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CHAPTER 1
INTRODUCT ION

The purpose of this paper is to study iterative methods for
optimizing (that is, maximizing or minimizing} a real valued function
of n variables, n 2 1 {which may be subject to constraints). To be
cqnsistent in the discussion, function minimization will be discussed,
since finding the maximum value of a function is equivalent to finding -
the minimum value of the negative of the function. In mathematical
terms, for a given continuous function f which is defined by the equa-
tion f(x) = f(xl,xz,...,xn) on En’ the problem is to find a point y in
En (if one exists) such that f(y) has a minimum value, that is,
f(y) s f£(x) for all x in En in a neighborhood of y. The festrictions

on the independent variables that will be considered can be written as
gi(xl’XQ""’xn) > 0, i=1,2,...,m, (1)

wheré the functiens 2:» i=13,2,...,my are continuous. A function
subject to restrictions like those in (1) is said to be constréined.
For an unconstrained function with continuous second-order partial
derivatives, a minimum value of the function occurs at a point where
the first-order partial derivatives of the function vanish and the
matrix of second-order partial derivatives of the function is positive

definite (see [1,p.152]). Determining such a point in this manner




requires the solution of at least n nonlinear esquations simultaneously.

This paper will primarily examine sequential (or iterative)
minimization procedures suitable for digital computers in which the
peints tested for a minimum value of the functien are completely
determined by a previous set of operaticns. VNonsequential types of
function minimization (where previous test points do not determine
where the next test point will be located) generally invoive solving a
system of nonlinear equations or else use random methods to pick test
peints in a region where the minimum is thought to be leocated. In the
latter case, after a number of points has been chesen, the smallest
value the function assumes in this set of points is taken to be the
minimum, and the number of necessary test points for a certain accuracy
can be determined from statistical theeory. Ncnsequential types of
methods will not be considered in this paper.

In Chapter II, sequential methods for successively restricting
the interval in which a point at which the minimum value of a.function
of one variable is attained is located are considered, along with
methods of quadratic and cubic interpolation to approximate the minimum
value of the functien with only a few function evaluations. In Chapter
11T, metheds for minimizing functions of n variables, n > 1, subject to
ne constraints are described and convergence features proved. Chapter
IV is concerned with a few of the methods which have been develcoped to
handle constrained functions; specifically those methods which cenvert
the constrained function to an unconstfained form are studied. Final

conclusions are made in Chapter V.




Notation
The components of n dimensional ceolumn vectors will be distin-
guished by subscripts on the letters while bars over letters will

identify vectors; for example,

1
X = .
X
e n_—
The word "direction" will be used synonymously with "vector." Itera-

tion numbers will usually be dencted by subscripts on vectors and-

matrices will be indicated by capital letters (with or without sub-

scripts).

f. The letter n will indicate the number of function variables.

Preliminary Definitions and Theorems

The following definitions and theorems will be used throughout

this paper.

Definition 1. For a function f defined on a set § in En, the state-

ment, “io is a minimum," means that io is a point where a relative
minimum value of the function occurs, that is, f(io) < f(x), for all x

- in a neighborheood of §o and in S; and f(ﬁo) is said to be a minimum

value of the funetion.

The vector g will denote the gradient vector of the function




Definition 2. A vector p is called a direction of seareh if a number

A can be calculated sc that f{X + Ap) < f{x) for a fixed x. The

process of calculating this A is called searching in the direction .

Definition 3. When a direction p is being searched, the vector Ap,

where XA is a scalar, is called a gtep in the direction p, and the mag-

nitude of this vector |Ap| is called the step size or length of step.

Definition 4. If ¢ is a number in the range of a function £, then the

set of all points x in En which satisfy the equation f(x) = c is called

a eontouy of the function.

Definition 5. The matrix of second-order partial derivatives cf a

2
function £, that is, the matrix A = [a..] with elements a,, = ——é—i;-is
] 1] 9x%.93X.
1 ]

called the Hessian matriz of the function f.

Definition 6. A quadratic funetion of n variables is a function f

defined by the egquation

YW+ b+ e, (2)

£(x) = %i
where ¢ is a scalar, b is a constant vector, and A is a constant matrix.
A positive definite quadratic function, the only kind of quadratic
function considered in this paper, is defined by Equation (2) and A is
required to be a symmetric and positive definite matrix. Note that A

1s the Hessian matrix of the quadratic function.




Theorem 1. Tor a positive definite quadratic function f, there exists

a unique point x in E_ such that f(x) < £(y) for all x # y in E -

Proof. The exlistence and uniqueness of the point follow from Theorem

7-9 in Apostol [1,p.152]. @

Definition 7. An iterative method for minimizing a functicn of n

variables is said to have quadratic convergence if for any pesitive
definite quadratic function, it is guaranteed that the minimum value
of the function will be located exactly, apart from rounding errors,

within n iterations.

Definition 8. The directions p and q are defined to be A-conjugate

(or simply conjugate) if ﬁtAi 0 forp # q, p, q # O-

Theorem 2. If A is a positive definite matrix and if ﬁl, 52,..., P,

are vectors such that

-t , - .
Pi A Pj = 0, i#17,

that is, if they are mutually conjugate, then ﬁi, 52""’§n form a

linearly independent set of wvectors.




Proof. Suppose that 51’52’°"’§n are linearly dependent; that is,

there are scalars cl,cz,...,cn not all zerc such that
E - -
c.p. = 0
§=1 1)
Now
n _ n _ _
A Z c.p. = Z c.Ap. = 0
j=1 1] j=1 J 73

By hypothesis, at least one of the c:j # 0, say <y # 0, Then

Hence by contradiction, ﬁl’§2""’5n are linearly independent.

Definition ©. A function is said to be convex if

F((L-0)x + 8 y) < (1 -0) £f(x) +8 £(y)

for 0 < 6 < 1 and for all x and y in the domain of the function.

is strietly convex if

(1 -8)x+8y)<(l-0)FfR)+8fy)

holds for distinct x and y in the domain of the function and for

It




0 <6 <1, A function is eoncave (strietly concave) if -f(x) is convex

(strictly convex).




CHAPTER II

CNE VARIABLE SEARCH

Methods for finding the minimum value of a function of cne vari-
able, in addition to being important methods in themselves, are required

in many metheds for minimizing a function f of n variables, n > 1,

Definition 10. A function f of cone variable is unimodal on an interval

: % %
(a,b) if there is an % in (a,b) such that f(xa) < f(x) for all x # =

%
in (a,b), and f{x) > £f({y) if a < x < y < x and f(x) < £f(y) if

ale
-

X < X <y < b. Note that the function f must only be defined on {(a,b)
and that there are no restrictions on the function such as continuity

and differentiability.

Dichotomous Search

Let £ be a unimodal function of one variable con an interval
(ao,bo). Choose a number £ > 0 such that € is less than the accuracy
desired in the variable x. The kth iteration, k = 0,1,..., of the
dichotomous search that is to be repeated until the desired accuracy is
obtained is given as follows.

(i) Let

w

"

I
I

=K K LE
and Yy = t 3




(ii) 1If f(xk) = f(yk), let 201 T Ko bk+l 2 Yo and stop.
If f(xk) < f(yk), let ak+l = a5 bk+l = Y-
1f f(xk) > f(yk), let a4 T K bk+l = bk'

After k iterations, the minimum i1s located within an interval

of length j;-(b -a )y+e (1 - ;LO since
k o © k
2 2
= 1 - €
by -3 =3 -8 ) *3
-1 €y, € _
=7 ypm )t P T
- L - € i ... 1
=g (bymadt oz (L x4 v
2 2
-5
S )+ £ 2
ok 21 -1
2
1 1
= =—«(b -a)+e (L -=);
2k o} o 2k

but if the first alternative is chosen in step (1i), the interval in
which the minimum is located has length e. Note that the function must
always be evaluated twc times per interation and that this methed
reduces the interval the maximum amount per iteration for any method
using two points in the subinterval since if two arbitrary points are

chosen, the amount of reduction is greater than one-half the length of

the interval.
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Fibonaceci Search

Definition 11. The Fibonacci sequence 1s the sequence cof integers

{Fk} defined as:

F =1, F, =1, F,_=T + F,_, for k > 2.

Let f be a unimodal function of one variable on (ao, bo) with a
minimum value at x* to be determined and let the number of function
evaluations to be made be N + 1. (This will determine the accuracy that
¢an be obtained as will be shown later.)' The kth iteration, k = 0,1,.
N-1, can be stated as follows.

(i) Choose the points x, and Vi in the interval (ak,bk) as

k

F .
X, = F-li:-]f—_-i-(bk - ak) tas (3a)
N-k+1
F
y, = Nk (b -a) +a, (3b)
N-k+1
P F
= FN—k+l (b - a)- fE:ELL (b - a0+ a
N-k+1 N-k+1
F
= b, - FN'k'l (b, - a.),
N-k+1

sinee By y = Fyaerr ™ TNok-1
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F,
J

i+2

< %—for any integer j z 1.)

since

(Note that X <Y 5

(i1) Calculate f(xk) if (ak’bk) = ( ). Note that

A 121

f(yk) = f( ) (see Theorem 3).

-1

b ).

Otherwise, calculate f(yk) if (ak’bk) = (Xk—l’ k=1

Note that f(xk) = f(yk_l).

*

(iii) 1If f(xk) < f(yk)’ then a, < x <y, and let
@410 Ppp) = By )
%
If f(xk) > f(yk), then ®o<x < bk’ and let
Bi1e D) T Gpeby)d-
If f(xk) = f(yk), then X <X <y and let either
(@410 Prpy? 7 (o) or (ap by ) = Oguby ).
The length of the last interval is
N-1 T ®%n-1| T FF
b -a. = or = —l-(b - a ) —g—i-(b - a )
N N b _ o« FQ N-1 N-1 F3F2 N-2 N-2
N-1 N-1
F
1 i
= ete===(b -a)=~(b -2,
FN o o FN Q o

where (bO - ao) is the length of the original interval. Thus the
number of iterations for a desired accuracy can be determined from the

sequence cof FPibonacci numbers.

Theorem 3. The function is evaluated once per iteration for k = 1,2,...,

N-1.




Procf. Assume that at the kth iteration, the minimum is located

between ay and Yyt Then at the next iteration

F

N-(k+1)
Yy 7 g (y, -3, ) t+ a,,
L ey KR K

12

since y, = bk+l and a = ak+l; If the values of ¥y in (3b) is substi-

tuted in this equation, then

ey | Fae

¥ = (b,-a,) +a - a + a
k+1 FN—k FN—k+l k "k k k k
F
N-k-1
= ——— (b, -a, )+ a =X;
N e SO S

and the function needs to be evaluated at X a1 during the (k+1)th
iteration. A similar proof can be developed for the case when % is
between Xy and b, . fl

The kth term of the Fibonacci sequence 1s given by

k+1 k+1
v 7]
k /e 2 L 2 :

from this it follows that the limiting values of ratios of Fibonacci

numbers are

=TT




1im Tk /5 -1

= = 0.818,
oo T 2
1im k-1 _ 3 - /5 -
om T = S = 0.382.
K+1

On this basis, the following approximate formulas can be used to obtain

Xy and Vi (k = 1,2,...,N) in step (i)} (Equation (3)),

Xy = 0.382(bk-ak) + 3y

(W)
Yy = 0.618(bk—ak) toa .
After the first two poeints, the function is evaluated one time per
iteration and the test points at any iteration are independent of the
total number of points contrary to the Fibonacci search where Xys Yy
depend on N by Equatien (3). Each iteration is simplified, but the

length of the final interwval after k iterations will be

_ k
b - a = (0.618)" (b_-a.)
which is slightly larger (by 13 per cent, as shown by Kiefer [19]) than
the corresponding interval in the Fibonacci search. When the formulas

in (4) are used instead of (3), then the methed is called "golden

section.”

