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江雪

千山鸟飞绝

万径人踪灭

孤舟蓑笠翁

独钓寒江雪

River-snow

From hill to hill no bird in flight;

From path to path no man in sight.

A little boat, a bamboo cloak,

An old man fishing in the cold river-snow.

柳宗元 LIU Zongyuan

回首向来萧瑟处，也无风雨也无晴

Turning my head, I find the dreary beaten track. Impervious to rain or shine, I’ll have my

own will.

苏轼 SU Shi

Let everything happen to you

Beauty and terror

Just keep going

No feeling is final.

Rainer Maria Rilke
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SUMMARY

The probabilistic method is one of the most powerful tools in combinatorics; it has been

used to show the existence of many hard-to-construct objects with exciting properties. It

also attracts broad interests in designing and analyzing algorithms to find and construct

these objects in an efficient way. In this dissertation we obtain four results using algorithmic

approaches in probabilistic method:

1. We study the structural properties of the triangle-free graphs generated by a semi-

random variant of triangle-free process and obtain a packing extension of Kim’s

famous R(3, t) results. This allows us to resolve a conjecture in Ramsey theory by

Fox, Grinshpun, Liebenau, Person, and Szabó, and answer a problem in extremal

graph theory by Esperet, Kang, and Thomassé.

2. We determine the order of magnitude of Prague dimension, which concerns efficient

encoding and decomposition of graphs, of binomial random graph with high prob-

ability. We resolve conjectures by Füredi and Kantor. Along the way, we prove a

Pippenger-Spencer type edge coloring result for random hypergraphs with edges of

size O(log n).

3. We analyze the number set generated by r-AP free process, which answers a problem

raised by Li and has connection with van der Waerden number in additive combina-

torics and Ramsey theory.

4. We study a refined alteration approach to construct H-free graphs in binomial ran-

dom graphs, which has applications in Ramsey games.
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CHAPTER 1

INTRODUCTION

The work presented in this dissertation lies in the intersection of combinatorics and proba-

bility theory. Using tools from probabilistic combinatorics, we resolve several conjectures

and problems in Ramsey theory, extremal combinatorics, and additive combinatorics.

A core methodology of this dissertation is a modern algorithmic approach to the prob-

abilistic method. The probabilistic method, which is a powerful method in combinatorics

and related areas, was pioneered by Paul Erdős. The classical approach is to show that a

random object satisfies desired properties with positive probability. The algorithmic ap-

proach is to generate the random object using some suitable randomized algorithm, which,

for example, generates the object step by step in a more sophisticated way. We apply this

algorithmic approach in many areas, and the main mechanism is to keep track of various

structural properties during the random processes, for example, to show certain pseudoran-

dom properties are preserved. Using variations of this approach, the central contributions

of this dissertation are based on the following three main paradigms:

• Using semi-random algorithms, we resolve several conjectures and problems in

Ramsey theory and extremal combinatorics, which were raised by Fox, Grinshpun,

Liebenau, Person, and Szabó [38], Füredi and Kantor [45], and Esperet, Kang, and

Thomassé [36] (see Chapter 2, 3, 4 for details, which are based on [56] published

in Combinatorica, [54], and [57], respectively). For example, we refine Kim’s cele-

brated Ramsey R(3, t) construction of triangle-free graphs and make it more robust,

which allows us to determine the order of magnitude of the smallest minimum de-

gree of r-Ramsey-minimal graphs sr(K3), a parameter introduced by Burr, Erdős,

and Lovász in 1976 (see Section 1.1 and Chapter 2 for details, which is based on [56]

published in Combinatorica). For random graphs we determine the typical order of

1



magnitude of Prague dimension, which was introduced by Nešetřil, Pultr, and Rödl

in the 1970s (see Section 1.2 and Chapter 3 for details, which is based on [54]).

• Analyzing some random greedy algorithms, we answer a question by Li [77] re-

lated to van der Waerden numbers in additive combinatorics and Ramsey theory (see

Section 1.3 and Chapter 4 for details, which is based on [57]), and we prove random

variants of the influential Pippenger-Spencer hypergraph chromatic index result (see

Section 1.2 and Chapter 3 for details, which is based on [54]). For example, in the

random setting we are able to properly color an r-uniform n-vertex hypergraph with

edges of very large size, i.e., of size r = O(log n).

• We also refine the related alteration approach. In particular, we prove that for suit-

able n and p, after removing all edges of H-copies in random graph Gn,p for a fixed

graphH , the resultingH-free graph is still pseudorandom. This contrasts with earlier

approaches of Erdős [27] and Krivelevich [71], who constructed such H-free graph

by removing some edges of H-copies in Gn,p. Our refined approach has applica-

tions in Ramsey games: we extend previous results by Conlon, Fox, Grinshpun, and

He [20] and Fox, He, and Wigderson [39] (see Section 1.4 and Chapter 5 for details,

which is based on [55]).

When applying the above paradigms, we use differential equation method, concentration

inequalities, and martingale theory as the key ingredients of our analysis.

In the following subsections we further expand on the main results of this dissertation.

1.1 Triangle-free graphs and their applications in Ramsey theory

An interesting but mysterious phenomenon in mathematics is that for a sufficiently large

structure, no matter how it is partitioned, there will always be some well-behaved sub-

structure in one of the parts. The study of this phenomenon is called Ramsey theory. As

a central parameter in Ramsey theory, Ramsey number R(s, t) is the minimum number n

2



such that every red and blue edge coloring of complete graph Kn contains either a red Ks

or a blue Kt. Understanding the behavior of R(s, t) and other Ramsey-type parameters

is notoriously difficult. A celebrated result in Ramsey theory is R(3, t) = Θ(t2/ log t),

the study of which has been very influential for the development of new tools and tech-

niques in probabilistic combinatorics. Matching the upper bound by Ajtai, Komlós, and

Szemerédi [2, 3] in 1980 where the fantastic semi-random approach was invented, in 1995

Kim [67] famously proved his Fulkerson Prize result R(3, t) = Ω(t2/ log t) by analyz-

ing so-called semi-random triangle-free process1. Kim’s result improves the logarithmic

factor in R(3, t) = Ω(t2/(log t)2), which was first obtained by Erdős [27] in 1961 via a

clear alteration method and was subsequently reproved over the following three decades

via Lovász Local Lemma [107], a basic analysis of the triangle-free process [33], large

deviation inequalities [71], and differential equations [109]. Kim’s result was reproved by

Bohman [10] in 2008.

Both Kim and Bohman proved that R(3, t) = Ω(t2/ log t) by constructing an n-vertex

triangle-free graphG in complete graphKn with independence number α(G) = O(
√
n log n),

which is optimal up to the constant factor and improves previous bound O(
√
n log n) by a

logarithmic factor. By analyzing the semi-random triangle-free process and investigating

more pseudorandom properties in the process, we prove a packing extension of Kim and

Bohman’s results: for any ε > 0 we find an edge-disjoint collection (Gi)i∈I of n-vertex

graphs Gi ⊆ Kn such that (a) each Gi is triangle-free and has independence number at

most Cε
√
n log n, and (b) the union of all the Gi contains at least (1 − ε)

(
n
2

)
edges. As

an application, we prove a conjecture in Ramsey theory by Fox, Grinshpun, Liebenau,

Person, and Szabó [38] concerning a Ramsey-type parameter introduced by Burr, Erdős,

and Lovász [16] in 1976. Namely, denoting by sr(H) the smallest minimum degree of

1The triangle-free process (proposed by Bollobás and Erdős) is defined by starting with an empty edge
set on n vertices and then iteratively adding one edge at each step, chosen uniformly at random from all non-
edges, subject to the constraint that adding it does not create a triangle. The semi-random version proceeds
similarly to the triangle-free process, but at each step, instead of adding just one random edge, we add many
random edges and if necessary do some correction on the random choices. See Chapter 2 for details.
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r-Ramsey minimal graphs for H , we close the existing logarithmic gap for H = K3 and

establish that sr(K3) = Θ(r2 log r).

See Chapter 2 for details, which is based on joint work with Lutz Warnke [56] published

in Combinatorica.

1.2 Prague dimension

Introduced by Nešetřil, Pultr, and Rödl [85, 84] in the 1970s, the Prague dimension (also

called product dimension and there are many equivalent definitions, see [121, 59, 5])

dimP(G) of a graph G is the minimum number d such that G is an induced subgraph

of the product of d complete graphs, which equals the minimum number of subgraphs of

the complement G of G such that (i) each subgraph is a vertex-disjoint union of cliques,

and (ii) each edge of G is contained in at least one of the subgraphs, but not all of them.

Determining Prague dimension of many graphs remains to be difficult. Füredi and Kan-

tor [45] noted that with high probability dimP(Gn,p) = Ω(n/ log n) for constant edge-

probabilities p and conjectured that their lower bound gives the correct order of magnitude;

see [45, Conjecture 15] and [64]. We resolve this conjecture.

Along the way of the proof, we extend a previous chromatic index result by Kurauskas

and Rybarczyk [74] and we obtain a Pippenger–Spencer type [93] edge coloring result

for random hypergraphs with uniformity O(log n), which is a hypergraph extension of the

famous Vizing’s theorem for graphs.

See Chapter 3 for details, which is based on joint work with Kalen Patton and Lutz

Warnke [54].

4



1.3 Some random greedy algorithms

1.3.1 Van der Waerden numbers

As an important parameter in additive combinatorics and Ramsey theory, van der Waerden

number W (r, k) is the minimum number N such that every red and blue coloring of num-

bers in [N ] = {1, 2, . . . , N} contains either a red r-term arithmetic progression (r-AP) or

a blue k-AP. The celebrated van der Waerden’s theorem guarantees that W (r, k) is finite

for all integers r, k ≥ 2. It is natural, interesting, but difficult to determine the asymp-

totic behavior of W (r, k) (see [47, 50]). Indeed, in the mid 2000s Graham conjectured

that W (3, k) ≤ kO(1) and mentioned that numerical evidence (for example, see [1] or the

sequence A007783 in [105]) suggests W (3, k) = k2+o(1); see [48, 49, 52]. Around 2015

Graham even started offering $250 reward for his conjecture (see [49, p. 19]). The best

known upper bound W (3, k) ≤ exp(k1−Ω(1)) was obtained by Schoen [100] in 2020. In

terms of lower bounds, in 2008 Li and Shu [78] showed that W (r, k) = Ω
(
(k/ log k)r−1

)
for fixed r ≥ 3, by applying the Lovász Local Lemma to a random subset of the integers [n].

Subsequently, Li raised in 2009 the natural question [77] whether this probabilistic lower

bound can be improved via a randomized greedy algorithm that ‘dynamically’ constructs an

r-AP free subset of the integers [n]. We answer Li’s question affirmatively. See Chapter 4

for details, which is based on joint work with Lutz Warnke [57].

1.3.2 Induced bipartite subgraphs in triangle-free graphs

Studying induced bipartite subgraphs with large minimum degree in triangle-free graphs,

recently Esperet, Kang, and Thomassé asked [36, Problem 4.1] to determine fη(n) that is

the largest minimum degree of a bipartite induced subgraph over all n-vertex triangle-free

graphs of minimum degree at least nη, for fixed η ∈ (0, 1) as n → ∞. They guess fη(n)

has phase transition at η = 1/2 due to the pseudorandom properties in triangle-free process

as mentioned in Section 1.1. For η in some ranges, Esperet, Kang, and Thomassé [36], van

5



Batenburg, de Verclos, Kang, and Pirot [113], and Kwan, Letzter, Sudakov, and Tran [76]

partially solve this problem up to constant factors, but for η ∈ (1/2, 2/3] close to the crit-

ical value, there are logarithmic gaps in their work. Their proofs are based on alteration

method or Lovász Local Lemma. Based on a more refined analysis of pseudorandom prop-

erties in the semi-random triangle-free process in [56] by the author and Lutz Warnke,

which is mentioned in Section 1.1, we close the gaps and solve the problem up to constant.

For g(n, d) that is a natural generalization of fη(n) and can be viewed as replacing nη in the

definition of fη(n) by d, our refined analysis in [57] also closes the gaps in van Batenburg,

de Verclos, Kang, and Pirot [113] and Kwan, Letzter, Sudakov, and Tran [76] so that we

determine the order of magnitude of g(n, d) for all nΩ(1) ≤ d ≤ n/2. See Chapter 4 for

details, which is based on joint work with Lutz Warnke [57].

1.4 Refined alteration approach

To prove a lower bound on Ramsey number R(H,Kk) that is the minimum integer n such

that every red and blue edge coloring of complete graph Kn contains a red copy of H or a

blue copy of Kk, one needs to show existence of an n-vertex H-free graph without large

independent set. One way is in binomial random graph Gn,p using alteration method to de-

stroy all H-copies to make resulting graph H-free. By removing some edges of H-copies

in Gn,p, Erdős [27] (for H = K3) and Krivelevich [71] (for strictly 2-balanced2 H) found

a lower bound on R(H,Kk) by showing existence of an H-free graph with no independent

set of size k in Gn,p for n = Θ((k/ log k)m2(H)) and p = O((log k)/k). We consider a

refined alteration approach and prove that removing all edges of H-copies does not signif-

icantly change the numbers of edges in all k-vertex sets so that the independence number

of the remaining H-free graph is at most k.

One benefit of removing all edges of H-copies is that it can be applied in some on-

2m2(H) := maxF⊆H

(
1{vF≥3}

eF−1
vF−2 + 1{F=K2}

1
2

)
and a graph H is strictly 2-balanced if m2(H) >

m2(F ) for all F ( H .
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line game settings. Firstly, we extend bounds of Conlon, Fox, Grinshpun, and He [20]

regarding online Ramsey game. Secondly, we generalize the upper bound by Fox, He, and

Wigderson [39] for Ramsey, Paper, Scissors number.

See Chapter 5 for details, which is based on joint work with Lutz Warnke [55].

1.5 Basic definitions and notations

In this final subsection we briefly introduce some basic definitions and notations used fre-

quently in this dissertation.

An r-uniform hypergraph is an ordered pair of sets (V,E) with E ⊆
(
V
r

)
:= {A ⊆ V :

|A| = r}. Especially, 2-uniform hypergraph is called graph. Given a (hyper)graph H =

(V,E), the set V = V (H) is the vertex set consisting of vertices and the set E = E(H)

is the (hyper)edge set consisting of (hyper)edges. The degree of a vertex is the number

of (hyper)edges containing the vertex. The minimum (maximum) degree of a (hyper)graph

is the minimum (maximum) degree over all vertices of the (hyper)graph. An independent

set I of a graph G = (V,E) is a subset of the vertex set V that contains no edge of the

graph, i.e.,
(
I
2

)
∩ E = ∅. The independence number α(G) of a graph G is the maximum

size over all the independent sets of G. The complement Ḡ of a graph G = (V,E) is

(V,
(
n
2

)
\ E). Graph F is a subgraph of graph G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G).

Two graphs G1 and G2 are isomorphic if there exists a bijection φ : V (G1)→ V (G2) such

that {u, v} ∈ E(G1) if and only if {φ(u), φ(v)} ∈ E(G2). Given a graph H , a graph G is

called H-free if there is no subgraph of G that is isomorphic to H . The complete graph (or

clique of n vertices) Kn is n-vertex graph with all of the
(
n
2

)
pairs of vertices as edges. A

graph G is bipartite if V (G) is disjoint union of two independent sets.

An r-term arithmetic progression (r-AP) A = {a1, a2, . . . , ar} in [n] := {1, 2, . . . , n}

is a subset of [n] satisfying |A| = r and for some d 6= 0 and all i = 1, 2, . . . , r, ai =

a1 + (i− 1)d.

The binomial random graph Gn,p is the n-vertex graph where each of the
(
n
2

)
pairs of
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vertices occurs independently as an edge with probability p. Given a sequence of events

(An)n in some probability space, it holds with high probability (whp) if limn→∞ P(An) =

1.

For asymptomatic notations in this dissertation, given two functions f and g, we write

f(n) = O(g(n)), f(n) = o(g(n)), f(n) = ω(g(n)), f(n) = Ω(g(n)), and f(n) ∼ g(n) if

lim supn→∞
|f(n)|
g(n)

< ∞, limn→∞
f(n)
g(n)

= 0, lim infn→∞
|f(n)|
g(n)

= ∞, lim infn→∞
|f(n)|
g(n)

> 0,

and limn→∞
f(n)
g(n)

= 1, respectively. We write f(n) = Θ(g(n)) if f(n) = O(g(n)) and

f(n) = Ω(g(n)). We write f(n)� g(n) or g(n)� f(n) if lim infn→∞
f(n)
g(n)

=∞.

8



CHAPTER 2

PACKING NEARLY OPTIMAL RAMSEY R(3, T ) GRAPHS

2.1 Background and main results

The 1947 paper of Erdős [26] on the diagonal Ramsey number R(t, t) is often considered

the start of the probabilistic method, where R(s, t) is defined as the smallest integer n ∈ N

such that every red-blue colouring of the edges of the complete n-vertex graphKn contains

either a red Ks or a blue Kt. In general, the estimation of R(s, t) and other Ramsey-type

parameters is known to be notoriously difficult.

One of the celebrated results in Ramsey theory is R(3, t) = Θ(t2/ log t), and this spe-

cial case has repeatedly served as a testbed for the development of new tools and techniques

in probabilistic combinatorics. Indeed, complementing the basic bound R(3, t) = O(t2)

of Erdős and Szekeres [34], in 1961 Erdős [27] used a sophisticated random greedy al-

teration argument to prove R(3, t) = Ω(t2/(log t)2). This lower bound was subsequently

reproved (or only slightly improved) using the Lovász Local Lemma [107], a basic anal-

ysis of the triangle-free process1 [33], large deviation inequalities [71], and differential

equations [109]. Furthermore, in 1980 Ajtai, Komlós, and Szemerédi [2, 3] invented the

influential semi-random method (nowadays also called Rödl nibble approach) to prove the

upper bound R(3, t) = O(t2/ log t). But it was not until 1995, when Kim [67] famously

proved the matching lower boundR(3, t) = Ω(t2/ log t) by analyzing a semi-random varia-

tion of the triangle-free process2 (combining several of the aforementioned ideas with mar-

tingale concentration); for this major breakthrough he also received the Fulkerson Prize

1The triangle-free process (proposed by Bollobás and Erdős) proceeds as follows: starting with an empty
n-vertex graph, in each step a single edge is added, chosen uniformly at random from all non-edges which do
not create a triangle.

2Kim’s semi-random variation proceeds similarly to the triangle-free process: it intuitively adds a large
number of carefully chosen random-like edges in each step (instead of just a single edge); see Section 2.2 for
more details.

9



in 1997. But the story does not end here: advancing the differential equation method,

in 2008 Bohman [10] reproved R(3, t) = Ω(t2/ log t) by analyzing the triangle-free pro-

cess itself (and his analysis was recently further improved in [13, 37]).

In this chapter we refine the powerful techniques developed for R(3, t) = Θ(t2/ log t)

to determine the order of magnitude of another Ramsey-type parameter introduced in 1976

by Burr, Erdős, and Lovász [16], proving a conjecture of Fox, Grinshpun, Liebenau, Per-

son, and Szabó [38] (in particular, analogous to Kim’s R(3, t)-result, we again remove the

last redundant logarithmic factor from existing bounds).

2.1.1 Main result: packing of nearly optimal Ramsey R(3, t) graphs

Kim and Bohman both proved the Ramsey bound R(3, t) = Ω(t2/ log t) by showing

the existence of a triangle-free graph G ⊆ Kn on n vertices with independence num-

ber α(G) = O(
√
n log n), which is best possible up to the value of the implicit constants.

Our first theorem naturally extends their celebrated results, by approximately decomposing

the complete graph Kn into a packing of such nearly optimal Ramsey R(3, t) graphs.

Theorem 1. For any ε > 0 there exist n0, C,D > 0 such that, for all n ≥ n0, there is

an edge-disjoint collection (Gi)i∈I of |I| = dD
√
n/ log ne triangle-free graphs Gi ⊆ Kn

on n vertices with maxi∈I α(Gi) ≤ C
√
n log n and

∑
i∈I e(Gi) ≥ (1− ε)

(
n
2

)
.

Our algorithmic proof proceeds by sequentially choosing the |I| = Θ(
√
n/ log n)

edge-disjoint triangle-free subgraphs Gi ⊆ Kn \
⋃

0≤j<iGj with α(Gi) = O(
√
n log n) via

a semi-random variation of the triangle-free process akin to Kim [67] (see Sections 2.1.3

and 2.2 for the details). In particular, we do not only show existence of the (Gi)i∈I , but

also obtain a polynomial-time randomized algorithm which constructs these subgraphs.

Theorem 1 improves a construction of Fox et.al. [38, Lemma 4.2], who used the basic

Lovász Local Lemma based R(3, t)-approach to sequentially choose Θ(
√
n/ log n) edge-

disjoint triangle-free subgraphs with α(Gi) = O(
√
n log n). It is natural to suspect that

applying a more sophisticated R(3, t)-approach in each iteration ought to give an improved

10



packing (with smaller independence number than the LLL approach), and here the usage

of the triangle-free process was proposed by Fox et.al. [38, Section 5] as early as 2013 [79,

90]. One conceptual difficulty of this approach is to control various error terms over many

iterations of the triangle-free process (so that these always stay small enough to carry out

the next iteration), which in turn is the main technical reason why for Theorem 1 we instead

iterate a semi-random variation.

It would be interesting to know if Theorem 1 also holds with ε = 0, i.e., if one can

completely decompose Kn into nearly optimal R(3, t) graphs. Perhaps rashly, we conjec-

ture that this is indeed possible (it might be insightful to first prove a variant of Theorem 1

where the constant C does not depend on ε).

2.1.2 Application in Ramsey theory: sr(K3) has order of magnitude r2 log r

Turning to our main application, we say that a graphG is r-Ramsey forH , denoted byG→

(H)r, if any r-colouring of the edges of G contains a monochromatic copy of H . Most

fundamental questions and results in Ramsey theory can be formulated in terms of various

parameters of the class

Mr(H) :=
{
G : G→ (H)r and G′ 9 (H)r for all G′ ( G

}
of graphs which are r-Ramsey minimal for H . For example, Ramsey’s theorem [95] states

that |Mr(H)| > 0 for all graphs H , which for cliques was strengthened to |Mr(Kt)| =∞

by Rödl and Siggers [98]. Furthermore, the archetypal problem of estimating various

Ramsey-type parameters also corresponds to the study of certain extremal parameters of

Mr(H), since, e.g., R(t) = R(t, t) := minG∈M2(Kt) v(G) is the famous diagonal Ramsey

number [34, 26, 22], Rr(t) = R(t, . . . , t) := minG∈Mr(Kt) v(G) is the r-coloured Ram-

sey number [22], and R̂r(H) := minG∈Mr(H) e(G) is the widely-studied r-size-Ramsey

number of H (see, e.g., [30, 7, 99, 22]).
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In 1976 Burr, Erdős, and Lovász [16] initiated the systematic study of other extremal

parameters ofMr(H), including the smallest minimum degree of all r-Ramsey minimal

graphs for H , denoted by

sr(H) := min
G∈Mr(H)

δ(G).

As usual, the clique-caseH = Kt is of particular interest, where r(t−2) < sr(Kt) < Rr(t)

is easy to see (cf. [40, 112]). Perhaps surprisingly, for r = 2 colours Burr et.al. [16] were

able to prove s2(Kt) = (t− 1)2, showing that the simple exponential upper bound R2(t) =

R(t) = 2Θ(t) is far from the truth. For r ≥ 2 colours the behaviour of sr(Kt) was re-

cently investigated in detail by Fox et.al. [38]: they proved super-quadratic bounds of

form sr(Kt) = r2 · polylog r for fixed t ≥ 3, and also determined sr(K3) up to a

logarithmic factor (by sharpening their general estimates). In particular, they showed

cr2 log r ≤ sr(K3) ≤ Cr2(log r)2, and conjectured that their lower bound gives the correct

order of magnitude, see [38, Conjecture 5.4].

Our second theorem proves the aforementioned conjecture of Fox, Grinshpun, Liebe-

nau, Person, and Szabó for sr(K3), i.e., we close the logarithmic gap and establish sr(K3) =

Θ(r2 log r).

Theorem 2. There exists C > 0 such that sr(K3) ≤ Cr2 log r for all r ≥ 2.

Corollary 3. We have sr(K3) = Θ(r2 log r) for r ≥ 2.

Using a reformulation of sr(K3) from [38], Theorem 2 follows easily from our main

packing result. Indeed, applying Theorem 1 with ε = 1/2, say, it is routine to see that

there is a constant A > 0 such that the following holds for each r ≥ 2: there exists a

collection of edge-disjoint triangle-free graphs G1, . . . , Gr ⊆ KNr on Nr := bAr2 log rc

vertices with independence number α(Gi) < Nr/r (as Nr ≥ n0, D
√
Nr/ logNr ≥ r and

C
√
Nr logNr < Nr/r all hold for A = A(n0, C,D) large enough). By Theorem 1.5 and

Lemma 4.1 in [38] (with n = Nr and k = 2) this immediately implies sr(K3) ≤ Nr,

establishing Theorem 2.
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Note that the above deduction of Theorem 2 did not use
∑

i∈I e(Gi) ≥ (1 − ε)
(
n
2

)
,

i.e., that the nearly optimal R(3, t) graphs (Gi)i∈I approximately decompose the edge-set

of Kn. It would be interesting to find applications (e.g., in Ramsey theory or extremal

combinatorics) where this natural packing property is useful.

2.1.3 Main tool: pseudo-random triangle-free subgraphs

TheR(3, t)-proofs of Kim and Bohman both in fact construct a triangle-free graphG ⊆ Kn

with pseudo-random properties (see also [109, 122, 13, 37]). Our third theorem extends

their intriguing results to host graphs H ⊆ Kn which are far from complete, by showing

that one can again construct a triangle-free subgraph G ⊆ H with pseudo-random proper-

ties. Here the crux is that Theorem 4 holds under very weak assumptions,3 thatG resembles

a random subgraph of H with edge-probability ρ = Θ(
√

(log n)/n), and that the edge-

estimate (2.1) implies α(G) = O(
√
n log n) for many well-behaved host graphs H ⊆ Kn.

Theorem 4. There exist β0, D0 > 0 such that, for all γ, δ ∈ (0, 1], β ∈ (0, β0) and

C ≥ D0/(δ
2
√
βγ), the following holds for all n ≥ n0(γ, δ, β, C), with ρ :=

√
β(log n)/n.

For any n-vertex graph H , there exists a triangle-free subgraph G ⊆ H on the same

vertex-set such that

eG(A,B) = (1± δ)ρeH(A,B) (2.1)

for all disjoint vertex-sets A,B ⊆ V (H) with |A| = |B| = dC
√
n log ne and eH(A,B) ≥

γ|A||B|.

Our proof uses a semi-random variant of the triangle-free process to construct G ⊆ H ,

extending and simplifying Kim’s R(3, t)-approach for the complete case H = Kn (see

Sections 2.2–2.3 and Theorem 9 for the details). In particular, besides handling the diffi-

3Note that Theorem 4 does not require the host graph H to be approximately degree or codegree regular.
Furthermore, even if G ⊆ H was a random subgraph with edge-probability ρ, then by standard calculations
we would only expect the edge-estimate (2.1) to hold for vertex-sets A,B ⊆ V (H) where the number of
edges eH(A,B) is reasonably large (see Remark 11 for the details, which also indicates that the constant C
in Theorem 4 has the correct dependence on γ, δ, β).
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culties arising due to incomplete host graphs H ⊆ Kn (by, e.g., exploiting a ‘stabilization

mechanism’ to keep various parameters under control), the major technical difference lies

in the way we analyze the properties of all large vertex-sets (by, e.g., focusing on bipartite

subgraphs, applying a concentration inequality of Warnke [118], and showing concentra-

tion in (2.1) instead of just eG(A,B) ≥ 1). Together with some streamlining of Kim’s

arguments (by, e.g., using fewer variables, applying convenient bounded differences in-

equalities, and some changes to the semi-random construction), this leads to a shorter and

hopefully more accessible proof even in the complete case H = Kn. As a by-product, we

also obtain a randomized polynomial-time algorithm which constructs G ⊆ H (see Re-

mark 10).

Theorem 4 will be the main tool for establishing our main packing result Theorem 1.

Let us briefly sketch the argument (deferring the details to Section 2.1.5). The idea is to

sequentially choose the triangle-free subgraphsGi ⊆ Hi := Kn\
⋃

0≤j<iGj via Theorem 4

with δ ∈ (0, 1), using the pseudo-random edge-estimate (2.1) to inductively control the

number of remaining edges (between large sets) in Hi as

eHi(A,B) = (1− (1± δ)ρ)i · |A||B| (2.2)

for all disjoint A,B ⊆ V (H) of size s := dC
√
n log ne, stopping when the right hand

side of (2.2) drops below ε|A||B| after I = Θ(log(1/ε)/ρ) = Θ(
√
n/ log n) steps. A

double counting argument will then show that the leftover graph HI contains at most ε
(
n
2

)
edges, so that

∑
0≤i<I e(Gi) = e(Kn \ HI) ≥ (1 − ε)

(
n
2

)
. Furthermore, eGi(A,B) =

(1 ± δ)ρeHi(A,B) > 0 implies α(Gi) < 2s = O(
√
n log n), completing this rough proof

sketch of Theorem 1 (assuming Theorem 4).

We believe that variants of Theorems 1 and 4 also hold for many other forbidden graphs

(using semi-random variants of the H-free process [88, 12, 116, 115, 91]); we hope to

return to this topic in a future work.
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2.1.4 Organization

The remainder of this chapter is organized as follows. In Section 2.1.5 we use Theorem 4 to

state and prove some extensions of our main packing result Theorem 1. In Section 2.2 we

introduce a semi-random variation of the triangle-free process and state our main result for

this Rödl nibble type construction (that implies our main tool Theorem 4, see Section 2.2.4),

which is then subsequently proved in Section 2.3.

2.1.5 Further results

Our methods allow us to extend Theorem 1 to R(3, t)-packings of graphs which are far

from complete. Our fourth theorem shows that if H ⊆ Kn only satisfies certain unifor-

mity conditions on its edge distribution (that resemble a weak form of pseudo-randomness,

see (2.3) below), then we can still approximately decompose H into a packing of nearly

optimal Ramsey R(3, t) graphs (again by an efficient randomized algorithm).

Theorem 5. For all ε, ξ, C0 > 0 there exist n0, C1, D > 0 such the following holds for

all n ≥ n0. If H is an n-vertex graph satisfying

min
disjoint A,B ⊆ V (H):
|A|=|B|=dC0

√
n logne

eH(A,B)

|A||B|
≥ ξ, (2.3)

then there is an edge-disjoint collection (Gi)i∈I of |I| = dD
√
n/ log ne triangle-free sub-

graphs Gi ⊆ H with V (Gi) = V (H), maxi∈I α(Gi) ≤ C1

√
n log n and

∑
i∈I e(Gi) ≥

(1− ε)e(H).

Note that the case H = Kn and ξ = C0 = 1 implies Theorem 1. Furthermore, the

case H = Gn,p, ξ = p/2 and C0 = 1 routinely implies the following sparse analogue of

Theorem 1 for binomial random graphs Gn,p.

Corollary 6. For any p ∈ (0, 1] and ε > 0 there exist C,D > 0 such that, with probability

at least 1− o(1), the following event holds: there exists an edge-disjoint collection (Gi)i∈I
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of |I| = dD
√
n/ log ne triangle-free graphsGi ⊆ Gn,p on n vertices with maxi∈I α(Gi) ≤

C
√
n log n and

∑
i∈I e(Gi) = (1± ε)p

(
n
2

)
.

We conjecture that Corollary 6 (with |I| = dDp
√
n/ log ne and constants C,D > 0

depending only on ε) holds for much sparser random graphs Gn,p with edge-probabilities

of form p = p(n) ≥ n−1/2+o(1), say.4

We conclude the introduction with the short proof of Theorem 5, which proceeds by

sequentially choosing the graphs Gi ⊆ H \
⋃

0≤j<iGj via Theorem 4 (generalizing the ar-

gument sketched in Section 2.1.3). The reader mainly interested in the proof of Theorem 4

may perhaps wish to skip straight to Section 2.2.

Proof of Theorem 5 (assuming Theorem 4). We may assume ε < 1 (as decreasing ε gives

a stronger conclusion). For concreteness, set δ := 1/4, γ := ε2ξ, β := β0/2 and C :=

max{C0, D0/(δ
2
√
βγ)}, where β0, D0 are defined as in Theorem 4. Let C1 := 3C, s :=

dC
√
n log ne, ρ :=

√
β(log n)/n, and I := dlog(1/ε)/(ρ(1− δ))e.

Define H0 := H . Let S denote the set of all pairs (A,B) of disjoint vertex-sets A,B ⊆

V (H) with |A| = |B| = s. Combining a ‘handshaking lemma’ like double counting

argument with the assumed lower bound (2.3), writing t := dC0

√
n log ne it follows that

eH0(A,B)

|A||B|
=

∑
Ã⊆A,B̃⊆B: |Ã|=|B̃|=t eH(Ã, B̃)

s2 ·
(
s−1
t−1

)(
s−1
t−1

) ≥
(
s
t

)(
s
t

)
· ξt2

s2
(
s−1
t−1

)(
s−1
t−1

) = ξ (2.4)

for all (A,B) ∈ S.

The plan is to sequentially choose the graphs (Gi)0≤i<I with Gi ⊆ Hi such that, setting

Hi+1 := Hi \ Gi (which ensures that all the Gi are edge-disjoint), for all 0 ≤ i ≤ I we

inductively have

eHi(A,B)

eH0(A,B)
∈
[(

1− (1 + δ)ρ
)i
,
(
1− (1− δ)ρ

)i] for all (A,B) ∈ S. (2.5)

4The range of p = p(n) in this conjecture is essentially best possible, since it is well-known that typically
α(Gn,p)�

√
n log n for p�

√
(log n)/n. Furthermore, although we have not checked all details, it seems

that our proofs can be modified to verify the conjecture for p ≥ n−δ , where δ > 0 is some small constant; so
the main question is whether p ≥ n−1/2+o(1) suffices.
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Turning to the details, note that inequality (2.5) holds trivially for i = 0. Given Hi with

0 ≤ i ≤ I − 1 satisfying (2.5), by combining the definition of I with (1 + 2δ)/(1− δ) = 2

and (2.4) it follows for n ≥ n0(β) that, say,

eHi(A,B)

|A||B|
≥ e−(1+2δ)ρ(I−1) · eH0(A,B)

|A||B|
≥ ε2 · ξ = γ for all (A,B) ∈ S. (2.6)

Using Theorem 4, for n ≥ n0(ε, ξ, δ, β, C) we can thus find a triangle-free subgraph Gi ⊆

Hi with eGi(A,B) = (1 ± δ)ρeHi(A,B) > 0 for all (A,B) ∈ S. Hence α(Gi) < 2s ≤

3C
√
n log n, say. Furthermore, noting eHi+1

(A,B) = eHi(A,B) − eGi(A,B), it is imme-

diate that Hi+1 = Hi \Gi maintains (2.5).

Finally, for the number of edges of
⋃

0≤i<I Gi = H0 \HI , by (2.5) and definition of I

it follows that

eH0\HI (A,B) ≥
(
1− e−(1−δ)ρI) · eH0(A,B) ≥ (1− ε)eH0(A,B) (2.7)

for all (A,B) ∈ S. Using a double counting argument similar to (2.4), in view of (2.7) and

H0 = H we infer

e(H0 \HI) =

∑
(A,B)∈S eH0\HI (A,B)

2
(
n−2
s−1

)(
n−2−(s−1)

s−1

) ≥ (1− ε) ·
∑

(A,B)∈S eH(A,B)

2
(
n−2
s−1

)(
n−2−(s−1)

s−1

) = (1− ε)e(H),

completing the proof of
∑

0≤i<I e(Gi) = e(H0 \HI) ≥ (1− ε)e(H).

