
MATHEMATICAL AND DATA-DRIVEN PATTERN REPRESENTATION WITH
APPLICATIONS IN IMAGE PROCESSING, COMPUTER GRAPHICS, AND

INFINITE DIMENSIONAL DYNAMICAL DATA MINING

A Dissertation
Presented to

The Academic Faculty

By

Yuchen He

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mathematics

College of Sciences

Georgia Institute of Technology

May 2021

c© Yuchen He 2021

MATHEMATICAL AND DATA-DRIVEN PATTERN REPRESENTATION WITH
APPLICATIONS IN IMAGE PROCESSING, COMPUTER GRAPHICS, AND

INFINITE DIMENSIONAL DYNAMICAL DATA MINING

Thesis committee:

Dr. Sung Ha Kang
School of Mathematics
Georgia Institute of Technology

Dr. Wenjing Liao
School of Mathematics
Georgia Institute of Technology

Dr. Yingjie Liu
School of Mathematics
Georgia Institute of Technology

Dr. Jean-Michel Morel
Centre Borelli, Univ. Paris-Saclay
École Normale Supérieure Paris-Saclay

Dr. Haomin Zhou
School of Mathematics
Georgia Institute of Technology

Date approved: April 9, 2021

A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more

permanent than theirs, it is because they are made with ideas.

G.G. Hardy

For my father Wenhan He and my mother Chunlian Ren

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for their help in preparation

of this work. Specifically, I am grateful for having Professor Sung Ha Kang as my Ph.D.

advisor, who throughout the past 4 years have helped me to grow as a young researcher. Her

contagious passion for mathematical research and positive personality cast considerable

influence on me. Without her patience and open-mindedness, I would have never developed

such a broad experience with diverse applications, and this thesis would have never been

this rich. Moreover, I would like to show my sincere appreciation for the generous helps

from Professor Jean-Michel Morel. During the difficult time of pandemic, he supported

my research and offered me precious opportunities. As a well-established researcher, his

academic advice has inspired me tremendously.

Special thanks are due to my friends, and colleagues: Dr. Hao Liu, Dr. Martin Húska,

Jaemin Park, Christina Giannitsi, and many others. Finally, my research project on deep

learning is not possible without the valuable resources supported by Professor Xiaoqun

Zhang from Shanghai Jiaotong University.

The author gratefully acknowledges the support by Chateaubriand Fellowship, Em-

bassy of France in United States and Larry O’Hara Fellowship, College of Science, Geor-

gia Institute of Technology. Any views and conclusions contained herein are those of the

author, and do not necessarily represent the official positions, express or implied, of the

funders.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiv

List of Figures . xvii

Summary . 1

Chapter 1: Introduction . 2

1.1 What is Pattern? . 2

1.1.1 Diverse Forms of Pattern . 2

1.1.2 Pattern Formation, Recognition, and Representation 4

1.2 Mathematical Pattern Representation . 6

1.2.1 Model-based Approach . 7

1.2.2 Data-driven Approach . 9

1.3 Organization of the Thesis . 11

1.3.1 Contents of Part I (Chapter 2-5) 11

1.3.2 Contents of Part II (Chapter 6-7) 14

1.3.3 Reading Suggestions . 15

Chapter 2: Symmetries and Metric Structures in Lattice Patterns 17

vi

2.1 Preliminaries and Notations . 18

2.2 Lattice Feature Descriptors β and ρ . 22

2.2.1 Equivalence Classes of Shape Descriptor ρ 25

2.2.2 Equivalence Conditions for Scale Descriptors 27

2.3 From Descriptors to Lattice Metric Space (L , dL) 29

2.3.1 Definition of Lattice Metric Space 29

2.3.2 Sub-lattices and Parent-lattices in the Lattice Space 34

2.4 Validation of the Lattice Space L and Metric dL 38

2.4.1 Visual Validation . 38

2.4.2 Quantitative Validation . 39

2.5 Application to Error Quantification of Lattice Identification and Separation
Algorithm (LISA) . 41

2.5.1 Variational Model for Lattice Separation 43

2.5.2 Lattice Identification and Separation Algorithm (LISA) 44

2.5.3 Analytical Properties of LISA: Superlattice and Spectrum Surface . 48

2.5.4 Robustness of LISA against Gaussian Perturbation 51

2.5.5 Numerical Experiments with Various Superlattice Patterns 53

2.6 Application to Grain Defect Detection . 62

2.6.1 Lattice Clustering Algorithm based on Lattice Metric Space 64

2.6.2 Numerical Experiments on Grain Defect Detection 65

2.7 Summary . 72

Chapter 3: PDE-based Shape Representation and Vectorization 74

3.1 Region-based Representation – Shape Skeleton 75

vii

3.2 Hamilton-Jacobi Skeleton Algorithm . 76

3.2.1 Distance Transform using the Fast Sweeping Algorithm 76

3.2.2 Computation of Average Outward Flux 80

3.2.3 Point Classification based on Local Topology 82

3.2.4 Homotopy Preserving Thinning 84

3.3 Numerical Experiments on Shape Skeletons 85

3.3.1 Skeletonization of 2D Shapes . 87

3.3.2 Effects of the Parameter γ . 87

3.3.3 Shape Reconstruction from Medial Axis 92

3.3.4 Performance of Distance Computation 95

3.4 Contour-based Representation – Silhouette Vectorization 99

3.5 Outline of the Affine-scale Space Vectorization Procedure 101

3.6 Sub-pixel Curvature Extrema Localization 103

3.7 Affine Scale-space Control Points Identification 104

3.7.1 Backward Tracing via Inverse Affine Shortening Flow 104

3.7.2 Degenerate Case . 107

3.8 Adaptive Cubic Bézier Polygon Approximation 108

3.8.1 Bézier Fitting with Chord-length Parametrization 108

3.8.2 Control Point Refinement: Deletion of Sub-pixel Extrema 109

3.8.3 Control Point Refinement: Insertion for Accuracy 110

3.9 Numerical Experiments on Silhouette Vectorization 111

3.9.1 Data Preparation and Parameter Settings 111

3.9.2 General Performance . 112

viii

3.9.3 Tests on Degenerate Cases . 114

3.9.4 Effect of the Error Threshold τe 116

3.9.5 Effect of the Smoothness Parameter σ0 117

3.9.6 Qualitative Comparison with Feature Point Detectors 117

3.9.7 Quantitative Comparison with Feature Point Detectors 120

3.9.8 Comparison with State-of-the-art Software 121

3.9.9 Quantitative Study of Efficiency and Accuracy 122

3.10 Summary . 123

Chapter 4: Submanifold Representation Induced by Point Cloud 127

4.1 Surface Identification via Minimizing Distance-weighted Surface Area . . . 129

4.1.1 Energy by Distance-weighted Surface Area 129

4.1.2 Semi-Implicit Method (SIM) . 130

4.1.3 Augmented Lagrangian Method (ALM) 133

4.1.4 Connection between SIM and ALM Algorithms 136

4.1.5 Implementation Details . 137

4.2 Numerical Experiments on Model of Distance-weighted Surface Area . . . 139

4.2.1 General Performance on 2D and 3D Point Clouds 139

4.2.2 Choice of Parameters for ALM and the Effects 144

4.3 Curvature-regularized Energy and Its Fast Optimizing Algorithms 149

4.3.1 Curvature Regularized Surface Reconstruction Model 150

4.3.2 Analytical Aspects . 152

4.3.3 Operator Splitting Method (OSM) 156

ix

4.3.4 Augmented Lagrangian Method (ALM) 160

4.3.5 Implementation Details . 164

4.4 Numerical Results and Comparisons . 169

4.4.1 Choice of Parameters for ALM Method 169

4.4.2 Comparison between OSM and ALM 171

4.4.3 Effect of curvature constraint: OSM with s = 2 173

4.4.4 Three Dimensional Examples . 176

4.5 Summary . 178

Chapter 5: Complementary Adaptation in Underwater Color Correction . . . 183

5.1 CIELAB Color Space . 186

5.1.1 Basic Notions of CIELAB . 186

5.1.2 CIELAB Boundary Estimation . 188

5.2 Complementary Adaptation Model in CIELAB 189

5.2.1 Tikhonov-type Optimization in CIELAB 189

5.2.2 Robust Hue-preserving Image Enhancement 193

5.2.3 Improvement on the Uniformity of CIELAB 195

5.3 Numerical Experiments . 197

5.3.1 General Examples . 197

5.3.2 Different Underwater Color Cast 198

5.3.3 Necessity of the Robust Factor . 200

5.3.4 Behaviors of the Saturation Parameter η 201

5.3.5 Qulitative Comparison . 203

x

5.3.6 Quantitative Evaluation and Comparison 204

5.4 Conclusion . 207

Chapter 6: Automatic PDE Identification from Noisy Data 208

6.1 Data Organization and Denoising . 210

6.1.1 Data Organization and Notations 210

6.1.2 Noise Amplification during Differentiation 212

6.1.3 Successively Denoised Differentiation (SDD) 213

6.2 PDE Model Identification Methods: ST and SC 215

6.2.1 Subspace Pursuit Time Evolution (ST) 216

6.2.2 Subspace Pursuit Cross Validation (SC) 222

6.3 Numerical Experiments on Robust PDE Identification 225

6.3.1 Transport Equation . 227

6.3.2 Burgers’ Equation . 231

6.3.3 Burgers’ Equation with Diffusion 233

6.3.4 The KdV Equation . 235

6.3.5 A Larger Dictionary . 236

6.3.6 Two Dimensional PDEs . 237

6.3.7 Identifiability Based on the Given Data 238

6.3.8 Choice of Smoother in SDD . 240

6.4 Support Recovery in Statistics . 241

6.5 PDE Identification via `1-PsLS . 243

6.5.1 Problem Setting . 243

xi

6.5.2 Local-Polynomial Regression Estimators for Derivatives 244

6.5.3 `1-regularized Pseudo Least Square Model 245

6.6 Recovery Theory for `1-PsLS based PDE Identification 247

6.6.1 Signed-Support Recovery . 247

6.6.2 Assumptions . 248

6.6.3 Statement of Main Result . 249

6.6.4 Proof Strategy of the Main Theorem 251

6.7 Analysis Under Sample Incoherence Matrix Assumptions 252

6.7.1 Statement of Proposition . 252

6.7.2 Proof Overview of Proposition 6.7.1 253

6.7.3 Technical Challenges . 255

6.8 Uniform Convergence of Sample Incoherence Matrix 256

6.9 Numerical Experiments . 258

6.9.1 Experimental Setting . 258

6.9.2 Numerical Verifications of Main Statements 260

6.9.3 Impact of β∗min in Signed-Support Recovery of `1-PsLS 261

6.10 Summary . 262

Chapter 7: Deep Spatial-temporal Synthesizer for dynamic PET Reconstruction 265

7.1 Workflow Overview . 266

7.2 Nonnegative Matrix Factorization for dPET 267

7.2.1 Imaging Model for Sparsely Sampled dPET 267

7.2.2 NMF Reconstruction . 268

xii

7.3 Proposed Model . 269

7.4 Numerical Experiments . 272

7.4.1 Interpretability of Low-rank Bases 274

7.4.2 Performance on TAC Reconstruction 274

7.4.3 Tests on Hyperparameters . 275

7.4.4 Qualitative Comparison . 276

7.4.5 Quantitative Comparison . 280

7.5 Summary . 282

Chapter 8: Conclusion . 283

Appendices . 286

Appendix A: Appendix for Chapter 2 . 287

Appendix B: Appendix for Chapter 3 . 288

Appendix C: Appendix for Chapter 6 . 290

References . 318

Vita . 355

xiii

LIST OF TABLES

2.1 Lattice Clustering Algorithm . 64

3.1 Comparative measures of the reconstruction results in Figure 3.7 (ε = 1.5).
Higher values of J and DSC indicate higher similarity between So and
Sr. When Bpn is positive (negative), Sr is an over- (respctively under-)
coverage for So, and when Bpn = 0, there is no bias. We report these
measures when ε = 0 for comparison. 95

3.2 Performance of the proposed method applied to examples in Figure 3.11.
The compression ratios are displayed for PNG and JPG, respectively. ∗We
note that the PNG image in (a) has a single channel, thus converting it to
JPG increases the size. 113

3.3 Comparison with image vectorization software in terms of the number of
control points. We compared with Vector Magic (VM), Inkspace (IS), and
Adobe Illustrator 2020 (AI). For VM, we report the number of control
points using three settings: High/Medium/Low. For AI, the values with
dagger† indicate the numbers of control points produced by the automatic
simplification. The input image dimensions are 581 × 564, 625 × 598,
400 × 390, 903 × 499, 515 × 529, and 1356 × 716 from top to bottom.
We also report the mean relative reduction (MRR) of the number of control
points computed for the results above. 124

4.1 CPU time (s) for SIM, ALM using r = 0.5, 1, 1.5, and 2, and the explicit
method in [285] with ∆t = 20 for the point cloud data sets in Figure 4.3.
Both SIM and ALM shows fast convergence. 142

4.2 CPU time (s) of SIM and ALM compared to the explicit method in [285]
for the point cloud data sets of Figure 4.4. Both SIM and ALM show fast
convergence. 142

xiv

6.1 The procedure of SDD, where the spatial and time smoothing operators
S(x) and S(t) are defined in Equation 6.7 and Equation 6.8 respectively.
The operator Dt given in Equation 6.5 represents numerical time differen-
tiation by the forward difference scheme, and DxiU for i = 0, 1, . . . , N −1
represents numerical spatial differentiation with respect to xi given by the
5-point ENO scheme [387]. 215

6.2 Identification of the transport equation (Equation 6.15) with different noise
levels. In the noise-free case, applying SDD does not introduce a strong
bias. The identification results (second column) by ST and SC are stable
even with 30% noise. Here w = 20 for ST, and α = 1/200 for SC. 228