When the last three methods are compared, the lengths of the
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last interval after k+l1 function evaluations obey the fecllowing

inequalities, corresponding respectively to dichotomous, golden sec-

tion and Fibonacci searches:

1 k 1
m (bo-ao) > (0.618) (bo-—ao) > F}: (bc—ao), (5)

where [ ] denotes the greatest integer function. The first inequality

is true since

1

2k
2k+l > (0.618)

or

%—-(.5)k > (.38192u)k

or

(0.763858)k < 0.5, k > 2.

A tabulation of the values used in the ccefficients of (bo—ao) in (%)
(as in Wilde {28], p. 29) bears out the relationship as does a graph-
ical comparison in Boas [4]. The above statements establish the fact
that the Fibonacci search gives greater accuracy per specified number

of function evaluations, but the method of golden section is much easier

to use and the accuracy is not much less,

For functions of n variables, n > 1, due to the methods them-

gselves and the fact that the function 1s not necessarily a guadratic
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functien, it is only necessary te have an épproximate value of t such
that hi(t) = £f(x + tﬁ) has a minimum value. The metheds to be discussed
use quadratic and cubic interpolation and are more efficient than the
prier metheds discussed in the sense that they find an approximate
value for the minimum with fewer function evaluations. Here there are

no restrictive intervals in which the search is conducted.

Quadratic Interpolatien

For the function h of one variable, let {(a,h{al)), (b,h(k)},

(c,h{c)) be three distinct peints. A quadratic function q through the

points is defined by the equation

_ 2
q(t) = klt + kgt + ks’

which for the three points gives the set of linear equatiocns

2 _
a kl + ak2 + k3 = h{a)
b’k. + bk, + k. = h(b)
1 2 3
c2k + ck,. + k. = hic)
1 2 3 g

from which kl; k2, and k3 can be determined. The coefficient matrix
is non-singular since the points. are distinct. By elementary calculus,
the minimum value of the function g (which is an approximation to the

minimum value of the function h) is
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o
1
|
=~ =
| NN

%
at t = —k2/2kl if kl > 0, or eguivalently, the function g has a

minimum value

h(a)bc{b-c) - hi(blac{a-c) + hi(clabla-b)
(z2-b)(a-c)(b-c)

1 [-h(a)(b’=c?) + n(b)(a’=c?) - hlc)(a’-b?)1°
Ty h(a)(b-c) - h(b)(a-c) + h(c)(a-b)
at
S UL ma@die?) + hb)(@®c?) - hie)a’b?) )
2 h(a)(b-c) - h{b)(a-c) + hic)(a-b)

if 4 » 0, where

4= h{a}(b-c) - h{b)(a-c} + hic){a-b)
B (a-b){a-c){(b-c) )

If kl < 0, then lim g(t) = -» and 1lim qg{(t) = -=, while g is linear
Tooo tTr—00
it kl = 0.
For the way in which Powell [22] uses quadratic interpolation
to approximate the peint on a line where the minimum value of a func-

tion of more than one variable occurs, let h(t) = f(x + tp) and let the

magnitude q of the step length, an upper bound m on the step length
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(q is assumed to be less than m), and the accuracy e be given. The

| algorithm is given as follows.

(1)

(i1)

(iii)

(iv)

(v)

(vi)

Calculate h(a) and h(b) = hia + qJ.

Calculate h(c) = h{a - ¢) if h(a) < h(b).

Otherwise, calculate h(e) =-h{a + 2q). .

Use (a,h(a)), (b,h(b)), (c,h(c)) to calculate t  and d.

%

%
Ifd<0orift >a+mort < a-m, then replace a by
a+mif ¢ » b or replace b by a -~ m if ¢ < a and go to
step (iii).

Otherwise, go to step (v).

If any of the following hold:

ot
o

% ; %
‘t - al < e, |'t - bl < e, )t - c‘ < 8,

v
accept t as an approximation to the point where the mini-

mum occurs. If not, calculate h(t ).

If h(a) > h(b) and h(a) > hl(c), replace a by t* and go to
step (iii);
if h(b) > h(a) and h(b) > h(c), replace b by t* and go to
step (iii);
if h(e) > h{(a) and h{c) > h(b), replace ¢ by t* and go to

step (iii).
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Example 1. To illustrate the algorithm given by Powell and stated

above, consider the function

which has a minimum value of -1 at t = 0., Choose a =1, gq = 1, !

m=3, e=0.l.

Now h(l) = -0.5, h(2) = -0.2; therefore ¢ = 0, h(0) = -1.

wta
"

t =3 and d = -0.1 < 0.
Hence b = 2 is replaced by a - m =1 - 3 = -2 and t* is calculated using
h(1) = -0.5, h(-2) = -0.2, h(0) = -1.

" = -0.33 and d = 0.3 > 0.

w
t 1is again calculated using h(1l)

%
t = 0.083 and d = 0.2 > 0.

It

-0.5, h(-0.33) = -0.9, h(0) = -1.

This value is accepted for t since ¢ - 0.083] < 0.1 = e.

Cubic Interpolatioen

If the values of a differentiable funection h at two points and
the derivatives of h at these two points are available, then cubic
interpolation can be used to establish an approximaticn to the point at
which the minimum value of the function occurs. If a, b, h(a), h(k),
h'(a), h'(b), are assumed to be known, then the resulting cubic poly-

nomial p is given by the esquation

(t-b)2

p(t) = hib) + (£t-b)h'(b) - G

/|
!
(h'(b) + z) ‘y
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3
+ —-(—1‘—]3)—2 (h'(z) + h'(b) + 22) ,
3(a-b)

where

z =3 E‘(ag_——‘z-“’—] +h'(2) + b (b)

and its slope for a < t < b is given by

pr(t) = b ) - 2 L2 (nrv) ¥ 2)

a-—

2
+ (t-b)
(a-b)

(h'(a) + h'(b) + 2z) .

If h'(a) + h'(b) + 2z = 0, then a quadratic polynomial could have been

2
assumed. If h'(a) < 0 and h'(b) » 0, then the root t of p'(t) that

1,

corresponds to a minimum lies between a and b and p"(t ) > 0, where

priy = 2 I E2) ) (D) ey 4 nisy 4 22)
@ (a-b)
The root tf= of p'(t) is
£ hi(b) ¢ 2 £+ w
t -b=(a-b) h'(a) + nh' (b) + 2z °
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where w = (22 - h'{a) h'(b))l/Q, and since

Wy - h(b) + z]
P(t)_—Q[El‘-_——-T:I+‘

\ 2
2 - b

1 ] r h'(b) +th
(h'(a) + h'(b) + 22) |[k"(a)y + h'(b) + 2z

is greater than zero only when the negative sign is chosen, then

% h'(b) + 2 - w
t = (a-b) [‘(a) FhT(b) + 221

|
o
|

h'(b) + w - z
@b 5wy - s 2;l : (7

Davidon [9] (see also[16])gives an zlgorithm that uses this
interpolation to approximate the value t where h'(t) = 0 if hi{t) =
£(x + tp). (Note that h'(t) = p'g(X+tp) and that h'(0) = pg(x).)

Let he be an estimate of the minimum value of the function h and
s be a step size (s can be chosen equal to 1}. Assume h'(0) < 0. (If
h'{0) > 0 then a variation of the following algorithm can be made.)

The algorithm can be stated as follows.

(i} Evaluate h{0), h'(0).

(h_~ h(0))
e

(i1} Le‘thQ—"—H,(_O")——'—'—.

(iii) Choose a step length g = k if ¢ < k < (52)—1/2.
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Otherwise, let g = (52)"1/2.

(Note: When this algorithm is applied to the function f

then (52)_1/2 is replaced by (ﬁtﬁ)—l/Q.)

(iv) For i = 0,1,2,..., evaluate h'(?lq) until h' is non-

negative. Let a = Ql_lq and b = Zlq. Thus t is bounded

in the interval a < t, s b.
. {c . . -
(v) Calculate an estimate t of t_ using Equation (7).

(vi) If h(th) < h(a) and h(t ) < h(b), then accept td as an
estimate of t_.
i
Otherwise, if h'(td) > 0, replace b by +° and go to step

(v); if h'(t") < 0, replace a by t and go to step (v).

Example 2. For an example of this algorithm, let

1

h{t) -—
1+ ('c—'?)2

which has a minimum of -1 at t 7 and for which

2(t-7)
h'(t) =
(1 + (t-7)2)2

Choose he = -1, s=1. Then k > 1 and therefore q = 1.




h'(0)

h'(1)

h'(2)

h'(u)

1]

h'(8)

Yo

Using Equation (7), t -8 = -1,

h(7) < h{(8}.

%

1

-6/10°, h(s) = -1/10, a

1/2 > 0, h(8) = -1/2, b =

22

-14/50%,

~12/37°,

—10/262,

It
=
L'

I
[os]

" =7, h(7) = -1, and h(7) < h(u),

t =.7 1s accepted as an approximation to the minimum.




23

CHAPTER III
MULTI-VARIABLE SEARCH

Sequential examination of points for functions of n variables,

n > 1, can be divided into two classes: gradient methods which make

beneficial use of the gradient vector to-determine directions of search
and non-gradient methods which are only systemized methods to compare

points. The latter metheds will be considered first.

Non-gradient Methods

Direct Search

The phrase "direct search," as used by Hooke and Jeeves (18],
describes "a sequential examinatien of trial solutions inveolving com-
parisen of each trial solution with the 'best' obtained up to that time
together with a strategy for determining (as a function of earlier

results) what the next trial solution will be." The method of direct

search employs no techniques of analysis.
The basic algorithm is as follows.

(1)

Select an initial approximation x to the minimum as the
first "base point."
(ii) Choose ancther point z. If £(z) < f(x), then set x = z

to give a new base point.
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(iii) Repeat step (ii) until the convergence criterion is
satisfied. (See pages 72~73 for a discussion of the

criterion that can be used.)

The strategy for selecting new trial points can be divided into
two separate parts. The first part establishes & pattern of search by
making exploratory moves and the second moves in the established ‘
pattern. l

Let Bj be the vector (0,...,0,6j,0,...,0)t, where Gj 7 0 and l

let p > 1 be given. Then the kth iteration can be stated as follows. 1

(i) Let x , be the current base point. }

ks 1
(ii) For j = 1,2,...,0n, in turn, use one of the following to L
find x, .: |
‘ k,3 ;
(a) if £(x, , , +A,) < £(%_. ), setx_. =% . . +4, i
) k,3-1 73 kyj-17 ko3 Tkoi-l T T ﬁ
and replace Ej by pﬁj; i
!
- - - - - - a
(b) if f(xk,j-l - Aj) < f(xk,j-l)’ set Xk,j = :u:k,qu - Aj

and replace Ej by pﬁj;

(c) if f(x,_ . .) < min{f(x

k,J-1 k,j-1

set X . = X, . and replace A, by 1/p A.. .
ki k-1 P § oy RSy

+ A.), f(x, .
])’ (st]

(iii) If f(2xk’n xk,o) < f(xk,n)’ set xk+l,o x + |

(Xk,n - xk,o)' Otherwise, set Xk+l,o =-Xk,n'

The step size of the pattern move made in step (iii), that is, .

the magnitude of the vector (ik n " ﬁk 0) may also be increased if the ‘
» 2 i

first alternative of (iii) is satisfied. "
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Example 3. As an illustration of the previous algorithm consider the

function f defined by

_ 2 2
f(xl,x2) = X 2xlx2 + 2 X5

whose minimum value is zero at the origin. Initially choose Al =
(1/2,0), E; = (0,1/2), and p = 2, and let the starting point be (1,2).

