the operator. Network status (or configuration) was determined 

directly from station diagrams displayed to the operator. In the actual on-

line system, network configuration will be determined directly from status 

readings by SCADA I. 

The 66 measurements mentioned consist of a mix of 12 voltage (KV), 

21 real and 17 reactive line flow (MW and MVAR) measurements and 9 real and 7 

reactive injection measurements. Transformer tap settings were also monitored. 

There are approximately twice as many measurements as there are state variables. 

This two-to-one redundancy is fairly evenly distributed over the entire system 

providing considerable back-up in cases of lost measurements due to various 

types of failures. 

In testing the various components of SCADA I hardware very careful 

attention was given to the calibration of measurement instrumentation. From 

our point of view, it was crucial to know fairly accurately the expected 

errors in the various measurements. The BPA staff on their part, conducted in-

dependent tests to see if tranducers satisfy the required specifications under 



a variety of conditions. And after looking at calibration curves and 

internal memo's and talking to various individuals we became convinced that 

the formula 

a z = (.006z)
2 
+ (.005x(full scale))

2 2 	
(16) 

where z is a MW or MVAR measurement and a z
2  
 is the corresponding error 

variance, is quite adequate. For KV measurements the following formula was 

used: 

a
v 

= .005x(full scale). 	 (17) 

From a sensitivity analysis point of view, the state estimates, where the 

model is exactly known, are quite insensitive to errors in the measurement 

covariance matrix. This is not true, however, when parameter estimation is 

attempted. A measurement covariance matrix with diagonal entries considerably 

smaller than corresponding true values will weigh the measurements too heavily 

causing significant model changes. Alternatively, variances which are greater 

than true values will tend to improve the model slightly causing no significant 

improvement in the state estimation process. 

Preliminary checks on measurement accuracies were conducted prior 

to testing using the state and parameter estimation programs. One such check 

is shown in Table I whereby the injection measurement is subtracted from the 

sum of line flow measurements, around a given bus. The resulting error is 

compared with the cumulative a defined by 

C6 
2 	7  2 	1/2 

a  = LC- 	
+ 

INJ —3-FLOW 
(18) 
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TABLE I: Preliminary Evaluation of Expected 
Errors in MW and MVAR Measurements 

BUS QUANTITY ZFLOW-IN.J. a ERROR 

KEELR2 MW 4.6 MW 10.56 .434 

BONN2 MW 11.3 MW 7.3 1.57 

KEELR2 MVAR 3.32 MVAR 8.1 .40 

OCTY1 MW 0.9 1.7 .53 

It is clear from this table that our choice of a values is reasonable. This 

method of checking did point out some inconsistencies. For example, we were 

able to determine that the reactive injection measurement at BONN2 needed re-

calibration. This measurement was not included for estimation purposes. It 

also pointed out errors in scale-factor conversion coefficients used to trans-

late digital octal readings to MW, MVAR or KV quantities. It is, however, 

limited to those cases where all flows and injections are measured at a bus. 

4.3.2 Comparison with Simulations  

Figures (2) and (3) contain results of both parameter estimation 

approaches using actual as well as simulated data. In both cases parameter 

estimation significantly improves performance. 

As will be discussed later, the experiments indicated that trans-

former data contained errors primarily in the series leakage susceptance as 

well as the tap setting at the fixed end. (The variable end was directly 

monitored.) Due to time limitations, only the decoupled algorithm was 

upgraded to perform the estimation of these parameters. The earlier version 

of the algorithm attempted the estimation of tap ratios only at transformer 

branches. 

It is clear from Figure (3), that simulated and actual results 

correspond closely to one another. This confirms our earlier predictions 
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about a general level of network parameter inaccuracy of 5-101. 

In Figure (2), the actual results were obtained after deleting all 

reactive measurements at the transformer banks. This caused the sensitivity 

of the performance index to transformer parameter errors to be small. Un-

fortunately, time did not permit to upgrade this algorithm to estimate trans- 

former leakage susceptance and the tap at the fixed end. The algorithm, however, 

did estimate transmission line series susceptances and shunt capacitances. The 

performance improved from a value of 4.5 to .8-1.4. 

For the remainder of the report, all results pertain to the decoupled 

State-Parameter Algorithm. 