6.3 Identification of the transport equation (Equation 6.15) with the discontin-
uous initial condition (Equation 6.16) and different noise levels. In the
noise-free case, applying SDD does not introduce strong bias. The iden-
tification results (second column) by ST and SC are stable even with 30%
noise. Here w = 20 for ST, and α = 1/200 for SC. 231

6.4 Identification of the Burgers’ equation (Equation 6.17) with initial condi-
tion (Equation 6.18) and different noise levels. The identification results
(second column) by ST and SC are good with small ec and er for a noise
level up to 40%. Here w = 20 for ST, and α = 1/500 for SC. 232

6.5 Comparison of ST, SC with IDENT in [369] and the method in [367] for
the identification of the Burgers’ equation (Equation 6.17) with the ini-
tial condition (Equation 6.19), and various noise levels. In this table, we
only include the reconstructed terms with the coefficient magnitudes above
10−2. ST, SC and IDENT are very stable compared to the method in [367].
The coefficient error ec (Equation 6.13) and the time evolution error ee
(Equation 6.14) are shown. The errors given by ST, SC and IDENT are
smaller than the errors given by the method in [367].Comparison of ST,
SC with IDENT in [369] and the method in [367] for the identification
of the Burgers’ equation (Equation 6.17) with the initial condition (Equa-
tion 6.19), and various noise levels. This table only includes the recon-
structed terms with the coefficient magnitudes above 10−2. ST, SC, and
IDENT are very stable compared to the method in [367]. The coefficient
error ec (Equation 6.13) and the time evolution error ee (Equation 6.14)
are shown. The errors given by ST, SC, and IDENT are smaller than the
method’s errors in [367]. 234

6.6 Identification of the Burgers’ equation with diffusion (Equation 6.20) with
different noise levels. The identification results (second column) by ST and
SC are good with small ec and er for a noise level up to 5%. Here w = 20
for ST, and α = 1/10 for SC. 234

xv

6.7 Identification of the KdV equation (Equation 6.21). Both ST and SC can
identify the correct PDE. 236

6.8 Identification of Equation 6.22 with different noise levels. The identifica-
tion results (second column) by ST and SC are good with small ec and er
for a noise level up to 5%. Here w = 20 for ST, and α = 1/500 for SC. . . 237

6.9 Identification of the two dimensional PDE (Equation 6.24) with different
noise levels. The identification results (second column) by ST and SC have
small ec and er for a noise level up to 10%. Here w = 10 for ST, and
α = 3/200 for SC. 238

6.10 Specific choices of the constants in the order of hN = Θ(N−
1
7) and wM =

Θ(M− 1
7) for the experiments on Viscous Burgers equation and KdV equa-

tion are presented. 260

7.1 Comparison among proposed model with various combinations of hyper-
parameters: number of bases (K) and number of iterations (I). 276

7.2 Quantitative comparison (Mean± Std.) of different methods’ performances
on the testing dataset (39 samples). For the results of quality evaluation, the
best ones are bolded, and the second best∗ ones are marked with asterisks.
Deep learning based methods were trained using the same training dataset
(153 samples) on a common machine configuration. 281

7.3 Training and testing efficiency. 281

B.1 Silhouette dataset used in the experiments. The last four are used in Fig-
ure Figure 3.13 for computing the average ρ(τe). These silhouettes are
chosen from [253], which are released under Creative Commons CC0. . . . 289

xvi

LIST OF FIGURES

2.1 Equivalent bases and the minimal basis. (a) Λ(3, 4i), (b) Λ(4i,−3+4i), and
(c) Λ(−3−4i,−6−4i) represent an identical lattice. (a) (3, 4i) is a minimal
basis: |Re(4i

3
)| = 0 < 1

2
. (b) (4i,−3 + 4i) is not minimal: |Re(−3+4i

4i
)| =

1 > 1
2
, and (c) (−3− 4i,−6− 4i) is not positive: Im(−6−4i

−3−4i
) = −12

25
< 0. . 20

2.2 Effects of changing β and ρ. (a) Λ〈1, i〉, (b) Λ〈2, i〉, (c) Λ〈eiπ/6, i〉, (d)
Λ〈1, 2i〉, (e) Λ〈1, e2πi/3〉, and (f) Λ〈2, e2πi/3〉. From (a) to (b), β is changed
from 1 to 2. From (a) to (c), β is rotated. From (a) to (d), ρ is changed from
i to 2i. From (a) to (e), ρ is rotated. From (a) to (f), both β and ρ are changed. 23

2.3 Region P and the fundamental set of Γ-actions. (a) P is the gray region
including the boundary represented in C. ρ, ρ′ and ρ′′ are the shape de-
scriptors for Λ(3, 4i), Λ(4i,−3+4i), and Λ(−3−4i,−6−4i) respectively
from in Figure 2.1. Since 4i/3 ∈ P , (3, 4i) is a positive minimal basis. (b)
A fundamental set of the modular group Γ acting on the upper half plane.
If Re(ρ) = −1/2, ρ and ρ+ 1 are in the same orbit of a Γ-action. 25

2.4 Examples of subspaces of L . For any β ∈ K, (a) shows a square lattice
Λ〈β, i〉. The red and blue arrows indicate two directions. Stretching Λ〈β, i〉
along them represents two different families of lattices. They form a sub-
space of L shown in (b), which is homeomorphic to R as in (c). (d) shows
a hexagonal lattice Λ〈β, eiπ/3〉. Stretching it along the three marked direc-
tions generates three distinct families of lattices. (e) is the subspace they
form in L , which is homeomorphic to the structure in (f). 30

2.5 An illustration of the 8 types of paths, D1–D8 in Equation 2.10 connecting
(β, ρ) and (β′, ρ′) via 4 extra points in {(β0, ρ0) | β0 ∈ K, |ρ0| = 1, ρ0 ∈ P}. 33

2.6 The lattice space L is a product space K/ ∼1 ×P/ ∼2 modulo ∼3. The
distance dL ((β, ρ), (β′, ρ′)) is the minimal length of the paths connecting
(β, ρ) and (β′, ρ′) when the distance between equivalent points is reduced
to 0. Here the green line shows D in Equation 2.8, the red line is D3 in
Equation 2.10, and the blue line is D4 in Equation 2.10. Since D satisfies
the triangle inequality, D is shorter than D4. 33

xvii

2.7 One-to-one correspondence between the sub- and the parent-lattices. (a) A
lattice Λ〈β, ρ〉 = Λ〈14.7721+2.6047i, eiπ/3〉. (b) A sub-lattice Λ〈β, 2ρ+1〉
in white, with lattice (a) in gray. (c) A parent-lattice Λ〈β/2, 2ρ+ 1〉 of (a).
The common particles are emphasized with white color. 37

2.8 Metric comparison. Lattice (a) ΛA = Λ(11.8177 + 2.0838i,−2.1706 +
12.3101i) and (b) ΛB = Λ(2.0838 − 11.8177i, 12.3101 + 2.1706i) are vi-
sually similar. The 4-tuple measure indicates a significant difference in
θ, while dL gives a small value. The lattices (a), (c) ΛC = Λ(−1.1766 +
13.4486i,−2.0838+11.8177i) and (d) ΛD = Λ(11.8177+2.0838i,−2.1706+
12.3101i) are more distinguishable, but the differences are scattered in four
numbers using (Equation 2.16). dL integrates these differences and pro-
vides a compact measure. 39

2.9 Visual effects of dL . Five different lattices: (a) ΛA = Λ〈11, eiπ/3〉, (b)
ΛB = Λ〈11, eiπ/2〉, (c) ΛC = Λ〈13, eiπ/2〉, (d) ΛD = Λ〈11, ei61π/180〉, and
(e) ΛE = Λ〈13, ei61π/180〉 are displayed. Pairwise distances: dL (ΛA,ΛB) =
0.5493, dL (ΛA,ΛC) = 0.7083,dL (ΛA,ΛD) = 0.0203, dL (ΛA,ΛE) =
0.4477, dL (ΛB,ΛC) = 0.4472, dL (ΛB,ΛD) = 0.5293, dL (ΛB,ΛE) =
0.6929, dL (ΛC ,ΛD) = 0.6929, dL (ΛC ,ΛE) = 0.5293, and dL (ΛD,ΛE) =
0.4472 are computed. They are consistent with the visual perception of the
lattice differences. 40

2.10 Properties of dL . (a) Effect of changing w. (b) Misorientation of hexago-
nal lattices is emphasized using dL , which corresponds to the left and right
edges. (c) High symmetry of the hexagonal lattice is reflected by the sym-
metry of the blue curve. Lattices to be compared are not necessarily of the
same type, and dL considers the lattice equivalence relations. 41

2.11 Challenges of pattern separation. Each image above has two lattices su-
perposed. (a) The red boxes indicate textons of a single lattice, and they
have different interiors which can confuse the texton-based methods. (b)
Using non-superposed lattice identification methods, wrong local features
(e.g., L-shapes [115], shown as the red arrows) can be identified. These
red arrows do not correspond to any of the true underlying lattices. (c) The
pink and the yellow L-shapes in the upper-left corner denote the true lat-
tice components. The moiré patterns indicated by the red, blue, and green
regions are different from the underlying lattices. 42

xviii

2.12 Steps of LISA. (A) An image processed by (Equation 2.20). Step 1: (B)
The power spectrum on the polar coordinate, and the high responses using
J = 5. (C) Peak locations refined via matching Gaussian impulses. Step
2: (D) Generate lattice candidates Tµk,lΛ(k,l), k, l = 1, · · · , 5, k 6= l, for
each pair of high peaks, and compute their energies (Equation 2.21). Pick
(x3, x5) (red and purple in (B)) to be the optimal Tµ1Λ1, since it has the
lowest energy. Step 3: (Optional) (E) Update Tµ1Λ1 with T1Λ

(5)
µ1 . Step 4:

(F) The optimal lattice Tµ1Λ1 identified in this iteration; and the absolute
difference between Tµ1Λ1 and the underlying true lattice. The absolute dif-
ference has an average value of 0.0202, and maximum of 0.1924, showing
the effectiveness of LISA. (G) The remainder image. The average intensity
0.0710 is greater than the accuracy criterion 0.01; thus, proceed to the next
iteration. 45

2.13 Effect of relative translation. (a) A superlattice composed of T4−3iΛ〈12, i〉
and T−4+3iΛ〈12, i〉. (b) The power spectrum of (a) where peaks are missing
due to the relative translations. From this incomplete reciprocal lattice,
LISA identifies lattice (c) and (d) each shown in white, superposed over (a)
in gray. 50

2.14 LISA’s robustness against Gaussian perturbation. In the first column, a
single lattice T0Λ〈12, eiπ/18〉 is shown in (a) with its power spectrum surface
in (d). A centered Gaussian perturbation is applied with standard deviation
(b) s = 0.5 and (c) s = 1, and their power spectra are displayed in (e)
and (f), respectively. Notice that in the frequency domain, the reciprocal
bases away from the origin are smeared by noises, but those near the origin
remain high responses. The lattices identified by LISA in (b) and (c) are
robust against the perturbation; their distances to (a) are 0.0046 and 0.0081,
respectively. 52

2.15 A typical example of LISA. (a) A superlattice of three lattices: T2−4iΛ〈−9.9927+
0.0315i, 1.0014ei17π/36〉, T−7−4iΛ〈−4.4820+12.1815i, i〉 and T1−5iΛ〈−4.9898−
8.5389i, 1.0298ei7π/12〉. (b)–(d) display the lattices identified by LISA.
Each metric value shows the distance between the true lattice and the iden-
tified one in L . 53

2.16 Superlattice with more layers. (a) A superlattice of 5 lattices: T2−5iΛ〈11, ei7π/18〉,
T3+4iΛ〈11.7378+2.4949i, i〉, T0Λ〈3.7082+11.4127i, e4π/9〉, T1−2iΛ〈14.0954+
5.1303i, i〉, and T0〈11.8177 + 2.0838i, i〉. (b)–(f) show the extracted pat-
terns using LISA. Notice that all the metric values dL (Λ̂,Λ) comparing the
true lattices with the identified ones are very small. 54

xix

2.17 Mixture of translational lattices. (a) A superlattice of four lattices: T0Λ〈12, i〉,
T1+iΛ〈11.8177+2.0838i, i〉, T2−3iΛ〈12, i〉, and T2−5iΛ〈11.8177+2.0838i, i〉.
(b)–(e) show the identified patterns by LISA. 55

2.18 Close particles. (a) A superlattice of three lattices obtained by translating
T0Λ〈14.7721 + 2.6047i, i〉 by 4− 2i, 1− 2i and 2− 5i. These translations
push particles close, and generate a pattern whose lattice points are com-
posed of three dots. (b)-(d) show that LISA successfully distinguishes them
with high precision as indicated by the values of dL 56

2.19 Incomplete lattice. (a) A superlattice composed of a complete lattice T0Λ〈11.6924+
2.6994i, ei4π/9〉, shown in (b), and a portion of T2−3iΛ〈11.8177+2.0838i, i〉,
shown in (c). (d) and (e) are the identified patterns by LISA (in white) over
the original (a) (in gray). (f) min(T Λ̂2, I), where T Λ̂2 is the identified lat-
tice in (e) and I is the original image in (a). This shows the intersection of
(a) and (e). 57

2.20 Importance of the density restriction. (a) A superlattice of T2−10iΛ〈10, ei17π/36〉
and T−3+5iΛ〈9.9756+0.6976i, ei17π/36〉. Without the second term in (Equa-
tion 2.21), we obtain a dense lattice T Λ̃ in (b). With the density restriction,
we get T Λ̂ in (c) which is the correct lattice pattern. (d) compares (b) and
(c), where the white pixels are T Λ̃∩T Λ̂ (the particles commonly captured
by (b) and (c)), the green are T Λ̃−T Λ̂ (the extra points in (b) compared to
(c)), and the red are T Λ̂−T Λ̃ (particles in (c) not covered by (b)). It shows
that (c) is almost a sub-lattice of (b). (e) min{T Λ̃, I} showing the intersec-
tion of (a) and (b). This shows that the dense lattice (b) approximates the
moiré pattern at the center of (a) . 58

