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SUMMARY

Extreme scale data management in high performance computing requires consider-

ation of the end-to-end scientific workflow process. Of particular importance for runtime

performance, the write-read cycle must be addressed as a complete unit. Any optimiza-

tion made to enhance writing performance must consider the subsequent impact on reading

performance. Only by addressing the full write-read cycle can scientific productivity be

enhanced.

The ADIOS middleware developed as part of this thesis provides an API nearly as simple

as the standard POSIX interface, but with the flexibilty to choose what transport mecha-

nism(s) to employ at or during runtime. The accompanying BP file format is designed for

high performance parallel output with limited coordination overheads while incorporating

features to accelerate subsequent use of the output for reading operations. This pair of opti-

mizations of the output mechanism and the output format are done such that they either do

not negatively impact or greatly improve subsequent reading performance when compared

to popular self-describing file formats. This end-to-end advantage of the ADIOS architec-

ture is further enhanced through techniques to better enable asychronous data transports

affording the incorporation of ‘in flight’ data processing operations and pseudo-transport

mechanisms that can trigger workflows or other operations.
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CHAPTER I

INTRODUCTION

Background and Problem Space Science simulation data management requires con-

sideration of the entire end to end process and all of its stages of moving data from high

performance simulations to long term storage. This is particularly important for extreme

scale science codes, e.g., XGC-1 fusion, climate, and s3d combustion, that when running on

current petascale machines like jaguarpf and roadrunner already generate data volumes at

per process data sizes that range from 10s-100+ MiB per process. This means that at 10

MiB/process, 225,000 processes yield 2.25 TiB of data generated at regular intervals. For

128 MiB/proc, this grows to a volume of 28.8 TiBs total, and when writing at 50 GiB/sec,

it takes 45 secs. for 10 MiB and 576 secs. for 128 MiB, nearly 10 minutes, assuming, of

course, that there are no issues with interference for both storage and/or with potential

bottleneck resources like metadata managers. In fact, typical output rates experienced on

current machines are frequently less than half of the 50 GiB/sec listed above, thus at least

doubling the time spent performing output.

Limited output bandwidths make it difficult for application scientists to save data as

often as they would like. This is illustrated with the GTC code for which an output interval

of every 15 minutes is common, with output data volumes of up to 128 MiB/process. In

fact, with the numbers cited above, the GTC code would experience an IO overhead of at

least 40%! Further, in order to analyze generated data for scientific insights being sought,

data must be read back in, potentially multiple times, to identify data features of relevance

using techniques like statistical analysis or visualization. With reading being at least equally

critical to the scientific discovery process, care must be taken to reduce the amount of data

movement to and from storage in order for these analysis processes to operate. As a simple

illustration, consider if all of the data must be read in twice to generate two different analysis

views. Assuming sufficient parallelism is employed to reach the bandwidth capacity of the
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file system, it could take nearly 20 minutes just to read the data and then additional

time to render the output. If multiple passes must read, manipulate, filter, or otherwise

process the data before another phase of processing occurs, each step will require a pair of

data movement operations – one to read and one to write. This impediment to realtime

exploration of data sets can make the process of using generated data painful at best, or

impossible at worst.

The numeric examples shown above demonstrate a continuing need to improve the IO

performance of high end applications. While this is one of the problems addressed by this

thesis, a further goal of this work is to go beyond high performance data movement to stor-

age, but in addition, to accelerate the process of gaining potential scientific insights from

the data produced by simulations. Specifically, we wish to consider the write-read cycle

portion of the ‘end to end’ scientific discovery process. The important detail of this work

is that the combination of both the writing and reading performance should be considered

so that the ‘end to end’ process can be accelerated. This is illustrated by several examples.

For instance, it may be useful to ‘trade’ small, additional computation times incurred by

applications – resulting in slightly increased output times – to reduce end to end IO time

across the pipeline, a specific example being data reorganization when it is written, with

the purpose of creating file structures and associated disk layouts that offer improved per-

formance for subsequent ‘read’ operations. In fact, sometimes, and as shown in this thesis,

it is possible to improve both write and read performance in this fashion. Another example

is to change the IO behavior of an application to move it from using disk-based methods for

code coupling to using in-memory or network-based coupling techniques [26, 1], thereby re-

ducing an application’s aggregate disk bandwith requirements. Finally, we can manipulate

output data ‘in-transit’, before it is stored, or for code coupling, to address mismatches in

data layouts or organization between coupled codes, thereby reducing total data movement

and potentially accelerating the codes being coupled.

The technological basis of this research are the petascale machines and their file systems

currently being used at leadership sites like DOE’s Oak Ridge National Lab. The high per-

formance machines located at those sites contain 100,000s of cores and 100s of TiB of RAM.
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For example, JaguarPF contains 12 cores/node and a total of 300 TiB of RAM. Intrepid

contains 4 cores/node and 80 TiB of RAM. In the near future, Blue Waters, Cielo, and

Mira are coming online. Blue Waters will have 128 threads/node with 800 TiB of RAM.

Cielo will have 16 cores/node and 298 TiB of RAM. The next generation BlueGene, Mira,

will have 16 cores/node and 750 TiB of RAM. While this memory capacity is extreme in

total, the growth in available RAM per process is matching the growth in core or thread

count. Overall, the trend is towards 1 GiB/core or thread. This continuing explosion in

core counts and corresponding growth in RAM, even if it just maintains 1 GiB/process,

yields staggering data volumes. Managing these data volumes with homogeneous compute

architectures follows a more traditional configuration with all compute resources dedicated

to either compute or IO tasks. With the introduction of co-processor and compute accel-

erator architectures such as GPGPUs, the problem becomes worse. For example, currently

available is the GE IPN250 blades where each blade has a dual core CPU and 96 GPU cores

with 8 GiB/blade. The CPUs are primarily intended for serial tasks and to manage their

GPU resources. The tremendous computation acceleration provided by the GPUs demands

more frequent data offloading to maintain sufficient detail in the generated data for later

analysis. This increased frequency of output will further tax storage architectures beyond

what is now being experienced with homogeneous HPC resources. This trend towards co-

processors and compute accelerator architectures will only increase as managing the power

consumption of extreme scale computing resources becomes a more serious concern.

Technological advances are not likely to lead to ‘easy fixes’ for the IO problems ex-

perienced by future machines. To help manage IO times, one could consider using solid

state storage devices, SSDs, or future phase change memory. However, there is a current

48x capacity/price advantage for HDD over SSDs [119], and with HDDs continuing their

nearly 30 year historical doubling of space per unit cost every 14 months [36], SSDs will

continue to lag the capacity and cost per capacity of HDDs for a long time to come. A

reasonable assumption, therefore, is that SSDs will not replace HDDs, but may instead be

employed for staging and other temporary use storage areas that are then spooled out to

cheaper, slower, higher capacity HDDs or other storage media for end to end use. Later,
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the data may be archived on tape or other cheaper, slower storage for long-term storage.

The outcome will be additional layers in the memory hierarchy present on future machines.

Further complexity is introduced by the continuing desire to manage the cost of obtaining

and maintaining new machines. An obvious place to control these costs is to centralize the

scratch space storage array and share it across multiple machines, as has already been done

for both the NERSC and ORNL leadership computing facilities and soon for Sandia Labs

as well. An example of what a data center organization like this would look is illustrated

in Figure 1. The boxes ‘Super 1’ and ‘Super 2’ represent the high performance computing

resources. The ‘E2E’ resources represent additional, more specialized resources intended for

visualization or other ‘end to end’ tasks off of the main compute resources. This architec-

ture is being adopted because there is considerable cost in building a storage system with

sufficient bandwidth. Adding extra capacity to a large scale storage system and sharing

that storage across multiple resources is far more cost effective than building equivalent

individual systems for each resource. In addition, the shared space enables easier end to

end data processing across resources through storage based integration. However, the cost

benefits of this approach can lead to additional issues particular to HPC.

Figure 1: General HPC Data Center System Architecture

Enterprise systems and applications have long used the centralized or global storage fa-

cilities present in HPC data centers. Unfortunately, enterprise solutions do not fully address

the storage needs of HPC codes, for multiple reasons. First, in contrast to most enterprise
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applications, an HPC application can demand instantaneous and sole access to a large frac-

tion of all storage resources. An example is a petascale code that outputs restart data. If

IO resources are insufficient, this code will block and waste CPU cycles on compute nodes

waiting for output rather than making positive progress for the ongoing scientific simulation.

Such latency sensitive behavior is characterized by periodic output patterns, with little or

no IO activity for the 15 or 30 minutes of duration of alternating computation and output

steps thereby providing distinct deadlines for IO completion. Second, the resource demands

imposed by single large-scale codes are magnified by the simultaneous use of the petascale

machine by multiple batch-scheduled applications, each desiring a substantial portion of

IO system resources and each demanding low latency service. Third, when file systems are

shared, like those at ORNL and NERSC, it is not just the petascale codes that demand

IO system resources, but there are also additional requests that stem from the analysis or

visualization codes running on select petascale machine nodes and/or on attached cluster

machines with shared file system access. These are the problems, unique to the HPC do-

main, that are the focus of our research, as made more precise in the problem statement

articulated next.

1.1 Problem Statement

Extreme scale computation in HPC requires careful management of the write-read cycle

of the end to end scientific discovery process. A sole focus on optimal write performance

can negatively impact the read performance experienced by subsequent analysis codes.

Additional time and efforts spent in data generation, including by filtering, sorting, or

annotating data, can produce substantial savings by speeding up data selection and retrieval

for analysis. In summary, when running petascale simulations, managing both the write

and read cycles of data generation is important for improving the end to end processes in

which scientific insights are derived from simulation output.

1.1.1 Requirements

Multiple requirements must be met when managing the write/read cycle of petascale sim-

ulations.
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The first set of requirements is derived from diversity in petascale machines and appli-

cation needs. Concerning machine diversity, IO techniques should be configurable such that

porting an application to a new platform can afford selection of a platform-specific set of IO

optimizations without requiring source code changes. Second, to accommodate application

needs, the implementation of this selection mechanism must recognize that different kinds

of IO operations have different requirements. For example, a restart output should employ

as many parallel optimizations as possible to obtain high performance at scale, whereas the

use simple POSIX IO suffices for a small-scale, single process diagnostic output. Third,

output data should be encoded in ways that are portable to other platforms for analysis or

other use and are easily and efficiently convertable to standard formats for rapid integra-

tion with third party tools and complex workflows. Fourth, changing the nature of IO data

movement should not require source code changes. For example, it should be easy to switch

from writing to disk to using an in memory code coupling technique. Fifth, any optimiza-

tions employed to improve output performance should not negatively impact subsequent

reading performance. Finally, shared resources and bottlenecks must be addressed to avoid

scaling issues.

The second set of requirements center around the data generation, or writing, perfor-

mance at scale. First, the mismatch in scales for the number of compute resources compared

with the number of storage components in the system must be considered. Second, any tech-

niques developed must be shown to work at scale to meet the extreme scale environment.

Third, the output mechanism should ideally support inclusion of optional mechanisms to

apply operations to data prior to writing to disk or use in a coupled code.

The third set of requirements focus on the reading, or data consumption, requirements.

First, any output formatting must not skew performance strictly in favor of write time.

Ideally, any format employed will also improve read performance. Second, data annotations

should be considered during output to leverage the embarassingly parallel data distribution

before writing. Characteristics such as local min/max values for variables, for example, can

greatly accelerate data selection tasks by avoiding reading the entire data set to find values

that exceed some particular threshold.
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Thesis statement, solution approach, and contributions. For extreme scale science

simulations, it is important to carefully manage the write-read cycle for efficient scientific

discovery. Optimizing write performance must consider the application as a whole, in terms

of the scale for both IO and for communication, the HPC resource configuration for how

to organize and perform operations, manageability and usability of output artifacts, and

competing use of shared resources by other machines and applications. At the same time,

reads must be considered such that read performance is improved, by annotating, organizing,

and potentially, filtering or compressing data. Only by addressing both write and read

performance, and without compromising existing tool chains, can we attain consistly high

end to end performance for scientific workflows in modern HPC data centers.

Our solution approach is to manage the write-read cycle such that the efficiency of data

generation and of subsequent data analysis is maintained or improved. Specifically, flexi-

bility in selecting options in both the write and read phases affords balancing performance

optimizations where it matters most for each science workflow and the platforms employed.

This thesis attains such flexibility by developing middleware methods that insulate codes

from the implementation selections driven by platform and end to end data concerns. By

using these methods, extreme scale science codes’ IO routines can remain static when moving

from platform to platform no matter which output format or technique is required for

a particular job. Further, middleware methods also have knowledge of the data types,

sizes, and distribution of the data. Since these middleware methods operate above the file

system, they can take advantage of global system knowledge about transient ‘hot spots’

in the storage system as part of the optimizations. As a result, data can be dynamically

characterized so as to permit ‘in transit’ data operations that assist in subsequent analysis

operations and to enable adaptation of data output structure to the static and dynamic

characteristics of the extreme scale system. In addition, by developing an optimized data

format that is both portable and quickly convertable to popular formats such as HDF5

and NetCDF for use with existing tools, greater writing and reading performance can be

attained. Finally, data characteristics generated during output on the embarassingly parallel

compute cores provide statistical measures for rapid data selection during analysis tasks.
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1.1.2 Implementation Contributions

The conceptual contributions listed above are implemented in the ADIOS middleware that

is used by multiple important petascale applications. ADIOS – the ADaptable IO System –

provides an API nearly as simple as POSIX IO calls with the flexibility to alter the actual

IO techniques employed through the use of an external configuration file. In addition, a new

intermediate file format, BP (Binary Packed), is created that organizes data more naturally

for write performance while generally aiding read performance. Additionally, it adds an

extensible set of data characteristics for rapid data selection and an organization intended

to support easier append operations and recovery from failures during an output operation.

ADIOS has proven itself as a production quality system supporting application runs

of more than 200,000 cores for XGC-1 and as an excellent platform for research. The

abstraction layer provided by the simple API and the XML file affords transparent inte-

gration of experimental IO techniques into production codes without requiring any source

code changes. Both the DataTap [3] and DART [25] asynchronous IO techniques have been

shown in operation with production codes through the use of the ADIOS API. Further,

experimental techniques for including ‘in flight’ data manipulation operations has also been

shown [60]. This production success and extensive use as a research platform has shown

the general usefulness of ADIOS for IO both now and for the future.

The remainder of this document delves into detail to support the thesis statement above.

Chapter 2 introduces the ADIOS API middleware and the BP intermediate file format. It

also demonstrates its write performance advantages. In particular, it explores the need

for IO groups, metadata management, delayed consistency, and log-structured formats for

scientific data and how ADIOS incorporates those ideas and the performance advantages

achieved with these tools. Chapter 3 expands on these concepts by demonstrating the in-

terference effects within extreme scale applications and the transient performance impact of

large scale parallel file systems due to simultaneous usage. It then demonstrates an adaptive

technique for managing output that manages both the internal and external interference

effects to achieve peak performance more consistently and with less variability at scale.

Finally, Chapter 4 evaluates the impact on common analysis tasks of the log-structured
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format. This is followed by a discussion of previous work related to the thesis as a whole

in Chapter 5 and an overall conclusion in Chapter 6.
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CHAPTER II

HIGH WRITE PERFORMANCE WITH THE ADIOS MIDDLEWARE

2.1 Introduction

The first step in addressing the write-read cycle of extreme scale scientific computing is the

creation of a middleware abstraction layer that affords the flexible optimizations and IO

decisions required for good performance. The ADIOS middleware addresses this require-

ment by providing a simple API capable of driving a variety of different data management

techniques and an accompanying file format, BP, designed to facilitate the operational re-

quirements of extreme scale computing. Through this abstraction layer several technical

contributions are expressed. First, ADIOS insulates the application from the need to in-

corporate any file system specific optimizations directly while providing the opportunity to

employ such optimized techniques to accelerate the write-read cycle. Second, the techniques

presented demonstrate examples of the kinds of file system specific optimizations that can

be employed without requiring changing of the application source code. Third, the file orga-

nization and additional data characteristics created in the BP file format contribute to the

performance as well. The file organization takes into account important considerations for

extreme scale computing, such as the cost of global communication, to enable acceleration

of the writing portion of the write-read cycle. The data characteristics collected during the

embarrassingly parallel portion of the output phase do not noticeably increase the amount

of time the output takes, completely disappearing in the variability of the output time, but

offer a benefit for later data identification and reading performance acceleration. These

contributions are evaluated in the context of petascale science applications and the benefits

compared with existing best of breed techniques are shown.

The remainder of this chapter will be organized as follows. First, Section 2.2 gives an

overview of the problems in the HPC environment ADIOS and BP are addressing. Sec-

tion 2.3 describes related work. Section 2.4 describes a representative petascale application,
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the GTC fusion modeling code. Section 2.5.1 outlines the ADIOS architecture, with sec-

tion 2.6 presenting experimental evaluations of ADIOS. Section 2.7 contains conclusion and

future work.

2.2 ADIOS and BP Overview

Scientific codes not only take many years to write, debug, and scale properly, but they also

have long lifetimes. Once they have been finished, the authors and community are reluctant

to redesign or change the code except for extreme cases such as very poor performance

when moving to a new platform. Existing IO routines used in scientific codes vary from

the simple of standard POSIX IO and raw binary MPI-IO writes to systems like HDF5 and

parallel NetCDF with rich data annotation and portable data encoding. The tradeoffs for

each of these IO approaches vary depending on the IO patterns, runtime compute system,

and IO system being used [91]. For example, the Jaguar Cray XT4 system at Oak Ridge

National Laboratory uses Lustre for the parallel file system while the bgl Blue Gene/L

system at Argonne National Laboratory uses PVFS for the parallel file system. Therefore,

to effectively run something like the GTC fusion code, it may be necessary to replace the

IO routines with something that works better on both the Blue Gene/L and with PVFS.

Complicating matters further, applications like GTC exhibit multiple different IO patterns

in different parts of the code. Each of these IO operations or data ‘groups’ need to be

independently tuned for optimal performance.

2.2.1 The ADIOS API and Transport Methods

The ADaptable IO System (ADIOS) middleware addresses these needs by providing a flex-

ible platform through which different IO approaches can be deployed for each different data

group independently.

These different IO approaches encompass both traditional synchronous techniques that

block application execution while the IO completes as well as asynchronous techniques.

Experimentation with new approaches for performing IO include performing in transit pro-

cessing, asynchronous methods that give the IO system time to drain the tremendous num-

ber of compute nodes while allowing computations to proceed, and varying the degrees of
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metadata annotation for improved scalability [28]. The ADIOS API contributes to these

efforts by making it easier for developers to experiment with diverse, large-scale codes, in

part because the actual IO implementation is separated from host source code.

While IO approaches are being reconsidered, the need for online simulation monitoring

to ensure the scientific validity of code executions and to prevent ‘useless’ or problematic

runs can also be examined. Such monitoring typically implies the need to integrate run-

ning simulations with analysis workflows, perhaps using workflow systems like Kepler [61],

Pegasus [24], or DAGMan [63]. Coupling analysis with online monitoring requires the mon-

itoring system to actively notify analysis or workflow components about the presence of

new data. Unfortunately, due to the nature of parallel file systems like Lustre, the common

‘notification’ approach of looking for file existence to detect the end of a write phase or

the presence of some other output can cause contention and slowdowns in the whole IO

system thereby impacting the performance of the scientific code. ADIOS can be used to

address this problem by supporting alternate methods for integrating monitoring systems

with workflow components.

More broadly, the manner in which ADIOS addresses the integration of auxiliary tools

with high performance codes meets four key requirements. First, since different IO routines

have been optimized for different machine architectures and configurations, no single set

of routines can give optimal performance on all different hardware and storage platform

combinations. The ADIOS API, therefore, is designed to be able to span multiple IO

realizations. Second, while richly annotated data is desirable, the complexity of writing the

code to manage the data and the creation of annotations can be daunting. In response,

the ADIOS API does not require richly annotated data, but instead, makes it possible and

easy for end users to provide the degree of annotation they desire with the ability to add

annotations without changing the source code. Third, once the code is stable, no source

code changes should be required to support different IO routines for a different platform or

IO system. ADIOS meets this requirement by embedding changes in XML files associated

with IO rather than in application sources. Fourth, the integration of analysis or in situ

visualization routines should be transparent to the source code, where ideally, the scientific
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code should run with exactly the same performance whether it is used in conjunction with

one of these ancillary tools or not.

The ADIOS API addresses both high-end IO requirements and low-impact auxiliary

tool integration under the guidance of the four observations described above. It provides

an API nearly as simple standard POSIX IO. An external XML configuration file describes

the data and how to process it using provided, highly tuned IO routines. More importantly,

output can simultaneously use multiple IO implementations, using the concept of ‘data

grouping’ embedded into ADIOS. The idea is to facilitate changing IO methods based on

the IO patterns of different IO operations and to make it possible to create “dummy”

methods that can be trigger events for other systems like workflows. Once the code has

been changed to use ADIOS for IO, any of the various IO routines can be selected just by

changing the XML file. No source code changes are ever required.

2.2.2 The BP File Format

Beyond the ADIOS API is the ‘Binary Packed’ (BP) file format. It specifically addresses

different concerns. File formats like HDF5 and NetCDF are popular in part due to the

rich tool chains available for the scientific data stored using these formats. Both HDF5 and

NetCDF, however, were initially designed for serial access, limiting scalability when used

in massively parallel codes. In response, the broader community has developed parallel

versions of their APIs [35, 53], with good results demonstrated in the terascale environment

compared to their serial counterparts. However, serious scalability issues remain for petas-

cale machines and beyond. A simple example, explained in this chapter, is the inability of

HDF5 to scale to 8192 processes for benchmarks conducted with the Chimera supernova

code. Here, with every performance option enabled for parallel HDF5 enabled, we measure

1400 seconds to write a 7 GiB restart file to the Lustre system on the Jaguar machine at

Oak Ridge National Laboratory (ORNL) whereas the use of ADIOS and its POSIX IO

transport method reduces that time to 1.4 seconds! ADIOS with MPI-IO and collective

MPI-IO yields performance of 10 and 14 seconds, respectively. Later improvements to the

HDF5 implementation yielded a 10x performance improvement, but that still left a factor of
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100x to POSIX IO and 10X to the MPI-IO transport methods within ADIOS. This chapter

also evaluates the performance of a BP to HDF5 conversion performed serially on a single

login node on Jaguar. For this example, the conversion requires 117 seconds. Even when

this is combined with the initial writing time, the performance is improved.

Indirectly, the BP file format addresses other sources of poor IO performance. Overall,

IO performance depends on many factors, including the file format used, the implementation

and tuning of the associated API, the file system employed, and the architecture of the HPC

resource being used for production runs. Our analysis of the parallel HDF5 implementation

on Jaguar, for instance, reveals a large number of MPI Bcast calls that are used to guarantee

that all processes writing the collective values are writing consistent data to the file and

that all IO processes maintain a coordinated march through the data elements for each

collective output. The BP format design affords avoiding these consistency checks during

the output operation while making it possible to easily check the consistency later. We

still believe consistency checks are important during the development or maintenance of

scientific codes, but production should not require the checking overhead. To facilitate this

development and deployment structure, ADIOS provides end users easy access to multiple

IO methods. On Jaguar, for instance, given the severe performance impact of validating the

parallel consistency of data output, end users might use HDF5 and Lustre during testing,

but then disable consistency checking during large-scale production runs. The HDF5 and

NetCDF file formats require the consistency checks for proper operation. By using BP, we

avoid the runtime costs of consistency checking, but can still obtain the data in a format

that integrates with the tools currently used in the science workflow. This is done after

the simulation has written the data by using a converter to validate consistency again, if

desired, and then create the desired HDF5 or NetCDF formats. This notion of delayed

consistency is described in more detail below.

