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CHAPTER I 

INTRODUCTION 

The purpose of this paper is to study iterative methods for 

optimizing (that is, maximizing or minimizing) a real valued function 

of n variables, n > 1 (which may be subject to constraints). To be 

consistent in the discussion, function minimization will be discussed, 

since finding the maximum value of a function is equivalent to finding s 

the minimum value of the negative of the function. In mathematical 

terms, for a given continuous function f which is defined by the equa­

tion f(x) = f ( x ^ j X ^ , . . . j X ^ ) on E^, the problem is to find a point y in 

E n (if one exists) such that f(y) has a minimum value, that is, 

f(y) < f(x) for all x in E^ in a neighborhood of y. The restrictions 

on the independent variables that will be considered can be written as 

g (x ,x ,...,x ) > 0, i = 1,2,...,m, (1) 
l 1 l n 

where the functions g^, i = 1,2,...,m, are continuous. A function 

subject to restrictions like those in (1) is said to be constrained. 

For an unconstrained function with continuous second-order partial 

derivatives, a minimum value of the function occurs at a point where 

the first-order partial derivatives of the function vanish and the 

matrix of second-order partial derivatives of the function is positive 

definite (see [l,p.l52]). Determining such a point in this manner 
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requires the solution of at least n nonlinear equations simultaneously. 

This paper will primarily examine sequential (or iterative) 

minimization procedures suitable for digital computers in which the 

points tested for a minimum value of the function are completely 

determined by a previous set of operations. Nonsequential types of 

function minimization (where previous test points do not determine 

where the next test point will be located) generally involve solving a 

system of nonlinear equations or else use random methods to pick test 

points in a region where the minimum is thought to be located. In the 

latter case, after a number of points has been chosen, the smallest 

value the function assumes in this set of points is taken to be the 

minimum, and the number of necessary test points for a certain accuracy 

can be determined from statistical theory. Nonsequential types of 

methods will not be considered in this paper. 

In Chapter IT, sequential methods for successively restricting 

the interval in which a point at which the minimum value, of a,function 

of one variable, is attained is located are considered, along with 

methods of quadratic and cubic interpolation to approximate the minimum 

value of the function with only a few function evaluations. In Chapter 

III, methods for minimizing functions of n variables, n > 1, subject to 

no constraints are described and convergence features proved. Chapter 

IV is concerned with a few of the methods which have been developed to 

handle constrained functions; specifically those methods which convert 

the constrained function to an unconstrained form are studied. Final 

conclusions are made in Chapter V. 
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Notation 

The components of n dimensional column vectors will be distin­

guished by subscripts on the letters while bars over letters will 

identify vectors; for example, 

x = 

The word "direction" will be used synonymously with "vector." Itera­

tion numbers will usually be denoted by subscripts on vectors and-

matrices will be indicated by capital letters (with or without sub­

scripts). The vector g will denote the gradient vector of the function 

f. The letter n will indicate the number of function variables. 

Preliminary Definitions and Theorems 

The following definitions and theorems will be used throughout 

this paper. 

Definition 1. For a function f defined on a set S in E , the state-n 
ment, "x is a minimum," means that x is a point where a relative o o 
minimum value of the function occurs, that is, f( x

Q) 1 f(x), for all x 

in a neighborhood of x and in S; and f(x ) is said to be a minimum 
o o 

value of the function. 
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Definition 2. A vector p is called a direction of search if a number 

A can be calculated so that f(x + Ap) < f(x) for a fixed x. The 

process of calculating this A is called searching in the direction p. 

Definition 3 . When a direction p is being searched, the vector Ap, 

where A is a scalar, is called a step in the direction p, and the mag­

nitude of this vector jAp] is called the step size or length of step. 

Definition 4 . If c is a number in the range of a function f, then the 

set of all points x in which satisfy the equation f(x) = c is called 

a contour of the function. 

Definition 5 . The matrix of second-order partial derivatives of a 
8 2f 

function f, that is, the matrix A = [a..] with elements a.. = is 
. I "1 

called the Hessian matrix of the function f. 

Definition 6 . A quadratic function of n variables is a function f 

defined by the equation 

f (x) = ~ x tAx + b^x. + c , (2) 

where c is a scalar, b is a constant vector, and A is a constant matrix 

A positive definite quadratic function, the only kind of quadratic 
function considered in this paper, is defined by Equation (2) and A is 

required to be a symmetric and positive definite matrix. Note that A 

is the Hessian matrix of the quadratic function. 
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Theorem 1. For a positive definite quadratic function f, there exists 

a unique point x in E such that f(x) < f(y) for all x ± y in E . 
n n 

Proof. The existence and uniqueness of the point follow from Theorem 

7 - 9 in Apostol [l,p,152]. 1 

Definition 7 . An iterative method for minimizing a function of n 

variables is said to have quadvat-ic convergence if for any positive 

definite quadratic function, it is guaranteed that the minimum value 

of the function will be located exactly, apart from rounding errors, 

within n iterations. 

Definition 8. The directions p and q are defined to be A-conjugate 

(or simply conjugate) if p^Aq = 0 for p ± q, p, q ± 6 . 

Theorem 2 . If A is a positive definite matrix and if p^, p^,..., P n 

are vectors such that 

v\ A Pj = 0, i i j , 

pT A p\ > 0, i = j, 

that is j if they are mutually conjugate, then p^, ^'''"'^n ^ o r m a 

linearly independent set of vectors. 



Proof. Suppose that p^p^'' ' ° >Pn

 a r e linearly dependent; that is 

there are scalars c. ,c., . . . ,c not all zero such that 
1 2 n 

n 
I c.p. = 0 

j=l 3 3 

Now 

n n 
A I c.p. = I c hp = 0 . 

j=l J J j=l J J 

BY H Y P O T H E S I S , AT LEAST ONE OF THE ^ 0 , SAY ^ 0 . THEN 

-t n - n -t - -t -
p. Y c. Ap. = y c.p.Ap. = c.p.Ap. = 0 . 

3=1 3=1 

Hence by contradiction, p^jp^j.-.^p^^ are linearly independent 

Definition 9. A function is said to be convex if 

f((i -E)x + E y) < (i - E ) f(x) + E f(y) 

for 0 < 6 < 1 and for all x and y in the domain of the function 

is strictly convex if 

f((l - 0) x + 0 y) < (1 - 0) f(x) + 0 f(y) 

holds for distinct x and y in the domain of the function and for 
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0 < 0 < 1. A function is ooncave (strictly concave) if -f(x) is convex 

(strictly convex). 
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CHAPTER II 

ONE VARIABLE SEARCH 

Methods for finding the minimum value of a function of one vari­

able, in addition to being important methods in themselves, are required 

in many methods for minimizing a function f of n variables, n > 1. 

Definition 10. A function f of one variable is unimodal on an interval 
* * * 

(a,b). if there is an x in (a,b) such that f(x ) < f(x) for all x f x 
h 

in (a,b), and f(x) > f(y) if a < x < y < x and f(x) < f(y) if 

x < x < y < b. Note that the function f must only be defined on (a,b) 

and that there are no restrictions on the function such as continuity 

and differentiability. 
Dichotomous Search 

Let f be a unimodal function of one variable on an interval 

(a ,b ). Choose a number e > 0 such that e is less than the accuracy o o J 

desired in the variable x. The kth iteration, k = 0,1,..., of the 

dichotomous search that is to be repeated until the desired accuracy is 

obtained is given as follows, 

(i) Let 

a, + b, a, + b, k k e , k k , e x, = — and y, = + — k 2 2 yk 2 2 

and evaluate f(x, ) and f(y ). 
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(ii) If f(x k) = f(yk)» let a k + 1 = x k, b k + 1 = y R, and stop. 

If f(x k) < f(y k), LET a k + 1 V B K + L = Y 

If f(x k) > f(y k), let a k + 1 = x , b k + 1 

k* 
= b," . 

After k iterations, the minimum is located within an interval 

of length —T~ (b -a ) + E (1 - -̂ -) since o o 2 2 

bk " ak = 7 ( bk-i " ak-i } + I 

I " ( b k - 2 - a k - 2 ) + L ) + L = 

.k-l 

T T ( b o - a o ) + L 

1 " ~ 

1 - =-

(b - a ) + E ( 1 - i 
2 k ° ° 2 k 

but if the first alternative is chosen in step (ii), the interval in 

which the minimum is located has length E. Note that the function must 

always be evaluated two times per interation and that this method 

reduces the interval the maximum amount per iteration for any method 

using two points in the subinterval since if two arbitrary points are 

chosen, the amount of reduction is greater than one-half the length of 

the interval. 
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Fibonacci Search 

Definition 11. The Fibonacci sequence is the sequence of integers 

{F. } defined as: k 

F o - 1 ' h - F k = Fk-1 + Fk-2 f O T k * 2-

Let f be a unimodal function of one variable on (a , b ) with a 
o o 

minimum value at x to be determined and let the number of function 

evaluations to be made be N + 1. (This will determine the accuracy that 

can be obtained as will be shown later.) The kth iteration, k = 0,1,..., 

N-l 4 can be stated as follows. 

(i) Choose the points x, and y in the interval (a, ,b ) as 
K K K K 

F 
x = (b - a ) + a , (3a) 

K *N-k+l 

Y k = (b " a ) + a (3b) 
k *N-k+l 

FN-ktl ( b _ a )
 FN-k-l ( b _ a ) + a 

FN-k+l k k FN-k+l k k k 

\ ~ F (bk " ak ) j 

K Vk+l K K 

since F = F . - F . N-k N-k+1 N-k-1 



11 

F. x 

(Note that x < y since = R ^ — < — for any integer J > 1.) 
K K J R J + 2 1 

(ii) Calculate f(* k) if (a k,b k) = ( a ^ » Y k _ 1 ) • N o t e t n a t 

f(y ) = f(x ) (see Theorem 3 ) 
K K—-L 

Otherwise, calculate f(y, ) if (a, ,b, ) = (x , b ). 
K K K K—J. K—1 

Note that f(*k> = 

* (iii) If f(x, ) < f(y,), then a, < x < y, , and let 
K K K K 

(ax+i> W '- (ak'V-
If f ( x

k ) > f ^ y ^ ) ' then x k < x < b k, and let 

(akti» W = ( V V -
If f ( x

k ) = f(yk)» then x k < x < y k, and let either 

<ak+i« W = (ak'yk} o r K t i V = ( v V -

The length of the last interval is 

y N T l 3N-1 F F 2 F 1 

o r f = FT ( bN-l ' V l ' =
 O T ( bN-2 " W 

V l " XN-1 2 3 2 

Fl 1 = ••• = =±- (b - a ) = i- (b - a ) , 
N ° N ° 

where (b Q - a Q) is the length of the original interval. Thus the , 

number of iterations for a desired accuracy can be determined from the 

sequence of Fibonacci numbers. 

Theorem 3 . The function is evaluated once per iteration for k = 1,2,.., 

N-l. 
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Proof. Assume that at the kth iteration, the minimum is located 

between a, and y . Then at the next iteration 
K K 

N-(k+l) 
k+1 F N+l-(k+l) 

( y k - a k } + V 

since y = b, and a, = a '. If the values of y, in (3b) is substi-
K K+J. K K+J_ K 

tuted in this equation, then 

'k+1 
N-(k+l) 

FN-k 
N-k 

N-k+1 
( b k " a k } + a k " ak + a, 

N-k-1 
N-k+1 

( V a k } + ak = V 

and the function needs to be evaluated at x during the (k+l)th 
K+J. 

}'» 

iteration. A similar proof can be developed for the case when x is 

between x̂ _ and b^. i 

The kth term of the Fibonacci sequence is given by 

F = — 
k / i " 

1 + /b 
k+1 

1-/5" 
2 2 

k+1 

from this it follows that the limiting values of ratios of Fibonacci 

numbers are 



13 

lim F k /s" - 1 • 
k+1 

= 0.618, 

k ~ ° F k +1 2 

On this basis, the following approximate formulas can be used to obtain 

x^ and (k = 1,2,...,N) in step (i) (Equation (3)), 

x k = 0.382(b k-a R) + a k 

y k = 0.618(bk-ak) + v 

(4) 

After the first two points, the function is evaluated one time per 

iteration and the test points at any iteration are independent of the 

total number of points contrary to the Fibonacci search where x k, y k 

depend on N by Equation (3). Each iteration is simplified, but the 

length of the final interval after k iterations will be 

b. - a = (0.618) k (b -a ) k k 0 0 

which is slightly larger (by 13 per cent, as shown by Kiefer [19]) than 

the corresponding interval in the Fibonacci search. When the formulas 

in (4) are used, instead of (3), then the method is called "golden 

section." 