2.21 Flake-like pattern generated by lattices. (a) A flake-like superlattice of
hexagonal lattices with β equal to 10, 13, 15 and 12. In the same order,
(b)–(e) show LISA successfully identifies the underlying lattices. 59

2.22 Flower pattern generated by lattices. (a) A flower superlattice of four lat-
tices with scale descriptors having a common norm |β| = 11, and inclina-
tion angles equal to 53◦, 143◦, −53◦ and −143◦. (b)–(e) show the lattices
identified with high precision by LISA. 60

2.23 LISA on real images. (a) and (c) are the images of TMD monolayers ad-
justed from [163] 3 and [164] 1 (c), respectively. (b) and (d) show the iden-
tified lattice patterns, and lattice points from different layers are colored in
red and green, respectively. 61

xx

2.24 LISA on grain segmentation. (a) A grain image adjusted from [166] 15
(a). (b) T−1.3794+9.7510iΛ〈−10.9881 − 12.1163i,−0.4579 + 0.8950i〉 and
(c) T9.6287+9.5640iΛ〈−15.7326 − 4.7420i, 0.4813 + 0.8800i〉 are the lattice
patterns identified by LISA . (d) Particles shared in (a) and (b) are colored
in green, and those shared with (c) in red. The white particles are shared by
the lattices in (b) and (c). 61

2.25 CPU time of LISA. Fixing two lattices, the base image width is m = 119,
K = 10, and J = 6. (a) The image width m is increasing while K and J
are fixed. (b) The number of iteration K is increasing with m and J fixed.
(c) The number of connected components J is increasing while keeping m
andK fixed. Roughly, LISA depends linearly on J andK respectively, and
quadratically on m. 62

2.26 Direct classification using dL . (a) PFC image from [104] Fig. 4. (b) Lat-
tice labels obtained in Step 1 of LCA. (c) zoomed-in partial region from
(b). (d) and (f) show Euclidean distance function of (b1, b2) representation
with respect to that of the red points. (e) and (g) show the lattice distance
function dL of (β, ρ) representations with respect to that of the red points,
which are the same as those in (d) and (f) respectively. Linear interpolation
is applied to fill the color in (d)–(g). 67

2.27 Apply LCA to the image Figure 2.26(a). Here (a) shows the curve g(t).
Results when (b) T = 0.4, (c) T = 0.5 and (d) T = 0.8 show the effect of T . 68

2.28 Instability of k-means. (a) Box-plot of the number of grains against param-
eter K in k-means. (b)–(d) use k-means with different initializations. (b)
and (c) set K = 30 and T = 0.5 and (d) uses K = 50 and T = 0.5. 69

2.29 (a) There are 3 grains: one on the top, one in the middle, and one in the
bottom. Image from [102] Fig. 1.(b) The curve g(t) with 3 major jump-
discontinuities. (c) T = 0.5. (d) T = 0.8. 69

2.30 (a) There are 2 grains with a regular boundary. Image adapted from [180]
Fig. 1(a). (b) The curve g(t) with 2 major jump-discontinuities. (c) Result
with T = 0.4. 70

2.31 (a) There are 2 grains presented and the grain boundary is irregular. Im-
age adapted from [178] Fig. 1. (b) The curve g(t) with 2 major jump-
discontinuities and the jump is rough. (c) Result with T = 0.8. 70

2.32 (a) Grain boundary between non-hexagonal grains. Image adapted from [179]
Fig. 3. (b) The curve g(t). (c) Result with T = 0.7. 71

xxi

3.1 Skeletons (black curves) of some elementary shapes. 76

3.2 (a) The normal vectors at the neighboring points used for approximating the
flux Equation 3.8 at the central pixel. (b) An example graph G constructed
for the pixel P . For any arbitrary pixel, its 8 neighborhoods are indexed
as shown here. Neighboring pixels inside the shape (black circles) are the
vertices of G, and two vertices are connected if they are 8-neighborhood to
each other. We avoid the 3-loops at the corners, e.g., 0− 1− 7, by directly
connecting the furthest two among them. 83

3.3 Skeletons (red curves) for various shapes computed by HJS. In all examples
aboves, we used the default parameter γ = 2.5. 88

3.4 Multi-scale representation of the shape using skeletons computed by differ-
ent γ. (a) γ = 2.5. (b) γ = 1.5. (c) γ = 1.2. By choosing a smaller γ, the
identified skeleton becomes more robust against boundary perturbation and
captures the large-scale shape features. 90

3.5 HJS with γ < 1 used as a homotopy classifier. (a) The skeleton is a single
point, hence the shape is simply-connected. (b) The skeleton is homeo-
morphic to a circle, hence the shape is not simply-connected and has genus
1. (c) The skeleton consists of 10 points, hence the shape has ten simply-
connected components. In (a) and (c), the identified skeleton points are
emphasized by red disks for visualization. 91

3.6 HJS with γ < 1 used as a deficiency detector in binary shapes. (a) The
given shape and identified non-trivial skeleton using γ = 0.9. (b) A hole
on the boundary of the top-left petal. (c) A hole on the bottom-right pedal.
(b) and (c) show the deficiencies inducing the non-trivial skeleton in (a). In
all examples here, we keep γ = 0.9. 91

3.7 Shape reconstructed from the medial axis transform. (a) Original shapes.
(b)-(d) The shapes reconstructed from the HJS using (b) γ = 0.9, (c) γ =
2.5, and (d) γ = 20. Here we fixed ε = 1.5. 93

3.8 Effects of varying ε on the comparative measures. Here we plot the values
of the rescaled measures, J , DSC and |Bpn|, against different values of ε,
when HJS (γ = 2.5) is applied to the sakura in the first row and the trophy
in the third row of Figure 3.7. Both plots indicate that using slightly dilated
disks improves the reconstruction results. 96

xxii

3.9 (a) Binary image (537 × 700): a cat silhouette. The distance function is
computed by (b) a brute-force method (algorithm 4), (c) the fast sweeping
algorithm (algorithm 2), and (d) the F-H algorithm [207]. Brighter pix-
els indicates further distance from the contour. The F-H algorithm is the
fastest, then the fast-sweeping, and the brute-force is the slowest. (e) shows
the skeleton computed based on the distance transform in (b); (f) shows the
skeleton computed based on the distance transform in (c); and (g) shows
the skeleton computed from (d). In all cases, we fixed γ = 2.5. 98

3.10 A flowchart of the proposed method. (a) A given raster image of a cat’s
silhouette. (b) Zoom-in of (a). (c) Extracted bilinear outline of (a). (d)
Inversely tracing the curvature extrema along the affine shortening flow.
(e) The vectorized outline of (a) with control points marked as red dots.
(f) Zoom-in of (e). (g) Vectorized result of silhouette (a) by the proposed
method. (h) Zoom-in of (g). Notice the improvement from the given raster
image (a) to the proposed method’s result in (g), as well as the zoom of (b)
and (h). 102

3.11 General performance. (a) Cat and (b) its vectorized outline (42 control
points). (c) Butterfly and (d) its vectorized outline (158 control points). (e)
Text design and its vectorized outline (2683 control points). Each red dot
signifies the location of a control point. (g) Two letters exerted from (e)
scaled up with the same magnitude. (h) Zoom-in of the vectorization (f) on
the two letters in (g). 113

3.12 Degenerate cases. In (a) and (c), no candidate control points were identi-
fied. Our algorithm handles such situations by checking if the outline is a
circle. If it is, e.g. (a), the center and radius are computed, and a circle is
drawn without Bézier fitting; hence, there is no control point (red dots) on
the vectorized outline (b). The blue dot indicates the center of the circle. If
it is not a circle, e.g., (c), a pair of most distant points are inserted to initiate
the Bézier fitting, such as in (d). (e) shows the low-resolution version of
(c), and (f) displays its vectorization. When the resolution is low, all the
control points are identified curvature extrema. In (g), three of the outline
curves are identified as circles, and the others are fitted by Bézier polygons.
(h) shows the vectorized result. 115

3.13 (a) For the 20 silhouettes in our data set (Table B.1), the solid curve shows
the average relative reduction of the number of control points ρ(τe) Equa-
tion 3.20, and the dashed curves indicate the standard deviations. (b) The
positive relation between the number of control points when τe = 10.0 is
large and the number of corners of a silhouette. Each dot represents a sam-
ple in our data set. The red curve is computed by linear regression with a
goodness of fit R2 = 0.75592. 117

xxiii

3.14 Effect of the smoothing parameter σ0. (a) A silhouette of a tree where the
boxed region is examined in detail. Vectorization using (b) σ0 = 2.0 (362
control points) (c) σ0 = 1.0 (448 control points), and (d) σ0 = 0.5 (500
control points). With smaller values of σ0, the vectorized outline is sharper,
and the number of control points increases. 118

3.15 Comparison between the control points (red dots) plus the centers of circles
(blue dots) produced by the proposed algorithm and other point feature de-
tectors (green crosses). (a) Compared with the Harris corner detector [255].
(b) Compared with the FAST feature detector [256]. (c) Compared with the
SURF detector [257]. (d) Compared with the SIFT detector [258] 119

3.16 Repeatability ratios of the methods in comparison when the silhouettes in
the first column are rotated or scaled. Notice that the blue lines (proposed
method) are near 1. The performance of our method is the most consistent
across these different silhouettes. 121

3.17 Comparison among the given raster image (red boxes), AI (orange boxes),
the proposed with σ0 = 1, τe = 1 (green boxes), and the proposed with
σ0 = 0.1, τe = 0.5 (blue boxes). With smaller numbers of control points
(#C), our method preserves better the geometric details of the given sil-
houette. 124

3.18 (a) Comparison between AI (γ = 150◦) and the proposed method (σ0 = 1)
when the complexity parameters (µ for AI, τe for ours) vary. The circled
dot corresponds to our default setting. (b) Comparison between AI with
simplification specified by various combinations of µ and γ, and the pro-
posed method using merging with fixed σ0 = 0.5 and varying τe. In both
figures, smaller dots indicate higher levels of complexity for AI (µ) and the
proposed method (τe), respectively. A dot locating to the right indicates
higher accuracy, and a dot in a lower position implies higher efficiency. . . . 125

4.1 Test point clouds. (a) Five-fold circle (200 points). (b) Jar (2100 points).
(c) Torus (2000 points). 128

4.2 The CPU-time (s) of ALM until convergence for the five-fold circle point
cloud in Figure 4.1 (a). Here r = ε = 1 and η varies from 0.05 to 0.5. The
connection between SIM and ALM indicates that large η slows down ALM.
In this graph, as η increases, the time required to reach the convergence
increases. 137

xxiv

4.3 The test point clouds: triangle with 150 number of points, ellipse with 100
points, square with 80 points, and five-fold-circle with 200 points. (a) The
top row, identical initial condition applied to SIM and ALM for different
D. (b) The middle row, the results obtained by SIM. (c) The bottom row,
the results obtained by ALM using r = 1.5. Both methods give compatible
results. 140

4.4 The first row shows ALM and SIM applied to the 3D jar point cloud in
Figure 4.1 (b). (a) The result of ALM with r = 1.3, ε = 0.5, η = 0.6.
(b) The result of SIM. The second row shows the methods applied to the
3D torus point cloud in Figure 4.1 (c). (c) The result of ALM with r =
1.3, ε = 0.5, η = 0.6. (d) The result of SIM. Both methods are compatible
and shows good results. 141

4.5 The effect of the distance function for varying-density point clouds: the
face with n1 points, the head with n2 points, and each ear with n3 points.
(a) the given point cloud is with (n1, n2, n3) = (20, 10, 20), and shows
the 0-level-set of φn at 15th iteration, (b) (n1, n2, n3) = (50, 10, 20), and
shows 18th iteration, and (c) (n1, n2, n3) = (20, 10, 40), and shows 20th

iteration. These three curves eventually degenerate to a point. (d) is with
(n1, n2, n3) = (50, 10, 40) and shows the converged solution. The potential
energy (Equation 4.1) is mainly driven by the distance function d, which
affects the level-set evolution. 143

4.6 The influence of noise on reconstructing three-fold circle with 200 points:
(a)-(c) ALM and (d)-(f) SIM. The first column shows the reconstructed
curves from clean data, and the second column the reconstructions from
noisy data. The third column shows the comparison between the two re-
constructed curves in first two columns. 144

4.7 Results by ALM with different r and ε. For each column, from top to
bottom, ε = 1, 1.5, 2; and for each row, from left to right, r = 0.5, 0.8, 1, 2.
Increasing ε renders the curve less sharp and more convex. Increasing r
induces a stronger diffusion effect on φn. 145

4.8 (a) DiscQn, (b) rnU , (c) rnL at certain iterations. (d) The region (in white)
where d explicitly guides the level-set evolution by ALM. The distance
function d refines the local structures and it is only active near {φn = 0}.
This partially explains the efficiency of ALM. 148

4.9 Effect of r1 in ALM. For fixed r2 = 10, r3 = 3, and η = 2, increasing r1

induces better reconstruction on the concave part. 170

4.10 Effect of r2 in ALM. For fixed r1 = 10, r3 = 3, and η = 2, increasing r2

induces better reconstruction on the concave part. 170

xxv

4.11 Effect of η in ALM. Here r1 = 15, r2 = 10, and r3 = 3 are fixed. Increasing
η induces reconstruction of the concave wedge. Although in cases, the
energy curves are identical before the 100-th iteration, larger η suppresses
the oscillation of the energy curve: yellow line (η = 5) is more stable
compared to red (η = 1) or blue (η = 0). 171

