
 CCeenntteerr FFoorr RReesseeaarrcchh iinn EEmmbbeeddddeedd SSyysstteemmss aanndd TTeecchhnnoollooggiieess
 Technical Report

 CREST-TR-01-002
 GIT-CC-01-14
 June 2001

B

Brriiddggiinngg PPrroocceessssoorr aanndd MMeemmoorryy PPeerrffoorrmmaannccee
iinn IILLPP PPrroocceessssoorrss vviiaa DDaattaa--RReemmaappppiinngg

Rodric M. Rabbah and Krishna V. Palem

Georgia Institute of Technology
Atlanta, Georgia

Bridging Processor and Memory Performance in ILP
Processors via Data-Remapping

Rodric M. Rabbah and Krishna V. Palem
rabbah@ece.gatech.edu, palem@ece.gatech.edu

Center for Research on Embedded Systems and Technology
Georgia Institute of Technology

Abstract

Current system design trends continue to magnify the disparity between processor and
memory performance. Thus, as microprocessors perform increasingly better than the mem-
ory systems supporting them, it is ever more important to bridge the performance gap to help
translate the promise of Moore’s law into overall performance delivered to the end applica-
tions. This gap in performance between the processor and the memory is further exacerbated
in the context of modern processors with high-levels of instruction level parallelism (ILP),
especially for data-intensive applications. In these processors, increased demands for data
delivery lead to concomitant needs for higher memory bandwidth and cache sizes. In this
paper we provide a fast compile-time data-remapping technique which helps in bridging the
gap between the ILP processor and its memory system, by enhancing the spatial locality of
data-access. Our strategy is the first automatic approach applicable to pointer-intensive dy-
namic applications for which existing optimizations are mostly inadequate. We demonstrate
an average performance improvement of 27% for several data-intensive applications. This is
attributed to enhanced data locality, resulting in lowered demand on the bandwidth between
cache levels, as well as between the cache subsystem and main memory. We also show that
with increasing levels of ILP and fixed memory bandwidth, our remapping technique enables
very high levels of performance with smaller cache sizes. For example, as much as a factor of
15 reduction in multi-level caches can be tolerated without a loss in performance. Although
we use cycle-accurate simulators to detail the benefits of our remapping, we also measure 24%
performance improvements for the Intel Pentium II and III processors, and a 9% yield on the
Sun UltraSparc-II.

1 Introduction

A well-known performance bottleneck in the current and forthcoming computer architectures is the

increasing gap between processor and memory speeds[4, 27]. This disparity is further aggravated

by the continuing trend in processor design to extract greater instruction level parallelism as evident

1

in the recent emergence of EPIC architectures and the release of the first such processor - the IA64

Itanium[13]. As ILP continues to increase, faster data delivery and greater cache through-put will

be required to achieve better performance (Figure 1). This phenomena, compounded by irregular

memory access patterns common to dynamic applications, increases the pressure on the memory

system and further magnifies the long latencies associated with memory accesses.
Average Memory Instructions for fixed bandwidth and greater ILP for the Olden Benchmarks

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time Quanta

M
e

m
o

ry
 O

p
e
ra

ti
o

n
s
 P

e
r

Q
u

a
n

ta

4-Way ILP 8-Way ILP 16-Way ILP

Figure 1: For fixed data bandwidth and a perfect cache model, a more parallel processor requires

data at a faster rate. This motivates the need for bandwidth ameliorating strategies.

A number of strategies have been advocated to address the memory bottleneck and improve

overall system performance. The majority of these techniques either attempt to hide long latencies

or enhance data locality. Examples of latency masking optimizations include prefetching[24, 20, 6]

and load-sensitive scheduling algorithms[15, 30]. However, such strategies are vulnerable to un-

predictable memory reference patterns and may degrade performance. Specifically, prefetch strate-

gies waste bandwidth and pollute caches when data is unnecessarily requested. Similarly, poor or

pessimistic operation characterization during scheduling often leads to reduced ILP. On the other

hand, locality enhancing optimizations amortize the cost of expensive memory accesses by im-

proving data reuse. Loop-tiling, loop-skewing and numerous other control-flow transformations[2,

9, 21, 19, 11, 12] have significantly improved the performance of applications with predictable

access patterns. Unfortunately, these optimizations fare poorly when applied to important pointer-

intensive scientific and dynamic real-world applications[26, 22].