ADIOS does not prescribe whether or when the output is converted to HDF5 or NetCDF

formats. Such conversions can be done (i) ‘in line’ as part of the IO operation through an

IO Graph [118], to ensure that only one format of the data will ever be stored on disk, (ii)

offline using constructs termed metabots [117] that inspect disk-resident data and perform
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conversions whenever possible and outside the IO fast path, (iii) as part of a larger, more

complex workflow using Kepler [61], Pegasus [24], or DAGMan [63], or (iv) via a stand-alone

file format converter. In all of these cases, such conversions can be done efficiently, with

our initial results reported with a standalone converter running on a single processor on a

login node of the ORNL Jaguar machine resulting in a 117 second conversion time for a 7

GiB output file (i.e., in contrast to the total 1400 sec. IO time for Chimera quoted above

for parallel HDF5).

ADIOS and its BP file format not only support the flexible conversion to standard

file formats, but they also facilitate the summary inspection of the data to determine if

it contains features of interest to end users. One way to provide such functionality is to

fully index the data, as done by multiple projects that have developed content indices for

HDF5 files [101, 31, 39, 106]. To achieve a similar goal, but with less overhead in space

and time, ADIOS supports the notion of data characteristics using which one can collect

local, simple statistical and/or analytical data during the output operation (or later) for

use in identifying desired data sets. Simple characteristics like local process array minimum

and maximum values can be collected nearly ‘for free’ as part of the IO operation. More

complex analytical measures like standard deviations or specialized measures particular to

the science being performed may require processing that can be done in a variety of ways,

including before or after the data has been written to disk. In all such cases, the BP format

offers efficient, compact ways of storing these characteristics. When converting BP files to

say, HDF5 or NetCDF, attributes can be used to maintain them.

Other features of the BP file format are designed to facilitate appends and rapid data

access. A footer index is used to avoid the known limitation of header-based formats like

NetCDF [70] where any change to the length of header data will require moving the data

to either make room or to remove slack space. Further, by placing version identifier and an

offset to the beginning of the indices as the last few bytes of a BP file, it becomes trivial to

find the index information and to add new and different data to the file without affecting

any data already written. Finally, we incorporate data characteristics into the index, so

that we can separate the index for use as a table of contents for the file on a tape storage
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system like HPSS [115].

2.2.3 Benefits of ADIOS with BP

To summarize, the ADIOS IO system and its BP file format are designed to help attain

scalable, high performance IO while at the same time, maintaining compatibility with the

rich tool chains existing for standard file formats like HDF5 and NetCDF. By using either

parallel HDF5 or parallel NetCDF for initial code development and testing, the internal

file consistency and ‘correctness’ of data output can be ensured. By switching to the BP

format and using POSIX, MPI-IO, or collective MPI-IO methods for large-scale production

runs and employing a converter, the IO time experienced by petascale codes can be reduced

by up to three orders of magnitude, while still obtaining files with identical format and

contents as when directly using native parallel APIs. The key contributions of ADIOS are

as follows:

As part of the write-read cycle, existing scientific data formats like HDF5 and NetCDF

have given rise to rich tool chains for use by science end users. Performance issues with their

direct use by petascale (and beyond) applications, however, demonstrate the need for (1)

improvements in scalability with respect to the degree of attainable parallelism, a specific

technique used in this chapter being delayed data consistency, (2) the ability to perform

rapid data characterization to improve scientific productivity, and (3) resilience to isolated

failures through improved data organization.

Delayed consistency is well-known to improve the performance of file systems. This

chapter also explores the advantages delayed consistency outside such regular IO paths by

applying it to the process of producing output data on the compute nodes of petascale ma-

chines. Here, by delaying consistency computations, the total time taken by each compute

node to complete its IO is no longer affected by the completion time of other nodes and/or

by the control operations like the broadcast calls performed by the current implementation

of HDF5. Eliminating control operations also obviates the use of precious machine resources

like Bluegene’s separate control network for purposes like these, and it removes associated
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computations and delays from IO nodes. For instance, the current implementation of par-

allel HDF5 uses these resources for broadcast calls to ensure data consistency. Finally,

the use of and need for such specialized hardware introduces issues with code portability.

An example is the exposure of its coordination infrastructure to science codes by the MPI

ADIO layer. By instead hiding these behind a simple higher level API, alternative coor-

dination mechanisms and collective operations (e.g., delayed consistency methods) can be

implemented without necessitating code changes.

With current and next generation high performance machines, the probability is high

that one of many nodes performing data output fails to complete that action. While the

loss of that node’s data may be acceptable to the scientific application, the failure of all

nodes to complete their output due to a single node’s problems is not. Instead, data output

should be implemented to be robust to failures, adopting principles from other areas of

Computer Science (e.g., consider the Google file system [30]). In response to these needs,

additional considerations were made in designing the BP file format. These considerations

are detailed below.

To summarize, this chapter makes the following observations and contributions through

the ADIOS middleware:

1. IO groups afford local optimization tailored to each operation rather than only glob-

ally;

2. external configuration coupled with the ADIOS architecture successfully demonstrates

changability of data transport methods without requiring recompilation of the source

code;

3. use of delayed consistency and other techniques for enhanced parallelism, supported

by a high level IO API;

4. lightweight methods for data characterization integrated into the process of data out-

put;

5. introduction of an new file format to store raw data and its characterizations in ways

17



resilient to node failures and designed for high-performance parallel IO and for main-

taining compatibility for the file formats necessary for analysis workflows;

6. runtime selection of IO methods to achieve high performance for different platforms

and IO patterns; and

7. the use of data characteristics and indexing for rapid data identification and retrieval

to enhance scientist productivity.

2.3 Related Work

Many groups have investigated the problems of platform independent IO performance, an-

notated data, and auxiliary tool integration separately. For example, MPI-IO provides the

ADIO Abstract-Device Interface for IO layer for different parallel file systems that is inde-

pendent from the API layer, but does not address annotation or tool integration. Also, since

the MPI-IO API has explicit semantics exposed to the scientific code, certain operations,

like collective writes, cannot be changed without impacting the host code. HDF5 provides

excellent annotation and data organization APIs, but the virtual file layer relies on MPI-IO,

POSIX, or other custom libraries for supporting the actual writing to disk and does not

have a concept for integration with auxiliary tools. Silo [99] provides support for VisIt with

no additional support for IO performance tuning or extra data annotation beyond what

was needed for VisIt. None of these tools can adequately address the need to fully bridge

the gap between the science code and the storage system.

Parallel file systems universally separate metadata from storage services, to enhance

parallel access. Lustre [14] provides custom APIs for configuring the striping, storage server

selection, buffer sizes, and other factors likely to impact performance. However, it is still

limited to a single metadata server, causing a known bottleneck. In addition, there are

known expensive operations, such as ‘ls -l’, that cause the metadata server to talk with each

storage server to calculate the sizes of the pieces of the files stored on that device. Other file

systems [90, 82, 93, 74, 7] have successfully addressed the metadata bottleneck issue with

vary degrees of success. One particularly awkward approach addressing the metadata server

bottleneck is shown by PVFS. Each client must use multiple steps to create files [49]. The
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Lightweight File Systems (LWFS) [79] project at Sandia National Laboratories has taken an

extreme position on this topic by eliminating the requirement for online metadata. Offline

methods are later used to generate it. In all of these cases, parallel file systems are focused

on moving blocks of data with the best performance. They do not address the components

of the data itself and not surprisingly, they do not provide for low-impact integration with

auxiliary tools due to their specialized nature nor do they addressed the ‘internal’ file issues

raised and solved by ADIOS, such as selective file consistency and rapid data access through

data characteristics.

While offering rich tool chains, there have always been scalability challenges for the

NetCDF and HDF5 APIs and file formats. For terascale machines, such challenges were

successfully addressed by moving from serial to parallel APIs. In fact, in many cases,

the performance of parallel HDF5 or NetCDF API has been exemplary [122]. However,

additional options must be explored for petascale machines (and beyond), in part because

of the high costs of the collective IO operations required for consistency enforcement. Such

enforcement is necessary for providing a single, coherent view of the globally distributed file

data. We believe that the delayed consistency approach can be used to incur these costs so

as to not inhibit parallel program performance.

Delayed consistency has previously been studied for file systems. For example, LWFS [79]

project at Sandia Labs has stripped down POSIX semantics to a core of authentication and

authorization affording layering of other semantics, like consistency, on an as-needed basis.

Other file systems like the Serverless File System [7] have distributed metadata weaken-

ing the immediate consistency across the entire network of machines. NFS [73] relies on

write-back local caches limiting the globally consistent view of the file system to the last

synchronization operation. Our work considers the use of delayed consistency within single,

large-scale files, the intent being to ‘fix them up’ whenever possible without inhibiting the

performance of the petascale application.

Efficient techniques for indexing HDF5 files are offered by FastBit [31] and the Multi-

resolution bitmap indexes [101], which uses a bitmap to indicate the presence of different

values or value ranges within a given data element. PyTables [106] extends this concept to
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use a traditional relational database as a full content index. The use of projection tables [39]

takes the approach of listing values and giving the location(s) at which it appears. These

all have focused on providing full or a sampling approach data indexing. Unfortunately,

these approaches have not been integrated into the base HDF5 system, perhaps because of

potential performance penalties and space penalties when adding rich indices to large-scale

files. Such penalties are our principal motivation for advocating simple, lightweight data

characterization rather than full indexing methods in the BP file format. Our approach is

not to give direct access to all data elements but rather to aid in the identification of which

data sets are relevant for the desired use. For example, to know which 10 TiB file contains

the data where the temperature exceeds 106, by looking at the maximum values for the

temperature is sufficient. Simple metrics like these can always be collected and will always

be available in ADIOS. Additional information must be computed in analysis workflows.

Integration with visualization systems is commonly needed. This is generally handled

either through a workflow or through custom calls to the visualization engine. For example,

AVS Express [103] can render data files once they have been fixed up in an appropriate

format. This can easily be done through a workflow system with the impact of file discovery.

In situ visualization systems may require something like VTK [5] or some other custom

API calls directly in the scientific code to perform the integration. This nicely addresses

the integration, but at the cost of requiring source code changes.

The file formats used by science applications range from the most popular HDF5 and

NetCDF to more niche players like SAF [67], PDS [105], GRIB [38], and HDS [104]. Each

of these has been optimized for a particular style of data arrangement and annotation. All

of these formats share a requirement to use the same consistency validation during output

as what is required by the on-disk file, necessitating the use of global consistency checks as

part of the IO process (e.g., by using collectives). The use of a format like BP in ADIOS

addresses this ‘internal’ file issue, making it possible to avoid and/or delay consistency

validation to improve IO performance.

File conversion is commonly used in computer systems. Simulations frequently use con-

verters as part of code coupling operations to ‘fix-up’ not just the data format on disk, but
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also to perform actions like changing units and data filtering. For NetCDF files, NCO [80],

the NetCDF Operators used in the climate community, provides a way to extract values

from one or more files into a new file for more convenient use. The climate community uses

NCO to avoid some of the issues with the NetCDF format. To provide resilience against file

corruption and avoid the performance penalty of resizing the file header when writing each

new history output, every output set is written to a new file. NCO is used to construct the

view of a single variable over time by pulling the appropriate pieces from the set of NetCDF

files into a single, new NetCDF file. The combustion simulation S3D writes each process’s

output into a separate file for performance and then uses another, independent process to

combine all of these outputs into a single new file. This is similar to a workflow related

approach using tools like Kepler, Pegasus, or DAGMan. We have also frequently used

components to convert our data output into images or just strip out portions relevant to

other downstream processing [84] and by using actors in Kepler workflows [62]. Alternative

approaches have also been investigated. For example, through the use of an IO Graph [123],

we have demonstrated the ability to write data in a different format and/or with different

filtering and/or processing without the intermediate data ever hitting disk [118].

None of these examples handle all of the problems. The platform independent IO systems

all provide either great performance or annotation. With careful use, systems like HDF5 and

parallel NetCDF can achieve both. The parallel file systems all achieve great performance,

but none give support for detailed data annotation or integrating auxiliary processing such

as triggering a workflow system. Custom API integration with auxiliary tools provides

tight integration, but at the cost of source code changes and revalidation when changing

platforms. The performance impact of these integrations is also strictly dependent on

downstream system. Loose integration with workflows addresses the need for low-impact

integration superficially, but can suffer from indirect impact from file system watchers, still

require manual annotation and fixup of data before further processing can happen, and are

always behind the simulation due to the lag of looking for completed file writes.
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2.4 Motivating Examples

The initial development of ADIOS was motivated by the GTC [43] fusion code and the

Chimera [65] supernova code. GTC provides a variety of different outputs with varying

frequency and sizes while Chimera offers a vastly larger number of variables output per

write with some different reporting/formatting requirements. Over the life of the GTC

fusion code, it has changed how it performs IO eight times, each motivated by a change of

platform or a need for more data annotation. Specialized routines were added for each in

situ visualization system employed. Each time a change was required, the base code had

to be reevaluated to ensure that it was both operating properly and generating the proper

data in the output. These evaluations cost days to weeks of time for the developers and

thousands of hours of compute time with no science output. Through a system like ADIOS,

the user can quickly test the various IO method available and select one that gives the

best combination of performance and required features and add data annotations without

changing the source code.

We have further demonstrated the generality of ADIOS by integrating successfully with

XGC0, XGC1 [18], FLASH, GTS [114], S3D [19], M3D-OMP, M3D-K [29], Pixie3D [16],

and the Chombo [17] Adaptive Mesh Refinement framework. With the exception of the

Combo AMR framework, only minor tweaks of the system required. For an AMR system,

additional concepts to model the various ‘levels’ for a variable are required and had to be

added to the system.

Based on GTC and Chimera, we extracted these four main requirements.

1. Multiple, independently controlled IO settings - Each gross IO operation needs to be

independently configurable from others within the same code. For example, the output

strategy for diagnostic messages should be different from restarts.

2. Data items must be optional - Variables that are members of a data grouping need to

potentially be strictly optional to account for different output behavior for different

processes within a group. For example, if the main process in a group writes header

information and the other participating processes do not, the system should be able
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to handle it properly.

3. Array sizes are dynamic - The sizes of arrays need to be specified at runtime, par-

ticularly at the moment the IO is performed. The key insight here is not just that

the values need to be provided at runtime, but we need a way to do this that is both

consistent with the standard IO API as well as not impacting the actual data written.

4. Buffer space for IO is strictly limited - The scientific codes have strict limits on how

much memory they are willing to allow IO to use for buffering. For example, it might

be stated that IO can use 100 MiB or just 90% of free memory at a particular point in

the code once all of the arrays have been allocated. Respecting this memory statement

like a contract is critical to acceptance by the community.

Each of these was motivated by specific examples in GTC and Chimera.

From an IO complexity perspective, GTC has seven different groups of output in three

categories with each category being handled differently. The three categories are restarts,

analysis data, and diagnostic messages. Each of these categories has different IO require-

ments based on their output patterns. For example, the large restart data set needs to be

written as quickly as possible with a small amount of annotation. To mitigate the runtime

performance impact, it is written infrequently. The analysis and particle tracking data,

while much smaller, needs to be written more often with good annotation. Finally, the

diagnostic messages are written very frequently, but are little more than a few kilobytes per

output and always only from a single process. While there is only one output for restarts,

there are multiple for the analysis and diagnostic messages. ADIOS provides the flexibility

of selecting how each of these seven different data groupings perform IO simply by specifying

the selected method for each of these groups in the XML file. It handles the different sizes

for the analysis array outputs through the use of var names for array dimensions. Finally,

by not requiring all of the vars specified in the XML to be provided by all processes writing,

we can handle the optional data elements requirement.

The Chimera supernova code provides very different requirements. It writes three main

groups of data. The first is a set of around 400 different key values. Each of these variables
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has annotation data associated with it. The second is a set of around 75 model variables.

These have fewer annotations associated with them. Third is a diagnostic report output

that is a slight superset of the model that has been processed and formatted as a report.

All three of these have the same output frequency. Like GTC, some characteristics of the

output drove the five requirements above. In particular, many of the array sizes were driven

from calculations within the code requiring that all sizing for writing be done at runtime.

For both of these applications as well as any code precisely tweaked to run using the

maximum resources on the compute platform, memory is at a premium. To ensure we do

not break the trust with the users that the IO system will be well behaved, we instituted

a contract in the XML for the maximum amount of memory all IO through ADIOS in the

system will use for buffer space. By always managing to this and having a failure mode when

no more buffer space is available, we are able to meet the specifications of the user reducing

unwanted surprises. We address this in the POSIX IO and MPI-IO transport methods by

switching from a buffering mode where we maximize the write block sizes to a direct writing

mode. We do output a message indicating that we overflowed the internal buffer allocation,

but fail gracefully by using the lower performance option of directly writing items to disk

rather than aborting the code. This feedback alerts the user to the problem without causing

a loss of the run.

The ADIOS API addresses these five requirements while providing an API nearly as

simple as POSIX IO, fast IO, and transparent low-impact integration of auxiliary tools like

workflow and in situ visualization.

2.5 Software Architecture

This architecture section is divided into three parts: the ADIOS architecture and API layer,

the BP file format layer, and the external XML file. Using these in concert, the maximum

benefits of this middleware approach are realized.

2.5.1 Architecture of ADIOS Layer

At a high level, ADIOS structurally looks like Figure 2. The four parts each provide key

benefits.
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1. ADIOS API - The core ADIOS API calls that are used in the scientific codes.

2. Common services - Internal services for encoding/decoding, buffering and other shared

operations are available for use by any of the transport methods.

3. Transport methods - Perform the data operations and auxiliary integrations. For

example, MPI-IO, POSIX IO, and Kepler or VisIt integration.

4. External metadata XML file - Controls how these layers interact.

Figure 2: ADIOS Architecture

The ADIOS layer show in Figure 2 has several important characteristics that help us

attain portable and scalable implementations of delayed consistency, lightweight data char-

acterization, and output resilience. ADIOS hides all consistency-related functions of lower

level APIs by moving them into metadata specifications located in an external XML file.

The XML file specifies for each IO group the IO method to use affording flexibly for IO

methods to best match the IO patterns of certain code output actions (e.g., restart files

vs. intermediate results) and local machine performance characteristics. IO methods also

include the aforementioned lightweight data characterization where the simple characteris-

tics of min/max are computed immediately during output. Other work [123] has examined

alternative methods that place such computations at different ‘locations’ in or outside the
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IO path. Finally, the BP file format’s current implementation is designed to maximize

parallel output performance while also containing sufficient information to (later) validate

data consistency.

The key technical features of ADIOS are the following:

1. single API for all IO transport methods – no matter how IO is actually performed;

2. external XML file – for IO description and configuration;

3. runtime selection of potentially different IO methods – per grouping of data; and

4. BP file format – designed for minimal required coordination, compact metadata stor-

age, and resilience in cases of failures;

2.5.1.1 Single API for all IO Methods

Since all descriptive elements of the output operation have been moved to the XML file, the

ADIOS API is nearly as simple as POSIX IO, and in many cases, even simpler. For example,

even to have a richly annotated HDF5 file with many attributes and with hierarchical

structure, the user need only have an ‘open’, ‘#include’, and ‘close’ statement in the

science code. The ‘#include’ will insert the generated ADIOS IO calls based on the XML

file for use in the science code. For more complex cases where very fine manipulation of the

IO operations is required, it is still possible to have an ‘open’ followed by a series of ‘read’

or ‘write’ statements, and finally, a ‘close’ statement. The only additional requirement

in this case is our ‘group size’ call immediately after the ‘open’ call. This provides a way

for the underlying API to decide if it should buffer the output for optimal performance,

coordinate with other processes participating in the output to determine the local offset in

the global file for output, and to initialize any output parameters not set during the ‘open’

call.

2.5.1.2 External XML file

The complexity of IO methods is often directly reflected in that of the source code API

required for their use. To avoid exposing such complexity to source codes, the ADIOS
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XML format describes the structure of output data, any attributes attached to items or

groups, and the selection of the particular IO method to employ for this run of the science

code. Through the use of this XML file, ADIOS controls what data is written and which

method is used for each grouping of data in the code. Since this introduces a consistency

requirement between the XML file and the source code, we have developed a method for

automatically generating nearly all of the code’s IO commands based on the XML file. This

eliminates the need to maintain a set of calls in the source code and a set of data descriptions

in the external XML file. Using this feature reduces the API calls in the science code to

just an ‘open’, ‘close’, and an include of the generated write or read statements. By

properly setting dependencies in the project Makefile, it is easy to automatically generate

new include files and properly recompile dependent source files when the XML file changes.

This has shown to be effective for nearly all of the IO examples we have encountered in the

petascale codes targeted by our work.

2.5.1.3 Runtime Selection of Potentially Different IO Methods

Our hope is that ADIOS can be used to attain high IO performance no matter on which

platform a code is deployed. To achieve this, it is necessary to be able to select which IO

method to employ for a science code. This is particularly important with limited or costly

time allocations on petascale machines, where excessive IO times can substantially reduce

scientific productivity. The need for selectivity also extends to individual IO groupings

within the code, where for instance, since diagnostic output is likely small but frequently

written, it makes sense to write it using one approach (e.g., HDF5), while restarts that

are large and infrequent may need to use a different approach (e.g., MPI-IO) to gain the

performance benefit of not performing the consistency checks during the large-scale run.

2.5.1.4 The BP File Format

The BP file format assists IO performance, for both write and read activities. By using

a structure that minimizes the requirement for runtime coordination and data sharing, re-

quiring each process’s output to be self-consistent and complete, and incorporating features

for characterizing data and assisting in recovery from failures, the BP format is suitable
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for layering high performance, scalable IO methods on top. With only the global index

and requiring coordination among output processes, the forced global communication is

minimized while maintaining maximal functionality.

2.5.2 The ADIOS API

Since scientific codes are written in both Fortran and C-style languages, the ADIOS API

supports both calling structures. The calls look nearly identical between the two APIs

and only differ in the use of pointers in C. The details of these calls will be discussed in

more details in Appendix A. The API itself has two groups of operations. First are the

setup/cleanup/main loop calls and second are those for performing actual IO operations.

2.5.2.1 Setup/Cleanup/Main Loop

This portion of the API focuses on calls used in generally a single location within the code.

These are also calls with global considerations.

adios_init ("config.xml", comm)

...

// do main loop

adios_begin_calculation ()

// do non-communication work

adios_end_calculation ()

...

// perform restart write

...

// do communication work

adios_end_iteration ()

! end loop

...

adios_finalize (myproc_id)
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Adios init and adios finalize perform the expected sorts of initialization and cleanup

operations. The included comm is provided as a mechanism to broadcast the contents of the

XML file to all processes that participate in some output. The myproc id parameter to

adios finalize affords the opportunity to customize what should happen when shutting

down each transport method based on which process is ending. For example, if an external

server needs to be shutdown, only process 0 should send the kill command.