4.12 (a) Results by ALM with noisy data and r1 = 15, r2 = 10, r3 = 3. (b)
shows a zoom-in of the right-bottom of (a). The noise is additive Gaussian
with standard deviation 2. As η increases, the curve becomes less oscillatory.172

4.13 With η = 2, comparison between OSM with s = 2 and ALM. In ALM,
r1 = 15, r2 = 10, r3 = 3 is used. Convergence to the steady state is faster
for OSM. The reconstructed curves are shown in (b) for ALM and in (c)
for OSM: ALM may shorten the curve, while OSM can extrude a corner to
make a circular reconstruction. 172

4.14 (a) By OSM with s = 2 for the distance term in (Equation 4.27), the com-
parison between (I) η = 0 (green curve), (II) s = 1 (red curve), and (III)
s = 2 (blue curve) for the curvature term. (b) OSM with η = 2.5 for
s = 2 in the model (Equation 4.35). This is the blue curve in (a). OSM
using s = 2 gives the best result in terms of capturing the structure of the
underlying surface more accurately. 173

4.15 Comparison between the algorithm from [274] and OSM with or without
curvature constraints: The first row results are by the algorithm proposed
in [274] with r1 = r2 = 8, r3 = r4 = 3. The second row results are by
OSM without any curvature term, η = 0. The third row results are by OSM
with curvature constraint (s = 2): (a) η = 3, (b) η = 2, (c) η = 1, and (d)
η = 2. The shape of the underlying surface are more accurately captured
using our proposed model with the curvature constraint. 174

4.16 Effect of η in OSM. (a) η = 0. (b) η = 1. (c) η = 2. (d) η = 3. (e) η = 4.
As η increases, the two sharp corners are recovered better. As η gets larger,
the corners get more circular to avoid large curvature. 175

4.17 By OSM, sparse data results with or without curvature constraints. (a) η =
0, and (b) η = 4 for a point cloud sampled from a Boomerang shape. (c)
η = 0 and (d) η = 2, for a sparse square shape where only four corners
and one point on each side are given. For both examples, with curvature
constraint, the recovery is more accurate and sharper. 176

4.18 By OSM, extremely sparse data: (a) Given data. (b) The recovered result
with η = 1 and (c) with η = 1.5. Even with extremely sparse data, curva-
ture constraint model can reconstruct the square corners well. 176

xxvi

4.19 By OSM, reconstruction with noisy data: (a) η = 0, (b) η = 1, (c) η = 2.
The noise is Gaussian with standard deviation 1. As η gets larger, the two
lower corners are better recovered. 177

4.20 Examples of three dimensional point cloud data. (a) A pyramid. (b) A
yoyo. (c) An ice cream cone. 177

4.21 Reconstruction of the pyramid by OSM with s = 2: (a) Result with η = 0.
(b) Result with η = 10. (c) Comparison of cross section along y = 25. . . . 178

4.22 Reconstruction of the ice cream cone by the algorithm from [274] and OSM
with s = 2: (a) Result by the algorithm proposed in [274] with r1 = r2 =
8, r3 = r4 = 3. (b) Result by OSM with η = 0. (c) Result by OSM with
η = 5. (c) Comparison of cross sections of results by OSM along y = 25. . 179

4.23 Reconstruction of the ice cream cone by the algorithm from [274] and OSM
with s = 2: (a) Result by the algorithm proposed in [274] with r1 = r2 =
8, r3 = r4 = 3. (b) Result by OSM with η = 5. (c) Result by OSM with
η = 10. (c) Comparison of cross sections of results by OSM along y = 25. . 180

5.1 (Top) Underwater image with heavy green cast. (Bottom) Result of the
proposed method. In the middle, several zoomed-in regions are displayed
for comparison. The resulted image has enhanced contrast, balanced colors,
and many image contents, e.g., the patterns on the swimming shorts, are
more recognizable. In this paper, all the underwater images are from the
benchmark data set [321]. 184

5.2 Pipeline of the proposed method. The result shown here uses η = 10, β =
1/3 as the model parameters. 187

5.3 (a) CIELAB gamut projection on the L∗-a∗ plane. (b) Projection on the
L∗-b∗ plane. (c) Projection on the a∗-b∗ plane. (d) Geometry for computing
the chroma upper limit C∗max(L, θ + γi) in the direction of the hue angle
θ + γi on the lightness level of L. Here the chroma direction falls within
the sector [γi, γi+1], i = 1, 2, . 190

5.4 (a) Gamma function used for chroma enhancement (Equation 5.13) with
varying values of η. (b) Robust factor (Equation 5.14) for suppressing the
noisy hues with varying values of β. 194

5.5 Pre-processing by hue angle adjustment in the blue region of CIELAB.
(a) Part of an underwater image. (b) Proposed method without the pre-
processing (Equation 5.17). (c) Proposed method with the pre-processing.
With the adjustment, the blueness on the strap is preserved. 196

xxvii

5.6 Post-processing considering the HK-effect. (a) Zoom-in of part of the
underwater image in Figure 5.1. (b) Proposed method without the post-
processing (Equation 5.18). (c) Proposed method with the post-processing.
Post-processing considering the HK-effect reduces over-exposure. 197

5.7 General examples of the proposed method. (a) A typical underwater image
showing dominating blue cast, and the contrast is relatively low. (b) Result
of the proposed method applied to (a) removes the blue cast and enhances
the textures on the riverbed. (c) A blurry underwater image where objects
are hardly visible. (d) Result of the proposed method applied to (c) which
shows vibrant colors and sharp objects’ boundaries. (e) A deep underwa-
ter image commonly seen in field exploration. (f) Result of the proposed
method applied to (e) which renders the details of the structure of interest. . 198

5.8 The proposed method shows consistent performance for underwater images
with different color casts. For each underwater image in the first 3 rows,
we show their hue angle distributions in the second column; in the third
columns we show the distribution of the final results, which are displayed
in the last row. In all cases, we have η = 6 and β = 1/4. 199

5.9 (a) Original underwater image. (b) Proposed method without applying the
robust factor (Equation 5.14) (η = 8). (c) Proposed method without apply-
ing the robust factor (η = 2). (d) Proposed method with the robust factor
(η = 8, β = 1/3). Using the robust factor suppresses the background noisy
colors while enhancing the saturation of the other regions. 201

5.10 Effect of the chroma enhancement parameter η. (a) Original underwater
image. (b) Result with η = 2. (c) η = 4. (d) η = 10. Here we fix β = 1/4. 202

5.11 Qualitative comparison of different methods (a) Original underwater im-
age. (b) Zhao et al. [352] (c) Peng et al. [319] (d) Histogram Equalization
(HE) (e) Limare et al. [353] (f) Automatic Color Enhancement (ACE) [71,
354] (g)Local Color Correction [355] (h) Multiscale Retinex [329, 330] (i)
Proposed Method. 205

5.12 Quantitative evaluation and comparison. We compare our methods with
Histogram Equalization (HE), Peng et al. [319], and Automatic Color En-
hancement (ACE) [71, 354]. The quality of each image is evaluated by
UCIQE [317] (left, blue marks the best) and UIQM [356] (right, red marks
the best). In all the cases, we use η = 10 and β = 1/4 for the proposed
method. 206

xxviii

6.1 The sensitivity of numerical differentiation to noise. (a) Graph of sin(x),
0 ≤ x ≤ 2π (black), and its noisy version (red) with Gaussian noise of
mean 0 and standard deviation 0.01. (b) The first-order derivatives of the
function (black) and the data (red). (c) The second-order derivatives of the
function (black) and the data (red). The derivatives of data in (b) and (c)
are computed using the five-point ENO scheme. As the order of derivative
increases, the noise gets amplified. 213

6.2 Performance of SDD on the data in Figure 6.1. (a) Graph of sin(x), 0 ≤
x ≤ 2π (black) and the denoised data (red) using MLS. (b) First-order
derivatives of the function (black) and the denoised data using SDD (red).
(c) Second-order derivatives of the function (black) and the denoised data
using SDD (red). Derivatives are computed by the five-point ENO scheme,
and the smoothing operator S is MLS. 214

6.3 (a) and (b) illustrate the idea of TEE. (c) and (d) explain MTEE when w =
2. The blue arrows in (a) and (c) represent time evolution using the forward
Euler scheme on a fine time grid with spacing ∆̃t � ∆t. In (b), two
different PDEs (green and red) are evolved, and the green one has a smaller
TEE. In (d), the candidate PDEs are evolved from multiple time locations,
and their numerical solutions are compared with the denoised data after a
time length of w∆t. 219

6.4 An example of the ST iteration. Starting with a large number K, the first
iteration gives rise to K candidate coefficients for k = 1, . . . , K. The PDE
with the smallest MTEE is picked, e.g., SP(3) with cardinality K1 = 3 and
support A1. The second iteration gives rise to the candidate coefficients
only supported on A1 using SP(k) with k = 1, 2, 3. The PDE with the
smallest MTEE is found, e.g., SP(2) with cardinality K2 = 2 and support
A2. The third iteration does not change the support, i.e., A3 = A2, so the
final output is the coefficient vector of SP(2). 220

6.5 Robustness of MTEE over TEE. (a) Noisy solution set of the Burgers’ equa-
tion ut = −uux generated with T = 0.05,∆t = 0.001,∆x = 1/256. By
evolving the noisy initial condition according to ut = −uux, (b) shows the
solution at t = 0.02 and (c) shows the solution at t = 0.03. The solution
blows up at t = 0.032. 221

6.6 Noisy and denoised data of the transport equation (Equation 6.15), as well
as simulations of the recovered PDE. (a) The clean data, (b) data with 10%
noise, (c) the denoised data Sx[U], (d) simulation of the PDE identified
by ST and SC (identical). (e) Data with 30% noise, (f) the denoised data
S(x)[U], and (g) simulation of the PDE identified by ST and SC (identical). . 229

xxix

6.7 The average error ec, er and ee over 50 experiments for the transport equa-
tion (Equation 6.15) with respect to various noise levels. (a) The curve rep-
resents the average ec for IDENT [369] (Green), ST (Red) and SC (Blue),
and the standard deviation is represented by vertical bars. (b) The average
and variation of er for IDENT (Green), ST (Red) and SC (Blue). (c) The
average and variation of ee for IDENT (Green), ST (Red) and SC (Blue).
The coefficient error ec by ST and SC is significantly smaller than that of
IDENT. 229

6.8 Robustness of SC to the choice of α for the recovery of the transport equa-
tion (Equation 6.15). (a) and (b) display ec and er versus 1/α respectively,
with 1% (Blue), 5% (Red), 10% (Orange), 20% (Purple) noise. Each ex-
periment is repeated 50 times, and the errors are averaged. We observe that
SC is not sensitive to α, and there is a wide range of values for α that give
rise to a small error. 230

6.9 Clean and noisy data of the transport equation (Equation 6.15) with the
initial condition (Equation 6.16). (a) Clean data. (b) Noisy data with 10%
noise. (c) Noisy data with 30% noise. 231

6.10 The average error ec, er and ee over 50 experiments for the Burgers’ equa-
tion (Equation 6.17) with respect to various noise levels, where the initial
condition is Equation 6.18. (a) The curve represents the average ec for
IDENT [369] (Geeen), ST (Red) and SC (Blue), and the standard devia-
tions are represented by vertical bars. (b) The average and variation of er
for IDENT (Geeen), ST (Red) and SC (Blue). (c) The average and variation
of ee for IDENT (Geeen), ST (Red) and SC (Blue). The ec, er and ee of ST
and SC are much smaller than those of IDENT. 233

6.11 The average error ec, er and ee over 50 experiments of the Burgers’ equation
with diffusion (Equation 6.20) with respect to various noise levels. (a) The
curve represents the average ec for IDENT [369] (Geeen), ST (Red) and SC
(Blue), and the standard deviations are represented by vertical bars. (b) The
average and variation of er for IDENT (Green), ST (Red) and SC (Blue).
(b) The average and variation of ee for IDENT (Green), ST (Red) and SC
(Blue). Among the three methods, ST gives the best result. 235

6.12 Robustness of SC to the choice of α for the recovery of the Burgers’ equa-
tion with diffusion (Equation 6.20). (a) and (b) display ec and er versus 1/α
respectively, with 0.5% (Blue), 1% (Red), 3% (Orange), 5% (Purple) noise.
Each experiment is repeated 50 times, and the errors are averaged. When
the noise level is low, such as 0.5% and 1%, there is a wide range of values
for α, which give a small error. As the noise level increases, the range of
the optimal α becomes narrow. 236

xxx

6.13 SDD results with different smoothers. The first row is the numerical so-
lution of Equation 6.27 at t = 0.15 (0% noise) with the initial condition
u0(x, y) = sin(3πx) sin(5πy) and its various partial derivatives. The sec-
ond row shows the noisy data and its numerical derivatives when 5% Gaus-
sian noise is added to the clean data. The bottom four rows are the SDD
results at t = 0.15 using MA, cubic spline (CS), diffusion (DF), and MLS
in order. While all methods recover U (the first row), the dynamics of the
derivatives, especially in the third and fourth rows, are best preserved by
MLS. 242

6.14 Probability of signed-support recovery P[S±(β̂) = S±(β∗)] versus the grid
size of temporal dimension N , and ‖ẑSc‖∞ versus N are recorded on the
same plot for Viscous Burger’s equation in panel (a) and for KdV equation
in panel (b), respectively. 261

6.15 Boxplots of �Q̂N�∞ versus N are displayed for Viscous Burgers’ equation
in panel (a) and KdV equation in panel (b), respectively. 262

6.16 Left panel (a) displays the curves representing P[S±(β̂) = S±(β∗)] versus
N , when ν = 0.03, 0.02, 0.01, 0.005. Right panel (b) exhibits the range of
λN for which `1-PsLS gives the solution β̂λ such that S(β̂λ) ⊆ S(β∗) with
respect to N , when ν is set as 0.005. 263