4.3.3 Overall Performance  

The performance index defined in Eq. (1) is plotted as a function 

of time samples before and after performing parameter estimation as shown in 

Figure (5). Two aspects can be noted here. First, an improvement in perfor-

mance of at least one order of magnitude is observed due to parameter estima- 

tion. The second is that a slight reduction in measurement errors is observed 

as loading conditions decrease in magnitude from noon to evening and then to 

midnight. This demonstrates the assumption that measurement errors generally 

increase with increasing load conditions. It is noted that the formulas for 

measurement variances given in Eqs. (12) and (13) were used only for the 

first time sample and then the variances were held constant. A variable a 

for each time sample would, most probably, yield a fairly constant performance 

index. 

Figure (6) shows the histograms of normalized residuals r i  defined 

as: 
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z. - h.(5Z,P) r.   

1 
a * 1 
	  , i=1,...,m. 

It is clear from this figure that all the large errors which are statistically 

unacceptable have been eliminated by the parameter estimation process. Further-

more the distribution of errors following parameter estimation is approximately 

Gaussian. It is felt that this is an interesting result which justifies to a 

good extent, The Gaussian assumption about measurement noise. 

4.3.4. 	Transmission Line Parameters  

The parameter estimation program attempted the estimation of line 

susceptances only. From a sensitivity analysis point of view it can be shown 

	

0 	 that small errors in line conductances and shunt capacitances are of little 

consequence. This was confirmed by simulation tests whereby very minor per- 

	

111 	 formance degradation was observed due to these parameters. 

Table II shows the initial and final values of transmission line 

susceptances. Changes greater than 10% in these values occured in 4 of the 

14 lines shown. A change of 38.1% was observed on the last line in the list. 

Comparison of measured with estimated flows, both before and after parameter 

estimation, is provided in Figure (7). As can be expected, parameter estimation 

does the job of reducing the values of the residuals. 

4.3.5 Transformer Parameters  

In the case of transformers several modifications to our prior 

assessments had to be made. In Ref. (4 ) it was advocated that transformer 

tap settings should be estimated. No attempt was made to estimate leakage 

susceptances. After considerable evaluation of results it was concluded that 

it is more meaningful to estimate a) transformer leakage susceptance and 

b) the fixed tap settings which are constant. The variable tap settings are 

directly measured. 
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TABLE II: Comparison of Given and Estimated Suscep-
tances (B) of all Transmission Lines 

LINE GIVEN B ESTTMATED 
B 

DIFFERENCE %DIFFERENCE 

BONN2-ROSS2 17.7648 18.1002 .3354 1.91% 
BONN2-TRO T 29.9539 30.1022 .1482 .443% 
0 CTY9-KEELR9 199.8990 228.1128 28.2137 12.65% 
BONN2-TROUT2 22.5949 22.1232 -.4717 -2.147. 
RIVGT2-ROSS2 107.8550 127.4719 19.6169 15.30% 
ROSS2-TRO T 42.8996 40.1044 -2.7953 -7.22% 
TROUT2 TRO T 92.1934 90.7880 -1.4053 -1.53% 
ROSS2-ALCOA2 160.6944 159.9392 -.7553 -.47% 
OSTRN9-0 CTY9 178.7614 212.7244 33.9631 15.9% 
ST JN2-ROSS2 89.0228 88.7825 -.2404 -.27% 
TROUT9-OSTRN9 195.1089 195.0905 -.0184 -.01% 
KEELR2-RIVGT2 66.6669 61.6149 -5.052 -8.2% 
KEELR1-0 CTY1 7.4684 6.8251 -.6432 -9.45% 
KEELR1-ST JN1 14.7558  23.8421 9.0683 38.1% 

TABLE III: Comparison of Given and Estimated Trans-
former Series Admittances (B) of all 
Transformers 

TRANSFORMER GIVEN B ESTIMATED 
B 

DIFFERENCE %DIFFERENCE 

TROUT9-TROUT2 83.6854 83.6776 .0078 .009% 
ROSS1-ROSS2(1) 33.3146 37.4421 4.13 11.02% 
ROSS1-ROSS2(2) 33.7209 36.7527 3.032 8.25% 
ALCOAl-ALCOA2 34.5639 34.4084 -.1555 -.452% 
KEELR9-KEELR2 87.7133 92.1847 4.47 4.85% 
ST JN2-ST JN1 38.0219 37.93 4.47 4.58% 
KEELR2-KEELR1(1) 37.3351 42.8753 -.092 -.242% 
KEELR2-KEELR1(2) 38.2457 37.5748 -.671 -1.78% 