2.2 The nibble: semi-random triangle-free process

The remainder of this chapter is devoted to the proof of our main tool Theorem 4. Given

an n-vertex graph H with vertex-set V = V (H) and edge-set E(H), inspired by Kim [67]

our strategy is to incrementally construct the triangle-free edge-set of G ⊆ H using a semi-

random variation of the triangle-free process (adding large chunks of random-like edges

in each step; see also Footnotes 1–2 on page 1). One key difference to [67, 10] is that

17



our approach only uses edges from the host graph H (and not the complete graph Kn).

In particular, deferring the details to Section 2.2.1, the rough plan of our Rödl nibble type

construction is to step-by-step build up a ‘random’ set of edges Ei ⊆ E(H) and a triangle-

free subset Ti ⊆ Ei; we also keep track of a set

Oi ⊆ {e ∈ E(H) \ Ei : e does not form a triangle with any two edges of Ei} (2.8)

of ‘open’ edges that can still be added. The idea of each step is to choose a small number of

random edges Γi+1 ⊆ Oi so that only a few new triangles are created in Ei+1 = Ei ∪ Γi+1.

This allows us to find an edge-subset Γ′i+1 ⊆ Γi+1, with |Γ′i+1| ≈ |Γi+1|, such that Ti+1 =

Ti ∪ Γ′i+1 remains triangle-free.5 After

I :=
⌈
nβ
⌉

(2.9)

such alteration-method based steps, we eventually obtain a triangle-free graphG = (V, TI) ⊆

H , which intuitively ought to be ‘random enough’ to resemble (many features of) a random

subgraph of H .

2.2.1 Details of the nibble construction

Turning to the details of the nibble construction, consistent with (2.8) we start with

O0 := E(H) and E0 := T0 := Γ0 := ∅. (2.10)

5For the construction of Ti+1 it might seem overly complicated to define Oi with respect to Ei (and
not Ti). However, this slightly wasteful definition actually simplifies the analysis: e.g., for the purpose of
tracking various auxiliary variables, it intuitively is easier to understand the effect of adding the random
edges Γi+1 (rather than some subset Γ′i+1 ⊆ Γi+1). Using an inclusion in (2.8) might also seem overly
complicated, but it again simplifies the analysis: by removing some extra edges it actually becomes easier to
prove concentration (see the ‘stabilization mechanism’ discussion around (2.21) and Lemma 19).
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In step i+ 1 ≥ 1 we then set

Ei+1 := Ei ∪ Γi+1, (2.11)

where each edge e ∈ Oi is included in Γi+1, independently, with probability

p := σ/
√
n. (2.12)

(The definition of the deterministic parameter σ � 1 is deferred to (2.35) in Section 2.2.3.)

Note that Ti ∪ Γi+1 is not necessarily triangle-free, since two or three edges of a triangle

could enter via Γi+1 ⊆ Oi (one edge is not enough by (2.8) and Ti ⊆ Ei), i.e., via the

following set of ‘bad’ pairs and triples of Γi+1–edges:

Bi+1 :=
{
{wu,wv} ⊆ Γi+1 : uv ∈ Ti, |{u, v, w}| = 3

}
∪
{
{uv, vw,wu} ⊆ Γi+1 : |{u, v, w}| = 3

}
,

(2.13)

where we write xy = {x, y} for brevity. To avoid triangles in Ti+1 by alteration, we thus

take Di+1 to be a maximal collection of pairwise edge-disjoint elements of Bi+1 (say the

first one in lexicographic order to resolve ties; any other deterministic choice also works,

see Remark 7 and Section 2.3.5), and then set6

Ti+1 := Ti ∪
(
Γi+1 \ E(Di+1)

)
, (2.14)

where we write E(Di+1) :=
⋃
α∈Di+1

α for the set of edges in the pairs and triples of Di+1.

Note that Ti+1 is indeed triangle-free by maximality of Di+1 ⊆ Bi+1. Defining

Yuv(i) := {uw ∈ Oi : vw ∈ Ei} ∪ {vw ∈ Oi : uw ∈ Ei}, (2.15)

6The standard alteration approach of removing one edge from each element of Bi+1 seems harder to
analyze: e.g., removing the edges of a maximal edge-disjoint collection Di+1 ⊆ Bi+1 greatly facilitates the
technical calculations in Section 2.3.5.
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we now turn to the open edge-set Oi+1 ⊆ Oi \ Γi+1: by (2.8) the set C(1)
i+1 ∪ C

(2)
i+1 ⊆ Oi of

newly ‘closed’ edges (that form a triangle with some two edges of Ei+1) is given by

C
(1)
i+1 := {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅}, (2.16)

C
(2)
i+1 := {uv ∈ Oi : there is w s.t. uw ∈ Γi+1, vw ∈ Γi+1}. (2.17)

Mimicking a technical idea of Alon, Kim and Spencer [6], we intuitively increase the set of

closed edges (via the random set Si+1 below) in order to add a ‘stabilization mechanism’

to our construction,7 and define

Ci+1 := C
(1)
i+1 ∪ Si+1, (2.18)

Oi+1 := Oi \
(
Γi+1 ∪ Ci+1 ∪ C(2)

i+1

)
, (2.19)

where each edge e ∈ Oi is included in Si+1, independently, with ‘stabilization’ probability

p̂e,i := 1− (1− p)max{2qi(πi+
√
σ)
√
n−|Ye(i)|, 0}. (2.20)

(The definition of the deterministic parameters qi, πi is deferred to (2.36)–(2.37) in Sec-

tion 2.2.3.) Roughly put, the main point of the technical definitions of Si+1 and p̂e,i will be

that all the conditional probabilities

P(e 6∈ Ci+1 | Oi, Ei) = P(e 6∈ C(1)
i+1 | Oi, Ei) · (1− p̂e,i)

= (1− p)max{2qi(πi+
√
σ)
√
n, |Ye(i)|}

(2.21)

can inductively be made equal and thus independent of the history (by only maintaining a

weak upper bound on maxe |Ye(i)|; see (2.45), (2.62) and Lemma 19), which in turn helps

7Kim uses a different stabilization mechanism in [67, Section 5.1]: instead of introducing the random
sets Sj , he deterministically modifies the underlying graphs in each step (by temporarily adding some extra
edges and vertices), mimicking an earlier ‘regularization’ idea from [62]. We find our randomized approach
more elegant, and easier to implement algorithmically.

20



to keep various error terms under control.

Remark 7. Note that each step of our nibble construction requires only randomized poly-

nomial time (since we can easily find a maximal edge-disjoint collection Di+1 ⊆ Bi+1 by a

deterministic greedy algorithm).

2.2.2 Pseudo-random intuition: trajectory equations

In this informal section we give a heuristic explanation of the differential equation that

predicts the behaviour of (Oi, Ei) for 0 ≤ i ≤ I ≈ nβ . Inspired by [109, 67], our main

non-rigorous ansatz is that the edge-sets (Oi, Ei) should resemble properties of a random

subgraph of H with two types of edges, where

P(e ∈ Oi) ≈ qi and P(e ∈ Ei) ≈ πi/
√
n (2.22)

are approximately independent. We now derive properties of qi, πi that are consistent with

this ansatz. For example, combining Ei+1 = Ei ∪ Γi+1 with the random construction of

Γi+1 ⊆ Oi, we expect to have

P(e ∈ Ei+1)− P(e ∈ Ei) = P(e ∈ Γi+1 | e ∈ Oi)P(e ∈ Oi) ≈ p · qi = σqi/
√
n, (2.23)

which together with (2.22) and E0 = ∅ suggests that

πi+1 − πi ≈ σqi and π0 ≈ 0. (2.24)

Furthermore, with lots of hand-waving, by (2.19) we intuitively have Oi \ Oi+1 = Γi+1 ∪

Ci+1 ∪ C(2)
i+1 ≈ Ci+1 (since each closed edge in C

(2)
i+1 requires the presence of at least

two random edges from Γi+1 ⊆ Oi). As (2.22) suggests E |Ye(i)| . 2qiπi
√
n, by the
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stabilization mechanism (2.21) and p = σ/
√
n we thus loosely expect that

P(e ∈ Oi+1 | Oi, Ei) ≈ P(e 6∈ Ci+1 | Oi, Ei) = (1− p)2qi(πi+
√
σ)
√
n ≈ 1− 2σqiπi

for e ∈ Oi, where we bluntly ignored the
√
σ-term in the exponent. Similar to (2.23),

using (2.22) we thus ought to have

qi+1 − qi ≈ P(e ∈ Oi+1)− P(e ∈ Oi) ≈ −2σqiπi · P(e ∈ Oi) ≈ −2σq2
i πi. (2.25)

To extract the behaviour of πI from (2.24) and (2.25), we further assume that πi ≈ Ψ(iσ)

holds for some smooth function Ψ(x), where σ � 1 is tiny. Using Taylor series, in view

of (2.24) and O0 = E(H) this suggests that

qi ≈ Ψ′(iσ) and q0 ≈ 1. (2.26)

Together with (2.25) and the initial values from (2.24) and (2.26), this leads to the second

order differential equation Ψ′′(x) = −2Ψ′(x)2Ψ(x) with Ψ′(0) = 1 and Ψ(0) = 0, which

in turn reduces to the simple ODE

Ψ′(x) = e−Ψ2(x) and Ψ(0) = 0. (2.27)

Noting the implicit solution x =
∫ Ψ(x)

0
et

2
dt, it now is easy to derive that Ψ(x) ≈

√
log x

as x → ∞ (see, e.g., the proof of (2.57) in Section 2.4). Since I ≈ nβ is sufficiency large

compared to σ (which will be of form σ = (log n)−Θ(1), see (2.35) in Section 2.2.3), this

makes it plausible that

πI ≈ Ψ(Iσ) ≈
√

log(Iσ) ≈
√
β log n. (2.28)

Finally, since by construction we expect |Ei+1 \Ei| ≈ |Ti+1 \Ti| to hold for all 0 ≤ i <
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I , the edge-sets EI and TI ought to share many properties. Together with (2.22) and (2.28)

this intuitively suggests

P(e ∈ TI) ≈ P(e ∈ EI) ≈
√
β(log n)/n, (2.29)

making the pseudo-random edge-estimate (2.1) plausible for G = (V, TI) with TI ⊆ EI ⊆

E(H).

2.2.3 Definitions and parameters

In this section we formally define several variables and parameters used in our analysis of

the nibble construction. We start with two standard notions from graph theory: for any

edge-subset S ⊆
(
V
2

)
we write

S(A,B) := {ab ∈ S : a ∈ A, b ∈ B}, (2.30)

NS(v) := {w ∈ V : vw ∈ S}, (2.31)

where A,B ⊆ V are vertex-disjoint. For all pairs of distinct vertices u, v ∈ V we then

define

Xuv(i) := NOi(u) ∩NOi(v), (2.32)

Zuv(i) := NEi(u) ∩NEi(v), (2.33)

where |Xuv(i)| and |Zuv(i)| intuitively correspond to an ‘open codegree’ and the usual

codegree, respectively (note that |Yuv(i)| defined in (2.15) corresponds to a ‘mixed code-

gree’).

Guided by Section 2.2.2, we define Ψ(x) as the unique solution to the differential equa-

tion

Ψ′(x) = e−Ψ2(x) and Ψ(0) = 0, (2.34)
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as suggested by (2.27). With the heuristics (2.22) in mind, we then introduce the parameters

σ := (log n)−2, (2.35)

qi := Ψ′(iσ) = e−Ψ2(iσ), (2.36)

πi := σ +
i−1∑
j=0

σqj = πi−1 + σqi−11{i≥1}, (2.37)

making (2.24) and (2.26) rigorous (starting with π0 = σ > 0 leads to cleaner formulae later

on). With foresight, for i ≤ I we also introduce the ‘relative error’ parameter

τi := 1− δπi
2πI

= τi−1 −
δσqi−1

2πI
1{i≥1}, (2.38)

which slowly degrades from τ0 = 1− o(δ) to τI = 1− δ/2.

With an eye on Theorem 4, for concreteness we introduce the absolute constants8

D0 := 108 and β0 := 1/14, (2.39)

as well as the set-sizes (with s0 � s) and idealized edge-probability

s :=
⌈
C
√
n log n

⌉
, s0 :=

⌊
σ4q2

Is
⌋
, and ρ :=

√
β(log n)/n, (2.40)

and, recalling O0 = E(H), the collection of ‘relevant’ pairs of large vertex-sets

Ss,γ := {(A,B) : disjoint A,B ⊆ V with |A| = |B| = s

and |O0(A,B)| ≥ γ|A||B|}.
(2.41)

8To make this chapter easier to read, we have made no attempt to optimize the constants D0, β0 in (2.39).
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2.2.4 Main nibble result: pseudo-random properties

In this section we state our main nibble result Theorem 9, which implies our main tool

Theorem 4 and establishes various pseudo-random properties of (Oi, Ei, Ti,Γi)0≤i≤I . The

following event is of core interest:

TI :=
{
|TI(A,B)| = (1± δ)ρ|O0(A,B)| for all (A,B) ∈ Ss,γ

}
. (2.42)

Indeed, it implies the conclusion of Theorem 4 with G = (V, TI) since the edge-set TI ⊆

EI ⊆ E(H) = O0 is triangle-free. To get a handle on TI , in view of Section 2.2.1 it is

natural that we also require some control over the other edge-sets (Ei, Oi,Γi)0≤i≤I . To this

end we introduce the ‘good’ events

Xi := Ni ∩ Pi ∩Q+
i ∩Qi and X≤i :=

⋂
0≤j≤i

Xj, (2.43)

where the following auxiliary events encapsulate various pseudo-random properties:

Ni :=
{
|NOi(v)| ≤ qin and |NΓi(v)| ≤ 2σqi−1

√
n for all v ∈ V

}
, (2.44)

Pi :=
{
|Xuv(i)| ≤ q2

i n, |Yuv(i)| ≤ 2qiπi
√
n,

and |Zuv(i)| ≤ i(log n)9 for all u, v ∈ V with u 6= v
}
, (2.45)

Q+
i :=

{
|Oi(A,B)| ≤ qi|A||B| for all disjoint A,B ⊆ V with |A|, |B| ≥ s0

}
, (2.46)

Qi :=
{
τiqi|O0(A,B)| ≤ |Oi(A,B)| ≤ qi|O0(A,B)| for all (A,B) ∈ Ss,γ

}
. (2.47)

In words, the above events give bounds for degree-like variables (Ni), codegree-like vari-

ables (Pi), and the number of open edges (Q+
i and Qi). A subtle but important point

is that Ni, Pi and Q+
i only guarantee one-sided concentration, i.e., ensure upper bounds

but no matching lower bounds (which can fail badly, for example, |Yuv(i)| = 0 holds

when uv ∈ Ei). Merely Qi guarantees two-sided concentration, which is harder to prove,
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but crucial for establishing the edge-estimate from TI (see the heuristic below Theorem 9).

With τi ≈ 1 and O0 = E(H) ⊆ E(Kn) in mind, most of the bounds in (2.42)

and (2.44)–(2.47) can easily be guessed by the pseudo-random heuristics (2.22) and (2.29)

from Section 2.2.2 (the |NΓi(v)|-bound is one exception: based on E |NΓi(v)| = p ·

E |NOi−1
(v)|, it contains an extra factor of 2 to avoid additive error terms; another ex-

ception is the |Zuv(i)|-bound: it relaxes the prediction E |Zuv(i)| . π2
i = O(log n) for

technical reasons).

Inspecting (2.44)–(2.47) in the special case i = 0, it is not difficult to see that the

good event X0 = X≤0 always holds (by combining q0 = 1 ≥ τ0 and σ, q−1, π0 ≥ 0

with E0 = T0 = Γ0 = ∅).

Remark 8. The event X0 holds deterministically for any n-vertex host graph H .

Our main nibble result (which is at the heart of this chapter) states that, under fairly nat-

ural constraints, the pseudo-random events TI and X≤I both hold with very high probability.

Recall that I ≈ nβ , and that all pairs (A,B) ∈ Ss,γ of vertex-sets satisfy |O0(A,B)| ≥ γs2

and |A| = |B| = s ≈ C
√
n log n.

Theorem 9 (Main nibble result). For all γ, δ ∈ (0, 1], β ∈ (0, β0) and C ≥ D0/(δ
2
√
βγ)

the following holds for n ≥ n0(γ, δ, β, C): we have P(TI ∩ X≤I) ≥ 1 − n−ω(1) for any

n-vertex host graph H .

Proof of Theorem 4. If the event TI holds, then the triangle-free graph G := (V, TI) has

the claimed properties by (2.42), V = V (H) and TI ⊆ EI ⊆ E(H) = O0, so Theorem 9

completes the proof.

Remark 10. In view of I = O(nβ0) and Remark 7, the nibble thus yields a randomized

polynomial time algorithm (with error probability ≤ n−ω(1)) for constructing the triangle-

free G ⊆ H from Theorem 4.

Remark 11. The heuristic edge-estimate (2.29) suggests that in Theorem 9 the dependence

of the constant C on δ, β, γ is qualitatively best possible, since it would also naturally arise
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if G = (V, TI) ⊆ H was a random subgraph with edge-probability ρ ≈
√
β(log n)/n.

Indeed, for all (A,B) ∈ Ss,γ the expected number of edges between A and B would then

be at least λA,B := E |TI(A,B)| = ρ|O0(A,B)| ≥ ρ · γs2 ≥
√
βγC · s log n, and the

probability that the event TI from (2.42) fails would therefore be (using a union bound

and standard Chernoff bounds) at most
∑

(A,B)∈Ss,γ e
−Θ(δ2λA,B) ≤ n2s−Ω(δ2

√
βγCs) = o(1)

for C = Ω(1/(δ2
√
βγ)) large enough.

We defer the proof of Theorem 9 to Section 2.3, and now just outline a brief heuristic

argument that illustrates how the event X≤I ⊆
⋂

0≤i≤I Qi is instrumental for establishing

the edge-estimate from TI (which seems informative). Similar to (2.29), in view of Sec-

tion 2.2.1 we expect that in each step only few edges are removed due to the creation of

triangles, which intuitively suggests

|Ti+1(A,B) \ Ti| ≈ |Ei+1(A,B) \ Ei|.

Combining the construction of Ei+1 \ Ei = Γi+1 ⊆ Oi with the event Qi and τi ≈ 1, we

also expect that

|Ei+1(A,B) \ Ei| = |Γi+1(A,B)| ≈ p · |Oi(A,B)| ≈ p · qi|O0(A,B)|.

Recalling p = σ/
√
n and ρ =

√
β(log n)/n, using the definition (2.37) of πI and the

approximation πI ≈
√
β log n from (2.28) it now becomes plausible that

|TI(A,B)| =
∑

0≤i<I

|Ti+1(A,B) \ Ti|

≈
∑

0≤i<I σqi√
n

· |O0(A,B)|

≈ πI√
n
· |O0(A,B)|

≈ ρ|O0(A,B)|,
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as suggested by TI (Section 2.3.5 contains a rigorous version of this heuristic argument).

2.2.5 Tools and auxiliary estimates

In this preparatory section we gather, for later reference, some results that will be used

throughout the proof of Theorem 9 (mostly probabilistic and combinatorial tools, and end-

ing with some auxiliary estimates). On a first reading the reader may perhaps wish to skip

straight to Section 2.3.

We start with a convenient version of the bounded differences inequality [81, 82, 117]

for Bernoulli variables. Note that the upper tail estimate (2.48) for decreasing functions

does not have an extraCt term in the exponent like (2.49). Remarks 13–14 are well-known,

see, e.g., [82, Theorem 2.3, 3.8, and 3.9] or [117, Corollary 1.4]. Inequality (2.48) can be

deduced from the arguments in [81, Lemma 7.14], but this monotone version does not seem

to be widely known; in Section 2.4 we thus include a simple proof for completeness.

Theorem 12. Let (ξα)α∈I be a finite family of independent random variables with ξα ∈

{0, 1}. Let f : {0, 1}|I| → R be a function, and assume that there exist numbers (cα)α∈I

such that the following holds for all z = (zα)α∈I ∈ {0, 1}|I| and z′ = (z′α)α∈I ∈ {0, 1}|I|:

|f(z) − f(z′)| ≤ cβ if zα = z′α for all α 6= β. Define X := f
(
(ξα)α∈I

)
and λ :=∑

α∈I c
2
α P(ξα = 1). Then, for all t ≥ 0,

P(X ≥ EX + t) ≤ exp

(
− t

2

2λ

)
(2.48)

if the function f is decreasing (i.e., that f(z) ≤ f(z′) whenever zα ≥ z′α for all α ∈ I).

Remark 13. Define C := maxα∈I cα. If we drop the assumption that f is decreasing, then

P(X ≤ EX − t) ≤ exp

(
− t2

2(λ+ Ct)

)
. (2.49)

Remark 14. In the special case X =
∑

α∈I ξα we have C = cα = 1 and λ = EX .

Standard Chernoff bounds (or applying (2.48)-(2.49) to the decreasing function −X) then
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show that in this case P(X ≤ EX − t) and P(X ≥ EX + t) are at most the right hand

side of (2.48) and (2.49), respectively.

For random variables with a special combinatorial form (based on the occurrence of

events with ‘limited overlaps’) we shall use the following Chernoff-type upper tail inequal-

ity, which is a convenient corollary of a more general result by Warnke [118, Theorem 9].

Note that the exponent of (2.50) scales with 1/C.

Theorem 15. Let (ξi)i∈S be a finite family of independent random variables with ξi ∈

{0, 1}. Let (Yα)α∈I be a finite family of variables Yα := 1{ξi=1 for all i∈α} with
∑

α∈I EYα ≤

µ. Define ZC := max
∑

α∈J Yα, where the maximum is taken over all J ⊆ I with

maxβ∈J |{α ∈ J : α ∩ β 6= ∅}| ≤ C. Then, for all C, t > 0,

P(ZC ≥ µ+ t) ≤ min

{(
eµ

µ+ t

)(µ+t)/C

, exp

(
− t2

2C(µ+ t)

)}
. (2.50)

The following simple combinatorial lemma formalizes the intuition that we expect∑
i |Ui| = O(|U |) whenever the subsets Ui ⊆ U are nearly disjoint (i.e., have small pair-

wise intersections).

Lemma 16. Suppose that (Ui)i∈I is a family of subsets Ui ⊆ U with |Ui| ≥ z > 0 and

|Ui∩Uj| ≤ y for all i 6= j. Then z ≥
√

4|U |y implies |I| ≤ 2|U |/z and
∑

i∈I |Ui| ≤ 2|U |.

Proof. Aiming at a contradiction, suppose that |I| > 2|U |/z. Then there is J ⊆ I with

|J | = b2|U |/zc+ 1. Observe that, for any i ∈ J ,

∑
j∈J :i 6=j

|Uj ∩ Ui| ≤ (|J | − 1)y ≤ 2|U |y/z ≤ z/2 ≤ |Ui|/2. (2.51)

So we obtain a contradiction by noting that

|U | ≥
∣∣⋃
i∈J

Ui
∣∣ ≥∑

i∈J

(
|Ui| −

∑
j∈J :i 6=j

|Uj ∩ Ui|
)
≥
∑
i∈J

|Ui|/2 ≥ |J |z/2 > |U |. (2.52)
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With |I| ≤ 2|U |/z in hand, after replacing J with I, note that (2.51) and the first three

inequalities of (2.52) remain valid, completing the proof of
∑

i∈I |Ui| ≤ 2|U |.

Our final auxiliary result contains a number of convenient estimates involving the pa-

rameters qi, πi, σ, I defined in Section 2.2.3 and (2.9). Roughly put, (2.55)–(2.57) state that

qi ≈ qi+1, 1 − 2σqiπi ≈ qi+1/qi and πI ≈
√

log(Iσ), as predicted by (2.25) and (2.28).

The technical estimates (2.53)–(2.54) can safely be ignored on a first reading. The proof

of Lemma 17 is based on elementary calculus and thus deferred to Section 2.4 (it also es-

tablishes qi ≥ qI = n−β+o(1), which together with I ≈ nβ and (2.54) motivates our choice

of β0 = 1/14).

Lemma 17. If β ∈ (0, β0), then there exists τ, n0 > 0 such that, for all n ≥ n0 and

0 ≤ i ≤ I ,

max
{

max
j∈{0,1,2}

{
qiπ

j
i

}
,
√
σπi

}
≤ 1, (2.53)

min
{

min
j∈[4]

{
qji
√
n
}
, q2

i

√
n/I, q3

i
4
√
n/
√
I
}
≥ nτ , (2.54)

0 ≤ qi − qi+1 ≤ 4σ ·min{qi, qi+1, qiπi}, (2.55)∣∣(1− 2σqiπi)− qi+1/qi
∣∣ ≤ 8σ2qi, (2.56)∣∣πI −√log(Iσ)
∣∣ ≤ 2. (2.57)

As a simple application, for 0 ≤ i ≤ I we now bound the stabilization probability p̂e,i

defined in (2.20). Since (2.54) implies qi
√
σ
√
n � 1, by applying (1 − p)r ≥ 1 − pr =

1− σr/
√
n (valid for r ≥ 1) we infer

p̂e,i ≤ 1− (1− p)2qi(πi+
√
σ)
√
n ≤ 2σqi(πi +

√
σ) ≤ qi, (2.58)

where we used
√
σπi ≤ 1 and σ � 1 (see (2.53) and (2.35)) for the last inequality.
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2.3 Analyzing the nibble

In this section we prove our main nibble result Theorem 9 (which in turn implies our main

tool Theorem 4, see Section 2.2.4) as a corollary of the following auxiliary lemma.

Lemma 18. Under the assumptions of Theorem 9, for n ≥ n0(γ, δ, β, C) we have

P(¬Xi+1 | X≤i) ≤ n−ω(1) for all 0 ≤ i ≤ I − 1, (2.59)

P(¬TI ∩ X≤I) ≤ n−ω(1). (2.60)

Proof of Theorem 9. Recalling I ≤ dnβ0e = nO(1) and X≤i =
⋂

0≤j≤iXj , note that

P(¬X0) = 0 (see Remark 8) and (2.59) readily imply P(¬X≤I) ≤ n−ω(1), which together

with (2.60) completes the proof.

The remainder of this section is devoted to the proof of Lemma 18: the proof of (2.59)

with ¬Xi+1 = ¬Ni+1∪¬Pi+1∪¬Q+
i+1∪¬Qi+1 is spread across Sections 2.3.2–2.3.4, and

the proof of (2.60) is given in Section 2.3.5.

2.3.1 Preliminaries: setup and conventions

To avoid clutter, up to (and including) Section 2.3.4 we shall suppress the conditioning

in the notation: we will write P(·) and E(·) as shorthand for P(· | Fi) and E(· | Fi),

where (Fi)0≤i≤I denotes the natural filtration associated with (Oi, Ei, Ti,Γi, Si)0≤i≤I , as

usual. We will also tacitly assume that the Fi-measurable event X≤i holds. Conditional

on Fi, note that by construction of the random edge-sets Γi+1 and Si+1, the (conditional)

probability space formally consists of the 2|Oi| independent Bernoulli random variables

(1{e∈Γi+1},1{e∈Si+1})e∈Oi , with P(e ∈ Γi+1) = p = σ/
√
n and P(e ∈ Si+1) = p̂e,i ≤ qi,

see (2.58).

Using the above setup and conventions, we shall repeatedly consider random variables
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of form

X = f
((
1{e∈Γi+1},1{e∈Si+1}

)
e∈Oi

)
. (2.61)

To get a handle on the (conditional) expectation EX we will often use Oi+1 ⊆ Oi \ Ci+1

together with the following key lemma, which hinges on the stabilization mechanism to

equalize all (conditional) probabilities P(e 6∈ Ci+1), see (2.62) below. (The extra
√
σ term

in (2.20) ensures that P(e 6∈ Ci+1) < qi+1/qi holds with plenty of elbow room, which is

convenient for avoiding ugly error terms in the upper bounds of (2.44)–(2.47).)

Lemma 19. We have P(e 6∈ Ci+1)− qi+1/qi ∈ [−3σ3/2qi, −σ3/2qi] for all e ∈ Oi.

Proof. For any e ∈ Oi, since |Ye(i)| ≤ 2qiπi
√
n by X≤i ⊆ Pi, by definition of Ci+1 =

C
(1)
i+1 ∪ Si+1 we have

P(e 6∈ Ci+1) = P(e 6∈ C(1)
i+1) · P(e 6∈ Si+1) = (1− p)|Ye(i)| · (1− p̂e,i)

= (1− p)2qi(πi+
√
σ)
√
n.

(2.62)

It is well-known (and easy to check) that 1−rx ≤ (1−x)r ≤ 1−rx+
(
r
2

)
x2 for all x ∈ [0, 1]

and r ≥ 2. Using
√
np = σ � 1 and max{qi, qiπi, qiπ2

i } ≤ 1 (see (2.53)), it follows that

∣∣∣P(e 6∈ Ci+1)−
[
1− 2σqi(πi +

√
σ)
]∣∣∣ ≤ 2σ2q2

i (πi +
√
σ)2 = O(σ2qi) = o(σ3/2qi).

This completes the proof since 1− 2σqiπi = qi+1/qi + o(σ3/2qi) by (2.56).

To deduce concentration properties of such random variables X we shall frequently

rely on the bounded differences inequality (Theorem 12). In those cases we will bound the

associated parameter λ via

λ =
∑
e∈Oi

c2
e P(e ∈ Γi+1) +

∑
e∈Oi

ĉ2
e P(e ∈ Si+1) ≤ p

∑
e∈Oi

c2
e + qi

∑
e∈Oi

ĉ2
e, (2.63)

where the edge-effect ce is an upper bound on how much X can change if we modify
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the indicator 1{e∈Γi+1} (alter whether e is in Γi+1 or not), and the stabilization-effect ĉe is

an upper bound on how much X can change if we modify the indicator 1{e∈Si+1} (alter

whether e is in Si+1 or not). Moreover, the following simple observation will later allow us

to control the above sum (2.63) of these effects.

Lemma 20. If X≤i holds, then
∑

e∈Oi |Ye(i) ∩ J | ≤ 2qiπi
√
n · |J | for any edge-subset

J ⊆
(
V
2

)
.

Proof. For any e ∈ Oi, note that f ∈ Ye(i) implies e ∈ Yf (i). As Yf (i) ⊆ Oi, we infer

∑
e∈Oi

|Ye(i) ∩ J | =
∑
f∈J

∑
e∈Oi

1{f∈Ye(i)} ≤
∑
f∈J

∑
e∈Oi

1{e∈Yf (i)} =
∑
f∈J

|Yf (i)|.

This completes the proof since X≤i ⊆ Pi implies |Yf (i)| ≤ 2qiπi
√
n.

2.3.2 Event Ni+1: degree-like variables |NOi+1
(v)| and |NΓi+1

(v)|

Recall that the eventNi+1 defined in (2.44) concerns degree-like variables, ensuring that |NOi+1
(v)| ≤

qi+1n and |NΓi+1
(v)| ≤ 2σqi

√
n for all vertices v; see (2.31) for the definition of NS(v).

Lemma 21. We have P(¬Ni+1) ≤ n−ω(1).

Proof. We start with |NOi+1
(v)|. Note that Oi+1 ⊆ Oi \ Ci+1 implies

|NOi+1
(v)| ≤

∑
w∈NOi (v)

1{vw 6∈Ci+1} =: X. (2.64)

Since X≤i ⊆ Ni implies |NOi(v)| ≤ qin, using Lemma 19 we obtain

EX =
∑

w∈NOi (v)

P(vw 6∈ Ci+1) ≤ |NOi(v)| · (qi+1/qi−σ3/2qi) ≤ qi+1n−σ3/2q2
i n. (2.65)

Gearing up to apply Theorem 12 to X , we now bound the associated parameter λ ≤

p
∑

e∈Oi c
2
e+qi

∑
e∈Oi ĉ

2
e from (2.63). SetXv := {v}×NOi(v) ⊆ Oi, and recall thatCi+1 =
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C
(1)
i+1 ∪ Si+1, where C(1)

i+1 depends only on Γi+1 and thus is independent of Si+1. The edge-

effect ce (an upper bound on how muchX changes if we alter whether e ∈ Γi+1 or e 6∈ Γi+1)

is thus at most the number of changes to C(1)
i+1 ∩ Xv = {vw ∈ Xv : Yvw(i) ∩ Γi+1 6= ∅}.

Since e ∈ Yvw(i) implies vw ∈ Ye(i) when vw ∈ Xv, we infer ce ≤ |Ye(i) ∩ Xv| ≤

|Ye(i)| ≤ 2qiπi
√
n by X≤i ⊆ Pi. Using Lemma 20, |Xv| = |NOi(v)| ≤ qin, and qiπ2

i ≤ 1

(see (2.53)), it follows that

p
∑
e∈Oi

c2
e ≤ p · 2qiπi

√
n ·
∑
e∈Oi

|Ye(i) ∩ Xv|

≤ σ/
√
n · (2qiπi

√
n)2 · |Xv|

≤ 4σq3
i π

2
i n

3/2

≤ 4σq2
i n

3/2.

(2.66)

By our above discussion, the stabilization-effect ĉe (an upper bound on how much X

changes if we alter whether e ∈ Si+1 or e 6∈ Si+1) is at most the number of changes to

Si+1 ∩ Xv. Hence ĉe ≤ 1{e∈Xv}, so that

qi
∑
e∈Oi

ĉ2
e ≤ qi · |Xv| ≤ q2

i n� σq2
i n

3/2.

Noting that X is a decreasing function of the edge-indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi ,

using Theorem 12 together with the λ–bound (2.63) and q2
i n

1/2 ≥ nτ (see (2.54)) it follows

that

P(|NOi+1
(v)| ≥ qi+1n) ≤ P(X ≥ EX + σ3/2q2

i n) ≤ exp

(
− σ3q4

i n
2

2 · 5σq2
i n

3/2

)
≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the |NOi+1
(v)| variables.

Finally, note that |NΓi+1
(v)| is a sum of independent Bernoulli random variables with

E |NΓi+1
(v)| = |NOi(v)| · p ≤ qin · σ/

√
n = σqi

√
n =: µ,
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where we used X≤i ⊆ Ni to bound |NOi(v)| ≤ qin. Applying standard Chernoff bounds

(see, e.g., Remark 14), using qi
√
n ≥ nτ (see (2.54)) it is routine to deduce that µ� log n

and

P(|NΓi+1
(v)| ≥ 2σqi

√
n) = P(|NΓi+1

(v)| ≥ 2µ) ≤ exp

(
− µ2

2 · 2µ

)
= exp

(
−µ

4

)
≤ n−ω(1).

Taking a union bound over all vertices v completes the proof for the |NΓi+1
(v)| variables.

2.3.3 Event Pi+1: codegree-like variables |Xuv(i+ 1)|, |Yuv(i+ 1)| and |Zuv(i+ 1)|

Recall that the event Pi+1 defined in (2.45) concerns codegree-like variables, ensuring

that |Xuv(i+ 1)| ≤ q2
i+1n, |Yuv(i+ 1)| ≤ 2qi+1πi+1

√
n, and |Zuv(i+ 1)| ≤ (i+ 1)(log n)9

for all pairs uv of vertices.

Lemma 22. We have P(¬Pi+1) ≤ n−ω(1).

Proof. We start with |Xuv(i+ 1)|. Recalling Oi+1 ⊆ Oi \ Ci+1, note that by construction

|Xuv(i+ 1)| ≤
∑

w∈Xuv(i)

1{uw 6∈Ci+1 and vw 6∈Ci+1} =: X. (2.67)

To estimate EX , note that the event f 6∈ C
(1)
i+1 = {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅} is

determined by the values of the independent indicator variables (1{e∈Γi+1})e∈Yf (i). In view

of the reasoning (2.62) for the value of P(e 6∈ Ci+1), it follows by construction of Ci+1 =

C
(1)
i+1 ∪ Si+1 that

P(uw 6∈ Ci+1 and vw 6∈ Ci+1)

= P(uw 6∈ Ci+1)P(vw 6∈ Ci+1) · (1− p)−|Yuw(i)∩Yvw(i)|.