In this paper, we introduce a fast and light-weight locality enhancing algorithms (LEA) to

improve overall system performance. In particular, we focus on better utilization of the memory

2

hierarchy, and explore the impact of bandwidth constraints for high ILP processors. The proposed

optimization
� Enhances temporal data locality,
� Reduces memory bandwidth requirements and
� Applies to programming languages with dynamic memory allocation support, such as C and

C++.

We specifically focus on pointer-intensive applications with extensive dynamic allocations of data

records. These applications are challenging, mainly due to their unpredictable and often dynamic

memory access patterns. Using detailed simulations of EPIC architectures, we demonstrate the

significant performance impact of our LEA in reducing bandwidth requirements and increasing

locality. Similarly, we measure the overall performance yields for existing computing platforms

with different processor speeds and cache configurations.

The contributions of this paper are two-fold. First, we present a fast automated software tool1

for data-remapping to effectively reduce bandwidth consumption. Second, we detail simulations

and analysis of the effects of our optimization on data requirements and overall performance for

EPIC architectures.

We implement our data-remapping algorithm in the Trimaran[28] EPIC compiler and use its

configurable simulation infrastructure[29] to demonstrate an average 18% reduction in bandwidth

requirements for all levels of the memory hierarchy. We also show considerable improvements in

various cache statistics, and an average effective increase of 15% in IPC.

Our performance analysis is reported for benchmarks from the SPEC2000, Data Intensive

Systems[10] and Olden suites, benefiting applications such as neural network simulation, large

database management, image matching, and scientific computation. We also demonstrate the same

trends in performance on existing Intel X86 and Sun UltraSparc platforms.
1Our algorithms run in time linear in the size of the source code.

3

1.1 Summary of Results

We make the following contributions.

� Data-Remapping Algorithm. The innovative aspects of this work are geared at signifi-

cantly improving performance for high ILP processors and in the context of data-intensive

applications. We propose a fast and fully-automated algorithm to achieve better reference

locality in dynamic and pointer intensive applications. The algorithm running time is linear

in the size of the program.

� Significant Bandwidth Reduction. We apply our optimization to several well know data-

intensive applications and achieve an average 2x reduction in overall bandwidth require-

ments for a two level memory hierarchy.

– Lower Bus Demand. The bandwidth improvements are attributed to a 18% reduction

in data requests between level one and level two of the memory system. The bus con-

necting the second level cache and main memory contributes another 18% reduction.

– Better Locality. Our data-remapping strategy better utilizes the lowest level cache and

reduces the miss ratio by an average 22%.

� Working Set Reduction. Using incremental bandwidth measurements, we demonstrate a

factor of two reduction in the application workingset. This is attributed to effective data

colocation strategies applied by our optimization.

� Performance Gains. We demonstrate the effectiveness of our optimization on a wide range

of EPIC processors with varying levels of ILP. We obtain a 15% improvement in effective

IPC and a 22% reduction in execution time.

We also demonstrate the same trends in performance for concrete architectures. We achieve

as much as a 26% improvement in execution time for the Intel Pentium III processor, a 24%

improvement for the Intel Pentium II and a 9% improvement for the Sun UltraSparc II.

The remainder of this paper is organized as follows.

4

� Data-Remapping Strategy. Section 2 presents an overview of data-remapping, then details

our locality enhancing algorithm and heuristics.

� Experimental Results and Analysis. Section 3 demonstrates the performance benefits of

our locality enhancing algorithms. We detail the impact of our LEA on the performance of

various EPIC, X86 and UltraSparc architectures.

� Related Work. Section 4 discusses related work and compares this approach with known

techniques.

2 Data-Remapping Strategy

Traditional data-layout strategies typically attempt to minimize the total space requirements of a

data structure[25]. This is often adequate to achieve small memory footprints and benefit regular

applications with well defined access patterns. However, for larger dynamic programs where in-

teractions amongst data structures vary over time, the relative order of objects and their placement

in memory becomes an issue[26]. Although it is desirable to reorder data in memory to match

the access sequences, it is simply not feasible. Not only would the cost of dynamic data move-

ments far outweigh any benefits, but finding the best data layout for a set of objects over numerous

computation paths is NP-complete[17].