Table 1 gives the steps and function values for feour iterations.

Table 1. Direct Search

W Function Bxxxiq{Ti Function Functicn
i =1 |Value i = 2|Value i =31 Value iz o Value
i;?”o (1,2) |5 (2,1) | 2 (1,1) 1 (1,0.5)| 0.5
’?11:,1 (1.5,2)] w.25 (1,10 | 1 (1,1) i (1,0.5)] 0.5
B fa,o | (2,0) (1,0) (0.5,0) |
f;,z (Ls,1.5)] 2.25 [(1,1) | 1 (1,0.5)[ 0.5 [(1,0.5)] o.5
E; (0,1) (0,0.5) (6,1) | (0,0.5)

Rosenbrock's Methed

A method developed by Rosenbrock [23]1 uses a stepping procedure
in n orthogonal directions with cyclic changes of these directions.

The algorithm may be stated as follcws.
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(i) Choose an initial ‘approximation io and numbers a, B 50

that a > 1, 0 < 8 < 1.

(ii) Choose n orthonormal directions 51’52""’§n initially

and step lengths e 5 j = 1,2,...,0.
>
(iii) For j = 1,2,...,n0,
(a) if f(xo + ei,jpj) < f(xo), replace X by X + ei,jpj
and put ei+l,j = aei,j;
(x) 1if f(xO + ei,jpj) > f(xo), put ei+l,j = -Bei,j'

(iv) Repeat step (iii), increasing 1 by 1 each time, until
both (a) and (b) have been used for each § = 1,2,....n.
For each directicn, if (a) is chosen first, then eventually
(b) will be chosen since either the function will increase
or the point where the minimum value occurs will be reached.
If (b) is chosen first, then eventually (a) will be chesen
since the step size ei,j will become so small that the

numbers f(io) and f(io T e, .5j) are indistinguishable in

the first X significant digits.

(v) Setd. =] e, .,
] i 1,]
where the sum is over the step sizes used in alternative
(a) in step (iii) in the directicn ﬁj’ i = 1,2,...,0.
Note that dj,# 0 since eventually alternative (a) will be

used.
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(vi) Let
4 = 4Py Fdppy * ottt dpp

dQPQ tore dnpn

e
N
"

(vii) Orthonormalize the directions al’ 52,...,§n by the Gram-

Schmidt process and call these new directicns 51,52,...,pn.

(viii) Repeat steps (iii) through (vii) until the convergence

criterion is satisfiled.
Example 4. For the function in Example 3,

_ L2 2
f(xl,xz) = %] -2 X X, + 2 X,

let the starting point be (1,2) and choose a = 3, B8 = 0.5, ﬁ; = (1,0},
ﬁ; = (0,1), e: = 0.5, e = 0.5. The following illustrates the

1,1 1,2

method for one iteration.




_t
Py

= (0.

28

-t -t

D, = (1,0}, p, = (0,1)
2 = (1 2), f(x ) = 5
o k] » o) »

(4]
!

= 0.5,

= (1.5,2), f(xo) = L.,25,

™
|
[
(@3]
w

e = -0.,75,

fD
n
=
(8]
-

-t -
a; = (1.5, 1.5), q; = (0,1.5),

7071,0.7071), 5; = (0.7071,-0.7071).




29

The result of applying steps (vi) and (vii) several times
ensures that 51 coincides with the directions of fastest advance, 52
along the best direction which can be found normal to 51’ and so on.
It is stated by Smith [25) that when using the method on a positive
definite quadratic function, the directions ﬁi, i=1,2,...,0, align
themselves in the limit along the axes of the function (the eigen-
vectors of the matrix of second derivatives--a particular case of con-
jugate directions) ané that although the method does not have quadratic
convergence, it does have a similarity with other methods that have
quédratic convergence in this limiting process.

A variation of the above procedure, due to Davies, Swann, and
Campey [14], replaces steps (iii), (iv), and {v) by a minimization of

the function in the direction ﬁj' This can be stated as

(iiia) For j = 1,2,...,n, find a number dj such that the funection

h defined by the equation h(d) = f(iO + dﬁj) has a minimum

at d = dj and replace Xq by L + djpj'

Note that if any dj = 0, then the vectors ql’qQ""’qj—l’

qj+l""’qn are orthonormalized in step (vii) and Pj is added to the

resulting vectors after they are renamed.

Example 5. This method is illustrated in Table 2 by the same function

in Example 3 and the p directions in Example 4.
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Table 2. Method of Davies, Swann, and Campey

Funection
1 Value 2

-t
X (la 2) 5 (29 2-25)

Q

-t

Py (1, 0) (0.8701, -0.2425)
ﬁg (0, 1) (0.2425, 0.9701)
d; 1 .0793
iz (2, 2) mn (2.077, 1.731)
d, -0.25 1.972

'z (2, 2.25) 2.5

Powell's Method

Powell [22] developed a nongradient method which is a variation
of the previous methods. He '"proves" the method has quadratic con-

vergence, but Zangwill [29] gives an example of a positive definite

quadratic funetion which will not converge in any number of iterations.

The crucial hypothesis omitted was that the directions of search

spanned the space. See the paragraph preceding Theorem 4 for further

discussion. Nevertheless, the method is efficient and is now stated.
Initislly choose 51’52""’§n to be the n coordinate directions

and let io be the starting point. An iteration of the basic procedure
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to be repeated until the convergence criterion is satisfied is as

follows.

(i) For k = 1,2,...,0, Find Ak such that the function hk

defined by the eguation hk(l) = f(ik_ + Aﬁk) has a

1

minimum at X = Ak and define R =%y + lkpk.

(ii) For k = 1,2,...,n-1, replace ﬁk by §k+l and replace

P, by (xn - xo).

%
(iii) Choose A" so that the function h defined by the equation
h(x) = £(x_ + Alx_ ~ x_)) has'a minimum at A = A" and

- - % -
+ - .
replace X by X A (xn xo)

The sequence of points x X ,...,in is calculated by searching

172

in the directions 51’52""’§n successively. New directions are estab-
lished by deleting 51 and replacing 5k by §k+l’ k=1,24...,n-1 and

ﬁn by in - io. This last direction is searched and the point at which

the minimum occurs replaces the old io completing cne cycle.
Example 6. Consider the function

.
f(xl,x2) =% 2 X %, + 2 x

NN

from Example 3 with starting point QE = (1,2). The algorithm is

illustrated by Table 3.
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Table 3. Powell's Method

Function Function Function
1 Value 2 Value 3 Value
iz (1,2) 5 (1.8,1.2) 1.8 [(0,0) 0
-t
Py (1,0) |- (0,1) (1,-1)
5; (0,1) (1,-1) (-0.18,-0.12)
A 1 ~0.3
-t
N (2,2) n (1.8,0.9) 1.62
RN -1 -0.18
ig (2,1) 2 (1.62,1.08)] 1.458
x| -0.2 9

Powell's Second Method (Simplified)

Because the previous method scometimes gives dependent directiens
of search, Powell [22] gave an alternate method. Zangwill [29] gives a
simplification of this procedure and proves that it ccnverges. This
medification will now be given.

Let‘ﬁl,ﬁg,...,ﬁn be the normalized coordinate directions and io
be an initial appreximation to the minimum. Let a scalar e, 0 < e <1,
be given and set § = 1. The kth iteration to be repeated until the con-

vergence criterion is satisfied can be stated as follows.
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(i) For j =.1,2,...,n, find Aj such that the function hj

defined by the equation hj(A) = f(ij_l + Ap.) has a

Lo

minimum at A = A, and define x. = x. , + A.p..
] ] -1 173

(ii) Define a = |§

. - %l and Poyp = (X, - x_ Vo,

(iii) Find An+l such that the function hn+l defined by the equa-
tion hn+l(l) = f(xn + Apn+l) has a minimum at A = An+l and

=X = ox_+ P_.q-
set %07 *n An+lpn+l

(iv) Let AS = max{lj: J = 1,2,...,n}.
(a) 1If Asﬁ/a > £, replace P, by Pot1 and & by kséfa.

(b) Otherwise, retain the same p directions and §.

Example 7. Consider the functioen

f(xl’XQ) = xi - 2xlx2 + 2 x
from Example 3. Table 4 illustrates the algorithm with starting point
(1,2) and ¢ = 0.1.

Zangwill [29] establishes that this procedure must converge to
a point at which the gradient of a function f is zere, (g = 0) for f a
strictly convex continuously differentiable function,but the necessary
lemmas and theorems will not be proved here.

Zangwill's Method.

Zangwill [29] introduces a procedure based on theorems proved by

Powell [22] which converges in a finite number of iteratioens for a
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Table 4. Powell's Second Method (Simplified)

1 £(x) 2 £F(x) 3 £(x)
'z (1,2) 5 1(1.8,1.2) 1.8 [(1.8,0.9) 1.62
55 (1,0) (.7071,-.7071) (.7071,-.7071)
-t
Ps (0,1) (0,1) (0,1}
S 0 2.2556
:T:E (2,2) u (1.8,1.2) 1.8 (1.62,1.08) 1.u458
A, | -1 -0.3 -.23
ig (2,1) 2 1(1.8,0.9) 1.62 |(1.62,.85) 1.3154
5; (.7071,-.7071) (0,-1) (-.9635,-.2676)
Ay | --2828 0 1.3732
iz (1.8,1.2) 1.8 {(1.8,0.9) 1.62 |(.2969,.4825) L2672

positive definite quadratic function.

i

He also establishes theoretical

convergence for strietly convex continuously differentiable functions.

His method is stated as follows.

Let e., J
3 ]

= 1,2,...

,1, be the normalized coordinate directions

and let ﬁj’ j =1,2,...,n, be n normalized directions which are given.

Let in be the starting point and choose the number t = 1.
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(i) Find A, so that the function h defined by h(}) = f(;:n + Aﬁn)

has a minimum at A = A_ and let x =X + A_p_.
n n+l n n'n

For iteratiens k = 1,2,..., repeat the fellowing seven steps.

(ii) Find o so that the function h defined by h(}) = f(§n+l_+

Aét) has a minimum.at A = a.
(iii) Replace t by t+l if 1 < t <n and by 1 if t = n.

(iv) If o = 0, go to step (ii). If this altermative occurs n

times in succession, the point X 1 is a minimum.

If o # 0, let xo = Xn+l + aeti

(v) For j = 1,2,...,n, find Aj so that the function hj defined

by hj(h) = f(§._l + Aﬁj) has a minimum at A = Aj and define

X. = X. + A.D..
] -1 173

glowg

(vi) Let Pr1 © (xn‘d xn+l)/lxn B Xn+l|'

(vii) Find A
n

41 S° that the functlon'hn+l defined by hn+l(k) =

f(xn + lpn+l) has & minimum at X = An+l and define R4l

Xn * ln+lpn+l'

(viii) Replace 5j by p = 1,2,...,n, and go to step (ii).

j+1° ]
If steps (ii) - (iv) are repeated n times in succession, then

all n cooerdinate directiens have been searched and ne change in the

peint has occurred. Such a situatien can only occur if the gradient of

the functien at that peint is zero. For a strictly convex continucusly




differentiable function the point is the minimum.

are similar to the previous twc methods.
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Steps (v} - (viii)

iterations, all coordinate directions have been searched.

Example 8.

The positive definite quadratic function intrcduced in

Observe that after at most n

Example 3 will again be used to illustrate Zangwill's method in Table 5.