When the last three methods are compared, the lengths of the 
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last interval after k+1 function evaluations obey the following 

inequalities, corresponding respectively to dichotomous, golden sec­

tion and Fibonacci searches: 

Wl)/2] < W " (°-618) k(b o-a o) > i (b o-a o), (5) 
2 k 

where [ ] denotes the greatest integer function. The first inequality 

is true since 

( o W k 

or 

j (.5)k > (. 381924 ) k 

or 

(0.7638,58)k < 0.5, k > 2. 

A tabulation of the values used in the coefficients of (b -a ) in (5) 
o o 

(as in Wilde [28], p. 29) bears out the relationship as does a graph­

ical comparison in Boas [4], The above statements establish the fact 

that the Fibonacci search gives greater accuracy per specified number 

of function evaluations, but the method of golden section is much easier 

to use and the accuracy is not much less. 
For functions of n variables, n > 1, due to the methods them­

selves and the fact that the function is not necessarily a quadratic 
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function, it is only necessary to have an approximate value of t such 

that h(t) = f(x + tp) has a minimum value. The methods to be discussed 

use quadratic and cubic interpolation and are more, efficient than the 

prior methods discussed in the sense that they find an approximate 

value for the minimum with fewer function evaluations. Here there are 

no restrictive intervals in which the search is conducted. 

Quadratic Interpolation 

For the function h of one variable, let (a,h(a)), (b,h(b)), 

(c,h(c)) be three distinct points. A quadratic function q through the . 

points is defined by the equation 

q(t) = k x t 2 + k 2t + k 3, 

which for the three points gives the set of linear equations 

a k± + ak 2 

b 2 k x + bk 2 

2 
c ^ + ck 2 

+ k 3 = h(a) 

+ k 3 = h(b) 

+ k 3 = h(c), 

from which k k 2, and k 3 can be determined. The coefficient matrix 

is non-singular since the points,are distinct. By elementary calculus, 

the minimum value of the function q (which is an approximation to the 

minimum value of the function h) is 
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K3 4 k 

at t = -k /2k^ if k̂  > 0, or equivalently, the function q has a 

minimum value 

h(a)bc(b-c) - Mb)ac(a-c) + h(c)ab(a-b) 
(a-b)(a-c)(b-c) 

1 [-h(a)(b2-c2) + h(b)(a 2-c 2) - h(c)(a 2-b 2)] 2 

4 h(a)(b-c) - h(b)(a-c) + h(c)(a-b) 

at 

* _ 1 -h(a)(b 2-c 2) + h(b)(a 2-c 2) - h(cfta 2-b 2) ( . 
2 h(a)(b-c) - h(b)(a-c) + h(c)(a-b) 

if d > 0, where 

- h(a)(b-c) - h(b)(a-c) + h(c)(a-b) 
(a-b)(a-c)(b-c) 

If k < 0, then lim q(t) = -°° and lim q(t) = while q is linear 

if k = or 

For the way in which Powell [22] uses quadratic interpolation 

to approximate the point on a line where the minimum value of a func­

tion of more than one variable occurs, let h(t) = f(x + tp) and let the 

magnitude q of the step length, an upper bound m on the step length 
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(q is assumed to be less than m), and the accuracy e be given. The 

algorithm is given as follows. 

(i) Calculate h(a) and h(b) = h(a + q). 

(ii) Calculate h(c) = h(a - q) if h(a) < h(b). 

Otherwise, calculate h(c) =h(a + 2q). , 

it 
(iii) Use (a,h(a)), (b,h(b)), (c,h(c)) to calculate t and d. 

it it 

(iv) If d < 0 or if t > a + m o r t < a - m, then replace a by 

a + m if c > b or replace b by a - i if c < a and go to 

step (iii). 

Otherwise, go to step (v). 

(v) If any of the following hold: 
TFC ST* 

|t - aj < e, |t - b| < e, |t - cj < e, 
it 

accept t as an approximation to the point where the mini-

mum occurs. If not, calculate h(t ). 
it 

(vi) If h(a) > h(b) and h(a) > h(c), replace a by t and go to 

step (iii); 
it 

if h(b) > h(a) and h(b) > h(c), replace b by t and go to 

step (iii); 
A •** 

if h(c) > h(a) and h(c) > h(b), replace c by t and go to 

step (iii). 
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Example 1. To illustrate the algorithm given by Powell and stated 

above, consider the function 

Mt) = ^-=- , 
1 + t 

which has a minimum value of -1 at t = 0 . Choose a = 1 , q = 1 , 

m = 3 , e = 0 . 1 . 

Now h(l) = - 0 . 5 , h ( 2 ) = - 0 . 2 ; therefore c = 0 , h ( 0 ) = - 1 . 

t" = 3 and d = - 0 . 1 < 0 . 

Hence b = 2 is replaced b y a - m = l - 3 = - 2 and t is calculated using 

h(l) = - 0 . 5 , h ( - 2 ) = - 0 . 2 , h ( 0 ) = - 1 . 

t" = - 0 . 3 3 and d = 0 .3 > 0 . 
A 

t" is again calculated using h(l) = - 0 . 5 , M - 0 . 3 3 ) = - 0 . 9 , h ( 0 ) = - 1 . 

t = 0 .083 and d = 0 .2 > 0 . 
A 

This value is accepted for t since | o - 0 . 0 8 3 | < 0 .1 = e. 

Cubic Interpolation 

If the values of a differentiable function h at two points and 

the derivatives of h at these two points are available, then cubic 

interpolation can be used to establish an approximation to the point at 

which the minimum value of the function occurs. If a, b, h(a), h(b), 

h'(a), h'(b), are assumed to be known, then the resulting cubic poly­

nomial p is given by the equation 

2 

p(t) = h(b) + (t-b)h'(b) - T ^ T T - ( h ' ( b ) + z ) 

(a-b) 
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+ ( t " b ) (h'(a) + h'(b) + 2z) , 
3(a-b) 

where 

z = 3 h(a) - h(b) 
b - a 

+ h'(a) + h'(b) , 

and its slope for a < t < b is given by 

p'(t) = h'(b) - 2 (h'(b) + z) 
a-b 

+ ( t b )

0 (h'(a) + h'(b) + 2z) . 
(a-bT 

If h'(a) + h'(b) + 2z = 0, then a quadratic polynomial could have been 

assumed. If h'(a) < 0 and h'(b) > 0, then the root t of p'(t) that 

corresponds to a minimum lies between a and b and p"(t ) > 0, where 

p " ( t ) = -2 ( M b ) : Z ) + 2 i t ± 3 L (h'(a) + h'(b) + 2z) a - b (a-b)' 

The root t of p'(t) is 

t - b = (a-b) h T(b) + z ± w 
h T(a) + h'(b) + 2z 
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2 1/2 where w = (z -h'(a)h'(b))' , and since 

p"(t ) = -2 h(b) + z 
a - b 

a - b (h'(a) + h'(b) + 2z) 
h'(b) + z ± w 

h'(a) + h'(b) + 2z 

is greater than zero only when the negative sign is chosen, then 

t - b = (a-b) h'(b) + z - w 
h'(a) + h'(b) + 2z 

= (a-b) h'(b) + w - z 
h'(b) - h'(a) + 2w (7) 

Davidon [9] (see also [16]) gives an algorithm that uses this 

interpolation to approximate the value t where h'(t) = 0 if h(t) = 

f(x + tp). (Note that h'(t) = p^gtx+tp) and that h'(0) = p tg(x).) 

Let h be an estimate of the minimum value of the function h and e 
s be a step size (s can be chosen equal to 1). Assume h'(0) < 0. (If 

h'(0) > 0 then a variation of the following algorithm can be made.) 

The algorithm can be stated as follows. 

(i) Evaluate h(0), h'(0). 

(h - h(0)) 
(ii) Let k = 2 h'(0) 

2 -1/2 
(iii) Choose a step length q = k if 0 < k < (s ) 
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2 -1/2 Otherwise, let q = (s ) 

(Note: When this algorithm is applied to the function f 

then (s 2) 1 / / 2 is replaced by (p^p) 1 /' 2.) 

(iv) For i = 0,1,2,..., evaluate h'(2 1q) until h' is non-

negative. Let a = 2 1 1q and b = 2 1q. Thus t is bounded 

in the interval a < t < b. 
m ~ 

ft 
(v) Calculate an estimate t of t using Equation (7). 

m 
ft ft ft 

(vi) If h(t ) < h(a) and h(t ) < h(b), then accept t as an 

estimate of t . 
m 

ft ft Otherwise, if h'(t ) > 0, replace b by t and go to step 
ft 

(v); if h'(t ) < 0, replace a by t and go to step (v). 

Example. 2. For an example of this algorithm, let 

h(t) = -
1 + (t-7) 2 

which has a minimum of -1 at t = 7 and for which 

h'(t)= 2 ( t - ? ) 

(1 + (t-7) 2) 2 

Choose h = -1, s = 1. Then k > 1 and therefore q = 1. e ^ 
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h 1 (0) = -14/50 2, 

h'(l) = -12/37 2, 

h'(2) = -10/262, 

h«(4) = -6/10 2, h(4) = -1/10, a = 4, 

h'(8) = 1/2 > 0, h(8) = -1/2, b = 8. 

Using Equation (7), t" -8 = -1, t" = 7, h(7) = -1, and h(7) < h(4), 

h(7) < h(,8). 
ft 

t = 7 is accepted as an approximation to the minimum. 
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/ CHAPTER III 

MULTI-VARIABLE SEARCH 

Sequential examination of points for functions of n variables, 

n > 1, can be divided into two classes: gradient methods which make 

beneficial use of the gradient vector to determine directions of search 

and non-gradient methods which are only systemized methods to compare 

points. The latter methods will be considered first. 

Non-gradient Methods 

Direct Search 

The phrase "direct search," as used by Hooke and Jeeves [18], 

describes "a sequential examination of trial solutions involving com­

parison of each trial solution with the. 'best' obtained up to that time 

together with a strategy for determining (as a function of earlier 

results) what the next trial solution will be." The method.of direct 

search employs, no techniques of analysis. 

The basic algorithm, is as follows.. 

(i) Select an initial approximation x to the minimum as the 

first "base point." 

(ii) Choose another point z. If f(z) < f(x), then set x = z 

to give a new base point. 

23 
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(iii) Repeat step (ii) until the convergence criterion is 

satisfied. (See pages 72-73 for a discussion of the 

criterion that can be used.) 

The strategy for selecting new trial points can be divided into 

two separate parts. The first part establishes a pattern of search by 

making exploratory moves and the second moves in the established 

pattern. 

Let A_. be the vector (0,. . . ,0,6_. ,0, . . . ,0 , where 6.. i 0 and 

let p > 1 be given. Then the kth iteration can be stated as follows. 

(i) Let x be the current base point. 
K j O 

(ii) For j = l,2,...,n, in turn, use one of the following to 

find x, .: 

(a) if f(x k j ._x t A\) < f(x k j . _ 1 ) , set x ^ . = x ^ . ^ t 'A. 

and replace A. by pA.; 
1 1 

(b) if f t x ^ . ^ - A.) < f U ^ ^ ) , set x k j j = x ^ . ^ - A. 
and replace A. by pA.: 

1 1 
(c) if f(x. . ,) < min{f(x. . . + A.), f(x. . , - A.)} 

k,l-l " k,]-l : k,:-l ] 
set x, . = x, . . and replace A. by 1/p A., k »1 * jl -1 3 1 

(iii) If f(2x, - x, ) < f(x, ), set x. = x v + k,n k,o k,n k+l,o k,n 
(x, - x, ). Otherwise, set x, . = x. k,n k,o k+l,o • k,n 

The step size of the pattern move made, in step (iii), that is, 

the magnitude of the vector (x - x ) may also be increased if the 
K , n K , o 

first alternative of (iii) is satisfied. 
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Example 3. As an illustration of the previous algorithm consider the 

function f defined by 

2 2 f(x l Sx 2) = x 1 - 2x.jX + 2 x 2 , 

whose minimum value is zero at the origin. Initially choose = 

(1/2,0), A"2 = (0,1/2), and p = 2, and let the starting point be (1,2). 

Table 1 gives the steps and function values for four iterations. 