TABLE IV: Comparison of Given and Estimated Trans-
former Tap Ratios for all Transformers 

TRANSFORMER GIVEN 
TAP 

ESTIMATED 
TAP 

DIFFERENCE %DIFFERENCE 

TROUT9-TROUT2 .9762 .9762 0.0 0.0 
ROSS1-ROSS2(1) 1.0122 1.0066 -.0056 -.55% 
ROSS1-ROSS2(2) 1.000 1.0061 .0061 -.60% 
ALCOAl-ALCOA2 .9756 .9758 .0002 .02% 
KEELR9-KEELR2 .9762 .9741 -.0021 -.22% 
ST JN2-ST JN1 .9685 .9687 .0002 .02% 
KEELR2-KEELR1(1) 1.050 1.0037 -.0436 -4.3% 
KEELR2-KEELR1(2) 1.025 1.0038 -.0212 -2.1% 
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Tables III and IV compare initial and final values of transformer 

susceptances and tap ratios respectively. Figure (8) provides comparisons 

of measured vs estimated flows at various transformers. Some fairly serious 

discrepencies can be observed at the ROSS1-ROSS2 and KEELR1-KEELR2 transformer 

banks. 

4.3.6 Discussion of Results  

Based on the above results and also the mass of information acquired 

during the testing period, it can be safely concluded that our prior suspicions 

regarding the network modeling problem were justified. This could not be more 

true then in the case of transformers. By deleting the reactive flows at the 

transformers banks from the estimation process, the estimates of these flows 

have errors of approximately several hundred MVAR's. In Fig. (8) the error is 

still over 100 MVAR's although these measurements were included in the estima-

tion process. 

In the case of transmission lines the case of 38.1% error seems to 

be amomalous. However, the other errors seem to be within theoretical predic-

tions. 

The main result of the above tests, we feel, is that we have a good 

tool to work with to simultaneously improve the accuracy of network parameters 

and identify sources of discrepancy in the model. 

5. 	PROCEDURES FOR ON-LINE IMPLEMENTATION  

5.1 Implementation Phases and Requirements  

Successful implementation of BPA's on-line state estimator will 

depend on several software developments and the coordination of several 

activities. The primary activities involved are: 
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a. Implementation of all software associated with 
the Sequential State Estimator, 

b. Implementation of parameter estimation software, 

c. Evaluation of operator requirements and confidence 
in state estimation, 

d. Evaluation of scheduling requirements of performing 
state estimation based on collected system-wide data, 
and 

e. Tuning of all kinds of relevant parameters prior to 
commissioning of the on-line estimator. 

In the following sections we shall elaborate on the above items 

with emphasis on what has been achieved so far and what needs to be developed. 

5.2 The Sequential State Estimator (SSE) 

This program will be used for on-line state estimation purposes. 

The major components of the program dealing primarily with state estimation 

per se are fully developed and tested. During the course of the present 

project improved procedures for tuning the estimator to provide better per- 

formance weredeveloped and tested. The general approach to this tuning process 

is described in Appendix B. 

The components of SSE that are in good working order are: 

a. Pre-processing subroutines for initialization, 
divergence checks, limit checks and others 

b. Ordering subroutine which retains and orders 
the busses of the observable portion of the 
network 

c. Sequential estimation subroutine 

d. Output subroutines 

e. Subroutine which interfaces with bus-load 
forecasting program. 
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Remaining portions of the overall package contain subroutines for 

the detection and diagnosis of bad data. Full implementation and testing 

of these has not been performed yet. 

Finally, programs which generate network configuration from SCADA 

outputs are yet to be fully developed and completed. This is a fairly dif-

ficult and obviously crucial program. It is essential that it becomes 

available as soon as possible. 

5.3 Parameter Estimation 

The two parameter estimation programs which have been developed are 

compatible with the state estimation package. In essense they use the same 

inputs and produce the same outputs except for outputs on network admittance 

parameters. Further refinements in these programs are necessary. These are: 

a. Program cleanup which requires deletion of some 
unnecessary subroutines 

b. Increase in capability to handle large networks. 
This may involve some extended core storage pro-
gramming 

c. Implementation of a better bus/parameter ordering 
scheme 

d. Detailed program documentation 

A by-product of the parameter estimation program is the weighted 

least squares estimation program using sparsity techniques. Any improvements 

on the parameter estimation package will automatically apply to this program. 