Adios begin calculation and adios end calculation provide a mechanism by which

the scientific code can indicate when asynchronous methods should focus their communi-

cation efforts since the network should be nearly silent. Outside of these times, the code

is deemed to be likely communicating heavily. Any attempt to write during those times

will likely negatively impacting both the asynchronous IO performance and the interprocess

messaging, increasing the overall runtime. Adios end iteration provides a pacing indica-

tor. Based on the entry in the XML file, this will tell the transport method how much ‘time’

has elapsed so far in this transfer so it can ensure the current operation is completed in a

timely manner, but without necessarily trying to output everything as quickly as possible.

2.5.2.2 IO Operation

Each IO operation is based around some data collection, referred to as a data ‘group’,

opening a storage name using that group, writing or reading, and then closing the operation.

Because ADIOS relies heavily on buffered IO, writing and reading are performed during

different open/close pairs. For example, to read a value just written, it is necessary to close

the file to flush the buffer, open it again, and then read. Otherwise, the value will not

necessarily be available. Future enhancements to enable a more dynamic read/write file

mode are not prohibited by the BP format nor the ADIOS API implementation itself.

adios_open (&handle, "restart", "filename", mode, comm)

adios_group_size (handle, group_size, \&totalsize)

adios_write (handle, "zion", zion)

...

adios_write (handle, "mzeta", mzeta)
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...

adios_close (handle)

Adios open, adios write, and adios close all work as expected. The string second

parameter to adios write specifies which var in the XML the provided data represents.

The adios group size is a mechanism by which each process tells the ADIOS layer the

maximum amount of data it will generate so that ADIOS can coordinate file offsets and

determine if adequate buffer space is available. By providing this information, only one

coordiation message phase is required no matter the number of variabiles being written.

Without this information, it is still possible to gain the delayed consistency advantages,

but only if sufficient buffer space is available or sufficiently large gaps are assumed by each

process leading to potentially large amounts of ‘empty’ space in the out file. Due to this

added complexity, the adios group size call will be required for the foreseable future.

2.5.2.3 Common Services

In an effort to make writing a transport method as simple as possible, we have created a few

shared services. As the first two services, we have full encoding and decoding support for

our binary format and rudimentary buffer management. One of the future research goals of

ADIOS is to extend support for more common services including feedback mechanisms that

can change the what, how, and how often IO is performed in a running code. For example,

if an analysis routine discovers some important features in one area of the data, it could

indicate to write only that portion of the data and to write it more often.

2.5.2.4 Transport Methods

A variety of transport methods have been developed and work, without modification using

the standard ADIOS API. These transport methods include a variety of synchronous MPI-

IO methods with different tuning parameters for various file systems and output patterns,

two POSIX IO methods with one for a single file output and the other for a one-file-per-

process output, DataTap [34] asynchronous IO, Parallel HDF5, NetCDF version 4, and a

NULL method for no output, which is useful for benchmarking the performance of the code
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without any or selectively less IO. For visualization transport methods, we have an initial

pass at a VTK interface into VisIt and a custom sockets connection into an OpenGL based

renderer.

2.5.3 The BP File Format Architecture

The BP file format was specifically designed to support delayed consistency, lightweight

data characterization, and resilience. The basic file layout is shown in Figure 3.

Figure 3: BP File Layout

Each process writes its own output into a process group slot. These slots are variably

sized based on the amount of data required by each process. Included in each process output

are the data characteristics for the variables. For performance, padding these slots to file

system whole stripe sizes and other size adjustments are possible because of the abstracted

IO interface. This flexibility will be required to get the best possible performance from an

underlying file system.

The three index sections are stored at the end for ease of expansion during append

operations. Their manipulation is currently managed by the root process of the group

performing IO. The overhead of these indices is acceptably small even for a large number of

processes. For example, for 100,000 processes and a large number variables and attributes

in all process groups, such as 1000, the total index size will be on the order of 10 MiB.

Given the total size of the data from an output operation of this size, 10 MiB constitutes

little more than a rounding error. Since these are at the end of the file, we reserve the last

28 bytes of the file for offset locations and for version and endian-ness flags.

Delayed consistency is achieved by having each process write independently with suffi-

cient information to later validate that the consistency was not violated. While the repli-

cation of this data may not seem desirable, consider the ramifications of a three orders

of magnitude performance penalty for instead, maintaining a single copy or consider the

potential that the single copy being corrupted renders the entire output useless. We have
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measured the overhead per process to be on the order of a few hundred bytes for a few

dozen variables. This cost, we believe, is well worth the time savings and greater resilience

to failure.

Data characteristics are replicated into the indices stored at the end of the file. As

mentioned above, the location of the index is stored at a known offset from the end of the

file, thereby making it easy to seek to the index. Since the index is internally complete and

consistent, it can be separated out and queried to determine if the associated data contains

the desired features.

The BP format addresses resilience in two ways. First, once the initial coordination

to determine file offsets is complete, each process can output its entire data independently

and close the local connection to the file. This will commit the local data to storage, which

constitutes some level of safety. Afterwards, ADIOS gathers all of the index data for each

single output to the root process of the output operation, merges it together, and writes

it to the end of the file as a footer. This merging operation is strictly appending various

linked lists together making it efficient to perform. Second, the replicated metadata from

each process in the footer gives a list of offsets to where each process group was written.

Should this fail, it is possible to linearly search the file and determine where each process

group begins and ends.

The RICCI properties of BP ADIOS uses the BP format as a default since its design

is central to our ability to achieve high performance, compatibility with standard formats,

and efficient data annotation and characterization. This section will briefly describes the

key features of BP, based on five goals for a high performance file format, termed RICCI:

1. Resilient in the presence of a variety of failures;

2. Independent, parallel IO with sufficient annotation to validate and enforce consistency

later;

3. Convertible to both HDF5 and NetCDF;

4. Characterized data for easier data analysis and selection; and
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5. Indexed metadata and characteristics for all of the data for fast, direct access.

2.5.3.1 Resilient

To avoid the loss of previously written data during a later IO operation to the same file(s),

BP incorporates three key features. First, there is a local copy of all relevant metadata

for each process that writes output. Thus, BP does not rely on a centralized header area

for access to local data elements. Second, since each process writes its output into the file

independently, its failure does not affect other processes and/or the ability to read other file

portions. Third, the BP file index contains replicated metadata to deal with data failures.

By storing where each process group resides in the file in the index, the BP format affords

proper identification of undamaged sections of the file by indicating where to start parsing.

This also holds true for variables as we replicate the location of each in the index as well.

2.5.3.2 Independent

As mentioned in the previous section, BP stores each process’s output independently. This

achieves two advantages. First, by storing the full output of each process independently with

full annotation, the BP format can delay consistency checking outside the IO fast path. This

can be done as a stand-alone operation or as part of converting to other formats. Second,

the lack of coordination among the processes for each piece of the output eliminates any

intermediate synchronization points during the IO operation. The BP format only requires

one coordination operation at the start to decide on file offsets to write in parallel and once

at the end to collect index information to process 0 to append on the end of the file. This

general lack of coordination during the writing process affords each process writing in larger

blocks with a slow storage node only affecting the output once at the end by delaying the

ultimate completion of the output of the index. The total IO time becomes the longest time

overall for any individual process rather than the sum of the longest time for each output

element.
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2.5.3.3 Convertible

Given our own investment in the use of tools requiring HDF5 and/or NetCDF, BP provides

all of the features we have encountered ‘in the wild’ by users of HDF5 and NetCDF. There

are esoteric features of these standards we have chosen to not address in ADIOS because

we have not encountered a science code that required the feature. As the codes adopting

ADIOS increase, the BP format may evolve to meet these additional needs.

2.5.3.4 Characterized

With simulation sizes growing as the machines grow, data is growing commensurately. File

sizes today already are in the 10s of GiB or larger with multi-TiB file sizes becoming more

common as use of petascale machines increases. ADIOS characterizes the data as it is

written to aid later selection of file(s) for processing. For example, when trying to figure

out which set of data output during a materials simulation run is the one containing the

interesting feature being investigated, selecting the file where the number of material pieces

grows by more than 10% from the previous time step would be sufficient. We collect these

characteristics and store them both with the process output and in the index to preserve

resilience and to aid in rapid selection and access. While this information is not directly

convertible to HDF5 or NetCDF except as attributes, we feel automatically collecting this

information increases the value of the output and the ease of selecting the proper potentially

multi-TiB file to process with analysis tools.

2.5.3.5 Indexed

The BP format is a collection of independent process outputs rather than a single organiza-

tion of data that originated from 1 or more processes. This is not to say that there is not a

universal view of the file contents available. Through the index, an HDF5 or NetCDF-style

header output can be constructed without having to parse each of the process outputs. This

affords the advantage of highly parallel, independent IO while maintaining a global view

of the file contents. The placement of the index was driven by performance and resilience

requirements. If the index were at the beginning of the file, if it expands too much, moving
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data would be required. This performance impact along with the potential for file corrup-

tion when moving data dictated that the index be placed at the end of the file. This has the

added benefit of making it easier to make the process group outputs into file system stripe

sized ‘chunks’ for optimal write performance since it is not necessary to waste potentially 4

MiB of space at the front of the file to store the index information just to keep stripe-sized

‘chunks’ per process. Since the BP index is small, on the order of 100 bytes per process

output and 100 bytes per unique variable or attribute written and generally at most another

50 bytes per instance in the file, filling a stripe width with the header information is diffi-

cult. The index itself stores for each process group the process ID, the ADIOS group name

written, the offset from the beginning of the file, and the time-index value for this output,

if any. The variable and attributes are each indexed separately, but contain essentially

the same information. Each index stores a unique set of variables or attributes across all

process groups written with a list of characteristics for each. These characteristics include

the offset from the beginning for the file for each place it is written in the file, the array

dimensions and minimum and maximum values if it is an array, and the scalar value if it

is a simple value. This provides direct information of where each portion of any array is

written for any timestep as well as characterizing the data for direct evaluation of whether

or not the data is likely what the user is interested in analyzing. These indices can easily

be separated from the BP file as a separate file for use on a tape storage system or portable

file to identify the full contents of the data file it represents. For rapid retrieval, the last

few bytes of the file store a version identifier and the offset at which the index is stored.

2.5.4 XML Format

Since the XML controls how everything else works, we will discuss it last. The XML

file provides a key break between the simulation source code and the IO mechanisms and

downstream processing being employed. By defining the data types externally, we have an

additional documentation source as well as a way to easily validate the write calls compared

with the read calls without having to decipher the data reorganization or selection code that

may be interspersed with the write calls.
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One nice feature of the XML name attributes is that they are just strings. The only

restrictions for their content are that if the item is to be used in a dataset dimension, it

must not contain a comma and must contain at least one non-numeric character. This is

useful for putting expressions as various array dimensions elements.

The main elements of the XML file format are of the format <element-name attr1

attr2 ...>. The details of the XML is more fully discussed in Appendix A. The description

below is structured like the XML document:

<adios-config host-language>

<adios-group name time-index>

<global-bounds dimensions offset>

<var name path type dimensions/>

</global-bounds>

<var name path type dimensions/>

<attribute name path value/>

</adios-group>

<transport group method base-path priority iterations>

parameters

</transport>

<buffer size-MB free-memory-percentage allocate-time/>

</adios-config>

Elements:

• adios-group - a container for a group of variables that should be treated as a single

IO operation (such as a restart or diagnostics data set).

• global-bounds - [optional] specifies the global space and offsets within that space for

the enclosed var elements.
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• var - a variable that is either an array or a primitive data type, depending on the

attributes provided.

• attribute - attributes attached to a var or var path.

• transport - mapping a writing method to a data type including any initialization

parameters.

• buffer - internal buffer sizing and creation time. Used only once.

Attributes:

• host-language - either Fortran or C to specify the multi-dimensional array element

ordering (row-major vs. column-major) for reading properly.

• time-index - an implicit variable that increments each time the adios-group is written.

This can be used as an array dimension without declaring it elsewhere.

• path - HDF5-style path for the element or path to the HDF5 group or data item to

which this attribute is attached.

• dimensions - a comma separated list of numbers and/or names that correspond to

integer var elements to determine the size of this item

• method - a string indicating a transport method to use with the associated adios-group.

• group - corresponds to an adios-group specified earlier in the file.

MxN communication is implicit in the XML file through the use of the global-bounds.

Which communication mechanism (e.g., MPI, OpenMP, or something else) is used to co-

ordinate is left up to the transport method implementer and potentially selected by the

parameters provided in the transport element in the XML file. For example, if the MPI

synchronous IO method is employed for a particular IO group, it uses MPI to coordinate

a group write or even an MPI collective write. Alternatively, a different transport method

could use OpenMP. We define that the communicator ‘passed in’ must make sense to the

transport method selected and that the ordering of processes is assumed to be in rank order

for that communicator.
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2.5.4.1 Changing IO Without Changing Source

The transport element provides the hook between the adios-group and the transport

methods. Simply by changing the method attribute of this element, a different transport

method will be employed. If more than one transport element is provided for a given

adios-group, they will be invoked in the order specified. This neatly gives triggering

opportunities for workflows. To trigger a workflow once the analysis data set has been

written to disk, make two transport element entries for the ‘analysis’ adios-group. The

first indicates how to write to disk and the second will perform the trigger for the workflow

system. Each transport will be invoked in order. During the close operation for the writing

transport method, all of the data is pushed to disk. Once that completes, the close operation

for the next transport, the workflow trigger, is called. At that point, the workflow could

be notified that new data is available for processing. This functionality is enabled without

recompiling, relinking, or any other code changes.

The impact of these decisions on the reading performance is discussed in chapter 4.

2.6 Experimental Evaluation

Technical evaluations demonstrate the following. First, we discuss our practical experiences

with the Chimera supernova code and its IO. We also identify the reasons for the existence

of orders of magnitude differences in performance when using alternative methods for IO.

Second, we demonstrate the lightweight nature of data characterization, by comparing the

times taken to collect base data characteristics against those experienced by external in-

dexing schemes and by a full data scan from a local disk. Finally, we discuss how the BP

file format and the ADIOS API jointly achieve resilience to failures.

Evaluations are performed on two different machines: (1) Jaguar, the Cray XT4 system

at Oak Ridge National Laboratory, and (2) Ewok, the Infiniband and Linux based end to end

cluster at ORNL. Jaguar consists of 7832 compute nodes plus additional login and IO nodes.

Each compute node contains a quad core AMD 2.1 GHz Opteron with 8 GiB of memory.

The login and IO nodes consist of dual core 2.6 GHz Opteron with 8 GiB of memory. The

system is running Compute Node Linux. We used various counts of compute nodes for our
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simulations all writing to the 600 TiB Lustre scratch system. For our conversion tests, we

ran on a single Jaguar login node against the same Lustre scratch system. Ewok consists

of 81 dual core 3.4 GHz Pentium IV with 6 GiB of memory. It is configured with a 20 TiB

Lustre scratch space we used for our tests.

To evaluate, we need to examine each of our three goals: 1) an API almost as simple as

POSIX IO, 2) fast IO, and 3) changing IO without changing source.

2.6.1 Simple API

Standard POSIX IO calls consist of open, write, and close. ADIOS nearly achieves the

same simplicity with the sole addition of the adios group size call. This one addition

specifies the largest size the local process will write facilitating pre-calculating offsets in the

output file. The write calls are slightly more complex in that they require a var name as

well as a buffer. Note that since we have described the types fully in the XML, we need

not specify a buffer size directly. If we need to specify the bounds, we will make additional

write calls to add the sizing information so that ADIOS can properly figure out how large

the buffer should be. We found no way to simplify this API further except at the cost

of functionality or complexity. All efforts have focused on keeping this API as simple as

possible with descriptive, clear annotation in the XML as the preferred method for altering

the behavior of the write calls.

An additional option that simplifies the source code even more replaces all of the calls

with a single preprocessor string that expands into all of the proper calls. This further

insulates the end user from having to deal with the complexities of their code by solely

working within the XML file for all of their data description and output needs. In order

to update what data is part of a group, change the XML and recompile and the code will

be updated automatically. We realize that this cannot handle all of the ways that data

is written, but we believe it will handle a sufficiently large percentage that most of the

exception cases will be restructured to fit the new model rather than having to write the

calls manually. This feat is accomplished through the use of a python ‘compiler’ for the

XML that generates either C or Fortran include files containing all of the necessary calls.
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2.6.2 Fast IO

The performance evaluations are performed using the GTC fusion code and the Chimera

supernova code. For us, the time that matters is how long the code runs for a given amount

of work. We judge our IO performance by running the code without IO and with IO

comparing the total runtime difference. We use that and the data volume generated to

determine our IO performance.

2.6.3 Chimera Evaluation

The Chimera evaluation has three parts. The first examines the relative performance of

the Chimera code with parallel HDF5 compared to various ADIOS-based IO methods. The

second evaluates parallel HDF5 performance using independent MPI-IO and compares it

against ADIOS using independent MPI-IO. The third uses a sample BP file generated by

Chimera to assess the cost of converting it to an HDF5 file that is identical to the one

previously generated by Chimera.

Chimera output is not particularly large. In a weak scaling model, each process outputs

approximately 920KiB, with the number of processors varying from 512 to 8192. The

simulation is configured to run for 400 iterations with an output being performed every 50

iterations. The simulation is run 5 times at each size, collecting the timing for each output,

for a total of 40 measurements per size per IO method. Graphs depict the best performance

measured for each size for each method with an error bar to show the range of values seen

for that size. Best times are shown in order to minimize the impacts other users of the

machine have on measurements.

Figure 4: Chimera Weak Scaling
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Figure 5: Chimera Aggregate Bandwidth

Important to note about Figure 4 are the facts that the vertical axis is exponential and

that the rate of growth in time for parallel HDF5 increases at 2048 processors. Figure 5 notes

the bandwidths to the storage system achieved with different IO methods. Clearly, these

results demonstrate performance issues with HDF5. We next investigate their principal

causes.

2.6.3.1 Principal Causes of Overhead in Parallel HDF5

Using a test case of 512 cores running the Chimera supernova code, 5 sets of restart dumps

are used to analyze performance causes, with results appearing in Table 1. Detailed profiling

reveals the reasons for inadequate Parallel HDF5 performance:

1. Expensive MPI Bcast calls are called frequently. In the test case, MPI Bcast is called

314,800 times with a total wall clock time cost of 12,259 seconds total across all 512

processes (mean of 23.9 seconds for each process overall, max of 54 seconds, min of

4.6 seconds).

2. Too many small, individual writes are performed. Individual write operations are

performed 144,065 times with a total wall clock time of 33,109 seconds across all 512

processes (mean of 64.7 seconds for each process overall, max of 96 seconds per write,

min of 46 seconds per write).

3. MPI File open calls take longer than necessary because it has not been optimized

how the MPI File open calls are performed, so that the 2560 calls take a total of 325
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Table 1: Parallel HDF5
Parallel HDF5

Function # of calls Total Time (sec)
write 144065 33109.67
MPI Bcast 314800 12259.30
MPI File open 2560 325.17
H5P, H5D, etc. – 8.71
other – 60

Table 2: ADIOS Independent MPI-IO
ADIOS Independent MPI-IO

Function # of calls Total Time (sec)
write 2560 2218.28
MPI File open 2560 95.80
MPI Recv 2555 24.68
other – 65

seconds across all 512 processes (mean of 0.63 seconds).

2.6.3.2 Performance Analysis of ADIOS with BP format using Independent IO

For a test case of 512 cores running the Chimera supernova code, this evaluation uses 5 sets

of restart dumps, with results appearing in Table 2. In comparison to the parallel HDF5

results shown above, this ADIOS run has a straightforward outcome:

1. Buffered writes take the longest time, since ADIOS, by default if memory is available,

buffers all writes to the output file locally and then writes the buffered output in a

single write operation to disk. MPI File write is called 2560 times with a total wall

clock time of 2,218 seconds across all 512 processes (mean of 4.3 seconds, max of 11

seconds per write, min of 0.01 seconds, likely due to cache effects).

2. By coordinating the MPI File open calls, the total time to open the file is reduced.

Specifically, rather than have all processes call MPI File open at the same time, a

coordination token is used, in a round robin fashion, to reduce the load on the meta-

data server. This reduces the time for the 2560 MPI File open calls to 95.80 seconds

(mean 0.19 seconds). Including the time for the token passing, the total time for the

MPI File open and MPI Recv calls is still only 120.48 seconds across all 512 processes
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Table 3: BP to HDF5 File Conversion on 1 processor
Job Size (cores) File Size (bytes) Total Conversion Time (sec) Speed (MiB/sec)
512 467614208 5.361044 83.18
1024 935621632 10.8131 82.51
2048 1872816128 20.725636 86.17
4096 3748777984 48.226855 74.13
8192 7503527936 117.0 61.16

(mean of 0.23 seconds).

The performance impact of collecting the data characteristics is negligible. For all of

the tests, the amount of time spent collecting the metrics locally on each compute process

is lost in the IO variability.

2.6.3.3 File Conversion Performance

Since the default implementation of the ADIOS MPI-IO, POSIX, and collective MPI-IO

methods use the BP format, the time spent converting this format into the HDF5 desired

by the Chimera scientists is extremely relevant. Tests are performed on a single Jaguar

login node reading from the BP file and writing to an HDF5 file, both stored on the Lustre

scratch space.

Five examples are profiled for file conversion performance, described in Table 3. For the

2048 process case, Chimera generates a file of approximately 1.8 GiB. This conversion takes

about 20 seconds. For a larger example from a run of 8192 cores, the file generated is about

7 GiB and is converted to HDF5 in 117 seconds. Note that the native Parallel HDF5 calls

in Chimera take 1400 seconds to write each output while the MPI-IO independent method

takes only 10 seconds. Thus, even when combined with the 127 second conversion time,

this is a greater than 90% savings in IO time.

Regarding conversion, it is possible to completely ‘hide’ its costs by automatically per-

forming it either ‘in transit’ or once data is stored on disks. The evaluation of such ap-

proaches is beyond the scope of this thesis.
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2.6.4 GTC Evaluation

The GTC evaluation is performed in two phases. The first phase focuses on the raw perfor-

mance attained over a series of runs over time to demonstrate the consistency of the high

performance output. The second phase examines the particle output.

The the first phase tests are run in two sets. The first set of phase one is performed on

the Jaguar machine at ORNL. The system is a Cray XT4, dual core AMD x64 chips with 2

GiB of RAM per core and around 40-45 GiB/sec peak IO bandwidth to a dedicated Lustre

parallel file system. Our tests showed a consistent average aggregate write performance of

20 GiB/sec for a 128 node job [87]. See Figure 6.

Figure 6: GTC on Jaguar with ADIOS

The second set of tests for phase one are performed on the ewok system at ORNL. This

is an Infiniband cluster of 81 nodes of dual core AMD x64 chips, 2 GiB of RAM per core,

and about 3 GiB/sec peak IO bandwidth to a Lustre file system shared with several other

clusters. Two sets of 5 runs for GTC on 128 cores are performed. Each run generates

23 restart outputs for a total of 74.5 GiB. The first set is configured to generate output

using the MPI synchronous transport method while the second set is configured to generate

no output using the NULL method. We are able to demonstrate an average 0.46 GiB/sec

performance. Given the ability to login to various nodes on the machine directly and the

shared storage system, there is a large variability in the performance. Two of our runs with

IO were faster than one without IO. This variability is addressed in Chapter 3.