Table 1. Direct Search 

i = 1 
Function 
Value i = 2 

Function 
Value i = 3 

Function 
Value i = 4 

Function 
Value 

X? (1,2) 5 (2,1) 2 (1,1) 1 (1,0.5) 0.5 
1 , 0 

(1,2) (1,1) 

(1.5,2) 4.25 (1,1) 1 (1,1) 1 (1,0.5) 0.5 

«i (1,0) (2,0) (1,0) (0.5,0) 

(L5,1.5) 2.25 (1,1) 1 (1,0.5) 0.5 (1,0.5) 0.5 

'1 (0,1) (0,0.5) (0,1) (0,0.5) 

Rosenbrock's Method 

A method developed by Rosenbrock [23] uses a stepping procedure 

in n orthogonal directions with cyclic changes of these directions. 

The algorithm may be stated as follows. 
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(i) Choose an initial approximation x q and numbers a, 3 so 

that a > 1, 0 < 3 < 1.. 

(ii) Choose n orthonormal directions P}_»P2'' * *'Pn ^ n ^ ^ a ^ y 

and step lengths e ., j = l,2,...,n. 
1 5 3 

(iii) For j = 1 , 2 , . . . , n , 

(a) if f(x + e. .p.) < f(x ), replace x by x + e„ .p. 
o 1 ,3*3 o r o J o 1 , 3 * ] 

and put e. , . = ae. .; 
i+l,3 i,3 

(b) if f(x + e. .p.) > f(x ), put e. . . = -Be. .. 
o 1 , 3*3 o 1 + 1 , 3 i,3 

(iv) Repeat step (iii), increasing i by 1 each time, until 

both (a) and (b) have been used for each j = l,2,...,n. 

For each direction, if (a) is chosen first, then eventually 

(b) will be chosen since either the function will increase 

or the point where the minimum value occurs will be reached. 

If (b) is chosen first, then eventually (a) will be chosen 

since the step size e. . will become so small that the 
i,3 

numbers f(x ) and f(x + e. .p.) are indistinguishable in o o 1 , 3*3 

the first X significant digits. 

(v) Set d. = J e. ., 
3 I i,3 

where the sum is over the step sizes used in alternative 

(a) in step (iii) in the direction p _., j = l,2,...,n. 

Note that d̂ , f 0 since eventually alternative (a) will be 

used. 
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(vi) Let 

q l = d l p l + d 2 p 2 + ''' + dn pn' 

q 2 = d 2 p 2 + ••• + d n p n 

q = d p . 
^n n rn 

(vii) Orthonormalize the directions q^, q^,. . . 9q_^ by the Gram-

Schmidt process and call these new directions p^ ,p2,... ,p^ 

(viii) Repeat steps (iii) through (vii) until the convergence 

criterion is satisfied. 

Example For the function in Example 3, 

2 2 f(x l 9x 2) = x x - 2 x±x2 + 2 x 2, 

let the starting point be (1,2) and choose a = 3, 3 = 0.5, p* = '(1,0) 

p^ = (0,1), e,; = 0.5, e = 0.5. The following illustrates the 2 1,1 1 )2 
method for one iteration. 



p* = (1,0), p* = (0,1) 

x* = (1,2), f(x Q) = 5, 

61,1 = °'5> 

x^ = (1.5,2), f(x Q) = 4.25, 

e = 1.5, 

e 3 j l=-0.75, 

x* = (1.5,2.5), f(x o) = 1, 

e2,2 = 

e3,2 = - ° - 7 5 ' 

d1 = 1.5, d 2 = 1.5, 

q* = (1.5, 1.5), q* = (0,1.5), 

(0.7071,0.7071), = (0.7071,-0.7071) 
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The result of applying steps (vi) and (vii) several times 

ensures that p coincides with the directions of fastest advance, p 2 

along the best direction which can be found normal to p^, and so on. 

It is stated by Smith [25] that when using the method on a positive 

definite quadratic function, the directions p^, i = l,2,...,n, align 

themselves in the limit along the axes of the function (the eigen­

vectors of the matrix of second derivatives—a particular case of con­

jugate directions) and that although the method does not have quadratic 

convergence, it does have a similarity with other methods that have 

quadratic convergence in this limiting process. 

A variation of the above procedure, due to Davies5. Swann,: and 

Campey [14], replaces, steps (iii), (iv), and (v) by a minimization of 

the function in the direction p.. This can be stated as 

(iiia) For j = l,2,...,n, find a number d.. such that the function 

h defined by the equation h(d) j= f ( x
Q + dp.) has a minimum 

at d = d. and replace x by x + d.p.. 

Note that if any d. = 0, then the vectors q ,q,... ,q._ , 

q_.+1,...,q^ are orthonormalized in step (vii) and p.. is added to the 

resulting vectors after they are renamed. 

Example 5. This method is illustrated in Table 2 by the same function 

in Example 3 and the p directions in Example 4. 
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Table 2. Method of Davies, Swann, and Campey 

1 
Function 
Value 2 

-t 
X o (1, 2) 5 (2, 2.25) 

-t 
p l (1, 0) (0.9701, -0.2425 

-t 
P 2 (0, 1) (0.2425, 0.9701) 

d l 1 .0793 

-t 
X o (2, 2) 4 (2.077, 1.731) 

d 2 -0.25 1.972 

"t 
X o (2, 2.25) 2.5 

Powell's Method 

Powell [22] developed a nongradient method which is a variation 

of the previous methods. He "proves" the method has quadratic con­

vergence, but Zangwill [29] gives an example of a positive definite 

quadratic function which will not converge in any number of iterations 

The crucial hypothesis omitted was that the directions of search 

spanned the space. See the paragraph preceding Theorem 4 for further 

discussion. Nevertheless, the method is efficient and is now stated. 

Initially choose Pj_»P25 ' * *'Pn ' t o ^ e n c o o rdinate directions 

and let x be the starting point. An iteration of the basic procedure 



31 

to be repeated until the convergence criterion is satisfied is as 

follows. 

(i) For k = 1,2,...,n, find such that the function h^ 

defined by the equation h^^) = "^ xk l + ^ k ^ b a s a 

minimum at A = A and define x, = x, + A, p, . 
K K K —-L K K 

(ii) For k = l,2,...,n-l, replace p^ by P^+j_ and replace 

p by (x - x ). *n J n o 
A 

(iii) Choose A so that the function h defined by the equation 

h(A ) = f(x + A(x - x )) has'a minimum at A = A and n n o 
replace x b y x + A (x - x ) . 

o n n o 

The sequence of points x^,x ,...,xn is calculated by searching 

in the directions p.,p^,...,p successively. New directions are estab-
1 2 n 

lished by deleting p^ and replacing p^ by Pk+-j_» k = 1,2,.. . . ,-n-l and 

p by x - x . This last direction is searched and the point at which n n o 
the minimum occurs replaces the old X q completing one cycle. 

Example 6. Consider the function 

f ( x r x 2 ) = x 2 - 2 x x x 2 + 2 x 2

2 

from Example 3 with starting point x^ = (1,2). The algorithm is 

illustrated by Table 3. 
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Table 3. Powell's Method 

1 
Function 
Value 2 

Function 
Value 3 

Function 
Value 

-t 
X o (1,2) 5 (1.8,1.2) 1.8 (0,0) 0 

-t 
p l (1,0) (0,1) ( 1 , - D 

-t 
P 2 (0,1) ( 1 , - D (-0.18,-0.12) 

Al 1 -0.3 

-t 
x i (2,2) 4 (1.8,0.9) 1.62 

\ -1 -0.18 

-t 
X 2 (2,1) 2 (1.62,1.08) 1.458 

ft 
A -0.2 9 

Powell's Second Method (Simplified) 

Because the previous method sometimes gives dependent directions 

of search, Powell [22] gave an alternate method. Zangwill [29] gives a 

simplification of this procedure and proves that it converges. This 

modification will now be given. 

Let pn,p_,...,p be the normalized coordinate directions and x *± r 2 ^n o 
be an initial approximation to the minimum.. Let ;a scalar e, 0 < e < 1, 

be given and set 5 = 1 . The kth iteration to be repeated until the. con­

vergence criterion is satisfied can be stated as follows. 
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(i) For j = ..1,2, .. . ,n, find A., such that the function h.. 

defined by the equation h.(A) = f(x. , + Ap.) has a 
3 3-± ^3 

minimum at A = A. and define x. = x. . + A.p.. 
: : :-i ri 

(ii) Define a = Ix - x I and p ^. = (x - x )/a. 
' n o ' rn+l n o 

(iii) Find A , such that the function h defined by the equa-ii+1 n+1 
tion h AX) - f(x + Ap n ) has a minimum at A = A _ and n+1 n *n+l n+1 
set x = x + A ,_p ,. . o- n n+l^n+l 

(iv) Let A = max{A.: j = l,2,...,n}. 
s 3 

(a) If A 6/a > e, replace p by p and 6 by A 6/a. 

(b) Otherwise, retain the same p directions and 6. 

Example 7. Consider the function 

2 2 f(x ,x 2) = x - 2x x 2 + 2 x 2 

from Example 3. Table 4 illustrates the algorithm with starting point 

(1,2) and e = 0.1. 

Zangwill [29] establishes that this procedure must converge to 

a point at which the gradient of a function f is zero, (g = 0) for f a 

strictly convex continuously differentiable function, but the necessary 

lemmas and theorems will not be proved here. 

Zangwill's Method 

Zangwill [29] introduces a procedure based on theorems proved by 

Powell [22] which converges in a finite number of iterations for a 
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Table 4. Powell's Second Method (Simplified) 

1 f(x) 2 f(x) 3 f(x) 

-t 
X o (1,2) 5 (1.8,1 .2) 1.8 (1.8,0.9) 1.62 

-t 
p l (1,0) (.7071 ,-.7 071) ( .7071,-.7071) 

-t 
P 2 (0,1) (0,1) (0,1) 

Xl 1 0 2.2556 

-t 
x l (2,2) 4 (1.8,1 • 2) 1.8 (1.62,1.08 ) 1.458 

X2 -1 -0.3 -.23 

- t 
X 2 (2,1) 2 (1.8,0 .9) 1.62 (1.62,.85) 1.3154 

- t 
P 3 (.7071,-.7071) (0,-1) (-.9635,-.2676) 

X3 -.2828 0 1.3732 

-t 
X o (1.8,1.2) 1.8 (1.8,0 .9) 1.62 ( .2969,.4825) 

1 --L. : —, 

.2672 

positive definite quadratic function. He also establishes theoretical 

convergence for strictly convex continuously differentiable functions. 

His method is stated as follows. 

Let e_., j = l,2,...,n, be the normalized, coordinate directions 

and let p , j = l,2,...,n, be n normalized directions which are given. 

Let x. be the starting point and choose the number t = 1. 
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(i) Find X so that the function h defined,by h(X) = f(x + Xp ) n n n 
has a minimum at X = X and let x , = x + X p . 

n n+1 n n n 

For iterations,k = 1 , 2 , . . . , repeat the following seven steps. 

(ii) Find a so that the function h defined by h(X) = f( x
n +-|_ + 

Xe ) has a minimum,at X = a. 

(iii) Replace t by t+1 if 1 < t < n and by 1 if t = n. 

(iv) If a = 0, go to step (ii). If this alternative occurs n 

times in succession,, the point x
N + 1 I S a M I N I M U M . 

If a 0, let x = x , + ae . 
o n+1 t • 

(v) For j = l,2,...,n, find X_. so that the function h_. defined 

by h.(X) = f(x. , + Xp.) has a minimum at.X = X. and define 
3 :-i 3 : 

x . = x . _ + X .p . . 
3 3 - 1 . 3 F 3 

(vi) Let p n + 1 = (x n_- x n + 1 ) / | x n - x n + 1 | . 

(vii) Find X _,, so that the function h ,. defined by h _,,(X) = n+1 n+1 n+l 
f(x + Xp , ) has a minimum at X = X . and define x ,. = n rn+l n+1 n+1 

n n+l^n+1 

(viii) Replace p^ by P j + 1 9 3 = l92,...,n,, and go to step (ii). 

If steps (ii) - (iv) are repeated n times in succession, then 

all n coordinate directions have been searched and no change in the 

point has occurred. Such a situation can only occur if the gradient of 

the,function at that point is zero. For a strictly convex continuously 
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differentiable function the point is the minimum. Steps (v) - (viii) 

are similar to the previous two methods. Observe that after at most n 

iterations, all coordinate directions have been searched. 