5.4 Operator Requirements  

During the full-scale testing period, serious effort should be 

associated with overall operator requirements from the points of view of 

a. Display requirements 

b. Understanding of the estimation program, and 

c. Developing his confidence in the results. 

All of these items are interrelated since a good deal of inter-

action, his confidence in the estimation process will, hopefully, grow. 
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5.5 Frequency of Updates  

Studies which use actual system-wide data should be performed to 

determine the required frequency of updating the state estimates. These 

studies should be based on the following requirements: 

a. Operator display 

b. Bus-load forecasting 

c. Security monitor, and 

d. Voltage scheduling 

The objective should be to satisfy all these requirements while 

minimizing computer time requirements. It is hoped that this will consider-

ably reduce computational time requirements of state estimation. The data 

obtained during the study period indicated the changes in system operating 

conditions are very small even over a range of ten minutes. However, this 

may be characteristic only of the particular area monitored. Not enough 

information was available for system-wide assessment over a day or so. 

The approach which we proposed contemplated using information 

about the time behavior of bus loads and generations. And by means of a 

simple prediction scheme (simplified bus-load forecaster) the decision is 

made when the next state estimate is necessary. This would make the process 

of when to compute state estimates adaptive. The predictor will determine also 

when to attempt security assessment next. Hence, there are overall savings 

in computer time for both state estimation and the rest of the applications 

programs. 

Alternatively, however, display and bus-load forecasting require-

ments are better satisfied with periodic state estimator updates. Hence, an 

optimum solution should be reached which takes into account all of the above 

factors. 
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5.6 Testing and Tuning 

Prior to final commissioning of the on-line estimator many of the 

tests conducted so far and others should be performed on a system-wide and 

thorough basis. These will consist of: 

a. Very careful calibration of instrumentation and 
testing of any discrepancies arising in the 
metering process. 

b. Evaluation of any inadequacies in the network 
configuration which is based on status infor-
mation. 

c. Careful checking of network models with special 
emphasis on transformers, status of capacitor 
banks, and all the required model changes due to 
status changes (e.g., 3-winding transformers). 

d. Testing of statistical model validity without 
attempting any parameter estimation. 

e. Tuning of network models by means of parameter 
estimation. 

f. Examination, through field tests, analysis of 
data, discussions with operators, etc. of any 
serious discrepancies in the network models 
which might arise following parameter estimation. 

g. Tuning of the sequential state estimator using 
all the validated models. 

6. CONCLUSIONS AND RECOMMENDATIONS  

The basic conclusions of the present study are: 

a. Modeling problems do exist as far as network 
parameters are concerned, 

b. These problems cause the state estimator to 
provide fairly unreliable results whereby 
considerable discrepencies between some 
measured and estimated quantities exist. 

c. Parameter estimation can clean-up the 
network parameter models leading to statis-
tically acceptable results. 
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d. There is still a significant role for field 
tests and engineering judgement in the modeling 
area. This should be exercised. Parameter es-
timation can easily pinpoint the areas of possible 
trouble and discrepencies. 

e. Improved tuning procedures for the sequential 
state estimator were developed and implemented. 

In my recommendations for future developments the following items 

are stressed: 

a. The final stages of software development as described 
in the previous section should be undertaken with 
speed to insure early state estimator implementation. 

b. Closer interaction among analysts, system operators, 
and programmers will be required to insure a proper 
understanding of the whole process and to develop the 
required confidence in it. 

c. The immediate next step will be the model validation 
of all parameters associated with security monitoring. 
The present NSF supported work (with BPA's endorsement) 
is quite significant in developing the basic concepts. 
These will have to be tested for feasibility from the 
practical point of view. It is hoped that as a result 
of concerted effort a valid security monitor will 
result. 
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APPENDIX A 

SENSITIVITY RELATIONS 

Definitions: 

T.. A Real power flow from node i to node j 
= 

Uij  A Reactive power flow from node i to node j 

Gij  + j Bij 	Series admittance of branch i-j 

BSH. A Shunt admittance of branch i-j referred to node i 1 = 

a. A Tap setting in p.u. of the fixed-end tap of a transformer = 

E. + j F
i 
 A Complex voltage at node i. 
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APPENDIX B 

TUNING PROCEDURES FOR THE SEQUENTIAL 
STATE ESTIMATOR 

In Ref. (1) a fairly detailed description of the basic algorithm 
of sequential state estimation is provided. It is argued there that the 
diagonalization of the "covariance" matrix can lead to improper performance. 
Hence, a set of tuning procedures were developed in order to ensure the 
statistical validity of the results. Following is a description of such 
procedures. 