The second phase of tests examine the restart and analysis output from GTC. The GTC
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code has two large output operations that both occur when restarts are written. The first

is the normal state output to enable a restart. The second is a set of particles used for

analysis. These particles are tracked as they rotate around the simulation toroid and yield

some of the scientific data important as the output of the run. We configure GTC to run

for 100 iterations with a restart/particles output every 10 iterations. Tests are run 5 times

and again, the ‘best’ results are shown from the 50 outputs. The evaluation is performed

for each of POSIX IO, independent MPI-IO, and collective MPI-IO.

For weak scaling tests, we use the Jaguar machine and run with OpenMP to communi-

cate among the cores within a single node (4 cores per node). Strong scaling tests are run

on the Ewok machine, without OpenMP.

This second phase GTC evaluations are divided into two parts. The first evaluates weak

scaling with various ADIOS IO routines. The second evaluate the performance of GTC

with strong scaling using various ADIOS methods for comparison. We provide these to

demonstrate the applicability of ADIOS to a range of HPC applications beyond Chimera.

Figure 7: GTC Particles Weak Scaling Time

Figure 8: GTC Particles Weak Scaling Aggregate Bandwidth MPI
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Figure 9: GTC Particles Weak Scaling Aggregate Bandwidth POSIX

Figure 10: GTC Restarts Weak Scaling Time

Figure 11: GTC Restarts Weak Scaling Aggregate Bandwidth
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2.6.5 GTC Weak Scaling

The GTC configuration outputs particles of the size 11.5 MiB per MPI process. Since

OpenMP is used, this is the aggregate for the four cores on that particular node. For the

restart output, the output of each MPI process is 116.5 MiB.

For the particle output, shown in Figures 7, 8, and 9, the POSIX output of one file

per process is still considerably faster than the other approaches, the ‘cost’ of that ap-

proach being the large number of resulting files on disk. The more interesting result is

in the bandwidth measurements. Collective MPI-IO stays about the same margin better

than independent MPI-IO until about 1024 MPI processes. At 2048 processes, the margin

is reduced considerably. At 4096 processes, the bandwidth is reduced below that of inde-

pendent MPI-IO. This further emphasizes the observations in the Chimera runs that the

coordination required for collective-style IO does not adequately scale.

For the restart output, in Figures 10 and 11, the performance of output methods using

collective MPI-IO is initially worse than that of the independent MPI-IO output, and it

continues to degrade with increasing simulation sizes. While the particle data is relatively

small at 11.5 MiB per process, the restart data, at an order of magnitude larger, clearly

demonstrates differences in IO performance. For such output, it would never be appropriate

to use the collective MPI-IO method, instead favoring the independent IO method or POSIX

methods, if it is possible to cope with the large number of files they create.

As shown above, both the particle and restart data differ in size and show different

performance characteristics depending on the size of the run. This demonstrates the need

for differentiating IO methods both by run and by output grouping. ADIOS enables such

differentiation.

2.6.6 GTC Strong Scaling

Strong scaling results are attained on the Ewok end to end cluster at ORNL. Interesting

insights are attained despite the cluster’s relatively small size.

Test runs with small data sizes are not meaningful due to caching effects, so discussion

is focused on larger data runs on the largest number of processors. The results of these
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Figure 12: GTC Particles Strong Scaling Time

Figure 13: GTC Restarts Strong Scaling Time

evaluations are shown for particles in Figure 12 and for restarts in Figure 13. The most

important characteristic of these results is how relative performance differs between Jaguar

and Ewok for the independent and collective MPI-IO calls. Although both of these machines

are housed at the same location and maintained and configured by the same staff, their

different architectures yield the opposite performance results of what we saw for the particles

and restarts. When running on Ewok, or by extension probably other Infiniband-based

Linux clusters, using collective MPI-IO for restarts and independent MPI-IO for particles is

the better configuration, at least at these scales. This further emphasizes the need to have

configurable IO as part of scientific simulations in order to achieve best IO performance.

ADIOS offers this capability, per IO grouping, by simply changing a single entry in the

XML file when the job is submitted.

2.6.7 Evaluation Discussion

The performance advantages of the ADIOS approach are shown by measuring the perfor-

mance of the native parallel HDF5 output from the Chimera supernova code compared
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against various methods integrated with ADIOS. The overheads involved in parallel HDF5

vs. independent MPI-IO are identified and compared with ADIOS performing independent

MPI-IO. We show that the coordination and small writes required by HDF5 for file con-

sistency degrade performance by as much as three orders of magnitude compared to other

methods. With a total time of 1400 for the real-time consistency output directly to HDF5

vs. a net total time of less than 120 seconds to output data in HDF5 via the BP file for-

mat using a delayed consistency method and conversion, it is hard to justify the wall clock

expense during a production simulation run to perform real-time consistency validation.

The GTC fusion code is evaluated with both weak and strong scaling for two different

outputs performed at the same time. We show that as the size of the simulation run

increases and based on data size, it is appropriate to use different IO methods. By also

running tests on the small end to end Ewok cluster, performance differences and resulting

changes in recommended IO methods are demonstrated.

Both of these results demonstrate the need for using delayed file consistency, with rapid

conversion to a consistent HDF5 and/or NetCDF file, and with configurable IO as provided

by ADIOS. As platforms change or for different sizes of simulation run, the selection of the

IO method for each grouping of data within the simulation is critical for minimizing the

time spent in IO.

Changing IO Without Changing Source By editing the method entry of the XML

file, the IO routine selected when the code runs will be changed. An important concept of

this worth repeating is that multiple method entries can be set for each adios-group within

the XML file specifying multiple outputs for a single data group. These will be performed

in the order specified transparent to each other and to the scientific code. For example,

if the analysis data should be written using MPI-IO to disk and then be picked up for

processing by a workflow system, adding a transport method that triggers the workflow

system as a second method entry for the analysis data group will cause the data to be

written to disk and then the workflow system will be notified. Note that the success of this

approach would depend on the data being written using a synchronous IO routine. To this
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end, we have created two visualization transport methods. The first was tested with VisIt

through a VTK API interface and the second to a custom OpenGL renderer using a socket

connection.

2.7 Conclusion and Future Work

The middleware approach demonstrated by ADIOS in this chapter achieves the simplicity

and flexibility goals for extreme scale data management in HPC. The ability, transparent to

the host science code, to change the underlying data transport method requiring neither a

source code change nor recompilation demonstrates the flexibility. The performance demon-

strated in this chapter for both the small sized, large count of variables case of Chimera

and the large sized, small count of variables case of GTC both show the efficacy of this

middleware approach. For all of the tests, different transport methods were selected and

the code was rerun. Given the new file format, concerns about the cost of conversion to

more common file formats were also addressed. The small linear time conversion cost for a

single process is considerably less than the savings compared with writing in HDF5 directly

from the simulation. Parallel conversion programs would be a nice addition to improve the

performance further.

The first major issue revealed as part of this chapter is the existence of variability in the

IO time. The magnitude of this impact warrants additional investigation to manage this

effect. This is performed and discussed in the next chapter. The second issue is the potential

impact on read performance, particuarly for various analysis tasks. These evaluations are

performed in Chapter 4.

At a more detailed level this chapter has shown the following. ADIOS provides a flexible

approach for IO within scientific codes while affording an opportunity to integrate cleanly

and transparently with auxiliary tools such as workflow and visualization systems. Revisit-

ing the four goals from the chapter introduction, we can conclude for each as follows. First,

different IO routines have been optimized for different machine architectures and configu-

rations. No single set of routines can give optimal performance on all different hardware
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and storage platform combinations. The choice of a middleware approach affords the trans-

parent use of optimize IO techniques. Second, while richly annotated data is desired, the

complexity of writing the code to manage the data creation can be daunting. The API

must be simple enough to be easily written yet provide facilities to generate richly anno-

tated data with little extra effort for the developer. Our choice to have a simple, consistent

API for the source code and a richly annotated XML file that describes and annotates the

data and controls the IO methods selected achieves the simplicity in programming. Third,

once the code is stable, no source code changes should be required to support different IO

routines for a different platform or IO system. We have achieved this by supporting simply

changing the method entry in the XML file. Forth, adding additional IO integrations such

as workflow or in situ visualization routines should be transparent to the source code and

facilitated via low-impact system approaches. Simply by adding another method entry to

the XML file, a triggering message can be sent to a passive workflow system avoiding the

unintentional slowdown caused by “passively” watching for files to appear.

This chapter demonstrates the utility of five basic ideas. First, the idea of a separate

grouping for each output operation affords selecting different approaches, each with local

optimizations. Since the transport method is selectable at runtime for each IO group, a

single API can be used in the code without hurting performace for areas where a particular

API may be inefficient. Second, the external configuration affords selection of the vari-

ous transport methods at runtime without requiring source code changes. Additionally,

attributes can be added to the XML file to better annotate the generated data that will be

incorporated into the output the next time the science application is executed. Third, it

shows that the use of delayed consistency methods applied to the internals of large-scale files

can result in up to three orders of magnitude performance improvements in IO on petascale

machines. Forth, by providing ‘nearly free’ data characterization as part of the base API,

common questions like when a value or array reaches some threshold value can be answered

without analyzing all of the output data. This aids both (1) in selecting which data to

analyze from potentially slow storage like a tape library and also (2) in preserving the use

of expensive analysis resources for the data most relevant to the scientific question at hand.
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Finally, resilience is achieved by replicating metadata to all process outputs. By using a

footer index with replicated data from the process groups rather than a header, append

operations are facilitated and we avoid relying on centralized metadata for file correctness.

The middleware approach has advantages over other alternatives for abstracting the

IO techniques. For example, using conditional compilation directives can give access to

alternative IO approaches. By avoiding using a middleware abstraction layer, the user

is exposed to the penalities of any change to the IO contents requires changing multiple

locations in the code and retesting of each. By using the middleware approach with the

external XML configuration file, these sorts of changes become a matter of editing the XML

file, recompiling, and running again. The various semantics of the different IO methods are

hidden and any related errors in constructing the proper syntax for adding the new variable

are reduced. This is especially true for forgetting to add the new variable to a seldom used

IO method. The overhead ADIOS introduces is two function calls per ADIOS call. The

adios write call first invokes the language specific (Fortran or C-style) interface. This

function does any necessary parameter adjustments and invokes a common implementation

function. The common function may do a little work that will be shared across all transport

methods, but it generally just invokes the transport method implementation for all of the

actual work such as encoding and buffering. As a side benefit, when a new transport

method becomes available, no changes are necessary to the code to see how it impacts the

IO performance of a code. Simply change the XML file to invoke the new method and run

some test cases.

In conclusion, ADIOS provides simple APIs for performing IO, proven routines for

achieving fast IO, and the flexibility to add workflows, visualization, and other auxiliary

tools transparently and with low impact to scientific codes. ADIOS provides a platform

for simplifying efficient IO coding for scientists, while affording interesting opportunities to

provide value-add features, both without disturbing existing simulation codes. An XML

file used for specifying configuration options (and additional information) makes it easy

for end users to take advantage of different IO functionalities underlying the ADIOS API,

including asynchronous IO options. With asynchronous IO, the IO costs can be reduced
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for certain HPC applications, and with ADIOS’s configuration options, traditional methods

can be used elsewhere. ADIOS also makes it easier to integrate programs’ IO actions with

other backend systems, such as Kepler [61] and VisIt [112], with low-impact approaches.

We have demonstrated the viability of the approach by fully integrating with seven major

scientific codes using different IO techniques with direct integration into two visualization

systems. Our excellent performance results reinforce the viability of this approach.

For petascale machines, the performance penalties of using full internal file consistency

during a production run can be too onerous. Through ADIOS, a developer can debug a

code using an underlying API with active consistency checks, like parallel HDF5 or parallel

NetCDF, but during a production run, one can switch to whichever IO method gives the best

performance, thus yielding the ‘most science’ with the least IO overhead. In some cases, this

will be Parallel HDF5 or Parallel NetCDF. In other cases, through the use of a format like

BP, it is possible to deliver excellent performance while still maintaining sufficient metadata

for easy conversion to the file format compatible with the science workflow already employed.

Further, ADIOS’ additional feature of data characteristics can aid in data selection on the

large output sets.

We have demonstrated that in some, if not many cases, the use of alternative IO methods

can yield dramatically better IO performance during production runs while still maintaining

format compatibility via relatively cheap methods for file conversion. We conclude therefore,

that to attain high IO performance on petascale machines, it is imperative to be able to

configure the IO method employed for each IO grouping within a code differently, at runtime

and without any source code changes. ADIOS provides such functionality.

We have demonstrated a simple API and can still generate annotated data with fast

IO performance while transparently integrating with workflow or visualization. Without

changing the source code, we can then turn off all or any portion of the IO for a baseline

run to cleanly collect baseline IO performance metrics.
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CHAPTER III

ADAPTIVE TECHNIQUES FOR MANAGING EXTREME SCALE,

SHARED FILE SYSTEMS

3.1 Introduction

In the previous chapter, the ADIOS middleware was demonstrated to achieve excellent

performance, provide a file format that is easily convertable to other standard formats while

offering a scalable data organization, added data characteristics for rapid idenitification of

data essentially for free in terms of time and space, and offered the flexibility to change how

IO is performed without source code changes making moving extreme scale science codes to

new platforms easier by avoiding the necessity of changing the code to perform IO should

the new platform demand it.

In this chapter, the writing portion of the write-read cycle is further examined to address

one of the glaring issues identified in the previous chapter–the issue of variability in IO

performance. It further examines how to work around the limitations of the file system

in order to achieve nearly full aggregate bandwidth performance as often as possible, no

matter the system conditions.

3.2 Overview

To meet the performance demands of petascale applications and science, HPC file systems

continue to grow in both extent and capacity. For example, the new file system at Oak

Ridge National Laboratory supporting the petascale Jaguar machine has 672 individual

storage targets (OSTs) and over 10 petabytes of storage. Storage targets can be used in

parallel, resulting in a theoretical peak of generally around 60 GiB/sec aggregate perfor-

mance (as much as 90 GiB/sec with optimal network organization) and it is clear that such

performance levels are needed when up to 225,000 compute cores can concurrently generate

output. Additional performance requirements are due to file system sharing across multiple
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machines, as is the case at both ORNL and NERSC, where IO systems are used simulta-

neously by petascale machine applications that generate output data and by analysis or

visualization codes that consume it.

Extensive prior work is focused on the performance of shared file systems used by en-

terprise applications that generate rich and varying mixes of read/write accesses to large

numbers of files. Topics range from driver-level work on efficient algorithms for disk access

to system-level strategies for effective buffering to alternative file organizations [89] used

in file systems to diverse methods for content distribution across multiple OSTs and/or

machines such as file striping, etc. The parallel file systems used at ORNL, NERSC, and

other supercomputing sites, in fact, use many of the sophisticated techniques developed

in such research. In addition, HPC researchers have developed novel methods in sup-

port of high performance IO, which include data staging [3, 76], the use of alternative

file formats or organizations [11, 59, 50, 51], and better ways to organize and update file

metadata [79, 27, 37, 120, 52].

Despite their use of state of the art approaches like those described above, the large

parallel file system installations at sites like ORNL or NERSC continue to face significant

challenges when they are used ‘at scale’. This is due to several facts. First, in contrast to

most enterprise applications, an HPC application can demand instantaneous and sole access

to a large fraction of the parallel file system’s resources. An example is a petascale code

that outputs restart data. If IO resources are insufficient, this code will block and waste

CPU cycles on compute nodes waiting for output rather than making positive progress

for the ongoing scientific simulation. Such latency sensitive behavior is characterized by

periodic output patterns with little or no IO activity for the 15 or 30 minutes of duration

of alternating computation and output steps thereby providing distinct deadlines for IO

completion. Second, the resource demands imposed by single large-scale codes are magnified

by the simultaneous use of the petascale machine by multiple batch-scheduled applications,

each desiring a substantial portion of IO system resources and each demanding low latency

service. Third, when file systems are shared, like those at ORNL and NERSC, it is not just

the petascale codes that demand IO system resources, but there are also additional requests
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that stem from the analysis or visualization codes running on select petascale machine nodes

and/or on attached cluster machines with shared file system access.

The facts listed above all contribute to an important phenomenon observed in the IO

systems used with petascale machines, which is that of high levels of variability in IO

performance. Measurable sources of such variability include the following:

• Internal interference occurs when too many processes within a single application at-

tempt to write to a single storage target at the same time. This causes write caches

to be exceeded leading to the application blocking until buffers clear.

• External interference can occur even if an application takes great pains to properly use

storage resources, since it is caused by ‘shared’ access to the file system, an example

being analysis codes running on an attached cluster machine that attempt to read

data stored in the shared scratch space at the same time as the petascale machine is

writing its output data. Another example is simultaneous file system use by multiple

applications running simultaneously on the petascale machine.

An additional issue is lack of scalability in metadata operations, which has been considered

in extensive past research. The LWFS file system, for example, decouples metadata from

data operations and postpones them, when possible [79], and the partial serialization ap-

proach described in our own previous work with Jaguar [60, 56] reduces intra-application

sources of contention experienced by the metadata server.

Prior work in the enterprise domain does not adequately address the internal or external

interference effects observed on petascale machines. This is because in enterprise systems,

the principal concern has been to properly sequence and batch read vs. write operations on

large numbers of files in ways that leverage processes’ sequential read behavior to reduce disk

head movement while also effectively using available buffer space [9, 41]. These solutions

may help with interference effects on single storage targets, but they do not address the

load balancing or uneven usage across the multiple storage targets seen in HPC storage

systems.
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We have developed a new set of dynamic and proactive methods for managing IO inter-

ference. These adaptive IO methods improve IO performance by dynamically shifting work

from heavily used areas of the storage system (i.e., storage targets – OSTs) to those that are

more lightly loaded. Adaptive IO is complemented by additional techniques that stagger file

open (i.e., metadata) operations to manage performance impacts on the metadata server.

By using adaptive IO, we have been able to substantially improve the IO performance of

petascale codes, including that of fusion simulations like GTC [43], XGC1 [18], GTS [114],

and Pixie3D [16]. These codes generate restart and analysis data every 15 or 30 minutes,

with full scale, production data sizes generally between 64 MiB and 200 MiB per process.

For a typical petascale run of around 150,000 processes, 200 MiB per process yields 3 TiB

to be written every 30 minutes. Staying within a generally acceptable 5% of wall clock time

spent in IO limit, this requires a minimum sustained speed of 35 GiB/sec. With the current

Lustre limit of a maximum of 160 storage targets for a single file, and a per storage target

theoretical maximum performance of around 180 MiB/sec, a maximum of only 28 GiB/sec

can be achieved in theory, assuming perfectly tuned IO routines and an otherwise quiet

system. Removing this limit can address internal interference, of course, but it does not

help with external interference in a busy system. In response, adaptive IO is designed so as

to cope with both internal and external interference effects, the goal being to consistently

achieve > 50% of theoretical peak IO performance.

Experimental results presented in this chapter first assess and diagnose the presence

and effects of internal and external interference in petascale storage systems. Based on

the insights gained from these evaluations, adaptive IO methods are implemented in the

context of the ADIOS IO middleware now widely deployed for petascale codes [48]. The

outcome is a substantial improvement in IO performance, ranging from around 2x the

average performance for a 16384 process run of XGC1 to more than 4.8x for the 16384

process run of Pixie3D with 16 TiB output per IO, all with less variability in the time spent

performing IO.

The remainder of this chapter is structured as follows. Section 3.3 experimentally estab-

lishes the existence of both internal and external interference for multiple large-scale parallel

57



file systems. We then describe the design, software architecture and implementation details

of adaptive IO in Section 3.4. Section 3.5 presents experimental evaluations, using both

actual petascale applications and synthetic benchmarks, the latter to better characterize

certain performance properties and behaviors. Results are discussed in Section 3.5.3 fol-

lowed by an outline of related work in Section 3.6. Conclusions and future work appear in

Section 3.7.

3.3 Problem and Motivation

Variability in file system performance due to concurrent use has existed since multi-user

operating systems were developed, causing parallel file systems to employ rich caching and

other performance management techniques for their internal storage targets. The internal

and external interference effects seen in parallel file systems, however, are not adequately

addressed by these techniques, as validated by the performance measurements taken on

multiple machines and file systems presented below.

The first set of measurements use the petaflop partition of the Jaguar machine at Oak

Ridge National Laboratory. This is a Cray XT5 machine with 18,680 nodes, each with dual,

hex-core AMD Opteron processors (224,160 cores) and with 16 GiB of RAM per node. The

scratch file system is a 672 storage target Lustre 1.6 system with 10 PiB total storage

shared across multiple machines at ORNL. Second are measurements on the XTP machine

at Sandia National Laboratories, which is a Cray XT5 with 160 nodes, each with dual, hex

core AMD Opteron processors (1,920 cores) with a Panasas file system (PanFS) configured

with 40 StorageBlades for a total of 61 TiB of storage. Third are results attained on the

Franklin Cray XT4 MPP at NERSC. Franklin has 38,128 Opteron compute cores, and its

scratch file system is Lustre with 96 storage targets and 436 TiB storage. Experimental data

concerning Jaguar and XTP are collected by the authors of this chapter; performance data

on Franklin is obtained from NERSC’s online performance monitoring data repository [69].

Measurements reported below first document the existence of internal interference and

its impact on aggregate write bandwidth. External interference and its impacts are shown

second. The section concludes with a summary of results and insights. To strictly isolate
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interference effects, all reported measurements specifically omit file open and close times.

3.3.0.1 Internal Interference

(a) Scaling of Aggregate Write Bandwidth on
Jaguar/Lustre.

(b) Scaling of Per-Writer Write Bandwidth on
Jaguar/Lustre.

Figure 14: Illustration of Internal Interference Effect

Using Jaguar/Lustre and the IOR benchmark [97], we demonstrate internal interference

by writing data of differing sizes via different ratios of processes to storage targets (OSTs).

In all such tests, the IOR program is configured to use 512 OSTs, where each process writes

data to a separate file and to some fixed OST using POSIX-IO. Writers are split evenly

across the 512 OSTs.

Figure 14(a) depicts the scaling of IOR POSIX-IO aggregate write bandwidth on Jaguar

with different numbers of writers and different per-writer data sizes. Figure 14(b) shows the

corresponding average per-writer bandwidth values at different scales. In both figures, each

bar represents the average value among 40 samples with error bars depicting maximum and

minimum values. The ratio of processes per storage target ranges from 1 to 32, and the

data sizes range from 1 MiB per process to 1024 MiB per process with weak scaling.

Measurements clearly demonstrate the performance effects of internal interference. In

Figure 14(b), per-writer write bandwidth consistently decreases with an increasing number

of writers, and Figure 14(a) reveals that eventually, the increase in aggregate performance

due to an increased total number of writers is dwarfed by the losses in individual writer

performance caused by contention. This holds for all cases other than those in which output

benefit from the caches associated with storage targets, i.e., with 1 MiB writes. Aggregate

bandwidth peaks with a per-writer data size of 8 MiB, then begins to decrease at the scale

of 8192 writers (the ratio of writer vs. OST being 16:1); for all other data sizes, aggregate
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write bandwidth begins to decrease at the scale of 2048 writers (4 writers per OST). For

example, for the largest output size of 1024 MiB per process, the aggregate write bandwidth

seen by 16384 writers is 8 GiB/sec less than that of 8192 writers. The effects are amplified

at large scales. With per-writer data size equal or larger than 128 MiB, the aggregate write

bandwidth degrades by 16%-28% when scaling from 8912 to 16384 writers. Particularly,

for the 1024 MiB per writer case, the aggregate write bandwidth seen by 16384 writers is

20.6 GiB/sec, which is only 72% of the bandwidth of 8192 writers. For Sandia’s XTP, we

did not observe substantial bandwidth degradation except that there is a < 5% reduction

in write bandwidth for the large data sizes (512 MiB or 1024 MiB per writer) when scaling

IOR from 512 to 1024 writers. This can be attributed to the XTP machine’s relatively

small size limiting the contention among concurrent writers and/or the design of PanFS.