Our LEA is a simple, efficient and highly effective strategy that implicitly assigns data fields

that are most often referenced together to the same cache block. This is achieved without any

actual data relocation and has the benefits of amortizing the cost of a block fetch from memory,

reducing bandwidth consumption, and avoiding detrimental cache conflicts. Our approach focuses

on a coordinated placement of fields during record allocations and relies on compiler generated

remapping functions to compute their location during subsequent usage. We assume that a record

is defined as a set of diverse data types grouped within a unique declaration. We shall refer to

elements of the set as fields. We will also refer to a record as a structure or object.

5

The algorithm is presented in two stages. First, a feedback-driven gathering phase analyzes

profile information to select candidates for remapping. Next, a reorganization module applies

fixed remapping strategies to the candidates identified in the earlier step. There are two variations

of the reorganization algorithm: one for static data reorganization and the other for dynamic data

reorganization.

2.1 Gathering Phase

The gathering phase analyzes profile information to characterize record types and guide in the

selection of candidates for remapping. The information is used to selectively remap frequently

referenced data types that exhibit poor cache behavior along program hot-spots[23].

Algorithm 1 Algorithm for computing the neighbor affinity of record in a program. w is the
temporal locality window. We use a value of w equal to the size of a cache block scaled by the
cache associativity. Normalization and squaring of the NAP is done to favor most often used record
type. The running time for the algorithm is O(w—T—).

let Trace T = (R, k, f)*, is a memory access profile trace
T[i] for 0 < i <= |T| represents the ith triple occurring in T

procedure ComputeAffinity(Program P, Trace T, w)
for j := 1 to |T| do

for i := w - 1 downto 1 do
(R, k, f) := T[j]
(R’, k’, f’) := T[j-i]
if (R’ = R) and (k’ <> k) and (f’ <> f) then

NAP(R) += 1
end if

end for
end for

for each record type R in P do
NAP(R) := square(NAP(R) / (w (|T| - w)))

end for
end ComputeAffinity

Our analysis seeks to identify and build a model of data reuse for the extensively used object

types in a program and to quantify the probability that multiple occurrences of a field f within

6

a chosen time span w belong to different objects of the same data type R. We shall refer to this

measure as the neighbor affinity probability or NAP. A low NAP implies that on the average,

the fields of a particular record instance exhibit good temporal locality. In other words, for any

particular time span of length w, if one field of a record instance is encountered, then the other

fields of the same record instance are also likely to be encountered. In contrast, a moderate to

high neighbor affinity suggests that if a particular field f is encountered, the same field but from a

different record instance will be temporally accessed. High NAP is used as a criteria for applying

our remapping strategy. Namely, record types that exhibit this phenomena are remapped such that

for a cluster of these objects, field colocation is achieved. The method for computing the affinity

of a record type is given in Algorithm 1.

The gathering algorithm computes the neighbor affinity for each record type in a program. It

subsequently marks those with high NAP for remapping. Our reorganization strategy is to use a

coordinated allocation technique to achieve field colocation for global and dynamic data structures.

2.2 Reorganization Phase

In the gathering phase of the algorithm, we isolate the most often used record types and characterize

the interactions of fields among different objects of the same type. During this stage, we focus

strictly on global and dynamic data structures of marked types. We ignore all stack-allocated

objects, as they are often small and exhibit good temporal locality; in order to preserve these

characteristics, we maintain the traditional object layout native to the language.

Although we present a strategy for remapping global data variables, the key technical fea-

tures of our method are geared towards preserving program semantics in the presence of pointer

variables2. This applies to programming languages that associate physical meaning with the dec-

laration layout of a record. Notable examples are C and C++. The majority of the encountered

difficulties are due to pointer arithmetic, which arise from non-standard but common program-

ming practices. In essence, the programmer uses knowledge of the size and physical layout of a
2A pointer variable is a variable whose value is the memory location (address) of another variable.

7

data type to access its various elements. In the interest of clarity, we shall restrict the focus of

the remaining discussion to the C programming language. We expect that extensions of this work

to object oriented languages will yield comparable improvements in data locality and performance.

Global Data Reorganization

struct Node {
int A;
int B;
int C;

};
Node List [N];

Example C-style code.
Node is a record with three
fields. List is array of
Nodes.

A B C A B C A B C A B C
. . .

A A A A B B
.

C C C C
. . .

B B

Contiguous memory segment reserved for variable List

List layout if the
traditional offset
computation is used

List layout if the
remap offset

computation is used

Fields are co-located

Figure 2: Layout of fields in a reserved memory segment for the remap and traditional strategies

for a sample source code.