B. Description of the Algorithm 

Denote by z. the next measurement to be sequentially processed, and 
by X-1,1  to be the estimate of x at the jth iteration following the processing 
of z.. The algorithm now simply is: 

Aj,i 	j i-1 	j i 	3i-1 x 	= X ' 	+ w ' (z
i
-h

i
(x 	)), (B1) 

(B2) 

PL C 	 (B3) 

where 

z. r= h.(x) + v. 
1 

v. = zero mean Gaussian random variable whose variance 
1 

is a 2  
1 

h. 
1 	. 

Hi = 1  

4(z.) = tuning parameter associated with measurement z.. 

As will be shown below the measurement z i  may be processed more than 
once within an interation. This will become clear following the description 
of the ordering procedure. 



C. Ordering of Measurements within a Single Iteration 

The ordering process is based on the following rules: 

a) The order of priority is on measurement equations 
with the least number of state variables 

b) A MW quantity is followed by the corresponding 
MVAR quantity 

c) The next measurement to be processed should update, 
at most, the variables of a single bus which previously, 
have not been updated. 

The simplest application of these rules is when line flow measurements 
are sufficient to determine all state variables. The ordering of these measure-
ments is illustrated in figure Bl. In Figure Bl(a) the node at measurement no. 
1 is the slack bus. Processing of every subsequent measurement will, at most, 

2 	 10 

(a) 
	

(b) 

Fig. Bl: Ordering of Line Flow measurements (x indicates line 
flow is measured at corresponding bus) (a) Adequate 
ordering (b) Inadequate ordering--measurements 4 and 
5 will update state variables at two "new" busses. 

update the variables at one more bus that have not been updated before. Thus, 
if a subset of line flow measurements is sufficient for a load-flow solution 
application of the above rules is straighforward. The ordering is as follows: 

1. Process all KV measurements in any arbitrary 
order, then 

2. Process all line flow (real, then reactive) 
measurements according to rule (3), and 
finally, 

3. Process all injection measurements in any 
arbitrary order. 



In the actual program, all line flow measurements are processed 
twice. This is achieved by processing first the near-end and then the 
far end line flow measurements. Normally, all line flows at a bus are 
processed at the same as well as the opposite ends. Then one moves to 
a neighboring bus whose state variables have already been updated and 
so on. 

Special attention is paid to those cases where line flows do not 
constitute a sufficient set. In figure B2, it is necessary to process 
the injections 3 and 4 before continuing to process the remaining line 
flow measurements. 

The main implication of this ordering process is that voltage and 
line flow measurements constitute the backbone of the overall measure-
ment system. With these measurements the bulk of the network should be 
observable. 

4 
2 	 0 

p  x 

	

0 	 
1.4( 

x line flow measured 

() injection measured 

8 	 9 	 7 

Fig. B2: Ordering of Injections in Cases where Line Flow 
Measurements Do Not Constitute a Sufficient Set 

D. Tuning Parameters  

One scalar parameter 4(zi) is associated with each of the five 
measurement categories: voltage, real and reactive flows, and real and 
reactive injections. Normally for real flows, 4 is set at the value of 
1.0. Typical values for the other p's range from 1 to .1. They are 
adjusted in a few simulations to insure adequate performance. It should 
be noted however, that this constitutes a fine tuning process. Experience 
has shown that estimator performance is quite insensitive to changes in 
the p,values. 

E. Processing of Iterations  

An iteration is defined by the set of all sequential operations 
according to the above ordering scheme. At the end of an iteration all 
line flow measurements would have been processed twice and the remaining 
measurements once. Here the diagonal P matrix is updated according to the 
equation 

j 
Pj+1 = P + Q 

3  0 

0 
5 

6 

(B4) 

-49- 

t 



where 

a
E
I 	0 

0 	a
F
I 

where I is the identity matrix and a E  and a F  are two constants associated 
with the real and imaginary parts of complex bus voltages. Typically, 
cx E =1- 10-2 - 107 3  and ceFz_-.10or E . Larger values of a E and a F  will accelerate the 
convergence process. Initially P° is set equal to Q. 

Normally, convergence takes place in two iterations starting from a 
flat voltage start. Following that, at least one iteration is performed 
without updating Pi according to Eq. (B4). This has shown to improve per-
formance somewhat. 

Q= 
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