3.3.0.2 External Interference

Table 4: IO Performance Variability due to External Interference
Machine Samples Avg. IO Bandwidth (MiB/sec) Std. Deviation Covariance
Jaguar 469 1.78e+4 1.07e+4 60.09%

Franklin 2581 6.22e+3 2.50e+3 40.22%
XTP(with Int.) 400 7.89e+2 3.44e+2 43.68%

XTP(without Int.) 320 1.44e+3 1.28e+2 8.86%

Tests are run on all three machines to demonstrate the effects of external interference on

IO performance. Specifically, hourly IOR tests are launched where each test is configured

with 512 writers using POSIX-IO, one file per writer, and one process per storage target.

Performance results for these tests have a total of 469 samples of IO actions. Over the

past two years, similar experiments have been conducted at NERSC on Franklin using

80 writers, with results from those tests accessible through NERSC’s online performance

monitoring data repository. The experiments we conduct on Sandia’s Cray XTP differ

because XTP is not a production machine. Here, tests are run in two controlled ways: the

first runs a single IOR program with 512 writers using POSIX-IO and one file per writer

(referred to as “XTP(without Int.)”); the second launches two IOR programs at the same

time, thereby emulating the presence of multiple simultaneous workloads (referred to as

60



“XTP(with Int.)”).

Table 4 summarizes experimental results, and Figure 3.3.0.2 shows the histograms of

IO bandwidth based on the performance data collected. It is clear that in busy production

environments like Jaguar and Franklin, IO variability can be substantial, ranging from 40%-

60%. On Sandia’s Cray XTP, even a moderate degree of sharing (i.e., two simultaneous

IOR jobs) can cause IO performance variations of up to 43%.

(a) Jaguar/Lustre (b) Franklin/Lustre

(c) XTP/PanFS (with Int.) (d) XTP/PanFS (without Int.)

Figure 15: IO Performance Variability due to External Interference

(a) Test 1 (b) Test 2

Figure 16: Illustration of Imbalanced Concurrent Writers

To better characterize the extent of interference, we define the imbalance factor of each
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IO action to be the ratio of the slowest vs. fastest write times across all writers. Consider

two separate samples from the external interference tests for 128 MiB per process on Jaguar.

Figures 16(a) and 16(b) show the individual write times for each process for these two tests,

respectively. Test 2 took place only 3 minutes later than Test 1. Apparent from these tests

is the dynamic and potentially transient nature of external interference, resulting in write

times that are much more evenly distributed among all concurrent writers in Test 2 than

those in Test 1. In Test 1, an imbalance factor of 3.44 separates the minimum and maximum

time spent performing IO. For Test 2, this factor is reduced to 1.86. Interestingly, even for

the latter relatively smaller imbalance factor, nearly twice as much data could be written

to the faster storage target than to the slower one.

To summarize, we observe a significant imbalance in terms of fastest vs. slowest writes

in all IO tests run in our experiments with an overall average imbalance factor of 7.12.

Since overall write time is determined by the slowest writer, the purpose of the adaptive

IO methods presented in this chapter, then, is to mitigate the performance impact of these

‘slow’ writers.

3.3.0.3 Alternatives to Adaptive IO

Before describing adaptive IO, we briefly digress to discuss potential alternative solution

techniques. One possible way to reduce the effects on applications of IO performance

variability is to decouple IO from application actions through the use of asynchronous IO.

Unfortunately, given the large volumes of output generated by typical petascale applications,

asynchronicity is limited by the total and limited amounts of buffer space available on the

machine, which typically extends to only one or at most a few simulation output steps.

Such ‘near-synchronous’ IO, therefore, still causes applications to block on IO when IO

performance is consistently too low. Unfortunately and as evident from the experimental

evidence presented above, consistently low performance is a natural outcome of internal or

external interference.

Data staging [3], a second potential solution to IO performance variability, also has

limited applicability. To explain, data staging moves output from a large number of compute
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nodes to a smaller number of staging nodes before writing it to disk. However, the total

buffer space available in the staging area is limited, thereby limiting the achievable degree of

asynchronicity. Further, large staging areas and/or multiple staging areas concurrently used

by multiple applications will still lead to internal or external interference. Data staging,

therefore, can help with interference issues, but does not directly address them. In fact,

our ongoing work is integrating adaptive IO even into the data staging software we are

deploying on Jaguar.

Another approach to reducing internal interference is to have the user split output into

a collection of files to ‘match’ the parallel file system being used. In the case of Jaguar and

its Lustre FS, for instance, splitting output into 5 parts would enable an application to take

full advantage of the entire file system’s resources, thereby providing at least a reasonable

guarantee of achieving required performance during some normal, productive, busy time.

This helps alleviate internal interference, but does not solve it nor does it address external

interference. There are two issues with this method: (1) the magic number ‘5’ may work

well for Jaguar, but that number will differ for other file systems and machines, and (2)

arbitrarily dividing output files in ways motivated by performance rather than file content

is not supportive of end users struggling to carry out their scientific tasks.

In summary, the use of asynchronous IO, data staging, and/or target-specific mitigation

methods may reduce the effects of IO performance variability on applications, but does

not address its root problems. Because of these facts and the substantial performance

variability in the storage system, adaptive IO continuously observes the storage system’s

performance to configure output in a way that transparently ‘best’ matches its static and

dynamic characteristics.

3.3.0.4 Summary and Discussion

Experimental results shown in this section demonstrate the existence of internal and external

interference on three different machines and with two different file systems. Interference (1)

negatively impacts the scaling of IO performance, and perhaps more importantly, (2) intro-

duces substantial IO performance variations that make it difficult to accurately predict and
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then properly allocate the amounts of time needed for performing IO. The IO performance

variations are shown to be the common rather than the uncommon case, particularly in

production environments. This holds both the for POSIX-IO measurements reported above

and for tests that use MPI-IO (not reported, for brevity), where for all cases, MPI-IO results

show the same trends, but with inferior performance. We conclude, therefore, that internal

and external interference are inherent and performance-limiting properties of petascale file

systems.

3.4 Software Architecture and Implementation of Adaptive IO

Adaptive IO is implemented in the context of the ADIOS IO middleware [58, 48]. Specifi-

cally, adaptive IO is realized as an optional set of techniques bundled into a new IO method.

3.4.1 MPI-IO

The MPI-IO transport method was developed as one of the first options offered by ADIOS.

Its common use has resulted in several optimizations, leading to excellent peak IO perfor-

mance seen on Jaguar and its Lustre file system [60]. For example, the partial serialization

of ‘open’ calls has reduced the time spent by these metadata operations by more than

two-thirds [60] for large-scale runs. Substantial performance advantages are derived from

limited asynchronicity and by buffering all output data on compute nodes before writing

it, if possible. Additional optimizations in certain variants of the base ADIOS transport

are tied to the Lustre file system used by many HPC codes. As a result, ADIOS and its

MPI-IO base transport constitutes a high performance, well-tuned set of IO abstractions

against which adaptive IO can be tested and evaluated.

3.4.2 Adaptive IO

Figure 17: Adaptive IO Organization
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Figure 17 depicts a sample configuration. When using the adaptive IO method, mid-

dleware enhances the output actions taken by these processes in ways that ascribe to them

three different roles, as illustrated in the figure: (1) the numbered circles represent process

IDs of writers participating in the output, (2) some of these processes carry out additional

actions, acting as sub-coordinators (SC) for a set of writers and a storage target, represented

by the vertical boxes in the figure, and (3) one process plays the distinct coordinator (C)

role for the entire set of writers. The coordinator and writers only communicate with the

sub coordinators, never directly with each other. This isolates the messaging reducing the

message load on any particular part of the system.

1. writers – all processes in the group write data, an example being process 7 in the

figure;

2. sub-coordinators (SC) – processes are grouped by the storage target initially assigned,

with one process for each such group coordinating access to each target, and in ad-

dition, interacting with the coordinator, an example being process 12 in the figure;

and

3. coordinator (C) – one process is selected to coordinate across all sub-coordinators,

but also acts as a sub-coordinator and as a writer, this being process 0 in the figure.

To summarize, all 18 will be writers; processes 0, 3, 6, 9, 12, and 15 will also act as sub-

coordinators; process 0 will be the coordinator.

We note that different sub coordinators write to different files, since this is how we can

control mappings to certain storage targets. We purposely enhance writers with roles rather

than implementing coordinators and sub-coordinators separately from writers. This avoids

using additional processes and having to tightly synchronize their coordination actions with

the writing actions of separated writer processes. Since process IDs are typically assigned

sequentially to cores in a node, grouping them as illustrated reduces the network contention

on the node due to simultaneous writing from the same node, but different cores. Finally, by

placing the coordination/sub coordination roles into the first process in each group, they can

each focus on management after completing their writes instead of possibly being reassigned
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adaptively to a different target (file). This choice also avoids any delays in messaging due

to the writer role for the process being busy while the coordinator is attempting to start

an adaptive writer for this group.

The software architecture chosen for adaptive IO scales to the numbers of writers present

in petascale machines like Jaguar and beyond. Specifically, based on the current state of

the XT5 partition of Jaguar with approximately 225,000 processing cores and with the

current 672 storage targets in the attached Lustre scratch system, this means each sub-

coordinator is responsible for, at most, 335 processes. The coordinator is only responsible

for the sub-coordinators, giving it 672 processes to manage. Even at the extreme scale

of the Jaguar machine, these numbers are manageable and leave room for growth. An

additional layer of coordination or distributed or partial coordination would further improve

scalability, at the costs of additional messaging and thus, coordination overheads. Another

choice would be distributed or partial coordination, e.g., by having small groups of sub-

coordinators act independently, with the resulting penalties of reduced flexibility in process-

to-storage target mappings and thus, potentially reduced overall performance. Some insights

on these tradeoffs are present in prior work on larger-scale management architectures for

the enterprise domain [46, 47].

We next explain in more detail the precise actions taken by processes in different roles.

3.4.2.1 Writers

Each writer task simply waits for a start message, writes to the indicated file at the indicated

offset, and finally, generates a completion message to the sub coordinator to trigger the next

writer. The details of this role are described in Algorithm 1. To ensure a consistent flow

of data to storage, file indexing information is transferred separately and after writing is

complete, so that this additional metadata transfer can take place concurrently with another

process writing to storage.
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Algorithm 1 Writer Process
1: Wait for message (target, offset)
2: Build local index based on offset
3: Write data
4: Send WRITE COMPLETE to triggering SC
5: if triggering SC 6= target SC then
6: Send WRITE COMPLETE to target SC
7: end if
8: Send local index to target SC

3.4.2.2 Sub-Coordinator (SC)

The sub-coordinator is responsible for scheduling IO to the local storage target and for

managing the indexing of the data stored in this file. Communications between the sub-

coordinator(s) and coordinator constitute the major elements of the adaptive IO implemen-

tation. The details are described in Algorithm 2.

3.4.2.3 Coordinator (C)

The coordinator role is generally idle until the late stages of IO when sub coordinators

message their completion. As completions arrive, the coordinator begins to obtain a global

view of the relative performance of storage targets. Given this view, it then attempts to

shift work from busy (i.e., slower) to less loaded (i.e., faster) storage targets. This continues

until all work has been completed, at which point it signals the completion of the composite

write operation so that the local indices can be created and a global, master index formed.

Adaptive writing requests are spread evenly among the sub coordinators to spread out the

accelerated completion of the write rather than pushing sub coordinators to completion

one at a time. The sub coordinators are tracked as either writing, the initial state for the

output operation, busy, indicating all processes have been scheduled so no adaptive writes

are possible, or complete indicating that all writers have completed and this file is available

for adaptive writing use. The details are described in Algorithm 3.

This adaptive mechanism scales according to the number of storage targets rather than

the number of writers. The coordinator is only involved in the process once the bulk

of writers are complete. Then, the largest number of simultaneous adaptive requests is
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Algorithm 2 Sub-Coordinator Process (SC)
while not done and missing indices 6= 0 do

2: Signal next waiting writer to write
Wait for message

4: if message = WRITE COMPLETE then
if source is one of mine, but target is not me then

6: Send adaptive WRITE COMPLETE to C
end if

8: if source is one of mine and target is me then
Save index size for index message

10: missing indices++
end if

12: if all writers completed then
Send WRITE COMPLETE to C

14: end if
end if

16: if message = INDEX BODY then
Save for index for local file

18: missing indices–
end if

20: if message = ADAPTIVE WRITE START then
if no waiting writers then

22: Send WRITERS BUSY to C
else

24: Signal writer with new target and offset
end if

26: end if
if message = OVERALL WRITE COMPLETE then

28: done = true
end if

30: end while
Sort and merge the index pieces for file index

32: Write the index
Send the index to C

strictly limited to SCcount − 1 as at most one write will be active for any file at one

time. A larger pool of writers will only serve to keep the distributed, independent sub

coordinators busy longer without affecting the coordinator with any additional simultaneous

work. Adaptive IO has been fully implemented and tested, with the exception of the global

indexing phase. In the interim, we use a automatic, systematic search of the index in each

file for particular data of interest. The inclusion of the data characteristics [60] aid this

search by enabling quickly searching for both the content as well as the logical ‘location’
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Algorithm 3 Coordinator Process (C)
while any SC state 6= complete or adaptive write request outstanding do

Wait for message
3: if message = WRITE COMPLETE then

if this was an adaptive write then
Request adaptive write by next writing SC

6: end if
if this is an SC completing then

Set SC state to complete
9: Note final offset

Request adaptive write by next writing SC
end if

12: end if
if message = WRITERS BUSY then

Set SC state to busy
15: Request adaptive write by next writing SC

end if
end while

18: Send OVERALL WRITE COMPLETE to all SC
Gather index pieces
Merge into global index with local file information

21: Write global index file

of the data of interest. Also note that the Adaptive IO configuration shown in this section

can be generalized, at the consequent cost of additional code complexity. For instance, one

might use 2 or 3 simultaneous writers per storage location and/or multiple storage locations

per sub coordinator. For example, to allow multiple simultaneous writers instead of having

a single queue for each storage target, a list of writing processes for each target would

have to be maintained. For multiple storage targets per group, a list of processes and of

offsets per target is required, but more important here is the fact that such an approach

would introduce potential ‘holes’ in the local files due to adaptive movement of processes

among both group local and other storage targets. We have not experimented with these

generalizations.

3.5 Experimental Evaluation

To evaluate the performance of adaptive IO, all tests are performed on the XT5 partition of

the Jaguar system at Oak Ridge National Laboratory (see Section 3.3 for detailed machine

configuration). Tests aim to understand how different per process sizes of data perform with
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(a) Small Data (2 MiB/process) (b) Large Data (128 MiB/process)

(c) Extra Large Data (1024 MiB/process)

Figure 18: Pixie3D IO Performance
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adaptive vs. non-adaptive IO, using two production petascale codes: (1) an IO kernel for

the Pixie3D MHD simulation is run at 3 different per process data sizes; (2) the full XGC1

fusion code is run using a single per process data size. The ADIOS [58] layer is used to

switch between the MPI-IO and the adaptive transport methods described in Section 3.4.

The four output size sets of tests demonstrate the performance ranging from 2 MiB/process

up to 1024 MiB/process. Tests are run with different process counts from 512 to 16384 pro-

cesses against 160 OSTs for MPI, the maximum allowed for 1 file, or 512 OSTs for adaptive.

The 512 OST selection for adaptive is chosen to simplify the discussion of ratios of writers

to storage targets. The adaptive approach has been successfully tested with 672 storage tar-

gets with no penalties compared with the 512 storage targets measurements presented here.

The tests are first run under normal system conditions with whatever other simultaneous

jobs happen to be running. A second set of runs are performed with artificial interference

introduced in an attempt to show the performance under a more heavily loaded file system.

These results are then analyzed to show the performance of the different IO approaches.

To ensure accurate measurements, an explicit ‘flush’ is introduced prior to the file close

operation for both the MPI and the Adaptive transport methods. For all cases, at least

five samples are generated and included. Where possible, additional samples are included

as well to strengthen the numbers. In all cases, the times reported only include the actual

write, flush, and file close operations to remove the variability due to the metadata server.

External interference is introduced through a separate program that continuously writes

to a file striped across 8 storage targets during the runtime of the interference test cases.

A stripe count of 8 is selected to reflect two applications writing using the default stripe

count of 4 configured for the file system. Three processes each write 1 GiB continuously to

a single storage target, for a total of 24 processes.

3.5.1 Pixie3D

Pixie3D [16] is a 3-Dimensional extended MHD (Magneto Hydro-Dynamics) code that solves

the extended MHD equations in 3D arbitrary geometries using fully implicit Newton-Krylov

algorithms. Pixie3D employs multigrid methods in computation and adopts a 3D domain
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decomposition. The output data of Pixie3D consists of eight double-precision, 3D arrays

that represent mass density, linear momentum components, vector potential components,

and temperature respectively. The tested configuration consists of three different sized runs,

named small, large, and extra large. The small run uses 32-cubes, large uses 128-cubes, while

extra large uses 256-cubes. These cubes represent the per process, per variable size of the

data. Overall, the small run generates 2 MiB/process, large generates 128 MiB/process, and

extra large generates 1 GiB/process. Weak scaling is employed. Please note in the presented

graphs that the error bars show the full range of performance achieved. Even though the

error bars may appear larger in some cases for the adaptive than the non-adaptive tests,

the percentage variation should be considered. The details of the variability is presented in

Section 3.5.3.

The first set, shown in Figure 18(a), use the small data model for Pixie3D. With this

model, the 2 MiB/process, even at the 16384 process level, never comes close to the 2

GiB cache size for the storage target (32 × 2 MiB). Given that, in general, the adaptive

approach does well. For example, at both 8192 and 16384 processes, the adaptive approach

is 10% better on average for base performance. For the interference tests, 8192 processes

for adaptive is 3% better on average while the 16384 processes test came to about 35%

better. This small data model is maybe 10% of a typical data size for an application like

the S3D [19] combustion simulation or the Chimera [65] astrophysics code. Interestingly,

although these data volumes are small, as process counts increase, the adaptive approach

can still pay off.

The second set, shown in Figure 18(b), use the large data model. This model consists of

128 MiB/process and it quickly overcomes any caching advantage the storage targets may

provide. It has consistently better performance both on average and at a maximum. The

improvements range from 1% to more than 350% for the base case and 62% to more than

430% for the interference case. This 128 MiB/process data size is comparable to what many

of the fusion codes generate on a per process basis, such as GTC [43]. Another way to look

at this data is considering a hybrid MPI/OpenMP setup. In this case, we divide the 128

MiB by the number of OpenMP threads to find out what the per process data size would
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be. For Jaguar’s 12 cores per node, this yields approximately 10 MiB, or about the size of

smaller S3D and Chimera runs.

The last set, shown in Figure 18(c), use the extra large data model. Although there are

3.2x more storage targets used for the adaptive approach, it is about 4.8x faster than the

non-adaptive one! Once the adaptation can play a role, i.e., there are a few more processes

than storage targets, there is a consistently > 300% performance improvement for both the

base and interference tests. We note, however, that this data model is large even by fusion

simulation standards, but we use it because of the growth in per node core counts on future

platforms, likely resulting in hybrid MPI/OpenMP codes with larger per-node output.

3.5.2 XGC1

The XGC1 [18] code is a fusion gyrokinetic Particle In Cell code that uses realistic geometry

to understand the physics on the edge of the plasma in a fusion reactor, such as ITER. These

tests are performed using a configuration that generates 38 MiB per process and weak scaling

is used. While 38 MiB per process is smaller than the largest runs for XGC1, it is still a

representative size for a production run.

The performance of XGC1, shown in Figure 19, falls between that of the Pixie3D small

and large data models, as would be expected. In this case, 38 MiB/process is not uncommon

for many scientific codes beyond XGC1, such as larger S3D runs. Adaptive IO shows clear

advantages. For example for all of the tests, the performance improvement ranges from

30% to greater than 224%.

3.5.3 Additional Insights and Discussion

Adaptive IO benefits from ‘locality-awareness’, referring to the fact that when outputs are

written, there are less vs. more ‘busy’ areas of the file system, due to external and/or internal

interference. Measurements and evaluations appearing in this chapter substantiate that fact,

and they also refine our earlier reports in which we note variability in IO performance [56].

We further substantiate these statements by next showing that adaptive IO typically reduces

the IO performance variability experienced by applications.

For both Pixie3D and XGC1, once the process count reaches some small multiple of
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Figure 19: XGC1 IO Performance (38 MiB/process)

(a) Pixie3D Small (b) Pixie3D Large

(c) Pixie3D Extra Large (d) XGC1

Figure 20: Standard Deviation of Write Time
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the storage target count, e.g., 4, the adaptive approach offers higher and more consistent

performance. The graphs in Figure 20 show the standard deviation of the write times for

each of the 4 cases measured. Here, the absolute numbers are less important than the fact

that for all cases, once the caches on the storage targets start to be taxed, adaptive IO

reduces variability. In some cases, such as in Figure 20(c), the difference is quite large.

Adaptive IO manages these variations by taking advantage of the imbalance factor

noted in Section 3.3 to dynamically shift work from slower areas of the file system to

faster ones. The remaining variability is due to largely two sources. First, the length of

time the last process takes to complete writing cannot be worked around. Second, other

use of the file system will always impact the performance of an individual write. Adaptive

approaches can minimize the overall impact of this interference, but it will always be present.

A potential issue with using adaptive IO, however, is that it requires additional files for

output. Specifically, the number of output files is a function of the file system size rather

than the process count in the run. By using the global index, access to any data can be

performed using a single lookup into the index and then a direct read of the value(s) from

the appropriate data file(s), sometimes resulting in improved performance [86] compared to

the use of single storage formats. Considering that output sets are generally treated as a

unit and that the number of files is a function of the number of storage targets rather than

the number of processes, we believe the use of additional files does not strongly impact the

ability of the scientist to manage the generated data.

3.6 Related Work

Parallel file systems offer high levels of performance for HPC applications, including Panasas [82],

PVFS [90], Lustre [14], and GPFS [93], all of which provide POSIX-compliant interfaces.

As stated earlier, there remain certain performance challenges, however. Lustre, for exam-

ple, has a single metadata server, causing potential bottlenecks by serializing operations

requiring metadata updates. More generally, these systems aim to provide general purpose,

multi-user file services, which as a goal, is somewhat orthogonal with a single user’s desire

to receive substantial IO resources and then, to optimize how these resources are used on
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behalf of that user. Adaptive IO provides such complementary functionality.