Example 8. The positive definite quadratic function introduced in 

Example 3 will again be used to illustrate Zangwill's method in Table 

Table 5. Zangwill's Method 

k = 0 f(x) k = 1 f(x) k = 2 

-t 
p l (1,0) (0,1) 

-t 
P 2 (0,1) (-1.3416,-.4472) 

-t 
X o ( .5, .5) .25 

x l 
0 

- t 
x l 

( .5,.5) .25 

-1.5 -.25 

"t 
X2 (1,2) 5 (.5, .25) .125 

-t 
P3 (-.8944,-,4472) 

X .5590 
-t 
X 3 (1.5) 2.25 (0,0) 

a -.5 0 
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The same starting point x^ = (1»2) will be used. Note that the vectors 

p^ and p , are mutually conjugate for k = 2. 

The following theorem and lemma were proved by Powell [22] in his 

attempt to establish quadratic convergence for his method. Theorem 4 

is revised to require that the vectors q^, i = l,2,...,m, span the 

m-dimensional space. 

Theorem M-. If q ,q , ...,q , m < n, are mutually conjugate directions, 

then the minimum of the quadratic function f(x) in the m-dimensional 

space containing and the directions q^,q^,...,may be found by 

searching along each of the directions once only. 

Proof, The required minimum of the quadratic function is the point 
m 

x + £ a.q., where the parameters a., i = 1,2, ...,m, are chosen by 
i=l 

minimizing the function in the direction q^. From the definition of a 

quadratic function in Equation (2), 

m 
F ( X O + I A . 5 . ) = 

1 = 1 

m m _ m 
- (x + J a.q.)t.(x + y a.q.) + B (x + 7 a.q.) + C 2 o . L, l^i A o , L. l^i o l^i 1=1 1=1 1=1 

1 - + • - - t - m i m _ m 

= i-xXAx + x XA( I a.q.)+±-(£ a.q.)t.(J a.q.) 2 o o o i i 2 . L
n l^i A l^i 1=1 1=1 1=1 
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rt- . ,-t m 

+ b x + b ( 7 a.q.) + c 
i=l 

m m m _ m 
= f(x ) + ±- y y a.a.qTAq. + xXh( I a.q.) + b ( 7 a.q.) o 2 • « I i^i o i^i 1^1 i=l i=l J J i=l i=l 

m 1 2-t.- . -t. = f(x ) + 7 (i- aTqTAq. + a.QT(Ax + b)). (8) o , u ^ 2 l^i l i i o 1=1 

There are no terms with a^a , i = j, since the directions q^ ,q2, . . ., 

are mutually conjugate. Consequently, the effect of searching in the 

direction q. is to find a. to minimize ^i l 

i- a?q!Aq. + a.qT(Ax + b) 2 i^i ^i i^i o 

in that direction. Since this value of a^ is independent of the other 

terms of the sum in (8), then searching in each of the directions 

q̂ ,,q , ...,q^ once only will find the absolute minimum in the space 

determined by X Q , q 1 , q 2 , 0 ^ . 9 

An alternate proof for m = n is given on pages 44-45. 

Lemma 5.1. Let x be a point so that the function h defined by 
0 r o 

h (A) = f(x + Aq) has a minimum at A = 0, and let x n be a point so o o 1 

that the function h^ defined by h^(A) = f(x^ + Aq) has a minimum at 

A = 0 . Then the direction x^ - x^ is conjugate to q. 
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Proof. Now for a quadratic function 

f(x + Xq) = ^ (x + X q ^ A U + Xq) + b t(x + Xq) + c o 2 o o o 

= -̂ x tAx + Xq^x + x X 2q tAq + £ tx + Xbtq + c. 2 o o ^ o 2 ^ ^ o 

- _ g _ _ 
Since x is a minimum in the direction q, -rr-Cf(x + Xq)] = 0 at X = 0. 

O o A O 

Therefore, 

q t(Ax + b) = 0, X = 0. 

Also, 

q t(Ax I + b) = 0, X = 0. 

Hence 

qtAU1 - X Q ) = 0. 1 

The proof of quadratic convergence of Zangwill?s method is given 

in the following theorem. 

Theorem 5. For a positive definite quadratic function (Equation (2)) 

Zangwill's method stops at the minimum in step (iv) of iteration k 

where k < n. 
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Proof. The proof is by induction on k, the number of conjugate direc­

tions after k iterations. 

Assume at the beginning of iteration k, k < n-1, that the direc­

tions p^ ]<+j_» P n k+2'*"*'^n a r e mu'tua-'--'-y conjugate and linearly inde­

pendent. If the procedure does not stop in step (iv) of iteration k, 

a ^ 0 and x . i x and f(x ) < f(x . ) . Since A is positive definite n+1 o o _ n+1 
f(x ) < f(x . ) . From step (v), the point x is such that f(x ) < f(x o n+1 r ' r n n o 
and thus f(x ) < f(x ) < f(x n ) so that in step (vi), x i- x and n o n+1 * n+1 n 

At iteration k-1, from step (viii), the last K DIRECTIONS TO BE 

employed were p , ,,, .. . ,p . Since these directions are assumed to be J n-k+1 ^n 
linearly independent, the point x

n + ^ i n step (vii) of iteration k-1 is 

a minimum in the k-dimensional space containing p , , ,. ..,p using 
n—K+.L n 

Theorem 4. Similarly the point x^ in step (v) of iteration k is such 

a point. Thus from Lemma 5.1, P n + 1 is mutually conjugate to P n_^ + 1» 

...,Pn. By the previous paragraph, Prt+j_ i-s non-zero; from induction, 

the directions p . ,.,...,p are all non-zero. By Theorem 2, they are *n-k+l ^n J 

linearly independent. Thus after iteration k the directions Pn_(k+i)+i 

.. . ,p^ are linearly independent and mutually conjugate. 

The above argument holds for the first iteration which estab­

lishes the induction. 

Thus if the procedure has not stopped by the beginning of itera­

tion n, then n mutually conjugate and linearly independent directions 

have been generated. In step (v) - (vii) of iteration n - 1 the 

quadratic function has been minimized over these n directions, so that 
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the point x + 2 must be a minimum. The procedure will then stop in 

step (iv) of iteration n. | 

Zangwill [29] establishes that this method converges to the 

minimum point of a strictly convex continuously differentiable function 

but the necessary lemmas will not be proved here. < 

Gradient Methods 

When the gradient of a differentiable function f of n variables 

is known, it can be used to reduce the number of function evaluations 

in minimizing the function, but the computation of an n-component gradi­

ent is added. Gradient methods are now considered and the function 

will be assumed to be differentiable with continuous partial deriva­

tives . 

Steepest Descent 

One of the oldest gradient methods was developed by Cauchy [7] 

in 1847 and is usually known as the method of steepest descent. After 

an initial point X q is selected, the .basic algorithm is as follows. 

(i) Compute the gradient vector g at the point x . 
k k 

(ii) Let p k = -gk-

(iii) Find t k such that the function h k defined by h^(t) = 

f(x, + tp, ) has a minimum at t = t, . 
K K K 

(iv) Repeat steps (i) through (iii) for k = 0,1,2,..., with 

x, = x, + t p as the next starting point until the 
K T I K K K 

convergence criterion is satisfied. 
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Note that the vector p k in step (ii) can be normalized. 

Example 9. The same function and starting point as in Examples 3-8 is 

used to illustrate this algorithm for four iterations in Table 6. 

Notice the orthogonality of consecutive g.'s and that t. > 0. 

Table 6. Steepest Descent 

i = 0 i = 1 i = 2 i = 3 

-t 
X . 

1 
(1,2) (1.4,0.8) (0.2,0.4) (0.28,0.16) 

f(x.) 
1 

5 1 0.2 0.04 

-t 
gi (-2,6) (1.2,0.4) (-0.4,1.2) (0.24,0.08) 

-t 
Pi (2,-6) (-1.2,-0.4) (0.4,-1.2) 

t. 
1 

0.2 1 0.2 

For the function f, the sequence f(x Q), f(x ),. . . is a decreasing 

sequence since the function h^ defined by h^Ct) = f ( x
k
 + tp k) has a 

negative derivative at t = 0, h£(0) = S^P^ = ~16̂ I» a n d it is therefore 

possible to find a number t > 0 such that h ^t) < 1^(0), that is, such 

that f(x k + tp k)< f ( * k ) -

The method of steepest descent seems attractive, but the apparent 

advantage of searching in the direction of steepest descent is deceptive. 
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The vector is the direction obtained after the function is minimized 

in the direction p and is perpendicular to p since h'(t') = p^g, = 0: f o o o o o 1 
similarly, p^ will be perpendicular- to p^. With functions of two vari­

ables, p 2 will be parallel to p Q and the method of steepest descent is 

basically the same as minimizing the function in the coordinate direc­

tions since in each case the directions of search are orthogonal at all 

stages, but the latter method is much simpler and easier. With more 

than two variables, the two methods are no longer necessarily equiva­

lent; each p is perpendicular to the, preceding direction. Since n 

successive directions of search do not necessarily form an orthogonal 

set of vectors (which they did for the direct search method), these 

directions do not necessarily span the domain space.. 

The method can be modified by selecting = x^ + at^p^. (a ^ 1 

but a is near 1, for example, a = 0.9), meaning that successive p's are 

not perpendicular, but quadratic convergence is still not guaranteed. 

Gradient Methods Using Conjugate Directions 

Let X q be an.initial approximation to the point at which the 

minimum of a function occurs and let p̂ ,, i = l,2,...,n, be n linearly 

independent directions. For i = 1,2,..., if x£ +j_ ^ s ^ e position of 

the minimum of the function f(x) with respect to variations along the 

line through x^ in some specified direction Pj^s then 

P i + 1 = 0, (9) 

where 
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*i+i = *i + " 1 + 1 * 1 + 1 ( 1 0 ) 

for some scalar a. n since, for the function h defined by h(t) = l+l 
f(x. + tp. ..), h'(a. .) = g*,,p.,, = 0. Consider the positive definite I ri+l l+l toi+lri+l r 

quadratic function defined by 

f(x) = j x*A x + b tx + c, (2) 

for which the gradient vector is 

g(x) = A x + b. (11) 

An alternate proof of Theorem 4 will now be given for n = m. 

Proof. Repeated use of Equation (10) gives 

n 
x = x. + ) a.p. , for 1 < n < n n i . h n i ri J i=]+l 

It then follows from Equation (11) that 

n 
g = g • + J a.Ap., 5 n &i . H . I *i 5 

i=3+l 

and therefore, from (9), that 
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Since the vectors Pj_>P2'* * * »Pn
 a r e mutually conjugate by assumption, 

i^Pj = °> i < : < n, 

and thus g n = 0 since Pj_»P2» • • • »Pn ^ o v m a basis by Theorem 2. The last 

equation implies that the minimum of the quadratic function has been 

found in E . 1 n 
General Partan 

A method developed by Shah, et al. [24] is an alteration of the 

method of steepest descent and is called the method of parallel tangents 

or "partan." 

Definition 12. In E^, the set of points satisfying the linear equation 

a l X l + a 2 X 2 + + a n X
n
 = C ' ( 1 2 ) 

where a^,a ,. .. ,an,c are constants, is called a hyperplane. (It is an 

(n-l)-dimensional figure in n dimensions.) A hyperplane is tangent to 

a contour of the function f at x if a. = 8f/8x^ and the point x satis­

fies Equation (12). 

Definition 13. Three distinct points x, y, z in E^ are said to be 

eollinear if x = ay + bz for constants a, b such that a + b = 1. 

If IL denotes the hyperplane tangent to the contour of the 

function f at x^, then the algorithm for general partan can be stated 

as follows. 
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(i) Select an initial point X q and any direction such that 

q 2 does not lie in the tangent hyperplane II at X q , that 

is, so that q ^ Q ^ 0. 

(ii) Calculate A^ so that the function h^ defined by the equation 

h n(A) = f(x + Aq.) has a minimum at A = A, and let 1 o 1 1 
p 2 = A xq 2 and x 2 = X q + p^. 

For k = 1,2,3,..., repeat the next four steps until the convergence 

criterion is satisfied. 

(iii) Find a vector q_, such that 
zk+l 

* g n. = 0, j = 0,1,2,...,k-l (13) q2k+l g2j 

that is, qQk+i ^ s parallel to the planes II ,n , . . . > n

2 k-2' 

To find ^ K + I THE dependent system of linear equations in 

(13) can be solved. 