The algorithm for global data reorganization is shown in Algorithm 2. It associates one of two

offset computation functions (remap or traditional) with each globally declared array-of-record

program variables. The functions are subsequently used during code generation to calculate the

offset of the specified field relative to the base address of a Cluster3.

The global data remap function is GDRemap (1). It interprets the Cluster as a record of arrays.

This interpretation, illustrated in Figure 2, yields an implicit transformation that is desirable for

record types with moderate to high NAP. Specifically, the respective fields of various records in
3A Cluster is a contiguous memory segment reserved for N objects. This is equivalent to an array of rank N.

8

the Cluster are now located in adjacent memory addresses. In contrast, the GDNomap Equation

(2) is the traditionally used offset computation function[14]. It interprets the Cluster as an array

of records.

Algorithm 2 Algorithm for Static Data Reorganization. The algorithm running-time is linear in
the size of the program.

procedure GDReorg (Program P)
for each global variable V in P do

if V is of type array of record R then
if R was marked for reorganization then

Associate the Remap offset computation function with V
else

Associate the Traditional offset computation function with V
end if

end if
end for

end GDReorg

GDRemap
�
Rk � f ��� �

k � 1 �
	 FieldSize
�
R � f ��� N 	

f
 1

∑
i � 1

FieldSize
�
R � i � (1)

GDNomap
�
Rk � f ��� �

k � 1 �
	 RecordSize
�
R ���

f
 1

∑
i � 1

FieldSize
�
R � i � (2)

For the equations above, Rk � f represents the f th field of the kth instance of a record R, f � 1,
and R � Cluster with N � 1 records. We define FieldSize

�
R � f � as the number of consecutive

addressable units required to store R � f and RecordSize
�
R ��� ∑ �R �i � 1 FieldSize

�
R � i � .

During code generation, the compiler evaluates the variable-associated offset functions when

appropriate. In terms of run-time overhead, observe that the essential difference between the

GDRemap and GDNomap is in the last term. The size of the Cluster (N) is necessary to carry out

the GDRemap computation. The value is however readily available to the compiler, as the remap-

ping strategy is strictly applied to global arrays. This implies that the third term of GDRemap can

be computed statically. Thus our remapping strategy contributes the same run-time overheads as

the traditional offset computation.

9

Dynamic Data Reorganization

The methodology for remapping dynamic data objects focuses on repeated single object allo-

cations rather than dynamic array of record allocations. The remapping strategy used for global

arrays readily applies for dynamic arrays of structures. Unfortunately, efforts to accommodate the

remapping of theses arrays would entail a run-time retrieval of the array size and a subsequent

multiplication operation. The associated overhead may be small compared to the overall benefits,

but we have made no efforts to quantify it. We did however apply the global data reorganization

scheme in special case scenarios where the compiler was able to

� Determine that all dynamic arrays of a given record type are of the same size,

� Statically disambiguate all pointer variables that alias these arrays.

This alleviates the need for redundant dynamic disambiguations. Finally, we will discuss the

remapping strategy applied to repeated single record allocations. Recall that the GDRemap func-

tion assumes record fields are part of a cluster of records of the same type. Our approach here

is to automatically generate a light-weight wrapper around the memory allocation requests in the

application. The wrapper is used to control the placement of new objects in dynamically reserved

clusters. Once the cluster has been completely allocated, the resultant data layout resembles that

of a global array of records, achieving field colocation. The algorithm for dynamic data reorgani-

zation is given in Algorithm 3 and an implementation of an example wrapper function is shown

in Algorithm 4. The automatic generation of wrappers is trivial and not discussed here. We use a

StaggerDistance equal to the size of a cache block for all the experiments reported in Section 3.

Notice that the algorithm does not associate offset functions with pointer variables. Instead,

it is left to the code generator to determine which expression to use for address computations.

Our approach is to try and determine if an encountered pointer aliases a marked record. If so, the

compiler evaluates the DDRemap (3) expression. Similarly, the code generator uses the DDNomap

(4) computation for pointer variables that alias static records. We found the inter-procedural data-

flow analysis algorithm of Aho et al.[1] to be adequate for resolving alias issues for the benchmarks

10

Algorithm 3 DDReorg is a source level transformation. It reorders the fields of a record such that
the most frequently used field is located first in the layout. It also replaces requests for dynamic
allocations of a record R with a type-specific allocator (the wrapper). The algorithm runs in time
linear in the size of the program.