Current work on log-based file systems [85, 11] has improved write performance for

checkpoints, but at the potential cost of reduced read performance. PLFS [86] has demon-

strated that read performance does not suffer when performing a restart-style read of all

of the data, but interference effects have not yet been addressed. Zest [78] skews the IO

performance in favor of write performance by strictly acting as a write cache for another

read/write file system. For all of these systems, however, it remains important for end

users to consider their IO characteristics in order to extract high file system performance.

Adaptive IO does not require users to have such knowledge.

Systems like PaScal [15] do an excellent job managing the data bandwidth, but require

a different IO hardware architecture. LWFS [79] breaks POSIX requirements in order to

better suit client needs, but does not address the internal nor external sources of interference

created by the shared file system. The idea is to attain performance gains by eliminating

certain consistency and coordination requirements, then permitting them to be specialized

to certain applications and their specific needs. Neither of these attempt to manage multiple

writer processes within a client to avoid internal interference nor do they explicitly address

external interference issues. The Google File System [30] is focused on high aggregate

throughput, but is not concerned with maximizing per client performance. Closer to our

work is that of Gulati and Varman [33], who provide for scheduling IO operations, but their

focus is on using caches to improve read performance, and they do not address the cases

where the data is far larger than total cache space.

Using middleware to manage IO to improve performance is not new to HPC. MPI-IO

introduced the ADIO layer [40] as a way to install system-specific optimizations of the

general MPI-IO implementation. Many optimizations are possible and have been handled

at this layer, such as custom drivers for Lustre or PVFS. Collective IO, also handled in this

middleware layer, attempts to perform a level of data-size driven adaption by aggregating

small writes into single, larger writes to obtain greater performance, but it does not address

the issue of large writes from all of the processes, nor does it address interference problems.

At the slightly higher layer of IO APIs, the issue has largely been sidestepped. Both
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HDF5 [35], and therefore NetCDF version 4 [110], and PnetCDF [72] have ceded control

of this detail to the underlying IO layer, typically using MPI-IO. While they are ‘closer’ to

the application and therefore, have more knowledge about the size and distribution of data,

there are many optimizations that could be implemented if they more directly manipulated

the lower IO layer. Some work has been done by the PnetCDF team on ‘subfiling’ [21] to

try to address the need to decompose the output to gain greater parallelism. However, this

work requires the user to guess the number of files into which to decompose the output

and will only decompose along the major dimension of an array rather than based on the

overall data sizes. They also did not address the transient performance issues of external

interference.

Data staging efforts have primarily focused on reducing data read times in HPC [66],

in grid environments [23, 81], and for mobile applications [96]. More recent work has used

data staging for enhancing write performance [75], but at a cost of additional compute

resources. Demonstrated on a BlueGene/P with dedicated IO forwarding nodes, the IO

Forwarding Scalability Layer [6] aggregates requests to reduce contention on the IO system

to manage internal interference for writing but does nothing to manage external interfer-

ence effects. To soften the cost of the additional resources for data staging, DataTap [4]

provides data staging-like functionality, but provides much more significant in transit data

processing features. DataTap has worked extensively to manage the IO effectively using

several scheduling techniques [3].

ADIOS has demonstrated it can successfully achieve high output performance [60], an

outcome of its componentization approach being that it can manage different portions of the

IO using different techniques, for best overall performance. ADIOS’ default BP file format

has been shown to help improve IO performance through techniques like delayed consistency

checks while maintaining sufficient information for scientists to convert the ADIOS default

BP file format into a format like HDF5 or NetCDF for use with current analysis routines [59].

These features make it an excellent choice as a development platform for experimenting

with different IO techniques within production science codes. Some results for the ADIOS

stagger IO approach were reported at the 2009 Cray User’s Group [56]. Stagger addressed
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internal interference and exposed the magnitude of the transient external interference. Since

these results were presented, the XT5 partition and the underlying scratch file system have

undergone considerable change, preventing a direct comparison with the results presented

in this chapter. In particular, the number of cores was increased by 50% and the connection

to the file system was adjusted because it is now being shared as the primary scratch space

across most HPC resources at ORNL. These changes in system configuration make managing

IO performance vairability even more challenging and motivate us to explore adaptive IO

mechanism in this chapter.

Adaptive approaches have been applied to IO systems in the past. These efforts have

fallen into a few broad categories. The first group has examined using adaptive techniques

to schedule IO for real-time systems [64]. These efforts have looked more at how to have

effective IO integrated with a real-time system rather than optimizing for IO performance

overall. Second, shared use of enterprise shared storage systems is considered in [111]. The

goal is to maintain some level of quality of service for all competing applications, but there is

no consideration of balanced IO loads for single applications across multiple storage targets.

Third, more recent work investigates pre-fetching and job scheduling [108], integrated with

the job scheduler for an HPC resource. The goal is to reduce application load and start up

times by pre-staging input data for read-intensive workloads. Streaming systems have also

incorporated adaptive techniques [55]. These attempt to predict IO needs for streaming

applications and manage by rerouting network paths dynamically and other approaches for

removing bottlenecks between the data sources and storage (consumers). These approaches

have not addressed the special issues a parallel file system introduces. Also related to

our work is the OPAL ADIO library [121] for MPI-IO. It attempts to manage IO based

on the disk system itself, but it does not dynamically adjust where data is written. CA-

NFS [10] pursues goals similar to ours, but it does not actively manage different storage

areas, relies on asynchronous IO, and is limited to the mechanisms of NFS. Most closely

related to our work is [100], which dynamically changes disk striping based on data sizes

and on information about past usage. Its focus on repeat IO events means that it does not

dynamically adjust file system usage across a single large output file, as done in our work.
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Observations about the performance variability of shared HPC storage systems appear

in [8], where NERSC researchers report that a small number of slow storage targets greatly

increased total IO time. System logs and dedicated benchmarks [45] have been used to

identify a variety of performance variations in HPC environment. In the enterprise domain,

black box approaches [42] have been used to identify sources of performance problems related

to storage or the network. Network sources for contention [12] have also been documented.

Our observations about IO performance variability comply with these work, and our work

explores active management to better handle IO performance variability.

3.7 Conclusions and Future Work

Interference effects cause variable IO performance on both the shared file systems present at

NERSC and ORNL, but also on machines with non-shared file systems, like Sandia’s XTP.

The adaptive IO methods presented in this chapter mitigate such variability by continuously

observing the storage system’s performance and then balancing the workload being imposed.

This substantially improves the IO performance seen by petascale codes, as demonstrated

with numerous measurements and on multiple machines.

The reduced variability and high performance can be used to help scientists more ac-

curately predict how long simulations need to run in order to reach particular ‘events’,

reducing the variability factor included in the job request time to ensure sufficient calcu-

lation time has elapsed. This not only reduces costs for scientific application runs, but

improves the overall use of the machine by affording more applications runs over the same

period of time.

Our future work will examine the benefits of adaptive IO on systems beyond Lustre at

ORNL, including Franklin at NERSC, PanFS on Sandia’s XTP, and perhaps, GPFS on

a BlueGene/P machine. Also of interest are other sources of variability, including that of

metadata operations like file opens. Finally, there are likely more complex and/or state-rich

methods for system adaptation, including those that take into account past usage data.

This chapter examined the issues of variability and scale of large scale parallel file sys-

tems. It addressed the two primary sources of variability, internal to the application where
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different processes inadvertently compete with each other slowing down IO and external

where outside forces are acting upon the file system causing the performance of different

areas of the file system to degrade temporarily. With these innovations, the write portion

of the write-read cycle for extreme scale science codes is largely addressed. The remaining

challenge to be addressed by this thesis is the issue of how these optimizations impact sci-

entist productivity. Only if these optimization for writing do not grossly negatively affect

the reading acitivities of application scientists can this effort be deemed a success. The next

chapter delves into the impact of these changes on both restart performance and on some

common analysis read patterns.
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CHAPTER IV

EVALUATION OF IMPACT OF WRITING OPTIMIZATIONS ON

READING PERFORMANCE

4.1 Introduction

This chapter focuses on determining how the optimizations made to the writing cycle affect

reading performance. In particular, the data layout generated by the BP format imposes a

fragmented reading pattern for checkpoint restart and analysis reading patterns.

Scientific productivity is a key goal when running petascale science simulations. Since

attaining this goal requires scientists to derive scientific insights from the enormous quan-

tities of data generated by petascale codes, an important technical challenge is to obtain

high ‘end to end’ IO performance, both (1) for writing simulation output to storage and

(2) for reading it for subsequent data processing and analysis. Issues include: (i) as HPC

applications run with higher process counts, we see increased frequencies and sizes in the

checkpoints needed for fault tolerance [94]; (ii) there are proportional increases in the resolu-

tion and sizes of the data analysis outputs used to ascertain application progress and health,

to extract select scientific insights, or for code coupling in complex simulation systems; and

(iii) already, for certain analysis systems in common use, such as the VisIt visualization

system [112] used to render scientific data, IO performance has come to dominate all other

costs observed in their use [20].

Recent work on extreme-scale IO has developed middleware-based methods to improve

write performance [58], has created new output formats for efficient data storage across

storage targets [60], has enriched IO software stacks with methods for data staging [3, 76],

and has improved IO performance with asynchronous or adaptive IO methods [57] and by

explicitly scheduling such data movements [3]. An issue remaining for such work, however,

is the aforementioned consideration of ‘end to end’ IO performance where once data has

been written, it must next be efficiently read by restarts and by the analysis or visualization
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codes used for data exploration and understanding. Toward that end, this chapter develops

and evaluates new methods for scientific data organization and layout on disk, termed data

districts: (1) each district constitutes a non-overlapping portion of the simulation data

space that is organized so as to group together logically ‘nearby’ simulation data; (2) data

districts can vary in size and their totality fully describes each single output step generated

by the high performance code; and (3) there is flexibility in how data districts are generated,

including where each element of a simulation running on a node of the petascale machine

may output multiple and differing data districts.

The use of data districts can substantially improve end to end IO performance:

• it makes it possible to organize output data into multiple dimensional volumes, in

keeping with the natural data organizations used in scientific codes; and

• this organization then enables the placement of data onto storage targets in ways that

improve the concurrency seen both when data is written and when it is read.

District-based writes and reads are implemented via the ADIOS IO middleware [58], which

is aware of both (i) the types and sizes of data used by applications and (ii) the concurrency

available in the underlying parallel file storage systems (i.e., its object storage targets) using

its BP file format.

The use of data districts is a purposeful departure from current practice in scientific

IO, where end users employ standard file formats like NetCDF [71] and HDF5 [35] that

have been designed for flexibility in data use and for attaining high levels of portability.

In a sense, these standard file formats employ the equivalent of a single district for each

output variable, reorganizing data during output to construct a contiguous storage format.

In contrast, the use of data districts is akin to a log-based approach to data writing and

reading, employing the underlying BP file format for disk storage and access and converting

to standard formats as and when needed [60]. With data districts, we observe high end to

end IO performance, both for writing data districted files – as also seen in log-structured file

systems [88] – and for reading these files, in contrast to common wisdom about log-based

file storage. Experimental evaluations demonstrate these facts for representative petascale
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simulations and for the write and read patterns seen for such codes, with read patterns

derived from checkpoint/restart, analysis, and visualization [112] access patterns seen for

these codes. In summary, the key insights that warrant revisiting log-based formats for

data storage for extreme scale computing are that (1) by distributing data across as many

stripes as possible in the parallel file system, greater concurrency for reading data can be

attained, (2) separating considerations of performance from portability can greatly improve

performance, and (3) the predominant read patterns are logical slices of the 3-D simulation

space rather than sequential reads of the entire file. These three attributes of extreme scale

data reading can improve data access times through parallel access and the fact that more

useful data is read per operation.

Data districts leverages prior work that has shown improved write performance for log-

structured file formats for checkpoint/restarts for both the ADIOS [58] and PLFS [11]

systems. ADIOS is the Adaptive Input/Output System (ADIOS), a joint project of Oak

Ridge National Laboratory, Georgia Tech and Sandia National Laboratories, and PLFS

is the Parallel Log-structured File System developed at Los Alamos National Laboratory.

This chapter precisely formulates the notion of data districts and then evaluates it by con-

sidering the typical read patterns seen for the analysis applied to simulation output and

then using appropriate district-based data organizations for improving read performance.

In this fashion, high write performance is combined with as much as a 6× performance im-

provement in the read performance seen by analysis codes. Specific measurements examine

the impacts of data district size and organization on subsequent analysis read patterns for

both 2-D and 3-D domain decompositions to determine when, why, and to what extent

log-based data districts and their uni-dimensional contiguous data organizations improve

read performance. The goal is to determine how to construct and size districts within a

log-based format for the lifetime of the simulation data, in contrast to an approach that

immediately converts data to the common contiguous formats currently used by common

analysis tools.

In the remainder of this chapter, representative end to end IO patterns seen for petascale

applications are explained in Section 4.2, followed by a description of the concept of data

83



districts and the IO architecture in which they are realized in Section 4.3. Experimental

evaluations of the concept and its performance appear in Section 4.4. This is followed

by detailed discussions and analyses of results in Section 4.5, where we also discuss the

implications of data districts on the IO pipeline used with petascale machines. Related

work appears in Section 4.6, with conclusions and future work in Section 4.7.

4.2 End to End IO Patterns

Initial performance assessment. With the parallel file systems used in current supercom-

puting centers, attaining high end to end performance in IO depends both on the way data

is written and the way it is read. Well-understood writing and reading patterns are those

used for checkpoint/restart [54], coupled with additional writes performed for simple analy-

sis tasks. For such patterns, prior work has established high write performance when using

a log-based output format with the PLFS file system [11] as well as when using the BP

log-based format provided by the ADIOS IO middleware [60]. In fact, initial measurements

showed the ADIOS/BP approach to have an up to 1000× performance advantage compared

to data being written with the standard HDF5 output format. These tests evaluated the

IO time for performing the complete output of application state for checkpoint restarts

for roughly 100 different variables, for a total of around 13 MiB per process. Similarly,

PLFS’s log-structured approach improved performance by as much as a factor of 150 on

large deployments [11]. We note, however, that the performance of the original HDF5 was

later improved by a factor of 10, reducing the advantage seen by ADIOS/BP to 100×, and

yet more recent improvements may further narrow this gap. Finally, if end users require

data to be in some standard format like HDF5, then the ADIOS/BP approach will incur

additional costs, for which the single process format conversion time for BP to HDF5 has

been measured as being linear with respect to data size [60].

Understanding end to end IO performance. This chapter explores the following ideas:

(1) by characterizing and describing the data organizations used – data districts – to obtain

performance improvements, (2) by determining and evaluating additional and typical science

data read patterns, such as those used by analysis codes, and (3) by diagnosing the sources of
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performance improvements derived from using log-based data organizations for large-scale

scientific data on the parallel file systems used in supercomputer installations.

For both of our test cases, the simulation space consists of a 3-dimensional space dis-

tributed across the processes that comprise the application run. In the case of a 2-D domain

decomposition, the 3-D space is decomposed such that one of the three dimensions is not

split across processes. For a 3-D domain decomposition, the space is split into rectangu-

lar sub-areas that do not span any dimension entirely. For both decompositions, the data

stored local to each process is a 3-D piece of the entire space. When this data is written to

disk, the shape of this space, particularly the overall data size and shape per data district,

plays an important role in determining the performance of common analysis read patterns.

To test these common domain decompositions, we first establish a typical set of analysis

read patterns used by petascale science codes. To do so, we interacted with the science users

of two petascale science codes that each use different domain decompositions. The union

of these results are represented in the set of test cases described below. The 2-D domain

decomposition is used with an older version of the Chimera supernova code [65] in produc-

tion use at petascale run sizes on systems at Oak Ridge National Lab and Texas Advanced

Computing Center. Chimera is a code that couples multigroup flux-limited diffusion neu-

trino transport (a sophisticated approximation of Boltzmann transport) along radial rays

(the ray-by-ray-plus approximation) to three-dimensional hydrodynamics, a nuclear burning

network, Newtonian self gravity with a spherical general relativistic correction, an industry

standard nuclear equation of state (Lattimer-Swesty, Shen, Wilson), and with state of the

art neutrino interactions. For a 3-D domain decomposition, the S3D combustion code [19]

is examined. S3D is a flow solver for performing direct numerical simulation (DNS) of tur-

bulent combustion. This resulted in the identification of the following write/read patterns:

1. All data is written and read, but writes and reads are done by different numbers of

processes, and for generality those numbers are not simple multiples of each other.

2. All of 1 variable is read from a complete output set. Again, this is performed using

different, non-multiple numbers of writers and readers. An example is reading the
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temperature values associated with particles. (see Figure 21(a)).

3. All of a few variabiles using different, non-integer multiple numbers of processes. An

example is reading three variables to generate a magnetic field vector.

4. A plane in each dimension for qualitative exploration (see Figure 21(b)).

5. An arbitrary rectangular subset representing a cubic area of interest (see Figure 21(d)).

6. An arbitrary area on an orthogonal plane representing one of a collection of read

operations to obtain an arbitrary area within the simulation space (see Figure 21(c)).

(a) Whole Domain (b) Whole Plane (c) Partial Plane (d) Sub Area

Figure 21: Data Selection Patterns

For analysis reads, Chimera most commonly uses patterns 1-3: all data, all of 1 variable,

and all of a few variables. Patterns 4-6 are used as part of an interactive visualization: a

plane in each dimension, an arbitrary rectangular subset, an arbitrary area on an orthong-

onal plane. The S3D code uses the same patterns: pattern 1 for production runs/restarts,

patterns 2 and 3 for postprocessing and analysis, pattern 4 for production sanity checks and

qualitative exploration, and pattern 5 for postprocessing and in depth analysis. Pattern 6

is not commonly used by S3D. Since the first pattern is essentially the same as the restart

performance evaluated in previous work, we do not consider it further in this chapter. Fi-

nally, we were not able to elicit from science users other read patterns for the petascale

codes under study, causing us to confine our initial study to the patterns identified above.

4.3 Evaluation Architecture

Performance test description. Our goal is to better understand the read performance

of write optimized scientific data files. This complements earlier studies and provides a

picture of the end to end, i.e., combined write and read, IO performance attainable on
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the highly concurrent file systems supporting petascale machines. The IO software stacks

evaluated in our work use ADIOS version 1.2 and NetCDF 4.0.1.3 configured to use parallel

HDF5, respectively. Specifically, with the ADIOS middleware, the IO stack selects the MPI

transport method, resulting in a two layer architecture for IO as illustrated in Figure 22(a).

NetCDF uses the MPI transport underneath the HDF5 layer, resulting in a three layer

software stack, illustrated in Figure 22(b). This approach helps control inefficiencies in using

the HDF5 API, thereby constituting an optimized use of the HDF5 API and files. Further,

the additional layer used in the NetCDF stack has negligible additional overhead compared

to that of the ADIOS-based stack, as total performance is almost entirely dominated by

data movements to and from storage. Finally, to test these different patterns in a consistent

way, an end to end (e2e) IO kernel representative of the write and read patterns is created.

This e2e IO kernel exhibits a typical writing pattern and then reads data using any of the

six patterns.

(a) ADIOS (b) NetCDF

Figure 22: IO Software Architectures Tested

Data Districts and their implementation. For testing, ADIOS [58] and NetCDF [71]

are employed. ADIOS is a 64 bit compliant IO componentization. It provides an API

almost as simple as POSIX IO, and more importantly, it permits the runtime selection of

different IO mechanisms for each IO section of the simulation or host code using ADIOS.

ADIOS has a file format BP (Binary Packed) that is decomposed into fragments gener-

ally based on the processes that create it rather than on the logical structure of the data.
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This format is illustrated in Figure 3. Each of these fragments is referred to as a Process

Group. The last portions of the file consist of a file version flag and a collection of indices

and pointers to the location in the file for each of the indices.

At a detailed level, process groups consist of a short header listing information about

the data output grouping being used, including a user-assigned name, such as restart, anal-

ysis, or diagnostics, the parameters used for this output method, and a list of variable and

attribute entries. Each variable and attribute entry consists of the metadata for the item

listing the name, data type, array dimensions, if any, data characteristics, and a payload

blob. This payload blob is a memory dump of exactly what was stored in memory with

no byte-ordering changes nor restructuring. When reading data back in, each payload that

contains part of the data is read and the relevant pieces are extracted to reconstruct the

portion of the data requested. If the reading platform uses a different byte ordering, annota-

tions in the file indicate the byte ordering used by the writing system so that the reordering

can be performed during the read operation. The indices consist of exact locations of the

process groups, metadata about the process group, and the list of variably sized ‘pieces’

including information about the array dimensions and extents, the data characteristics for

each piece, and the list of attributes and the location of each in the file. Each such variable

‘piece’, then, is a self-contained and self-identifying data district.

When writing data, no data reorganization is performed, resulting in high write per-

formance for various logical data organizations. The results reported in this chapter ad-

ditionally demonstrate that when reading the data, the district-based data decomposition

typically improves performance when compared with a canonical order format like the

HDF5. The steps taken when reading district-organized data include consulting the index

to determine the file offset for reading data for the local process, then reading the relevant

district(s), followed by reorganizing the data and discarding the data items that are not

needed (i.e., were not requested). There are opportunities for additional optimizations in

reading data to avoid unnecessary data discards, but those optimizations have not yet been

implemented.

The data district-based organization used with BP is in contrast to the data organization
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used by the HDF5 file format, which consists of linked blocks of items, such as a variable,

attribute, or metadata. Each logical variable in an HDF5 file (and therefore, also the

NetCDF cases studied in this chapter) is linearized into a single blob by reconstructing

from all of the pieces provided by the distributed processes in question into a contiguous,

in order format. The format uses a standard byte-ordering of the logical space as if walking

all of the dimensions, in order, in nested loops.

The current version of NetCDF has replaced the underlying file format with HDF5.

It addresses the metadata and data layout limitation limits of the NetCDF3 format while

taking advantage of the extensive efforts to build a portable full functionality API and file

format by the HDF5 group. Additionally, the API is nearly identical to the older NetCDF3

API making porting of applications to the new API a much simpler task that switching to

HDF5. The extensive support for both the NetCDF3 and HDF5-based file format employed

by NetCDF affords broad tool compatibility for a portable data format. To our benefit for

this evaluation, the relatively simple NetCDF API is a fully optimized set of calls to the

HDF5 API, thus avoiding any bias based on inappropriate or inefficient use of the HDF5

API.

The Lustre file system used in all of our evaluations is configured to use 160 storage

targets for all files, which is the maximal level of parallelism allowed by Lustre. For the

ADIOS/BP approach, the stripe size is adjusted to 4 MiB automatically. For the NetCDF

setup, the stripe size is set to the default 1 MiB. The impact this stripe size has on the

performance is discussed in Section 4.5.

4.4 Experimental Evaluation

The checkpoint/restart tests are performed on the Cray XT4 partition of Jaguar at ORNL.

The XT4 partition contains 7,832 compute nodes in addition to dedicated login/service

nodes. Each compute node contains a quad-core AMD Opteron 1354 (Budapest) processor

running at 2.1 GHz, 8 GiB of DDR2-800 memory (some nodes use DDR2-667 memory),

and a SeaStar2 router. The resulting partition contains 31,328 processing cores, more than

62 TiB of memory, over 600 TiB of disk space, and a peak performance of 263 teraflop/s
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(263 trillion floating point operations per second). The SeaStar2 router has a peak band-

width of 45.6 GiB/s. The routers are connected in a 3D torus topology, which provides an

interconnect with very high bandwidth, low latency, and extreme scalability. The output is

striped across all 144 Lustre storage targets and using a stripe size of 1 MiB.