(iv) Calculate A.. so that the function h_. defined by the. 
2k+l 2k J 

equation h 2 k(^) = f^ x2k + ^2k+l^ ^ a s a m ^ n : L m u m a t ^ = ^2k+l 

and let p 2 k + 1 = X 2 k + 1 q 2 k + 1 and = ^ + p ^ . 

(v) Define q 2 ] < + 2 = - K ^ . 

(vi) Calculate X_. so that the function h_. ,, defined by the 2k+2 2k+l J 

equation n

2 k + i ^ ^ = ^ X 2 k + 1 + *^2k+2^ ^ a s a T n^ n^ T n u i n a"t 

X = X 2 k + 2 and let p 2 ] < + 2 = X 2 k + 2 q 2 k + 2 and = x 2 k + 1 + 

p2k+2' 
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The algorithm of general partan (an alternative version called 

steepest descent partan will be stated later) is clarified by Figure 

1 and the discussion that follows. 

The solid line indicates the path of general partan. 
For steepest descent partan, the vectors p^p ^ P t -,p 7, 

are steepest descent directions. 

Figure 1. Schematic Diagram of Partan 

From the initial point X q , proceed along a polygonal line deter­

mined by the points x ,x^,x„,x, such that each x, , k = 2,3,..., is 
o 2 3 4 k 

the minimum of the function f on the line through x, . in the direction 
k-1 

q . (At even numbered points directions of decreasing f must be chosen.) 
K 

The direction p = x 9 - x is otherwise arbitrary; p is any direction 

parallel to the plane II ; thereafter, for k = l,2,...,x_, _ is collinear r t- 0> 2k+2 

with *2k-2 a n d X2k+1 ^ b y S t e p ^ a n d ^ v i ^ ' a n d f o r k ~ 2 , 3 ' ' ' ' , p2k+l 
is parallel to II ,11 ,11̂ , . . . > n

2 k_ 2 • 

The fact that general partan reaches the minimum value of a t 

positive definite quadratic function of n variables by the point 
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will be proved after some initial observations of various properties>of 

partan in relation to a quadratic function. 

Consider a positive definite quadratic function. There is a 

vector h such that Ah = b; since A is nonsingular, h = A "4>. Then 

f(x) = 77 x^x + ̂ b + c 

1 -t.- -t.r 1 r t - 1 - t -
— x Ax + x Ah + — h Ah - y h Ah + c 

= | (x+h)tA(x+h) + c - j h^h 

and hence, with a transformation that replaces x+h with x, the quadratic 

function can be written as 

f(x) = j x ^ x + (c - j h ^ h ) , (14) 

where A is symmetric and positive definite and this function has a 

minimum value at the origin. The gradient vector is g^ = Ax^. Define 

c. . = c. . = x! A x. = x! g. = x! g.. (15) 

The requirement that the vector from x^ to x^ be parallel to IIq (as in 

step (iii)) can be expressed as 
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In general, Equation (13) can be stated as 

C2j,2k = C2j,2k +1> J = 0,1,2,....k-l, k = 1.2....,n-1 (16) 

The collinearity of ., x.. and x^. . in step (vi) gives J 23 2j-l 2 j - 4 

x 2. = (1+X ) - X 2 J H 2 . . 4 = a 5 + (17) 

where a _. + $_. = 1, j = 2,3,...,n. Thus for any k, 

C2j,k = aj C2j-4,k + Pj C2j-l,k' j = 2,3,....n. (18) 

Since x^ is the point where the minimum value of the function occurs 

on the line through x in the direction q_, x -x. is parallel to the 
o 2 o 2 

hyperplane II2 and thus normal to g 2, whence (x Q-x 2) tg 2
 = C

Q 2 " C 2 2 = ° ' 

and in general, 

c 0 = c 0 , (19) 0,2 2,2 

c. . . = c. . , 3 = 3,4,5,. . . ,2n, (20) 

since f is minimized in each of the directions q.., j = 2,3,4,...,2n. 

Furthermore, since x ^ , x2_. ^, x
2 j - l +

 a r e collinear, then x2_. - x
2j-i = 

^2j^2j "*"S P a r a l l e l t o x2j-l ~ *2j-4 = q 2 j ' b o t h o f w n i c h a r e orthogonal 
to g„ . since h„. . has a minimum at X = X 0., and the equations 623 23-I 23 
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°2j-4,2j = °2j-l,2j = °2j,2j> i=2,3,...,n, (21) 

holds. 

Lemma 6.1. For k = 1,2,. .,,n, 

C2k,o °2k,2 " °2k,4 " °2k,2k' ( 2 2 ) 

Proof. By (19) the result is true for k = 1. Now assume (22) holds 

and use mathematical induction to prove 

C2k+2,o °2k+2,2 " °2k+2,4 ~ °2k+2,2k+2' ( 2 3 ) 

Now 

C2k+2,2k+2 C2k+2,2k C2k+2,2k+l C2k+2,2k' b y ( 2 0 ) ' 

ak+lC2k-2,2k+.l + 3k+l°2k+l,2k+l ak+l°2k-2,2k 3k+l°2k+l,2k ' 
by (18), 

ak+l(°2k-2,2k+l °2k-2,2k) + ek+l ( c2k+l,2k+l " °2k+l,2k) 

= 0, by (16) and by (20). (24) 

From (21), 



51 

c = c (25) 2k-2,2k+2 2k+2,2k+2' K } 

Now (24) and (25) establish the equality of the last three c's in 

(23). Equality of earlier terms can be established by taking j < k-1 

and writing, by (18), 

°2k+2,2k-2 °2k+2,2j ak+l°2k-2,2k-2 + 3k+l°2k+l,2k-2 

ak+l°2k-2,2j ek+lC2k+l,.2j 

ak+l ( C2k-2,2k-2 " C2k-2,2j } + 3k+l ( C2k+l,2k-2 " C2k+l,2j )* ( 2 6 ) 

The coefficient of CL^-^ is zero by the induction hypothesis (22). If 

Equation (16) is applied to both terms of the coefficient of 3,.^ in 

(26) above (j £ k-1 is used in the second member) and Equation (22) is 

used again, then 

°2k+l,2k-2 C2k+l,2j C2k,2k-2 °2k,2j " ° 

so that (26) is zero and (23) is established. 1 

An immediate consequence of the above lemma is 

Lemma 6.2. The vectors w. = x -x , w. - x -x0,...,w = x_ -x_ are 
— : 1 2 o 2 4 2 n 2 n 2 n - 2 

mutually conjugate. 
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Theorem 6. When general partan is used, the minimum value of a posi­

tive definite quadratic function is reached prior to the calculation of 

X2n+1* 

Proof. The proof follows immediately upon application of Lemma 6.2 

and Theorem 4. Alternatively, note that if the origin is not reached 

prior to the calculation of x. ,., then the construction leads to non-
2n+l 

null vectors w,,w„,...,w for which by Lemma 6.1, 1 2 n J 

52n"j = C2n,2j " C2n,2j-2 = °> j = 1,2,...,n. 

The vectors w,,wrt,...,w are nonzero since A is positive definite and 1 2 n r 

w^Aw. = x^.Ax.. + x^. 0Ax 0. > 0, j = 1,2,...,n, unless x_. = 0 contra-3 3 23 2: 23-2 2j J » , , ,, 2 : 

dieting the fact that the minimum was not found;prior to the calculation 

of X2 n +3_* But i n n dimensions, only the null vector can be orthogonal 

to n .mutually conjugate directions. Thus g 2 n
 = 0 a n & x

2 h i-s the 

minimum. | 

All points on the extended line through the points,Xq and x^ 

correspond to vectors a x + a.x^ where a + a_ = 1. Similarly, a r o o 2 2 o 2 J 9 

k-dimensional set E. of vectors is the collection of vectors of the 
k 

form £ a ^ x ^ where J a^ = 1, and the,summations may be over 

i = 0,2,4,...,2k, or equivalently, in view of the collinarity relation 

(17), over i = 0,2,3,4,5,... ,2k. 

Corollary, x occurs at the minimum of f in the set of vectors E^; 

and if for i = 0,2,3,4, ... ,2k, £ bĵ  = 0, then g^Cj; b ^ J = 0. 
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Proof. These results follow from Theorem 6 by restricting attention to 

the set of vectors E^. Alternately, note that a necessary and suffi­

cient condition for a quadratic function to have a minimum value is 

that the gradient G ^ = grad f(x ^) b e normal to every vector parallel 

to the space E^. But such vectors will always be the difference of two 

vectors of the form J a.x. where J a. = 1 , and hence have the form 
L l l L l 

£ b£xj_» where \ b^ = 0. Any such vector may. be represented using even-

numbered indices only, and by Lemma 6.1, 

g* {J b.x. ) = (Y b. )c0, = 0 . 8 &2k L x i L I 2k ,o 

Steepest Descent Partan 

General partan allows arbitrary choices, within restrictions, 

of the directions ° t 0 » ^ ' ^ 4 ' * ' ''^2n 4' ^ n a l ' t e r n a ' t i v e method, called , 

steepest descent partan, uses the method of steepest descent to deter­

mine even-numbered directions of search. That it has finite convergence 

for quadratic functions is proved by establishing a relationship between 

the two methods. 

The previous algorithm for general partan is changed by substi­

tuting the following alternatives for steps (i) and (iii): 

(ia) Select an initial point x and let q 0 = -g . 
o 2 o 

(iiia) Let q 2 k + 1 = - G ^ k = 1,2,,... . 

Example 10. The steps in this alternate algorithm are given in Table 

7, using the same positive definite function 
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f(x ,x 2) = x - 2x x + 2x 2 

considered in Examples 3-9. 

Table 7. Steepest Descent Partan 

i = CM i = 3 i=4 

-t 
X . 

1 
(1,2) (1.4,0 .8) (0.2,0.4) (0,0) 

f(x.) 5 1 0.2 0 

-t 
Si (-2,6) (1.2,0 .4) 

-t 
qitl (2,-6) (-1.2,--0.4) (-0.8,-1.6) 

A. n 

l+l 
0.2 1 0.25 

Theorem 7. If f is a positive definite quadratic function of n vari­

ables (Equation (14)), then the minimum value of the function is reached 

prior to, the calculation of x when steepest descent partan is used. 

Proof. By construction. 

x - x = A g , (27) o 2 o°o 

x 2 j - x 2 j + 1 = V j i 2 j S J = l,2,...,n-l, (28) 

where A. ̂  0 when x. . is not the minimum. With j = 1, Equations (27) 
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and (28) give 

Co,2 " Co,3 = «o (*2 - V = r ^ o " ^ 2 ) t g 2 ' 
o 

which is zero by step (ii) and thus the two methods are consistent up 

to x^, that is, w ^ w 2 = ^ ^ o r both methods. 

Now assume they are consistent up to x , that is, that w.,w , 
.; 2 K i 2 ., 

...,w^ are mutually conjugate. Then for j = 0,1,...,k-1, by (28), 

c2j,2k c2j,2k+l g2j^ x2k x2k+l ; 2j *2j+l ; S2k' 

which is zero by the Corollary (to Theorem 6) which can be applied 

because of the , induction hypothesis. Hence the equations required for 

reaching X2k +2 a r e s a - t l S f i e d a n d the .induction is established. 1 

For a geometric proof of Theorems 6 and 7, refer to [2M-] and 

[28] in the Bibliography. Reference [24-] also lists several alterna­

tives. 

If the procedure in either general partan or steepest descent 

partan has not been terminated before the calculation of x„ ., , then 
2n+l 

x^ n may be taken as a new initial X q , and the procedure started again 

(called iterated partan). Alternatively with steepest descent partan, 

the established pattern of alternating steepest descent and accelera­

tion steps is continued (called continued partan). This is not prac­

tical for general partan due to storage requirements. 
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Conjugate Gradient Method 

The method of conjugate gradients developed by Hestenes and 

Stiefel [17] is an n-step procedure for solving a set, of simultaneous 

linear equations having a symmetric positive definite matrix of coef­

ficients. The equivalence of that problem and the minimization of a 

quadratic function is clear from Equations (2) and (11) since the, 

gradient vanishes if, and only if, Ax = b (that is, x is the solution 
n n 

to the system of equations). 

This equivalence suggests the following minimization algorithm 

as stated by Fletcher and Reeves [16]. 