Table 5. Zangwill's Method

k=0 | £(») k=1 f(x) k=2
-t
Py (1,0) (0,1)
5; (0,1) (-1.3416,-.4472)
'z (.5,.5) .25
A 0
5; (.5,.5) .25
12 -1.5 -.25
-t
X (1,2) 5 {(.5,.25) .125
-t
Py (-.894Y4 ,-,4472)
A .5590
=1
X (1.5) | 2.25 [(0,0)
4] -.5 0

'
L L P Y
i
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The same starting point ﬁ; = (1,2) will be used. WNote that the vectors

p, and 52‘are mutually conjugate for k = 2,

The following theorem and lemma were proved by Powell [22] in his
attempt to establish quadratic convergence for his method. Theorem 4
is revised to require that the vectors ii, i=1,2,...,m, span the

m-dimensional space.

Thecrem 4. If al’aZ""’am’ m < n, are mutually conjugate directions,
then the minimum of the quadratic function f(x) in the m-dimensional
space containing Eo and the directions al,az,...,im may be found by

searching along each of the directions once only.

Proof. The required minimum of the quadratic function is the point
m

io + Z aiai’ where the parameters s i=1,2,...,m, are chesen by
i=1 _
minimizing the function in the direction q; - From the definition of a

quadratic function in Equation (2},

e
1 - m _ _ m _ - m _
50+ I oaapr v T oag) rbix ¢+ ] a9 e
1=1 1=1 1=1
‘ m m m
1 =t - -t - 1 - ~
z xOAxO + on(.; aiql) t 3 ( ; alqi)tA( z aiqi)
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m

+ % +BN Y a.3.) +e

Q . 171
i=1
; Boom —t m ~ _t+ W _

= fix )+ 5 I Z a,a.q Ag. + xOA( Z alql) + b (‘E aiqi)

i=]l j=1 i=1 i=1
- Tl 2t “t .- L&
= £(x ) + igl (5 aja;Aq; + a;q;(Ax_ + D). (8)

There are no terms with aiaj, i = j, since the directions ai’ig’ "’am

are mutually conjugate. Consequently, the effect of searching in the

direction ai is to find a; to minimize

L2
7 219

t,- —t, = | =
{hay 4 aiqi(Axo + b)

in that direction. Since this value of a; is independent of the other

terms of the sum in (8), then searching in each of the directions

qi,a2,...,am once only will find the absolute minimum in the space

determined by X 2GysQys e i

An alternate proof for m = n is given on pages 44-45.

Lemma 5.1. Let io be a point so that the function hO defined by

ho(h) = f(SEO + Aq) has a minimum at X = 0, and let il be a point so

that the function hl defined by hl(k) = f(;:l + Aq) has a minimum at

A = 0. Then the direction il - ;o is conjugate to q.




Proof. Now for a quadratic function

f(xO + Aq)

21 -t,- -t -
=3 OAxo + Aq Axo +

1l
2

1 - -t - s -
-é--(xo + Aq) A(xo + Ag) + b (xo + Aq) + ¢

L 223%g + BtQO + ARG + <.

Since io is a minimum in the directicn a, é%{f(;o + Aa)] = 0 at A =

Therefore,

3tax +5) = o0,
o)
Also,
..'t - -
q (Axl +b) = 0,
Hence
-t - -
q A(xl - xo)

1
o
.
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0.

The proof of quadratic convergence of Zangwill's method is given

in the following theorem.

Theorem 5. For a positive definite quadratic function (Equation (2))

Zangwill's method stops at the minimum in step (iv) of iteration k

where k < n.
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Proof. The proof is by induction on k, the number of conjugate direc-
tions after k iterations.

Assume at the beginning of iteration k, k < n-1, that the direc-
tions PL_x+1? Ppogap?- 2P, are mutually conjugate and linearly inde-
pendent. If the procedure does not stop in step {(iv) of iteration k,

- - - < - - - . - 3 -
a # 0 and X 41 # X and f(xo) < f(xn+l). Since A is positive definite

f(xo) < f(xn+l). From step (v), the point x, is such that f(xn) < f(xo)

and thus f(xn) < f(xc) < f(xn+l) so that in step (v1),xn+l # X and
Pri1 7 0.

At iteration k-1, from step (viii), the last k directions to be
employed were ﬁn-k+l""’5n' Since these directions are assumed to be

linearly independent, the point x in step (vil) of iteration k-1 is

nt+l
a minimum in the k-dimensional space containing 5n—k+l""’5n using
Theorem 4. Similarly the point ﬁn in step (v) of iteration k is such

a point. Thus from Lemma 5.1, p is mutually conjugate to D

n+l n-k+1?

.,ﬁn. By the previcus paragraph, §n+l is nen-zero; from induction,
the directions 5n—k+l""’5n are all non-zero. By Theorem 2, they are
linearly independent. Thus after iteration k the directions 5n—(k+l)+l’
""5n are linearly independent and mutually conjugate.

The above argument holds for the first iteration which estab-
lishes the induction.

Thus if the procedure has not stopped by the beginning of itera-
tion n, then n mutually conjugate and linearly independent directions

have been generated. In step (v) - (vii) of iteration n - 1 the

quadratic function has been minimized cover these n directions, so that
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the point x must be a minimum. The procedure will then stop in

nt+l
step (iv) of iteration n. §
Zangwill [29] establishes that this method comverges to the

minimum point of a strictly convex continuously differentiable function

but the necessary lemmas will nct be proved here.

Gradient Metheds

When the gradient of a differentiable function f of n variables

is known, it can be used to reduce the number of function evaluations

* in minimizing the function, but the computation of an n-component gradi-

ent is added. Gradient methods are now considered and the function
will be assumed to be differentiable with continucus partial deriva-

tives.,

Steepest Descent

One of the oldest gradient methods was developed by Cauchy [7]
in 1847 and is usually known as the method of steepest descent. After

an initial point Eo is selected, the basic algorithm is as follows.

(i) Compute the gradient vector ék at the point ik'

(ii) Let 5k = =g

(iii) TFind tk such that the funetion hk defined by hk(t) =

fx, + tﬁk) has a minimum at t = t

k k*

(iv) Repeat steps (i) through (iii) for k = 0,1,2,..., with

X =%+ tp

K+l K Py s the next starting point until the

convergence criterion is satisfied.
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Note that the wvector 5k in step (ii) can be normalized.
Example 9. The same function and starting point as in Examples 3-8 is
used te illustrate this algorithm for four iterations in Table 6.

Notice the orthogonality of consecutive éi's and that t, > 0.

Table 6. Steepest Descent

i=20 i=1 i=2 i=3

H (1,2) |(1.4,0.8) [€0.2,0.u) [(0.28,0.16)

f(ii) 5 1 0.2 0.04

"; (-2,6) |(1.2,0.4) [(-0.4,1.2)|(0.24,0.08)
~t
Ps (2,-6) |(-1.2,-0.4)|(0.4,-1.2)
t. 0.2 1 0.2

i

For the function f, the sequence f(io), f(il),... is a decreasing

sequence since the functicn hk defined by hk(t) = f(}—(k + tﬁk) has a
negative derivative at t = 0, hﬁ(o) = é;ﬁk = —|ék|, and it is therefore
possible to find a number t > 0 such that hk(t) < hk(O), that is, such
that f(xk + tpk)< f(xk).

The method of steepest descent seems attractive, but the apparent

advantage of searching in the direction of steepest descent is deceptiwe.
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The vector 51 is the direction obtained after the function is miniﬁized
in the direction ﬁo and is perpendicular to Py since hé(té) = ﬁzgl = Qg
similarly, 52 will be perpendicular to 51. With functions of two vari-
ables, 52 will be parallel to ﬁo and the method of steepest descent is
basically the same as minimizing the function in the coordinate direc-
tions since in each case the directions of search are ortheogenal at all
stages, but the latter method is much simpler and easier. With more
than two variables, the two methods are no longer necessarily equiva-
lent; each p is perpendicular to the preceding direction. Since n
successive directions of search do not necessarily form an orthogonai
set of vectors (which they did for the direct search method), these
directions do not necessarily span the domain space.

The method can be modified by selecting Xl T ¥y + atkp

but a is near 1, for example, a = 0.9), meaning that successive ﬁ's are

K (a # 1,

not perpendicular, but quadratic convergence is still not guaranteed.

Gradient Methods Using Conijugate Directions

Let is be an initial approximatien to the point at which the
minimum of a functicn occurs and let ﬁi, i=s1,2,...40n, be n linearly

independent directions. For i = 1,2,..., if x,

is osition of
i+l the p tion

"the minimum of the function f(x) with respect to variations along the
line through ﬁi in some specified direction 5i+l’ then

=0, (9)

where
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ivl %5 T 2541Pie (10)

for some scalar 3:. since, for the function h defined by h(t) =

- - , -t - _ . .. .
f(xi + tpi+l), h (ai+l) = 85,1Pj4; = 0. Consider the positive definite

quadratic function defined by

F(x) = %-itA %+ b + ¢, (2)
foer which the gradient vector is
g{x) = Ax + b. (11)

An alternate proof of Theorem 4 will now be given for n = m.

Proof. Repeated use of Equation (10) gives

1
g =g.+ ) adhp.,
md i=ia *
and therefore, from (9), that
n
_t_ _ _-t....
g,P5 = _Z ;PP
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Since the vectors 51’52""’§n are mutually conjugate by assumption,

and thus én = 0 since 51’52’°"’§n form a basis by Theorem 2. The last
equation implies that the minimum of the quadratic function has been
found in Eh' i

General Partan

A method developed by Shah, et al. [(24] is an alteration of the
method of steepest descent and is called the method of parallel tangents

or '"partan."

Definition 12. In En, the set of points.satisfying the .linear equation

ax; tag, t o tax =, (12)

where a. ,a

12852+ 58 ,C are constants, is called a hyperplane. (It is an

(n-1)-dimensional figure in n dimensions.) A hyperplane is tangent to
a contour of the function f at x if a; = Bf/axi and the point x satis-

fies Equation (12).

Definition 13. Three distinct points %, y, z in E_ are said to be
eollinear if X = ay + bz for constants a, b such that a + b = 1.

If Hi denotes the hyperplane tangent to the centour of the
function f at Ei’ then the algorithm for general partan can be stated

as follows.
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(i) Select an initial point §O and any direction ag such that

(ii)

aQ does not lie in the tangent hyperplane HO at Eo, that

is, so that a;go £ 0.

Calculate hl so that the function hl defined by the equation

hl(h) = f(x0 + Aq2) has a minimum at A = ll and let

P, = lqu and X, = xo + Py

For k = 1,2,3,..., repeat the next four steps until the convergence

criterion is satisfied.

(1ii)

(iv)

{(v)

(vi)

Find a vector Ures1 such that
3t E..=0, 3=0,1,2 k-1 (13)
q2k+lg2j - ’ 1l = L IR |

that is, Uy yy 18 parallel to the planes Ho’HQ""’HQk—2'

To find a?k+l the dependent system of linear equations in

(13) can be solved.

Calculate A2k+l so that the function th defined by the
equation hzk(h) = f(x2k + kq2k+l) has a minimum at x= A2k+l
and 1et oy = Aopr1%oker 39 ¥open T ¥or T Poyer”

X

Define oy n * X4 7 Xopop:

Calculate A2k+2 so that the function h2k+l defined by the
equation h2k+l(l) = f(:--c2k+l + A52k+2) has a minimum at
A= Agygp @08 18T Doy = Aoy alorey 304 Rppn = Kopep
132k+2'
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The algorithm of gemeral partan (an alternative version called
steepest descent partan will be stated later) is clarified by Figure

1 and the discussion that follows.