The other 5 series of tests are performed on the petascale partition of the Jaguar ma-

chine, known as JaguarPF, at Oak Ridge National Laboratory. This Cray XT5 partition

contains 18,688 compute nodes in addition to dedicated login/service nodes. Each compute

node contains dual hex-core AMD Opteron 2435 (Istanbul) processors running at 2.6GHz,

16 GiB of DDR2-800 memory, and a SeaStar 2+ router. The resulting partition contains

224,256 processing cores, more than 300 TiB of memory, over 6 PiB of disk space, and a

peak performance of 2.3 petaflop/s. For all tests, Spider, the ORNL shared scratch space

Lustre file system, is employed. The peak IO performance for Spider from JaguarPF is

60-90 GiB/sec for writing.

To evaluate the impact of the log-based data organization of data districts compared

with the contiguous data organizations of other formats, the five remaining analysis reading

patterns described in Section 4.2 are evaluated over a 3-D domain, using both a 2-D and

a 3-D domain decomposition. Pixie3D [16], an MHD fusion code, has a very similar data

model to S3D, but has multiple sizes for the data models, yielding small (32 cubes), medium

(64 cubes), large (128 cubes), and extra large (256 cubes) data. As a broader evaluation,

these four data models are tested for the 3-D domain decomposition. In accordance with

that fact, the per process total output data sizes employed are about 13 MiB for 2-D, 2

MiB for 3-D small, 16 MiB for 3-D medium, 128 MiB for 3-D large, and 1 GiB for 3-D extra

large. The per process variable sizes are quite different. For the 2-D domain decomposition,

it is a mere 2400 bytes. For the 3-D case, it is 256 KiB, 2 MiB, 16 MiB, and 128 MiB

respectively. These data sizes are used to generate output files using both 7168 processes

and 16384 writing processes.

Tests are deliberately designed to avoid bias. In particular, while the use of 16K pro-

cesses is advantageous in terms of running at a larger scale, those runs could be perceived
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as biased in that these tests can more easily ‘hit’ process boundaries for reading. For exam-

ple, if the sub area read neatly falls on the natural boundaries created when the data was

written, fewer reads would be required to retrieve the data. This would result in unfairly

benefitting the log-structured approach. Our response is to run additional tests with 7K

processes as an alternative size, which yields reads that will not easily ‘hit’ the even process

boundaries. For reading, operations are split evenly among the reader processes.

First, the checkpoint/restarts are evaluated. To test the restart read performance,

various process counts from 128 to 2048 are employed to write the data with the same or

one-half the number of process used to write to read the data back in. PnetCDF formatted

data is compared. For all tests, the best results for a series of four runs for each data point is

selected for the BP and PnetCDF performance. The horizontal axis represents the number

of writers employed to generate the restart data no matter the number of processes used to

read the data back in.

To validate the performance impact at various scales, two sets of tests are run. The

first set of ‘large scale’ results is a series of eight runs ranging from 512 process to 4096

processes, at 512 process increments. These tests are each run at least 5 times with the

arithmetic means of the elapsed time being shown on the graphs. These steps are chosen for

two reasons. First, for S3D, the typical analysis execution is on no fewer than one-fourth of

the prior simulation run’s process count. Second, at the supercomputing centers, analysis

clusters of 512 to 1024 cores are becoming much more common. As this trend continues,

4096 cores for an analysis cluster will soon be common. The second set of ‘small scale’

experiments examine various process counts ranging from four to 512, in increments of 4

processes. Each of these five tests are run a minimum of 5 times each. The arithmetic

means of the resulting times are used for comparisons. This experiment set represents

(1) an initial exploration scenario before a more extensive, long-term data analysis run is

performed, and (2) analyses performed on small data sets. Tests are run for all cases where

sufficient local memory is available. For example, it is not possible to read a 2 TiB variable

into 4 processes on the machine tested. The elapsed wall clock time, in seconds, is measured

from the opening of the file, through the read operation(s), to the end of closing the file for
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the slowest process of the readers.

The location of the planar areas within the 3-D domain is selected to be in the middle for

each dimension. For the sub-planes, the same location is selected, but the plane is bounded

to one-quarter the size of the plane and centered. That is, the sub-plane boundary is located

half-way between the edge and center for each side. The sub-area selection similarly selects

a rectangular area bounded by planes half-way between the edge and the center.

For fairness, care is taken to ensure that none of the read patterns provide significant

advantages to the log-based format employed by ADIOS. For example, selecting only areas

where the data districts map exactly to the process boundaries would give an advantage to

the log-based format because the data can more easily be selected. Further, to ensure that

no inadvertent advantage is gained based on the in-memory data and/or file data layout,

any planar or linear selection of data is performed multiple times, once in each dimension

in each test case. For example, when reading a plane, 3 planes are read – one each in X, Y,

and Z. The total time for all three reads are used for the results. This approach controls

for the on-disk layout and any reorganization required to return the selected data.

Since the aggregate data sizes are consistent across all reads, they are summarized in

Tables 5 and 6. Briefly, based on how the domain is constructed for Chimera, the data

sizes are very modest, even for the 16K process run. Chimera’s complexity comes from

the number of variables used rather than the sizes individual variables. This large count

guarantees that few, if any, of the data payloads will fall on the beginning of a stripe

boundary. For the S3D application, even the smallest sizes yield variables that reach 1.75

GiB.

Pattern 7192 16384
2 16.4 MiB 37.5 MiB
3 49.2 MiB 112.5 MiB
4 468.5 KiB 728 KiB
5 2.05 MiB 4.68 MiB
6 117.1 KiB 182 KiB

Table 5: 2-D Data Sizes Read for Each Analysis Pattern

While this chapter does not evaluate write performance, we note that there was a set
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Small Medium Large Extra Large
Pattern 7192 16384 7192 16384 7192 16384 7192 16384

2 1.75 GiB 4 GiB 14 GiB 32 GiB 112 GiB 256 GiB 896 GiB 2048 GiB
3 5.25 GiB 12 GiB 42 GiB 96 GiB 336 GiB 768 GiB 2688 GiB 6244 GiB
4 9 MiB 16 MiB 36 MiB 64 MiB 144 MiB 256 MiB 576 MiB 1 GiB
5 224 MiB 512 MiB 1.75 GiB 4 GiB 14 GiB 32 GiB 112 GiB 256 GiB
6 2.25 MiB 4 MiB 9 MiB 16 MiB 36 MiB 64 MiB 144 MiB 256 MiB

Table 6: 3-D Data Sizes Read for Each Analysis Pattern

of tests we could not complete, for the 3-D domain decompositions. For the 2-D domain

decomposition, the ADIOS/BP writing tasks took less than 10 minutes to complete, but

the NetCDF tasks took nearly 1 hour to complete. The results motivate the use of log-

structured checkpoint formats in ADIOS and PLFS. For the 3-D domain decomposition,

for ADIOS/BP, all eight data files took less than 90 minutes to complete. This includes the

1 GiB-per-process-by-16384 process extra large case. For NetCDF, just the 7192 process

cases took nearly 11 hours. For the 16384 process case, for just the small, medium, and

large tasks, NetCDF took nearly 4 hours. The extra large case for 16384 processes did

not complete in 24 hours, the upper limit available to the authors for running tests on the

Jaguar machine. By estimating the amount of data in the partial output when the task

was terminated, another 90 minutes was likely to be necessary for this single output to

complete!

The detailed evaluation is split into three parts. The first part examines the check-

point/restart performance as this is typically performed on some similar number of pro-

cesses to what wrote the data initially. The next two parts look at large scale and small

scale analysis reading results, respectively. The large scale results look at process counts

from 512 up to 4096 for reading while the small scale examine from 4 through 508 processes

for reading. In both of the latter parts, the 7K and 16K write test files are used as the data

source.

4.4.1 Checkpoint/Restart Results

This first evaluation shows the checkpoint/restart results. First are the uniform restart

results followed by different ratios of writing to reading processes.
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4.4.1.1 Pixie3D Uniform Restarts

To establish a baseline, a uniform restart is tested. This is using the same number of

processes to read the restart as wrote it originally. Figure 23 shows the performance results.

For large data, the performance approaches the IOR benchmark performance [98] for the

machine.

Figure 23: Uniform Reads for the Pixie3D data

Pixie3D Small For the small data, good read performance just cannot be attained no

matter the number of processes used to read or write the data. The overall data size is too

small to overcome the inherent overhead of the parallel file system. Figure 24 shows the

performance for reading the restart output on half as many processes as wrote the restart.

The horizontal axis represents the number of processes that wrote the data originally.

Figure 24: Small Model, Half Process Count

The BP formatted data was able to be read faster than the PnetCDF formatted data.

The trendlines for the performance clearly show the performance gap should continue to

widen as the process count increases.
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Figure 25: Medium Model, Half Process Count

Pixie3D Medium Restarts using the medium data model can achieve much better per-

formance, but still cannot achieve more than a fraction of the theoretical maximum perfor-

mance for the system. Figure 25 shows the performance for restarting using half as many

processes.

For the ‘half’ case, the BP performance consistently outperforms PnetCDF with the

performance gap narrowing slightly as the process count increases.

Pixie3D Large The large data cases finally reach the maximum general performance

seen for applications in production use. Figure 26 shows the performance for using half as

many processes to restart.

Figure 26: Large Model, Half Process Count

4.4.1.2 Discussion

Overall, the performance for all configurations of BP data is either absolutely better or

about the same as a contiguous format like PnetCDF. Comparing the half-processes restarts

with the uniform restarts, the performance for large and medium data is about 80% of the
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uniform read rate. Small data is about the same performance. We also tested ADIOS read

performance on additional domain decompositions, reading back with different numbers of

readers (including restarts involving more reading processes than writers). In most cases

we were 2× faster compared to reading directly from PnetCDF, and read speed was always

superior on non-uniform restarts.

An additional set of tests using a non-integer factor difference between the writers and

readers yields similar results. For example, using 64 writers and 80 readers represents

moving from a 4×4×4 setup to 4×4×5. For small data, BP is consistently 2× faster

compared with PnetCDF, for medium, it is 20% faster, and for large data, the performance

is essentially identical.

4.4.2 Large Scale Results

Large scale tests examine the performance of the data district-based decomposition com-

pared with a canonical format for common analysis read patterns at representative process

counts, again using ADIOS and NetCDF, respectively. Figure 27 shows the 2-D domain

decomposition results. The NetCDF approach has less elapsed time for essentially all tests.

The explanation for this performance relates to the domain decomposition itself. This

Chimera example has very little data on a per process basis, relying on a thin ‘pencil’ of

data. This results in a data domain that consists of 300 doubles, a mere 2400 bytes. When

reading the planar areas or sub areas, all 7K or 16K data districts must be read in when

using the BP format for the plane across the domain decomposition, demonstrating the

need for additional optimizations for BP. Another contributor to the advantages observed

for NetCDF is that HDF5 has buffering and caching for read operations that are capable

of reading the entire variable into memory once, if it can fit, and then distributes it using

messaging. This test case also demonstrates why the contiguous format was favored in the

past: because 2-D simulations and analysis were more prevalent, but unfortunately, this is

no longer the case, as 3-D simulations now largely prevail.

The notion and use of data districts directly reflect the importance of 3-D domain de-

compositions. Specifically, while 2-D domain decompositions divide data into full extent
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‘pencils’ of the entire domain, 3-D domain decompositions divide the domain into blocks

and assemble them in a 3-D pattern to yield the entire simulation space, motivating the

‘dimensional’ or spatial nature of data districts. As process counts increase with a cor-

responding growth in the simulation space, fewer codes will be able to use a 2-D domain

decomposition due to memory limitations. For these cases, a 3-D domain decomposition

will be required.

Figures 28, 29, 30 and 31 show the results for the 3-D experiments. Overall, data

districts show superior performance for the 3-D domain decomposition for all data sizes,

process counts, and tests. Again, by splitting the data into ‘dimensional’ chunks instead of

using a single contiguous logical layout, fewer, larger reads can be performed to retrieve the

data for all of the different patterns. Instead of performing many very small reads to obtain

a plane, only the chunks that contain the planar pieces will be read, whereupon relevant

data is extracted using in-memory operations.

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 27: 2-D Large Scale Reading Performance
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(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 28: 3-D Small Model Large Scale Reading Performance

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 29: 3-D Medium Model Large Scale Reading Performance
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(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 30: 3-D Large Model Large Scale Reading Performance

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 31: 3-D Extra Large Model Large Scale Reading Performance
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4.4.3 Small Scale Results

For the 2-D domain decomposition, the small scale results mirror those attained with the

large scale tests. For the 7K processes case, the performance of ADIOS/BP is between a

factor of 2× to 3× worse than that seen with the NetCDF format. For the 16K processes

case, the performance worsens to a factor between 4× and 5× worse.

At a more detailed level, the 2-D results break down as follows. For all tests NetCDF

performance is essentially identical for both the 7K processes and 16K processes data sets

for all process counts. The BP 7K processes set is 2× worse; the 16K processes set is 4×

worse.

For the 3-D domain decomposition results, there is a bit more variation. For test 2, the

BP performance for both 7K and 16K are essentially identical for all process counts. The

performance is essentially identical for the small, medium, and large cases suggesting the

observed performance is a minimum time required to perform this test. The much larger

data size for the extra large test measures out to the peak performance for the file system at

around 8 seconds to read all of the data. While NetCDF has worse performance in all cases,

it is only slightly worse for small scale, with the performance degrading progressively as the

data size increases. For test 3, the performance for BP follows the same characteristics with

the small, medium, and large cases having essentially identical performance around 3.5

seconds with the extra large taking longer at around 13 seconds. The NetCDF performance

again is worse in all cases. For the small data model, it is roughly 3× worse and performance

progressively degrades from there. Test 4 is more interesting. For the small and medium

data models, both NetCDF and BP are essentially the same performance. For the large data

model, NetCDF is 2× worse than the BP models. For the extra large model, BP has worse

performance by a factor of about 1.6×. If the more detailed data were available, it is likely

the additional reads for the pieces is the problem. Do note that as the number of readers

increases, the time for BP stays nearly flat while the NetCDF time grows passing BP at 2048

processes and continues to grow rapidly from there. Test 5 shows similar characteristics

to tests 2 and 3. The performance for BP is essentially constant for small, medium, and

large data sets with a larger time for extra large. NetCDF starts nearly the same for small
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data and grows progressively worse as the data size increases. Test 6 is more interesting.

For the small, medium, and large cases, the performance for BP and NetCDF is essentially

identical. For extra large, the BP 7K performance is about 1.1× worse than NetCDF. The

16K processes performance for BP is better than both at about 0.6× as much time. As

is the case with test 4, as the number of readers scales, the performance reverses. In this

case, it happens much sooner at 512 processes and the NetCDF performance degrades more

slowly as reading processes are added.

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 32: 2-D Small Scale Reading Performance

4.5 Detailed Analysis and Discussion

Examination of the performance for both the large scale and small scale experiments, for

the 2-D and 3-D domain decompositions, sheds light on important considerations for both

writing and reading performance. To recap the physical distribution of the data sets on

disk, for all tests, the output is striped across 160 storage targets. For NetCDF, the stripe

size is the default 1 MiB while it is adjusted automatically by ADIOS to 4 MiB.

Concurrency is critical for high IO performance. Two factors affect the impact of con-

currency on IO performance. First, the amount of data located on a single storage target
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(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 33: 3-D Small Model Small Scale Reading Performance

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 34: 3-D Medium Model Small Scale Reading Performance
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(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 35: 3-D Large Model Small Scale Reading Performance

(a) One Variable (b) Three Variables (c) Full Planes

(d) Sub Area (e) Sub Planes

Figure 36: 3-D Extra Small Model Large Scale Reading Performance
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determines how much data can be accessed at one time. Wider spread of data implies more

concurrency in access, but of course, each storage target can only service one client at a

time. The goal, therefore, is to balance these two factors so that the largest number of

storage targets can be employed for reading at one time, without overloading any target

with too many requests that ultimately are serviced serially.

For the 2-D domain decomposition, the processes are arranged in a 112×64 space for 7K

processes and 128×128 for 16K processes. For the 3-D domain decomposition, for all per-

process data sizes, a 28×16×16 distribution is used for the 7K process runs and a 32×32×16

distribution is used for the 16K process runs. For the 2-D, 7K processes case for ADIOS/BP,

the full plane of data test reads three planes: 112 data districts, 64 data districts, and 7192

districts (one set for each dimension). For the 3-D 7K process runs for ADIOS/BP, the

full plane of data test reads the three planes: 448 (28×16) data districts, 256 (16×16) data

districts, and 448 (16×28) data districts. For the 2-D domain decomposition, reading 7192

blocks from 160 storage targets overwhelms the IO system resulting in poor performance.

NetCDF can read all of the data at once and then distribute to the other processes. This

one large read, even if it is done serially from a single storage target, is faster than the 7192

reads from all available storage targets. For the 3-D domain decomposition, the use of data

districts reduces the number of blocks read to a manageable number across all patterns,

resulting in more consistent performance. Because NetCDF spreads the data according

to the logical global array dimensions, this results in either many very small reads or in

larger reads with poor relevant data density. In essence, the performance penalty seen by

ADIOS/BP for 2-D is seen by NetCDF for 3-D, for similar reasons.

The stripe size also plays a role. For the 2-D case, ADIOS/BP only spreads the output

from a process across 4 storage targets compared with NetCDF’s 13. The reduced concur-

rency forced on ADIOS further impacts performance. For the 3-D case, again, the opposite

is true. The size of the variables causes them to be striped across all of the storage targets.

By using a larger stripe size, the number of requests to a single storage target is sharply

reduced, which improves response time.

Separating considerations of performance from portability. Performance is strongly
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linked to file layout. By carefully sizing data according to inherent buffer sizes and consid-

ering the total data size to avoid interference, better performance can be achieved.

For the 2-D case, the failure of addressing the inherent buffer sizes, such as the 1 MiB

chunk used in many disk caching systems, incur the full overhead of locating the data for

only a small amount of time spent reading it. In particular, because only 2400 bytes for any

variable is written contiguously, the most data that can be retrieved when reading a data

district is 2400 bytes. Conversely, by storing the entire variable contiguously, NetCDF’s

single read pays the disk overhead only once (or a small number of times, if it is striped).

In contrast, for the 3-D case, until the data per data district becomes enormous (1 GiB

per data district), all reading patterns are the same or superior for the log-based approach.

Even at the enormous size, once the process count grows, the advantage returns to the log-

based approach. The advantages for writing have been clear for a while. With this study,

the advantages for reading, for an HPC and parallel file system environment, are apparent

as well.

Importance of ‘natural’ file organizations. Sequential read patterns for scientific data

do occur, but they are not the only patterns to consider. Scientific discoveries occur as the

data is explored through analysis tools that use select portions of the data. More precisely,

data is retrieved and analyzed in regions determined by the types of analysis being done

rather than as an entire data set. By arranging the data in smaller blocks – as data districts

– increased efficiency can be attained for retrieving the data. In other words, it is no longer

necessary to span the entire data storage, skipping large areas of unrequested data, just to

get to another few bytes of relevant data.

For the 2-D domain decomposition, each data district contains just 2400 bytes (300

doubles). For reads that stay within those 300 doubles, performance is good. Once a

neighbor in the other two dimensions is requested, however, one or more read operation(s)

from somewhere else in storage are required. Unless all of the data can be read into memory

and parceled out through messaging, many reads are required even for retrieving a small

small region. Therefore, for the 3-D domain decomposition with its local dimensions of

at least 32×32×32 (the small data model), far more relevant data can be read in a single
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operation than in the contiguous layout. This natural organization is a key benefit of the

data districts approach. In contrast, with NetCDF, traversing any dimension except for

one will require seeking to different areas of the file to read a small amount of data.

4.6 Related Work

Log-based approaches have been used for transactional systems, such as databases [32] for

decades. The performance advantages for write-intensive tasks is well documented. More

recently, log based formats have been used in general file systems. Early studies, such as the

log-structured file system [88, 95, 113], demonstrated the write performance advantage for

many scenarios, but all could suffer from penalties for particular patterns of reads. In other

words, random write performance was greatly enhanced by employing the log-structured

format, but sequential reads suffered. This is not the case with parallel file systems when files

are striped across many storage targets. Here, the disk head movement penalty of sequential

reads is greatly reduced due to the number of devices that can work independently for each

read operation. This means that parallelism in storage systems warrants a re-examination

of previous assumptions, particularly for the disk usage patterns seen for petascale science.

Based on the knowledge of the reading penalties for log-structured formats, self-describing

data formats like HDF5 [35] and NetCDF [71] were developed. They offer a balanced ap-

proach to write and read performance optimization that work well for a variety of situa-

tions. The scale introduced by petascale science, however, has revealed limitations of these

approaches. By coordinating across the writing processes to achieve a canonical format,

writing times suffer. As further demonstrated in this chapter, the reading times can also be

impacted at scale. This means that some of the optimizations introduced by these formats

can become a liability rather than an advantage. On the other hand, such formats will

remain important in terms of portability and their use by third-party tools, warranting

investigations of efficient methods for ‘on demand’ format conversion. In a similar spirit,

the SciDB initiative [102] is attempting to provide self-describing data formats for scientific

applications through a database, though it is attempting to specify a common API com-

patibility rather than specifying on-disk layout and is hence, orthogonal to techniques such
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as ADIOS.

The efficient access of multidimensional scientific data has been considered at the com-

piler level as well, usually in the form of intelligent prefetching optimizations [68]. These

approaches are orthogonal to our optimizations, however, as they are designed around the

movement of data between main memory and the processor cache, whereas we operate at

the level of retrieving data from the parallel filesystem.

Other approaches to addressing the mismatch between the output organization and

the read pattern needs of analysis codes include the use of a staging area to host data

reorganization and pre-analysis routines. Both the synchronous data staging [76] and the IO

Forwarding Software Layer [6] effectively manage the writing time spent by an application,

through aggregating such requests and thereby partially managing the resulting impact

on the storage system. However, such work has not taken advantage of staging areas to

accelerate subsequent data use for analysis or other reading tasks. Complementary work

pursued in the PreDatA [123] project is to reduce the need for or sizes of subsequent reads,

by pre-analyzing data to the extent possible. The costs of the additional resources used are

mitigated through write time reductions and improved data preparation for later analysis

operations.

The utility of data districts is motivated in part by previous work [92] that has shown

that multi-dimensional data may be mapped efficiently to modern disk drives, in ways that

preserve spatial locality across multiple dimensions. Here, in addition to data being read

efficiently and sequentially in a single dimension, intelligent placement allows other dimen-

sions to be accessed with low positioning costs. Although our goals are similar (efficient

access of data across multiple dimensions), our approach is orthogonal and compatible: we

operate at the level of the parallel file system, whereas prior work is implemented using the

firmware below the device level (albeit exposed to the application).

Zazen [109] from D.E. Shaw Research tries to improve end to end IO performance by

bypassing a remote, parallel file system such as Lustre. Instead, Zazen caches simulation

data as a series of small files across the multiple disks of an ancillary analysis cluster attached

to the high performance machine via a network. The approach yields excellent performance
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for appropriate analysis workloads (in particular, molecular dynamic simulations that map

well to a time series of small files), but does not consider the simultaneous attainment of

high write performance. Further, its architectural assumptions differ in that there is no

parallel file system that is attached to the petascale machine.