(2.68)

Since X≤i ⊆ Pi implies |Yuw(i) ∩ Yvw(i)| ≤ |Zuv(i)| ≤ I(log n)9 and |Xuv(i)| ≤ q2
i n, by
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combining (2.68) with Lemma 19 it follows that

EX ≤ |Xuv(i)| · (qi+1/qi − σ3/2qi)
2 · (1− p)−I(logn)9 ≤ q2

i+1n− σ3/2q3
i n, (2.69)

where for the last inequality we used pI(log n)9 � σ3/2q3
i � 1 (since q3

i

√
n/I ≥ nτ

by (2.54)) and σ3q4
i � σ3/2q3

i ∼ σ3/2qi+1q
2
i (see (2.53)–(2.55)). With an eye on The-

orem 12, we now bound the parameter λ ≤ p
∑

e∈Oi c
2
e + qi

∑
e∈Oi ĉ

2
e from (2.63). Set

Xuv := {u, v} × Xuv(i) ⊆ Oi. Analogous to the proof of Lemma 21 for |NOi+1
(v)|,

here we have edge-effect ce ≤ |Ye(i) ∩ Xuv| ≤ |Ye(i)| ≤ 2qiπi
√
n and stabilization-effect

ĉe ≤ 1{e∈Xuv}. Similar to (2.66), using Lemma 20, |Xuv| = 2 · |Xuv(i)| ≤ 2q2
i n and

qiπ
2
i ≤ 1 it follows that

p
∑
e∈Oi

c2
e ≤ σ/

√
n · (2qiπi

√
n)2 · |Xuv| ≤ 8σq4

i π
2
i n

3/2 ≤ 8σq3
i n

3/2. (2.70)

Furthermore, qi
∑
ĉ2
e ≤ qi|Xuv| ≤ 2q3

i n � σq3
i n

3/2. Noting that X is a decreasing func-

tion of the edge-indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi , using Theorem 12 and q3
i n

1/2 ≥ nτ

(see (2.54)) it follows that

P(|Xuv(i+ 1)| ≥ q2
i+1n) ≤ P(X ≥ EX + σ3/2q3

i n) ≤ exp

(
− σ3q6

i n
2

2 · 9σq3
i n

3/2

)
≤ n−ω(1).

Taking a union bound over all pairs of vertices u, v completes the proof for the |Xuv(i+1)|

variables.

Turning to the more involved |Yuv(i+ 1)| variables, note that by construction

|Yuv(i+ 1)| ≤
∑

w∈Xuv(i)

1{uw∈Γi+1 or vw∈Γi+1} +
∑

f∈Yuv(i)

1{f 6∈Ci+1} =: Y +
uv + Y ∗uv. (2.71)

(To clarify: Y +
uv and Y ∗uv are defined by the first and second sum in (2.71), respectively.)

Using Lemma 19 together with σq2
i = σqiqi+1 + o(σ3/2q2

i πi) (see (2.55)) and πiqi+1 =
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qi+1πi+1 − σqiqi+1 (as πi+1 = πi + σqi by (2.37)), it follows that

E(Y +
uv + Y ∗uv) ≤ |Xuv(i)| · 2p + |Yuv(i)| · (qi+1/qi − σ3/2qi)

≤ 2σq2
i

√
n+ 2πi

√
n(qi+1 − σ3/2q2

i )

≤ 2qi+1πi+1

√
n− σ3/2q2

i πi
√
n.

(2.72)

We now estimate Y +
uv and Y ∗uv separately. Noting EY +

uv ≤ 2σq2
i

√
n and σ2q2

i πi
√
n =

o(σq2
i

√
n) (see (2.53)), using standard Chernoff bounds together with π2

i ≥ π2
0 = σ2 and

q2
i

√
n ≥ nτ (see (2.54)) it follows that

P(Y +
uv ≥ EY +

uv + σ2q2
i πi
√
n) ≤ exp

(
−
(
σ2q2

i πi
√
n
)2

4 · 2σq2
i

√
n

)

≤ exp

(
−σ

5q2
i

√
n

8

)
≤ n−ω(1).

(2.73)

For Y ∗uv we shall apply Theorem 12, and we thus now bound λ ≤ p
∑

e∈Oi c
2
e + qi

∑
e∈Oi ĉ

2
e

from (2.63). As usual, we have edge-effect ce ≤ |Ye(i) ∩ Yuv(i)| ≤ |Ye(i)| ≤ 2qiπi
√
n and

stabilization-effect ĉe ≤ 1{e∈Yuv(i)}. Here we can significantly improve the simple worst

case estimate ce ≤ |Ye(i)| when e 6= uv. Indeed, if e = w1w2 does not intersect uv, then

ce ≤ 4 since Ye(i) ∩ Yuv(i) ⊆ {u, v} × {w1, w2}, say. Furthermore, if e = w1w2 intersects

uv in one vertex, say u = w1, then ce ≤ maxf |Zf (i)| ≤ I(log n)9 since Ye(i) ∩ Yuv(i) ⊆

{u}×[NEi(w2)∩NEi(v)]. To sum up, for e 6= uv we have ce ≤ max{4, I(log n)9} ≤ σ−5I ,

say. Similar to (2.66) and (2.70), using Lemma 20 and |Yuv(i)| ≤ 2qiπi
√
n it follows that

p
∑
e∈Oi

c2
e ≤ σ/

√
n ·
(

(2qiπi
√
n)2 + σ−5I · 2qiπi

√
n · |Yuv(i)|

)
≤ 8σ−4q2

i π
2
i I
√
n.

Furthermore, using πi ≥ σ and I ≥ 1 we obtain qi
∑

e∈Oi ĉ
2
e ≤ qi|Yuv(i)| ≤ 2q2

i πi
√
n �

σ−4q2
i π

2
i I
√
n. Noting that Y ∗uv is decreasing, using Theorem 12 and q2

i

√
n/I ≥ nτ (see (2.54))

37



it follows that

P(Y ∗uv ≥ EY ∗uv + σ2q2
i πi
√
n) ≤ exp

(
− σ4q4

i π
2
i n

2 · 9σ−4q2
i π

2
i I
√
n

)
≤ n−ω(1). (2.74)

Combining the probability estimates (2.73) and (2.74) with inequalities (2.71)–(2.72) and

σ2 � σ3/2, now a union bound argument (to account for all pairs of vertices u, v) completes

the proof for the |Yuv(i+ 1)| variables.

Finally, for |Zuv(i+ 1)| note that the one-step difference

∆Z := |Zuv(i+ 1)|− |Zuv(i)| =
∑

w∈Xuv(i)

1{uw∈Γi+1 and vw∈Γi+1}+
∑

f∈Yuv(i)

1{f∈Γi+1} (2.75)

is a sum of independent Bernoulli random variables with

E(∆Z) = |Xuv(i)| · p2 + |Yuv(i)| · p ≤ σ2q2
i + 2σqiπi ≤ 3σ � 1, (2.76)

where we used |Xuv(i)| ≤ q2
i n and |Yuv(i)| ≤ 2qiπi

√
n for the first inequality, and

max{q2
i , qiπi} ≤ 1 (see (2.53)) and σ � 1 for the last two inequalities. Inspecting (2.75),

note that X≤i ⊆ Pi implies |Zuv(i + 1)| ≤ ∆Z + i(log n)9. Applying standard Chernoff

bounds, using E(∆Z)� 1 it readily follows that, say,

P
(
|Zuv(i+ 1)| ≥ (i+ 1)(log n)9

)
≤ P

(
∆Z ≥ (log n)9

)
≤ n−ω(1).

Taking a union bound over all pairs of vertices u, v completes the proof for the |Zuv(i+ 1)|

variables.

Remark 23. If desired, it would not be difficult to establish the better upper bound |Zuv(i)| ≤

(log n)2, say (using the stochastic domination arguments leading to (2.95) in Section 2.3.5;

in view (2.75)–(2.76) the main point is that, for 0 ≤ i ≤ I , the event X≤i implies
∑

0≤j≤i(|Xuv(j)|p2+

|Yuv(j)|p) = O(log n)). This in turn could, e.g., be used to increase the constant β0 slightly
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(as we could then remove I = dnβe from constraint (2.54)).

2.3.4 Event Q+
i+1 ∩Qi+1: number |Oi+1(A,B)| of open edges between large sets

Recall that the eventsQ+
i+1,Qi+1 defined in (2.46)–(2.47) concern the open edge-setOi+1 ⊆

E(H) = O0, ensuring that |Oi+1(A,B)| ≤ qi+1|A||B| for all disjointA,B ⊆ V with |A|, |B| ≥

s0, and τi+1qi+1|O0(A,B)| ≤ |Oi+1(A,B)| ≤ qi+1|O0(A,B)| for all (A,B) ∈ Ss,γ;

see (2.40)–(2.41) for the definition of s0 and Ss,γ .

Turning to |Oi+1(A,B)|, note that one edge e ∈ Γi+1 can add up to |Ye(i)∩Oi(A,B)| ≤∑
w∈e |NEi(w) ∩ (A ∪ B)| edges to C

(1)
i+1(A,B) ⊆ Oi(A,B) \ Oi+1(A,B), which can

potentially lead to large edge-effects ce. To sidestep such technical difficulties, we now

introduce the following auxiliary variables for vertex-sets A,B ⊆ V with |A| = |B| (to

avoid clutter we suppress the dependence on A,B, i in parts of our notation):

z := σ4q2
i |A|,

W1 := {w ∈ V : |NEi(w) ∩ (A ∪B)| ≥ z},

W2 := {w ∈ V : |NΓi+1
(w) ∩ (A ∪B)| ≥ z},

Ĉ
(1)
i+1 := {uv ∈ Oi : there is w 6∈ W1 s.t. |{uw, vw} ∩ Γi+1| = |{uw, vw} ∩ Ei| = 1},

Ĉ
(2)
i+1 := {uv ∈ Oi : there is w 6∈ W2 s.t. uw ∈ Γi+1, vw ∈ Γi+1},

Ĉi+1 := Ĉ
(1)
i+1 ∪ Si+1.

Note that Ĉ(j)
i+1 ⊆ C

(j)
i+1 for j ∈ {1, 2}, and that Ĉi+1 ⊆ Ci+1. Furthermore, recalling qi ≥ qI

(see (2.55)), using inequality (2.54) it is routine to check that s0 � 1 holds, that |A| ≥ s0

implies z � 1, and moreover that

min
|A|≥s0

z/
√
|A|I ≥ σ4q2

i

√
s0/
√
I � σ6q3

I
4
√
n/
√
I � nτ/2. (2.77)

Lemma 24. We have P(¬Q+
i+1) ≤ n−ω(1).
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Proof. Mimicking the double counting argument from (2.4), it follows that the special case

|A| = |B| ofQ+
i+1 implies the eventQ+

i+1 in full. Hence¬Q+
i+1 implies that |Oi+1(A,B)| ≤

qi+1|A||B| fails for some disjoint vertex-sets A,B ⊆ V with |A| = |B| ≥ s0, and we shall

below estimate the probability of this special case.

Recalling Ĉi+1 ⊆ Ci+1, noting Oi+1 ⊆ Oi \ Ci+1 ⊆ Oi \ Ĉi+1 we obtain

|Oi+1(A,B)| ≤ |Oi(A,B) \ Ĉi+1| =
∑

f∈Oi(A,B)

1{f 6∈Ĉi+1} =: X. (2.78)

To estimate EX , recall that C(1)
i+1 = {f ∈ Oi : Yf (i) ∩ Γi+1 6= ∅}. Note that if the event

Qf := {(f ×W1) ∩ Γi+1 = ∅} holds, then f /∈ Ĉ(1)
i+1 implies f /∈ C(1)

i+1, so that f /∈ Ĉi+1

implies f /∈ Ci+1 = C
(1)
i+1 ∪ Si+1. Since f /∈ C(1)

i+1 and Qf are both monotone decreasing

functions of the edge-indicators (1{e∈Γi+1},1{e∈Si+1})e∈Oi , using Harris’s inequality [58]

and P(Qf ) ≥ (1− p)2|W1| it follows that

P(f /∈ Ci+1) ≥ P(f /∈ Ĉi+1 and Qf ) ≥ P(f /∈ Ĉi+1)P(Qf ) ≥ P(f /∈ Ĉi+1) · (1− p)2|W1|.

Note that X≤i and i < I imply |NEi(u)∩NEi(v)| = |Zuv(i)| ≤ I(log n)9 =: y when u 6= v,

and that (2.77) implies z �
√
|A ∪B|y. Using the definition of W1 and Lemma 16 (with

I = W1, U = A ∪B and Uw = NEi(w) ∩ U ), we infer |W1| ≤ 2|A ∪B|/z = 4/(σ4q2
i ) ≤

qiσ
√
n by (2.54), say. Similar to (2.69), using Lemma 19, |Oi(A,B)| ≤ qi|A||B|, p|W1| ≤

qiσ
2 � 1 and qiqi+1 ∼ q2

i (see (2.55)) it is routine to deduce that

EX ≤ |Oi(A,B)| · (qi+1/qi − σ3/2qi) · (1− p)−2|W1|

≤ |A||B| · (qi+1 − σ3/2q2
i /2).

(2.79)

Gearing up to apply Theorem 12, we now bound λ ≤ p
∑

e∈Oi c
2
e + qi

∑
e∈Oi ĉ

2
e. Noting

Ĉi+1 ⊆ Ci+1, as usual we have edge-effect ce ≤ |Ye(i)∩Oi(A,B)| and stabilization-effect

ĉe ≤ 1{e∈Oi(A,B)}. Here the definition of Ĉi+1 allows us to improve the simple worst case
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estimate ce ≤ |Ye(i)|. Indeed, inspecting the corresponding argument for |NOi+1
(v)| from

Lemma 21, we see that the edge-effect ce (an upper bound on how much X changes if we

alter whether e ∈ Γi+1 or e 6∈ Γi+1) is at most the number of changes to

Ĉ
(1)
i+1 ∩Oi(A,B) =

{
uv ∈ Oi(A,B) : there is w 6∈ W1 s.t.

either uw ∈ Γi+1, vw ∈ Ei

or vw ∈ Γi+1, uw ∈ Ei
}
.

(2.80)

Since any w 6∈ W1 has at most z neighbours in A ∪ B via Ei–edges, we infer that ce ≤ 2z

(the factor of two takes into account that each vertex of e could potentially play the role

of w in (2.80) above). Similar to (2.66) and (2.70), using Lemma 20, σπi ≤
√
σ � 1

(see (2.53)), and |Oi(A,B)| ≤ qi|A||B| it follows that

p
∑
e∈Oi

c2
e ≤ σ/

√
n · 2z · 2qiπi

√
n · |Oi(A,B)| � zqi|Oi(A,B)| ≤ zq2

i |A||B|.

Furthermore, using z ≥ 1 we obtain qi
∑
ĉ2
e ≤ qi|Oi(A,B)| ≤ zqi|Oi(A,B)| ≤ zq2

i |A||B|.

Noting that X is decreasing, using Theorem 12 and the λ–bound (2.63) it follows that

P(|Oi+1(A,B)| ≥ qi+1|A||B|) ≤ P(X ≥ EX + σ3/2q2
i |A||B|/2)

≤ exp

(
−
(
σ3/2q2

i |A||B|/2
)2

2 · 2zq2
i |A||B|

)

= exp

(
−σ

3q2
i |A||B|
16z

)
≤ n−ω(|B|),

(2.81)

where for the last inequality we used z = σ4q2
i |A| and σ−1 � log n. Finally, taking a union

bound over all disjoint vertex-sets A,B ⊆ V with |A| = |B| ≥ s0 completes the proof (as

discussed).

For the ‘relative error’ τi used in the event Qi, see (2.38), we now record the following
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convenient bounds:

1 ≥ τi ≥ τI = 1− δ/2 ≥ 1/2 for all 0 ≤ i ≤ I . (2.82)

Lemma 25. We have P(¬Qi+1 ∩Ni+1 ∩ Pi+1) ≤ n−ω(1).

The proof strategy is to estimate the different contributions to Oi+1 = Oi \ (Γi+1 ∪

Ci+1 ∪ C(2)
i+1) separately (here Q+

i will be crucial for bounding some of the large edge-

effects ignored in Lemma 24).

Claim 26. Let QA,B be the event that the following bounds hold:

X1 :=
∣∣Oi(A,B) \ Ĉi+1

∣∣ ∈ [|Oi(A,B)| · (qi+1/qi − 4σ3/2qi), |Oi(A,B)| · qi+1/qi
]
,

X2 :=
∣∣Oi(A,B) ∩ Ĉ(2)

i+1

∣∣ ≤ |Oi(A,B)| · 2σ2qi,

X3 := |Oi(A,B) ∩ Γi+1| ≤ |Oi(A,B)| · 2σ2qi,

X4 :=
∣∣Oi(A,B) ∩ (Ci+1 ∪ C(2)

i+1) \ (Ĉi+1 ∪ Ĉ(2)
i+1)
∣∣ ≤ 36σq2

i

√
n|A|.

Then P(¬QA,B ∩Ni+1 ∩ Pi+1) ≤ n−ω(s) for all vertex-sets (A,B) ∈ Ss,γ .

Before giving the proof, we first show that Claim 26 implies Lemma 25. Using a union

bound argument (to account for the |Ss,γ| ≤ n2s vertex-sets (A,B) ∈ Ss,γ), it is enough to

show that QA,B ∩ X≤i implies τi+1qi+1|O0(A,B)| ≤ |Oi+1(A,B)| ≤ qi+1|O0(A,B)|. By

definition of Oi+1(A,B) we have

X1 −X2 −X3 −X4 ≤ |Oi+1(A,B)| ≤ X1.

Combining QA,B with the fact that |Oi(A,B)| ≤ qi|O0(A,B)| by X≤i ⊆ Qi, we read-

ily infer the upper bound |Oi+1(A,B)| ≤ qi+1|O0(A,B)|. Turning to the lower bound,
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using QA,B it follows that

X1 −X2 −X3 −X4 ≥ |Oi(A,B)| ·
(
qi+1/qi − 8σ3/2qi

)
− 36σq2

i

√
n|A|

≥
(
τiqi
(
qi+1/qi − 8σ3/2qi

)
− 36σq2

i

γC
√

log n

)
· |O0(A,B)|

≥
(
τi −

45σqi

γC
√

log n

)
· qi+1|O0(A,B)| ≥ τi+1 · qi+1|O0(A,B)|,

where for the second inequality we used |Oi(A,B)| ≥ τiqi|O0(A,B)| (by X≤i ⊆ Qi) and

|O0(A,B)| ≥ γ|A||B| ≥ γC
√

log n ·
√
n|A|, for the third inequality we used τi ≤ 1

(see (2.82)), σ1/2 � 1/
√

log n, and qi ∼ qi+1 (see (2.55)), and for the last inequality

we used
√

log n ∼
√

log(Iσ)/β ∼ πI/
√
β (see (2.57)), γC/

√
β ≥ D0/δ

2 ≥ 91/δ (by

assumption and (2.39)) and τi − δσqi/πI = τi+1 (see (2.38)). This completes the proof of

Lemma 25 (assuming Claim 26).

Proof of Claim 26. We start with X1 = |Oi(A,B) \ Ĉi+1|. Since s ≥ s0, the upper tail

argument for X = X1 defined in (2.78) carries over from Lemma 24, with EX1 ≤

|Oi(A,B)|(qi+1/qi − σ3/2qi/2) and λ ≤ 2zqi|Oi(A,B)|, say. In particular, noting that

here |Oi(A,B)| ≥ τiqi|O0(A,B)| ≥ γτiqi|A||B|, an application of Theorem 12 along the

lines of (2.81) gives

P(X1 ≥ |Oi(A,B)|qi+1/qi) ≤ exp

(
−
(
σ3/2qi|Oi(A,B)|/2

)2

2 · 2zqi|Oi(A,B)|

)

≤ exp

(
−γτiσ

3q2
i |A||B|

16z

)
≤ n−ω(s),

(2.83)

where for the last inequality we used z = σ4q2
i |A|, τi ≥ 1/2 (see (2.82)), γσ−1 � log n

and |B| = s. For the lower tail of X1 we proceed similarly. Since Ĉi+1 ⊆ Ci+1, using

Lemma 19 we obtain

EX1 =
∑

e∈Oi(A,B)

P(e 6∈ Ĉi+1) ≥
∑

e∈Oi(A,B)

P(e 6∈ Ci+1) ≥ |Oi(A,B)| · (qi+1/qi − 3σ3/2qi).
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Furthermore, the edge-effect and stabilization-effect estimates from the proof of Lemma 24

again carry over, giving λ ≤ 2zqi|Oi(A,B)| and maxe∈Oi max{ce, ĉe} ≤ 2z, say. Applying

inequality (2.49) of Remark 13 (with C = 2z), it follows similarly to (2.83) that

P
(
X1 ≤ |Oi(A,B)|(qi+1/qi − 4σ3/2qi)

)
≤ P

(
X1 ≤ EX1 − σ3/2qi|Oi(A,B)|

)
≤ exp

(
−

(
σ3/2qi|Oi(A,B)|

)2

2
(
2zqi|Oi(A,B)|+ 2z · σ3/2qi|Oi(A,B)|

))

≤ exp

(
−γτiσ

3q2
i |A||B|

8z

)
≤ n−ω(s).

(2.84)

Turning to X2 = |Oi(A,B) ∩ Ĉ(2)
i+1|, note that by construction of Ĉ(2)

i+1 we have

X2 =
∑

e∈Oi(A,B)

1{e∈Ĉ(2)
i+1}
≤

∑
ab∈Oi(A,B)

∑
w∈V \W2

1{{wa,wb}⊆Γi+1} =: X+
2 . (2.85)

Gearing up to apply Theorem 15 to X+
2 , in view of Γi+1 ⊆ Oi we define

I :=
{
{wa,wb} ⊆ Oi : ab ∈ Oi(A,B), w ∈ V, |{a, b, w}| = 3

}
,

K := {{wa,wb} ∈ I : w 6∈ W2, {wa,wb} ⊆ Γi+1}.

Since p2 · |Xab(i)| ≤ σ2q2
i ≤ σ2qi by X≤i ⊆ Pi and qi ≤ 1 (see (2.53)), we obtain

∑
α∈I

E1{α⊆Γi+1} = p2
∑

ab∈Oi(A,B)

∑
v∈V

1{{va,vb}⊆Oi}

= p2
∑

ab∈Oi(A,B)

|Xab(i)| ≤ σ2qi · |Oi(A,B)| =: µ.

Furthermore, sinceK only contains edge-pairs {wa,wb}with {a, b} ⊆ NΓi+1
(w)∩(A∪B)

where the ‘central vertex’ w satisfies w 6∈ W2 and thus |NΓi+1
(w) ∩ (A ∪ B)| ≤ z, for all
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β ∈ K we see that

|{α ∈ K : α∩β 6= ∅}| ≤
∑
f∈β

|{α ∈ K : f ∈ α}| ≤
∑
f∈β

∑
v∈f\W2

|NΓi+1
(v)∩(A∪B)| ≤ 2·2·z.

It follows that X+
2 =

∑
α∈K 1{α⊆Γi+1} ≤ Z4z, where Z4z is defined as in Theorem 15. Ap-

plying first (2.85) and then inequality (2.50) with C = 4z, using |Oi(A,B)| ≥ γτiqi|A||B|

it follows similarly to (2.83) that

P(X2 ≥ 2σ2qi|Oi(A,B)|) ≤ P(Z4z ≥ 2µ) ≤ exp
(
− µ2

2 · 4z · 2µ

)
≤ exp

(
−γτiσ

2q2
i |A||B|

16z

)
≤ n−ω(s).

(2.86)

We next turn to X3 = |Oi(A,B) ∩ Γi+1|, which is a sum of independent Bernoulli

random variables with EX3 = |Oi(A,B)| · p � σ2qi|Oi(A,B)| =: t, as qi
√
n ≥ nτ

by (2.54). Applying standard Chernoff bounds, using |Oi(A,B)| ≥ γτiqi|A||B| and z ≥ 1

it follows by comparison with the last inequality of (2.86) that

P(X3 ≥ 2σ2qi|Oi(A,B)|) ≤ P(X3 ≥ EX3 + t) ≤ exp
(
− t2

2 · 2t

)
≤ exp

(
−γτiσ

2q2
i |A||B|
4

)
≤ n−ω(s).

(2.87)

Finally, X4 is a more difficult variable: assuming that Ni+1 ∩ Pi+1 ∩ X≤i holds, we

shall bound X4 by deterministic counting arguments (here the edge-effects can potentially

be fairly large, so concentration inequalities seem less effective). Noting Ci+1 \ Ĉi+1 =
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C
(1)
i+1 \ Ĉ

(1)
i+1, similarly to (2.85) we obtain

X4 ≤
∑

e∈Oi(A,B)

1{e∈C(1)
i+1\Ĉ

(1)
i+1}

+
∑

e∈Oi(A,B)

1{e∈C(2)
i+1\Ĉ

(2)
i+1}

≤
∑
w∈W1

(
|Oi(NΓi+1

(w) ∩ A, NEi(w) ∩B)|

+ |Oi(NΓi+1
(w) ∩B, NEi(w) ∩ A)|

)
+
∑
w∈W2

|Oi(NΓi+1
(w) ∩ A, NΓi+1

(w) ∩B)|.

(2.88)

Using the upper bound estimate from X≤i ⊆ Q+
i when min{|NΓi+1

(v) ∩ A|, |NEi(v) ∩

B|} ≥ z holds (note that z = σ4q2
i s ≥ s0), and a trivial estimate otherwise, it follows that

|Oi(NΓi+1
(w) ∩ A, NEi(w) ∩B)|

≤ qi|NΓi+1
(w) ∩ A||NEi(w) ∩B|+ zmax{|NΓi+1

(w) ∩ A|, |NEi(w) ∩B|}

≤
(
qi|NΓi+1

(w)|+ z
)
· |NEi∪Γi+1

(w) ∩ (A ∪B)|.

(2.89)

With an eye on (2.88), we note that an analogous estimate also holds when we reverse the

role ofA andB in (2.89). Furthermore, qi|NΓi+1
(w)| ≤ 2σq2

i

√
n byNi+1, and z = σ4q2

i s =

O(σ3q2
i

√
n)� σq2

i

√
n. RecallingEi∪Γi+1 = Ei+1, observe that Pi+1 and i+1 ≤ I imply

|NEi∪Γi+1
(u) ∩NEi∪Γi+1

(v)| = |Zuv(i+ 1)| ≤ I(log n)9 =: y when u 6= v, and that (2.77)

implies z �
√
|A ∪B|y (as |A| = s ≥ s0). Using the definition of W1 and Lemma 16

(with I = W1, U = A ∪B and Uw = NEi∪Γi+1
(w) ∩ U ), it follows that

∑
w∈W1

(
|Oi(NΓi+1

(w) ∩ A, NEi(w) ∩B)|+ |Oi(NΓi+1
(w) ∩B, NEi(w) ∩ A)|

)
≤ 2 · 3σq2

i

√
n ·

∑
w∈W1

|NEi∪Γi+1
(w) ∩ (A ∪B)|

≤ 2 · 3σq2
i

√
n · 2|A ∪B| ≤ 24σq2

i

√
n|A|.

(2.90)

Proceeding analogously to (2.89)–(2.90), using the definition of W2 and Lemma 16 we
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similarly obtain

∑
w∈W2

|Oi(NΓi+1
(w) ∩ A, NΓi+1

(w) ∩B)|

≤ 3σq2
i

√
n ·

∑
w∈W2

|NΓi+1
(w) ∩ (A ∪B)|

≤ 3σq2
i

√
n · 2|A ∪B| ≤ 12σq2

i

√
n|A|.

(2.91)

To sum up, inserting the bounds (2.90)–(2.91) into (2.88), we showed that Ni+1 ∩ Pi+1 ∩

X≤i implies X4 ≤ 36σq2
i

√
n|A|. This completes the proof together with the probability

estimates (2.83), (2.84), (2.86), and (2.87).

Remark 27. If desired, it would not be difficult to extend the event Qi to larger vertex-

sets (A,B) ∈ S≥s,γ :=
⋃
s≤r≤nSr,γ (the above arguments all carry over, except for the

modified bound X4 ≤ 3 ·maxw(qi|NΓi+1
(w)|+z) ·2|A∪B| ≤ 36σq2

i max{
√
n, σ3|B|}|A|,

which is still strong enough to deduce Lemma 25). This in turn could, e.g., be used to also

extend the event TI to (A,B) ∈ S≥s,γ (the proofs in Section 2.3.5 then carry over).

Remark 28. Under a mild extra assumption such as |O0| ≥ σn, say, it would not be

difficult to add two-sided bounds for the total number of open edges |Oi| and edges |TI |

to the events Qi and TI . For example, much simpler variants of the above arguments then

imply τiqi|O0| ≤ |Oi| ≤ qi|O0| (by directly estimating |Oi \ Ci+1| − |Γi+1| − |C(2)
i+1| ≤

|Oi+1| ≤ |Oi \ Ci+1|, without using Ĉi+1 or Ĉ(2)
i+1, nor a union bound over all vertex-

sets), which in turn gives |TI | = (1 ± δ)ρ|O0| by straightforward variants of the proofs in

Section 2.3.5.

2.3.5 Event TI : number |TI(A,B)| of edges between large sets

Recall that the event TI defined in (2.42) concerns the triangle-free edge-set TI ⊆ E(H) =

O0, ensuring that |TI(A,B)| = (1 ± δ)ρ|O0(A,B)| for all (A,B) ∈ Ss,γ; see (2.41) for

the definition of Ss,γ .
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For |TI(A,B)| it is convenient to think of the entire nibble construction as one evolving

random process. Thus, in contrast to previous sections, in Lemma 29 and Claim 30 below

we shall not tacitly condition on Fi.

Lemma 29. We have P(¬TI ∩ X≤I) ≤ n−ω(1).

Since TI =
⋃

0≤i<I(Ti+1 \Ti) forms a partition, the proof strategy is to estimate the two

contributions to Ti+1 \ Ti = Γi+1 \ E(Di+1) separately (here the deleted edges E(Di+1)

will have negligible impact).

Claim 30. Let TA,B be the event that the following bounds hold:

X :=
∑

0≤i<I

|Oi(A,B) ∩ Γi+1| ∈
[
(1− δ/2)µ−, (1 + δ/2)µ+

]
,

Y :=
∑

0≤i<I

∣∣Oi(A,B) ∩ E(Di+1)| ≤ δ2µ−/9,

where µ+ :=
∑

0≤i<Ibqi|O0(A,B)|cp and µ− :=
∑

0≤i<Idτiqi|O0(A,B)|ep. Then P(¬TA,B∩

X≤I) ≤ 3n−3s for all vertex-sets (A,B) ∈ Ss,γ .

Before giving the proof, we first show that Claim 30 implies Lemma 29. Using a union

bound argument (to account for the |Ss,γ| ≤ n2s vertex-sets (A,B) ∈ Ss,γ), it is enough

to show that TA,B implies |TI(A,B)| = (1 ± δ)ρ|O0(A,B)|. Since all the (Γi+1)0≤i<I are

edge-disjoint, by the recursive definition (2.14) of TI we have

X − Y ≤ |TI(A,B)| ≤ X. (2.92)

Noting µ− ≥ τIµ
+ = (1 − δ/2)µ+ (see (2.82)), it follows that TA,B implies X ≤ (1 +

δ/2)µ+ and

X − Y ≥
(
1− δ/2− δ2/9

)
· µ− ≥ (1− δ + δ2/8)µ+.

It thus suffices to show that µ+ ∼ ρ|O0(A,B)|, where ρ =
√
β(log n)/n. But this is rou-

tine: indeed, since qi|O0(A,B)| ≥ qi · γs2 � qin�
√
n by (2.54), and πI ∼

√
log(Iσ) ∼
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√
β log n by (2.57), using the definition (2.37) of πI we readily infer

µ+ =
∑

0≤i<I

(qi|O0(A,B)| ± 1)p ∼
∑

0≤i<I

σqi/
√
n · |O0(A,B)|

= (πI − σ)/
√
n · |O0(A,B)| ∼ ρ|O0(A,B)|,

(2.93)

completing the proof of Lemma 29 (assuming Claim 30).

Proof of Claim 30. We start with X =
∑

0≤i<I |Oi(A,B) ∩ Γi+1|. Define

X+
i+1 := 1{Xi}

∑
e∈Oi(A,B)

1{e∈Γi+1} and X+ :=
∑

0≤i<I

X+
i+1.

Note that X = X+ when X≤I =
⋂

0≤i≤I Xi holds. Let Z+
i+1

d
= Bin(bqi|O0(A,B)|c, p)

be independent random variables (where d
= means equality in distribution, as usual). Since

the Fi-measurable event Xi ⊆ Qi implies |Oi(A,B)| ≤ qi|O0(A,B)|, it is easy to see that

P(X+
i+1 ≥ t | Fi) ≤ P(Z+

i+1 ≥ t) for t ∈ R. Setting

Z+ :=
∑

0≤i<I

Z+
i+1

d
= Bin

(∑
0≤i<I

bqi|O0(A,B)|c, p
)
, (2.94)

a standard stochastic domination argument then shows P(X+ ≥ t) ≤ P(Z+ ≥ t) for t ∈ R,

so that

P(X ≥ t and X≤I) ≤ P(X+ ≥ t) ≤ P(Z+ ≥ t). (2.95)

Since Xi also implies |Oi(A,B)| ≥ τiqi|O0(A,B)|, an analogous argument gives

P(X ≤ t and X≤I) ≤ P(Z− ≤ t) with

Z−
d
= Bin

(∑
0≤i<I

dτiqi|O0(A,B)|e, p
)
.

(2.96)

Combining µ− ≥ τIµ
+ ≥ µ+/2 (see (2.82)) and (2.93) with |O0(A,B)| ≥ γs2, using
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δ2
√
βγ · C ≥ D0 = 108 (by assumption and (2.39)) we have

δ2 min{µ−, µ+} ≥ δ2

2
µ+ ≥ δ2

3
ρ|O0(A,B)|

≥ δ2

3

√
β(log n)/n · γC

√
n log n · s ≥ 36s log n.

(2.97)

Using (2.94)–(2.96) and EZ± = µ±, by standard Chernoff bounds (see, e.g., Remark 14)

we obtain, say,

P
(
X 6∈

[
(1− δ/2)µ−, (1 + δ/2)µ+

]
and X≤I

)
≤ P

(
Z− ≤ (1− δ/2)µ−

)
+ P

(
Z+ ≥ (1 + δ/2)µ+

)
≤ exp

(
−δ2µ−/8

)
+ exp

(
−δ2µ+/12

)
≤ 2n−3s.

(2.98)

Finally, turning to Y =
∑

0≤i<I |Oi(A,B) ∩ E(Di+1)|, for brevity we define

Yi+1 := |Oi(A,B) ∩ E(Di+1)| and y := δ2µ−/9.

Note that Y =
∑

0≤i<I Yi+1 and Yi+1 ∈ N. Since X≤i =
⋂

0≤j≤iXj , a union bound

argument gives

P
(
Y ≥ δ2µ−/9 and X≤I

)
≤

∑
(y1,...,yI)∈NI∑
1≤i≤I yi=dye

P
( ⋂

0≤i<I

(
Yi+1 ≥ yi+1 and X≤i+1

))

≤
∑

(y1,...,yI)∈NI∑
0≤i<I yi+1=dye

∏
0≤i<I

P
(
Yi+1 ≥ yi+1

∣∣∣ ⋂
0≤j<i

(
Yj+1 ≥ yj+1 and X≤j+1

))
.

(2.99)

Gearing up to apply Theorem 15 to Yi+1, with an eye on Di+1 ⊆ Bi+1 and Ti ⊆ Ei (see
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Section 2.2.1) we define

I :=
{
{wu,wv} ⊆ Oi : uv ∈ Ei, |{u, v, w}| = 3, {wu,wv} ∩Oi(A,B) 6= ∅

}
∪
{
{uv, vw,wu} ⊆ Oi : |{u, v, w}| = 3, {uv, vw,wu} ∩Oi(A,B) 6= ∅

}
.