The solid line indicates the path of general partan.
For steepest descent partan, the vectors p_.p..P.sP-~»
K . 2’735y

., are steepest descent directions.

Figure 1. Schematic Diagram of Partan

From the initial point io’ proceed along a polygonal line deter-

mined by the points §0’§2’;3’§u"" such that each x, , k = 2,3,..., is

k’

the minimum of the function f on the line through ik—l in the directiocn

ak' (At even numbered points directions of decreasing f must be chosen.)

The direction 52 = %, - §0 is otherwise arbitrary; 53 is any direction

parallel to the plane HO; thereafter, for k = 1,2,.. is collinear

s Xok+2

with i?k—? and x (by step (v) and (vi)), and for k = 2,3,..

2k+1 P01t

is parallel to Ho’HQ’Hu""’HQk—Q'

The fact that gemeral partan reaches the minimum value of a

positive definite quadratic function of n variables by the point £2n
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will be proved after some initial cobservations of various properties.of
partan in relation to a quadratic function.
Consider a positive definite quadratic function. There is a

vector h such that Ah = b; since A is nonsingular, h = A—lE. Then

f(x)

1

ESTRE
|
o=
+
S
legl]
+
o)

s -t, - = 1
=3 x AX + x Ah + 5 h Ah - §-h Ah + ¢

% (R+R)TA(R+R) + < - —;—Etaﬁ

and hence, with a transformation that replaces x+h with X, the guadratic

function can be written as
£(%) = %itm}' + (e - = RUAR), (1)

where A is symmetric and positive definite and this function has a

minimum value at the origin. The gradient vector is ék = Aik. Define
-t , - _ -t=- _-t-

c = ¢ = %, AX. =%, g. =X, €,. {15)
1,] Jal 1 ] 1 g] ] gl

The requirement that the vector from X, to §s be parallel to Ho (as in

2

step (iii)) can be expressed as

(x,-x )té = ﬁt g =0, or ¢ . =c ..
372 o 3 "o 0,2 0,3
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In general, Equation (13) can be stated as

c2j32k = c2j,2k+l’ 7 =0,1,2,...,k-1, k =1,2,...,n-1 (18)

2

The collinearity of X2j’ X2j—1’,and x2j-u in step (vi) gives

x2j = (l+A2j) X2j—l - A2jx2j-u = ajx2j—u + Bszj-l £17)
where aj + Bj =1, j=2,3,...,n. Thus for any k,
®29,k T %5%5-u,k  ByCaqr ke 37 2e9seeene (18)

Since §2 is the point where the minimum value of the function occurs

on the line through io in the directien 52, §0—§ is parallel to the

2
hyperplane I

and in general,

c = 02,2, {19)

C51,5 7 C,4> 37 34aS....,0n, (20)

since f is minimized in each of the directions q., j = 2.3,4,...,2n0.

are collinear, then ij - x2j-l =

Furthermore, since ;2j’ §2j—l’ izj—u

A?ijj is parallel to x2j—l - x2j—4 = q2j, both of which are orthogonal

to é?j since h2j—l has a minimum at A = AQj’ and the equatiocns

- - — ‘t_ B _
o and thus normal to o> whence (xo—xz) g, = ¢ c = 0,
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C2j—4,2j CQj—l,2j = c?j,Qj’ j = 2,3,...,0, (21)

holds.

Lemma 6.1. For k = 1,2,...,0,

8]
Ek
(9]
H
(8]
|

|

2k,o - Cak,2 T Cai,u T 7T T Cooke (22)

Proef. By (19) the vesult is true for k = 1. Now assume (22) holds

and use mathematical induction to prove

Cok+2,0 - Cok+2,2 T Sok#2,4 = Cox+2,2k+2° (23)
Now
Cort2,2k+2 T C2k+2,2k T Cok+2,2k+1 ~ S2k+2,2k’ by (20),
= %1%k-2,2kt1 T Bie1ome1,2k01 T %ke1%2k-2,2k T Pre1C2Kk+1, 2k
= %1 (o0 ka1 T Cok-2,2k) T Bkr1(oke1, k41 T C2ke1, 2k
= 0, by (16) and by (20). (24)

From (21),
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Cox-2,2k+2 (25)

Cok+2,2k+2°
Now (24) and (25) establish the equality of the last three c's in
(23). Equality of earlier terms can be established by taking j < k-1

and writing, by (18),

= %1%0k-2,2k-2 T B

Cok+2,2k-2 T S2k+2,25 k+1%2k+1, 2k -2

- B

" %41%2k-2, 23 k+1°2k+1, 23

- ak+l(

)+ B . (

ke1(Cokra,2k-2 T C2ir1,2y) (38

Cok-2,2k-2 = 2k-2,23

The coefficient of o is zero by the induction hypothesis (22). If

k+l

k+l

Equation (16) is applied to both terms of the coefficient of B in
(26) above (j < k-1 is used in the second member) and Equation (22) is
i

used again, then

Cok+1,2k-2 ~ Sok+1,25 =0

“ok,2k-2 T 2k,23
so that (26) is zero and (23) is established. 1§

An immediate consequence of the abeve lemma is
Lemma 6.2. The vectors w, = X, -x s W, = X, -X JaW= X, -X are

mutually conjugate.
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Theorem 6. When general partan is used, the minimum value of a pesi-

tive definite quadratic function is reached prior to the calculation of

Xont+l"

Proof. The proof follows immediately upon application of Lemma 5.2
and Theorem 4. Altermatively, note that if the origin is not reached
prior to the calculation of ;2n+l’ then the censtruction leads to non-

null vectors ﬁl,ﬁz,...,ﬁn for which by Lemma 6.1,

-t - _ _ .
g2nwj = C2n,2j c2n,2j_2 = 0, 3 = l,2,...,0.
The vectors ﬁl,ﬁz,...,ﬁn are nonzero since A i1s positive definite and
WiAw, = X-AR . + XC. A% . > 0, 3 = 1,2,...,n, unless X, = 0 contra-
1] 2772) 2)-2 23 - 29

dicting the fact that the minimum was not found prier to the calculation

of §2n+l' But in n dimensions, only the null vector can be erthogonal

0 and %,  is the

to n mutually conjugate directions. Thus é?n = o

minimum. |

All points on the extended line through the points_;:o and §2

x + % + = 1. imi
correspond to vectors a X, a,X, where a, a, 1 Similarly, a

k-dimensional set Ek of vectors is the collection of vectors of the
form E aiii where E a, = l, and the summations may be over
i=0,2,4,...,2k, or equivalently, in view of the collinarity relation

(17), over 1 = 0,2,3,4,5,...,2k.

Coreollary. £2k occurs at the minimum of £ in the set of vectors Ek;

. . -t =
and if for i = 0,2,3,4,...,2k ) b, = 0, then ggk(z b;x.) = 0.
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Proof. These results follow frem Theorem 6 by restricting attention to.

the set of vectors Ek' Alternately, note that a necessary and suffi-

cient condition for a quadratic function to have a minimum value is
that the gradient é?k = grad f(ﬁQk) be nermal to every vector parallel
to the space Bk. But such vectors will always be the difference of two
vectors of the form X aiii where Z a, = 1, and hence have the form

I biii’ where Z bi = 0. Any such vector may.be represented using even-

numbered indices only, and by Lemma 6.1,

1L
o
-

-t -
85y (I D3x3) = (D bydeyy o

Steepest Descent Partan

General partan allows arbitrary choices, within restrictioens,
of the directions io’QQ’au""’aQn—u' An alternative method, called .
steepest descent partan, uses the method of steepest descent to deter-
mine even-numbered directions eof search. That it has finite convergeﬁce
for quadratic functions is proved by establishing a relationship between
the two methods.

The previous algorithm for general partan is changed by substi-
tuting the following alternatives for steps (1) and (iii):

(ia) Select an initial point io and let az = g,

(iiia) Let oree1 = “Box? k=1,2,...

Example 10. The steps in this alternate algorithm are given in Table

7, using the same positive definite function




considered in Examples 3-9.

Theorem 7.

2
f(xl,xz) = X

I 2xlx

2
5 + 2x2

Table 7. GSteepest Descent Partan
i=2 i=3 i=u
'E (1,2) |(1.4,0.8) [(0.2,0.4) [(0,0)
f(ii) 5 1 0.2 0
-t
5 (-2,6)|(1.2,0.4)
it (2,-6)](-1.2,-0.4)((~-0.8,-1.6)
i1 s .2,-0. .8,-1.
Ai+1 0.2 1 0.25
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If £ is a positive definite quadratic function of n vari-

ables (Equatien (1%)), then the minimum value of the function is reached

prior to the calculation of x

Proof.

where Aj # 0 when x

23

By construction,

25 7 ®o341

18 not the minimum.

Zn+l

= )‘ngjs ]

= 1,2,...

sn-1,

when steepest descent partan is used.

(27)

(28)

With j = 1, Equations (27)
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and (28) give

which is zere by step (ii) and thus the two methods are consistent up

to ﬁu, that is, ﬁ;Aﬁz = 0 for both methods.

Now assume they are consistent up to £2k’ that is, that 51’52’

0,1,...,k-1, by (28),

L

.,Gk are mutually conjugate. Then for i

-t - - __k_— _z t-
o3 Fox ™ X1’ T @ oy T Xog41) i

©29,2k T ©29,2k+1

which is zero by the Cerollary (to Theorem 6) which can be applied
because of the induction hypothesis. Hence the equations required for

reaching x are satisfied and the induction is established:. |

2k+2

For a geometric proof of Theorems 6 and 7, refer to [24] and
[28] in the Bibliocgraphy. Reference [24] also lists several alterna-
tives.

If the procedure in either general partan or steepest descent

partan has not been terminated before the calculatien of x then

2n+l’
£2n may be taken as a new initial io’ and the procedure started again
(called iterated partan). Alternatively with steepest descent partan,
the established pattern of alternating steepest descent and accelera-

tion steps is continued (called continued partan). This is net prac-

tical for gemeral partan due to storage requirements.
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Conjugate Gradient Method

The method of conjugate gradients developed by Hestenes and
Stiefel [17] is an n—étep procedure for solving a set of simultaneous
linear equations having a symmetric positive definite matrix of coef-
ficients. The equivalence of that problem and the minimization of a
quadratic function is clear from Equations (2) and (1l) since the
gradient vanishes if, and only if, Aﬁn = b (that is, En is the solution
to the system of equations).

This equivalence suggests the following minimizatien algorithm

as stated by Fletcher and Reeves [1l&].

(i) Choose an initial point x_ and let g = g(x_ ), p_ = -g_-

(ii) Find a; so that the function hi defined by the equatiocn

hi(a) = f(:7:i + aﬁi) has a minimum at a = a;, and set

541 T ¥p T 3Py (29)

i+l
... =2 =2
(iii) Set Bi = gi+l/gi'

(iv) BSet

Piy1 = "Bipy T BiPs-

1z (30)

(v) Repeat steps (ii) through (iv) until the coenvergence cri-

terion is satisfied.
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Example 11. The quadratic convergence of this method for the same
positive definite function considered in Examples 3-10 "is illustrated

in Table 8.

Table 8. Conjugate Gradients

1=0 i=1 i=2

-T

X, (1,2) [(1.4,0.8) (0,0)
f(x.)i5 1 0

1

-t

5 (-2,8)](1.2,0.4)

-t

i (2,-6)|(-1.12,-0.64)
a. 0.2 1.25

1

Theorem 8. The metheod of conjugate gradients has quadratic coenvergence.