4.7 Conclusions and Future Work

This chapter documents the general performance advantage, at scale, for the BP file for-

mat. The optimizations made for writing have not negatively impacted the performance for

reading except in the small data case. For those cases, as is demonstrated in Chapter 2, the

file conversion time is reasonable. For these cases, converting to an alternative format for

the analysis operations still offers performance advantages. For all others, the optimizations

made to improve the write portion of the write-read cycle have also served to help the read

portion.

As HPC has moved through terascale into petascale computing, formerly efficient ap-

proaches for encoding data and performing IO must be revisited. In particular, the 3-D

domain decompositions used by petascale simulation codes demand new approaches in how

data is organized and formatted for efficient storage on the parallel file systems used with

petascale machines. This chapter describes a log-based approach to data storage that orga-

nizes data as ‘dimensional’ data chunks, termed data districts, that can be efficiently and

concurrently written to and read from the many storage targets such systems employ. The

outcome is high end to end, i.e., write and read, performance for log-based data organiza-

tions, in addition to notable improvements over the performance observed for contiguous

encodings used by the standard file formats in current use, such as HDF5 and NetCDF,

excepting only cases of 2-D domain decompositions with small variable sizes.

Future work with log-based formats like data districts should develop additional opti-

mizations for 2-D domain decomposition, such as the use of aggregation networks to reduce

the number of log records being read. Also of interest is the exploration of trade-offs for

achieving improved read performance without unduly impacting that of writing, as partly

addressed by data sieving [107]. Also of interest is a study of the impact of alternative in
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memory data layout, in row major vs. column major order, on both writing and reading

performance. Finally, it would be useful to investigate automated methods for data conver-

sion and/or replication based on ‘downstream’ usage requirements, with methods that use

asynchronous IO coupled with in-flight data manipulation and data staging.

Current work by the HDF Group into using a storage format similar to the data dis-

tricts used in the ADIOS/BP and PLFS log-based formats has shown excellent writing

performance. This chapter’s insights should help drive those optimization efforts.
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CHAPTER V

PREVIOUS WORK

While the issues identified in this thesis for extreme scale computing are recent, managing

IO at scale and IO portability have been addressed in the past, with different parts of the

problem space addressed by file systems and IO libraries.

File systems have evolved in two different directions to address storage at scale. First,

distributed and network file systems, such as NFS [73], XFS [7], and Ceph [116] aim to

provide a single namespace and transparent access to a collection of storage devices existing

on the network. These storage devices may or may not be attached to a single machine. By

collecting all of the storage devices into a virtual single space, the ability to access and store

quantities of data beyond those capable of being hosted by a single device becomes possible.

Based on standard file system semantics, a restriction is that each file is written by only

one client at a time. As a result, it is not possible for two different processes to both open

a single file for writing and then each store data at a different offsets in the file. A notable

attribute of these systems and in keeping with the enterprise systems and applications for

which they are intended is their excellent performance for typical individual file read/write

patterns, due to efficient support for file block read-ahead and caching.

The second development is parallel file systems as demonstrated with systems like Lus-

tre [14], Panasas [82], and GPFS [93]. Parallel file systems permit multi-process applications

to simultaneously write data to a single file. Further, they enable distribution of a single file

across multiple storage devices for aggregate bandwith gains. Certain limitations of these

general purpose file systems prevent them from fully addressing the needs of extreme scale

computing. First, all of these file systems must manage the general case for a variety of ap-

plications without unduly penalizing any particular access pattern. While this does achieve

good general performance, it does not address the need to achieve extreme performance in

bursts as is required for the extreme scale computing environment. This also means that
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these file systems all support a POSIX compliant interface for broad compatibility. This

restriction forces decisions that negatively affect performance. For example, the require-

ment to enforce consistency semantics prevents avoiding these costs for applications that

either implicitly or explicitly manage the consistency directly. The second major limitation

is due to the functionality of the metadata layer. While the metadata management layer

has some knowledge of the distribution of processes, it does not have any knowledge of the

data sizes or data types. Without this additional knowledge the file systems are not able

to manage the data effectively. Third, while distributing files so that the expected data

distribution does not overload any single storage device, it does not address the dynamic

performance requirements of extreme scale applications. Because distribution of data is a

static decision made at file creation time, the system is not capable of redistributing the

data to different locations within the global storage system dynamically to address transient

and severe performance problems.

Researchers have developed experimental systems that address some of the limitations of

the general purpose file systems described above. The lightweight file systems (LWFS) [79]

project at Sandia National Laboratories strips down the semantics and services to only

authentication and authorization. All other services must be provided in a layer on top

affording a custom file system build using reusable components. This approach works well to

avoid the bottlenecks associated with say, POSIX compliance, but additional functionality,

like that described in this thesis, is needed to deal with say, managing multiple client

processes accessing the same storage target at the same time. In other words, LWFS

provides some of the base functionality on which the solutions described in this thesis can

be built.

An entirely different approach to high performance IO is pursued by the Google File

System (GFS) [30], which assumes the global file system will consist of very large numbers of

inexpensive servers and disks regularly having unrecoverable failures somewhere in the dis-

tributed file system. Similar to our work, however, are the facts that (1) GFS also eliminates

support for some features like POSIX compliance to gain performance, and (2) GFS also

attempts to optimize performance for the usage patterns for which it is constructed, which
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concern the acquisition and evaluation of patterns found in large-scale web traces. Since

such data is never discarded, append operations are the normal state with essentially no

updates in general usage. By taking advantage of this access pattern, GFS achieves higher

performance for applications exhibiting this pattern. With the file system and application

layer codesigned together, high bandwidth operations are rotuinely achieved. The deploy-

ment environment is not latency sensitive affording sacrifices to achieve higher bandwidth

to accelerate the movement of the large data chunks into main memory for processing. With

the assumptions of constant failures, the metadata server does not keep full track of the

location of all of the chunks and replicas for files. Locating all of the chunks for a file may

introduce latency for operations, but will not impact the bandwidth once the data move-

ment begins. This architecture is well suited to the data processing environment at Google

and other data processing intensive sites, but it does not address the latency sensitive HPC

environment where both bandwidth and latency are important considerations.

IO libraries come in different forms providing different levels of abstraction and dif-

fering support for data management and interaction with the storage system. At a lower

level, MPI-IO provides a common interface for a collection of parallel IO optimizations.

Techniques like disk directed IO [44], grouping [77], and collective buffering [13] are the

basis for the MPI-IO layer optimizations and have helped grow IO system performance for

teraflop systems. With the advent of petascale and development of exascale computing,

these techniques can still help, but they do not address the full complexity of the problem

at these larger scales. Extra communication and coordination required to perform collec-

tive buffering ultimately dominates the IO time. When running an S3D IO kernel for an

extra-large data model of 1 GiB per process, representative of a hybrid MPI/OpenMP run

typical of many multi-core application runs, running at 16384 processes requires more than

24 hours to perform a single output operation using these techniques (see Chapter 4). These

outcomes demand rethinking the approaches. The techniques of scheduling IO operations

on storage targets is still quite important [57, 60], but the extra overhead introduced by

coordinating all of the processes can be counterproductive at scale. The inclusion of the

ADIO layer to insert optimizations for particular file systems helps improve scalability, but
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it does not address the end-to-end problem. While many sophisticated features for storing

and reading complex data types are available, the extra work required to use these features

is a likely cause for the relatively poor adoption by HPC application. In spite of the in-

herently changable approach of the ADIO layer, the lack of adoption of the full data type

system prevents the system from taking full advantage of the optimizations.

At a higher level, APIs like HDF-5 [35], NetCDF4 [71], and P-NetCDF [72] force the user

to provide additional details about the IO operations’ data types, sizes, and distribution.

While this could afford significant opportunities for optimization, these systems have ceded

control of the lower level IO to either MPI-IO or standard POSIX calls. This disconnect

worked well as long as the techniques embraced by MPI-IO scaled. With the ceiling for

scalability being reached, these APIs suffer from the same limitations.

Overall, neither at the file system level nor at the IO library level has any system nor

any combination of existing tools adequately addressed the needs of extreme scale data

management.

A different approach for extreme scale data management works from the idea that

data is too large and/or it is too costly to move to secondary storage. For example, if

the analysis output of an HPC application is 2 TiB and needs to be output every 10

minutes, but the file system is only capable of achieving 10 GiB/sec, the application will

spend about one-third of the time writing analysis output. To better manage this data

volume it is possible to move the data to a staging area either asynchronously [34] or

synchronously [76, 6]. The movement to the staging area can address some of the mismatch

between the compute area and the storage area ultimately accelerating IO performance.

By carefully managing how the IO is scheduled [3], the interference between IO and intra-

application communication can be managed reducing the wall clock time overhead of IO

to nearly 0. This rapid data movement assumes that it is both reasonable and possible

to move the data volumes to appropriate storage resources. This may not always be the

case. For cases where the data is too large or when sufficient time is available during

the compute phase between output operations, the real benefit of this approach can be

achieved. The introduction of in-line data processing operations for filtering, sorting, or
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data analysis preparation tasks can improve both the writing and and later analysis reading

performance of HPC applications [123]. By placing embarassingly parallel operations close

to the compute source and communication-required or communication-intensive tasks nearer

to storage where there are fewer processes involved, the amount of time spent performing IO

is reduced, even when inclduing the additional resources required for staging are included.

These staging-style approaches operate at different layers than the approach described in

this thesis. First, they operate at a lower layer in that they directly manage data movement

from the compute area to a secondary, in memory location for either further processing

and/or more efficient movement to storage. The approach outlined in this thesis operates

at a higher layer in that it assumes the actual transport of data will be efficient and instead

focuses on scheduling the movement operations for the correct time. The asynchronous

approaches, such as DataTap, also schedule the data movement, but they do not move

directly to storage avoiding the interference and contention issues of the storage subsystem.

Second, when in-line operations can be deployed, these staging-style approaches operate

at a higher level. The introduction of and flexible placement of processing operations

is beyond the scope of the work in this thesis. While the staging approaches can work

quite well for achieving good IO performance and introduce additional functionality that

actually reduces the cost of IO while enhancing the usefulness of the data, they are not

a universal solution. First, to achieve many of the goals described above, asynchronous

data movement is required. This may not be desireable for a particular application due to

failure patterns and/or the cost of regenerating the data. Second, the data generated will

require additional memory to store the data while it is being spooled to secondary storage.

The additional memory requirement may not be possible given the platform characteristics

and/or the application needs. Third, the amount of compute power required to perform

the in-line operations may exceed the available excess capacity on the compute resources.

And fourth, even when moving data to a staging area to reduce the IO time, it is still

critically important to properly manage IO for optimal performance from the staging area

to the storage resources. In spite of these limitations, these staging-related approaches will

become increasingly important as multi-core architectures and hybrid CPU/GPU nodes
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are introduced. The staging areas may become on-node locations that manage the data

movement out of the node while the rest of the compute cores, either CPU, GPU, or both,

continues computation.
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CHAPTER VI

CONCLUSION AND OPEN ISSUES

6.1 Conclusion

This thesis addresses data management for extreme scale in a high performance computing

environment. Data management is not simply writing data with good performance, but in-

stead encompasses writing, annotation, and subsequent reading of data. The development

of the ADIOS middleware enables programmer productivity through a simple API and more

consistent performance as HPC platforms evolve through the replacement of the underly-

ing transport method without requiring any source code changes. The BP file format is

designed for high performance in large process count environments by minimizing coordi-

nation operations and focusing on a central index of file contents for later data discovery

and locating. By using a middleware approach, ADIOS can leverage additional metadata

during output about both the data types, sizes, and distribution, but also the dynamic

state of the storage system. This metadata affords intelligent decisions and management

of how to organize and perform the output to ensure consistent high performance output.

While the output performance advantages are clear, they either benefit or do not penalize

subsequent read performance.

During output, by leveraging the embarassingly parallel capabilities of the compute

area to annotate data, subsequent reading operations are greatly enhanced. The ability to

quickly identify if data values within an output set exceed a threshold becomes trivial. The

benefits are not limited to this annotation capability. The BP file format has demonstrated,

particularly for extreme scale configurations, that reading operations can be accelerated by

as much as a factor of 6. These benefits show that it is possible to both optimize the

output operations with techniques that would perhaps counterintuitively also aid later read

performance. The key to these advantages is the parallel file system.

The large number of storage devices that can be used in parallel spread the output and
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therefore the data subsequently read across more devices in moderately sized chunks. This

distribution aids reading by adding additional parallel sources to increase the aggregate

bandwidth.

While these advantages clearly demonstrate the advantages for the write-read cycle,

other advanges are also realized. The ADIOS middleware has additional features specifi-

cally aimed at enhancing the write-read cycle. First, with special calls to aid asynchronous

IO, additional mixed IO/computation models are possible. For example, by employing

asynchronous IO and scheduling the movement of data to avoid interfering with commu-

nication activities [2], extra resources can be used for other operations. These additional

resources incur no net increase in the wall clock time spent by the application due to the

reduced IO time from the asynchronous IO. By using these resources, operations intended

to reorganize, filter, or apply computation to data to accelerate later analysis becomes fea-

sible [123]. Through the use of these Preparatory Data Analytics, data can be sorted or

annotated to aid later analysis reads. While this approach can yield great results, the tech-

niques described to accelerate writing, including the output formatting are still important.

Ultimately, if the data is written to storage, these techniques are completely relevant.

Second, the ability to specify more than one transport method for an output operation

affords the opportunity for special purpose transport methods that trigger disk-based work-

flows. By placing the workflow transport last in the XML file, the output operations will

complete for all transport operations before the ‘trigger’ transport is invoked. At that time,

it is safe to message a workflow system to indicate that a new batch of data is available

for processing. This reduces the delay in processing data as it is generated and avoids the

metadata server impact of constantly querying for a list of files and the sizes to determine

when a new, complete data set has been written. This workflow triggering approach has

been demonstrated successfully [83, 22].

Through the ADIOS API, optimized output techniques, a writing and reading friendly

intermediate file format called BP, and facilities for incorporating ‘in flight’ data processing

operations and the mecahnisms for triggering workflows all yeild a comprehensive approach

for addressing the write-read cycle for scientific application in HPC environments.
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6.2 Open Issues

While the work presented in this thesis encapsulates a complete system, several open issues

are apparent.

First, the output mechanisms and focus are based around a file-oriented structure. In-

vestigations into how to better organize, store, annotate, and move the tremendous data vol-

umes of extreme scale science are becoming increasing important. The traditional POSIX-

based file worldview is increasingly overwhelmed. To complement the storage and access

research, additional emarassingly parallel statistical metrics should be considered to further

aid reading performance. New techniques using partial solutions that can quickly be re-

solved at read time can greatly benefit applications. For example, arithematic mean of an

array cannot be performed without communication. By each writing process computing a

local sum and/or mean value, the reading processes can then assemble these pieces together

to compute a global mean value without requiring the communication during the output

phase. Other statistical measures should also be investigated.

Second, the increasing number of compute cores through the introduction of multi-

core CPUs and GPGPUs will lead to increasing output operations. In particular, the

acceleration offered by GPGPUs will require far more frequent output operations in order

for scientificly valid analysis be performed. These developments will require more advanced

output processing to reduce the data volumes just to maintain output performance and

scientific validity of the generated data.

Third, solid state storage devices, such as flash memory devices, introduce another layer

into the memory hierarchy offering additional opportunities for processing data ‘in transit’

or simply to stage the data to slower storage. This change requires rethinking the output

process from simply writing to storage to considering moving to a temporary area from

which the data is either spooled to slower storage or additional operations can be applied

to the data before moving to secondary storage.

Fourth, the resilience of the output format has been addressed partially by this thesis.

There are more areas to investigate. For example, fully investigating transactional tech-

niques for controlling the acceptance of data sets as they are moved into storage or even the
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annotation of partial data sets and the recovery of the pieces successfully saved can lead

to reduced losses of compute time due to data set corruption or loss. And finally, the ‘in

transit’ data operations are really a precursor for deep analysis operations to gain scientific

insights without having to move all of the simulation data to storage. The data can be

analyzed as part of the output only storing data that meets certain scientifically interesting

criteria. This helps avoid the storage interface bottleneck while maintaining the standard

notion of ‘writing’ data for later analysis common in scientific applications. Another class of

these ‘in transit’ operations apply to more complex code coupling operations where richer,

two-way interactions among a collection of codes require data adjustments to fit the differing

models and scales for each code. The requirement to better support these sorts of interfaces

and environments such that the applications can change what sort of environment they

are currently executing within more transparently. For example, the ADIOS API currently

supports changing the destination of an write operation by changing an entry in the XML

file. This allows an application to write either to storage or potentially to an in-memory

coupled code transparent to the writing application. On the reading, or receiving side, it

is possible to switch between reading from a file or from another source, but this change

requires minor adjustments to the application code to ensure proper operation. There is

also a lack of clear support for blocking either synchronously or asynchronously on reading

to better support an in-memory coupled environment. Extreme scale HPC applications re-

quire the flexibility to run in either an isolated environment, a disk-based workflow system,

or using an in memory coupling scenario. Changing these operating mechanisms should not

require any source code changes, including when restarting from a failure or to continue

operating when a failure occurs in a tighter coupling environment. These additional topics

will extend this work into a more comprehensive extreme scale data management system

and will certainly generate additional topics as they are explored.
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APPENDIX A

ADIOS API

In addition to the APIs mentioned below, others exist for reading and some other operations.

Another entire set of APIs exist for transport method implementers to make that job easier.

Neither of these additional sets of functions are described here. For more information, please

refer to http://adiosapi.org/.

A.0.0.1 Setup/Cleanup/Main Loop

adios_init ("config.xml")

...

// do main loop

adios_begin_calculation ()

// do non-communication work

adios_end_calculation ()

...

// perform restart write

...

// do communication work

adios_end_iteration ()

! end loop

...

adios_finalize (myproc_id)

Adios init () initiates parsing of the configuration file generating all of the internal

data type information, configures the mechanisms for each, and potentially sets up the

buffer. Buffer creation can be delayed until a subsequent call to adios allocate buffer

if it should be based on a percentage of memory free or other allocation-time sensitive
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considerations.

Adios begin calculation () and adios end calculation () provide the ‘ticker’ mech-

anism for asynchronous IO, providing the asynchronous IO mechanism with information

about the compute phases, so that IO can be performed at times when the application is

not engaged in communications.

Adios end iteration () is a pacing function designed to give feedback to asynchronous

IO for gauging what progress must be made with data transmission in order to keep up

with the code. For example, if a restart is written every 40 iterations, the XML file may

indicate an iteration count of 30 to evacuate the data to give some adjustment for storage

congestion or other issues.

Adios finalize () indicates the code is about to shut down and any asynchronous

operations need to complete. It will block until all of the data has been drained from the

compute node.

A.0.0.2 Write Operation

adios_open (&handle, "restart", "filename", mode, comm)

adios_group_size (handle, group_size, \&totalsize)

adios_write (handle, "comm", comm)

...

adios_write (handle, "zion", zion)

...

adios_write (handle, "mzeta", mzeta)

...

adios_close (handle)

Adios open () generates a handle that manages the transport specific information and

serves to collect the data buffers used for writing or reading.

Adios group size () tells ADIOS how large the data written by this process will be at

maximum. This is used to determine file offset calculation and coordination.
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Adios write () specifies for a given name what data buffer to use. If it is writing a

scalar value, the value is copied enabling the use of expressions as parameters to this call.

If it is an array with statically defined dimensions, it can resolve directly the size involved.

If it has dynamic dimension elements, those must be defined before the call to adios close

in order for the write to succeed.

Adios close () performs three purposes. First, it indicates that all of the data buffers

for either writing or reading have been provided. Second, it initiates either the write or

read operation. Finally, it indicates to the transport layer to close the connection. By

delaying the reading or writing until this point, we eliminate the complexity of processing

data values in exactly the same order for reading, writing, or as they are specified in the

XML file.

A.1 ADIOS XML Details

The main elements of the XML file format are of the format <element-name attr1 attr2

...> Most of the attributes share a common definition and are therefore collected at the

end of the section for brevity. The description below is structured like the XML document:

<adios-config>

<adios-group name>

<global-bounds dimensions offset>

<var name path type dimensions/>

</global-bounds>

<var name path type dimensions/>

<attribute name path value/>

</adios-group>

<transport group method base-path priority iterations>

parameters
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</transport>

<buffer size-MB free-memory-percentage allocate-time/>

</adios-config>

Elements:

• adios-group - a container for a group of variables that should be treated as a single

IO operation (such as a restart or diagnostics data set).

• global-bounds - [optional] specifies the global space and offsets within that space for

the enclosed var elements.

• var - a variable that is either an array or a primitive data type, such as integer or

float, depending on the attributes provided.

• attribute - attributes attached to a var or var path.

• transport - mapping a transport method to a data type including any initialization

parameters.

• buffer - internal buffer sizing and creation time. Used only once.

Attributes

• name - name of this element or attribute. For a datatype, this is used in the code to

select this data type for an IO operation.

• path - HDF-5-style path for the element or path to the HDF-5 group or data item to

which this attribute is attached.

• type - data type. Currently supported values (size): byte (1-byte), integer (4-

byte), integer*4 (4-byte), integer*8 (8-byte), long (8-byte), real (4-byte), real*8

(8-byte), double (8-byte), complex (16-byte), and string.

• dimensions - a comma separated list of numbers and/or names that correspond to

scalar elements to determine the size of this item
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• value - value for the attribute

• priority - [optional] a numeric priority for the IO methods to better schedule this

write with others that may be pending currently

• method - a string indicating a transport method to use with the associated adios-group.

• iterations - [optional] a number of iterations between writes of this type used to

gauge how quickly this data should be evacuated from the compute node

• base-path - [optional] the root directory to use when writing to disk or similar pur-

poses

• group - corresponds to an adios-group specified earlier in the file.

• parameters - [optional] a string passed to the method for initialization.

• size-MB - the number of MiB to allocate for buffering. Either size-MB or free-memory-percentage

is required.

• free-memory-percentage - the percentage of free ram to allocate for buffering. Either

size-MB or free-memory-percentage is required.

• allocate-time - either “now” or “oncall” to indicate when the buffer should be

allocated. “oncall” will wait until the programmer decides that all memory needed

for calculation has been allocated and will then call adios allocate buffer ()

A.1.0.3 Read Operation

adios_set_read_method (method)

adios_fopen (&handle, "filename", comm, \&group_count)

adios_gopen (handle, \&group_handle, "group_name", \&var_count, \&attr_count)

adios_inq_var (group_handle, "path/var_name", \&var_type,

&var_rank, \&dims, \&vtimed)

adios_read_var (group_handle, "path/var_name", start, readsize,

&buffer, \&read_bytes)
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adios_get_attr (group_handle, "attr_name", \&type, \&size, \&buffer)

adios_glocse (group_handle)

adios_fclose (handle)

Adios set read method () is an optional call to change the default reading method from

POSIX IO to another method, such as code coupling

Adios fopen () opens a BP file for reading

Adios gopen () selects an ADIOS group within a BP file for reading

Adios inq var () queries the BP file for information about the specified variable

Adios read var () retrieves the portion of the variable specified

Adios get attr () retrieves the value of the attribute specified

Adios gclose () closes the reference to a particular group in the BP file

Adios fclose () closes the BP file opened by adios fclose ()
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