(i) Choose an initial point x and let g = g(x ), p = -g 
o o o o o 

(ii) Find a^ so that the function h^ defined by the equation 

h.(a) = f(x. + ap.) has a minimum at a = a., and set l l r i l 

x. . = x. + a.p., (29) l+l , I 1 * 1 ' 

and = i(x.+J_) 

(iii) Set 8. = g? + 1/g?. 

(iv) Set 

= -h+i+ hh- ( 3 0 ) 

(v) Repeat steps (ii) through (iv) until the convergence cri­

terion is satisfied. 
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Example 11. The quadratic convergence of this method for the same 

positive definite function considered in Examples 3-10 'is'illustrated 

in Table 8. 

Table 8. Conjugate Gradients 

i=o i=l i = 2 

-t 
X . 

1 
(1,2) (1.4,0.8) (0,0) 

f(x.) 
• 1 

5 1 0 

-t 
gi (-2,6) (1.2,0.4) 

-t 
p i (2,-6) (-1.12,-0.64) 

a. 
l 

0.2 1.25 

Theorem 8. The method of conjugate gradients,has quadratic convergence. 

Proof. By Theorem 4, this theorem will be proved if the"directions of 

search p^, i = 0,1,...,n-1, are shown to be mutually conjugate for a 

positive definite quadratic function as defined in Equation (2). Since 

by (29), x. = x. + a.p., 
J l+l l i i 

g i + 1 = gi + a J ^ , i = 0,1,2,...,n-1. (31) 

Now 
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j_ _ t; _ -t -f(x + ap) = y (x + ap) A(x + ap) + b (x + ap) + c 

1 -t - -t - 1 2-t - -t- -t-- x A x + apAx + - a p A p + b x + a p b t c 

and 

^ h ( a ) = ^ f ( x + ap) -t A- -t A- - t r ap Ap + p Ax + p b 

Since h f (a./) = 0, 

ap Ap + p (Ax + b) 

-t-
= ap Ap + p g. 

a. = I 

-t-
Pj gi 
p*Ap 

(32) 

The vector p. ^ 0 unless either the minimum has been reached or the 

function was not minimized each time in step (ii). If Equation (30) is 

used repeatedly, then 

Pk = _ i k " *k 
Sk-1 gk-2 
-2 ' -2 
k-l Sk-1 

< ? § > -2 
go 

-2 
•gk 

k g. 

3=0 g. 
(33) 

That the vectors g 9g^ 9 • .., and PQJPJJ•••J satisfy 
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g[g. = 0 , i * j, (34) 

p*Ap" = 0, i i j, (35) 

-t- -t- -t 
PiPj = 0> i < j, P£gj = -g 1 9 i > j» (36) 

g i A p i = Pi APi' gi APj = ° ' 1 ^ ^ i M + 1, (37) 

will be proved by mathematical induction. Now 

-t-P g 
$ 1 = g o g o + ao go APo = g o g o - ^ 4 So AP 0' by (32), 

P/P 

= Z0Z0~ since p Q = -g Q in step (i), 

= 0. 

Assume Equations (34), (35), (36), (37) hold for the vectors g ,g 

g, and p ,p , .. . ,p, . To show that p, can be. adjoined to this set it 
K O J. K — i K 
is sufficient to show that 

i^pk = i < k, (38) 

p^Ap k = 0 , i < k, (39) 

gJJAp. = "PkAp., i < k , i / k-1. (40) 
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Equation (38) follows from (33) and (34). To prove (39), Equation 

(33) and 

W k = «iPk + aiPiA ?k 

are used. By (38) this becomes -g^ = 

> 0 by (32), Equation (39) holds, 

and (39) are used to obtain 

-g. + a.p.Ap. , i < k. Since &k i*i *K 
In order to establish (40), (30) 

P^Ap. = -i^Ap. + B ^ . j A P i = i * k-l. 

It follows that (40) holds and hence that (34), (35), (36), (37) hold 

for the vectors g^g^,...^ and P0»P-j_» • • • »PT,« It remains to show that 

g. can be adjoined to this set. This will be done by showing that 
KTJ. 

gi gk+l = 0 ' 1 ~ k ' 

PiAp k + 1 = 0, i < k, (42) 

p j i k + 1 = 0 , i < k. (43) 

By (31) 
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If i < k, the terms on the right are zero by (34) and (37) and thus 

(41) holds. If i = k, the right member is zero by (37), (32), and 

(38). If (31) is used again, then for i < k, 

Hence (42) holds. The Equation (43) follows from (41) and (33). 

In the process of establishing (34) - (37), conjugate directions 

have been obtained from Equation (35). Hence by Theorem 4, the method 

of conjugate gradients has quadratic convergence. I 

Davidon's Method 

An efficient gradient method, originally developed by Davidon 

[9] and clarified by Fletcher and Powell [15] in 1963, uses a sequence 

of positive definite symmetric matrices {H^} which converges to the 

inverse of the Hessian matrix A of the function evaluated at the mini­

mum. If the vector p_̂  is defined by p_̂  = ~H^g£» i = 1»2,..., then s_̂ , 

the step taken to the minimum function value of a positive definite 

quadratic function in the direction p^ is an eigenvector of the matrix 

H. A which insures that H. tends to A ^ evaluated at the minimum as the l+l l 
procedure converges. These ideas will be expanded on and proved later. 

Since it is convenient to start with the unit matrix for H , 
o 

meaning that the first iteration coincides with the method of steepest 

descent, the algorithm can be stated in the following form, where the 

current point is x. with gradient g. and the matrix is H.. 
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(i) Set 

p. = -H.g.. (44) *i i &i 

(ii) Obtain a^ such that the function h defined by the equation 

h(a) = f(x^ + ap^) has a minimum at a = a^. 

(iii) Set x ^ + 1
 = x£ + where 

s. = a.p.. (45) l r I 

(iv) Evaluate f ( x ^ + 1 ) a n d a n c^ n 0 - t e that 

since h'(a^) = 0 

(v) Set 

*i = gi+l " g i (47) 

(vi) Set 

H. = H. + B. + C. , 
l+l i I I 

(48) 

where 
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1 
s. s. 
s .y. 

and C. = -
1 

H.y.y^H. 

y*H.y. 

(Neither denominator is zero since PL is a positive 

definite matrix for all i as will be proved later.) 

The theoretical justification for the manner in which the 

matrices are modified and the proof of quadratic convergence will be 

given later. 

Example 12. The algorithm for the method is illustrated in Table 9 

for the same positive definite quadratic function, 

2 2 f(x l 9x 2) > x1 - 2x^2 + 2x 2, 

considered in Examples 3-11. 

Theorem 9. In step (ii) of the algorithm there is an a. > 0. 

Proof. For the function h(c) = f(x^ + cp^), h'(0) = g*P.j_« If 

h'(0) < 0, then there is a member c > 0 such that h(c) < h(0) and 

h'(c) = 0. Let this number be a^. -Thus f(x^ + a^p^) < f(x^), for 

a. > 0, will hold for p. if -p?g. = g^H.g. is positive which is true 

for all possible g^ i 0 if is a positive .definite matrix. In view 

of the fact that the initial H has been chosen to be positive definite 
o * 

(and symmetric), the proof will use an inductive argument. 
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Table 9 . Davidon's Method 

1 = 0 i = l i=2 

-t x. 
1 

f(x.) 
1 

( 1 , 2 ) 

-t 

H. 
1 

-t 

a. 
1 

-t s. 
1 

( 1 . 4 , 0 . 8 ) ( 0 , 0 ) 

( - 2 , 6 ) 

1 0 
0 1 

( 2 , - 6 ) 

0 . 2 

( 0 . 4 , - 1 . 2 ) 

( 1 . 2 , 0 . 4 ) 

.77384 .37077] 
,37077 .42615J 

( 1 . 0 7 6 7 2 , . 6 1 5 3 8 ) 

- 1 . 3 

( - 1 . 4 , 0 . 8 ) 

( 0 , 0 ) 

2 I 

1 1 

Assume that is positive definite and consequently that a^ is 

positive to show that x^H^^x > 0 for any x ^ 0 . Since is assumed 

positive definite and symmetric (see step (vi)), then there is a posi­

tive definite matrix U. such that (U. ) 2 = H. or U. = ( H . ) 1 / 2 (see [ 1 0 ] , 
1 1 1 1 1 9 

p. 9 1 ) . Define u = (H i) 1 / 2x and v = ( f O ^ 2 ^ . By the definition of 

H^ + 1 in step (vi) 
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2 

by the Schwarz inequality. But 

si yi = Si gi+1 " s i g i ' y p ( v ) ' 

= a. g"pH.g., by definition of s. , l I itoi l 

> 0, by assumption 

Hence x^H. n x > 0 for all x i- 0. Therefore, H. n is positive definite l+l 9 l+l y 

and the function is decreased at each iteration. 9 

For the proof of quadratic convergence, let f be a positive 

definite quadratic function as given in Equation (2) with gradient 

given by Equation (11). At the minimum x , 0 = AX q + b. Subtracting 

Equation (11) from this gives the equation Ax - Ax = -g, which gives 
; O 

the difference between a point x and the minimum X q as 

x - x = -A 1g. (49) o 

The following lemma will be used later. 

-t- -t- ,-t-.2 (x^i. ) 2 (x^s.) u u v v - ( u v ) 1 1 
i — + > 

-t- -t- -t -v v s.y. s. y. ir I i i 
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Lemma 10.1. The directions s ,s ,s,,k < n (defined in step (iii)) 
— — ^ — - O J. K 

are linearly independent eigenvectors of with eigenvalues unity. 

Proof. By definition, for i = 0,1,...,n-1, 

*i = « i+ l " g i = A * i+1 " A V b Y ( U ) ' 

= As.. (50) l 

If (50) is premultiplied by then 

H. As. = H . y . 
l+l l l+l^i 

= H.y. + s. - H.y., by (18), i J i l i J i 

(51) 

Consider the equations 

s^As. = 0, 0 < i < j < k, (52) 

HkAs-. = 0 < i < k, (53) 

and use mathematical induction on k. For k = 1, 

H.As = s , 1 o o by (51), 
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and for k = 2 , 

S o A s i = a i S o A p i ' b y ( l + 5 ) ' 

= -a± s*AH l g l, by ( 4 4 ) , 

-a-L SQS-L* by ( 5 1 ) , 

= 0, by ( 4 6 ) . 

Now assume that ( 5 2 ) and ( 5 3 ) hold for k. From ( 1 1 ) , 

gk = B + A X K 

E t A(5 + i + + i + ••• + 5 k _ 1 ) . 

for 0 < i < k - 1 , 

= S i + 1 + A ( i i + 1 + S i + 2 + ' • " + V l 1 , b y Q 1 ) 

Multiply by s? and use assumption ( 5 2 ) to get 

-t- -t-
Si gk = S i g i + 1 

= 0 ' ( 5 4 ) 

for 0 < i < k, by ( 4 6 ) 
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From assumption (53), 

and by (44), (45) and the fact that a^ > 0 by the previous theorem, 

s?As. = 0, 0 < i < k . (55) 

concluding the induction for Equation (52). (Notice that Equation (55) 

states that the directions Sq,s^,...,s^,k<n, are mutually conjugate.) 

Now 

Yk H k A s i = Y k S i ' b y ( 5 3 ) ' 

= s*As i 9 by (5.0), 

= 0 (56) 

From (48), 

0 < i < k, by (55). 

H, ±.As. = (H. + B. + C. )As. k+1 l k k k I 

- H, As. + k i -t - -t u -
sk yk y k H k y k 
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But since 

and 

then 

sJ;As. = 0, 0 < i < k , by (55), 
K 1 

y k H k A S i = 0, 0 < i < k , by (56), 

H. nAs. = ft As. K+1 i k i 

= s., (57) 

0 < i < k , By assumption (53), 

concluding the induction for Equation (53). 

The vectors s ,s ,...,s ,k < n, are mutually conjugate by Equa-
O J. K 

tion (55), nonzero unless g^ = 0 since H^ is positive definite and 

a^ > 0, and linearly independent by Theorem 2, while Equation (53) 

implies they are eigenvectors of the matrix H A with eigenvalue 
K+-L unity. 1 

Theorem 10. Davidon's method has quadratic convergence. 