procedure DDReorg (Program P)
for each record type R in P do

if R is marked for reorganization then
reorder the fields of R such that the most
frequently used field has field index 1

end if
end for
for each statement S in P do

/* single out allocations of a single object */
if S is of the form x := Allocate(R, 1) then
1. replace S with x := Wrapp_R()
2. generate Wrapp_R

end if
end for

end DDReorg

DDRemap � P � f ���
f � 1

∑
i � 1

StaggerDistance � MaxFieldSize ��� P � (3)

DDNomap � P � f ���
f � 1

∑
i � 1

FieldSize ��� P � (4)

In the equations above, P is a pointer to a record of type R and ��� P ��� R. We also define
MaxFieldSize � R � = max "! f #%$R $'& FieldSize � R (f �*) . Note that since DDRemap � P � f � and
DDNomap � P � f � evaluate to 0 for the first field of a record (f = 1), the run-time alias dis-
ambiguation is not necessary. We exploit this characteristic for the most frequently accessed field
of a record. We achieve this by reordering the field layout, such that the most frequently used field
is located first.

11

used in our experiments. However, for pointers where the compiler is unable to disambiguate alias

information[25], we evaluate both offset expressions and rely on a run time comparison of the

pointer value against the stack pointer register to determine which value is to be used. This is a

simple and effective solution that exploits novel predication features and advanced comparators in

EPIC architectures.

Algorithm 4 An example wrapper function. When clusters are fully consumed, new ones are
allocated.
function Wrapp_R () returns address

/* Cluster C is a persistent variable */
if Cluster C is full then

/* Allocate a new Cluster */
C := Allocate(R, StaggerDistance)

end if
address := C
/* Update cluster usage */
C := C + DDRemap(R.1)

end Wrapp_R

2.3 Implementation Notes

Our remapping algorithms were implemented in the Trimaran C Compiler. We also implement

the global data and dynamic data reorganization algorithms in the GNU C Compiler (GCC). Pro-

file information gathered by Trimaran was shared with our GCC implementation, as GCC does

not provide tools for feedback-driven optimizations. Trimaran is comprised of the IMPACT[28]

compiler as the front-end and the ELCOR[28] compiler as the system back-end. We incorporate

our remapping algorithms in the compiler front-end, since type information and some source level

transformations are required.

12

3 Experimental Results

We evaluate the impact of our LEA in three ways. First, we analyze the bus traffic across all level

of the memory hierarchy using cycle-accurate simulation tools in Trimaran. We anticipate that

a reduction in traffic implies better data and cache usage and hence better locality. We support

this claim by illustrating the average decrease in workingset size over the lifetime of an applica-

tions in the presence of data-remapping. Lastly, we look at the impact of better memory system

performance on execution cycles.

3.1 Benchmarks and Methodology

We performed detailed simulations of four Olden, two DIS and one SPEC2000 benchmark. The

application characteristics are shown in Table 2. We simulate the benchmarks using both input data

sets listed in Table 2. Profile information used to determine which data types to remap was ob-

tained using much smaller data sets. We compile all applications with hyperblock and superblock

optimizations enabled. All benchmarks, with the exception of TreeAdd4, were simulated for the

EPIC configurations shown in Table 1. Because of the space constraints, we report average results

over all simulations, unless otherwise noted. The interpretation of our results follow.

Issue Width and ILP L1 Size, Block Size, Way L2 Size, Block Size, Way
1, 4 16K, 16, 1 256K, 128, 2
1, 4 16K, 128, 1 256K, 128, 2
1, 4 16K, 128, 1 1024K, 128, 2
1, 4 32K, 128, 4 1024K, 128, 2
4, 4 32K, 128, 4 1024K, 128, 2
8, 8 32K, 128, 4 1024K, 128, 2
8, 8 64K, 128, 4 1024K, 128, 2

Table 1: EPIC Configurations used in simulations.

4Trimaran could not successfully simulate this benchmark. We do report the performance of TreeAdd for concrete

architectures.

13

Name Suite Description Main Data Structures Input Data sets Memory
ART Spec

2000
Simulates neural
networks

Dynamic array of
records

ref1 and ref2 small

DM DIS Data archive
management

Dynamic records and
arrays of records

set14 and set24 24Mb

Field DIS Random token
search and string
replacement

Dynamic array of
records

11654 and 54860
token replace-
ments

small

Health Olden Simulation of the
Colombia Health
Care System

Doubly-linked list levels 3-6 and
time units 1000-
10000

123Mb

Perimeter Olden Computer image
region perimeter

Quad-Tree 11Kx11K and
12Kx12K images

147Mb

TSP Olden Traveling sales-
man shortest
path

Dynamic records 3M and 8M cities 320Mb

TreeAdd Olden Tree node pro-
cessing

Binary tree Tree depth of 20
and 25 levels

512Mb

Table 2: Benchmark Characteristics.