Since each edge-set α ∈ I contains at least one edge from Oi(A,B), when the Fi-

measurable event X≤i holds we infer by the usual reasoning (using, e.g., Pi ∩ Qi and

max{πiqi, q2
i } ≤ 1) that

∑
α∈I

E(1{α⊆Γi+1} | Fi) ≤
∑

e∈Oi(A,B)

∑
α∈I:e∈α

p|α| ≤
∑

e∈Oi(A,B)

(
|Ye(i)| · p2 + |Xe(i)| · p3

)
≤ qi|O0(A,B)| ·

(
2πiqi

√
n · p2 + q2

i n · p3
)
≤ 3σ · qi|O0(A,B)|p =: µ∗i+1.

Since Di+1 is a collection of edge-disjoint elements of Bi+1 (and thus {α ∈ Di+1 : α∩β 6=

∅} = {β} for all β ∈ Di+1), using E(Di+1) =
⋃
α∈Di+1

α ⊆ Γi+1 ⊆ Oi, |α| ≤ 3 and

Ti ⊆ Ei it is not difficult to check that

Yi+1 =
∑

α∈Di+1

|α ∩Oi(A,B)| ≤ 3 ·
∑

α∈I∩Di+1

1{α∈Γi+1} ≤ 3Z1,

whereZ1 is defined as in Theorem 15. Applying inequality (2.50) withC = 1 and µ = µ∗i+1

(in the probability space conditional on Fi; cf. the beginning of Section 2.3.1), when X≤i

holds it follows that, say,

P(Yi+1 ≥ yi+1 | Fi) ≤ P(Z1 ≥ yi+1/3 | Fi) ≤


(
eµ∗i+1

yi+1/3

)yi+1/3

≤ σyi+1/6 if yi+1 ≥ 9µ∗i+1/
√
σ,

1 otherwise.
(2.100)

Comparing the definition of
∑

0≤i<I µ
∗
i+1 with µ−, using τi ≥ τI ≥ 1/2 (see (2.82)) and
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σ � 1 we see that

∑
0≤i<I:

yi+1≤9µ∗i+1/
√
σ

yi+1 ≤ 9/
√
σ ·

∑
0≤i<I

µ∗i+1 ≤ 9/
√
σ · 6σµ− � δ2µ−/9 = y.

So, inserting (2.100) into (2.99), using (2.97) and the definition of s it follows that y/ log y =

Ω(
√
n)� I and

P
(
Y ≥ δ2µ−/9 and X≤I

)
≤

∑
(y1,...,yI)∈NI∑
0≤i<I yi+1=dye

σdye/6−o(y) ≤ (y + 2)I · σy/7 ≤ e−ω(δ2µ−) ≤ n−ω(s),

completing the proof together with the probability estimate (2.98).

2.4 Appendix

Proof of Theorem 12. We may assume that I = {1, . . . , |I|}. Recalling X = f
(
(ξi)i∈I

)
,

we define

Di := E(X | ξ1, . . . , ξi−1, ξi = 1)− E(X | ξ1, . . . , ξi−1, ξi = 0) ∈ [−ci, 0],

where Di ≤ 0 follows from the assumption that f is decreasing, and |Di| ≤ ci follows,

as usual, from the assumed discrete Lipschitz property of f . Analogous to, e.g., the proof

of [117, Theorem 1.3], writing pi = P(ξi = 1) it is routine to check that

∆i := E(X | ξ1, . . . , ξi)− E(X | ξ1, . . . , ξi−1) = Di(1− pi)1{ξi=1} −Dipi1{ξi=0}.
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Since 1 + x ≤ ex for x ∈ R and ex ≤ 1 + x + x2/2 for x ≤ 0, for θ ≥ 0 it follows easily

that

E
(
eθ∆i | ξ1, . . . , ξi−1

)
= (1− pi) · e−θDipi + pi · eθDi(1−pi) = e−θDipi(1− pi + pie

θDi)

≤ e−θDipi+pi(e
θDi−1) ≤ eθ

2D2
i pi/2 ≤ eθ

2c2i pi/2.

Hence E
(
eθ

∑
i∈I ∆i

)
≤ eθ

2λ/2, where λ =
∑

i∈I c
2
i pi. Noting X − EX =

∑
i∈I ∆i, we

deduce

P(X ≥ EX + t) = P
(
eθ

∑
i∈I ∆i ≥ eθt

)
≤ E

(
eθ

∑
i∈I ∆i

)
e−θt ≤ eθ

2λ/2−θt = e−t
2/(2λ)

by choosing θ = t/λ, completing the proof of (2.48).

Proof of Lemma 17. Note that the ODE Ψ′(x) = e−Ψ2(x) and Ψ(0) = 0 has the implicit

solution

x =

∫ Ψ(x)

0

et
2

dt. (2.101)

For x ≥ 0 it follows that Ψ(x) is strictly increasing, so that Ψ′(x) ≥ 0 is strictly decreasing.

Recalling qi = Ψ′(iσ), we deduce qi ≥ qi+1 and 0 ≤ qi ≤ q0 = 1 for all i ≥ 0.

To facilitate our upcoming calculations, we first prove the auxiliary claim that, for all

i ≥ 0,

πi −Ψ(iσ) ∈ [σ, 2σ]. (2.102)

Indeed, using Ψ(0) = 0 and monotonicity of Ψ′ (for the first two inequalities) together

with Ψ′(0) = 1 and Ψ′ ≥ 0 (for the last inequality) it follows that

0 ≤
( ∑

0≤j≤i−1

σΨ′(jσ)

)
−Ψ(iσ) ≤ σ(Ψ′(0)−Ψ′(iσ)) ≤ σ,

which establishes (2.102) by the definition (2.37) of πi and Ψ′(jσ) = qj .

For (2.57), note that by (2.102) and I = dnβe � 1 it suffices to show
√

log x − 1 ≤
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Ψ(x) ≤
√

log x + 1 for x ≥ e (with room to spare). The upper bound follows from∫ √log x+1

0
et

2
dt ≥ x and (2.101). Using the inequality (y − 1)e−2y+1 ≤ 1 with y =

√
log x,

the lower bound follows from
∫ √log x−1

0
et

2
dt ≤ x and (2.101).

Turning to (2.54), note that the above calculations for (2.57) imply Ψ′(x) = e−Ψ2(x) =

x−1+o(1) as x → ∞, so that qI = n−β+o(1). Together with qi ≥ qI , it then is routine to see

that (2.54) holds for β < β0 = 1/14.

Now we focus on (2.53). As a warm-up, note that πi ≤ πI for 0 ≤ i ≤ I by the

definition (2.37) of πi, and that πI ≤
√

log(Iσ) + 2 � log n = σ−1/2 by (2.57), so that
√
σπi ≤ 1. Next, using (2.102) together with the simple inequalities e−x2x ≤ 1/2 and

e−x
2
x2 ≤ 1/2, we also infer that

qiπi ≤ e−Ψ2(iσ)
(
Ψ(iσ) + 2σ

)
≤ 1, (2.103)

qiπ
2
i ≤ e−Ψ2(iσ)

(
Ψ2(iσ) + 4σΨ(iσ) + 4σ2

)
≤ 1. (2.104)

Combined with qi ≤ 1 this implies qiπ
j
i ≤ 1 for all j ∈ {0, 1, 2}, completing the proof

of (2.53).

Turning to (2.55), note that Ψ((i+ 1)σ) ≤ πi+1−σ ≤ πi by (2.102), (2.37) and qi ≤ 1.

Since Ψ ≥ 0 is increasing and Ψ′ ≥ 0 is decreasing, using qj = Ψ′(jσ) together with

Ψ′′(x) = −2Ψ′(x)2Ψ(x) and (2.103) it follows that

|qi−qi+1| ≤ σ max
iσ≤ξ≤(i+1)σ

|Ψ′′(ξ)| ≤ σ·2Ψ′(iσ)2·Ψ((i+1)σ) ≤ σ·2q2
i πi ≤ σ·2 min{qi, qiπi}.

(2.105)

Noting that (2.105) also implies qi ∼ qi+1, this completes the proof of (2.55) since qi ≥

qi+1.

Finally, for (2.56) it suffices to show |qi − qi+1 − 2σq2
i πi| ≤ 8σ2q2

i . Since qi = Ψ′(iσ),

it follows that ∣∣qi − qi+1 + σΨ′′(iσ)
∣∣ ≤ σ2

2
max

iσ≤ξ≤(i+1)σ
|Ψ′′′(ξ)|.
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As Ψ′(x) = e−Ψ2(x), it is routine to check that Ψ′′′(x) = 2Ψ′(x)3
(
4Ψ2(x)−1

)
. Since Ψ ≥ 0

is increasing and Ψ′ ≥ 0 is decreasing, using Ψ((i + 1)σ) ≤ πi (as above), (2.104) and

qi ≤ 1 we infer

max
iσ≤ξ≤(i+1)σ

|Ψ′′′(ξ)| ≤ 2Ψ′(iσ)3 ·max
{

4Ψ2((i+ 1)σ), 1
}
≤ 2q3

i max
{

4π2
i , 1
}
≤ 8q2

i .

Furthermore, since Ψ′′(x) = −2Ψ′(x)2Ψ(x), using (2.102) we deduce

∣∣Ψ′′(iσ)− (−2q2
i πi)

∣∣ =
∣∣−2q2

i Ψ(iσ) + 2q2
i πi
∣∣ ≤ 4σq2

i ,

which completes the proof of (2.56).
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CHAPTER 3

PRAGUE DIMENSION OF RANDOM GRAPHS

3.1 Background and main results

Various notions of dimension are important in many areas of mathematics, as a measure for

the complexity of objects. For graphs, one interesting notion of dimension was introduced

by Nešetřil, Pultr and Rödl [85, 84] in the 1970s. The Prague dimension dimP(G) of a

graph G (also called product dimension) is the minimum number d such that G is an in-

duced subgraph of the product of d complete graphs. There are many equivalent definitions

of dimP(G), see [121, 59, 5], indicating that this is a natural combinatorial notion of dimen-

sion [80, 59, 104], which in fact has appealing connections with efficient representations of

graphs [121, 65, 45].

Despite receiving considerable attention during the last 40 years (including combina-

torial [24, 44], information theoretic [69, 68] and algebraic [85, 80, 4, 5] approaches), the

Prague dimension is still not well understood, i.e., its determination usually remains a no-

toriously1 difficult task [24, 45]. To gain further insight into the behavior of this intriguing

graph parameter, it thus is natural and instructive to investigate the Prague dimension of

random graphs, as initiated by Nešetřil and Rödl [86] already in the 1980s. For the bino-

mial random graph Gn,p, Füredi and Kantor conjectured that with high probability2 (whp)

the order is dimP(Gn,p) = Θ(n/ log n) for constant edge-probabilities p, see [45, Conjec-

ture 15] and [64].

In this chapter we prove the aforementioned Füredi–Kantor Prague dimension conjec-

ture, by showing that the binomial random graph whp satisfies dimP(Gn,p) = Θ(n/ log n)

1The decision problem of whether dimP(G) ≤ k holds is also known to be NP-complete for k ≥ 3,
see [84].

2As usual, we say that an event holds whp (with high probability) if it holds with probability tending to 1
as n→∞.
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for constant edge-probabilities p.

Theorem 31 (Prague dimension of random graphs). For any fixed edge-probability p ∈

(0, 1) there are constants c, C > 0 so that the Prague dimension of the random graph Gn,p

satisfies with high probability

c
n

log n
≤ dimP(Gn,p) ≤ C

n

log n
. (3.1)

The Prague dimension of n-vertex graphs can be as large as n − 1, see [80, 121], so an

important consequence of Theorem 31 is that almost all n-vertex graphs have a significantly

smaller Prague dimension of order n/ log n (this follows since the random graph Gn,1/2 is

uniformly distributed over all n-vertex graphs).

For our purposes it will be useful to view the Prague dimension as a clique cover-

ing and coloring problem. This convenient perspective hinges on the following equivalent

definition [121, 5]: that dimP(G) equals the minimum number of subgraphs of the comple-

ment G of G such that (i) each subgraph is a vertex-disjoint union of cliques, and (ii) each

edge of G is contained in at least one of the subgraphs, but not all of them.

Our main contribution is the upper bound on the Prague dimension in (3.1), whose

proof carefully combines two different random greedy approaches: firstly, a semi-random

‘nibble-type’ algorithm to iteratively decompose the edges ofGn,p into edge-disjoint cliques

of size O(log n), and, secondly, a random greedy coloring algorithm to regroup these

cliques into O(n/ log n) subgraphs of Gn,p consisting of vertex-disjoint cliques, which to-

gether eventually gives dimP(Gn,p) = O(n/ log n); see Section 3.1.3 for more details.

Interestingly, this combination allows us to exploit the best features of both greedy ap-

proaches: the semi-random approach makes it easier to guarantee certain pseudo-random

properties in the first decomposition step, and the random greedy approach makes it easier

to guarantee that all cliques are efficiently colored in the second regrouping step (which in

fact requires the pseudo-random properties established in the first step).
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One major obstacle for this natural proof approach is that the cliques have sizeO(log n),

which makes many standard tools and techniques unavailable, as they are usually restricted

to objects of constant size. Notably, in order to overcome this technical difficulty in the

second regrouping step, in this chapter we develop a new Pippenger–Spencer type coloring

result for random hypergraphs with edges of size O(log n), which we believe to be of

independent interest; see Section 3.1.1. Beyond Prague dimension and hypergraph coloring

results, further contributions of this chapter include the proof of a related conjecture of

Füredi and Kantor [45], and a strengthening of an old edge-covering result of Frieze and

Reed [43]; see Section 3.1.2.

3.1.1 Chromatic index of random subhypergraphs

Coloring problems play an important role in much of combinatorics, and in our Prague

dimension proof one key ingredient also corresponds to a hypergraph coloring result. The

chromatic index χ′(H) of a hypergraph H is the smallest number of colors needed to

properly color its edges, i.e., so that no two intersecting edges receive the same color.

Writing ∆(H) for the maximum degree, it is of fundamental interest to understand when

the trivial lower bound χ′(H) ≥ ∆(H) is close to the truth. Vizing’s theorem from the

1960s states that χ′(G) ≤ ∆(G) + 1 for any graph G. Influential work of Pippenger and

Spencer [93] from the 1980s gives a partial answer for r-uniform hypergraphsHwith edges

of size r = Θ(1): for any δ > 0 they showed that χ′(H) ≤ (1 + δ)∆(H) for any nearly

regular H with small codegrees, effectively removing the edge-size dependence from the

trivial greedy upper bound χ′(H) ≤ r(∆(H)− 1) + 1.

It is challenging to extend the Pippenger–Spencer coloring arguments to edges of size

r = O(log n), which is what we desire in our main Prague dimension proof (where cliques

correspond to edges of an auxiliary hypergraph). Our Theorem 32 overcomes this size

obstacle in the random setting, i.e., for coloring random edges of any nearly regular hyper-

graph H with small codegrees. As we shall see in Sections 3.1.3 and 3.2.2.1, this prob-
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abilistic Pippenger–Spencer type coloring result indeed suffices for our purposes. Here

degH(v) := |{e ∈ E(H) : v ∈ e}| and degH(u, v) := |{e ∈ E(H) : {u, v} ⊆ e}| denote

the degree and codegree, as usual.

Theorem 32 (Chromatic index of random subhypergraphs). For all reals δ, σ, b > 0 with

b ≤ δσ/30 there is n0 = n0(δ, σ, b) > 0 such that, for all integers n ≥ n0, 2 ≤ r ≤ b log n,

n1+σ ≤ m ≤ nrn
σ/5

and all reals D > 0, the following holds for every n-vertex r-uniform

hypergraphH satisfying

max
v∈V (H)

| degH(v)−D| ≤ n−σD and max
u6=v∈V (H)

degH(u, v) ≤ n−σD. (3.2)

We have P(χ′(Hm) ≤ (1 + δ)rm/n) ≥ 1−m−ω(r), whereHm denotes the random subhy-

pergraph ofH with edges e1, . . . , em, where each edge ei is independently chosen uniformly

at random fromH.

Remark 33. Noting D ·m/|E(H)| = (1 + o(1))rm/n � r logm, for any real ε > 0 it

is straightforward to see that the maximum degree satisfies ∆(Hm) = (1 ± ε)rm/n with

probability at least 1−m−ω(r), say.

As discussed, for this chapter the key point is that Theorem 32 permits edges of size

r = O(log n); we have made no attempt to optimize the ad-hoc assumptions on the num-

ber of edges m or the n−σ approximation terms in (3.2). The explicit technical assump-

tion b ≤ δσ/30 allows for some flexibility in applications: setting b = δσ/30 and δ = 30b/σ,

respectively, using Remark 33 we readily infer that whp

χ′(Hm) ≤


(
1 + 2δ

)
·∆(Hm) if r = o(log n),

O(1) ·∆(Hm) if r = O(log n),
(3.3)

which gives Pippenger–Spencer like chromatic index bounds for many non-constant edge-

sizes r; we believe that these bounds are of independent interest (see also Corollary 40).
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We prove Theorem 32 by showing that a simple random greedy algorithm (that differs

from the one used by Pippenger and Spencer [93]) whp produces the desired coloring of the

random edges e1, . . . , em from H. The algorithm we use sequentially assigns each edge ei

a random color in {1, . . . , b(1 + δ)rm/nc} that does not appear on some adjacent edge ej

with j < i; see Section 3.3. This random greedy edge coloring algorithm is very natural:

Kurauskas and Rybarczyk [74] analyzed it when H is the complete n-vertex r-uniform

hypergraph, and its idea also underpins earlier work that extends the Pippenger–Spencer

result to list-colorings [62, 83]. Taking advantage of the random setting, our proof of

Theorem 32 uses differential equation method [123, 10, 119] based martingale arguments

to show that this greedy algorithm whp properly colors the first m out of (1 + δ)m random

edges. This ‘more random edges’ twist enables us to sidestep some of the ‘last few edges’

complications3 that usually arise in the deterministic setting [93, 62, 83], which is one of

the reasons why our analysis can allow for edges of size O(log n); see Section 3.3 for

the details.

3.1.2 Partitioning the edges of a random graph into cliques

Further motivation for studying the Prague dimension comes from its close connection

to the covering and decomposition problems that pervade combinatorics, one interesting

non-standard feature being that Theorem 31 requires usage of cliques with O(log n) ver-

tices, rather than just subgraphs of constant size. The clique covering number cc(G) of

a graph G (also called intersection number) is the minimum number of cliques in G that

cover the edge-set ofG. Similarly, the clique partition number cp(G) is the minimum num-

ber of cliques inG that partition the edge-set ofG. The question of estimating these natural

graph parameters was raised by Erdős, Goodman and Pósa [31] in 1966. Motivated in part

3Many deterministic approaches such as [93, 62] first efficiently color most of the edges of H us-
ing (1 + δ/2)∆(H) colors, say, so that the remaining uncolored ‘last few edges’ yield a hypergraph with
maximum degree at most ε∆(H), say. By choosing the constant ε = ε(r, δ) > 0 sufficiently small, these
‘last few edges’ can then trivially be colored using r · ε∆(H) ≤ δ/2 ·∆(H) additional colors, which clearly
becomes harder to implement when r = r(n)→∞ (as now the dependence of ε on r matters).
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by applications such as keyword conflicts, traffic phasing and competition graph analy-

sis [87, 70, 96, 23], both cc(G) and cp(G) have since been extensively studied for many

interesting graph classes, see e.g. [114, 4, 17, 32, 18, 21] and the many references therein.

For random graphs, the study of the clique covering number was initiated in the 1980s

by Poljak, Rödl and Turzı́k [94] and Bollobás, Erdős, Spencer and West [15]. In 1995,

Frieze and Reed [43] showed that whp cc(Gn,p) = Θ(n2/(log n)2) for constant edge-

probabilities p. Constructing a clique covering is certainly easier than constructing a clique

partition, since it does not have to satisfy such a rigid edge constraint. Indeed, while ob-

viously cc(G) ≤ cp(G), the ratio cp(G)/cc(G) can in fact be arbitrarily large, see [28].

However, our Theorem 34 demonstrates that for most graphs the clique partition number

and clique covering number have the same order of magnitude.

Theorem 34 (Clique covering and partition number of random graphs). For every fixed

real γ ∈ (0, 1) there are constants c > 0 and C = C(γ) > 0 so that if the edge-

probability p = p(n) satisfies n−2 � p ≤ 1− γ, then with high probability

c
n2p

(log1/p n)2
≤ cc(Gn,p) ≤ cp(Gn,p) ≤ C

n2p

(log1/p n)2
. (3.4)

The main contribution of (3.4) is the upper bound, which strengthens the main result of

Frieze and Reed [43] from clique coverings to clique partitions, and also allows for p =

p(n)→ 0. Here the mild assumption p ≤ 1− γ turns out to be necessary, since Lemma 50

implies that whp cc(Gn,p)/(n
2p/(log1/p n)2)→∞ as p → 1. The lower bound in (3.4) is

straightforward: it is well-known that Gn,p whp has m = Θ(n2p) edges and largest clique

of size ω = O(log1/p n), which gives cc(Gn,p) ≥ m/
(
ω
2

)
= Ω(n2p/(log1/p n)2).

To gain a better combinatorial understanding of clique coverings, it is instructive to

study and optimize other properties besides the size, such as their thickness cc∆(G) := minC∆(C)

and chromatic index cc′(G) := minC χ
′(C), where the minimum is taken over all clique

coverings C of the edges ofG (formally thinking of C as a hypergraph with vertex-set V (G)
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and edge-set C). Notably, the parameters cc′(G) and cc∆(G) approximate the Prague di-

mension and the so-called Kneser rank of G, see [45]. In particular, we have

cc′(G) ≤ dimP(G) ≤ cc′(G) + 1, (3.5)

which follows by noting that the color classes of a properly colored collection C of cliques

naturally correspond to subgraphs consisting of vertex-disjoint unions of cliques (the +1

in the upper bound is only needed to handle boundary cases where an edge is contained in

cliques from all color classes); see [85, 45].

For random graphs, Füredi and Kantor [45] showed that the clique covering thick-

ness is whp cc∆(Gn,p) = Θ(n/ log n) for constant edge-probabilities p. Supported by

cc∆(G) ≤ cc′(G) and further evidence, they conjectured that the clique covering chro-

matic index is whp also cc′(Gn,p) = Θ(n/ log n) for constant p, see [45, Conjecture 17].

The following theorem proves their chromatic index conjecture in a strong form, allowing

for p = p(n) → 0. More importantly, Theorem 35 and inequality (3.5) together imply

our main Prague dimension result Theorem 31, since the complement Gn,p of Gn,p has the

same distribution as Gn,1−p.

Theorem 35 (Thickness and chromatic index of clique coverings of random graphs). For

every fixed real γ ∈ (0, 1) there are constants c > 0 and C = C(γ) > 0 so that if the

edge-probability p = p(n) satisfies n−1 log n� p ≤ 1− γ, then with high probability

c
np

log1/p n
≤ cc∆(Gn,p) ≤ cc′(Gn,p) ≤ C

np

log1/p n
. (3.6)

Remark 36. Our proof shows that the upper bound in (3.6) remains valid when the defi-

nition of cc′(G) is restricted to clique partitions of the edges (instead of clique coverings);

see Sections 3.1.3.1 and 3.2.

The main contribution of (3.6) is the upper bound, where the mild assumption p ≤ 1− γ
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again turns out to be necessary, since Lemma 50 implies that whp cc∆(Gn,p)/(np/ log1/p n)→∞

as p→ 1. The lower bound in (3.6) is straightforward: it is well-known that Gn,p whp has

maximum degree ∆ = Θ(np) and largest clique of size ω = O(log1/p n), which gives cc∆(Gn,p) ≥

∆/(ω − 1) = Ω(np/ log1/p n).

3.1.3 Proof strategy: finding a clique partition of a random graph

We now comment on the proofs of Theorems 34–35, for which it remains to establish the

upper bounds in inequalities (3.4) and (3.6). In Section 3.2 we shall establish these upper

bounds using the following proof strategy, which finds a clique partition P of Gn,p with the

desired properties, i.e., size and chromatic index bounds.

Step 1: Decomposing the edges of Gn,p into a clique partition P . We first use a

semi-random ‘nibble-type’ algorithm to incrementally construct a decreasing sequence of

n-vertex graphs

Gn,p = G0 ⊇ G1 ⊇ · · · ⊇ GI , (3.7)

inspired by the semi-random approaches of Frieze and Reed [43] and Guo and Warnke [56].

Omitting some technicalities, the main idea is to obtain Gi+1 from Gi by removing the

edges of a random collection Ki of cliques of size ki = O(log n) from Gi. We iterate this

until GI is sufficiently sparse, i.e., has maximum degree ∆(GI) = o(np/(log1/p n)2), say,

and then put all remaining edges of GI into KI , to ensure that

P = K0 ∪ · · · ∪ KI (3.8)

covers all edges of Gn,p. Here we exploit the flexibility of the semi-random approach,

which allows us to add extra wrinkles to the algorithm. In particular, using concentration

inequalities, these extra wrinkles enable us to show that whp all graphs Gi stay pseudo-

random, i.e., thatGi ‘looks like’ a random graphGn,pi with suitably decaying edge-probabilities

pi; see Section 3.2.1 and Theorem 39 for the details.
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Step 2: Coloring the clique partition P . We then use the basic observation

χ′(P) ≤
∑

0≤i≤I

χ′(Ki) ≤
∑

0≤i<I

χ′(Ki) + 2∆(GI), (3.9)

where the last inequality χ′(Ki) ≤ 2∆(GI) follows from Vizing’s theorem, since KI =

E(GI) simply contains all edges of GI . Thinking of Ki as a hypergraph with vertex-

set V (Gi) and edge-set Ki, we would like to similarly bound χ′(Ki) = O(∆(Ki)), but

there is a major obstacle here. Namely, as discussed, such Pippenger–Spencer type color-

ing results only apply to hypergraphs with edges of constant size, and their proofs are hard

to extend to hypergraphs with edges of size O(log n) such as Ki. We overcome this tech-

nical obstacle by exploiting that Ki is a random collection of cliques from Gi. Crucially,

this enables us to bound χ′(Ki) using our new probabilistic Pippenger–Spencer type result

Theorem 32, which efficiently colors such random hypergraphs with large edges. In view

of (3.3), it thus becomes plausible that whp

χ′(P) ≤
∑

0≤i<I

O
(
∆(Ki)

)
+ O

(
∆(GI)

)
, (3.10)

where the pseudo-random properties are key for verifying the technical assumptions of The-

orem 32. Using again pseudo-randomness to estimate ∆(Ki) and ∆(GI), it turns out4 that

whp

χ′(P) ≤
∑

0≤i<I

O

(
npi

log1/pi
n

)
+ O

(
npI
)
≤ · · · ≤ O

(
np

log1/p n

)
, (3.11)

where the exponentially decaying edge-probabilities pi will ensure that in estimate (3.11)

the bulk of the contribution comes from the case i = 0 with p0 = p; see Section 3.2.2.1 for

the details. Finally, the whp size estimate |P| = O
(
n2p/(log1/p n)2

)
can be obtained in a

4Heuristically, the form of the upper bound (3.11) can be motivated as follows: (3.7) and Gi ≈ Gn,pi
loosely suggest cc′(Gn,p) ≤

∑
0≤i≤I cc′(Gn,pi), which together with (3.6) and cc′(Gn,pI ) ≤ 2∆(Gn,pI ) =

O(npI) makes (3.11) a natural target bound.
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similar but simpler way; see Section 3.2.2.2.

3.1.3.1 Technical result: weakly pseudo-random clique partition

As we shall see in Section 3.2, the outlined proof strategy gives the following technical

result, which for large edge-probabilities p = p(n) intuitively guarantees that the random

graph Gn,p has a weakly pseudo-random clique partition P , i.e., which simultaneously has

small size, thickness and chromatic index.

Theorem 37. There is a constant α > 0 so that, for every fixed real γ ∈ (0, 1), there are

constants B,C > 0 such that the following holds. If the edge-probability p = p(n) satis-

fies n−α ≤ p ≤ 1− γ, then whp there exists a clique partitionP of the edges ofGn,p satisfy-

ing maxK∈P |K| ≤ log1/p n, |P| ≤ Bn2p/(log1/p n)2 and ∆(P) ≤ χ′(P) ≤ Cnp/ log1/p n.

Remark 38. The proof shows that the whp conclusion in fact holds with probability at

least 1− n−ω(1).

After potentially increasing the constants B,C > 0, this theorem readily implies the upper

bounds in (3.4) and (3.6) of Theorems 34–35, since for smaller edge-probabilities p =

p(n) ≤ n−α the trivial clique partition P := E(Gn,p) consisting of all edges of Gn,p easily5

gives the desired bounds due to 1 ≤ 1/(α log1/p n).

3.1.4 Organization

In Section 3.2 we prove our main technical clique partition result Theorem 37 (which as

discussed implies Theorems 31, 34 and 35), by analyzing a semi-random greedy clique

partition algorithm using concentration inequalities and our new chromatic index result

Theorem 32. We then prove our key tool Theorem 32 in Section 3.3, by analyzing a natural

random greedy edge coloring algorithm using the differential equation method. The final

5Using well-known estimates, it is easy to see that whp |P| = |E(Gn,p)| ∼
(
n
2

)
p < 2α−2 ·(

n
2

)
p/(log1/p n)2 for n−2 � p ≤ n−α and whp χ′(P) = χ′(Gn,p) ≤ ∆(Gn,p) + 1 ∼ np <

2α−1 · np/(log1/p n) for n−1 log n� p ≤ n−α.
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Section 3.4 discusses some open problems, sharpens the lower bounds of Theorems 34–35

for constant edge-probabilities p, and also records strengthenings of Theorems 34–35 for

many small p = p(n)→ 0.

3.2 Semi-random greedy clique partition algorithm

In this section we prove Theorem 37 (and thus Theorems 31, 34 and 35, see Sections 3.1.2–

3.1.3) by showing that a certain semi-random greedy algorithm is likely to find the desired

clique partition P of the binomial random graph Gn,p. This algorithm iteratively adds

cliques to P , and the main idea is roughly as follows. Writing Gi ⊆ Gn,p for the subgraph

containing all edges of Gn,p which are edge-disjoint from the cliques added to P during

the first i iterations, we randomly sample a collection Ki of cliques from Gi (of suitable

size ki). We then alter this collection to ensure that there are no edge-overlaps between the

cliques, and add the resulting edge-disjoint collection K∗i ∪ Di of cliques to P . Finally,

after a sufficiently large number of I iterations, we add all remaining so-far uncovered

edges of GI ⊆ Gn,p to P (as cliques of size two).

In fact, we shall use an additional wrinkle for technical reasons: in each iteration of

the algorithm we add an extra set Si of random edges to P , which helps us to ensure that

the graphs Gi = ([n], Ei) stay pseudo-random, i.e., resemble a random graph Gn,pi with

suitable decaying edge-probabilities pi.

3.2.1 Details of the semi-random ‘nibble’ algorithm

Turning to the technical details of our clique partition algorithm, let

k :=
⌈
σ log1/p n

⌉
, I :=

⌈
τkτ log k

⌉
, pi := pe−i/k

τ

, ki :=
⌈
σ log1/pi

n
⌉
, ε := n−σ,

(3.12)
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where we fix the absolute constants σ := 1/9 and τ := 9 for concreteness (we have made

no attempt to optimize these constants, and the reader looses little by simply assuming that

σ and τ are always sufficiently small and large, respectively, whenever needed). For any

vertex-subset U ⊆ [n] with |U | ≤ j we define

CU,j,i :=
{
J ⊆ [n] : U ⊆ J, |J | = j,

(
J
2

)
\
(
U
2

)
⊆ Ei

}
. (3.13)

In words, ifU forms a clique in the graphGi = ([n], Ei), then CU,j,i corresponds to the set of

all j-vertex cliques of Gi that contain U . Furthermore, if Gi indeed heuristically resembles

the random graph Gn,pi (as suggested above, and later made precise by Theorem 39), then

we expect that |CU,j,i| ≈ µ|U |,j,i, where

µs,j,i :=

(
n− s
j − s

)
p
(j2)−(s2)
i . (3.14)

WritingE(C) :=
⋃
K∈C E(K) for the edges covered by a family C of cliques, after defining

qi :=
1

(1 + ε)kτµ2,ki,i

and ζe,i := 1− (1− qi)max{(1+ε)µ2,ki,i−|Ce,ki,i|, 0} (3.15)

we now formally state the algorithm that finds the desired clique partition P of Gn,p.
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Algorithm: Semi-random greedy clique partition
1: Set P0 := ∅ and G0 := ([n], E0), where E0 := E(Gn,p).

2: for i = 0 to I − 1 do

3: Let Ci := C∅,ki,i contain all ki-vertex cliques of Gi.

4: Generate Ki ⊆ Ci: independently include each clique K ∈ Ci with probability qi.

5: Generate Si ⊆ Ei: independently include each edge e ∈ Ei with probability ζe,i.

6: Let K∗i be a size-maximal collection of edge-disjoint ki-vertex cliques in Ki.

7: Set Pi+1 := Pi ∪ K∗i ∪Di ∪
(
Si \ E(Ki)

)
, where Di := E(Ki) \ E(K∗i ).

8: Set Gi+1 := ([n], Ei+1), where Ei+1 := Ei \
(
E(Ki) ∪ Si

)
.

9: end for

10: Return P := PI ∪ EI .

One may heuristically motivate the technical definitions (3.15) of qi and ζe,i as follows.

The ‘inclusion’ probability qi will intuitively ensure that, for any fixed edge e ∈ Ei, the

expected number of cliques in Ki containing e is roughly |Ce,ki,i| · qi ≈ µ2,ki,i · qi ≈ 1/kτ .

This makes it plausible that the cliques inKi are largely edge-disjoint, i.e., that |K∗i | ≈ |Ki|.

The ‘stabilization’ probability ζe,i will intuitively ensure that

P(e ∈ Ei+1 | e ∈ Ei) = (1− qi)|Ce,ki,i| · (1− ζe,i) ≈ (1− qi)(1+ε)µ2,ki,i ≈ e−1/kτ .

Since all edges e ∈ Ei of Gi have roughly the same probability of appearing in Ei+1, it

then inductively becomes plausible that Gi+1 resembles a random graph Gn,pi+1
with edge-

probability pi+1 ≈ pi · e−1/kτ .

3.2.2 The clique partition P: proof of Theorem 37

In this section we prove Theorem 37 by analyzing the clique partition P produced by the

semi-random greedy algorithm. Recalling the definitions (3.13)–(3.14) of |CU,j,i| and µs,j,i,

Theorem 39 confirms our heuristic thatGi stays pseudo-random, i.e., resembles the random
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graph Gn,pi with respect to various clique statistics.

Theorem 39 (Pseudo-randomness of the graphs Gi). Let p = p(n) satisfy n−σ/τ ≤ p ≤

1 − γ, where γ ∈ (0, 1) is a constant. Then, with probability at least 1 − n−ω(1), for all

0 ≤ i ≤ I the following event Ri holds: for all U ⊆ [n] and j with 0 ≤ |U | ≤ j ≤ ki, we

have

|CU,j,i| = (1± ε) · µ|U |,j,i. (3.16)

We defer the proof of this important technical auxiliary result to Section 3.2.3, and

first use it (together with our new edge-coloring result Theorem 32) to prove Theorem 37

with α := σ/τ . To this end, we henceforth tacitly assume n−σ/τ ≤ p ≤ 1−γ. In particular,

for 0 ≤ i ≤ I it then is routine to check that

8 < τ − o(1) ≤ σ log n

log(k2τ/p)
≤ ki ≤ k ≤ no(1) and min

0≤s≤ki−1
psi ≥ pki−1

i ≥ n−σ.