Proof. By Theorem .4, this theorem will be proved if the "directions cf
search ﬁi’ i=0,1,...,n~1, are shown to be mutually conjugate for a
positive definite quadratic funmction as defined in Equation (2). Since
by (29}, Xi,p = %5t apss

= gi + aiAﬁi, i=o0,1,2,...,n-1. (21)

Now
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f(x + ap) = %—(i + aﬁ)tA(ﬁ + ap) + 5%(x + ap) + ¢
z %—itAi + aptAx + %—a2§tAﬁ + 5% + apth + ¢
and
d _d .= - _ -t,= . -t,= . -t
Y h(a) = i f(x + ap) =ap Ap + p Ax + p b
= aptAp + pU(AX + b)
-t - —t-
=ap Ap + p g.
Since h'(ai) =0,
g
a, = - ==, (32)
1 -t,-
P;AP

The vector ﬁi # 0 unless either the minimum has been reached or the
function was not minimized each time in step (ii). If Equation (30) is

used repeatedly, then

(33)
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g;8, =0, 1+#7, (34)
piAp. =0, i#7 (35)
i j ) L]
—t- ... o=t= _ =t .
Plpj - 0: 1 Js Pigj - gi9 127, (36)
-t - _ -t,= -t, - _ . . . -
giAPi = PiAPiD giAP =0, 1#73, 1#3+1, (37)
will be proved by mathematical induction. Now
P2
~t-  _ -t- -t,- _ -t= _"go"o -t,-
8.8, 88, t aghp, gL, - TTT8AP,, by (32),
Ap
o
=2z -2 since p_ = -g_ in step (i)
gogo gogcs Po go P »
= 0.

Assume Equations (34), (35), (36), {(37) hold for the vectors éo’él""’

g and PosPysee 5P 1" To show that Py can be adjoined to this set it

is sufficient to show that

—t- =2
g:Pp T g 12k, (38)
ﬁtAﬁ =0 i<k (39)
7Pk ’ ’
2EAD. = —prap i<k, 1i#k-l. (10)
kK kKFi? -

.
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Equation (38) feollows from (33) and (34). To prove (39), Equation

(33) and
-t - _ -t- -t, -
Ei+1Px = B3Py T 2;P;AP,
are used By (38) this becomes —éQ = —éz + a ﬁtAﬁ i<k Since
) k k i1k ’

a; > 0 by (32), Equation (39) holds. In order to establish (40), (30)

and (39) are used to obtain

_‘t —
x-1PK-1"P;

~t,- _ -t,- _ -t . _

pkApi = gkApi + B gkApi, i # k-1.

It follows that (40) holds and hence that (34), (35), (36), (37) held
for the vectors éo’él""’ék and ﬁo,ﬁl,...,ﬁk, It remains to show that

ék+l can be adjoined to this set. This will be done by showing that

-t- .
- 1<k, (41)
-t, - _ .
piAp . =0, 1<k, (42)
-t- .
Pig . 0, i<k, (43)

By (31)

.—'t_ - - + _tA_
Bi8ys1 T BiEx T B AP
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If i < k, the terms on the right are zero by (34) and (37) and thus
(41) holds. If i = k, the right member is zero by (37), (32), and
{(38)., If (31) is used again, then for i < k,

—t -t - -t - _ -t -
O < Byyq Bi41 ¥ 814183 * 238 AP; T 358y 18Py

Hence (42) holds. The Equation (u43) follows from (41) and (33).

In the process of establishing (34%) - (37), conjugate directions

have been obtained from Equation (35). Hence by Theorem 4, the method
of conjugate gradients has quadratic convergence. |

Davidon's Method

An efficient gradient method, originally developed by Davidon
[9] and clarified by Fletcher and Powell [15] in 1963, uses a sequence
of positive definite symmetric matrices {Hi} which converges to the
inverse of the Hessian matrix A of the function evaluated at the mini-

mam. If the vecter ﬁi is defined by ﬁi = —Higi, i=1,2,..., then Ei’

the step taken to the minimum function value of a positive definite

quadratic function in the direction ﬁi is an eigenvector of the matrix

. . -1 . .
H A which insures that Hi tends to A evaluated at the minimum as the

i+l

procedure converges. These ideas will be expanded on and proved later.

Since it is convenient to start with the unit matrix for Ho’
meaning that the first iteration coincides with the method of steepest
descent, the algorithm can be stated in the following form, where the

current point is ii with gradient éi and the matrix is Hi'




(1)

(ii)

(iii)

(iv)

(v)

(vi)
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Set
p, = -H.g.. (4y4)

Obtain as such that the function h defined by the equation

hia) = f(;i + aﬁi) has a minimum at a = a, -
Set x. = x, + é., where
i i

+1 i

S, = a,p.- (45)

Evaluate f(§i+l) and g, and note that

_'t - _
8,151 0, (46)
since h'(ai) = 0.
Set
Yi % Bi41 T By- (47)
Set
Hi+l = H, + Bi + ci, (u8)

where

e T T A, Dl AR R T

IR
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s H.y.y

il I e !
Bl = o= and Cl = Er—

i¥1 Yiti¥i

(Neither denominator is zero since H, is a positive

definite matrix for all i as will be proved later.)

The theoretical justification for the manner in which the
matrices are modified and the proof of guadratic convergence will be

i

given later,

Example 12. The algorithm for the method is illustrated in Table 9

for the same positive definite quadratic function,

2 2
f(xl,x2) > x] - 2xlx2 + 2x2,

considered in Examples 3-11.

Theorem 9. In step (ii) of the algorithm there is an a, > 0.

Proof. For the function h(c) = £(x, + ¢p,), h'(0) = g;p,. If

h'(¢) < ¢, then there is a member ¢ > 0 such that h(c) < h(0) and
h'(¢) = 0. Let this number be a;- Thus ftﬁi + aiﬁi) < f(gi), for

. - .. —t- =t - . .o C
a; > 0, will held for P; if P;8; = giHigi is positive which is true
for all possible éi # 0 if Hi is a positive definite matrix. In view

of the fact that the initial HO has been chosen to be positive definite

(and symmetric), the proof will use an inductive argument.




positive to show that QtHi+

L

Table 9. Davidon's Methed
i=o i=1 i=2
-t
: (1,2) (1.4,0.8) (0,0)
£(x,)|5 1 0
L
-t
: (-2,6) (1.2,0.4) (0,0)
. 1 0| 77384 .37077|([2 1
i 0 1] 37077  .42615| 1|1 1
p; |(2,-8)  [(1.07672,.61538)
a. 0.2 -1.3
1
-1 !
S5 (0.4,-1.2)|(~1.4,0.8)

Assume that Hi is positive definite and consequently that a, is

1

x > 0 for any x # 0.

Since Hi 1s assumed

pesitive definite and symmetric (see step (vi)), then there is a posi-

tive definite matrix U. such that (U.)2 = H., or U, = (H.)
i i i i i

/2=

1/2

p. 91). Define u = (H,) " “x and v = (H,) ' “y..
1 1 1
Hi+l in step (vi)
x'5.5.% RH.y yoH.X
—tH % = ;{tH % + i1 1 11
*Min i o —t
i1 Yi %394

172 (see [10],

By the definition of




2
- - _t-2 (X552 (:fsn)
_uuvv-{(uvwv) + i’ . i
7t 55, sy
1¥s 19

by the Schwarz inequality. But
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S:¥: = 8;8:,1 = S:8:s by step (v),
.._'t_
= —Sigi’ by (”'6)3
= a _tH g by definition of s
T 2i BiMiBye y i’
> 0, by assumption.

Hence itHi+ % >0 for all X # 0. Therefore, H

1 i+l

and the function is decreased at each iteration.

For the proof of gquadratic convergence, let f be a positive

definite quadratic function as given in Equation (2) with gradient

is positive definite

given by Equation (11). At the minimum io, G = Ax_+ b. Subtracting

Q

Equation (11) from this gives the equation Aio - Ax = -g, which gives

the difference between a point x and the minimum io as

The following lemma will be used later.

X -x=-A g. (49)
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Lemma 10.1. The directions 50,5 k <n (defined in step (iii))

ls-'-agk,

are linearly independent eigenvectors of Hk+lA Wwith eigenvalues unity.

Proof. By definition, for i = §0,1,...,n-1,

V. = g... - . = Ax._. - AX., by (11),

u
I
[¥i]

(50)

If (50) is premultiplied by Hi+l’ then

Hiafsy = BiYy
= v s, - v b 18
H,y, + 5, - Hy,, y (18),
= s,. (51)
1
Consider the equations
-t, - _ .
s.As. = 0, 0 <i<]<k, (52)
1]
HkAs = Ei, 0 <i<k, (53)
and use mathematical induction on k. For k = 1,
5 = 8 b 51
H As S, y (51),




and for k = 2,
T
s As_ = a; SOAPl’

- -t o
= -ay SOAngl,

Now assume that (52} and (53) hold for k. TFrom {(11),

=b+ A, . +s., ., +ts + o+ X
b (xl+

1 i+l i+2 k-1

for 0 ¢ 1 < k-1,

+ A(s,, .+t 8, ., * " +x
5y, ),

8i+1 1 i+2 k-1

Multiply by §§ and use assumption (52) to get

for 0 2 1 < k,

67

by (45),

by (u44),

by (51},

by (46).
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From assumptien (53),
-t = _ -t _ o= _ .
ngkAsi = SiAHkgk = gs; =0, by (54),
and by (44), (45) and the fact that a, > 0 by the previous theorem,
s,As. = 0, 0 <1i<k. (55)

concluding the induction for Equation (52). (Notice that Equation (55)

states that the directions éo’sl""’;k’k<n’ are mutually conjugate.)
Now
-t - =t=
Vi HkAsi = ¥ S by (53),
-t - _
= SkASi’ by (50),
= q (56) |
|
0 <ic<k, by (55). F
From (LB),
Hk+lASi = (Hk + Bk + Ck)ASi

- _t — — _t —_
L Sdsds) By fhas,)
H As. + -
k "1 §t - —tH -
k T Y kY
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But since

-t, - .

skAsi =0, 0<1i¢<k, by (55),
and

§£HkA§i =0, 0<ic<k, by (56),
then

= s,, (57)
0 < i<k, By assumption (53),

concluding the induction for Equation (53).

The vectors §O,§ .,§k,k < n, are mutually conjugate by Equa-

IEEE

tion (55), nonzerc unless éi = 0 since Hi is positive definite and
a, > 0, and linearly independent by Theorem 2, while Equation (53)

implies they are eigenvectors of the matrix H .A with eigenvalue

k+1
unity. §

Theorem 10. Davidon's method has quadratic convergence.

Procf. The proof is obvious from Lemmz 10.1 and Theorem 4. #§
By Lemma 10.1, HnA has eigenvalues unity with linearly independent

eigenvectors éo,é .55 . This implies that HnA is the identity

1t n-1

matrix, that is, HnA = I, and hence Hn = A-l. When A_l has been found,
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then the minimum of a quadratic can be found from any starting point x

by the simple use of Egquation (49).