3.2 Epic Platforms

We first consider the impact of data-remapping in the context of bandwidth usage. Our algorithms

are geared to improving data locality and increasing the reuse of fetched data items. We thus expect

to observe significant bandwidth reductions manifested in reduced bus usage across the memory

hierarchy. Figure 3 compares the average bus utilization for all benchmarks in the presence of

remapping. The graph is normalized relative to the baseline simulation results. As we expected,

the bus usage between first and second levels of cache were reduced by 18%. The reduction in

bus demand was also felt between the second level cache and main memory, where an average

reduction of 18% was also observed in the presence of remapping.

We attribute the reduction in bandwidth requirements to better cache utilization and improved

data locality. Figure 4 compares the level one and level two cache performance in terms of hit and

miss ratios. Here we see an increase in the level one load hits and a corresponding reduction in

misses. Although the average number of L2 misses increases in the presence of remapping, there is

an equivalent reduction in L2 cache requests (see Figure 7). This suggests that not only is the level

14

EPIC Performance Summary

1.17

0.82 0.82

1.15

0.78

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L1-L2 Bus idle L1-L2 Bus used L2-M Bus Utilization IPC Execution Cycles

Figure 3: The normalized graph shows the average bus utilization at all level of the memory

hierarchy.

one cache better utilized, but that the level two cache requests are for the most part compulsive.
Locality Effects for EPIC

1.03

0.78

0.98

1.27

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L1 Hit Ratio L2 Hit Ratio L1 Miss Ratio L2 Miss Ratio

Figure 4: The normalized graph compares the average baseline L1 and L2 hit and miss ratios to

those in the presence of remapping.

To get a better grasp of the data locality phenomena, we investigate the variations in workingset[26]

size for the level one cache. Due to space constraints, we can only illustrate two such examples.

In Figure 5 we divide the lifetime of execution into fixed segments. We then measure the

incremental size of the workingset required to perform the computation. Thus, an increase in bus

demand implies a proportional increase in the workingset. The average reduction in the workingset

size is slightly greater than a factor of two in the presence of remapping. We show a similar trend

for the ART SPEC benchmarks in Figure 6. A factor of two reduction was also observed in the

presence of remapping.

A summary of all simulation results is shown in Figure 7.

15

0

2000

4000

6000

8000

10000

12000

14000

16000

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

2
0
1

2
0
9

2
1
7

2
2
5

2
3
3

2
4
1

2
4
9

2
5
7

2
6
5

Time Quantas

N
u

m
b

e
r

o
f

C
a

c
h

e
 B

lo
c

k
s

 F
e

tc
h

e
d

Baseline After Data Remapping

Figure 5: Incremental bandwidth requirements for TSP

0

5000

10000

15000

20000

25000

30000

35000

Time Quanta

N
u

m
b

e
r

o
f

C
a

c
h

e
 B

lo
c

k
s

 F
e

tc
h

e
d

Baseline After Data Reorganization

Figure 6: Incremental bandwidth requirements for ART. A representatitve time window is shown

for clarity.

3.3 Existing Platforms

Figure 8 summarizes performance gains for three concrete architectures. The benchmarks were

compiled using GCC and the highest level of optimizations (-O3).

Figure 9 illustrates the importance of remapping as processor speeds increase. Observe that for

the faster Pentium III processor, despite a factor of 8 reduction in the second-level cache size, we

attain 20% improvement compared to the UltraSparc.