(3.17)

By construction of P , it also follows that maxK∈P |K| ≤ k ≤ log1/p n. To complete the

proof of Theorem 37, it thus remains to bound the size and chromatic index of the clique

partition P .

3.2.2.1 Chromatic index of P

We first focus on the chromatic index of the clique partition P , which is easily seen to be

(by separately coloring different subsets of the cliques, using disjoint sets of colors) at most

χ′(P) ≤
∑

0≤i≤I−1

(
χ′(Ki) + χ′(Di) + χ′(Si)

)
+ χ′(EI). (3.18)

For S ∈ {Ki, Di, Si, EI}, let S(v) ⊆ S denote the subset of cliques that contain the vertex

v. Since the cliques in Di, Si, EI are all simply edges, using Vizing’s theorem it follows
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that

χ′(P) ≤
∑

0≤i≤I−1

(
χ′(Ki) + max

v∈[n]

∣∣D(v)
i

∣∣+ max
v∈[n]

∣∣S(v)
i

∣∣)+ max
v∈[n]

∣∣E(v)
I

∣∣+ (2I + 1). (3.19)

In the following we bound the contributions of each of these terms. We start with the

main term χ′(Ki), where the trivial upper bound χ′(Ki) ≤ O(ki) · ∆(Ki) would be too

weak for our purposes. Gearing up to instead apply our stronger Pippenger–Spencer type

chromatic index result Theorem 32 to the random set Ki ⊆ Ci of cliques, letH := ([n], Ci)

denote the ki-uniform auxiliary hypergraph consisting of all ki-vertex cliques in Gi. Note

that Ki has the same distribution as the edge-set of Hqi , where the random subhyper-

graph Hqi ⊆ H is defined as in Corollary 40 with r = ki and q = qi (we defer the

proof of Corollary 40 to Section 3.6, since this standard reduction to Theorem 32 is rather

tangential to the main argument here).

Corollary 40 (Convenient variant of Theorem 32). There is ξ = ξ(δ) > 0 such that if the

assumptions of Theorem 32 hold for a given n-vertex r-uniform hypergraph H, with as-

sumptionm ≤ nrn
σ/5

replaced bym ≤ ξe(H), then we have P(χ′(Hq) ≤ (1 + 2δ)rm/n) ≥

1 − n−ω(r), where Hq denotes the random subhypergraph of H where each edge e ∈ H is

independently included with probability q := m/|E(H)|.

Conditional on Ri, we will apply this corollary to H = ([n], Ci) with r := ki, m :=

|E(H)|qi, D := µ1,ki,i, q := qi, as well as

b := 2σ/ log(1/(1− γ)) and δ := 30b/σ. (3.20)

We now verify the technical assumptions of Corollary 40 (and thus Theorem 32). Using

the definition (3.12) of ki and inequality (3.17) together with pi ≤ p ≤ 1 − γ, we obtain

2 < ki ≤ 2σ(log n)/ log(1/pi) ≤ b log n. Using the estimate (3.16) ofRi together with the
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definition (3.15) of qi, it follows that

m = |C∅,ki,i| · qi =
(1± ε)µ0,ki,i

(1 + ε)kτµ2,ki,i

=
1± ε
1 + ε

· n(n− 1)pi
ki(ki − 1)kτ

, (3.21)

so that m ≥ n2−σ−o(1) � n1+σ by (3.17) and choice of σ. Recalling that ε = n−σ, es-

timate (3.16) implies that H = ([n], Ci) satisfies the degree condition in (3.2). We also

have µ2,ki,i/µ1,ki,i ≤
(
Ω(n/ki) · pi

)−1 ≤ n−1+σ+o(1) � nσ, which in view of (3.16)

and D = µ1,ki,i implies that H also satisfies the codegree condition in (3.2). We simi-

larly infer D =
(
Ω(n/ki) · pki/2i

)ki−1 ≥ (n1−σ−o(1))4 � n3, so that m = O(n2/ki) �

D/r � e(H). We thus may apply Corollary 40 to H, which together with our above

discussion gives

P
(
χ′(Ki) ≥ (1 + 2δ)kim/n | Ri

)
=P
(
χ′(Hq) ≥ (1 + 2δ)kim/n | Ri

)
≤ n−ω(1).

(3.22)

In the following we fix a vertex v ∈ [n], and bound |S(v)
i | and |D(v)

i | separately. For

these terms we will have some elbow-room, and we can thus be more generous in our

upcoming estimates. Using (3.16) together with 1− (1− qi)2εµ2,ki,i ≤ 2εµ2,ki,iqi ≤ 2εk−τ

and ε = n−σ � k−2 ≤ k−2
i , it follows that

E
(
|S(v)
i | | Ri

)
≤ |C{v},2,i| ·

(
1− (1− qi)2εµ2,ki,i

)
≤ 2εnpi

kτ
� npi

k2
i k

τ
=: λ. (3.23)

Note that λ ≥ n1−σ−o(1) � log n by inequality (3.17) and choice of σ. Furthermore,

since |S(v)
i | is a sum of independent indicator random variables, standard Chernoff bounds

(such as [60, Theorem 2.1]) imply

P
(
|S(v)
i | ≥ 2λ | Ri

)
≤ exp

(
−Θ(λ)

)
≤ n−ω(1). (3.24)

Turning to |D(v)
i |, let X denote the number of unordered pairs {K ′, K ′′} ∈

(Ki
2

)
with
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|{K ′, K ′′} ∩ K(v)
i | ≥ 1 and |E(K ′) ∩ E(K ′′)| ≥ 1. Since each of these edge-overlapping

clique pairs contributes at most ki ≤ k edges to |D(v)
i |, we infer |D(v)

i | ≤ kX . Furthermore,

using (3.16) and (3.15), it follows similarly to (3.21) that

E(X | Ri) ≤
∑

K′∈C{v},ki,i

∑
e∈(K

′
2 )

∑
K′′∈Ce,ki,i

qi

≤ |C{v},ki,i| ·
(
ki
2

)
· (1 + ε)µ2,ki,i · q2

i ≤
kinpi
k2τ

=: µ.

(3.25)

Conditioning on the event Ri, we shall bound X using the following upper tail inequality

for combinatorial random variables, which is a convenient corollary of [118, Theorem 9].

Lemma 41. Let (ξj)j∈Λ be a finite family of independent random variables with ξj ∈

{0, 1}. Let (Yα)α∈I be a finite family of random variables with Yα := 1{ξj=1 for all j∈α}.

Defining I+ := {α ∈ I : Yα = 1}, let G be an event that implies maxα∈I+ |{β ∈ I+ :

β ∩ α 6= ∅}| ≤ C. Set X :=
∑

α∈I Yα, and assume that EX ≤ µ. Then, for all x > µ,

P(X ≥ x and G) ≤
(
eµ/x

)x/C
. (3.26)

We will apply Lemma 41 to X with Λ = Ci, the independent random variables ξK :=

1{K∈Ki}, and I equal to the set of unordered pairs {K ′, K ′′} ∈
(Ci

2

)
with |{K ′, K ′′} ∩ C{v},ki,i| ≥ 1

and |E(K ′) ∩ E(K ′′)| ≥ 1. Let G denote that the event that each edge e ∈ Ei is con-

tained in at most z := dlog ne cliques in Ki. Clearly, G implies that each clique K ′ ∈ Ki

has edge-overlaps with a total of at most
(
ki
2

)
· z cliques K ′′ ∈ Ki, so that the param-

eter C := 2 ·
(
ki
2

)
z ≤ k2z works in Lemma 41. Recalling |D(v)

i | ≤ kX , by invoking

inequality (3.26) with x := λ/k ≥ kτ−4µ > e2µ it follows that

P
(
|D(v)

i | ≥ λ and G | Ri

)
≤ P

(
X ≥ λ/k and G | Ri

)
≤ exp

(
−Θ(λ/(k3z))

)
≤ n−ω(1),

(3.27)

where the last inequality uses λ/(k3z) ≥ λn−o(1) � log n analogous to (3.24). With an
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eye on the event G, note that conditional on Ri we have |Ce,ki,i|qi ≤ k−τ ≤ 1 for each

edge e ∈ Ei. Recalling z = dlog ne, by taking a union bound over all edges e ∈ Ei it now

is routine to see that

P(¬G | Ri) ≤
∑
e∈Ei

(
|Ce,ki,i|
z

)
qzi ≤ |Ei| ·

(
|Ce,ki,i|qie/z

)z
≤ n2 · (e/z)z ≤ n−ω(1). (3.28)

To sum up, by combining the above inequalities (3.22), (3.24), and (3.27)–(3.28) for 0 ≤

i ≤ I − 1 with the degree estimate |E(v)
I | = |C{v},kI ,I | = (1 ± ε)(n − 1)pI from (3.16),

using I = no(1) and Theorem 39 it follows (by a standard union bound argument) that the

chromatic index (3.19) of P is whp at most

χ′(P) ≤
∑

0≤i≤I−1

(
(1 + 2δ)2npi

kikτ
+

3npi
k2
i k

τ

)
+ (1 + ε)npI + no(1), (3.29)

where the k2
i > ki term will be useful in Section 3.2.2.2. Let π := log(1/p) and f(x) := e−x(1 + x/π).

Using pi = p · e−i/kτ and ki ≥ σ log1/p(n)/(1 + i/(kτπ)) as well as nσ � n1−σ ≤ npI ≤

np/kτ , it follows that

χ′(P) ≤ (5 + 4δ)np

σ log1/p n

∑
0≤i≤I−1

f(i/kτ )

kτ
+

3np(
σ log1/p n

)
kτ−1

. (3.30)

On [0,∞) the function f(x) first increases and then decreases, with a maximum at x∗ :=

max{0, 1− π}. By comparing the sum with an integral, it then is standard to see that

∑
0≤i≤I−1

f(i/kτ )

kτ
≤
∫ ∞

0

f(x)dx+ 2f(x∗)/kτ ≤ 1 +O
(
π−1 + k−τ

)
. (3.31)

Combining inequalities (3.30)–(3.31) with the definition (3.20) of δ, after noting π ≥

log(1/(1 − γ)) > 0 and min{kτ , kτ−1} > 1 it follows that there is a constant C =

C(σ, γ) > 0 such that whp χ′(P) ≤ Cnp/ log1/p n.
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3.2.2.2 Size of P

It remains to bound the size of the clique partition P , which by construction is at most

|P| ≤
∑

0≤i≤I−1

(
|Ki|+ |Di|+ |Si|

)
+ |EI |. (3.32)

Rather than estimating each of these terms (which is conceptually straightforward), we

shall instead reuse known estimates from Section 3.2.2.1. A routine double-counting argu-

ment gives |Ki| · ki ≤
∑

K∈Ki |K| =
∑

v∈[n] |K
(v)
i | ≤ n · χ′(Ki). Recalling that Di, Si, EI

are simply sets of edges, it follows that

|P| ≤
∑

0≤i≤I−1

(
n/ki · χ′(Ki) + n ·max

v∈[n]

∣∣D(v)
i

∣∣+ n ·max
v∈[n]

∣∣S(v)
i

∣∣)+ n ·max
v∈[n]

∣∣E(v)
I

∣∣. (3.33)

After comparing the above upper bound for |P| with (3.19), we see that the proof of (3.29)

implies the following estimate: the size (3.32) of P is whp at most

|P| ≤
∑

0≤i≤I−1

(
(1 + 2δ)2n2pi

k2
i k

τ
+

3n2pi
k2
i k

τ

)
+ (1 + ε)n2pI . (3.34)

Recalling π = log(1/p), set g(x) := e−x(1 +x/π)2. Proceeding similarly to (3.29)–(3.31),

using
∫∞

0
g(x)dx = 1 +O(π−1 + π−2) it follows that there is a constant B = B(σ, γ) > 0

such that whp

|P| ≤ (5 + 4δ)n2p(
σ log1/p n

)2

∑
0≤i≤I−1

g(i/kτ )

kτ
+

2n2p(
σ log1/p n

)2
kτ−2

≤ B
n2p

(log1/p n)2
, (3.35)

which completes the proof Theorem 37 (modulo the deferred proof of Theorem 39).

3.2.3 Pseudo-randomness of the graphs Gi: proof of Theorem 39

In this section we give the deferred proof of Theorem 39. For technical reasons, we will

establish concentration of the |CU,j,i| variables in a somewhat indirect way, by focusing on
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auxiliary random variables that are more amenable to concentration inequalities. Turning

to the details, for any vertex-subset U ⊆ [n] we define

NU,i :=
∣∣{w ∈ [n] \ U : U × {w} ⊆ Ei

}∣∣. (3.36)

In words, NU,i denotes the number of common neighbors of U in Gi = ([n], Ei). Recalling

thatGi heuristically resembles the random graphGn,pi , we expect thatNU,i ≈ (n−|U |)p|U |i ;

so to avoid clutter we set

λs,i := (n− s)psi . (3.37)

The following pseudo-random result establishes Theorem 39 by confirming this heuristic

prediction. Our proof of Theorem 42 exploits the technical definition ofEi+1 = Ei \
(
E(Ki) ∪ Si

)
:

the extra ‘stabilization’ set Si will intuitively ensure that edges of Ei remain in Ei+1 with

roughly the correct probability, see (3.44)–(3.45).

Theorem 42 (Strengthening of Theorem 39). Let p = p(n) satisfy n−σ/τ ≤ p ≤ 1 − γ,

where γ ∈ (0, 1) is a constant. Then, with probability at least 1− n−ω(1), for all 0 ≤ i ≤ I

the following event Ni holds: for all U ⊆ [n] with 0 ≤ |U | ≤ ki − 1,

NU,i =
(
1± (i+ 1)ε2

)
· λ|U |,i. (3.38)

Furthermore, Ni implies the eventRi from Theorem 39 for 0 ≤ i ≤ I and n ≥ n0(σ, τ).

Proof. Noting kIε2 ≤ no(1)−σε � ε it is routine to see that Ni implies Ri, but we include

the proof for completeness. Fixing U ⊆ [n] and 0 ≤ i ≤ I with |U | ≤ j ≤ ki, we shall

double-count the number of vertex-sequences x|U |+1, . . . , xj ∈ [n] \ U with the property

that U ∪ {x|U |+1, . . . , xj} ∈ CU,j,i. Using (3.38) to sequentially estimate the number of

common neighbors of U ∪ {x|U |+1, . . . , xs}, noting j · Iε2 ≤ kIε2 � ε it follows that

(j − |U |)! · |CU,j,i| =
∏

|U |≤s≤j−1

((
1 +O(Iε2)

)
· (n− s)psi

)
= (1 + o(ε)) · µ|U |,j,i · (j − |U |)!,
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which readily gives (3.16) for n ≥ n0(σ, τ), establishing the claim thatNi impliesRi. With

this implication and I = no(1) in mind, the below auxiliary Lemmas 43–44 then complete

the proof of Theorem 42.

Lemma 43. We have P(¬N0) ≤ n−ω(1).

Lemma 44. We have P(¬Ni+1 | Ni) ≤ n−ω(1) for all 0 ≤ i < I .

Proof of Lemma 43. Fix U ⊆ [n] with |U | ≤ k − 1, where k = k0. Note that NU,0 has

a Binomial distribution with ENU,0 = (n− |U |)p|U | = λ|U |,0, where p = p0. Since

ε4λ|U |,0 = Θ
(
n1−4σp

|U |
0

)
≥ Ω(n1−5σ) � k log n by inequality (3.17) and choice of σ,

standard Chernoff bounds (such as [60, Theorem 2.1]) imply that

P
(
|NU,0 − λ|U |,0| ≥ ε2λ|U |,0|

)
≤ 2 · exp

(
−Θ

(
ε4λ|U |,0

))
≤ n−ω(k), (3.39)

which completes the proof by taking a union bound over all nO(k) choices of the sets U .

Conditioning on the event Ni, in the proof of Lemma 44 we shall estimate NU,i+1 us-

ing the following bounded differences inequality for Bernoulli variables, see [117, Corol-

lary 1.4] and [82, Theorem 3.8].

Lemma 45. Let (ξα)α∈I be a finite family of independent random variables with ξα ∈

{0, 1}. Let f : {0, 1}|I| → R be a function, and assume that there exist numbers (cα)α∈I

such that the following holds for all z = (zα)α∈I ∈ {0, 1}|I| and z′ = (z′α)α∈I ∈

{0, 1}|I|: |f(z) − f(z′)| ≤ cβ if zα = z′α for all α 6= β. Define X := f
(
(ξα)α∈I

)
,

V :=
∑

α∈I c
2
α P(ξα = 1), and C := maxα∈I cα. Then, for all t ≥ 0,

P(|X − EX| ≥ t) ≤ 2 · exp

(
− t2

2(V + Ct)

)
. (3.40)

Proof of Lemma 44. To avoid clutter, we henceforth omit the conditioning on Ni from our

notation. Fix U ⊆ [n] with |U | ≤ ki − 1. Gearing up to apply Lemma 45 to NU,i+1, note
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that the associated parameter V is given by

V =
∑
K∈Ci

c2
K · qi +

∑
e∈Ei

ĉ2
e · ζe,i, (3.41)

where cK is an upper bound on how much NU,i+1 can change if we alter whether the

clique K is in Ki or not, and ĉe is an upper bound on how much NU,i+1 can change if

we alter whether the edge e is in Si or not. To estimate cK and ĉe, note that any edge in

U × {w} uniquely determines w. By definition (3.36) of NU,i+1, it follows that ĉe ≤ 1

and cK ≤
(
ki
2

)
≤ k2, say. In addition, the number of edges e ∈ Ei with ĉe 6= 0 is

at most NU,i · |U |. Similarly, the number of cliques K ∈ Ci with cK 6= 0 is at most

NU,i · |U | · maxe |Ce,ki,i| ≤ NU,i|U | · (1 + ε)µ2,ki,i, where we used that Ni implies Ri (as

established above) to bound |Ce,ki,i| via (3.16). Since (1 + ε)µ2,ki,i · qi = k−τ by defini-

tion (3.15) of qi, and ζe,i � k−τ by the calculation above (3.23), using |U | ≤ k and τ ≥ 5

we infer that

V ≤ NU,i|U | · k−τ · k4 +NU,i|U | · k−τ ≤ 2NU,i ≤ 4λ|U |,i = Θ(λ|U |,i+1),

where we used (3.38) and iε2 ≤ Iε2 ≤ no(1)−2σ � 1 to bound NU,i. Invoking inequal-

ity (3.40) of Lemma 45 with C = k2, noting Cε2 ≤ no(1)−2σ � 1 it follows that

P
(
|NU,i+1 − ENU,i+1| ≥ 0.5ε2λ|U |,i+1

)
≤ 2 · exp

(
−Θ(ε4λ|U |,i+1)

)
≤ n−ω(k),

where the last estimate is analogous to (3.39). To complete the proof it thus suffices to

show that ∣∣ENU,i+1 − λ|U |,i+1

∣∣ ≤ (i+ 1.5)ε2λ|U |,i+1. (3.42)

Indeed, P(¬Ni+1 | Ni) ≤ n−ω(1) then follows by taking a union bound over all nO(k)

sets U .
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Turning to the remaining proof of (3.42), note that by construction

ENU,i+1 =
∑

w∈V \U :
U×{w}⊆Ei

P
(
U × {w} ⊆ Ei+1

)
. (3.43)

Let us henceforth tacitly assume U × {w} ⊆ Ei. Since Ni implies Ri we obtain (1 +

ε)µ2,ki,i ≥ |Ce,ki,i| via (3.16), so recallingEi+1 = Ei\
(
E(Ki)∪Si

)
and the definition (3.15)

of ζe,i it follows that

P (U × {w} ⊆ Ei+1)

=(1− qi)|
⋃
e∈U×{w} Ce,ki,i| ·

∏
e∈U×{w}

(1− ζe,i)

=(1− qi)|
⋃
e∈U×{w} Ce,ki,i|−

∑
e∈U×{w} |Ce,ki,i| · (1− qi)|U |(1+ε)µ2,ki,i .

(3.44)

Recalling the definition (3.15) of qi, using estimates (3.16)–(3.17) we infer that

qi ·
∣∣∣∣∣∣∣ ⋃
e∈U×{w}

Ce,ki,i
∣∣∣− ∑

e∈U×{w}

|Ce,ki,i|
∣∣∣∣ ≤ qi

∑
u6=v∈U

|C{u,v,w},ki,i| ≤ k2µ3,ki,i/µ2,ki,i

≤ k2/
(
Ω(n/ki)p

2
i

)
≤ n−1+σ+o(1) � n−2σ = ε2.

We similarly obtain qi � ε2 and qi · |U |(1 + ε)µ2,ki,i = |U |/kτ ≤ 1. Inserting 1 − qi =

e−(1+O(qi))qi into (3.44), using eo(ε2) = 1 + o(ε2) it routinely follows that

P (U × {w} ⊆ Ei+1) =
(
1 + o(ε2)

)
· e−|U |/kτ . (3.45)

Recalling (3.43) and (i+ 1)ε2 ≤ Iε2 � ε� 1, using (3.38) and λ|U |,i · e−|U |/k
τ

= λ|U |,i+1

we infer that

ENU,i+1 = NU,i ·
(
1 + o(ε2)

)
e−|U |/k

τ

=
(

1±
(
i+ 1 + o(1)

)
ε2
)
· λ|U |,i+1,

which establishes (3.42) with room to spare, completing the proof of Lemma 44.
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3.3 Random greedy edge coloring algorithm

In this section we prove Theorem 32 by showing that the following simple random greedy

algorithm is likely to produce the desired proper edge coloring of the random edges from

the hypergraph H (allowing for repeated edges), using the colors [q] = {1, . . . , q} for

suitable q ≥ 1. For i ≥ 0, we sequentially choose an edge ei+1 ∈ E(H) uniformly

at random, and then assign ei+1 a color c chosen uniformly at random from all colors

in [q] that are still available at ei+1, i.e., which have not been assigned to an edge ej with

ej ∩ ei+1 6= ∅ and j ≤ i (this also ensures the usage of different colors for each occurrence

of the same edge). This random greedy coloring algorithm terminates when no more colors

are available at some edge e ∈ E(H).

3.3.1 Dynamic concentration of key variables: proof of Theorem 32

Our main goal is to understand the evolution of the colors available for each edge e ∈

E(H), i.e., the size of Qe(i), where for any set of vertices S ⊆ V (H) we more generally

define

QS(i) :=
{
c ∈ [q] : color c not assigned to any edge f ∈ {ej : 1 ≤ j ≤ i} with f ∩ S 6= ∅

}
.

(3.46)

At the beginning of the algorithm we have |Qe(0)| = q. In order to keep track of the

number of available colors |Qe(i)|, we need to understand changes in the colors assigned

to edges adjacent to the vertices of e. To take such changes into account, for all vertices

v ∈ V (H) and colors c ∈ [q] we introduce

Yv,c(i) :=
{
f ∈ E(H) : v ∈ f and c ∈ Qf\{v}(i)

}
, (3.47)

which in case of c ∈ Q{v}(i) denotes the set of all edges adjacent to v that could still be

colored by c (since for any f ∈ Yv,c(i) then c ∈ Qf\{v}(i) ∩Q{v}(i) = Qf (i) holds). Note
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that initially |Yv,c(0)| = degH(v).

Our main technical result for the random greedy algorithm shows that, when q ≈ rm/n

colors are used, then the above-mentioned key random variables closely follow the trajecto-

ries |Qe(i)| ≈ q̂(t) and |Yv,c(i)| ≈ ŷ(t) during the first m0 ≈ (1− γ)m steps, tacitly using

the continuous time scaling

t = t(i,m) := i/m. (3.48)

In particular, mine∈E(H) |Qe(m0)| > 0 ensures that the algorithm properly colors the firstm0

edges using at most q colors, as no edge has run out of available colors. The form of the

trajectories (3.50)–(3.52) can easily be predicted via modern (pseudo-random or expected

one-step changes based) heuristics, see Appendix 3.7.

Theorem 46 (Dynamic concentration of the variables). For all reals γ ∈ (0, 1) and σ, b > 0

with

b log(1/γ) ≤ σ/30 (3.49)

there is n0 = n0(σ, b) > 0 such that, for all integers n ≥ n0, 2 ≤ r ≤ b log n and all

reals n1+σ ≤ m ≤ nrn
σ/4

, D > 0, the following holds for every n-vertex r-uniform hy-

pergraph H satisfying the degree and codegree assumptions (3.2). With probability at

least 1−m−ω(r), we have mine∈E(H) |Qe(i)| > 0 and

|Qe(i)| =
(
1± ê(t)

)
· q̂(t) for all e ∈ E(H), (3.50)

|Yv,c(i)| =
(
1± ê(t)

)
· ŷ(t) for all v ∈ V (H) and c ∈ [q], (3.51)

for all 0 ≤ i ≤ m0 := b
(
1− γ

)
mc, where q := brm/nc and

q̂(s) := (1− s)rq, ŷ(s) := (1− s)r−1D and ê(s) := (1− s)−9rn−σ/3. (3.52)

Remark 47. The assumption (3.49) simply ensures that ê(t) = (1−t)−9rn−σ/3 ≤ n9b log(1/γ)−σ/3 ≤

n−σ/30 = o(1) for all 0 ≤ i ≤ m0, so that estimates (3.50)–(3.51) imply |Qe(i)| ∼ q̂(t)
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and |Yv,c(i)| ∼ ŷ(t).

Remark 48. The proof carries over to the case γ = γ(n) → 0, provided that the assump-

tion (3.49) is replaced by r log(1/γ)/ log n ≤ σ/30 (to again ensure that ê(t) ≤ n−σ/30 =

o(1) holds).

Before giving the differential equation method based proof of this result, we first show

how it implies Theorem 32 by slightly increasing the number of edges from m to m′, to

ensure that the greedy algorithm properly colors the first b(1 − γ)m′c ≥ m random edges

using at most brm′/nc ≤ (1 + ε)rm/n colors.

Proof of Theorem 32. Set γ := 1−1/(1 + δ), so that b log(1/γ) = b log(1 + 1/δ) ≤ b/δ ≤

σ/30 implies (3.49). Invoking Theorem 46 with m set to m′ := (1 + δ)m = o(nrn
σ/4

)

it follows that, with probability at least 1−m−ω(r), the greedy algorithm properly colors

the first m0 := b(1− γ)m′c = bmc = m random edges e1, . . . , em using at most q :=

brm′/nc ≤ (1 + δ)rm/n colors, completing the proof.

3.3.2 Differential equation method: proof of Theorem 46

In this subsection we prove Theorem 46 by showing P(¬Gm0) ≤ m−ω(r), where Gj denotes

the event that mine∈E(H) |Qe(i)| > 0 and estimates (3.50)–(3.51) hold for all 0 ≤ i ≤ j.

We henceforth tacitly assume 0 ≤ i ≤ m0, and also that n ≥ n0(σ, b) is sufficiently large

(whenever necessary). In particular, estimate (3.50) implies mine∈E(H) |Qe(i)| ≥ q̂(t)/2 > 0

by Remark 47. To establish (3.50)–(3.51) using the differential equation method approach

to dynamic concentration, we introduce the following sequences of auxiliary random vari-

ables:

Q±e (i) := ±
[
|Qe(i)| − q̂(t)

]
− ê(t)q̂(t) for all e ∈ E(H), (3.53)

Y ±v,c(i) := ±
[
|Yv,c(i)| − ŷ(t)

]
− ê(t)ŷ(t) for all v ∈ V (H) and c ∈ [q]. (3.54)
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Note that the desired estimates (3.50)–(3.51) follow when the four inequalities Q±e (i) ≤

0 and Y ±v,c(i) ≤ 0 all hold. To establish these inequalities, in Section 3.3.2.1 we first

estimate the expected one-step changes of |Qe(i)| and |Yv,c(i)|, which in Section 3.3.2.2

then enables us to show that the sequences Q±e (i) and Y ±v,c(i) are supermartingales. Next,

in Section 3.3.2.3 we bound the one-step changes of the variables, which in Section 3.3.2.4

then enables us to invoke a supermartingale inequality (that is optimized for the differential

equation method, see Lemma 49) in order to show that Q±e (i) ≥ 0 or Y ±v,c(i) ≥ 0 are

extremely unlikely events.

3.3.2.1 Expected one-step changes

We first derive estimates for the expected one-step changes of the available colors vari-

ables |Qe(i)| and the available edges variables |Yv,c(i)|, tacitly assuming that 0 ≤ i ≤ m0

and Gi hold. As we shall see, the expected changes (3.57) and (3.59) will be consistent with

the deterministic approximations |Qe(i+ 1)| − |Qe(i)| ≈ q̂(t+ 1/m)− q̂(t) ≈ q̂′(t)/m =

−r(1− t)r−1q/m and |Yv,c(i+1)|− |Yv,c(i)| ≈ ŷ′(t)/m = −(r−1)(1− t)r−2D/m, which

is one motivation for the choice of q̂(t) and ŷ(t); see also (3.82)–(3.84) in Appendix 3.7.

To calculate the expectation of the one-step changes ∆Qe(i) := |Qe(i + 1)| − |Qe(i)|,

we consider a color c ∈ Qe(i) and the event that c 6∈ Qe(i + 1). By definition (3.46) of

Qe(i) this only occurs if the algorithm chooses an edge f with f ∩ e 6= ∅, and then assigns

the color c to f . By definition (3.47) of Yv,c(i) this color assignment is only possible

if f ∈
⋃
v∈e Yv,c(i), as c ∈ Qe(i) ⊆ Q{v}(i) for any v ∈ e. Since the algorithm chooses

both the edge ei+1 ∈ E(H) and the color c ∈ Qei+1
(i) uniformly at random, it follows that

E(∆Qe(i) | Fi) = −
∑

c∈Qe(i)

∑
f∈

⋃
v∈e Yv,c(i)

1

|E(H)| · |Qf (i)|
, (3.55)

where Fi denotes, as usual, the natural filtration associated with the algorithm after i steps

(which intuitively keeps track of the history algorithm, i.e., contains all the information
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available up to step i). Recalling the codegree assumption (3.2) and r = O(log n), note

that the cardinality of the union
⋃
v∈e Yv,c(i) differs from the sum

∑
v∈e |Yv,c(i)| by at most∑

v 6=w∈e degH(v, w) < n−σ/2D < ê(t)ŷ(t). The degree assumption (3.2) also implies

r · |E(H)| =
∑

v∈V (H) degH(v) = n · (1 ± n−σ)D. Using estimates (3.50)–(3.51), it

follows that

E(∆Qe(i) | Fi) = − (1± ê)q̂ · r · (1± 2ê)ŷ

(1± n−σ)nD/r · (1± ê)q̂
, (3.56)

where we suppressed the dependence on t to avoid clutter in the notation. Noting

|rm/n− q| ≤ 1 < n−σq and n−σ < ê(t) = o(1), using ŷ(t) = (1 − t)r−1D we routinely

arrive at

E(∆Qe(i) | Fi) = −
(
1± 7ê(t)

)
· r(1− t)r−1q/m. (3.57)

To calculate the expectation of the one-step changes ∆Yv,c(i) := |Yv,c(i+1)|−|Yv,c(i)|,

we consider an edge f ∈ Yv,c(i) and the event that f 6∈ Yv,c(i + 1). By definition (3.47) of

Yv,c(i) this only occurs if the algorithm chooses an edge e with e∩ (f \{v}) 6= ∅, and then

assigns the color c to e, which in turn is only possible if e ∈
⋃
w∈f\{v} Yw,c(i). Proceeding

similarly to (3.55), it follows that

E(∆Yv,c(i) | Fi) = −
∑

f∈Yv,c(i)

∑
e∈

⋃
w∈f\{v} Yw,c(i)

1

|E(H)| · |Qe(i)|
, (3.58)

where |
⋃
w∈f\{v} Yw,c(i)| differs from

∑
w∈f\{v} |Yw,c(i)| by at most

∑
u6=w∈f degH(u,w) <

ê(t)ŷ(t). Proceeding similarly to (3.56)–(3.57), using |q − rm/n| ≤ 1 < n−σrm/n

and n−σ < ê(t) = o(1) it follows that

E(∆Yv,c(i) | Fi) = −(1± ê)ŷ · (r − 1) · (1± 2ê)ŷ

(1± n−σ)nD/r · (1± ê)q̂

= −
(
1± 7ê(t)

)
· (r − 1)(1− t)r−2D/m.

(3.59)
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3.3.2.2 Supermartingale conditions

We now show that the expected one-step changes of the auxiliary variables Q±e (i) and

Y ±v,c(i) are negative (as required for supermartingales), tacitly assuming that 0 ≤ i ≤ m0 − 1

and Gi hold. As we shall see, the main terms in the expected changes (3.60) and (3.63) will

cancel due to the estimates of Section 3.3.2.1, and the careful choice of ê(t) then ensures

that the resulting expected changes (3.62) and (3.64) are indeed negative (by ensuring that

the ratios e′X(t)/eX(t) of the below-defined error functions eX(t) are sufficiently large).

For the one-step changes ∆Q±e (i) := Q±e (i + 1) − Q±e (i), set eQ(s) := ê(s)q̂(s) =

(1− s)−8rn−σ/3q. Recalling t = i/m, by applying Taylor’s theorem with remainder it

follows that

E(∆Q±e (i) | Fi) = ±
[
E(∆Qe(i) | Fi)−

[
q̂
(
t+ 1/m

)
− q̂(t)

]]
−
[
eQ
(
t+ 1/m

)
− eQ(t)

]
= ±

[
E(∆Qe(i) | Fi)−

q̂′(t)

m

]
−
e′Q(t)

m
+O

(
max

s∈[0,m0/m]

|q̂′′(s)|+ |e′′Q(s)|
m2

)
.

(3.60)

The key point is that the derivative q̂′(t)/m = −r(1 − t)r−1q/m equals the main term

in (3.57), and that the other term in (3.57) satisfies 7ê(t) · r(1 − t)r−1q/m = 7r(1 −

t)−1eQ(t)/m. Furthermore, using the estimate from Remark 47 together with m ≥ n1+σ

and r = O(log n), for all s ∈ [0,m0/m] it is routine to see that

|q̂′′(s)|+ |e′′Q(s)|
m

≤ O

(
r2q + r2(1− s)−8r−2n−σ/3q

m

)
= o(n−σ/3q). (3.61)

Putting things together, now the crux is that e′Q(t) = 8r(1−t)−1eQ(t) = Ω(n−σ/3q) implies

E(∆Q±e (i) | Fi) ≤
7r(1− t)−1eQ(t)− e′Q(t) + o(n−σ/3q)

m
< 0. (3.62)
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For the one-step changes ∆Y ±v,c(i) := Y ±v,c(i + 1) − Y ±v,c(i), set eY (s) := ê(s)ŷ(s) =

(1− s)−8r−1n−σ/3D. Proceeding similarly to (3.60), we obtain

E(∆Y ±v,c(i) | Fi) = ±
[
E(∆Yv,c(i) | Fi)−

ŷ′(t)

m

]
− e′Y (t)

m

+O

(
max

s∈[0,m0/m]

|ŷ′′(s)|+ |e′′Y (s)|
m2

)
.

(3.63)

The key point is that the derivative ŷ′(t)/m = −(r − 1)(1 − t)r−2D/m equals the main

term in (3.59), and that the other term in (3.59) satisfies 7ê(t) · (r − 1)(1 − t)r−2D/m =

7(r−1)(1−t)−1eY (t)/m. Analogously to (3.61), it is routine to see that |ŷ′′(s)|+|e′′Y (s)| =

o(n−σ/3Dm) for all s ∈ [0,m0/m]. Putting things together similarly to (3.62), here the

crux is that e′Y (t) = (8r + 1)(1− t)−1eY (t) = Ω(n−σ/3D) implies

E(∆Y ±v,c(i) | Fi) ≤
7(r − 1)(1− t)−1eY (t)− e′Y (t) + o(n−σ/3D)

m
< 0. (3.64)

3.3.2.3 Bounds on one-step changes

We next derive bounds on the one-step changes of the variables |Qe(i)| and |Yv,c(i)| (as re-

quired by the supermartingale inequality in Section 3.3.2.4), tacitly assuming that 0 ≤ i ≤ m0

and Gi hold. As we shall see, the expected changes (3.66) and (3.68) are easy to bound due

to step-wise monotonicity of the variables.