7.1 Workflow of the proposed STIS model. 266

7.2 (a) Structure of a coordinate component of the TAC feature extractor N1.
The input is a TAC in RN (N = 90) and the output is a feature vector in RK′

(K ′ = 32). The convolution kernels are of size 3 and the zero-paddings are
of size 1. The numbers above Conv are the number of channels,and those
above Linear are node sizes. (b) Structure of the domain synthesizer N2.
The input is an image whose channels are TAC feature vectors. Here H
is the image height and W is the image width such that M = HW . The
output is an image with K channels, each of which defines a spatial basis
for the reconstruction. 273

7.3 Interpretability of spatial and temporal bases identified by STIS using a
low rank (K = 3). Each spatial basis roughly corresponds to homogeneous
regions with similar dynamic features, and the associated temporal basis
describes its contribution to the concentration distribution. 274

7.4 Performance on TAC reconstruction. (a) Three 3 × 3 square ROIs marked
on the final frame of an original test sample. (b) Average TACs of the
respective ROIs in (a). 275

xxxi

7.5 Qualitative comparison of different methods on a test dPET image sequence.
The mark region is further examined in Figure 7.6. 277

7.6 Zoom-in comparisons among (a) Original (b) SEMF7 (c) SEMF16 (d) Pro-
posed (K3I2) (e) Proposed (K7I3) on the final frame of the tests in Figure 7.5.278

7.7 Comparison of different methods on TAC reconstruction. (a) Three 3 ×
3 square ROIs marked on the final frame of an original test sample. (b)
Comparison of the average TACs in R1 (c) in R2, and (d) in R3. 278

xxxii

SUMMARY

Patterns represent the spatial or temporal regularities intrinsic to various phenomena

in nature, society, art, and science. From rigid ones with well-defined generative rules to

flexible ones implied by unstructured data, patterns can be assigned to a spectrum. On

one extreme, patterns are completely described by algebraic systems where each individual

pattern is obtained by repeatedly applying simple operations on primitive elements. On the

other extreme, patterns are perceived as visual or frequency regularities without any prior

knowledge of the underlying mechanisms. In this thesis, we aim at demonstrating some

mathematical techniques for representing patterns traversing the aforementioned spectrum,

which leads to qualitative analysis of the patterns’ properties and quantitative prediction of

the modeled behaviors from various perspectives. We investigate lattice patterns from ma-

terial science, shape patterns from computer graphics, submanifold patterns encountered in

point cloud processing, color perception patterns applied in underwater image processing,

dynamic patterns from spatial-temporal data, and low-rank patterns exploited in medical

image reconstruction. For different patterns and based on their dependence on structured

or unstructured data, we present suitable mathematical representations using techniques

ranging from group theory to deep neural networks.

1

CHAPTER 1

INTRODUCTION

1.1 What is Pattern?

With the advance of data acquisition techniques and storage devices, the amount of accessi-

ble information grows exponentially, and it becomes more imperative than ever to identify

the patterns buried in the ocean of data. Pattern [1, 2, 3, 4] is an abstract regularity discov-

ered, derived, or sometimes invented to harness the correlations among individual events

for the purpose of understanding, analysis, and prediction. Depending on the data types,

patterns may be realized from diverse perspectives, and the established relations among

samples can be either deterministic [1, 3] or stochastic [5, 6]. The formation of patterns is

often causal [7], yet pattern recognition is mainly contingent on cognition [8, 9]. Success-

ful pattern identification yields a considerable information reduction, which is generally

based on the belief that subjects of interest can be embedded into certain low dimensional

structures [10, 11]. However, these structures are almost always not unique due to the com-

plexity nature of data. The superiority of one pattern representation over another is closely

related to the specific applications.

1.1.1 Diverse Forms of Pattern

The most recognizable feature of pattern is visual repetition. For example, geometric pat-

terns in architecture surface designs by tessellation [12] and garment textures [13] created

by tactically translating or rotating certain primitive shapes. These patterns are rigid by

careful design, such that the frequently occurring elements are identical and their distri-

butions are completely predictable. There are more patterns in nature observable by hu-

man that do not contain rigorously repetitive units. Many echinoderm like starfish [14] and

2

crinoid [15] as well as snowflakes exhibit surprisingly diverse yet highly radial symmetries.

Meandering rivers, crawling snakes, and brain corals all follow similarly looking sinuous

paths. Romanesco broccoli, coastal boundary, frost crystals, and many others present a

beautiful self-similarity, whose structures approximately keep repeating themselves when

observed in increasingly smaller scales [16]. These soft patterns admit various flexible

forms where both deterministic and stochastic factors contribute to the perceived regular-

ity. The tolerance of lack of exact repetition is closely related to the cognitive process

called attention [17]. This vital mechanism allocates human’s limited cognitive processing

resources to concentrate on specific aspects of information. It is striking that, athough we

are vividly submerged in the reality through our vision, more than 99% of the received

visual data per second result in inattentional blindness [18]. Consequently, when focusing

on structural similarities, we are able to, or unconsciously forced to omit various kinds of

discrepancies and extract the general regularities among separate parts or distinct objects.

Patterns are also identified via diverse stimuli ranging from sounds [19, 20, 21] and

smells [22] to temperature [23] and electromagnetism [24]. The fate motif from the first

movement of Beethoven’s Symphony No.5 as well as numerous other great works [20]

and the BACH motif (B flat-A-C-B natural) [21] employed by countless composers are

well-known examples of frequently appearing phrase patterns rendering distinctive musi-

cal developments that tie the whole pieces into harmonic unities. The fact that gradually

morphing from one odours to another induces noticeably different neuronal codings [22]

implies a close correlation between the chemosensory signatures and olfactory pattern clas-

sification.

On more abstract levels, regularities studied in physics, chemistry, biology, linguistics,

social structures, economics, political science, and history have greatly enriched the con-

notation of pattern. Patterns can be prescriptive such as grammar [25] or descriptive such

as syntax [26]. Structural patterns describe static and stable relations among constituent

components, e.g., infrastructure analysis [27], whereas dynamic patterns concentrate on

3

regularities along the temporal dimension, e.g., stock market analysis [28]. Long-term pat-

terns study events which can extend to millions of years as discussed in Darwin’s theory of

evolution [29], and short-term patterns may focus on phenomena that only last seconds like

neuronal firing [30]. There are also patterns of various scales such as macroeconomics [31]

versus microeconomics [32], and theory of relativity [33] versus quantum mechanics [34].

1.1.2 Pattern Formation, Recognition, and Representation

Patterns can be studied mainly from three aspects: pattern formation, pattern recognition,

and pattern representation. The first two characterize respectively the physical cause and

psychological cause of diverse patterns, while the last one focuses on developing models

that reproduce or approximate observed patterns.

Pattern formation characterizes the self-organizing mechanisms of complex systems

from orderly generative rules and identifiable primitive elements. A complete description of

pattern formation would allow exact reproducibility, which may be achieved in constructive

manners or in experimental settings where all the determining factors are controllable. In

most cases, only key causal factors are accessible, leaving the unidentified influences that

yield insignificant variability as random variables. For instance, one of the driving forces

of hexagonal patterns found among vegetation in flat terrains is ascribed to the positive

water-biomass feedback between local vegetation growth and water transport towards the

growth region [35]; meanwhile, such mechanism is also affected by disturbance regime,

dominant plant species, and many other environmental factors [36]. Pattern formation in

nature generally involves elements of multiple scales and distinctive properties [37, 38],

which makes it demanding to develop a unified and comprehensive framework.

Although the cognitive processes are extremely sophisticated, pattern recognition in

common experience is achieved effortlessly for human. There are two major challenges

associated with pattern recognition. First, given that the consciousness of patterns emerges

naturally for human, e.g., facial recognition [39], it is surprisingly difficult to develop an

4

artificial system that processes information on a level close to the way we perceive diverse

stimuli. On the positive side, theories [40, 41] based on template matching, prototype

matching, feature analysis, Fourier analysis have been proposed and successfully applied

in different aspects of everyday life, and the cognitive processes modeled by these theories

which we heuristically identify keep inspiring new technological developments. Second,

there are countless patterns recognizable by human only if the information is converted to

particular forms, and looking for the appropriate transformations is not always straight-

forward. Examples include line patterns in stellar spectra [42], ultrasonic patterns [43],

acoustic fingerprint [44], and periodic patterns in biological sequences such as DNA [45].

Unlike pattern formation and recognition, in the studies of pattern representation, hu-

man takes a proactive role. For the same pattern, different types of representation can be

devised from various perspectives. As an example, shape is a fundamental attribute of

object besides other defining properties including color and texture [46]. Each shape is re-

garded as a unique pattern formed by certain combinations of visual cues, thus in this case,

pattern formation is closely tied to its recognition. Generally, shape representations [47]

either focus on contour or region, i.e., the boundary or the interior of a given shape, and

each one of which is further classified based on whether the described features are struc-

tural or global. For instance, the chain code [48] is a contour-based structural method;

the Fourier descriptor [49] is a contour-based global method; the convex hull is a region-

based structure method; and the Zernike moment [50] is a region-based global method. we

note that none of these approaches coincides with the complete cognitive process of shape

recognition, yet they provide compact and useful information suitable for many purposes.

Specifically, qualitative pattern representation characterizes general structural features

and provides critical insights for the underlying regularity; and quantitative pattern repre-

sentation models the connection among samples, such that the pattern observed in the group

is translated into numerical data. Moreover, a direct pattern representation is a simplifica-

tion of the mechanisms behind pattern formation, and an indirect pattern representation

5

focuses on the distinguishing features of the pattern without heavily relying on the physical

or psychological processes.

In most cases, pattern representation is only approximating or restricted to certain as-

pects of the associated pattern formation or recognition. However, sophisticated pattern

representation establishes an accessible path to identifying and understanding dominant

factors in pattern formation and recognition, which can also be efficiently utilized for ar-

tificial intelligence. For instance, the parse tree representation of the syntax pattern is

frequently applied in machine translation [51], and various algorithmic descriptions of the

Retinex theory [52, 53] instantiate the cognitive patterns in the human visual system, which

have been extensively used to in computer vision [54, 55, 56]. More importantly, successful

pattern representation sometimes predicts the existence of new patterns of groundbreaking

significance. The most well-known example is the prediction of black hole from a peculiar

solution of the Einstein field equations [57, 58] developed in 1915, and it was only recently

unveiled to the public for the first time by the Event Horizon Telescope [59, 60] in 2019.

In these works, mathematical models play indispensable roles which offer powerful ana-

lytic tools and quantifiable predictions. Not only can they precisely depicts the regularities

embedded in diverse forms of pattern, but they also provide explicit and verifiable implica-

tions via rigorous derivations. Given their profound significance in numerous theories and

countless applications, we will concentrate our attention to mathematical representations

of pattern starting from the next section.

1.2 Mathematical Pattern Representation

Regarding sample attributes as variables and the governing pattern as operators relating

them, mathematical pattern representation aims at developing mathematical models to char-

acterize the pattern in a quantifiable manner based on tools such as groups, algebraic equa-

tions, dynamical systems, and probability distributions, etc. The modeled patterns include

diverse phenomena discovered in nature and society, or they may well be found within

6

mathematics itself. Typically, a mathematical pattern representation is obtained by deriva-

tion starting from numerous axioms or principles of the underlying phenomena; this is

called the model-based approach. As an alternative, the data-driven approach identifies the

representation by learning features from a given dataset. There are also many hybrid meth-

ods which establish the basic framework using model-based ideas, while leaving certain

parameters determined by the collection of data. Thanks to the soaring computing power,

with their superior performances in countless applications, data-driven representations such

as deep neural network (DNN) have received increasing popularity. Although many clas-

sically challenging problems have been addressed by data-driven approaches with satisfac-

tion, it should be noted that model-based representations still play irreplaceable roles and

can considerably improve the efficiency and accuracy of data-driven methods.

1.2.1 Model-based Approach

Traditionally, mathematical pattern representation involves defining equations and model

assumptions. As an elementary example, assuming the heat conduction on a metal plate

with diffusivity constant α > 0 follows the Fourier’s law [61], then the dynamic pattern

of the heat variation within the plate’s interior can be represented by the heat equation:

ut = α∆u, where u is the temperature, ut = ∂u/∂t, the partial derivative of u with respect

to time, measures the rate of change of temperature, and ∆ = ∂2/∂x2 + ∂2/∂y2 is the

Laplacian operator in 2D Euclidean space. In addition, to complete the model, supplemen-

tary conditions are generally required. Continuing the previous example, geometry of the

plate’s boundary, initial heat distribution on the plate or the conduction behavior around the

boundary, i.e., whether it is insulated or attached with external heat sources, are often spec-

ified to guarantee a well-posed problem in the Hadamard sense [62]: the system admits a

unique solution which is continuously dependent on the given data. For many model-based

representations, principles in physics are fundamental, and the properties of mathematical

models are studied to understand the mechanisms behind pattern formation, e.g., equilib-

7

rium state [63], critical point [64], periodic orbit [65], bifurcation [66], and finite time

blow-up [67]. Meanwhile, there are also many representations inspired by heuristics or

guided by desired properties, which are usually encountered in models concerning pat-

tern recognition, such as the Rudin-Osher-Fatemi (ROF) model [68, 69] for image restora-

tion, Mumford-Shah’s functional [70] for segmentation, and perceptual color correction by

Bertalmı́o et al. [71].