4 Related Work

Previous work has attacked the processor-memory gap by computation reordering to increase spa-

tial and temporal locality[5, 8, 7, 31, 18, 22]. Most recently, Crummey et al.[22] explore a coor-

16

 ART DM Field Perimeter TSP Health Average
L1 Cache Requests 0.37 1.00 1.00 0.79 1.02 0.99 0.86
L1 Store Requests 0.42 0.98 1.00 0.78 1.09 0.80 0.84
L1 Load Hit Ratio 1.09 1.00 1.00 1.02 0.99 1.06 1.03
L1 Load Miss Ratio 0.63 0.97 1.00 0.78 0.60 0.71 0.78
Cycles L1-L2 Bus Idle 1.68 1.00 1.00 1.02 1.06 1.24 1.17
Cycles L1-L2 Bus used 0.79 1.00 1.00 0.66 0.77 0.71 0.82
L2 Cache Requests 0.29 0.97 1.00 0.93 0.80 0.49 0.75
L2 Store Requests 0.59 0.96 1.01 0.95 0.88 0.89 0.88
L2 Load Hit Ratio 1.27 1.02 1.11 0.65 1.13 0.69 0.98
L2 Load Miss Ratio 3.42 1.01 1.10 0.65 0.74 0.70 1.27
L2 Cache Blocked 1.00 0.98 1.10 0.61 0.60 0.83 0.85
Cycles L2-M Bus used 0.86 0.99 1.00 0.72 0.75 0.63 0.82
Virtual Latency Stalls 0.11 0.86 1.08 0.36 0.33 0.65 0.56
L1 Cache Busy Stalls 0.35 0.99 1.01 2.92 0.77 0.70 1.12
IPC 1.26 1.02 1.00 1.05 1.26 1.31 1.15
Execution Cycles 0.27 0.98 1.00 0.86 0.82 0.77 0.78

Figure 7: Summary of results for EPIC architectures

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ART DM Field Health Perimeter TSP TreeAdd

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 S
p

e
e

d
u

p

Pentium III Pentium II UltraSparc

Figure 8: Performance improvements in the presence of remapping for Intel X86 and Sun Ultra-

Sparc platforms.

dinated data and computation reordering strategy based on space filling curves. Their strategies

are applied to array-based languages (i.e. Fortran) and attack a different class of applications. Our

focus is on pointer-intensive applications with considerable dynamic memory allocations.

Kistler et al.[18] proposed an automated field-ordering algorithm to minimize load latency in

case of a cache miss. Their technique exploits a hardware feature available on the PowerPC to

improve data delivery across buses in the memory hierarchy. Similarly, Chilimbi et al.[7] proposed

a reordering technique that assigns temporally related fields of a record into the same cache-line.

However, both algorithms offer only partial solutions, as they do not consider the interaction of

fields amongst various instances of a record. Chilimbi et al.[8] described a data placement scheme

to specifically address this issue. However, the proposed strategies are not completely transparent

17

74.2
76.4

91.5

0

10

20

30

40

50

60

70

80

90

100

750 MHz Pentium III, 256K L2 Cache 400 MHz Pentium II, 512K L2 Cache 400 MHz UltraSparc II, 2M L2 Cache

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Figure 9: Summary of real hardware performance improvements in the presence of remapping

compared to full GCC optimizations.

to the programmer, require some manual re-tooling of the application and can incur a significant

run-time overhead as objects are dynamically relocated in memory.

Truong et al.[31] have also tried to improve the cache behavior of pointer-intensive applica-

tions. They proposed a field reorganization technique and introduced a new memory allocator to

support instance interleaving; this is the interleaving of identical fields of different dynamic objects

into a cache-block. Unfortunately, the approach chosen by Truong et al. is cumbersome in that

the record layout is left completely to the programmer. This includes the insertion of large pads

between fields to accommodate object interleaving. Since the record reorganization is a source

level transformation, it leads to a substantial waste of storage space for statically allocated records.

The user must also re-tool and annotate the application to invoke a specialized memory allocator

that consumes the inserted pads. Their strategy is strictly a dynamic technique and does not ap-

ply to statically allocated data. In contrast, our data-remapping algorithm is fully-automated, uses

existing allocation tools and applies to a wider class of objects.

18

References
[1] A. Aho, R. Sethi, and J. Ullman. “Compilers Principles, Techniques and Tools”. Addison-

Wesley.

[2] J. Anderson, S. Amarasinghe, and M. Lam. “Data and computation transformation for multi-
processors”. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, July 1995.

[3] T. Ball, and J. Larus. “Efficient Path Profiling”. In IEEE Micro, Decemeber 1996.

[4] D. Burger, J. Goodman, and A. Kagi. “Memory bandwidth limitations of future microproces-
sors”. In Proceedings of the 23rd Annual International Symposium on Computer Architec-
tures, pages 78-89, May 1996.

[5] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement”. In Pro-
ceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 139-149, October 1998.