The one-step changes ∆Qe(i) = |Qe(i+ 1)| − |Qe(i)| of the available colors satisfy

|∆Qe(i)| ≤ 1. (3.65)

Since |Qe(i)| is step-wise decreasing, by inserting ê(t) = o(1) and r(1− t)r−1 ≤ r into (3.57)

we obtain

E(|∆Qe(i)| | Fi) = −E(∆Qe(i) | Fi) ≤ 2rq/m. (3.66)

85



The one-step changes ∆Yv,c(i) = |Yv,c(i+ 1)| − |Yv,c(i)| of the available edges satisfy

|∆Yv,c(i)| ≤
∑

w∈ei+1\{v}

degH(v, w) ≤ r · n−σD (3.67)

due to the codegree assumption (3.2). Since |∆Yv,c(i)| is step-wise decreasing, by inserting

ê(t) = o(1) and (r − 1)(1− t)r−2 ≤ r into (3.59) we also obtain

E(|∆Yv,c(i)| | Fi) = −E(∆Yv,c(i) | Fi) ≤ 2rD/m. (3.68)

3.3.2.4 Supermartingale estimates

We finally bound P(¬Gm0) by focusing on the first step where the estimates (3.50)–(3.51)

are violated, which by the discussion below (3.53)–(3.54) can only happen if Q±e (i) ≤ 0

or Y ±v,c(i) ≤ 0 is violated. Our main tool for bounding the probabilities of these ‘first bad

events’ will be the following Freedman type supermartingale inequality: it is optimized for

the differential equation method approach to dynamic concentration, where supermartin-

gales Si are constructed by adding a deterministic quantity to a random variable Xi, cf. the

definition ofQ±e (i) and Y ±v,c(i) in (3.53)–(3.54). Here the convenient point is that Lemma 49

only assumes upper bounds on the one-step changes of Xi (and not of Si, as usual, cf. [14,

Lemma 3.4]).

Lemma 49. Let (Si)i≥0 be a supermartingale adapted to the filtration (Fi)i≥0. Assume

that Si = Xi +Di, where Xi is Fi-measurable and Di is Fmax{i−1,0}-measurable. Writing

∆Xi := Xi+1 −Xi, assume that maxi≥0 |∆Xi| ≤ C and
∑

i≥0 E(|∆Xi| | Fi) ≤ V . Then,

for all z > 0,

P
(
Si ≥ S0 + z for some i ≥ 0

)
≤ exp

(
− z2

2C(V + z)

)
. (3.69)

Proof. Writing ∆Si := Si+1 − Si, set Mi := Si −
∑

0≤j<i E(∆Sj | Fj). Note that
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Si = Xi +Di implies

∆Mi := Mi+1 −Mi = ∆Si − E(∆Si | Fi) = ∆Xi − E(∆Xi | Fi),

which readily gives E(∆Mi | Fi) = 0 and maxi≥0 |∆Mi| ≤ 2 · C. Note that we also have

Var(∆Mi | Fi) = Var(∆Xi | Fi) ≤ E(∆X2
i | Fi) ≤ C · E(|∆Xi| | Fi), (3.70)

so that
∑

i≥0 Var(∆Mi | Fi) ≤ C · V . Clearly M0 = S0. Also Mi ≥ Si, since (Si)i≥0

is a supermartingale. Hence a standard application of Freedman’s martingale inequality

(see [41] or [117, Lemma 2.2]) yields

P
(
Si ≥ S0 + z for some i ≥ 0

)
≤ P

(
Mi ≥M0 + z for some i ≥ 0

)
≤ exp

(
− z2

2(CV + 2C · z/3)

)
,

(3.71)

which completes the proof of inequality (3.69).

Turning to the details, we define the stopping time I as the minimum of m0 and the first

step i ≥ 0 where Gi fails. Writing i ∧ I := min{i, I}, as usual, by our above discussion it

follows that

P
(
¬Gm0

)
≤

∑
e∈E(H)

∑
τ∈{+,−}

P
(
Qτ
e(i ∧ I) ≥ 0 for some i ≥ 0

)
+
∑

v∈V (H)

∑
c∈[q]

∑
τ∈{+,−}

P
(
Y τ
v,c(i ∧ I) ≥ 0 for some i ≥ 0

)
.

(3.72)

Note that initially |Qe(i)| = q and |Yv,c(0)| = degH(v), which in view of the degree

assumption (3.2) and the definitions (3.53)–(3.54) of Qτ
e(0) and Y τ

v,c(0) gives the initial
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value estimates

Qτ
e(0 ∧ I) = Qτ

e(0) = −ê(0)q = −n−σ/3q,

Y τ
v,c(0 ∧ I) = Y τ

v,c(0) = O(n−σD)− ê(0)D ≤ −n−σ/3D/2.

Noting that the estimates from Sections 3.3.2.2–3.3.2.3 apply for 0 ≤ i ≤ I − 1 (since then

0 ≤ i ≤ m0 − 1 and Gi hold), the point is that the stopped sequence Si := Qτ
e(i ∧ I) is a su-

permartingale with S0 = −n−σ/3q, to which Lemma 49 can be applied withXi = τ |Qe(i ∧ I)|,

C = 1 and V = m0 · 2rq/m = O(rq). Invoking inequality (3.69) with z = n−σ/3q, us-

ing q = Ω(rnσ) together with mr ≤ nr
2nσ/4 and r = O(log n) it follows that

P
(
Qτ
e(i ∧ I) ≥ 0 for some i ≥ 0

)
≤ exp

{
−Θ(n−2σ/3q/r)

}
≤ exp

{
−Θ(nσ/3)

}
≤ m−ω(r).

(3.73)

Similarly, the sequence Si := Y τ
v,c(i ∧ I) is a supermartingale with S0 ≤ −n−σ/3D/2, to

which Lemma 49 can be applied with Xi = τ |Yv,c(i ∧ I)|, C = rn−σD and V = m0 ·

2rD/m = O(rD). Invoking inequality (3.69) with z = n−σ/3D/2, it follows analogously

to (3.73) that

P
(
Y τ
v,c(i ∧ I) ≥ 0 for some i ≥ 0

)
≤ exp

{
−Θ(nσ/3/r2)

}
≤ m−ω(r). (3.74)

Inserting (3.73)–(3.74) into inequality (3.72), noting |V (H)| = n ≤ m, |E(H)| ≤ nr ≤

mr and q ≤ m it then follows that P(¬Gm0) ≤ m−ω(r), which completes the proof of

Theorem 46.

3.4 Concluding remarks

The main remaining open problem is to determine the typical asymptotic behavior of the

Prague dimension dimP(Gn,p) ≈ cc′(Gn,1−p) as well as the clique covering and partition
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numbers cc(Gn,p) and cp(Gn,p), i.e., to refine the estimates from Theorems 31, 34 and 35.

Here edge-probability p = 1/2 is of special interest, since this would reveal the asymptotics

of these intriguing parameters for almost all n-vertex graphs.

Problem 1. Determine the whp asymptotics of the parameters cc(Gn,p), cp(Gn,p), cc∆(Gn,p),

and cc′(Gn,p) for constant edge-probabilities p ∈ (0, 1).

3.4.1 Non-trivial lower bounds for dense random graphs

For constant edge-probabilities p ∈ (0, 1) our understanding of the asymptotics remains un-

satisfactory, even on a heuristic level. Indeed, it is well-known that the largest clique ofGn,p

whp has size s ∼ 2 log1/p n, which together with the simple lower bound reasoning for

Theorem 34 makes it tempting to speculate that perhaps cc(Gn,p) ∼
(
n
2

)
p/
(
s
2

)
holds whp.

However, Lemma 50 shows that this natural guess is false, by further improving the simple

lower bound (which for p = 1/2 was already noted in [15]). The analogous speculation

cc∆(Gn,p) ∼ np/(s− 1) is also refuted by Lemma 50, whose proof we defer to Section 3.5.

Lemma 50. If p = p(n) satisfies n−o(1) ≤ p ≤ 1− n−o(1), then for any ε ∈ (0, 1) whp

cc(Gn,p) ≥ (1− ε) ·
(
1 + ϕ(p)

)(
n
2

)
p/
(
s
2

)
, (3.75)

cc∆(Gn,p) ≥ (1− ε) ·
(
1 + ϕ(p)

)
np/(s− 1), (3.76)

where s := d2 log1/p ne and ϕ(p) := (1− p) log(1− p)/(p log p). The function ϕ :

(0, 1)→ (0,∞) is increasing, with limp↘0 ϕ(p) = 0, ϕ(1/2) = 1, and limp↗1 ϕ(p) =∞.

For Problem 1 the main conceptual message of Lemma 50 is as follows: it simply is not

enough to mainly use cliques of near maximal size, which in turn indicates that the cor-

rect asymptotics are somewhat tricky. Perhaps rashly, we speculate that the lower bounds

in (3.75)–(3.76) are asymptotically best possible.
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3.4.2 Asymptotics for sparse random graphs

We now record strengthenings of Theorems 34–35 for many small edge-probabilities

p = p(n)→ 0, where the asymptotics follow from Pippenger–Spencer type hypergraph

results. As we shall see, here the crux is that when all cliques have size O(1), then it

suffices to simply cover a 1− o(1) fraction of the relevant edges.

Theorem 51. If p = p(n) satisfies n−2/(s+1) � p� n−2/(s+2) for some fixed integer s ≥ 3,

then cc(Gn,p) and cp(Gn,p) are whp both asymptotic to
(
n
2

)
p/
(
s
2

)
.

We leave it as an open problem to determine the whp asymptotics for p = Θ(n−2/(s+1)),

and now outline the proof of Theorem 51, which uses cc(Gn,p) ≤ cp(Gn,p). The lower

bound on cc(Gn,p) is routine: the expected number of edges in cliques of size at least s+ 1

is at most
∑

k≥s+1

(
k
2

)(
n
k

)
p(

k
2) �

(
n
2

)
p, which makes it easy to see that whp cc(Gn,p) ≥

(1 − o(1))
(
n
2

)
p/
(
s
2

)
. For the upper bound on cp(Gn,p) we shall mimic the natural strategy

of Kahn and Park [63] for s = 3: using Kahn’s fractional version of Pippenger’s hyper-

graph packing result [63, Theorem 7.1] it is not difficult6 to see that Gn,p whp contains

a collection C of |C| = (1 − o(1))
(
n
2

)
p/
(
s
2

)
edge-disjoint cliques Ks. Writing U for the

edges of Gn,p not covered by the cliques in C, it then easily follows that whp cp(Gn,p) ≤

|C|+ |U| ≤ (1 + o(1))
(
n
2

)
p/
(
s
2

)
, as desired.

Theorem 52. If p = p(n) satisfies (log n)ω(1)n−2/(s+1) ≤ p � n−2/(s+2) for some fixed

integer s ≥ 3, then cc∆(Gn,p) and cc′(Gn,p) are whp both asymptotic to np/(s− 1).

Remark 53. These asymptotics remain valid when the definitions of cc∆(Gn,p) and cc′(Gn,p)

are restricted to clique partitions of the edges (instead of clique coverings).

We leave it as an open problem to determine the whp asymptotics for

p = (log n)O(1)n−2/(s+1), and now outline the proof of Theorem 52, which uses cc∆(Gn,p) ≤
6We consider the auxiliary hypergraph H, where the vertices correspond to the edges of Gn,p and the

edges correspond to the edge-sets of the cliques Ks of Gn,p. The technical conditions of [63, Theorem 7.1]
required for mimicking [63, Section 7] can then be verified using (careful applications of) standard tail bounds
such as Lemma 41 and [120, Theorems 30 and 32].
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cc′(Gn,p). The lower bound on cc∆(Gn,p) is routine: the expected number of edges in

cliques of size at least s+ 1 containing a fixed vertex v is at most
∑

k≥s+1

(
k
2

)(
n−1
k−1

)
p(

k
2) �

np, which makes it easy to see that whp cc∆(Gn,p) ≥ (1− o(1))np/(s− 1). Turning to the

upper bound on cc′(Gn,p), using a pseudo-random variant of Pippenger’s packing result due

to Ehard, Glock and Joos [25], it is not difficult7 to see thatGn,p whp contains a collection C

of edge-disjoint cliques Ks where each vertex is contained in (1− o(1))np/(s− 1) cliques

of C. Writing U for the edges of Gn,p not covered by the cliques in C, using Pippenger and

Spencer’s chromatic index result [93] and Vizing’s theorem it then is not difficult to see

that whp cc′(Gn,p) ≤ χ′(C) + χ′(U) ≤ (1 + o(1))np/(s− 1), as desired.

Acknowledgements. We would like to thank Annika Heckel for valuable discussions

about Problem 1.

3.5 Appendix: Lower bounds: proof of Lemma 50

Proof of Lemma 50. Writing S for the event that the largest clique of Gn,p has size at

most s = d2 log1/p ne, it well-known that S holds whp (by a straightforward first moment

argument). Writing E for the event that Gn,p contains (1± ε)
(
n
2

)
p edges for ε := n−1/2, say,

it is easy to see that E holds whp (using Chebychev’s inequality). Furthermore, recalling

ϕ(p) = (1− p) log(1− p)/(p log p), the probability that Gn,p equals any fixed spanning

subgraph G ⊆ Kn with e(G) = (1± ε)
(
n
2

)
p edges is routinely seen to be at most

Π := max
m∈(1±ε)(n2)p

pm(1−p)(
n
2)−m ≤ exp

(
−(1−o(1))·

(
n
2

)
p
(
1+ϕ(p)

)
·log(1/p)

)
. (3.77)

For the clique covering number cc(Gn,p), the crux is that there are at most

(
n+ s

s

)T
≤ o(nsT )

7For the same auxiliary hypergraph H as considered before, the required technical conditions of [25,
Theorem 1.2] with ∆ ≈

(
n−2
s−2

)
p(

s
2)−1 ≥ Ω

(
(log n)ω(1)

)
and log e(H) ≤ s log n � ∆Θ(1) can be verified

using Lemma 41 and [102, Theorem 1].
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many collections {C1, . . . , Ct} with t ≤ T that are a clique covering for some graph

G ⊆ Kn with largest clique of size at most s. Hence, since each clique covering uniquely

determines the entire edge-set and thus the underlying spanning subgraph G ⊆ Kn, it

follows by a union bound argument that

P(cc(Gn,p) ≤ T ) ≤ P(¬S or ¬E) + o(nsT ) · Π. (3.78)

Note that P(¬S or ¬E) = o(1) and s log n ∼
(
s
2

)
·log(1/p). In view of inequality (3.77), for

any ε ∈ (0, 1) it follows that (3.78) is at most o(1) when T ≤ (1− ε) · (1 +ϕ(p))
(
n
2

)
p/
(
s
2

)
,

establishing (3.75).

Turning to the thickness cc∆(Gn,p), we associate each clique covering C of some graph

G ⊆ Kn with an auxiliary bipartite graph B on vertex-set [n] ∪ C, where v ∈ [n] andCi ∈ C

are connected by an edge whenever v ∈ V (Ci). If the thickness of C is at most T , then

in B the degree of each v ∈ [n] is at most bT c, which also gives |C| ≤ nbT c. Since the

structure of the auxiliary bipartite graph B uniquely determines C (as the neighbors of Ci

in B determine the clique vertex-set V (Ci)), it follows that there are at most

(
nbT c+ bT c
bT c

)n
≤ O

(
(6n)nT

)
many collections C with thickness at most T that are a clique covering of some graph G ⊆

Kn. Since each such C uniquely determines the underlying spanning subgraph G ⊆ Kn,

we obtain similarly to (3.78) that

P(cc∆(Gn,p) ≤ T ) ≤ P(¬E) + O
(
(6n)nT

)
· Π. (3.79)

Note that P(¬E) = o(1) and n log(6n) ∼
(
n
2

)
log(1/p) · (s − 1)/n. In view of inequal-

ity (3.77), for any ε ∈ (0, 1) it follows that (3.79) is at most o(1) when T ≤ (1− ε) · (1 +

ϕ(p))np/(s− 1), completing the proof of (3.76).
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3.6 Appendix: Variant of Theorem 32: proof of Corollary 40

Proof of Corollary 40. Choosing ξ = ξ(δ) ∈ (0, 1/16] such that (1+δ)(1+ξ)/(1−4ξ)2 ≤

1 + 2δ, set m0 := b(1 + ξ)mc, m1 := bm0/(1− 4ξ)2c, and c := (1 + δ)rm1/n. LetH∗i be

chosen uniformly at random from all
(|E(H)|

i

)
subhypergraphs of H with exactly i edges.

SinceHq conditioned on having exactly i edges has the same distribution asH∗i , by the law

of total probability and monotonicity it follows that

P(χ′(Hq) ≥ c) ≤ P(|E(Hq)| > m0) +
∑

0≤i≤m0

P(χ′(H∗i ) ≥ c)P(|E(Hq)| = i)

≤ n−ω(r) + P(χ′(H∗m0
) ≥ c),

(3.80)

where we used standard Chernoff bounds (such as [60, Theorem 2.1]) and E |E(Hq)| =

|E(H)|q = m ≥ n1+σ � r log n. Sequentially choosing the random edges e1, . . . , em1 ∈

E(H) of Hm1 as defined in Theorem 32, note that ei+1 ∈ E(H) \ {e1, . . . , ei} holds

with probability at least 1−m1/e(H) > 1− 4ξ, as m1 < 4m ≤ 4ξe(H). Since we

can equivalently construct the edge-set {f1, . . . , fm0} of H∗m0
by sequentially choosing

fi+1 ∈ E(H) \ {f1, . . . , fi} uniformly at random, a natural coupling ofHm1 andH∗m0
thus

satisfies

P(H∗m0
⊆ Hm1) ≥ P(Bin(m1, 1− 4ξ) ≥ m0) ≥ 1− n−ω(r),

where we used standard Chernoff bounds and thatm1(1−4ξ) > m0/(1−ξ) for n ≥ n0(ξ).

Hence

P(χ′(H∗m0
) ≥ c) ≤ P(χ′(Hm1) ≥ c) + n−ω(r) ≤ n−ω(r), (3.81)

where we invoked Theorem 32 with m set to m1 (which applies since n1+σ ≤ m ≤ m1 <

4ξe(H) < nr). This completes the proof by combining (3.80) and (3.81) with c ≤ (1 +
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2δ)rm/n.

3.7 Appendix: Heuristics: random greedy edge coloring algorithm

In this appendix we give, for the greedy coloring algorithm from Section 3.3, two heuristic

explanations for the trajectories |Qe(i)| ≈ q̂(t) and |Yv,c(i)| ≈ ŷ(t) that these random

variables follow, where t = t(i,m) = i/m.

For our first pseudo-random heuristic, we write Ei = {e1, . . . , ei} for the multi-set of

edges appearing during the first i steps of the algorithm. Ignoring that edges can appear

multiple times, our pseudo-random ansatz is that the edges in Ei and their assigned colors

are approximately independent with

P
(
e in Ei and colored c

)
≈ |Ei|
|E(H)|

· 1

q
≈ i

nD/r
· 1

rm/n
=

t

D
=: p(t,D) = p,

where independence only holds with respect to colorings that are proper, i.e., possible in the

algorithm. Using this heuristic ansatz, we now consider the event Ev,c that no edge f ∈ Ei

with v ∈ f is colored c. Exploiting that no two distinct edges containing v can receive the

same color in the algorithm (since this coloring would not be proper), our pseudo-random

ansatz and the degree assumption (3.2) then suggests that

P(¬Ev,c) =
∑

f∈E(H):v∈f

P(f in Ei and colored c) ≈ D · p = t.

Since for every pair of vertices there are only at most n−σD edges containing both (by

the codegree assumption), for ` = o(log n) distinct vertices v1, . . . , v` our pseudo-random

ansatz also loosely suggests that

P
(⋂
i∈[`]

Evi,c
)
≈
∏
i∈[`]

P(Evi,c) +O
(
`2 · n−σD · p

)
≈ (1− t)`.

Recalling (3.46) from Section 3.3, using linearity of expectation we then anticipate |Qe(i)| ≈
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q̂(t) based on

E |Qe(i)| =
∑
c∈[q]

P
(
c ∈ Qe(i)

)
=
∑
c∈[q]

P
(⋂
v∈e

Ev,c
)
≈ q · (1− t)r = q̂(t).

Mimicking this reasoning, recalling (3.47) we similarly anticipate |Yv,c(i)| ≈ ŷ(t) based on

E |Yv,c(i)| =
∑

f∈E(H):v∈f

P
(
c ∈ Qf\{v}(i)

)
≈ D · (1− t)r−1 = ŷ(t).

In our second expected one-step changes heuristic we assume for simplicity that there

are deterministic approximations |Qe(i)| ≈ f(t)q and |Yv,c(i)| ≈ g(t)D. Using these

approximations and q ≈ rm/n, the calculations leading to (3.55)–(3.56) and (3.58)–(3.59)

in Section 3.3.2.1 then suggest that

E
(
|Qe(i+ 1)| − |Qe(i)|

∣∣ Fi) ≈ −f(t)q · r · g(t)D

nD/r · f(t)q
≈ −rg(t)q

m
, (3.82)

E
(
|Yv,c(i+ 1)| − |Yv,c(i)|

∣∣ Fi) ≈ −g(t)D · (r − 1) · g(t)D

nD/r · f(t)q
≈ −(r − 1)g2(t)D

f(t)m
, (3.83)

where Fi denotes the natural filtration of the algorithm after i steps. Since the left-hand

sides of (3.82)–(3.83) are approximately equal to [f(t + 1/m) − f(t)]q ≈ f ′(t)q/m

and g′(t)D/m, respectively, we anticipate

f ′(t) = −rg(t) and g′(t) = −(r − 1)g2(t)/f(t). (3.84)

Noting |Qe(0)| = q and |Yv,c(0)| ≈ D, we also anticipate f(0) = g(0) = 1. The solutions

f(t) = (1− t)r and g(t) = (1− t)r−1 then make |Qe(i)| ≈ f(t)q = q̂(t) and |Yv,c(i)| ≈

g(t)D = ŷ(t) plausible.
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CHAPTER 4

ON THE POWER OF RANDOM GREEDY ALGORITHMS

4.1 Background and main results

The probabilistic method is a widely used tool for proving the existence of hard-to-construct

mathematical objects with certain desirable properties: it works by showing that a randomly

chosen object has the desired properties with non-zero probability. In classical textbook ap-

proaches to the probabilistic method, the underlying random objects are typically generated

in a static way, e.g., by choosing a graph uniformly at random from a prescribed class of

graphs, or by independently including each possible edge.

In this chapter we illustrate the power of the algorithmic approach to the probabilistic

method, where the random objects are generated step-by-step in a dynamic way using a ran-

domized algorithm. To this end we consider two examples from graph theory and additive

combinatorics, and show that each time random greedy algorithms allow us to go beyond

classical applications of the probabilistic method, i.e., prove existence of mathematical ob-

jects with better properties. These algorithmic improvements are key for (i) resolving a

problem of Esperet, Kang and Thomassé [36], and (ii) answering a question of Li [77], see

Theorems 54 and 55.

For the two combinatorial examples considered in this chapter, previous work used

the probabilistic method to show that static random objects can avoid certain forbidden

substructures, while maintaining other desired pseudo-random properties. Our technical

results show that random greedy algorithms, which by construction avoid these forbidden

substructures, create objects with superior pseudo-random properties, see Theorems 56

and 58. With the benefit of hindsight, earlier work of Rödl [97], Kahn [62], Wormald [123],

Spencer [108], Kim [67], Bohman [10], and others [9, 14, 46] can be interpreted similarly.
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This chapter thus reveals the following emerging algorithmic paradigm: one can often take

proofs based on classical probabilistic method arguments, and obtain improvements by

using an algorithmic approach to the probabilistic method.

4.1.1 Induced bipartite subgraphs in triangle-free graphs

Our first example is from extremal graph theory, concerning a local refinement of the fa-

mous Max Cut problem. Here the history starts in 1988, when Erdős, Faudree, Pach and

Spencer [29] introduced the problem of searching for large induced bipartite subgraphs in

triangle-free graphs. Around 2018 Esperet, Kang and Thomassé [36] further refined this

problem, focusing on induced bipartite subgraphs with large minimum degree. More pre-

cisely, for fixed η ∈ (0, 1) they asked to determine the behavior of the parameter fη(n),

which is defined as the maximum f such that every n-vertex triangle-free graph with min-

imum degree at least nη contains an induced bipartite subgraph with minimum degree at

least f . Recent results of Kwan, Letzter, Sudakov, and Tran [76] and van Batenburg, de

Verclos, Kang, and Pirot [113] show that

fη(n) = Θ
(
max

{
log n, n2η−1

})
for fixed η ∈ (0, 1) \ (1/2, 2/3], (4.1)

and also determine fη(n) up to logarithmic factors in the remaining range η ∈ (1/2, 2/3].

Illustrating the conceptual punchline of this chapter, we use a ‘dynamic’ randomized greedy

algorithm to improve existing upper bound constructions [76, 113], which were based on

classical probabilistic method tools applied to the binomial random graph Gn,p. This al-

gorithmic improvement allows us to close the logarithmic gap for η ∈ (1/2, 2/3], and

determine the order of magnitude of fη(n) for any fixed η ∈ (0, 1). The following result in

particular resolves [36, Problem 4.1] of Esperet, Kang, and Thomassé up to constant fac-

tors.

Theorem 54. For fixed η ∈ (0, 1), we have fη(n) = Θ(max{log n, n2η−1}).
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In comparison to the previous upper bounds [76, 113] based on the probabilistic anal-

ysis of Gn,p via the alteration method or the Lovász Local Lemma, our key improvement

stems from the fact that via the so-called semi-random triangle-free process we are able

to algorithmically construct pseudo-random triangle-free graphs with higher edge density

(see Theorem 56), confirming speculations from [36, Section 4] and [113, Section 3].

4.1.2 Van der Waerden numbers

Our second example is from additive combinatorics, concerning a well-known Ramsey-

type parameter for arithmetic progressions. The van der Waerden number W (r, k) is de-

fined as the smallest integer n such that every red and blue coloring of numbers in [n] :=

{1, 2, . . . , n} contains either a monochromatic red r-term arithmetic progression (r-AP)

or a monochromatic blue k-AP. The celebrated van der Waerden’s theorem guarantees

that W (r, k) is finite for all integers r, k ≥ 2, making it a natural and interesting prob-

lem to determine the asymptotic behavior of W (r, k), see [47, 50]. The ‘off-diagonal’

case, where r ≥ 3 is fixed and k tends to infinity, was of particular interest to Graham

(note that W (2, k) = Θ(k) holds trivially). Indeed, in the mid 2000s Graham conjectured

that W (3, k) ≤ kO(1), and mentioned that numerical evidence suggests W (3, k) = k2+o(1),

see [48, 49, 52]. Around 2015 Graham even started offering $250 reward for his conjecture,

see [49, p. 19]. In terms of lower bounds, in 2008 Li and Shu [78] showed that

W (r, k) = Ω
(
(k/ log k)r−1

)
for fixed r ≥ 3,

by applying the Lovász Local Lemma to a random subset of the integers [n]. Subsequently,

Li raised in 2009 the natural question [77] whether this probabilistic lower bound can be

improved via a randomized greedy algorithm that ‘dynamically’ constructs an r-AP free

subset of the integers [n]. The proof of the following theorem answers Li’s question affir-

matively, see also Sections 4.1.4.2 and 4.3.
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Theorem 55. For fixed r ≥ 3, we have W (r, k) = Ω
(
kr−1/(log k)r−2

)
.

This result was announced in October 2020, see [53]. While this chapter was under

slow preparation during the COVID-19 pandemic, Green [51] made a breakthrough and

showedW (3, k) ≥ k(log k)1/3−o(1) using very different techniques, which in view ofW (r, k) ≥

W (3, k) disproves the earlier belief that W (r, k) = kO(1) for fixed r ≥ 3. The best known

upper bound W (3, k) ≤ exp(k1−Ω(1)) was obtained by Schoen [100] in 2020.

4.1.3 Organization

In Section 4.1.4 we state our main technical results, which will imply Theorem 54 and 55

for induced bipartite subgraphs and van der Waerden numbers, respectively. In Sections 4.2

and 4.3 we then prove these technical results using an algorithmic approach to the prob-

abilistic method, i.e., by analyzing randomized algorithms that construct pseudo-random

triangle-free graphs and r-AP free subsets of the integers, respectively.

4.1.4 Main technical results

4.1.4.1 Construction of pseudo-random triangle-free graphs

To prove the upper bound on the parameter fη(n) claimed by Theorem 54 for η ∈ (1/2, 2/3],

our strategy is to construct a pseudo-random triangle-free graph Gn with Θ(n) vertices,

where pseudo-randomness will intuitively ensure the desired minimum degree properties

(in suitable constructions that are based on Gn). Following the conceptual punchline of

this chapter, we shall construct the desired graph Gn using a semi-random variant of the

triangle-free process, which is a randomized greedy algorithm that sequentially adds more

edges to Gn without creating a triangle, see Section 4.2 for the full details. This algorith-

mic approach to the probabilistic method is key for obtaining our improved upper bound

on fη(n) via the following auxiliary result, since earlier approaches based on the bino-

mial random graph Gn,p were only able to prove Theorem 56 with weaker minimum and
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maximum degree bounds δ(Gn),∆(Gn) = Θ(
√
n), see [76, Lemma 5.1] and [113, Theo-

rem 3.1].

Theorem 56. There are constants c, C, C ′ > 0 such that for any 0 < β < 1/14 the

following holds for any integer n ≥ n0 = n0(β). There exists a triangle-free graph Gn

with v(Gn) ∈ [n/3, n] vertices,

c
√
βn log n ≤ δ(Gn) ≤ ∆(Gn) ≤ C

√
βn log n, (4.2)

and the property that any induced bipartite subgraph F ⊆ Gn has minimum degree δ(F ) ≤

C ′ log n.

We defer the proof of Theorem 56 to Section 4.2: it is based on a careful refinement of

the semi-random triangle-free process analysis of Guo and Warnke [56]. Using Theorem 56

we shall in fact establish improved bounds for the more general parameter g(n, d), which

denotes the maximum g such that every n-vertex triangle-free graph with minimum degree

at least d contains an induced bipartite subgraph with minimum degree at least g. Extend-

ing [76, 113], the following result establishes a phase transition of g(n, d) when the mini-

mum degree d is around
√
n log n, and it also implies Theorem 54 since fη(n) = g(n, nη).

Theorem 57. For any fixed γ ∈ (0, 1), we have g(n, d) = Θ
(

max{log d, d2/n}
)

for

all nγ ≤ d ≤ n/2.

Similar to fη(n) = g(n, nη), the cases nγ ≤ d ≤
√
n and n2/3 ≤ d ≤ n/2 of Theo-

rem 57 follow from [76]. Furthermore, for
√
n ≤ d ≤ n2/3 we obtain

g(n, d) = Ω(max{log d, d2/n}) by combining [76, Theorem 1.3] with the fact that g(n, d)

is monotone increasing in d. We now close the gap for
√
n ≤ d ≤ n2/3 by mimicking

the upper bound constructions from [76, 113] using the semi-random triangle-free process

based graphsGn from Theorem 56, which have better degree properties than theGn,p based

graphs used in [76, 113].

100



Proof of Theorem 57 based on Theorem 56. Writing c, C ′ > 0 for the constants of The-

orem 56, let β := 10−2 and A := c
√
β/3. As discussed, it suffices to prove g(n, d) =

O(max{log d, d2/n}) for
√
n ≤ d ≤ n2/3.

We start with the case
√
n ≤ d ≤ A

√
n log n, where we set α := 2/(c2β) and n′ := dαd2/ log ne.

Note that n2/3 � n′ ≤ dαA2ne ≤ n/2 and n′ � d2. By taking the disjoint union of bn/n′c

copies of Gn′ , we obtain a triangle-free graph Hn with v(Hn) = bn/n′c · v(Gn′) ∈ [n/6, n]

vertices and minimum degree

δ(Hn) = δ(Gn′) ≥ c
√
βn′ log n′ ≥

√
c2βα · d2 · 2/3 > d.

Furthermore, every induced bipartite subgraph F ⊆ Hn is a disjoint union of induced

bipartite subgraphs from copies of Gn′ and thus has minimum degree at most δ(F ) ≤

C ′ log n′ ≤ 2C ′ log d. By ‘blowing up’ each vertex of Hn into an independent set of

suitable sizes between one and six (i.e., after replacing each vertex of Hn by an inde-

pendent set, we add a complete bipartite graph between every pair of independent sets

that correspond to an edge in Hn), we thus obtain an n-vertex triangle-free graph Gn,d

with δ(Gn,d) ≥ δ(Hn) ≥ d, where furthermore every induced bipartite subgraph F ⊆ Gn,d

has minimum degree at most δ(F ) ≤ 6 · 2C ′ log d (by analogous disjoint reasoning as be-

fore), establishing that g(n, d) = O(log d).

Finally, in the remaining case A
√
n log n ≤ d ≤ n2/3 we set α := c2β/18 and

n′ := bα(n/d)2 log nc. Note that n2/3 � n′ ≤ αn/A2 ≤ n/2. By ‘blowing up’ each vertex

of Gn′ into an independent set of size bn/n′c, we obtain a triangle-free graph Hn with

v(Hn) = bn/n′c · v(Gn′) ∈ [n/6, n] vertices and minimum degree

δ(Hn) = bn/n′c · δ(Gn′) ≥
n

2n′
· c
√
βn′ log n′

≥
√
c2βn2 log(n2/3)

4n′
≥
√
c2β · d2 · 2/3

4α
> d.

Furthermore, every induced bipartite subgraph F ⊆ Hn has minimum degree at most
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δ(F ) ≤ bn/n′c · C ′ log n′ ≤ 2α−1C ′ · d2/n. By blowing up each vertex of Hn into an

independent set of suitable sizes between one and six, we then obtain an n-vertex triangle-

free graph Gn,d that establishes g(n, d) = O(d2/n).

4.1.4.2 Construction of pseudo-random r-AP free sets of integers

To prove the lower bound on the van der Waerden numberW (r, k) claimed by Theorem 55,

our strategy is to construct a large subset I ⊆ [n] of the integers that is r-AP free and

pseudo-random, where pseudo-randomness will intuitively ensure that [n] \ I is k-AP free

for fairly large k = k(n). For technical reasons, it will be convenient to work with the

field Z/NZ for a prime number N , where a set of numbers {a1, . . . , ar} ⊆ Z/NZ is

formally called an r-term arithmetic progression (r-AP) in Z/NZ if |{a1, . . . , ar}| = r and

ai ≡N a1 + (i− 1)d for some d 6≡N 0. Following the conceptual punchline of this chapter,

we shall construct the desired pseudo-random r-AP free subset I ⊆ Z/NZ using the so-

called random greedy r-AP free process, which is a randomized greedy algorithm that

step-by-step adds more random numbers to I without creating an r-AP, see Section 4.3 for

the full details. This algorithmic approach to the probabilistic method is key for obtaining

our improved lower bound on W (r, k) via the following result, since earlier approaches

based on random subsets the integers were only able to prove Theorem 58 with the weaker

parameter choice k = Θ(N1/(r−1) logN), see [78].

Theorem 58. For any fixed r ≥ 3, there are constants C,N0 > 0 such that the following

holds for any prime number N ≥ N0. There exists a set I ⊆ Z/NZ which (i) is r-

AP free in Z/NZ and (ii) satisfies |I ∩ K| ≥ 1 for all k-APs K in Z/NZ of size k :=

dC(N/ logN)1/(r−1) logNe.