In addition to the analytic type described above, algebraic representation is particu-

larly handy when describing symmetry, which is an elemental property rooting beneath

every rigid pattern [72, 73]. Symmetry refers to a structural regularity of a system whose

intrinsic properties remain invariant under a class of transformations. Focusing on the rela-

tions among basic units expressed via certain actions, algebraic structures such as groups,

rings, and modules are powerful prototypes to precisely characterize the pattern and re-

veal hidden connections. For instance, all the repetitive planar patterns can be elegantly

classified according to the family of wallpaper groups [74], and their 3D extensions are

well described by layer groups [75], which are again special cases of the more general

space groups [76] for the symmetries of 3D configurations. In these representations, every

pattern corresponds to a group by identifying each group element with a basic spatial trans-

formation, e.g., translation, and rotation, which keeps the pattern invariant; hence patterns

are considered identical if and only if their group representations are isomorphic. Alge-

braic representations are also important in studying patterns within mathematics, and their

applications permeate all branches. Gelfand rings in functional analysis [77], projective

modules obtained by sections of vector bundles over smooth manifold [78], and Boolean

algebra in probability theory [79] are a few examples among countless others. On a even

more abstract level, the pattern among algebraic patterns is investigated in the category

theory [80, 81], where objects and morphisms form the main elements to describe pattern

formation. Therefore, in some sense, mathematics provides a universal language for pattern

representation [82].

8

Other than analytic and algebraic ones, there are also mathematical pattern represen-

tations based on geometry, graph, and topology, etc., which are frequently employed in

various applications. To reveal different properties of the underlying pattern, some repre-

sentations are more advantageous than the others, and devising the appropriate models is

often more of an art than science.

1.2.2 Data-driven Approach

Submerged in the massive amount of data from diverse sources, e.g., stock prices, photos,

videos, customers’ reviews, etc., we desperately need effective tools to organize and un-

derstand them. By doing so, we can achieve considerable reduction on the information to

be stored, since the correlations among samples within the same class can be utilized to

recover redundant data. Moreover, highly complex mechanisms of pattern formation and

recognition can be discovered, which would be demanding to study for the conventional

approaches due to non-linearity, discontinuities, and non-convexity.

Data-driven mathematical pattern representations aim at identifying the unknown map-

ping from given sample to its label. A sample usually encapsulates a bag of numeric or

categorical attributes. When the label is continuous, the identification procedure is called

regression; and when it is discrete, the procedure is known as classification. The mapping

may belong to a finite dimensional functional space, thus it is determined by several un-

known numbers, called parameters, and we call it a parametric problem. In contrast, when

the model structure is not specified a priori, then it is non-parametric. The parameters

as well as the functional relations in the case of non-parametric problems are obtained by

learning features from collections of data. Specifically, when the dataset consists of sample-

label pairs, it is a supervised learning; if the dataset only contains samples without access to

any labels, it is a unsupervised learning. There are also notions like semi-supervised learn-

ing, reinforcement learning, and transfer learning which has been gaining more weights

in recent researches. Among data-driven approaches, there are two closely related areas:

9

machine learning and data mining. While machine learning focuses on prediction through

the pattern learned from the data, data mining aims at discovering new knowledge. Other

than this discrepancy, they share most techniques.

Deep learning [83, 84] is a specific method of machine learning. It constructively ap-

proximates the unknown mapping from data to label via a consecutive composition of sim-

ple operations, such as affine transform, convolution, down-sampling, etc. Most impor-

tantly, the employment of nonlinear activation functions, e.g., sigmoid and rectified linear

unit (ReLU), brings the necessary complexity for the powerful expressivity of the learned

mapping. In diagram, the structure of such representations usually take forms of directed

graphs, where each node stores a scalar, and each arrow from a source node to a target

node indicates a simple mapping which is usually an affine transform followed an activa-

tion function. Such representations are thus called neural networks. In its most basic form,

a neural network consists of three layers of nodes: the input layer where each node only has

outward arrows; the output layer where each node only has inward arrows; and the hidden

layer where nodes take data from the previous layer and send the processed data to the next

layer. When there are multiple hidden layers stacked between the input and output lay-

ers, as what is implemented in practice, the structure is often called a deep neural network

(DNN), and each layer of DNN often named after its main operations such as convolution

layer and max-pool layer. Other popular architectures include fully convolutional neural

network (FCNN) [85], U-net [86], recurrent neural network (RNN) [87], and deep residual

network (ResNet) [88], etc.

Determining a neural network amounts to specifying the parameters of each layer in-

volved, e.g., kernel weights for the convolution layers and matrix weights for linear layers,

by optimizing a loss function L. In case of supervised learning, L compares the network

outputs to the labels paired with the inputs; and in case of unsupervised learning, L evalu-

ates the outputs in terms of certain desired properties. Due to the complexity of loss land-

scape [89], the optimization is almost always non-convex. Although the commonly applied

10

stochastic gradient descent methods help to escape local minima, the network training re-

mains a delicate problem. In general, when the network is deeper, i.e., has more hidden

layers, it acquires higher expressivity and approximates mappings with more complexity;

meanwhile, the associated training easily gets unstable due to exploding gradient [90], dy-

ing neurons [91], and many other issues. For better convergence behaviors, much efforts

have been made to design easily trained network architectures and more efficient training

paradigms [92, 93, 94].

1.3 Organization of the Thesis

This thesis presents different types of mathematical pattern representation and their appli-

cations in various fields to display the elegance and effectiveness of both model-based and

data-driven approaches. Through out the discussion, we make effort to illustrate the pros

and cons of diverse mathematically equivalent representations in the context of specific ap-

plications. The main body of the thesis consists of two parts: Part I (chapter 2-5) focuses on

model-based representations, and Part II (chapter 6 and 7) discusses data-driven methods.

Finally, we summarize the thesis, comment on the comparison between model-based and

data-driven methods, and discuss about future works in Chapter 8.

1.3.1 Contents of Part I (Chapter 2-5)

The first part of the thesis consists of Chapter 2-5 and discusses 4 different topics related to

pattern representation. Each topic showcases a unique modeling technique with different

mathematical flavor. The applications covered in this part ranges from material science to

computer vision/graphics.

Overview of Chapter 2

In this chapter, we concentrate on one of the most fundamental rigid planar patterns, the

regular 2D lattice, which admits a simple and natural representation via a finite dimensional

11

vector space. Although it describes lattice patterns exactly, such basic representation causes

unexpected ambiguity for the purpose of classification. Alternatively, groups are perfect

for characterizing the pattern symmetries, yet it is not suitable for quantifying the visual

differences between lattice patterns. In this case, complex numbers serve a more powerful

tool to express lattice patterns, and they elegantly encode geometric transformations via

algebraic operations. Moreover, a complex quotient metric space, called the lattice metric

space, can be developed where each lattice pattern corresponds to one and only one point,

and visual differences among them are effectively described by distance in space. The

rich geometric and topological structures naturally derived from the Poincaré metric and

modular group theory empowers the lattice metric space to be a visually consistent system

for lattice representation. In addition, we also discuss some applications of the lattice

metric space in image processing and material sciences.

Overview of Chapter 3

In this chapter, shape patterns are mostly concerned. Different from rigid patterns, shapes

are more versatile, and looking for a stable representation complying with visual percep-

tion allows diverse perspectives. We focus on representing the shape patterns using partial

differential equations (PDEs). To represent binary shapes, or silhouette, in a compact for-

mat, we discuss the Hamilton-Jacobi skeleton region-based representation. It eliminates

the redundant information by mapping the shape onto the singularity of the signed distance

function determined by the shape boundary. Such lower-dimensional skeleton reveals ho-

motopy types of raster shapes and allows accurate shape reconstruction. In addition, we

discuss a contour based shape representation by approximating the polygonal boundaries

of discrete shapes using Bézier polygons. This conversion from raster images to combi-

nations of primitive elements specified by small numbers of points is known as vectoriza-

tion. The vectorized results enjoy resolution-independent properties, which are important

in font designs, logo editing, document transmission and preservation, etc. We describe

12

the application of affine-scale space induced by the affine shortening PDE, which allows to

reduce pixel details irrelevant to shape recognition and to locate prominent curvature ex-

trema as critical visual cues. We also include comparisons of the introduced method with

state-in-art graphic software in terms of representation effectiveness both qualitatively and

quantitatively.

Overview of Chapter 4

In this chapter, the subjects of interest are point clouds, which are assumed to be perturbed

samples from a unknown submanifold of codimension one. We discuss some variaional

techniques to represent the underlying submanifold pattern perceived from the configura-

tion of points. In particular, each pattern implied by the given point cloud is represented

by the level-set of a minimizer of certain Tikonov-type functional. Its geometric properties

largely depend on the point-cloud distribution and the regularization explicitly defined via

functionals of curvature or surface area. As the associated optimization problem is non-

convex and has high-orders, straightforward implementation leads to slow convergence.

We introduce fast-algorithms based on operator-splitting and semi-definite strategies to

efficiently find the representation via alternative optimizing paradigms. With proper se-

lections of parameters, these algorithms converge considerably faster than classical ones.

Similar algorithmic ideas are crucial in numerically solving variational problems, and we

will utilize them again in later chapters.

Overview of Chapter 5

In this chapter, we discuss pattern representation inspired by recognition and the related

applications in underwater image color correction. Color constancy is an adaptive mecha-

nism of human vision system (HVS), which is a vital property for relatively stable object

recognition under varying illuminating conditions. Due to complex environmental factors,

images acquired in underwater show saturated blue or green color cast, low contrast, or het-

13

erogeneous blurriness. Recovering the objects’ colors in underwater scene is a challenging

inverse problem, and the involved physics are rather complicated. Alternatively, we dis-

cuss several perceptually inspired methods focusing on reducing the visual degradation

commonly faced in underwater images. In particular, we focus on introducing a simple

least-square approach established in the CIELAB color space, where various interesting

topics related to color representation will be covered.

1.3.2 Contents of Part II (Chapter 6-7)

In the second part of the thesis, we switch to data-driven pattern representations, where

learning pattern features from collection of data is at the core. Although ideas from model-

based approaches are often employed yielding great improvement on efficiency and accu-

racy, performance-related model parameters are determined from the given data. Here we

focus on two interesting pattern representations constructed from spatial-temporal data.

Overview of Chapter 6

In this chapter, we discuss the problem of data-driven PDE learning, or infinite dimensional

dynamic data mining. Conventionally, PDE models are established based on physical prin-

ciples, and various assumptions are introduced to simplify the derivations, leading to the

mathematical relations governing the essential dynamics. Data-driven approach offers a

novel perspective, where PDEs are automatically determined by the experiment data with-

out presuming the dominant dynamics or related differential operators, then we may dis-

cover the underlying physical laws by directly analyzing the PDEs. Different from classical

PDE inverse problems that estimate unknown parameters of a fixed PDE or recent develop-

ments of PDE modeling based on DNN, here we focus on identifying the differential oper-

ators, either linear or nonlinear, solely based on the spatial and temporal characteristics of a

single projection of the underlying PDE extracted by finite difference schemes. In addition

to sparsity, we discuss some principles of model selection that help to identify the correct

14

PDE among numerous candidates. Due to the unboundedness of the candidate differential

operators and noisy sample data, the identification can be very sensitive. We consider the

importance of data denoising and describe an effective denoising technique, called Succes-

sive Denoising Differentiation (SDD). We include various experiments to show the model

performance and validate the effectiveness.

Overview of Chapter 7

In this chapter, we take the deep learning perspective focusing on the restoration of dynamic

positron emission tomography (dPET) from sparsely sampled time-dependent projection.

In particular, we focus on an interesting architecture designed for spatial and temporal in-

formation synthesis (STIS). It takes advantage of the low rank structures of dPET image

sequences, and alternatively enhances the spatial and temporal features of the underlying

variation patterns of the radiotracer concentration. The classical end-to-end learning pro-

cess is replaced by a hybrid paradigm which combines the interpretability of model-based

approach and flexibility of data-driven model. With such design, the number of parameters

for the DNN is greatly reduced, yielding an easier and more efficient training. Different

from Chapter 6, where dynamic patterns are characterized by partial derivatives and dif-

ferential equations, here the representation depends on the expressivity of DNNs. We will

discuss the issue of hyper-parameter selections and compare STIS with some state-of-art

DNN-based and model-based methods.

1.3.3 Reading Suggestions

This thesis contains many materials focusing on different aspects of mathematical pattern

representation with diverse flavors and applications. The strategy of organizing them in the

present order is as follows. From chapter 2 to chapter 7, the dependence of patter represen-

tations on data becomes increasingly stronger, and the studied patterns are less rigid. This

arrangement also reflects a transition from no parameters, to manually tuned parameters,

15

and finally to parameters determined by data. However, the reading does not have to follow

this order. The materials for each topic are written in a self-contained manner as much as

possible, and we restrain the overall comparison and comments to the final chapter. Since

the essence of the thesis is to showcase the variety of interesting mathematical pattern rep-

resentations across a broad range of applications, we would suggest the reader to at least

briefly cover all the topics (without getting into the technical details) to fully appreciate the

beauty and diversity of mathematical modeling techniques.

16

CHAPTER 2

SYMMETRIES AND METRIC STRUCTURES IN LATTICE PATTERNS

From material sciences to wallpaper pattern studies, there is a wide range of fruitful re-

search on patterns both in theory and applications. Earlier studies [95, 96, 97] categorize

patterns by symmetries, such as invariance under reflection or rotation. The frieze and

wallpaper groups are applied in computer vision to identify periodic patterns [98]. Pattern

recognition typically involves two closely related tasks: representation of regularities and

automated classification [99]. Motivated by some of the current developments in mate-

rial sciences [100, 101] and crystalline material image analysis [102, 103, 104, 105, 106,

107] , we focus on the lattice pattern, which plays major roles in crystallography [108,

109], sampling theory [110], ecology [111] and many others. For example, the crystal

structures (3D lattices) of halite (NaCl) and gold (Au) have distinct scales (NaCl constant:

5.640Å [112]; Au constant: 4.065Å [113]), which explains their proprietary differences.

There is considerable research on detecting (non-superposed) 2D lattice patterns from im-

ages, e.g., using the peaks of the Fourier power spectrum to identify the lattice structure

[114], and propagating an automatically suggested lattice pattern to the whole image by

a tracking algorithm [115]. In [116], the authors associate the wallpaper groups with lo-

cal affine transformations to cluster repeated elements, and Hays et al. [117] propose the

higher-order affinities among potential texels to discover visually consistent lattices.