[6] D. Callahan, K. Kennedy, and A. Poterfield. “Software prefetching”. In Proceedings of the
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 40-52, April 1991.

[7] T. Chilimbi, B. Davidson, and J. Larus. “Cache-conscious structure definition”. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 13-24, May 1999.

[8] T. Chilimbi, M. Hill, and J. Larus. “Cache-conscious structure layout”. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
1-12, May 1999.

[9] J. Carter, W. Hsieh, M. Swanson, L. Zhang, A. Davis, M. Parker, L. Schaelicke, L. Stoller,
and T. Tateyama. “Memory system support for irregular applications”. In Workshop on Lan-
guages, Compilers, and Runtime Systems for Scalable Computers, May 1998.

[10] Data-Intensive Systems Benchmark Suite. www.aaec.com/projectweb/dis/

[11] C. Ding, and K. Kennedy. “Improving cache performance of dynamic applications with com-
putation and data layout transformations”. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 229-241, May 1999.

[12] C. Ding, and K. Kennedy. “The memory bandwidth bottleneck and its amelioration by a com-
piler”. In Proceedings of the International Parallel and Distribute Processing Symposium,
May 2000.

[13] Intel Itanium Processor. www.intel.com/itanium

[14] B. Kernighan, and D. Ritchie. “The C Programming Language”. Prentice Hall.

19

[15] D. Kerns, and S. Eggers. “Balanced scheduling: instruction scheduling when memory latency
is uncertain”. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 1993.

[16] D. Gannon, W. Jalby, and K. Gallivan. “Strategies for cache and local memory management
by global program transformations”. In Proceedings of the First International Conference on
Supercomputing, June 1987.

[17] D. Kirkpatrick, and P. Hell. “On the completeness of a generalized matching problem”. In
The Tenth Annual ACM Symposium on Theory of Computing, 1978.

[18] T. Kistler, and M. Franz. “Automated data-member layout of heap objects to improve
memory-hierarchy performance”. In ACM Transactions on Programming Languages and
Systems, Volume 22, No. 3, pages 490-505, May 2000.

[19] M. Lam, E. Rothberg, and M. Wolf. “The cache performance of blocked algorithms”. In Pro-
ceedings of the Fourth International Conference in Architectural Support for Programming
Languages and Operations Systems, pages 63-74, April 1991.

[20] C. Luk, and T. Mowry. “Compiler-based prefetching for recursive data structures”. In Pro-
ceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 222-233, October 1996.

[21] K. McKinley, S. Carr, and C. Tseng. “Improving data locality with loop transformations”.
In ACM Transactions on Programming Languages and Systems, Volume 18, No. 4, pages
424-453, July 1996.

[22] J. Mellor-Crummy, D. Whalley, and K. Kennedy. “Improving memory hierarchy performance
for irregular applications using data and computation reordering”. In Proceedings of the ACM
International Conference on Supercomputing’, pages 425-433, June 1999.

[23] M. Merten, A. Trick, C. George, J. Gyllenhaal, and W. Hwu. “A hardware-driven profiling
scheme for identifying program hot spots to support runtime optimization”. In Proceedings
of the 26th Annual International Symposium on Computer Architecture, pages 136-147, June
1999.

[24] T. Mowry, M. Lam, and A. Gupta. “Design and evaluation of a compiler algorithm for
prefetching”. In Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 62-73, October 1992.

[25] S. Muchnick. “Advanced Compiler Design Implementation”. Morgan Kaufman.

[26] E. Nystrom, R. Ju, and W. Hwu. “Characterization of Repeating Data Access Patterns in In-
teger Benchmarks”. To appear in Proceedings of the 28th International Symposium on Com-
puter Architecture, July 2001.

[27] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keaton, C. Kazyrakis, R. Thomas, and
K. Yellick. “A case of intelligent RAM”. In IEEE Micro, pages 34-44, April 1997.

20

[28] Trimaran: An Infrastructure or Research in Instruction Level Parallelism. www.trimaran.org

[29] R. Rabbah, and M. Saint. “SMACHS: Smart Memory and Cache Hierarchy Simulator”.
Manuscript in preparation.

[30] F. Sanchez and A. Gonzalez. “Cache sensitive modulo scheduling”. In IEEE Micro, 1997.

[31] D. Truong, F. Bodin, and A. Seznec. “Improving cache behavior of dynamically allocated
data structures.” In International Conference on Parallel Architectures and Compilation Tech-
niques, pages 322-329, October 1998.

21