Note on the Construction of B, in Equation (48). B, is the

. e .
factor which makes H tend to A in the sense that for a quadratic

function A_l = z Bi' To establish this fact, define the matrix §$ to

be S = [s El n—l]’ where §i are celumn vectors., Because of Equa-

tion (52), s'AS = D where D is a diagonal matrix with diagonal elements

d.. = EF As, ., i =1,2,...,0. Dhl exists since A was assumed positive
i1 1-1 1-1

.. -1 . . = =
definite and § exists since the vectors 5,98

pacee8 _ are linearly
independent. Hence
a = (sH™ps™t = (sp7ist)t
and therefore
a7t = gp7igt
Since D is a diagonal métrix,
-1 e - -t nol -1§§
SR TG IV
i=1 “ii i=0 SiASl
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Note on the Construction of Ci in Equation (48). The reason

for the way Ci is chosen can be deduced from the fact that Equaticn

(51) must be valid. From (51) and (u8),

H, 'As, = s, = H.,As, + B.As, + C.As,.
i+1 71 i 171 i 71 i1
Since
Bifs; = Big; = 5;s
the equation
C.As, = C.y, = -H/As, = -H.y., by (58) and (50),

must be satisfied. From this equation, the simplest form for Ci is

given by the equation

for some vector =z, but since Ci is to be a symmetric matrix, this gives

-~ -t
. . (Hiyi)(yiﬁi)
i -tH - )
Yiti¥s
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Criterion for Convergence

Quadratic convergence 1is assured when some methods are used on
positive definite quadratic funetions, but if the function is not
quadratic or if the method does not have quadratic convergence, then
the number of iteraticns necessary to attain a minimum value of the
function is net necessarily finite and therefore some convergence
criterion must be established to determine when the iterating should be
stopped. Ideally this criterion would be to stop the iterating when
the absclute value of the differences between the predicted component
value of the variables x4 and the actual component values at a true
minimum were less than given small amounts €5 i= 1,2,...;n. In any
event, when a criterion is chosen, a compromise has to Le made between
stopping the iterative procedure too soon and calculating £(x) an
unnecessarily large number of times.

If the gradient g of the function is available, then having the
value of été at the current point be less than a specified number is
one suggestion for a criterion; this uses the fact that the partial
derivatives of a function are zerc at a stationary point. Alterna-
tively, if the‘chaﬁge of the function value per iteration or the change
of each of the variables per iteration is less than some predetermined
number, then the iterating could be stopped. The latter is easy to
use and usually has the desired result. After a criterion is chosen,
it is usually possible to find a function for which the iterating does
not stop at the minimum when this criterion is used. Powell [22] gives
a procedure for his method which he claims has never failed to yield

the required accuracy. Essentially the procedure uses his method to
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minimize the function; another pecint is chosen near this resulting
approximation to the minimum and then Powell's method is used again on
the function with this starting value. From the two points resulting

from the two uses of Powell's method, a cheice is made for the point

where the minimum occurs.




74

CHAPTER IV
CONSTRAINTS

Previously, the problem of minimizing & function without con-
straints on the independent variables was discussed. Now methods for

minimizing £(x) subject to the constraints
gi(i)ao i=1,...,m (1)

will be considered. Since the constraint r(x) < 0 can be written as
g(x) = —r(x) > 0 and r(x) = 0 as gl(i) = r(x) > 0 and g2(x) =r{x) z 0,
all possibilities are covered.

If the function f and its constraints are linear, this problem
can be solved by linear programming technigues or similar methods in a
finite number of steps. If f is nonlinear, then methods of minimization
which use tangent plane approximations to the constraints (if they are
also non-linear) have been developed. The approach cf converting the

constrained problem into one which is net constrzined will be considered

here.

Transformat jons

By transformations of independent variables from an x-coordinate
system to a y-coordinate system, it i1s possible tc incorpcrate some
types of constraints into the function, possibly giving an unconstrained

preblem. Thus for the function f subject to constraints (1) (these
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define a "reglion" R in the x-space, that is, the subsets of En with
coordinate variables indicated by xi), it may be possible to find a
transformation T (not necessarily linear) which maps the y-space, that
is, En’ ontc R, T: En+R; and then the y-space is searched for a minimum
of £(T(y¥)) which accomplishes the same result as searching the region R
in the x-space. Some if not all the constraints may be dealt with in
this way. The decision as to which transformation T, if any, to use
depends on various factors, such as the kind of constraints in Equation
(1), the minimization method used, whether the method requires a gradi-
ent, the ease of finding the inverse transformation, and the behavior
of the function on the boundary of the region, that i1s, where equality
helds in (1).

As an example of the type of constraints which can be elimi-
nated, suppose that three independent variables Xy »X %y are to be
censtrained by § < x Then by the transformation

=%, =X

1 2 3’

2, .2, 2
3 2V Tyt Y

t]
1

it is seen that a minimization procedure with no provision for incor-
porating constraints can now be used to minimize the function in the

y-space. It is obvious that this transformation is nonlinear.
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Other suggested transformations are

(1) %, = yia

(ii) \X, = eyi,
(11i) X, = lyi|,
(iv) X, = sin2 V-

The transformations in (i) and (iii) constrain the variable ®; to non-
negative values while transformation (ii) restricts it to strictly
positive values. The use of (iii) destroys the differentiability for
some values of s of the functicn on which the transformation is used.
Transformation (iv) restricts Xs tc the range 0 < X: < 1, If each
independent variable is subject to constant lower and upper constraints,
for example, a, < % < bi’ i=1,2,...,n, then the permissible region
consists of a rectilinear "box" in n dimensions. If the transformaticn
%, = agt (bi—ai) sin2 ' is used, then an unconstrained optimum in
y-space can be sought. The periodicity of the solutions In y-space

should not cause any difficulty provided the method of minimization in

use does not take steps so large that it jumps from peak to peak.

Created Response Surface Technique

The created response surface technique developed by Carreoll [6]

will now be described. If the constraints are never allowed to be
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violated during the minimization process, then the resulting minimum
value of the function is sure to be a feasible one, that is, cne where
no constraints are violated, assuming that an initial feasible starting
point is known. This reguirement can be satisfied by devising a
penalty which is added to the value of the function to give a new
funetion h called a created response function and which becomes
increasingly severe as constraint boundaries are approached.

If £ is the function tc be minimized and if the m constraints

are expressed in the form

gi(;c) > 0, i=1,2,...,m, (1)

the created response function h can be written as

_ ~ moow,
“hlx,ry ) = £(x) + 1 7 —
a i=1 g.{x)
i
where W, > 0, i=1,2,...,m, and T2 0, k=1,2,... . The summa-

tion represents the "penalty" in the sense that as any constraint gi(g)
approaches its limiting value (zero), h approaches positive infinity
(since (1) holds). In this way a pfogressively severe penalty is
imposed as the limiting value of a constraint is approached. The wi's
{a footnote in [12] indicates these might just as well be chosen equal
to one as will be done here) welgh the Individual constraints among
themselves while r, weighs the sum of these penalties in relation to

k

the function f.
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The iterative preccedure on r, as given in [13] is described by

k
the following algorithm. A detailed analysis of each step is given in
[13], but the main ideas will be expanded in this paper after the

algorithm is stated. Let a number ¢ > 1 be given.

(i) Select a point io such that gi(io) >0, 1 1,2,...,m,

(11) Select an initizl value of r., T 0.

For k = 1,2,..., repeat the following four steps.

(iii) Determine a minimum g(rk) of h(;,rk) for the current value

of ry using i(rk_l) as a starting point and check the con-

vergence criterion (to be discussed on p. 82).

)

-—r

{(iv) If k » 1, estimate the minimum x of f subject to the con-

straints by the approximation

o @) - Ry ) |
x = 175 (58)
c -1

(v) If the convergence criterion is satisfied, then terminate

computations. If not, select L rk/c.
(vi) If k » 1, estimate the minimum x(rk+l) of h(x,rk+l) using
the approximation
Re, ) L R(r) + A [R(r) - R(r, )] (59)
k+1 k 2 k k-1

C
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and check the convergence criterion.

Example 13. To illustrate the created respcnse surface technique, let

the function £ be defined by

2 2
f(xl,xg) =%t 2 s

and subject to x, > 0, x, > 0; it has a minimum value of 0 at the

1 2

point (0,0). Since the constraints can be written as

]
v
(o]

gl(i) =

then let

._,_I
'_l
s

o
~~
%1
E
o

It
x
'_l
+
N
X
+
"
% |l
&
+
®
[~

Let QE = (2,3) and let ¢ = 10; using Equation (60), ry is calculated

as 26.7216. Define the errcr functien

E()-{_’r\) = (Tl_.'. l_
X

fr 7

| M

and step when E(x,r) < 1. The calculations are given in Table 10.
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Table 10. Created Response Surface Technique

i T, X, . X. . f(x.) |BE(x.,r.)
i i*i

0 2 3 22
1 g(rl) 26.7216 [2.3729(1.883412.7255 25,4487

2 Q(PQ) 2.67216 (1.1014; .874l; 2.7412, 5.4831

ofa
—w

X .5133} L4073 L0824 11,7652

X 1.0887| .8640} 2.6796| 5.5471
est

3 i(rs) .267216 <5112 .4057 .5906; 1.1813

=%

X .2383 | .1891 .1283) 2.5342

.5053} .4011 L5771 1.1951

®1

est

4 x(ru) .0267216| .2373, .1883 L1272 L2545

b 1106 | .0878 L0277 .5459

For the method to compute the initial interior point that satis-

fies the inequalities gi(i) >0, 1=1,2,...,m, let ik be a given

point and define the sets § = {s: gs(ik) < 0} and Tk = {t: gt(ﬁk)> 0}.

k

A sequence of points is generated that Iincreases the value of gi(i) for

i e8 until 1 e T, without violating any of the inequalities already

k k
satisfied. For the computational procedure the following algorithm is

given.

(i) Define
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h(xoe) = g, G) +r § ——,

1 teT, gt(x)

where Sl £ Sk'

(ii) Find a point x such that h(x ) < h(ik,r). (Any of

K+l k+1°T

the methods in the previous chapter can be Initiated.)

(iii) Evaluate gs(£k+l) for all s € S, and define the sets

k

S, and T,

(iv) If Sk+l is nonempty, go to step (i).

Otherwise, an initial interior peint has been found.

In reference [13] Flacco and McCormick give a rationale for com-
puting T the initial value of Ty consistent with attempting to reduce
the effort of minimizing h(i,rk). They also state that choosing ry

extremely large or extremely small (these extremes depend on xo) results
m

in an increase in the number of iterations. If p(x) = l_

o _ _ _ i=1 gl(x)

g(xo) and q(xo) denote the gradient of f{x) and p{(x), respectively,

and

evaluated at the initial point io’ then r. is given by

I

- = t _ -
glx )" q(x )
r, = - _? — 20 . (60)
latx )]

If é(ﬁo)ti(Eo) > 0, giving v, < 0, then proceed by taking a sequence of

steps in the direction —é(io) and recomputing r. using Equation (80) at

1
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each new point until a positive r., is obtained or until an unconstrained

1

minimum of f is achieved (see pp. 72-73). That one of these alterna-

tives will prevail and other ways of choosing r, are given in [13] as

1

well as methods for reducing r, after each h minimization.

k

The method of minimizing h(ﬁ,rk) in step (iii) can be any of
those discussed in the previous chapter or the first and second-order
gradient methods which are summarized in [13].

Fiacco and McCermick [13] use extrapolation formulas based on the

fact that the decrease in ﬁ(rk) each time 1s approximately linear in

1/2 . . . .
T / (derived from experience) to get a "first-order' estimate of the

point where the minima Q* (for (58)) and i(rk+l) {(for (59)) cccur.

If any point whose functional value f(x) is within € > 0 of a
true minimum value 1s acceptable as the solution to the constrained
minimization problem, then a useful convergence criterion is to termi-

nate the algorithm above when

m
0<r ) —J_“—<€
i=1 gi(x(r))

for any r = This criterion is suggested by the Corollary 12.2 to

e
be stated later.