In this chapter, we introduce a framework to model and compare equivalent classes of

lattices by constructing the lattice metric space L equipped with a new metric dL [118].

A clear definition of the equivalent lattice is a cornerstone to classification. In many con-

text [119, 120, 121], a lattice is considered as an object that shares the structural features

with Zn, n ∈ N≥1, thus all the n-dimensional lattices are equivalent. Focusing on symme-

tries, the theory of wallpaper groups [96] distinguishes five types of lattices: square, rect-

17

angular, hexagonal, rhombic, and parallelogrammic. Many works on grain images [104]

use the lattice orientation to indicate distinct patterns. We define equivalent lattices to

be identical lattices up to translation. The scale, as well as rotational differences, are con-

cerned. From the positive minimal bases [122], we derive a new lattice representation using

scale and shape descriptors defined on complex manifolds. This lattice space consists of

equivalent classes of descriptors, which represent distinct lattice patterns up to translation.

Building upon the Poincaré metric [123], we assign a natrual metric structure to the lattice

space. Then we will discuss two applications of lattice metric space. First, we will use

the lattice metric as a quantification of the Lattice Identification and Separation Algorithm

(LISA). It sequentially extracts lattice patterns from a superlattice image without any prior

knowledge of the number of layers. Second, we apply the lattice metric space (L , dL) to

grain defect detection problem, and explore its further properties. As a general framework

to describe and compare arbitrary lattice patterns, the lattice metric space is advantageous.

2.1 Preliminaries and Notations

A typical definition of lattice starts from two linearly independent vectors, b1 and b2, as a

basis. A lattice is a set of linear combination of the basis vectors with integer coefficients. In

the two dimensional space, we utilize the complex notation, bj = xj + iyj ∈ C, xj, yj ∈ R,

j = 1, 2, for simplicity.

Definition 2.1.1 (2D Lattice, Basis). Given a pair of complex numbers (b1, b2) ∈ C2 sat-

isfying b1 6= 0 and Im(b2/b1) 6= 0, a 2D lattice determined by (b1, b2) is defined as the

set:

Λ(b1, b2) = {k1b1 + k2b2 | k1, k2 ∈ Z} ,

and the pair (b1, b2) is called a basis for Λ(b1, b2).

The condition Im(b2/b1) 6= 0 is equivalent to two vectors b1 and b2 being linearly

18

independent. For any lattice Λ(b1, b2), by reordering or multiplying −1 if necessary, we

can have |b1| ≤ |b2| and Im(b2/b1) > 0, i.e., the basis (b1, b2) is positive. In the rest

of this chapter, we assume that a basis is positive, unless stated otherwise. The key to

distinguishing lattices depends on the precise definition of equivalent bases.

Definition 2.1.2 (Equivalent Bases). Let (b1, b2) and (b′1, b
′
2) ∈ C2. If Λ(b1, b2) = Λ(b′1, b

′
2),

then (b1, b2) and (b′1, b
′
2) are called a pair of equivalent bases for Λ(b1, b2).

Given two bases (b1, b2) and (b′1, b
′
2), they are equivalent if and only if the matrix

A =

Re(b′1) Im(b′1)

Re(b′2) Im(b′2)

Re(b1) Im(b1)

Re(b2) Im(b2)

−1

has integer entries and its determinant is ±1. The definition of lattice using linearly in-

dependent vectors is natural and intuitive, yet it lacks a clear way to define equivalence

classes that offers a simple measure for the lattice comparison.

Another important notion is the minimal basis [124]. A lattice basis (b1, b2) is minimal

if max(|b1|, |b2|) ≤ |b1 ± b2|. For a positive basis (b1, b2), it is minimal if and only if

|b2/b1| ≥ 1 and 0 ≤ Re(b2/b1) ≤ 1/2. Moreover, it can be efficiently transformed to an

equivalent minimal basis using the Positive Gauss reduction algorithm [122]. While |b2| <

|b1|, repeat the following until stabilization: (b1, b2) = (b2,−b1), q = bRe(b1/b2)e, here

bxe denotes the closest integer to x ∈ R, and b2 = b2 − qb1. Figure 2.1 demonstrates three

different bases generating an identical lattice and (a) (3, 4i) has the shortest components

among all the equivalent bases.

We assume that the given imageU : R2 → [0, 1] containsN lattices {TµjΛ(bj,1, bj,2)}Nj=1:

U = max
j=1,··· ,N

TµjΛ(bj,1, bj,2) +R , (2.1)

where TµΛ(b1, b2) denotes a lattice image translated from 0 by µ ∈ C, and R is the residual

image. For the purpose of visualization, we put a point spread function (PSF) of Gaussian

19

(a) (b) (c)

3

4i 4i
−3 + 4i

−3− 4i
−6− 4i

Figure 2.1: Equivalent bases and the minimal basis. (a) Λ(3, 4i), (b) Λ(4i,−3+4i), and (c)
Λ(−3−4i,−6−4i) represent an identical lattice. (a) (3, 4i) is a minimal basis: |Re(4i

3
)| =

0 < 1
2
. (b) (4i,−3 + 4i) is not minimal: |Re(−3+4i

4i
)| = 1 > 1

2
, and (c) (−3− 4i,−6− 4i)

is not positive: Im(−6−4i
−3−4i

) = −12
25
< 0.

Gσ with standard deviation σ to each lattice point location [125]. The given image can be

understood as each lattice impulse being convolved with a Gσ; that is,

[
TµΛ(b1, b2)

]
(x, y) =

∑
z∈Λ(b1,b2)+µ

Gσ ∗ δ(z − x− iy), (x, y) ∈ R2 .

Here Λ(b1, b2) + µ = {z + µ | z ∈ Λ(b1, b2)} is the set of translated lattice points. δ is

the Dirac delta function in a distributional sense, i.e., a linear functional that evaluates a

function at 0: δ[f] =
∫∞
−∞ f(x)δ(x) dx = f(0) for any function f defined on R. Moreover,

all the visible particles are assumed to be homogeneous. Even if multiple lattice points

overlapping at the same location, the intensities are bounded by 1. This condition is ensured

by the normalization in section 2.5. We note that for different atom configurations (such as

different color atoms or different shapes), as long as one can roughly identify the location

of each atoms with appropriate preprocessing, this method can be applied.

To capture the periodicities of a lattice pattern, we utilize the Fourier and Radon trans-

forms. The arguments of the basis vectors are important features for the lattice identifica-

tion. In the Cartesian coordinate, for an arbitrary point (ξ, ν) in the frequency domain, let

θ = tan−1(ν/ξ) denote its argument; using Taylor expansion, we see that the estimation

error in the argument |∆θ| ≈ | ξ∆ν−ν∆ξ
ξ2+ν2 | depends on ξ and ν. That is, to control ∆θ, the

spatial grid size, ∆ξ and ∆ν, must vary according to the location of the point. Compared

20

to the Cartesian coordinate, the polar coordinate is more effective. Hence, we exploit the

Fourier Slice Theorem [126] to compute the 2D Fourier transform on the polar coordinate.

Theorem 2.1.1 (Fourier Slice Theorem). Consider a function f : R2 → R, and denoteˆas

the Fourier transform, then:

f̂(γ cosα, γ sinα) = R̂α[f](γ) , for any γ ∈ R , α ∈ [0, π) ,

whereRα[f](γ) = R[f](γ, α), andR[f] is the Radon transform of f defined by:

R[f](γ, α) =

∫ +∞

−∞
f(γ cosα− t sinα, γ sinα + t cosα) dt , γ ∈ R , α ∈ [0, π) .

To construct a metric space, we review the following concepts [127].

Definition 2.1.3 (Quotient pseudometric). Suppose (X,D) is a metric space, and ∼ is an

equivalence relation defined on X . Then the quotient pseudometric D for X/ ∼ is defined

as:

D([x], [y]) = inf{D(p1, q1) + · · ·+D(pn, qn)} ,

where inf is taken over all finite sequences p1, · · · , pn and q1, · · · , qn in X such that [p1] =

[x], [qn] = [y] and [pi+1] = [qi], i = 1, 2, ..., n− 1.

The spaces we consider are Hausdorff spaces, i.e., for every pair of distinct points, each

one of them has a neighborhood not containing the other. Consequently, all the quotient

pseudometrics in this paper are metrics.

Definition 2.1.4 (Product Metric). Suppose (X1, d1), · · · , (Xn, dn) are metric spaces, and

D is an Euclidean norm on Rn, then the product metricDd1,··· ,dn associated with d1, · · · , dn

21

for the space X1 × · · ·Xn is defined as:

Dd1,··· ,dn((x1, · · · , xn), (y1, · · · , yn)) = D((d1(x1, y1), · · · , dn(xn, yn))) .

Remark 2.1.1. The formal definition of the minimal basis that involves successive minima

can be found in [124]. We note that the minimal basis is a special case of the notion of

reduced basis. Variants of the reduced basis include the well-known Minkowski reduced ba-

sis [128, 129], the generalized Gauss-reduced basis [130], the Hermite-Korkine-Zolotarev

reduced basis [131, 132], and the Lenstra-Lenstra-Lovász reduced basis [133]. They con-

sider different relaxations, since finding the shortest vector using L2-norm is NP-hard for

randomized reductions [134].

Remark 2.1.2. Vallée and Vera [122] include discussions about acute bases, which are

characterized by Re(b2/b1) ≥ 0. If (b1, b2) is a positive basis, then the orientation is

guaranteed, but it is not necessary that b1 and b2 have an acute angle. In this paper, we

prioritize the orientability, thus we choose to focus on positive bases.

2.2 Lattice Feature Descriptors β and ρ

We introduce the representation for a lattice using a pair of complex numbers (β, ρ) ∈ C2,

which we call descriptors [118]. They are derived from the positive minimal bases [122].

The key idea is that a lattice can be realized by transforming a unit lattice, Λ(1, i). For

instance, stretching or shrinking Λ(1, i) along the direction of i gives rectangular lattices;

and rotating i gives different lattice patterns, including the hexagonal lattice. One of the ad-

vantages of descriptors is that, compared to the Definition 2.1.2, the number of equivalent

representations reduces considerably from infinite to only a few. By exploiting the modu-

lar group theory [135], we can fully characterize these equivalence relations. Descriptors

modulo these relations are used as elements for the lattice space constructed in section 2.3.

22

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Effects of changing β and ρ. (a) Λ〈1, i〉, (b) Λ〈2, i〉, (c) Λ〈eiπ/6, i〉, (d) Λ〈1, 2i〉,
(e) Λ〈1, e2πi/3〉, and (f) Λ〈2, e2πi/3〉. From (a) to (b), β is changed from 1 to 2. From (a) to
(c), β is rotated. From (a) to (d), ρ is changed from i to 2i. From (a) to (e), ρ is rotated.
From (a) to (f), both β and ρ are changed.

Definition 2.2.1 (Scale and Shape Descriptor). Given a lattice Λ(b1, b2) where (b1, b2) is a

positive minimal basis, we define:

Scale descriptor: β = b1 ;

Shape descriptor: ρ = b2/b1 .

We denote Λ〈β, ρ〉 to be a lattice spanned by β and βρ, i.e., Λ〈β, ρ〉 = Λ(β, βρ).

Figure 2.2 illustrates various effects of changing β and ρ. From (a) to (b), only β is

changed from 1 to 2, and from (a) to (c), β is rotated. From (a) to (d) ρ is changed from i to

2i, and from (a) to (e), ρ is rotated. From (a) to (f) both β and ρ are changed. Varying the

scale descriptor β corresponds to zooming and rotating while changing the shape descriptor

ρ leads to sheering, elongating, and shrinking asymmetrically. Algebraically, a pair of

equivalent bases determines a simple relation between the associated descriptors.

Proposition 2.2.1 (Necessary condition). If two lattices Λ〈β, ρ〉 and Λ〈β′, ρ′〉 are equiva-

lent, then there exists ki ∈ Z, i = 1, 2, 3, 4 with k1k4 − k2k3 = 1, such that the following

23

hold:

β′ = eiArg(k1+k2ρ)β , and (2.2)

ρ′ = (k3 + k4ρ)/(k1 + k2ρ) . (2.3)

Proof. Note that Λ〈β, ρ〉 = Λ〈β′, ρ′〉 if and only if there is a unimodular matrix U =k1 k2

k3 k4

, ki ∈ Z, i = 1, 2, 3, 4, such that U

b1

b2

 =

b′1
b′2

, where b1 = β, b2 = βρ,

b′1 = β′ and b′2 = β′ρ′ are the associated positive minimal bases, respectively. From the

matrix multiplication, Equation 2.3 follows immediately. Because the bases are minimal,

|b1| = |b′1| implies b′1 = eiθb1 for some θ ∈ [0, 2π]. Combining this with b′1 = k1b1 + k2b2

gives k1 + k2ρ = eiθ, thus θ = Arg(k1 + k2ρ) and Equation 2.2 follows. In addition, since

(b1, b2) and (b′1, b
′
2) are positive, detU = k1k4 − k2k3 = 1.

In subsection 2.2.2, we apply the modular group theory to prove the converse of Propo-

sition 2.2.1; hence, whether two descriptors generate an identical lattice can be easily de-

termined. As a preparation, we state the following lemma.

Lemma 2.2.1. The converse of Proposition 2.2.1 holds if

|k1 + k2ρ| = 1 .

Proof. Denote c = 1
|k1+k2ρ| = eiArg(k1+k2ρ)

k1+k2ρ
, then from Equation 2.2, we have b′1 = β′ =

c(k1 + k2ρ)β = c(k1b1 + k2b2). Notice that Equation 2.3 reads b′2 = b′1
k3+k4ρ
k1+k2ρ

= c(k1 +

k2ρ)β k3+k4ρ
k1+k2ρ

= c(k3b1 + k4b2). The lemma is thus proved.