Proof. The proof is obvious from Lemma 10.1 and Theorem 4. 1 

By Lemma 10.1, H^A has eigenvalues unity with linearly independent 

eigenvectors s ,s.,...,s n. This implies that H A is the identity to o 1 n-1 ^ n J 

matrix, that is, H A = I, and hence H = A When A has been found, 
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then the minimum of a quadratic can be found from any starting point x 

by the simple use of Equation (49). 

Note on the Construction of B. in Equation (48). B. is the 1 l 

factor which makes H tend to A ^ in the sense that for a quadratic 

-1 n _ 1 

function A = I B.. To establish this fact, define the matrix S to • « 1 

i=0 be S = [s sn ... s where s. are column vectors. Because of Equa-1 n-1 l 
tion (52), S^AS = D where D is a diagonal matrix with diagonal elements 

d.. = sT .As. n, i = l,2,...,n. D ^ exists since A was assumed positive ii l-l l-l r 

definite and S ^ exists since the vectors' s ,sn,...,s n are linearly 
o 1 n-1 J 

independent. Hence 

A = (S t)~ 1DS~ 1 = (SD" 1S t) 1 

and therefore 

A 1 = SD 1 S t 

Since D is a diagonal matrix, 

n-1 s.s. 

i=l ii i=0 s.As. 
l l 

Therefore from Equation (50) and the definition of B^, 
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Note on the Construction of C in Equation (48). The reason 

for the way C is chosen can be deduced from the fact that Equation 

(51) must be valid. From (51) and (48), 

H. nAs. = s. = H.As. + B.As. + CAs.. l+l l l i i i i i i 

Since 

B.As. = B.g. = s. , 
l l itoi l 

the equation 

C A s . = C.y. = -H.As. = -H.y., by (58) and (50), l i i ^ i i i r I J 

must be satisfied. From this equation, the simplest form for C is 

given by the equation 

H.y.z1 

C. = - 1 1 

l -t-z y 
l 

for some vector z, but since C is to be a symmetric matrix, this gives 



72 

Criterion for Convergence 

Quadratic convergence is assured when some methods are used on 

positive definite quadratic functions, but if the function is not 

quadratic or if the method does not have quadratic convergence, then 

the number of iterations necessary to attain a minimum value of the 

function is not necessarily finite and therefore some convergence 

criterion must be established to determine when the iterating should be 

stopped. Ideally this criterion would be to stop the iterating when 

the absolute value of the differences between the predicted component 

value of the variables x^ and the actual component values at a true 

minimum were less than given small amounts e^, i = l,2,...,n. In any 

event, when a criterion is chosen, a compromise has to be made between 

stopping the iterative procedure too soon and calculating f(x) an 

unnecessarily large number of times. 

If the gradient g of the function is available, then having the 

value of g^g at the current point be less than a specified number is 

one suggestion for a criterion; this uses the fact that the partial 

derivatives of a function are zero at a stationary point. Alterna­

tively, if the .change of the function value per iteration or the change 

of each of the variables per iteration is less than some predetermined 

number, then the iterating could be stopped. The latter is easy to 

use and usually has the desired result. After a criterion is chosen, 

it is usually possible.to find a function for which the iterating does 

not stop at the minimum when this criterion is used. Powell [22] gives 

a procedure for his method which he claims has never failed to yield 

the required accuracy. Essentially the procedure uses his method to 
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minimize the function; another point is chosen near this resulting 

approximation to the minimum and then Powell's method is used again on 

the function with this starting value. From the two points resulting 

from the two uses of Powell's method, a choice is made for the point 

where the minimum occurs. 
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CHAPTER IV 

CONSTRAINTS 

Previously, the problem of minimizing a function without con­

straints on the independent variables was discussed. Now methods for 

minimizing f(x) subject to the constraints 

g i(x) > 0 i = 1,. . . ,m (1) 

will be considered. Since the constraint r(x) < 0 can be written as 

g(x) = -r(x) > 0 and r(x) = 0 as g^x) = r(x) > 0 and g 2(x) = r(x) > 0, 

all possibilities are covered. 

If the function f and its constraints are linear, this problem 

can be solved by linear programming techniques or similar methods in a 

finite number of steps. If f is nonlinear, then methods of minimization 

which use tangent plane approximations to the constraints (if they are 

also non-linear) have been developed. The approach of converting the 

constrained problem into one which is not constrained will be considered 

here. 

Transformat ions 

By transformations of independent variables from an x-coordinate 

system to a y-coordinate system, it is possible to incorporate some 

types of constraints into the function, possibly giving an unconstrained 

problem. Thus for the function f subject to constraints (1) (these 
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define a "region" R in the x-space, that is, the subsets of with 

coordinate variables indicated by x^), it may be possible to find a 

transformation T (not necessarily linear) which maps the y-space, that 

is, E , onto R, T: E ->R; and then the y-space is searched for a minimum n n 
of f(T(y)) which accomplishes" the same result as searching the region R 

in the x-space. Some if not all the constraints may be dealt with in 

this way. The decision as to which transformation T, if any, to use 

depends on various factors, such as the kind of constraints in Equation 

(1), the minimization method used, whether the method requires a gradi­

ent, the ease of finding the inverse transformation, and the behavior 

of the function on the boundary of the region, that is, where equality 

holds in (1). 

As an example of the type of constraints which can be elimi­

nated, suppose that three independent variables x ,x ,x are to be 
J. A o 

constrained by 0 < x n < x^ < x,_. Then by the transformation ~ 1 ~ 2 ~ 3 J 

x i = yi 

x
2
 = y i + y 2 

2 ^ 2 ^ 2 
x 3 = y + y 2 + y , 

it is seen that a minimization procedure with no provision for incor­

porating constraints can now be used to minimize the function in the 

y-space. It is obvious that this transformation is nonlinear. 
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Other suggested transformations are 

2 

(ii) \ x i 

(iii) x. 

(iv) x i 

The transformations in (i) and (iii) constrain the variable x^ to non-

negative values while transformation (ii) restricts it to strictly-

positive values. The use of (iii) destroys the differentiability for 

some values of y. of the function on which the transformation is used. 

Transformation (iv) restricts x^ to the range 0 < x^ < 1. If each 

independent variable is subject to constant lower and upper constraints, 

for example, a_̂  < x^ < b^, i = l,2,...,n, then the permissible region 

consists of a rectilinear "box" in n dimensions. If the transformation 
2 x. = a. + (b.-a.) sin y. is used, then an unconstrained optimum in l I I I J i * 

y-space can be sought. The periodicity of the solutions in y-space 

should not cause any difficulty provided the method of minimization in 

use does not take steps so large that it jumps from peak to peak. 

Created Response Surface Technique 

The created response surface technique developed by Carroll [6] 

will now be described. If the constraints are never allowed to be 
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violated during the minimization process, then the resulting minimum 

value of the function is sure to be a feasible one, that is, one where 

no constraints are violated, assuming that an initial feasible starting 

point is known. This requirement can be satisfied by devising a 

penalty which is added to the value of the function to give a new 

function h called a created response function and which becomes 

increasingly severe as constraint boundaries are approached. 

If f is the function to be minimized and if the m constraints 

are expressed in the form 

g i(x) > 0, i = 1,2,...,m, (1) 

the created response function h can be written as 

m w. 
*h(x,r k) = f(x) + r k I — i — , 

• i=l g i(x) 

where w. > 0, i=l,2,...,m, and r > 0, k = 1,2,... . The summa-
1 K 

tion represents-the "penalty" in the sense that as any constraint g^(x) 

approaches its limiting value (zero), h approaches positive infinity 

(since (1) holds). In this way a progressively severe penalty is 

imposed as the limiting value of a constraint is approached. The w^'s 

(a footnote in [12] indicates these might just as well be chosen equal 

to one as will be done here) weigh the individual constraints among 

themselves while r k weighs the sum of these penalties in relation to 

the function f. 
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The iterative procedure on r^ as given in [13] is described by 

the following algorithm. A detailed analysis of each step is given in 

[13], but the main ideas will be expanded in this paper after the 

algorithm is stated. Let a number c > 1 be given. 

(i) Select a point X q such that g.j_(x
0) > °> i = 1,2,...,m 

(ii) Select an initial value of r^, r^ > 0 

For k = 1,2,..., repeat the following four steps. 

(iii) Determine a minimum x(r ) of h(x,r ) for the current value 
K K 

of r^ using x(r^_^) as a starting point and check the con­

vergence criterion (to be discussed on p. 82). 

(iv) If k > 1, estimate the minimum x of f subject to the con­

straints by the approximation 

x = 1/2 ^ 
c - 1 

(v) If the convergence criterion is satisfied, then terminate 

computations. If not, select r = r./c. 
K+J_ K 

(vi) If k > 1, estimate the minimum x( r] < : + 1) °^ h ^ x , r k t l ^ u s ^ n g 

the approximation 

=x(r k) + \ Mrk) - x t r ^ ) ] (59) 
c 
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and check the convergence criterion. 

Example 13. To illustrate the created response surface technique, let 

the function f be defined by 

2 2 f(x i sx 2) = x 1 + 2 x 2 

and subject to x^ > 0, x 2 > 0; it has a minimum value of 0 at the 

point (0,0). Since the constraints can be written as 

g 1(x) = x ± > 0 

g 2(x) = x 2 > 0 

then let 

h(x,r) = x 2 + 2 x 2 + r 

Let x^ = (2,3) and let c = 10; using Equation (60), is calculated 

as 26.7216. Define the error function 

E(x,r) = 

and stop when E(x,r) < 1. The calculations are given in Table 10. 
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Table 10. Created Response Surface Technique 

i r. 
l 1 , 1 X2,i f(x.) E(x.,r.) 

0 2 3 22 

1 x(r 1) 26.7216 2.3729 1.8834 12.7255 25.4487 

2 x(r 2) 2.67216 1.1014 .8741 2.7412 5.4831 

X .5133 .4073 .5924 11.7652 

X 
est 

1.0887 .8640 2.6796 5.5471 

3 x(r 3) .267216 .5112 .4057 .5906 1.1813 

X .2383 .1891 . 1 2 8 3 2 . 5 3 4 2 

X 
est 

.5053 .4011 .5771 1.1951 

4 x O ^ ) 
5> 

.0267216 .2373 .1883 .1272 .2545 

X .1106 .0878 .0277 .5459 

For the method to compute the initial interior point that satis­

fies the inequalities g.(x) > 0, i = l,2,...,m, let x be a given 
1 K 

point and define the sets S^ = {s: g g ( x
k ) 5 0} and T^ = {t: g t(x k)> 0}. 

A sequence of points is generated that increases the value of g^(x) for 

i e S until i e T, without violating any of the inequalities already k K 
satisfied. For the computational procedure the following algorithm is 

given. 

(i) Define 
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h(x,r) = -g (x) + r £ 
teT k g t(x) 

where sn e S. . 1 k 

(ii) Find a point x such that h(x ,r) < h(x ,r). (Any of 
KT_L KTJ. K 

the methods in the previous chapter can be initiated.) 

(iii) Evaluate g (x ) for all s e S, and define the sets 
S K T I K 

S K + I a n d Tk+r 

(iv) If S k + 1 is nonempty, go to step (i). 

Otherwise, an initial interior point has been found. 

In reference [13] Fiacco and McCormick give a rationale for com­

puting r^, the initial value of r^, consistent with attempting to reduce 

the effort of minimizing h(x,r k). They also state that choosing r^ 

extremely large or extremely small (these extremes depend on x ) results 
r ' 1° 

in an increase in the number of iterations. If p(x) = I and 
1 = 1 § i ( x ) 

g(x^) and q( x
Q) denote the gradient of f(x) and p(x), respectively, 

evaluated at the initial point X q , then r^ is given by 

i(x ) t q(x) 
r, = - - ^ - • (60) 

|5(x o)| 2 

If g(x Q)^q(x Q) > 0, giving r^ < 0, then proceed by taking a sequence of 

steps in the direction -g(x ) and recomputing r^ using Equation (60) at 
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each new point until a positive r^ is obtained or until an unconstrained 

minimum of f is achieved (see pp. 72-73). That one of these alterna­

tives will prevail and other ways of choosing r^ are given in [13] as 

well as methods for reducing r. after each h minimization. 
k 

The method of minimizing h(x,r ) in step (iii) can be any of 
K 

those discussed in the previous chapter or the first and second-order 

gradient methods which are summarized in [13]. 

Fiacco and McCormick [13] use extrapolation formulas based on the 
fact that the decrease in x ( r ^ ) each time is approximately linear in 
1/2 

r (derived from experience) to get a "first-order" estimate of the 

point where the minima x (for (58)) and x(r ) (for (59)) occur. 
KTJ. 