Proof of Theorem 55 based on Theorem 58. For any integer n ≥ max{2, N0}, by Betrand’s

postulate we may fix a prime number satisfying n < N < 2n. For I ⊆ Z/NZ as given by

Theorem 58, we color I ∩ [n] red and [n] \ I blue. Properties (i)–(ii) of Theorem 58 ensure
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that there are no red r-APs or blue k-APs in [n], since any AP in [n] corresponds to an AP

in Z/NZ. It follows that W (r, k) > n > N/2 = Θ(kr−1/(log k)r−2).

We defer the proof of Theorem 58 to Section 4.3: it is based on the differential equation

method and results of Bohman and Bennett [9] for the so-called random greedy independent

set algorithm. Noteworthily, in our analysis we need to ensure that all of the polynomially

many k-APs are ‘hit’ by the set I produced by the r-AP process. This is in great contrast

to the analysis of the H-free process arising in graph Ramsey theory, where one typically

needs to ensure that an exponential number of substructures are hit [10, 12, 37, 13, 115,

116, 92].

4.2 Semi-random triangle-free process

In this section we prove Theorem 56 by showing that a semi-random variant of the so-

called triangle-free process typically finds a triangle-free graph Gn ⊆ Kn with the desired

properties. Intuitively, this process starts with an empty graph, and then iteratively adds a

large number of carefully chosen edges (instead of just adding a single edge as the original

triangle-free process) such that the resulting graph stays triangle-free.

4.2.1 More details and heuristics

The formal details of the semi-random triangle-free process are rather involved, so here

we shall only introduce the aspects that are important for the upcoming arguments of this

chapter, deferring the full details to [56, Section 2]. The semi-random process starts with

E0 = T0 := ∅ and O0 := E(Kn), (4.3)

and the rough plan is to step-by-step build up a ‘random’ set of edges Ei ⊆ E(Kn), a

triangle-free edge subset Ti ⊆ Ei, and a set of ‘open’ edges Oi ⊆ E(Kn) \ Ei that can

still be added to Ei without creating triangles. More precisely, in step i + 1 ≥ 1 of the
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semi-random triangle-free process we sample a random edge subset Γi+1 ⊆ Oi, where

each edge e ∈ Oi is included independently with probability

p := σ/
√
n with σ := (log n)−2, (4.4)

and update the random set of edges by setting

Ei+1 := Ei ∪ Γi+1. (4.5)

To determine the new triangle-free edge subset Ti+1 ⊆ Ti ∪ Γi+1, the idea is to delete a

suitable set Di+1 ⊆ Γi+1 of edges from Γi+1 with |Γi+1 \Di+1| ≈ |Γi+1|, such that

Ti+1 := Ti ∪
(
Γi+1 \Di+1

)
(4.6)

remains triangle-free, see [56, (13)–(14) in Section 2.1] for the precise definition of Di+1

(this construction intuitively works since only few new triangles are created inEi∪Γi+1 due

to the fact that Γi+1 is fairly small). To determine the new open edge set Oi+1 ⊆ Oi \ Γi+1,

we certainly have to remove the setC ′i+1 of ‘newly closed’ edges, which simply contains all

edges e ∈ Oi that form a triangle with some two edges of Ei+1 = Ei ∪ Γi+1. For technical

reason we also remove an extra random edge subset Si+1 ⊆ Oi and set

Oi+1 := Oi \
(
Γi+1 ∪ C ′i+1 ∪ Si+1

)
, (4.7)

see [56, (15)–(20) in Section 2.1] for the precise definition of C ′i+1 ∪ Si+1 (the removal of

extra edges is a technical twist that intuitively makes it easier to prove certain concentration

statements).

Stopping this iterative construction after I ≈ nβ steps, the pseudo-random intuition

from [56, Section 2] suggests that, with respect to various edge statistics, the resulting n-
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vertex triangle-free graph

H :=
(
[n], TI

)
and I :=

⌈
nβ
⌉

(4.8)

heuristically resembles a binomial random graph G(n, ρ) with edge probability

ρ :=
√
β(log n)/n, (4.9)

but with the notable exception that it by construction contains no triangles (such a ran-

dom graph would typically contain many triangles). This heuristic makes it plausible

that Gn = H satisfies the degree properties claimed by Theorem 56, since routine ar-

guments show that the random graph G(n, ρ) typically has these degree properties. To

keep the modifications of [56] minimal, we shall in fact find an induced subgraph Gn ⊆ H

with the desired degree properties (this extra step is convenient but not necessary, see Re-

mark 59).

4.2.2 Setup and proof of Theorem 56

We now turn to the technical details of our proof of Theorem 56, which extends [56, Sec-

tions 2–3]. Here our setup is guided by the pseudo-random heuristic discussed in [56,

Section 2.2], which loosely suggests that

P(e ∈ Ei) ≈ πi/
√
n and P(e ∈ Oi) ≈ qi, (4.10)

where the parameters qi and πi satisfy the technical properties

πi := σ +
∑

0≤j<i

σqj, qi ∈ (0, 1] and πI/
√
n = (1 + o(1))ρ, (4.11)
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see [56, Section 2.3 and Lemma 17] for the full details. In particular, to get a handle on the

number of edges between large sets of vertices, consistent with (4.10)–(4.11) we introduce

the pseudo-random events

T ∗I :=
{
|TI(A,B)| ≥ (1− δ)|A||B|ρ for all disjoint A,B ⊆ [n] with |A| = |B| = s

}
,

(4.12)

T +
I :=

{
|TI(A,B)| ≤ (1 + δ)2s|B|ρ for all disjoint A,B ⊆ [n] with |A| = |B| ≤ 2s

}
,

(4.13)

where we write S(A,B) := {ab ∈ S : a ∈ A, b ∈ B} for the set of edges from S

that go between A and B, and tacitly use the carefully chosen (see [56, Section 2.3 and

Theorem 9]) size parameter

s :=
⌈
D(log n)/ρ

⌉
with D := 108/δ2 and δ := 1/10. (4.14)

To eventually get a handle on the maximum degree, we also introduce the auxiliary event

N≤I :=
{
|NΓi(v)| ≤ 2σqi−1

√
n for all v ∈ [n] and 0 ≤ i ≤ I

}
, (4.15)

writing NS(v) := {w ∈ [n] : vw ∈ S} for the set of neighbors of v in a given edge set S.

Results of Guo and Warnke, see [56, Theorem 9], imply that

P
(
T ∗I ∩N≤I

)
≥ 1− n−ω(1). (4.16)

As we shall show next, Theorem 56 then follows from the claim

P
(
T +
I

)
≥ 1− o(1), (4.17)

whose stochastic domination based proof we defer to Section 4.2.3.
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Proof of Theorem 56 assuming inequality (4.17). Combining (4.16)–(4.17), for all sufficiently

large n we infer that H = ([n], TI) satisfies the event T ∗I ∩N≤I ∩ T +
I . We construct

the induced triangle-free subgraph Gn ⊆ H by iteratively deleting vertices of degree at

most δ/4 · nρ, and now verify that it has the claimed properties, starting with the degree

bound (4.2). Noting eH(A,B) = |TI(A,B)|, the event T ∗I implies, via a double-counting

argument analogous to the proof of [56, Theorem 5], that the number of edges of H is

at least

e(H) =

∑
A⊆[n]:|A|=s

∑
B⊆[n]\A:|B|=s |TI(A,B)|

2
(
n−2
s−1

)(
n−s−1
s−1

) ≥
(
n
s

)(
n−s
s

)
· (1− δ)s2ρ

2
(
n−2
s−1

)(
n−s−1
s−1

) = (1− δ)
(
n
2

)
ρ.

(4.18)

Furthermore, by the recursive definition (4.6) of the edge set TI ⊆
⋃

0≤i<I Γi+1, using the

properties (4.11) of πi we infer, for all sufficiently large n ≥ n0(δ), that the event N≤I

implies the maximum degree bound

∆(H) = max
v∈[n]
|NTI (v)| ≤ max

v∈[n]

∑
0≤i<I

|NΓi+1
(v)| ≤

∑
0≤i<I

2σqi
√
n ≤ 2πI

√
n ≤ (2 + δ)ρn.

By construction of Gn ⊆ H , using δ = 1/10 we thus infer, for all sufficiently large n ≥

n0(δ), that

v(Gn) ≥ 2e(Gn)

∆(Gn)
≥

2
[
e(H)− n · δ/4 · nρ

]
∆(H)

≥
2(1− 2δ)

(
n
2

)
ρ

(2 + δ)nρ
>
n

3
,

and so the claimed degree bound (4.2) follows with c := δ/4 and C := 2 + δ.

Next, suppose that F ⊆ Gn is an induced bipartite subgraph with two parts A and B,

where we may assume that |A| ≥ |B|. Since F ⊆ Gn and Gn ⊆ H are both induced

subgraphs, we have

eF (A,B) = eGn(A,B) = eH(A,B) = |TI(A,B)|.
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Furthermore, since A and B are both independent sets in F , the event T ∗I implies that

|B| ≤ |A| ≤ α(F ) ≤ α(H) ≤ 2 · s. Using a double counting argument similar to (4.18),

the event T +
I then implies that

|TI(A,B)| =
∑

A′⊆A:|A′|=|B| |TI(A′, B)|(|A|−1
|B|−1

) ≤

(|A|
|B|

)
· (1 + δ)2s|B|ρ(|A|−1
|B|−1

) = (1 + δ)2s|A|ρ.

The definitions (4.14) of s ≈ D(log n)/ρ and δ = 1/10 give (1 + δ)2sρ ≤ 3D log n for

sufficiently large n. By averaging it follows that δ(F ) ≤ eF (A,B)/|A| ≤ 3D log n, com-

pleting the proof with C ′ := 3D.

Remark 59. One can in fact show that the minimum and maximum degree of the n-vertex

graphH = ([n], TI) satisfy (1− δ)nρ ≤ δ(H) ≤ ∆(H) ≤ (1 + δ)nρwith high probability

(by adapting [56, Sections 3.1–3.5]), which would allow us to directly use Gn = H in

the above proof of Theorem 56. However, the coarser bounds used above suffice for our

purposes, and require less technical modifications of [56].

4.2.3 Pseudo-randomness: deferred proof of inequality (4.17)

This subsection is devoted to the deferred proof of inequality (4.17), i.e., P(T +
I ) ≥ 1−o(1).

To this end we shall adapt the strategy from [56, Sections 3.4–3.5] to our setting, i.e., use

estimates on the number of open edges |Oi(A,B)| to eventually get a handle on the total

number of added edges |TI(A,B)|.

Turning to the details, let S denote the set of all pairs of vertex disjoint A,B ⊆ [n] with

|A| = |B| ≤ 2s. To keep the changes to [56] minimal, for each pair (A,B) ∈ S we en-

largeA toA+ by adding the lexicographic first 2s−|A| vertices from [n]\(A∪B). Note that

the vertex set A+ is determined by A. Consistent with the heuristic approximations (4.10),
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we then introduce the ‘open edges’ related pseudo-random events

Q̃+
i :=

{∣∣Oi(A
+, B)

∣∣ ≤ qi|A+||B| for all (A,B) ∈ S
}

and Q̃+
≤I :=

⋂
0≤i≤I

Q̃+
i .

(4.19)

Note that |B| ≤ |A+| = 2s for all pairs (A,B) ∈ S . Furthermore, there are at most n2j

pairs (A,B) ∈ S with |B| = j. With these two key properties in mind, the proof of [56,

Lemma 24] carries over to the pairs (A+, B) virtually unchanged (that proof merely ex-

ploits that |A| is large, and only uses |A| = |B| to control the final union bound estimate

over all pairs (A,B) of vertex subsets), giving

max
0≤i<I

P
(
¬Q̃+

i+1 | X≤i ∩ Q̃+
≤i
)
≤

∑
(A,B)∈S

n−ω(|B|) ≤ n−ω(1),

where X≤i is a ‘good’ event determined by (Oj, Ej, Tj,Γj, Sj)0≤j≤i that is formally de-

fined in [56, Section 2.4]; here we shall only use that the event X≤i+1 implies X≤i, and

that P(¬X≤I) ≤ n−ω(1) by [56, Theorem 9]. Since the event X≤i+1 ∩ Q̃+
≤i+1 implies X≤i ∩

Q̃+
≤i, using I ≈ nβ it then follows that

P
(
¬Q̃+

≤I
)
≤ P

(
¬X≤I

)
+
∑

0≤i<I

P
(
¬Q̃+

i+1 | X≤i∩Q̃+
≤i
)
≤ (I+1)·n−ω(1) ≤ n−ω(1). (4.20)

Turning to the total number of added edges |TI(A,B)| for (A,B) ∈ S , using A ⊆ A+

and TI ⊆ EI together with the recursive definition (4.5) of the edge set EI =
⋃

0≤i<I Γi+1,

it follows that

|TI(A,B)| ≤
∣∣EI(A+, B)

∣∣ =
∑

0≤i<I

∣∣Oi(A
+, B) ∩ Γi+1

∣∣. (4.21)

Recall that the event Q̃+
i implies |Oi(A

+, B)| ≤ qi|A+||B|, and that Γi+1 ⊆ Oi is the

random subset where each edge e ∈ Oi is included independently with probability p. Com-

bining these properties, by mimicking the stochastic domination arguments from the proof
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of [56, Claim 30] it then follows that

P
(
|EI(A+, B)| ≥ t and Q̃+

≤I
)
≤ P

(
Z+ ≥ t

)
with Z+ d

= Bin
(∑

0≤i<I

⌊
qi|A+||B|

⌋
, p
)
.

Using p = σ/
√
n, the properties (4.11) of πi and |A+| = 2s, similar to [56, Section 3.5]

we have

µ+ := EZ+ ∼
∑

0≤i<I

σqi/
√
n · |A+||B| = (πI − σ)/

√
n · |A+||B| ∼ 2s|B|ρ.

Using the definitions (4.14) of the parameter s ≈ D(log n)/ρ and the constantD = 108/δ2,

for sufficiently large n it follows that (1 + δ)2s|B|ρ ≥ (1 + δ/2)µ+ and δ2µ+/12 >

12|B| log n, say. Similar to [56, (97)–(98)], standard Chernoff bounds such as [60, Theo-

rem 2.1] thus routinely give

P
(
|EI(A+, B)| ≥ (1 + δ)2s|B|ρ and Q̃+

≤I
)
≤ P

(
Z+ ≥ (1 + δ/2)µ+

)
≤ exp

(
−δ2µ+/12

)
≤ n−12|B|.

Recalling that the vertex set A+ is determined by A, and that there are at most most n2j

pairs (A,B) ∈ S with |B| = j, in view of inequality (4.21) it then follows via a standard

union bound argument that

P
(
¬T +

I ∩ Q̃
+
≤I
)
≤

∑
(A,B)∈S

n−12|B| = o
(
n−9
)
,

which together with (4.20) implies P(T +
I ) ≥ 1 − o(1). This completes the proof of in-

equality (4.17) and thus Theorem 56, as discussed.

110



4.3 Random greedy r-AP free process

In this section we prove Theorem 58 by showing that the random greedy r-AP free process

typically finds an r-AP free subset I ⊆ Z/NZ with the desired properties. Intuitively, this

process starts with an empty set I = ∅, and then iteratively adds new random numbers

from Z/NZ such that the resulting set I stays r-AP free. More formally, fixing r ≥ 3, the

random greedy r-AP free process starts with

I(0) := ∅ and S(0) := Z/NZ. (4.22)

Here I(i) denotes the growing r-AP free set found after i steps, and S(i) denotes the set

of ‘available’ numbers in Z/NZ \ I(i), i.e., that can be added to I(i) without creating an

r-AP. In step i+ 1 ≥ 1 of the random greedy r-AP free process, we then choose xi+1 ∈ Si

uniformly at random and update the r-AP free set and available set via

I(i+ 1) := I(i) ∪ {xi+1}, (4.23)

S(i+ 1) := S(i) \
(
{xi+1} ∪ Yxi+1

(i)
)
, (4.24)

tacitly writing Yxi+1
(i) for the set of numbers that become ‘unavailable’ when xi+1 is added,

i.e.,

Yx(i) :=
{
y ∈ S(i) \ {x} : there is A ∈ AN,r such that x, y ∈ A and A \ {x, y} ⊆ I(i)

}
,

(4.25)

where AN,` is a shorthand for the collection of all `-APs in Z/NZ.
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4.3.1 Proof strategy

In this subsection we discuss our proof strategy for Theorem 58. To this end, let us first

record the basic observation that each number x ∈ Z/NZ is contained in exactly

D := r|AN,r|/N = Θ(N) (4.26)

many r-APs A ∈ AN,r. Our strategy is then to analyze the random greedy r-AP free pro-

cess for

m := ξ ·ND−
1
r−1 (logN)

1
r−1 (4.27)

steps, and show that the r-AP free set I := I(m) ⊆ Z/NZ typically satisfies I ∩K 6= ∅

for all k-APs K ∈ AN,k of size

k := 9ξ−1 · (D/ logN)1/(r−1) logN = Θ
(
(N/ logN)1/(r−1) logN

)
, (4.28)

deferring the choices of the sufficiently small constants 0 < ξ, δ < 1/(2r). As usual, we

are henceforth treating both m and k as integers (since rounding has an asymptotically

negligible effect on our arguments).

The outlined proof strategy is consistent with the pseudo-random heuristic that I =

I(m) resembles a random m-element subset of Z/NZ. Indeed, noting km = 9N logN ,

this heuristic suggests that

P
(
I ∩K = ∅

)
≈
(
N−k
m

)(
N
m

) =
∏

0≤j<k

(
1− m

N − j

)
≤ exp

(
−km
N

)
� N−2,

which is small enough to employ a union bound argument over the at most N2 many k-

APs K ∈ AN,k. In (4.37) below and Section 4.3.3 we will essentially make this heuristic

reasoning rigorous, albeit in a slightly roundabout way (via several pseudo-random events

and the differential equation method).
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4.3.2 Setup and proof of Theorem 58

We now turn to the technical details of our proof of Theorem 58, which require some setup.

In order to relate the discrete steps of the process to continuous trajectories, we introduce

the convenient scaling

ti := i/M with M := ND−
1
r−1 . (4.29)

To get a handle on all k-APs K ∈ AN,k, we denote the number of available numbers in K

by

SK(i) := S(i) ∩K. (4.30)

We then define K≤j as the pseudo-random event that for all 0 ≤ i ≤ j we have

|SK(i)| =
(
1± e(ti)

)
kq(ti) for all K ∈ AN,k, (4.31)

and similarly define S≤j as the pseudo-random event that for all 0 ≤ i ≤ j we have

|S(i)| =
(
1±D−δ

)
Nq(ti) and max

x∈S(i)

∣∣|Yx(i)| − s2(ti)
∣∣ ≤ D

1
r−1
−δ, (4.32)

tacitly using the deterministic functions

q(t) := e−t
r−1

, s2(t) := (r − 1)D
1
r−1 tr−2q(t) and e(t) := e5(t+tr−1) ·D−δ. (4.33)

Note that, by choosing ξ = ξ(r, δ) > 0 small enough compared to r, δ > 0, we may assume

that for all steps 0 ≤ i ≤ m we have 0 ≤ ti ≤ tm = m/M = ξ(logN)
1
r−1 as well as

0 < D−δ ≤ e(t) = o(1) and 0 ≤ t ≤ Do(1) for 0 ≤ t ≤ tm. (4.34)
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Results of Bohman and Bennett, see [9, Section 4], imply that for sufficiently1 small ξ, δ >

0 we have

P(¬S≤m) ≤ exp
(
−NΩ(1)

)
. (4.35)

As we shall show next, Theorem 58 then follows easily from the claim

P(¬G≤m) = o(1) for G≤i := S≤i ∩ K≤i, (4.36)

whose differential equation method based proof we defer to Section 4.3.3.

Proof of Theorem 58 assuming inequality (4.36). For any k-APK ∈ AN,k in Z/NZ, when-

ever the event G≤i holds, by combining the concentration bounds (4.31)–(4.32) with the

error estimate (4.34) we infer that

P(xi+1 6∈ S(i) ∩K | Fi) = 1− |SK(i)|
|S(i)|

≤ 1−
1
2
kq(ti)

2Nq(ti)
= 1− k

4N
,

where Fi denotes the natural filtration associated with the algorithm after i steps (which

intuitively keeps track of the ‘history’ of the algorithm, i.e., all the information available

up to and including step i). Since the event G≤m implies the event G≤i for all 0 ≤ i ≤ m,

using km = 9N logN it routinely follows that

P
(
I(m) ∩K = ∅ and G≤m

)
≤

∏
0≤i≤m−1

(
1− k

4N

)
≤ exp

(
−km

4N

)
� N−2. (4.37)

Taking a union bound over the at most N2 many k-APs K ∈ AN,k in Z/NZ then com-

pletes the proof of Theorem 58 with I := I(m), since P(¬G≤m) = o(1) by the assumed

inequality (4.36).
1For example, the explicit choices δ = 1/(40r2), ξ = δ/500 satisfy all constraints of this chapter and [9].
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4.3.3 Dynamic concentration: deferred proof of inequality (4.36)

This subsection is devoted to the deferred proof of inequality (4.36), i.e., P(¬G≤m) = o(1),

which in view of the probability estimate (4.35) and the definition of the eventK≤i requires

us to establish the dynamic concentration estimate (4.31) for |SK(i)|. To this end, following

the differential equation method approach to dynamic concentration [123, 10, 119], we

introduce the auxiliary random variables

X±K(i) := ±[|SK(i)| − kq(ti)]− kq(ti)e(ti). (4.38)

The point is that the desired estimate (4.31) follows when both inequalitiesX±K(i) ≤ 0 hold.

In the following we shall use supermartingale arguments to establish these inequalities, by

analyzing the (expected and worst-case) one-step changes of X±K(i) and |SK(i)|.

4.3.3.1 Expected one-step changes

We start by estimating the expected one-step changes ∆SK(i) := |SK(i+ 1)| − |SK(i)| of

the number of available numbers in any k-AP K ∈ AN,k, assuming that 0 ≤ i < m and

G≤i hold. Note that |SK(i)| is monotone decreasing. Furthermore, a number x ∈ SK(i)

is removed from the set of available numbers if the algorithm chooses a number xi+1

from Yx(i) ∪ {x}. Since xi+1 ∈ S(i) is chosen uniformly at random, using the esti-

mates (4.31)–(4.32) implied by G≤i it follows that

E(∆SK(i) | Fi) = −
∑

x∈SK(i)

|Yx(i)| ± 1

|S(i)|
=
−[1± e(ti)]kq(ti) · [s2(ti)± 2D

1
r−1
−δ]

[1±D−δ]Nq(ti)
.

(4.39)
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Recalling that 0 < D−δ ≤ e(ti) = o(1) by (4.34), using s2(ti)/D
1
r−1 = (r− 1)tr−2

i q(ti) =

−q′(ti) and D
1
r−1/N = 1/M it follows that

E(∆SK(i) | Fi) =−
(

1± 4e(ti)
)(
s2(ti)± 2D

1
r−1
−δ
) k
N

=
kq′(ti)

M
±
(

4(r − 1)tr−2
i · q(ti)e(ti) + 4D−δ

) k
M
.

(4.40)

In preparation for the upcoming supermartingale arguments, we now show that the

expected one-step changes of the associated auxiliary variables ∆X±K(i) are negative, again

assuming that 0 ≤ i < m and G≤i hold. Set f(t) := q(t)e(t). Recalling the shorthand ti =

i/M and the definition (4.38) of ∆X±K(i), by applying Taylor’s theorem with remainder it

follows that

E(∆X±K(i) | Fi) =±
[
E(∆SK(i) | Fi)−

kq′(ti)

M

]
− kf ′(ti)

M

+O

(
max

0≤t≤tm

k
(
|q′′(t)|+ |f ′′(t)|

)
M2

)
.

(4.41)

Using (4.40) we see that in (4.41) the main kq′(ti)/M term cancels up to second order

terms. In the following we shall show that the main error term−kf ′(ti)/M is large enough

to make the expected change (4.41) negative. Indeed, noting f(t) = e(t)q(t) ≥ D−δ, we

have

f ′(ti) =
(
5 + 4(r − 1)tr−2

i

)
e(ti)q(ti) ≥ 5D−δ + 4(r − 1)tr−2

i e(ti)q(ti).

Furthermore,D = Θ(N) and δ ≤ 1/(2r) implyM = N/D
1
r−1 � D2δ. Recalling that q(t) ≤ 1,

f(t) ≤ e(t)� 1 and 0 ≤ t ≤ Do(1), see (4.34), it then routinely follows that

|q′′(t)|+ |f ′′(t)|
M

≤
O
(∑

0≤j≤2r t
j
)
·
[
q(t) + f(t)

]
M

≤ Do(1)

D2δ
� D−δ.

Inserting these estimates and (4.40) into the expected one-step changes (4.41) of ∆X±K(i),
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it follows that

E(∆X±K(i) | Fi) ≤ −
(
1− o(1)

)
kD−δ/M < 0.

4.3.3.2 Bounds on the one-step changes

We next bound the expected one-step changes |∆SK(i)| =
∣∣|SK(i+ 1)| − |SK(i)|

∣∣, tacitly

assuming that 0 ≤ i < m and G≤i hold. Since |SK(i)| is step-wise decreasing, by com-

bining s2(ti) ≤ rD
1
r−1 tr−2

i with the first estimate of the expected one-step changes (4.40),

using e(ti) = o(1) and 0 ≤ ti ≤ Do(1) it follows that

E(|∆SK(i)| | Fi) = −E(∆SK(i) | Fi) ≤ O
(
D

1
r−1 tr−2

i +D
1
r−1
−δ
)
· k
N
� kD

1
r−1

+δ/2/N.

(4.42)

Turning to the worst-case one-step changes of |SK(i)|, we introduce the auxiliary event

N≤j :=
{

max
x∈S(i)

|Yx(i) ∩K| ≤ D
1
r−1
−3δ for all K ∈ AN,k and 0 ≤ i ≤ j

}
. (4.43)

Recalling the reasoning leading to (4.39), the crux is that when N≤i holds, then we have

|∆SK(i)| ≤ 1 + max
x∈S(i)

|Yx(i) ∩K| ≤ 2D
1
r−1
−3δ. (4.44)

We now claim that the auxiliary event N≤m typically holds, i.e., more precisely that

P
(
¬N≤m and S≤m

)
≤ exp

(
−NΩ(1)

)
. (4.45)

Turning to the proof details, with an eye on |Yx(i) ∩K| let

I = I(K, x) :=
{
W : |W | = r − 2, W ∪ {x, y} ∈ AN,r for some y ∈ K

}
. (4.46)

Note that |I| ≤ kr2, as there are at most r2 many r-APs containing two distinct num-
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bers {x, y}. Let

NK,x :=
∑
W∈I

YW with YW := 1{W⊆I(m) and S≤m}. (4.47)

Since {x} ∪W contains r− 1 ≥ 2 elements, by similar reasoning as for |I| it follows that

max
0≤i≤m

|Yx(i) ∩K| · 1{S≤m} ≤ NK,x · r2. (4.48)

We shall bound NK,x via the following Chernoff-type upper tail estimate for combinatorial

random variables with ‘controlled dependencies’, which is a convenient corollary of [120,

Theorem 7 and Remarks 9–10].

Lemma 60. Let (Yα)α∈I be a finite family of variables with Yα ∈ [0, 1] and
∑

α∈I λα ≤ µ,

where (λα)α∈I satisfies E(
∏

i∈[s] Yαi) ≤
∏

i∈[s] λαi for all (α1, . . . , αs) ∈ Is with αi∩αj =

∅ for i 6= j. Set Y :=
∑

α∈I Yα. If maxα∈I |{β ∈ I : α ∩ β 6= ∅}| ≤ C, then

P(Y ≥ z) ≤ (eµ/z)z/C for all z > µ.

With an eye on ENK,x, we first record the basic observation that when S≤m holds, then in

every step i ≤ m there are at least |S(i)| ≥ |S(m)| � ND−δ/4 available numbers, say.

For any set U of numbers from Z/NZ a straightforward adaptation of the proof of [12,

Lemma 4.1] (which proceeds by taking a union bound over all possible steps where the

numbers of U could appear) then ensures that

P
(
U ⊆ I(m) and S≤m

)
≤ m|U |·

( 1

ND−δ/4

)|U |
≤ π|U | with π := D−

1
r−1

+δ/2, (4.49)

where we used that m/N = D−
1
r−1 (logN)O(1) � D−

1
r−1

+δ/4, say. In particular, for

any sequence of sets (W1, . . . ,Ws) ∈ Is satisfying Wi ∩ Wj = ∅ for i 6= j, using the
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definition (4.47) of YW it follows that

E
(∏
i∈[s]

YWi

)
≤ πs(r−2) =

∏
i∈[s]

λWi
with λW := πr−2.

Furthermore, combining |I| ≤ kr2 with (4.49) and the definition (4.28) of k, it also follows

that

∑
W∈I

λW ≤ kr2 · πr−2 = 9ξ−1r2(log n)1− 1
r−1D

3−r
r−1D(r−2)δ/2 � D

1
r−1D−4δ =: µ.

To estimate the associated C-parameter of Lemma 60, note that any set W ∈ I satisfies

∣∣{W ′ ∈ I : W ∩W ′ 6= ∅}
∣∣ ≤ ∑

w∈W

∑
A∈AN,r:{x,w}⊆A

2|A| ≤ r · r2 · 2r =: C.

Using inequality (4.48), by invoking Lemma 60 with z := µDδ/r2 ≥ DΩ(1) it follows that

P
(

max
0≤i≤m

|Y (i, x)∩K| ≥ D
1
r−1D−3δ and S≤m

)
≤ P(NK,x ≥ z) ≤ (eµ/z)z/C ≤ exp

(
−NΩ(1)

)
.

Taking a union bound over all of the at most N · N2 = NO(1) possible pairs (x,K) then

establishes the claimed inequality (4.45).

4.3.3.3 Supermartingale arguments

We are now ready to prove P(¬G≤m) ≤ exp(−NΩ(1)), by showing that X±K(i) ≥ 0 is

extremely unlikely. Here our main probabilistic tool is the following supermartingale in-

equality [54, Lemma 19], which allows us to exploit that X±K(i) is defined (4.38) as the

sum of a random variable and a deterministic function.

Lemma 61. Let (Si)i≥0 be a supermartingale adapted to the filtration (Fi)i≥0. Assume

that Si = Xi +Di, where Xi is Fi-measurable and Di is Fmax{i−1,0}-measurable. Writing

∆Xi := Xi+1 −Xi, assume that maxi≥0 |∆Xi| ≤ C and
∑

i≥0 E(|∆Xi| | Fi) ≤ V . Then,
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for all z > 0,

P
(
Si ≥ S0 + z for some i ≥ 0

)
≤ exp

(
− z2

2C(V + z)

)
. (4.50)

Turning to the details, we define the stopping time T as the minimum of m and the first

step i ≥ 0 where the ‘good’ event G≤i ∩ N≤i fails. For brevity, set i ∧ T := min{i, T}.

Recalling the definition (4.36) of G≤m, by the discussion below (4.38) it follows that

P(¬G≤m) ≤ P(¬S≤m or ¬N≤m) +
∑

σ∈{+,−}

∑
K∈AN,k

P
(
Xσ
K(i ∧ T ) ≥ 0 for some i ≥ 0

)
.

(4.51)

For any K ∈ AN,k, we initially have SK(0) = |K| = k. By definition (4.38) of X±K(i) we

thus have

X±K(0 ∧ T ) = X±K(0) = ±[|SK(0)| − k]− ke(0) = −kD−δ.

Note that the estimates in Sections 4.3.3.1–4.3.3.2 apply for 0 ≤ i ≤ T − 1 (since then

0 ≤ i ≤ m− 1 and G≤i ∩N≤i hold). The stopped sequence Si := Xσ
K(i ∧ T ) thus is

a supermartingale with S0 = −kD−δ, to which Lemma 61 can be applied with Xi =

σ|SK(i ∧ T )|, C = O(D
1
r−1
−3δ) and V = m · kD

1
r−1

+δ/2/N = O(kD2δ/3). Invoking

inequality (4.50) with z = kD−δ, using the definition (4.28) of k and D = Θ(N) it follows

that

P
(
Xσ
K(i ∧ T ) ≥ 0 for some i ≥ 0

)
≤ exp

(
−Ω
(
kDδ/3/D

1
r−1

))
≤ exp

(
−NΩ(1)

)
.

(4.52)

Inserting (4.52) and |AN,k| ≤ N2 into (4.51), then P(¬G≤m) ≤ exp(−NΩ(1)) follows

from (4.35) and (4.45), which completes the proof of inequality (4.36) and thus Theo-

rem 58, as discussed.
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CHAPTER 5

BOUNDS ON RAMSEY GAMES VIA ALTERATIONS

5.1 Background and main results

The probabilistic method is a widely-used tool in discrete mathematics. Many of its pow-

erful approaches have been developed in the pursuit of understanding the graph Ramsey

numberR(H, k), which is defined as the the minimum number n so that any n-vertex graph

contains either a copy ofH or an independent set of size k. For example, in 1947 Erdős pio-

neered the random coloring approach to obtain the lower boundR(Kk, k) = Ω(k2k/2), and

in 1961 he developed the alteration method in order to obtain R(K3, k) = Ω(k2/(log k)2),

see [27]. In 1975 and 1977 Spencer [106, 107] reproved these results via the Lovász Local

Lemma, and also extended them to lower bounds on R(H, k) for H ∈ {Ks, C`}. In 1994

Krivelevich [71] further extended this to general graphs H via a new (large-deviation

based) alteration approach, obtaining the lower bound

R(H, k) = Ω
(
(k/ log k)m2(H)

)
with m2(H) := max

F⊆H

(
1{vF≥3}

eF−1
vF−2

+ 1{F=K2}
1
2

)
,

(5.1)

where the implicit constants may depend on H (writing vF := |V (F )| and eF := |E(F )|,

as usual). By analyzing (semi-random) H-free processes, in 1995 Kim [67] and in 2010

Bohman–Keevash [12] have further improved the logarithmic factors in (5.1) for some

graphs H such as triangles K3, cliques Ks, and cycles C`. However, despite considerable

effort, for H 6= K3 the best known lower and upper bounds are still polynomial factors

apart, see [12, 13, 37]. Unsurprisingly, to further advance the proof methods, the field has

thus stretched in several directions. One such widely-studied direction investigates online

graph Ramsey games, with the goal of understanding what happens to various Ramsey

numbers when decisions need to be made online.
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In this chapter, we present a refinement of the above-mentioned widely-used alteration

approaches of Erdős and Krivelevich (see e.g., [29, 67, 72, 73, 111, 42, 11, 56, 20, 76, 39])

that enables analysis of online graph Ramsey games. As two concrete applications we

consider Ramsey, Paper, Scissors games and online Ramsey numbers, each time extending

recent bounds of Fox–He–Wigderson [39] and Conlon–Fox–Grinshpun–He [20].

5.1.1 Applications: Online Ramsey games

Our first application concerns the widely-studied online Ramsey game (see, e.g., [8, 75, 66,

19, 20]) that was introduced independently by Beck [8] and Kurek–Ruciński [75]. This is a

game between two players, Builder and Painter, that starts with an infinite set V = {1, 2, . . .}

of isolated vertices. In each turn, Builder places an edge between two non-adjacent ver-

tices from V , and Painter immediately colors it either red or blue. The online Ramsey

number r̃(H, k) is defined as the smallest number of turns N that Builder needs to guar-

antee the existence of either a red copy of H or a blue copy of Kk (regardless of Painter’s

strategy).

Our refined alteration approach enables us to prove a lower bound on r̃(H, k) that, up

to logarithmic factors, is about k times the best-known general lower bound for the usual

Ramsey number R(H, k), cf. (5.1).

Theorem 62 (Online Ramsey Game). If H is a graph with eH ≥ 1, then

r̃(H, k) = Ω
(
k · (k/ log k)m2(H)

)
as k → ∞, where the implicit constant may depend

on H .