To prove the convergence of the sequence of values of h(i,rk)

to a minimum value of the function (if r, 1s a strictly monotonic

k

decreasing sequence and r,>0 as k+s), that is, that f(g(rk)) N f(gﬁ)

—':
{where x 1s the point where a minimum value of the function f occurs

subject to g.{x) > 0, i =1,2,...,m) as r, >0, the o‘ owing conditions
bj ;)20 1,2 ) 0, the foll d

¥

are imposed:
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(a) R° = {x: gi(i) >0, i=1,2,...,m} is nonempty.

(b} The functions f,gl,...,gm are twice continuously differen-
tiable.

(¢) For every finite k, the set D = {x : f(x) <k, x ¢ R} is a
bounded set (hence is compact) where R = {x : gi(ﬁ) > 0,

i=1,2,...,m}.

% % -
Lemma 11.1. There is a point x & R such that f(x ) g f(x) for any

X e R.

Proof. Let kl be a number such that D is nonempty. For the points x
in R but not in D, f(x) > kl and DC R. Since f is a continuous func-

tion on a compact set D then (by Theorem 4-20, p. 73, Apostol [1]) there

ol wTa
- -

is a point x e D{(x € R) such that f(xu) < f(x) for x ¢ D. For any

ReR-D, £(Xx ) sk <f(X). 0

Let £ = £(x ) = inf £(X).

xeR

Lemma 11.2. If R° is not empty, there is a point i(rk) e R® such that

~ - - o
h(x(rk),rk) < hFx,rk) for any x ¢ R™.

Proof. Let ;o e R” be the peint where the minimization procedure begins
and let MO = h(xo,rk). Define the sets So = {x : f(x) < Mo’ x € R},

—: o_ s - s_ -=::----F. 3
{ rk/gl(x} < MD fo x € R} for i = 1,2 M inally, let

S, =
1

n
s=(\ s,.

i S is nonempty because X, € S0 since f(xo) < h(xo,rk) and

i=1




a8y

T
X ©€8.,,i=1,...,m, since M = h{x ,r,) > £ + _x . S 1s closed
o 1 o} o’k s} . )
and bounded by choosing k = MO in assumption (c) 3bove. For the sets

r
. - k .

Si’ i=1,2,...,m, gi(x) > ﬁ;_:_?;-> 0 and the sets Si are closed since
the functions E;» i=1,2,...,m, are continuous. Therefore S is closed

and S is bounded and hence 5 is compact.
Since h is a continuous function on a compact set S, there is a

peint ﬁ(rk) ¢ S such that h(i(rk),rk) < h(§,rk) for any X e S.
Let x ¢ R°. If % ¢ S, then either f(x) > Mo = h(io,rk) or fO +

"

>M = h(x_,r
- o
gi(x-) _
gives h(x,rk) 2 h(x(rk),rk) and the latter likewise gives

k). For the former, h(xo,rk) > h(x(rk),rk) which

h(§,rk) > h(i(rk),rk) for any x € R%. I

Theorem 11. If the closure of R° is R, then 1lim h(ﬁ(rk),rk) = fo.
]

Proof. Let € > ¢ be any positive number. There is a y € R such that

fy) < £+ %g otherwise, the inequality f(x) 2 £+ %—would hold for

all x € R implying that fo + %—is the minimum value of f for x ¢ R

instead of fo' For such a y € R by hypothesis and the fact that f is

. . . . - .. . -+ o
continuous in R, there i1s a neighborhood of y containing a peint x ¢ R

such that f(§+) < fO +

N m

Select k' such that r, + ji—min{g.(§+)}.
k  2m i i

Then for k > k+,

f < inf h(ﬁ,rk) h(ﬁ(rk),rk) < h(X(Ek+),rk) < h(X(5k+),rk+)

-~ 0
XxeR

< h(£+,rk+) <f 4 <f te

| ™
|




which proves the theorem. i

Theorem 12. Every subsequence of {i(rk)} has a subs

verges te some peint % which is such that f(gn) = f .
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equence that con-

Q

Procof. Let
_ _ s 1
K = h(x(rl),rl) = f(x(rl)) tr _E ~ .
i=1 g.(x(r,))
i 1
Let & = {x : £(x) £ K, x ¢ R}. Now h(x(r,),r ) < hix(r, _)or) ) <

h(ﬁ(rk_l),rk_l) for k > 2. Therefore h(;(rk)’rk) < h(i(rl),rl) and

e 1
flx{r_ )) + 1 Z ———
1 1.t Z

j=1 gj(x(rl))

v 1
F(x(r)) < fxley ) + v, | ————

j=1 gj(x(rk))

Thus i(rk) e A,

Let {gk} be a convergent subsequence of {i(rk)} with limit x .
f(x") - fO

2
£(x ). Let k, be such that |f(x ) - £(x )| < § for all

Suppose £(x ) # fo, and let § = Since f is continuous at

%, lim £GR )

k+=
k = kl' From Theorem 11 there is k2 such that |h(§k,rk) - fo| < § for
all k > kz. Choose k > max (kl’kQ)' Then
- m 1
f(xk) + ry .Zl =3 - fO < &

and




BB

P - - 3
[£, - £GO] s £ - 80|+ [8x) - £,
28 < Ifo - fx )] * 6,

§ < f(xk) - fo'

Then

m
z ___l._._<5,

§ < f(x ) -f < f(x)-f +1
k o k o . -
j=1 gj(xk)

k

1]
Hh
-

-5
a contradiction. Thus f£(x )

b

Corcllary 12.1. If there is only one point X ¢ R such that f(ﬁu) = fo’

uta
‘

then 1im x(p, ) =% .
k
k—)-cn

Proof. Suppose lim x(», ) # X By Theorem 12 {i(rk)} has a subse-
k+m

quence {ik} that converges to a polnt % such that f(ih) = fo' Consider

k

an open neighborhood about X such that there is an infinite number of
points of the sequence {ﬁ(rk)} outside the neighborhood. This is pos-

- % -
sible if 1lim x{(r, ) # x . Let {yk} be a convergent subsequence of these
>0

- - %
points converging to a point y. Now v # x from the construction of

k

{§k}’ but by Theorem 12 the sequence {ﬁk} converges to apoint such that
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=%

fo. Thus there are two distinct points, y and x such that

fy)

o

-

fy) = f(x ) = fo, but by hypothesis there is only one--z contradiction.

ofa
=

Thus 1im x(r,) = x . §
k
k-

Corollary 12.2. 1If {ﬁ(rk)} is the sequence obtained from the algorithm

on page 78, then

1im f(i(pk)) = fo,

ko

m
lim v, } — -

ke izl g. (x(r )}

Proof. Since f is a continuous function on R, then by Corollary 12.1,

e

—

tim £(x(r )} = f(lim x(r . }) = £(x ) = f_.
k k o
korea ke
By Theorem 1l and the previcus sentence,
m 1 _ _
lim v ) ~————— = 1lim Calx(e, Yor, ) - £zl )]

k-reo i=1 gi(Q(rk)) koo

= lim h(i(rk),rk) - lim (i(rk)) =f - f_ =0.

k= ko

m
Therefore lim r z 1 exists and equals zero. H§

PR ) gi(i(rk))
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Thecorem 13.

m m

L PR (63)
i=1 gi(x(rk)) i=1 gi(x(rk+l))

and

f(i(rk)) 2 f(ﬁ(rk+l))- (84)

Proof. The following inequalities are true.

- i 1 - T 1
EGlry Dt ryyy I ——=—— s Fxmy ) v ry ) ) —T

i=1 gi(i(rk+l)) A i=1 gi(ﬁ(rk))

and

- T 1 - T 1
) 'Zl Gy~ M) T izl (R(r, . ))
BT R T8 e
When the above inequalities are combined, then
m m

1 1
{r -r ) (r -r) —_—

k+1 ) S = k+1 k° L& =
i=1 gi(x(rk+l)) i=1 gi(x(rk))

or

m m
S S S S

i=1 gi(i(rk+l)) izl gi(i(rk))




which is (63).

f(i(rkﬂ)) + v

from which (64

By the first inequality in the proof and (63)

m m

k+l L = L .
i=1 gi(x(rk+l)) i=1 gi(x(rk+

) is obviocus. §

1

) 1 < f(g(rk)) to, . Z 1

))

89

]
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CHAPTER V
CONCLUSION

In the preceding parts of this paper, some of the more signifi-
cant iterative methods of minimizing a function of n variables and ways
of dealing with constraints have been discussed. A comparison of the
various methods to determine which one is "best" underkany criterion is
difficult since there will always be some particular function for which
a given method is best suited. However, there are certain fundamental
characteristics of the metheds which affect their performance.

Many of the methods considered have quadratic convergence, mean-
ing that the minimum value of a positive definite quadratic function is
found, apart from rounding errors, in n iterations. A logical exten-
sion of this result is that any method with quadratic convergence would
find the minimum value of any function in fewer iterations than one
without it because, near the minimum, the second order terms of a Tay-
lor's series expansion of the function dominate and the only methods
which will converge quickly for a general function are those which will
guarantee te find the minimum of a general quadratic speed?ly. This is
due to the fact that the'curvature" of the function (as measured by the
Hessian matrix of second order partial derivatives) is relatively stable
near the minimum. (Note that Davidon's method gives a gocd estimate of
this matrix that can be used for this purpose.) The superiocrity of

methods with quadratic convergence is upheld in the studies of Box [5],
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Fletcher and Powell [15], and Fletcher and Reeves [16]. The type of
function and the behavior of this function near the minimum still has
an effect on the number of necessary iterations; the '"nearer" the func-
tion is toc a quadratic in a neighborhood of the minimum, the more
effective a methed with gquadratic convergence will be and the fewer the
number of iterations.

However, the above statements should be qualified tc some extent
due to the influences of various other facters. The starting point,
its nearness to the minimum and the criterlion for convergence will have
an effect con the number of iterations. In-choosing a method to minimize
a function, the number and ease of computaticns, the number of function

evaluations per iteration and whether the gradient of the function is

available should be considered. If the gradient is not available, then

Powell's method or Zangwill's method might be preferred; the latter has
quadratic ceonvergence. In a comparison of several nongradient methods,
Fletcher [14] states that Powell's method is certainly the most effi-
cient on the basis of the number of function evaluations and that it

has rapid convergence near the minimum. (Zangwill's method was not
included in this ccmparison.) When the gradient is available, Davidon's
method usually gives faster convergence even though other gradient
methods have quadratic convergence. Fletcher and Powell [15] state that
Davidon's method is probably the most powerful general procedure avail-
able for finding a local minimum and Box [5] states that it was the most
consistently successful in his comparison of several procedures. If

the gradient cannot be determined analytically, then a finite difference

approximation can be made for the partial derivative such as
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iy f(xl,...,xi + h’xi+l"'°’xn)_ f(x) .
= - R 1= 1,2,...,.1,
9%,
i h

where h is a small number, or

S E _ f(xl,...,xi + h,...,xn) - f(xl,...,x. — hyeveyX )

By 2h

Methods for dealing with constraints have been discussed. Other
methods are known, but most of them are restricted to using a specific
minimization method or work only for constraints of a certain form.

Box [5] states that for a general constrained minimization problem,
Davidon's method combined with Carroll's created response surface
technique has been successfully used. TFiacco and McCormick [13] state
that Carrcll's method has worked orderly most of the time they have
used it.

There are other types of methods of minimizing a function and
cther ways of dealing with constraints as well as methods which combine
fhe two problems which have not been discussed. The reader is referred
to an extensive bibliography in reference [20] and to the Journal of
Industrial Engineering [21] which gives a flow chart indicating ways to
decide the approach to use in optimizing a function subjéct to con-

straints.
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