If any point whose functional value f(x) is within e > 0 of a 

true minimum value is acceptable as the solution to the constrained 

minimization problem, then a useful convergence criterion is to termi­

nate the algorithm above when 

m 1 0 < r I < e 
i=l g i(x(r)) 

for any r = r . This criterion is suggested by the Corollary 12.2 to 
K 

be stated later. 

To prove the convergence of the sequence of values of h(x,r^) 

to a minimum value of the function (if r^ is a strictly monotonic 
decreasing sequence and a s k-*»), that is, that f(x(r^)) ->• f(x ) 

it 

(where x is the point where a minimum value of the function f occurs 

subject to g.(x) > 0, i = l,2,...,m) as r,+0, the following conditions 
1 K 

are imposed: 
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(a) R° = {x: g^(x) > 0, i = l,2,...,m} is nonempty. 

(b) The functions f,g1,...,gm are twice continuously differen-

tiable. 

(c) For every finite k, the set D = {x : f(x) < k, x e R} is a 

bounded set (hence is compact) where R = {x : g^(x) > 0, 

i ,= 1,2,. . . ,m} . 

Lemma 11.1. There is a point x e R such that f(x ) < f(x) for any 

x e R. 

Proof. Let k^ be a number such that D is nonempty. For the points x 

in R but not in D, f(x) > k^ and R. Since f is a continuous func­

tion on a compact set D then (by Theorem 4-20, p. 73, Apostol [ 1 ] ) there 
-ft _A ft 

is a point x e D (x e R) such that f(x ) < f(x) for x e D. For any 

x e R - D, f(JT) < k 1 < f(x). Q 

Let f = f(x') = inf f(x). 
o 

xeR 

Lemma 11.2. If R° is not empty, there is a point x( r] <) e R ° such that 

h(x(r^),rk) < h(x,r^) for any x e R°. 

Proof. Let X q e R° be the point where the minimization procedure begins 

and let M = h(x ,r. ). Define the sets S = {x : f(x) < M , x e R}, o o k o o 
S i = {x : r k/ g i(x) < M q - f Q, x e R} for i = l,2,...,m. Finally,, let 

n 
S = n S.. S is nonempty because x e S since f(x ) < h(x ,r. ) and ; ' i o o o o k i=l 
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X e S., i = l,...,m, since M = h ( X ,r. ) > f + . S is closed 
o 1 o o k o ,- N o 

g i ( x o } 

and bounded by choosing k = M in assumption (c) above. For the sets 
^k S., i = l,2,...,m, g . ( X ) > ^— > 0 and the sets S. are closed since i' & i M - f l o o 

the functions g^, i = l,2,...,m, are continuous. Therefore S is closed 

and S is bounded and hence S is compact. 

Since h is a continuous function on a compact set S, there is a 

point x ( r ^ ) £ S such that M X C R ^ ) , ^ ) < h ( X,r k) for any X e S. 

Let X e R°. If X i S, then either f ( X ) > M = h ( X ,r. ) or f + 
o o k o 

r k - -> M = h ( X ,r, ). For the former, h ( X ,r, ) > h(x(r,),r,) which 
/ —

 N O O K O K K K 
gi(x) 

gives h ( X,r k) > h ( X(r k),r k) and the latter likewise gives 

h ( X,r k) > h ( X(r k),r k) for any X e R°. 1 

Theorem 11. If the closure of R is R, then lim h(x(r, ),r. ) = f . k k o k-*» 

Proof. Let e > 0 be any positive number. There is a y e R such that 

f(y) < f + —: otherwise, the inequality f(x) > f + TT would hold for J o 2 o 2 
— £ — 

all x e R implying that f + — is the minimum value of f for x £ R 
sr J o o 2 

instead of f . For such a y £ R by hypothesis and the fact that f is 

continuous in R, there is a neighborhood of y containing a point x + £ R° 

such that f(x +) < f + 77 . Select k + such that r, + TT~ min{g. (x+)} . 
o 2 k 2m . & i 

1 
Then for k > k +, 

f < inf h(x,r k) = h(x(r k),r k) < h(x(r k+),r k) < h(x(r k+),r k+) 
X£R° 

< h ( X + , R K + ) < F Q + F T F < F Q + £ 
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which proves the theorem. Q 

Theorem 12. Every subsequence of {x(r )} has a subsequence that con-

verges to some point x which is such that f(x ) = f . 
o 

Proof. Let 

m l 
= M X C R ^ , ^ ) = F C X C R ^ ) + r± I ± J=L g j(x(r 1)) 

Let A = {X : f(X) < K, X e R}. Now h(X(r ),r ) < h(X(r ),r ) < 
K K K—J- K 

h(X(r^_^),r^_^) for k > 2. Therefore HCXCR^.),^) < h(X(r^),r^) and 

m m 
F(X(R ) ) < F(X(R ) ) + R £ -± < F ( X ( R ) ) + R £ -± 

J=L G J C X C ^ ) ) J = L G . C X C ^ ) ) 

Thus x(r. ) e A. k 
Let {x, } be a convergent subsequence of {x(r, )} with limit x . 

_* f ( x * > " f
0 Suppose f(x ) i- f Q, and let 6 = . Since f is continuous at 

x", lim f(x ) = f(x"). Let k be such that |f(x ) - f(x")| < 6 for all 
k-voo 

k > k . From Theorem 11 there is k_ such that |h(x, ,r, ) - f | < 6 for 
J. 2 K K O 

all k > k^- Choose k > max (k^,k2). Then 

m l 

3=1 S j ( x k ) 

and 
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f - f(x )| i f - f(x, )| + |f(x, ) - f(x )|, o 1 1 o k 1 k 

2 6 < f - f(x. ) + 6 , o k 

6 < f(x, ) - f . 
k o 

Then 

m 

6 < f ^ ) - f Q < f ( x k ) - f 0 + r k J — — < « , 
1=1 g j ( x k ) 

a contradiction. Thus f(x ) = f . 1 
o 

Corollary 12.1. If there is only one point x £ R such that f(x ) = f , 
A 

—- — 

then lim x(r, ) = x . 
k-*» 

Proof. Suppose lim x(r, ) 1 x . By Theorem 12 {x(r, )} has a subse-
————- ,, K K 

k->°° & _.;t 

quence that converges to a point x such that f(x ) = f . Consider 
A 

an open neighborhood about x such that there is an infinite number of 

points of the sequence {x(r^)} outside the neighborhood. This is pos-

sible if lim x(r, ) i- x . Let {y } be a convergent subsequence of these 
, K K 
k->°° _ ^ 

points converging to a point y. Now y ? x from the construction of 
{y^}, but by Theorem 12 the sequence "tŷ l converges to a point such that 
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f(y) = f . Thus there are two distinct points, y and x such that 

f(y) = f(x ) = f , but by hypothesis there is only one—a contradiction 

Thus lim x(r, ) = x . | 
i k k-*>° 

Corollary 12.2. If {xCr^)} is the sequence obtained from the algorithm 

on page 78, then 

lim f(x(r, )) = f , , k o k-*>° 

lim r k I -± = 0 
k-*» i=i g, (x(r. )) 

I k 

Proof. Since f is a continuous function on R, then by Corollary 12.1, 

lim f(x(r. )) = f(lim x(r. )) = f(x ) = f . k . k o 

By Theorem 11 and, the previous sentence, 

M 1 

lim r I ~ = lim [h(x(r ),r ) - f(x(r, ))] k->°° i=l g.(x(r, )) k-*» 
1 K 

= lim h(x(r ),r, ) - lim (x(r, )) = f - f = 0. , k K . k o o k->°° k->°° 

m ± 

Therefore lim r, £ exists and equals zero. 
K i=i g.(x(rk)) 
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Theorem 13. 

m m 
I —^ S I (63) i=l g.(x(rk)) 1=1 S i(x(r k + 1)) 

and 

f(x(r, )) > f(x(r. )). (64) k k+1 

Proof. The following inequalities are true. 

m m 
f(x(r- )) + i- I —— _< f(x(r, )) + rv+1 J — 

k + 1 k + 1 i=l g.(;(r k + 1)) " . k k + 1 i=l g.(x(r k)) 

and 

m m 
f(x(r » + r k I ^ < f(x(r )) + r R I 

i=l g i(x(r ] <)) i=l g i(x(r k + 1)) 

When the above inequalities are combined, then 

m m 1 
(r - r ) £ < (r - r ) £ 

k + 1 i = W x ( ' W ) ~ k + 1 i=i S i ^ ^ ) ) 

or 

m , m 
I >- I 

i=l S i(x(r k + 1)) i=l g i(x(r k)) 
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which is (63). By the first inequality in the proof and (63) 

m m 
f ( i < w > + rk + i i * f ( j ( v > + r k + i ; 1 

i=lg.(x(r k + 1)) i=l g i ( x ( r k + 1 ) ) 

from which (64) is obvious. 
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CHAPTER V 

CONCLUSION 

In the preceding parts of this paper, some of the more signifi­

cant iterative methods of minimizing a function of n variables and ways 

of dealing with constraints have been discussed. A comparison of the 

various methods to determine which one is "best" under any criterion is 

difficult since there will always be some particular function for which 

a given method is best suited. However, there are certain fundamental 

characteristics of the methods which affect their performance. 

Many of the methods considered have quadratic convergence, mean­

ing that the minimum value of a positive definite quadratic function is 

found, apart from rounding errors, in n iterations. A logical exten­

sion of this result is that any method with quadratic convergence would 

find the minimum value of any function in fewer iterations than one 

without it because, near the minimum, the second order terms of a Tay­

lor's series expansion of the function dominate and the only methods 

which will converge quickly for a general function are those which will 

guarantee to find the minimum of a general quadratic speedily. This is 

due to the fact that the "curvature" of the function (as measured by the 

Hessian matrix of second order partial derivatives) is relatively stable 

near the minimum. (Note that Davidon's method gives a good estimate of 

this matrix that can be used for this purpose.) The superiority of 

methods with quadratic convergence is upheld in the studies of Box [5], 
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Fletcher and Powell [15], and Fletcher and Reeves [16]. The type of 

function and the behavior of this function near the minimum still has 

an effect on the number of necessary iterations; the "nearer" the func­

tion is to a quadratic in a neighborhood of the minimum, the more 

effective a method with quadratic convergence will be and the fewer the 

number of iterations. 

However, the above statements should be qualified to some extent 

due to the influences of various other factors. The starting point, 

its nearness to the minimum and the criterion for convergence will have 

an effect on the number of iterations. In choosing a method to minimize 

a function, the number and ease of computations, the number of function 

evaluations per iteration and whether the gradient of the function is 

available should be considered. If the gradient is not available, then 

Powell'.s method or Zangwill's method might be preferred; the latter has 

quadratic convergence. In a comparison of several nongradient methods, 

Fletcher [14] states that Powell's method is certainly the most effi­

cient on the basis of the number of function evaluations and that it 

has rapid convergence near the minimum. (Zangwill's method was not 

included in this comparison.) When the gradient is available, Davidon's 

method usually gives faster convergence even though other gradient 

methods have quadratic convergence. Fletcher and Powell [15] state that 

Davidon's method is probably the most powerful general procedure avail­

able for finding a local minimum and Box [5] states that it was the most 

consistently successful in his comparison of several procedures . If 

the gradient cannot be determined analytically, then a finite difference 

approximation can be made for the partial derivative such as 
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fCx 1 ,. ..,x . + h,x . i+1 ,...,x ) - f(x) n 
9x. i = 1,2,...,n, 

I h 

where h is a small number, or 

1 ,. . . ,x. - h x ) 
3 x . 2h l 

Methods for dealing with constraints have been discussed; Other 

methods are known, but most of them are restricted to using a specific 

minimisation method or work only for constraints of a certain form. 

Box [5] states that for a general constrained minimization problem, 

Davidon's method combined with Carroll's created response surface 

technique has been successfully used. Fiacco and McCormick [13] state 

that Carroll's method has worked orderly most of the time they have 

used it. 

other ways of dealing with constraints as well as methods which combine 

the two problems which have not been discussed. The reader is referred 

to an extensive bibliography in reference [20] and to the Journal of 

Industrial Engineering [21] which gives a flow chart indicating ways to 

decide the approach to use in optimizing a function subject to con­

straints . 

There are other types of methods of minimizing a function and 
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