For general graphs H , Theorem 62 gives the best known lower bounds for online Ram-

sey numbers. For s-vertex cliques we obtain r̃(Ks, k) = Ω
(
k(s+3)/2/(log k)(s+1)/2

)
, which

generalizes a recent bound of Conlon–Fox–Grinshpun–He [20, Theorem 1.4] for trian-

gles, and also improves [20, Corollary 1.3] for small cliques. The best-known upper

bounds r̃(Ks, k) = O
(
ks/(log k)bs/2c+1

)
differ by a polynomial factor for s ≥ 4, (see [20,
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Theorem 5]), analogous to the known gaps for R(Ks, k). It would be interesting to in-

vestigate whether the lower bound of Theorem 62 can be improved if one replaces our

alteration approach by an H-free process [12] based approach or semi-random variants

thereof [67, 56]; see also [20, Section 6].

Our second application concerns the fairly new Ramsey, Paper, Scissors game that was

introduced by Fox–He–Wigderson [39]. For a graphH , this is a game between two players,

Proposer and Decider, that starts with a finite set V = {1, 2, . . . , n} of n isolated vertices.

In each turn, Proposer proposes a pair of non-adjacent vertices from V , and Decider si-

multaneously decides whether or not to add it as an edge to the current graph (without

knowing which pair is proposed). Proposer cannot propose vertex-pairs that would form a

copy of H together the current graph, nor vertex-pairs that have been proposed before. The

RPS number RPS(H,n) is defined1 as the largest number k for which Proposer can guar-

antee that, with probability at least 1/2 (regardless of Decider’s strategy), the final graph

has an independent set of size k.

Our refined alteration approach enables us to prove an upper bound on RPS(H,n)

for all strictly 2-balanced graphs H , i.e., which satisfy m2(H) > m2(F ) for all F ( H .

This well-known class contains many graphs of interest, including cliques Ks, cycles C`,

complete multipartite graphs Kt1,...,tr , and hypercubes Qd.

Theorem 63 (Ramsey, Paper, Scissors Game). If H is a strictly 2-balanced graph, then

RPS(H,n) = O(n1/m2(H) log n) as n → ∞, where the implicit constant may depend

on H .

For all strictly 2-balanced graphs H , Theorem 63 gives the best known upper bounds for

RPS numbers. For s-vertex cliques we obtain RPS(Ks, n) = O
(
n2/(s+1) log n

)
, which

generalizes the upper bound part of the very recent RPS(K3, n) = Θ(
√
n log n) result

of Fox–He–Wigderson [39]. It would be interesting to obtain good (and perhaps again
1For imperfect-information games such as Ramsey, Paper, Scissors (both players make simultaneous

moves) one usually considers randomized strategies, see [89, pp. 14, 169], motivating why the definition
of RPS(H,n) includes probability of winning.
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matching) lower bonds on RPS(H,n) for other strictly 2-balanced graphs H .

5.1.2 Main tool: Refined alteration approach

To motivate our refined alteration approach, we shall review related arguments for the Ram-

sey bound (5.1). Here Erdős [27] and Krivelevich [71] use a binomial random graph Gn,p

with n = Θ((k/ log k)m2(H)) vertices and edge-probability p = Θ((log k)/k) to construct

an n-vertex graph G ⊆ Gn,p that (i) is H-free and (ii) contains at least one edge in each

k-vertex subset K, which implies R(H, k) > n. Standard Chernoff bounds suggest that

the number XK of edges of Gn,p inside K is around
(
k
2

)
p, so for property (ii) it intuitively

suffices to show that the alteration from Gn,p to G does not remove ‘too many’ edges from

each k-vertex subset K.

To illustrate that this is a non-trivial task, let us consider the natural upper bound eH ·

|HK | on the number of removed edges from K, where HK denotes the collection of all

H-copies that have at least one edge inside K. For any δ > 0 it turns out that P(|HK | ≥

δ
(
k
2

)
p) ≥ e−o(k) due to ‘infamous’ upper tail [61, 101] behavior (see Appendix for the

details). This lower bound not only rules out simple union bound arguments, but also

suggests that one has to more carefully handle edges that are contained in multiple H-

copies.

For triangles H = K3, Erdős [27] overcame these difficulties in 1961 by a clever ad-

hoc greedy alteration argument, showing that whp2 the following works: If one sequentially

traverses the edges of Gn,p in any order, only accepting edges that do not create a triangle

together with previously accepted edges, then the resulting ‘accepted’ subgraph G ⊆ Gn,p

satisfies (ii), and trivially (i). The fact that any edge-order works was exploited by Con-

lon et.al [20] and Fox et.al [39] in their analysis of triangle-based online Ramsey games.

To handle general graphs H , Krivelevich [71] developed in 1994 an elegant alter-

ation argument, showing that whp the following works: If one constructs G ⊆ Gn,p by

2In this chapter whp (with high probability) always means with probability tending to 1 as k →∞.
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deleting all edges that are in some maximal (under inclusion) collection C of edge-disjointH-

copies in Gn,p, then this (a) removes less than XK ≈
(
k
2

)
p edges from each k-vertex sub-

set K, and (b) yields an H-free graph by maximality of C, establishing both (ii) and (i).

Unfortunately, this slick maximality argument is hard to adapt to online Ramsey games,

where players cannot foresee whether in future turns a given edge will be contained in

an H-copy or not.

Our refined alteration approach overcomes the above-discussed difficulties, by showing

that whp the desired properties (i) and (ii) remain valid even if one deletes all edges from

Gn,p that are in some H-copy (and not just some carefully chosen subset of these edges, as

in the influential alteration approaches of Erdős and Krivelevich, cf. [27, 29, 71, 67, 72, 73,

111, 42, 11, 56, 20, 76, 39]). To state our main technical result, let YK denote the number

of edges in E(Gn,p[K]) that are in some H-copy of Gn,p. Recall that XK = |E(Gn,p[K])|.

Theorem 64 (Main technical result). Let H be a strictly 2-balanced graph. Then, for

any δ > 0, the following holds for all C ≥ C0(δ,H) and 0 < c ≤ c0(C, δ,H). Setting

n := bc(k/ log k)m2(H)c and p := C(log k)/k, whp Gn,p satisfies YK ≤ δ
(
k
2

)
p for all k-

vertex sets K.

Remark 65. For any δ ∈ (0, 1], the following holds for all C ≥ C0(δ,H) and c > 0.

Setting n and p as in Theorem 64, whp Gn,p satisfies XK ≥ (1− δ)
(
k
2

)
p for all k-vertex

sets K.

As discussed, our basic alteration idea is to construct G ⊆ Gn,p by deleting all edges that

are in some H-copy of Gn,p, so (i) holds trivially, and for suitable n, p then Theorem 64

and Remark 65 suggest that whp |E
(
G[K]

)
| = XK − YK ≥ (1− 2δ)

(
k
2

)
p > 0 for all

k-vertex subsets K, establishing (ii). It is noteworthy that the largest independent sets of G

(which have size less than k) are not much larger than those of Gn,p, which are well-known

to be of order log(np)/p = Θ(k) for p� n−1 and thus m2(H) > 1, see [60, Section 7.1].

As we shall see in Section 5.2, variants of the above-discussed alteration argument carry

over to certain online Ramsey games (where it will be useful that we can allow for arbitrary
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deletion of edges in H-copies), and we believe that the bound on YK from Theorem 64

might also be useful in other contexts. We remark that the restriction to strictly 2-balanced

graphs in Theorem 64 is often immaterial, since for (5.1) and related Ramsey bounds one

can usually obtain the desired general bound by simply forbidding a strictly 2-balanced

subgraph H0 ⊆ H with m2(H0) = m2(H), cf. Section 5.2.2. Finally, in Section 5.4 we

also discuss some further extensions of our alteration approach, including variants which

forbid multiple hypergraphs.

5.1.3 Organization

In Section 5.2 we prove the discussed online Ramsey game results (Theorems 62–63) us-

ing the main technical result of our refined alteration approach (Theorem 64), which we

subsequently prove in Section 5.3. Finally, in Section 5.4 we discuss some extensions of

our alteration approach, including hypergraph variants.

5.2 Online Ramsey games

5.2.1 Ramsey, Paper, Scissors: Proof of Theorem 63

The following argument is based on a Decider strategy that randomly accepts edges (this

strategy is completely oblivious, i.e., does not require knowledge of any proposed or ac-

cepted edges).

Proof of Theorem 63. For δ := 1/4 we choose C > 0 large enough and then c > 0 small

enough so that Remark 65 and Theorem 64 both apply toGn,p with n := bc(k/ log k)m2(H)c

and p := C(log k)/k. We shall analyze the following strategy: in each turn Decider ac-

cepts the (unknown) proposed vertex-pair as an edge independently with probability p.

Let G denote the resulting final graph at the end of the game, i.e., which contains all ac-

cepted edges. Since all edges that do not create H-copies are eventually proposed, there

is a natural coupling between Gn,p and G which satisfies the following two properties:
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(a) that E(G) ⊆ E(Gn,p), and (b) that every edge in E(Gn,p) \ E(G) is contained in an H-

copy of Gn,p. Invoking Theorem 64 and Remark 65, it follows that this coupling satisfies

the following whp: for any k-vertex set K of G we have

∣∣E(G[K]
)∣∣ ≥ XK − YK ≥ (1− 2δ)

(
k
2

)
p = 1

2

(
k
2

)
p > 0,

which implies that the final graph G has whp no independent set of size k. It follows that

RPS(H,n) < k = O(n1/m2(H) log n) as n → ∞ (where the implicit constant depends

on H).

5.2.2 Online Ramsey numbers: Proof of Theorem 62

The following argument is based on a Painter strategy that attempts to randomly color

edges between high-degree vertices. The analysis is complicated by the fact that the game

is played on an infinite set V = {1, 2, . . .} of vertices, which requires some care in the

coupling and union bound arguments below.

Proof of Theorem 62. For convenience we first suppose thatH is strictly 2-balanced. For δ :=

1/8 we choose C ≥ 64eH large enough and then c > 0 small enough so that Theorem 64

applies to Gn,p with n := bc(k/ log k)m2(H)c and p := C(log k)/k. Set L := b(k − 1)/4c.

At any moment of the game, we define U ⊆ V as the set of all vertices that, in the current

graph, are adjacent to at least L edges placed by builder (to clarify: the growing vertex

set U is updated at the end of each turn).

We shall analyze the following strategy: Painter’s default color is blue, but if an edge e =

{x, y} is placed inside U , then Painter does the following independently with probabil-

ity p (?): it colors the edge e red, unless this would create a red H-copy (†), in which

case the edge e is still colored blue. By construction there are no red H-copies, and blue

cliques Kk can only appear inside U (since all vertices in copy of Kk must be adjacent to

at least k − 1 > L vertices). To prove r̃(H, k) > N := bL · n/2c = Ω(k · (k/ log k)m2(H))

127



as k → ∞ (with implicit constants depending on H), by the usual reasoning it remains

to show that after N steps there are whp no blue cliques Kk inside U . Let K denote the

collection of all k-vertex sets K ⊆ U after N steps. Intuitively, the plan is to show that, in-

side each vertex set K ∈ K that can become a blue clique Kk, there are more red-coloring

attempts (?) than ‘discarded’ red-coloring attempts (†), which enforces a red edge insideK.

Turning to details, note that |U | ≤ 2N/L ≤ n during the first N steps. Using the order

in which vertices enter U (breaking ties using lexicographic order), at any moment during

the firstN steps we thus obtain an injection Φ : U 7→ {1, . . . , n} = V (Gn,p). AfterN steps,

we abbreviate this injection by ΦN , and write ΦN(K) := {ΦN(v) : v ∈ K}. Define BK as

the event that, during the first N steps, the number of ‘discarded’ red-coloring attempts (†)

inside K is at most 1
8

(
k
2

)
p. There is a natural turn-by-turn inductive coupling between Gn,p

and Painter’s strategy, where the red-coloring attempt (?) occurs if Φ(e) := {Φ(x),Φ(y)}

is an edge of Gn,p. A moments thought reveals that, during the first N steps, under this

coupling the total number of ‘ignored’ red-colorings (†) inside K ∈ K is at most YΦN (K)

defined with respect to Gn,p (since (†) can only happen when a red-coloring of e ⊆ K

creates a red H-copy, which under the coupling implies that Φ(e) ⊆ Φ(K) is contained

in an H-copy of Gn,p). Applying Theorem 64 with δ = 1/8 to Gn,p, using the described

coupling and |ΦN(K)| = |K| = k it then follows that, whp, the event BK occurs for

all K ∈ K.

Intuitively, we shall next show that, for all k-vertex sets K ∈ K that contain
(
k
2

)
edges (a prerequisite for having a blue clique Kk inside K), the number of red-coloring

attempts (?) inside K is at least 1
4

(
k
2

)
p. To make this precise, define TK as the event that

builder places less than
(
k
2

)
edges inside K during the first N steps. Let X?

K denote the

number of red-coloring attempts (?) inside K during the first N steps, and define AK as

the event thatX?
K ≥ 1

4

(
k
2

)
p. LetK′ denote the collection of all k-vertex setsK ′ ⊆ V (Gn,p).

Since ΦN defines an injection from K to K′, writing Φ-1
N(K ′) := {v ∈ V : ΦN(v) ∈ K ′} it
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follows that

P(¬AK ∩ ¬TK for some K ∈ K) ≤
∑

K′∈K′
P
(
X?

Φ-1
N (K′) ≤

1
4

(
k
2

)
p and ¬TΦ-1

N (K′)

)
.

(5.2)

Fix K ′ ∈ K′, and set K := Φ-1
N(K ′). Note that, by checking in each turn for red-coloring

attempts (?) inside Φ-1(K ′) := {v ∈ V : Φ(v) ∈ K ′}, we can determineX?
K without know-

ing Φ-1
N in advance. Furthermore, since every vertex is adjacent to at most L vertices before

enteringU , the event¬TK implies that during the firstN steps at least
(
k
2

)
− |K| · L ≥ 1

2

(
k
2

)
red-coloring attempts (?) happen inside K, each of which is (conditional on the history)

successful with probability p. It follows that X?
K stochastically dominates a binomial ran-

dom variable Z ∼ Bin
(⌈

1
2

(
k
2

)⌉
, p
)
, unless the event TK occurs. Noting kp = C log k ≥

64eH log k and n � keH , by invoking standard Chernoff bounds (see, e.g., [60, Theo-

rem 2.1]) it then follows that

P
(
X?

Φ-1
N (K′) ≤

1
4

(
k
2

)
p and ¬TΦ-1

N (K′)

)
≤ P

(
Z ≤ 1

4

(
k
2

)
p
)

≤ exp
(
−
(
k
2

)
p/16

)
� k−eHk � n−k.

(5.3)

Combining (5.2)–(5.3) with |K′| ≤ nk, we readily infer that, whp, the event AK ∪ TK

occurs for all K ∈ K.

To sum up, the following holds whp after N steps: every k-vertex set K ⊆ U con-

tains either (a) at least 1
4

(
k
2

)
p− 1

8

(
k
2

)
p = 1

4

(
k
2

)
p > 0 red edges, or (b) less than

(
k
2

)
edges

in total. Both possibilities prevent a blue clique Kk inside K, and so the desired lower

bound r̃(H, k) > N follows (as discussed above).

Finally, in the remaining case where H is not strictly 2-balanced, we pick a minimal

subgraph H0 ( H with m2(H0) = m2(H). It is straightforward to check that, by construc-

tion, H0 is strictly 2-balanced. Furthermore, since any H0-free graph is also H-free, we

also have r̃(H, k) ≥ r̃(H0, k). Repeating the above proof withH replaced byH0 then gives

the claimed lower bound on r̃(H, k).
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5.3 Refined alteration approach

5.3.1 Bounding YK : Proof of Theorem 64

For Theorem 64 the core strategy is to approximate YK by more tractable auxiliary random

variables, inspired by ideas from [61, 118, 120, 103]. In particular, we expect that the

main contribution to YK should come from H-copies that share exactly two vertices and

one edge with K; in the below proof we denote the collection of such ‘good’ H-copies

by H∗K . Note that when multiple good H-copies from H∗K contain some common edge f

inside K, they together only contribute one edge to YK . It follows that, by arbitrarily

selecting one ‘representative’ copy Hf ∈ H∗K for each relevant edge f , we should obtain

a sub-collection H ⊆ H∗K of good H-copies with |H| ≈ YK . The H-copies in H share

no edges inside K by construction, and it turns out that all other types of edge-overlaps

are ‘rare’, i.e., make a negligible contribution to YK . We thus expect that there is an edge-

disjoint sub-collection H′ ⊆ H ⊆ H∗K of good H-copies with |H′| ≈ |H| ≈ YK , and

here the crux is that the upper tail of |H′| is much easier to estimate than the upper tail

of YK (see Claim 67 below). The following proof implements a rigorous variant of the

above-discussed heuristic ideas.

Proof of Theorem 64. Noting that the claimed bounds are trivial when m2(H) ≤ 1 (since

then there are no k-vertex setsK inGn,p due to n� k), we may henceforth assumem2(H) >

1.

Fix a k-vertex set K. Let HK denote the collection of all H-copies in Gn,p that have

at least one edge inside K, and let H∗K ⊆ HK denote the sub-collection of H-copies that

moreover share exactly two vertices with K. Let IK denote a size-maximal collection of

edge-disjointH ∈ H∗K . Clearly |IK | ≤ YK , and Claim 66 below establishes a related upper

bound. Let TK denote a size-maximal collection of edge-disjoint H ∈ HK \ H∗K . Let PK

denote a size-maximal collection of edge-disjoint H1 ∪H2 with distinct H1, H2 ∈ H∗K that

satisfy |E(H1)∩E(H2)| ≥ 1 and V (H1)∩K 6= V (H2)∩K. Let ∆H,f denote the number
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of H-copies in Gn,p that contain the edge f , and define ∆H as the maximum of ∆H,f over

all f ∈ E(Kn).

Claim 66. We have YK ≤ |IK |+ 2e2
H(|TK |+ |PK |)∆H .

Proof of Claim 66. We divide the H-copies in HK into two disjoint groups: those which

share at least one edge with some H ∈ TK or H1 ∪ H2 ∈ PK , and those which do not;

we denote these two groups by H1 and H2, respectively. For j ∈ {1, 2}, let Ej denote

the collection of edges from K that are contained in at least one H-copy from Hj . Note

that YK ≤ |E1| + |E2| and |E1| ≤ eH |H1| ≤ eH · (eH |TK | + 2eH |PK |)∆H . Turning to E2,

by maximality of TK and PK we infer the following two properties ofH2: (a) all H-copies

intersect with K in exactly two vertices, so H2 ⊆ H∗K , and (b) any two distinct H-copies

are edge-disjoint, unless they both intersect K in the same two vertices. For each f ∈ E2 ⊆(
K
2

)
we now arbitrarily select one H-copy from H2 that contains f . By properties (a)–

(b) of H2 and size-maximality of IK , this yields a sub-collection H′2 ⊆ H2 ⊆ H∗K of

edge-disjoint H-copies satisfying |E2| = |H′2| ≤ |IK |, and the claim follows.

The remaining upper tail bounds for |IK |, |TK |, |PK | and ∆H hinge on the following

four key estimates. First, m2(H) > 1 and strictly 2-balancedness of H imply

m2(H) = (eH − 1)/(vH − 2), so that

nvH−2peH−1 =
(
npm2(H)

)vH−2 ≤
(
cCm2(H)

)vH−2
. (5.4)

Second, n = km2(H)−o(1) and m2(H) > 1 imply that there is τ = τ(H) > 0 such that

k
n
� k−τ/ log k. (5.5)

Third, using p = k−1+o(1) and strictly 2-balancedness of H (implying that

(eJ − 1)/(vJ − 2) < m2(H) for all J ( H with eJ ≥ 2), it follows that there is γ =
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γ(H) > 0 such that

nvJ−2peJ−1 =
(
np(eJ−1)/(vJ−2)

)vJ−2 � kγ for all J ( H with eJ ≥ 2. (5.6)

The below-claimed fourth estimate can be traced back to Erdős and Tetali [35]; we include

an elementary proof for self-containedness (see [118, Section 2] for related estimates that

also allow for overlapping edge-sets).

Claim 67. Let S be a collection of edge-subsets from E(Kn). Define Z as the largest

number of disjoint edge-sets from S that are present in Gn,p. Then P(Z ≥ x) ≤ (eµ/x)x

for all x > µ :=
∑

β∈S P(β ⊆ E(Gn,p)).

Proof of Claim 67. Set s := dxe ≥ 1. Exploiting edge-disjointness and s! ≥ (s/e)s, it

follows that

P(Z ≥ x) ≤
∑

{β1,...,βs}⊆S:
all edge-disjoint

P
(
β1 ∪ · · · ∪ βs ⊆ E(Gn,p)

)︸ ︷︷ ︸
=
∏

1≤i≤s P(βi⊆E(Gn,p))

≤ 1

s!

(∑
β∈S

P
(
β ⊆ E(Gn,p)

))s
≤
(
eµ/s

)s
,

which completes the proof by noting that the function s 7→ (eµ/s)s is decreasing for posi-

tive s ≥ µ.

We are now ready to bound the probability that |IK | is large. Since H is strictly 2-

balanced, it contains no isolated vertices and thus is uniquely determined by its edge-set.

This enables us to apply Claim 67 to |IK | = Z (as IK is a size-maximal collection of

edge-disjoint H-copies from H∗K). Using estimate (5.4), it is routine to see that, for c ≤

c0(C, δ,H), the associated parameter µ from Claim 67 satisfies

µ ≤ O
(
k2nvH−2 · peH

)
≤
(
k
2

)
p ·Θ(nvH−2peH−1) ≤ δ

2e2

(
k
2

)
p. (5.7)
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Noting δkp = δC log k and n � keH , now Claim 67 (with Z = |IK |) implies that,

for C ≥ C0(δ,H),

P
(
|IK | ≥ δ

2

(
k
2

)
p
)
≤
(

eµ
δ
2

(
k
2

)
p

) δ
2

(
k
2

)
p

≤ e−
δ
2

(
k
2

)
p � k−eHk � n−k. (5.8)

Next, we similarly use Claim 67 to bound the probability that |TK | is large. For the

associated parameter µwe shall proceed similar to (5.7) above: using estimates (5.4)–(5.5),

for c ≤ c0(C, δ,H) we obtain

µ ≤ O
(
k3nvH−3 · peH

)
≤
(
k
2

)
p · k

n
·Θ(nvH−2peH−1) ≤ k−τ · δ

e

(
k
2

)
p/ log k. (5.9)

With similar considerations as for (5.8) above, for C ≥ C0(τ, δ,H) Claim 67 (with Z =

|TK |) then yields

P
(
|TK | ≥ δ

(
k
2

)
p/ log k

)
≤ k−τδ(

k
2)p/ log k = e−τδ(

k
2)p � k−eHk � n−k. (5.10)

We shall analogously use Claim 67 to bound the probability that |PK | is large. For

the associated parameter µ, the basic idea is to distinguish all possible subgraphs J ( H

in which the relevant H1, H2 ∈ H∗K can intersect. Also taking into account the number

of vertices which H1 and H2 have inside K, i.e.,
∣∣(V (H1) ∪ V (H2)

)
∩K

∣∣ ∈ {3, 4}, by

definition of PK it now follows via estimates (5.4)–(5.6) that

µ ≤
∑

J(H:eJ≥1

O
(
k3n2(vH−2)−(vJ−1) · p2eH−eJ + k4n2(vH−2)−vJ · p2eH−eJ

)
≤
(
k
2

)
p ·
[
k
n

+
(
k
n

)2
]
·
∑

J(H:eJ≥1

Θ
(
(nvH−2peH−1)2

)
nvJ−2peJ−1

≤ k−τ · δ
e

(
k
2

)
p/ log k.

(5.11)

(To clarify: in (5.11) above we used that (5.6) implies nvJ−2peJ−1 ≥ 1 for all J ( H

with eJ ≥ 1.) Similarly to inequalities (5.8) and (5.10), for C ≥ C0(τ, δ,H) now Claim 67
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(with Z = |PK |) yields

P
(
|PK | ≥ δ

(
k
2

)
p/ log k

)
≤ k−τδ(

k
2)p/ log k = e−τδ(

k
2)p � k−eHk � n−k. (5.12)

Finally, combining (5.8), (5.10) and (5.12) with Claim 66, a standard union bound

argument gives

P
(
YK ≥ δ

(
k
2

)
p ·
(

1
2

+ 4e2
H∆H/ log k

)
for some k-vertex set K

)
≤
(
n
k

)
· o(n−k) = o(1).

(5.13)

To complete the proof of (5.13), it thus remains to show that, for c ≤ c0(C,H), we have

P
(

∆H ≥ (log k)/(8e2
H)
)

= o(1). (5.14)

Using (5.4), (5.6) and n � keH , this upper tail estimate for ∆H = maxf ∆H,f follows

routinely from standard concentration inequalities such as [120, Theorem 32], but we in-

clude an elementary proof for self-containedness (based on ideas from [110, 118]). Turning

to the proof of (5.14), let ∆H,f,g denote the number of H-copies in Gn,p that contain the

edges {f, g}, and define ∆
(2)
H as the maximum of ∆H,f,g over all distinct f, g ∈ E(Kn).

We call an r-tuple (H1, . . . , Hr) of H-copies an (r, f, g)-star if each Hj contains the

edges {f, g} and satisfies Hj 6⊆ H1 ∪ · · · ∪Hj−1. Define Zr,f,g as the number of (r, f, g)-

stars (H1, . . . , Hr) that are present inGn,p. Summing over all (r+1, f, g)-stars (H1, . . . , Hr+1),

by noting that the intersection of Hr+1 with Fr := H1 ∪ · · · ∪Hr is isomorphic to some

proper subgraph J ( H containing at least eJ ≥ 2 edges, using estimates (5.4) and (5.6) it

then is routine to see that, for 1 ≤ r ≤ r0 := 1 + d(vHeH + 4eH)/γe, we have

EZr+1,f,g =
∑

(H1,...,Hr+1)

peH1∪···∪Hr+1 =
∑

(H1,...,Hr)

peFr
∑
Hr+1

peH−eHr+1∩Fr

≤
∑

(H1,...,Hr)

peFr ·
∑

J(H:eJ≥2

O
(

(vHr)
vJnvH−vJ · peH−eJ

)
≤ EZr,f,g · k−γ.
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Since trivially EZ1,f,g = O(nvH ), using n � keH we infer EZr0,f,g ≤ kvHeH−(r0−1)γ ≤

k−4eH � n−4. Consider a maximal length (r, f, g)-star (H1, . . . , Hr) in Gn,p, and note that

inGn,p anyH-copy containing the edges {f, g} is completely contained inH1∪· · ·∪Hr (by

length maximality), so that ∆H,f,g ≤ (eHr)
eH holds (using that H is uniquely determined

by its edge-set). For D := (eHr0)eH it follows that

P
(

∆
(2)
H ≥ D

)
≤
∑
f 6=g

P
(
∆H,f,g ≥ D

)
≤
∑
f 6=g

P(Zr0,f,g ≥ 1) ≤
∑
f 6=g

EZr0,f,g ≤
(
n
2

)2 · o(n−4) = o(1).

(5.15)

With an eye on ∆H,f , let Hf denote the collection of all H-copies in Kn that contain the

edge f . We pick a subset I ⊆ Hf of H-copies in Gn,p that is size-maximal subject to

the restriction that all H-copies are edge-disjoint after removing the common edge f . For

any H ′ ∈ Hf , note that in Gn,p there are a total of at most eH∆
(2)
H copies of H that share f

and at least one additional edge with H ′. Hence ∆H,f ≥ (log k)/(8e2
H) and ∆

(2)
H ≤ D

imply |I| ≥ d(log k)/Ae =: z for A := 8e3
HD (by maximality of I). As the union of all

H-copies in I contains exactly 1 + (eH − 1)|I| edges, using
(
m
z

)
≤ (em/z)z and |Hf | =

O(nvH−2) it follows that

P
(

∆H,f ≥ (log k)/(8e2
H) and ∆

(2)
H ≤ D

)
≤
(
|Hf |
z

)
·p1+(eH−1)z ≤

(
O(nvH−2peH−1)

z

)z
.

(5.16)

Using estimate (5.4), for c ≤ c0(A,C,H) the right-hand side of (5.16) is at most

(log k)−(log k)/A � k−2eH . Recalling n� keH , by taking a union bound over all edges f ∈

E(Kn) it then follows that

P
(

∆H ≥ (log k)/(8e2
H) and ∆

(2)
H ≤ D

)
≤
(
n
2

)
· o(k−2eH ) = o(1), (5.17)

which together with (5.15) completes the proof of estimate (5.14) and thus Theorem 64.
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The above proof of (5.14) can easily be sharpened to P
(
∆H ≥ B(log k)/ log log k

)
= o(1)

for suitableB = B(H) > 0, see (5.16)–(5.17). Together with the proof of (5.13) and |IK | ≤ YK ,

this implies that whp YK = |IK |+ o
(
δ
(
k
2

)
p
)

for all k-vertex sets K, which intuitively sug-

gests that YK is well-approximated by |IK |.

5.3.2 Bounding XK : Proof of Remark 65

Remark 65 follows easily from Chernoff bounds; we include the routine details for com-

pleteness.

Proof of Remark 65. Noting δ2kp = δ2C log k and n � keH , by invoking standard Cher-

noff bounds (see, e.g., [60, Theorem 2.1]) it follows, for C ≥ C0(δ,H) large enough, that

P
(
XK ≤ (1− δ)

(
k
2

)
p
)
≤ exp

(
−δ2

(
k
2

)
p/2
)
� k−eHk � n−k. (5.18)

Taking a union bound over all set k-vertex sets K completes the proof of Remark 65.

5.4 Extensions

In applications of the alteration approach outlined in Section 5.1.2, it often is beneficial to

keep track of further properties of the resulting H-free n-vertex graph G ⊆ Gn,p, including

vertex-degrees and the number of edges (see, e.g., [29, Section 3], [11, Section 2], and [76,

Section 5.1]). Using the arguments and intermediate results from Section 5.3.1, oftentimes

it is routine to show that G resembles a random graph Gn,p in many ways. For example,

with standard results for Gn,p in mind, the following simple lemma intuitively implies that

whp the resulting G is approximately np regular, with about
(
n
2

)
p edges. (Note that k � n

when m2(H) ≤ 1.)

Lemma 68. LetH be a strictly 2-balanced graph withm2(H) > 1. Define Y as the number

of H-copies in Gn,p, and define Yv as the number of H-copies in Gn,p that contain the
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vertex v. For any δ > 0, the following holds for all C ≥ C0(δ,H) and 0 < c ≤ c0(C, δ,H).

Setting n and p as in Theorem 64, whp Gn,p satisfies Yv ≤ δnp for all vertices v, and Y ≤

δ
(
n
2

)
p.

Proof. Sincem2(H) > 1 implies vH ≥ 3, noting Y =
∑

v∈[n] Yv/vH it suffices to prove the

claimed bounds on the Yv. Fix a vertex v. Similar to estimate (5.7), using (5.4) it is standard

to see that the expected number of H-copies containing v is at most µ ≤ O(nvH−1peH ) ≤
δ
e2
np for c ≤ c0(C, δ,H). Furthermore, if ∆H ≤ (log k)/(8e2

H) holds (see (5.14) in Sec-

tion 5.3.1), then any H-copy edge-intersects a total of at most eH ·∆H < log k many H-

copies, say. Applying the upper tail inequality [56, Theorem 15] instead of Claim 67,

using δnp = δcCkm2(H)−1−o(1) � (log k)2 it then is, similar to (5.8) and (5.17), routine to

see that

P
(
Yv ≥ δnp and ∆H ≤ (log k)/(8e2

H)
)
≤
(
eµ

δnp

)δnp/ log k

≤ e−δnp/ log k � n−1.

Taking a union bound over all vertices v now completes the proof together with esti-

mate (5.14).

It is straightforward, and useful for many applications (see, e.g., [72, 42, 11]), to extend

the alteration approach to r-uniform hypergraphs, where every edge contains r ≥ 2 ver-

tices. Indeed, to forbid a given r-uniform hypergraphH , similarly to the graph case (r = 2)

discussed in Section 5.1.2, here the idea is to delete edges from a binomial r-uniform hyper-

graphG(r)
n,p (where each of the

(
n
r

)
possible edges appears independently with probability p)

to construct an n-vertex r-uniform hypergraph G ⊆ G
(r)
n,p that is H-free. Defining

mr(H) := max
F⊆H

(
1{vF≥r+1}

eF−1
vF−r

+ 1{vF=r,eF=1}
1
r

)
,

we say that H is strictly r-balanced if mr(H) > mr(F ) for all F ( H . Noting Gn,p =

G
(2)
n,p, now the proofs of Theorem 64 and Remark 65 routinely carry over with only obvi-
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ous notational changes (including the definitions of YK and XK), yielding the following

extension of our refined alteration approach to hypergraphs.

Theorem 69. Given r ≥ 2, let H be a strictly r-balanced r-uniform hypergraph. Then,

for any δ ∈ (0, 1], the following holds for all C ≥ C0(δ,H) and 0 < c ≤ c0(C, δ,H). Set-

ting n := bc(kr−1/ log k)mr(H)c and p := C(log k)/kr−1, whp G(r)
n,p satisfies YK ≤ δ

(
k
r

)
p

and XK ≥ (1− δ)
(
k
r

)
p for all k-vertex sets K.

Finally, numerous applications of the alteration method require forbidding a collection

of hypergraphsH = {H1, . . . , Hs} (see, e.g., [72, 73, 42, 11]). The crux is that the bounds

on YK and XK from Theorem 69 trivially remain valid for n ≤ bc(kr−1/ log k)mr(H)c. So,

applying this result to all forbiddenHi ∈ H (using δ/s instead of δ to sum the different YK-

bounds), we readily obtain the following corollary.

Corollary 70. Given r ≥ 2 and s ≥ 1, let H = {H1, . . . , Hs} be a collection of strictly r-

balanced r-uniform hypergraphs. Definemr(H) := mini∈[s] mr(Hi), and let Y ′K denote the

number of edges in E(G
(r)
n,p[K]) that are in at least one Hi-copy of G(r)

n,p for some Hi ∈ H.

Then, for any δ ∈ (0, 1], the following holds for all C ≥ C0(δ,H) and 0 < c ≤ c0(C, δ,H).

Setting n := bc(kr−1/ log k)mr(H)c and p := C(log k)/kr−1, whpG(r)
n,p satisfies Y ′K ≤ δ

(
k
r

)
p

and XK ≥ (1− δ)
(
k
r

)
p for all k-vertex sets K.

Acknowledgements. We would like to thank Jacob Fox for helpful clarifications regard-

ing [20].

5.5 Appendix: Lower bound on the upper tail of |HK |

Given a fixed graph H with vH ≥ 3, let us consider a binomial random graph Gn,p with

edge-probability p = Θ
(
(log k)/k

)
as k → ∞. Fix a k-vertex subset K of Gn,p (which

tacitly requires k ≤ n), and let HK denote the collection of all H-copies that have at

least one edge inside K. Given δ > 0, we fix vH disjoint vertex subsets of K, each
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of size t :=
⌈(
δ
(
k
2

)
p
)1/vH

⌉
. Then Gn,p contains with probability p

(
vH
2

)
t2 a complete vH-

partite subgraph on these vH sets, which enforces |HK | ≥ tvH ≥ δ
(
k
2

)
p. It readily follows

that

P
(
|HK | ≥ δ

(
k
2

)
p
)
≥ p

(
vH
2

)
t2 ≥ e−o(k),

as claimed in Section 5.1.2 (since t2 · log(1/p) ≤ k2/vH+o(1) ·O(log k) = o(k) as k →∞).
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[2] M. Ajtai, J. Komlós, and E. Szemerédi. A note on Ramsey numbers. J. Combin.
Theory Ser. A 29 (1980), 354–360.
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[44] Z. Füredi. On the Prague dimension of Kneser graphs. In Numbers, Information and
Complexity (Bielefeld, 1998), pp. 143–150, Kluwer Acad. Publ., Boston (2000).
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