Since the condition Equation 2.2 shows the dependency on ρ, we start with relations

between shape descriptors specified by Equation 2.3.

24

(a) (b)

Re

Im

C

1

1/2

ρ

ρ′

ρ′′
Re

Im

C

ρ+ 1ρ

Figure 2.3: Region P and the fundamental set of Γ-actions. (a) P is the gray region in-
cluding the boundary represented in C. ρ, ρ′ and ρ′′ are the shape descriptors for Λ(3, 4i),
Λ(4i,−3 + 4i), and Λ(−3− 4i,−6− 4i) respectively from in Figure 2.1. Since 4i/3 ∈ P ,
(3, 4i) is a positive minimal basis. (b) A fundamental set of the modular group Γ acting on
the upper half plane. If Re(ρ) = −1/2, ρ and ρ+ 1 are in the same orbit of a Γ-action.

2.2.1 Equivalence Classes of Shape Descriptor ρ

Using basic geometry, it is straightforward to show that the definition of the positive mini-

mal basis is equivalent to the ratio ρ = b2/b1 belonging to the following region:

P = {z ∈ C | |z| ≥ 1, |Re(z)| ≤ 1

2
, Im(z) > 0} ⊂ C . (2.4)

Figure 2.3 (a) shows P as the gray region including the boundary. We draw the shape

descriptors ρ, ρ′ and ρ′′ for Λ(3, 4i), Λ(4i,−3 + 4i), and Λ(−3− 4i,−6− 4i) respectively

from Figure 2.1. All of them represent the same lattice, but only (3, 4i) is a positive minimal

basis since its shape descriptor 4i/3 is in P .

Equation 2.3 can be viewed as a transformation defined on the upper-half plane H =

25

{z | Im(z) > 0} restricted to P , which can be expressed as:

z 7→ k3 + k4z

k1 + k2z
, {ki}4

i=1 ⊂ Z , such that k1k4 − k2k3 = 1, for any z ∈ H . (2.5)

Each map of this form is a special case of the Möbius transformations, and the set of these

transformations with the function composition gives the well-known modular group [135],

denoted by Γ. The elements of Γ naturally act on H as specified in Equation 2.5. Within

the context of group actions, the condition Equation 2.3 characterizes an equivalence re-

lation among shape descriptors, i.e., two shape descriptors are equivalent if they satisfy

Equation 2.3.

The modular group Γ reveals the significance of the region P defined in Equation 2.4.

Notice that P minus half of its boundary, i.e., the set:

P \
(
{z ∈ H | Re(z) =

1

2
} ∪ {z ∈ H | 0 < Re(z) <

1

2
, |z| = 1}

)
, (2.6)

is a fundamental set for the Γ-actions [135], see Figure 2.3 (b). Every element in the

fundamental set is a representative of one and only one orbit, and every orbit corresponds

to a unique representative. No two shape descriptors in Equation 2.6 are equivalent. This

provides a key insight that equivalent shape descriptors only occur on the boundary of P .

Following the approach of Alperin on the modular group [136], we enumerate all the

classes of equivalent shape descriptors systematically. Any Γ-action is a composition of

a finite sequence of two basic transformations: translation T and inversion followed by

reflection S respectively defined as

T : z 7→ z + 1, and S : z 7→ −1/z , for any z ∈ H .

Any element in Γ can be written as Sk1T l1Sk2T l2 · · ·SkmT lm for some kj ∈ {0, 1}, lj ∈ Z,

and j = 1, 2, · · · ,m, where m ∈ N. Focusing on the Γ-actions expressed as sequences of

26

S and T whose images have non-empty intersection with P , we arrive at a full characteri-

zation of the equivalence classes of shape descriptors.

Proposition 2.2.2. Given a shape descriptor ρ ∈ P , based on its location, we list all the

shape descriptors equivalent to it as follows:

Location of ρ All the equivalent shape descriptors
{z ∈ P | |z| > 1, |Re(z)| < 1/2} ρ
{z ∈ P | Re(z) = −1/2, |z| > 1} ρ, Tρ
{z ∈ P | Re(z) = 1/2, |z| > 1} ρ, T−1ρ

{z ∈ P | |z| = 1, 0 ≤ |Re(z)| < 1/2} ρ, Sρ
ei2π/3 ρ, Sρ, Tρ, T−1Sρ, STρ, TSTρ
eiπ/3 ρ, Sρ, T−1ρ, TSρ, ST−1ρ, STSρ

For any ρ ∈ P , the number of equivalent shape descriptors is equal to the number of

fundamental regions having ρ as a common point [135]; hence, the list of equivalent shape

descriptors is complete. Geometrically, the small sizes of equivalence classes come from

the restriction that both ρ and ρ′ belong to P . In effect, the principle behind the reduction is

the uniqueness of successive minima of a finite dimensional lattice. This requires that the

transformations must preserve norms, and they form a proper subset of the modular group.

Remark 2.2.1. The notion of shape descriptor ρ is compatible with the five classes of

lattices in the wallpaper groups [96]. For a lattice Λ〈β, ρ〉, if ρ = ±1
2

+ i
√

3
2

, then it is

hexagonal; if ρ = i, then it is square; if Re(ρ) = 0, then it is rectangular; if |Re(ρ)| = 1
2

or |ρ| = 1, then it is rhombic; otherwise, it is parallelogrammic. The shape descriptor

ρ recognizes finer differences, and with the scale descriptor β, they represent all lattice

patterns up to translation.

2.2.2 Equivalence Conditions for Scale Descriptors

Equation 2.2 for scale descriptors shows dependency on the equivalence relations between

shape descriptors. The choice of the Γ-action that achieves an equivalence relation between

27

ρ and ρ′ restricts the angles between β and the set of scale descriptors satisfying Equa-

tion 2.2 with β. Every Γ-action is associated with a matrix

k4 k3

k2 k1

 up to sign, whose

entries in the first row are the coefficients in the numerator in Equation 2.3, and those in

the second row are the coefficients in the denominator. The composition of the actions is

equivalent to the matrix multiplication of the associated matrices. For the nontrivial actions

in Proposition 2.2.2, their matrix representations are:

T =

1 1

0 1

 , T−1 =

1 −1

0 1

 , S =

0 −1

1 0

 , T−1S =

−1 −1

1 0

 , TS =

1 −1

1 0

 ,

TST =

1 0

1 1

 , ST =

0 −1

1 1

 , ST−1 =

0 −1

1 −1

 , STS =

−1 0

1 −1

 .

This entire list of possible Γ-actions, that relate equivalent shape descriptors, contains crit-

ical information. First, for any ρ ∈ P , the corresponding Γ-actions in Proposition 2.2.2 al-

ways satisfy |k1 +k2ρ| = 1, where the action is expressed as a matrix

k4 k3

k2 k1

. Therefore,

combining Proposition Equation C.23 and Lemma 2.2.1 yields our fundamental result.

Theorem 2.2.1 (Equivalent descriptors). Two lattices Λ〈β, ρ〉 and Λ〈β′, ρ′〉 are equivalent

if and only if there exists ki ∈ Z, i = 1, 2, 3, 4 with k1k4−k2k3 = 1, such that the following

hold:

β′ = eiArg(k1+k2ρ)β , and

ρ′ = (k3 + k4ρ)/(k1 + k2ρ) .

Second, the list of matrix representations allows us to summarize all the variants of Equa-

tion 2.2.

Proposition 2.2.3. Given a scale descriptor β ∈ C\{0} and two shape descriptors ρ, ρ′ ∈

28

Γ-actions Condition (Equation 2.2) satisfied with
I , T ,T−1 ±β

S, T−1S, TS exp(iArg(ρ))β
TST ,ST exp(±iArg(1 + ρ))β
ST−1 ,STS exp(±iArg(1− ρ))β

P . If ρ and ρ′ are equivalent using the Γ-actions in the left column of the following table,

then the scale descriptors that satisfy the condition Equation 2.2 with β are listed in the

right column correspondingly.

2.3 From Descriptors to Lattice Metric Space (L , dL)

2.3.1 Definition of Lattice Metric Space

Using the descriptors, we present the lattice space L equipped with a metric dL . The

equivalence relations discussed in section 2.2 allow every lattice pattern to be uniquely

represented by a point in this space.

Definition 2.3.1 (Lattice Space). Let P be the set of shape descriptors ρ (Equation 2.4),

and K = C \ {0} be the set of scale descriptors β. With the induced topology, the lattice

space L is defined as

L =
(
K/ ∼1 ×P/ ∼2

)
/ ∼3 , (2.7)

where the three equivalence relations are:

1. β ∼1 −β, for any β ∈ K, i.e., Λ〈β, ρ〉 = Λ〈−β, ρ〉.

2. ρ ∼2 ρ
′, for any ρ, ρ′ ∈ P with Im(ρ) = Im(ρ′) and |Re(ρ)| = |Re(ρ′)| = 1/2, i.e.,

Λ〈β, ρ〉 = Λ〈β, ρ′〉.

3. 〈[β]1, [ρ]2〉 ∼3 〈[βρ]1, [−1/ρ]2〉, for any β ∈ K, and ρ ∈ P with |ρ| = 1, i.e.,

Λ〈β, ρ〉 = Λ〈βρ,−1/ρ〉.

29

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Examples of subspaces of L . For any β ∈ K, (a) shows a square lattice Λ〈β, i〉.
The red and blue arrows indicate two directions. Stretching Λ〈β, i〉 along them represents
two different families of lattices. They form a subspace of L shown in (b), which is
homeomorphic to R as in (c). (d) shows a hexagonal lattice Λ〈β, eiπ/3〉. Stretching it along
the three marked directions generates three distinct families of lattices. (e) is the subspace
they form in L , which is homeomorphic to the structure in (f).

We denote [β, ρ] as an element in L considering the equivalence relations.

The quotient space K/ ∼1 consists of scale descriptors β up to sign, which amounts to

only considering the upper-half plane H union the positive real axis. The quotient space

P/ ∼2 is homeomorphic to a truncated cylindrical surface, since the left and the right

boundaries of P are identified via∼2 for every fixed β ∈ K. The third equivalence relation

∼3 represents a particular case when the basis vectors have an identical length, i.e., |b1| =

|b2|. Notice that ∼3 is more involved compared to the other two equivalence relations,

which renders a nontrivial geometry for L and introduces complexities in defining a metric

structure on L .

To give more insights into the topologies of the lattice space L , we present a couple of

its subspaces formed by special types of lattices. In the first row of Figure 2.4, (a) is a square

lattice Λ〈β, i〉 with the red and blue arrows indicating two directions. The set of lattices

obtained by stretching Λ〈β, i〉 along these directions gives a subspace of L displayed in

30

(b), which is homeomorphic to R shown in (c). The origin of R represents the square lattice

Λ〈β, i〉. A point on the positive side (the red half of (c)), r corresponds to a lattice of the

form Λ〈β, i + r〉; and a point on the negative side (the blue half of (c)), r corresponds to

a lattice of the form Λ〈βeiπ/2, i − r〉. Every lattice in this subspace is rectangular. In the

second row of Figure 2.4, (d) shows a hexagonal lattice Λ〈β, eiπ/3〉. In this case, stretching

the hexagonal lattice along the three directions colored red, green, and blue gives a subspace

of L in (e), which is homeomorphic to a trifurcated structure shown in (f). It consists of

three lines emerging from a common point that represents the hexagonal lattice Λ〈β, eiπ/3〉;

and each point on the lines corresponds to a unique non-hexagonal lattice.

On L , we now construct a metric structure. As described above, there are three equiv-

alence relations in L . Given any two descriptor pairs (β, ρ), (β′, ρ′) ∈ K × P , we define

D((β, ρ), (β′, ρ′)) =
√
dK(β, β′)2 + dP(ρ, ρ′)2 , (2.8)

where the equivalence relations ∼1 and ∼2 are incorporated into the definition of dK and

dP , respectively. Let DK be a simple metric on K, which separates the length differences

and the angle differences as:

DK(β, β′) =

√
w(|β| − |β′|)2 + (1− w)(cos−1

Re(ββ′)

|β||β′|
)2 . (2.9)

Here w > 0 is a parameter which adjusts the sensitivity between angle and length. We use

w = 0.05 throughout this paper. The quotient metric on K is then defined as

dK(β, β′) = min{DK(β, β′), DK(−β, β′)} .

Let DP be the well-known Poincaré metric [123] restricted to P computed via

DP(ρ, ρ′) = 2 ln
|ρ− ρ′|+ |ρ− ρ′|
2
√

Im(ρ)Im(ρ′)
,

31

then the quotient metric for P/ ∼2 is defined as

dP(ρ, ρ′) = min{DP(ρ, ρ′), DP(ρ− 1, ρ′), DP(ρ+ 1, ρ′)} .

Although ρ ± 1 may fall outside of P , the formula for dP remains computationally valid,

since the Poincaré metric is well defined everywhere in the upper half complex plane.

With D taking care of two equivalence relations, we consider the third one ∼3. It in-

volves the lattices characterized by |b1| = |b2| for the associated positive minimal basis

(b1, b2). When comparing lattices determined by (β, ρ) and (β′, ρ′), there are 4 related

points on the bottom arc of P: (β, eiφ), (eiφβ,−e−iφ), (β′, eiφ
′
) and (eiφ

′
β′,−e−iφ′) for

some φ, φ′ ∈ [π/3, 2π/3]. The first pair of points, (β, eiφ) and (eiφβ,−e−iφ), represent

a same lattice obtained by transforming Λ(β, ρ); from the associated positive minimal

basis (b1, b2), b1 = β and b2 = βρ, keep b1 unchanged, shrink the length of b2 to be

|b1| = |b2|, then rotate b2 until its angle to b1 is φ. Similarly, the second pair, (β′, eiφ
′
) and

(eiφ
′
β′,−e−iφ′), is related to (β′, ρ′). Moving between equivalent lattices does not induce

length, thus a path connecting (β, ρ) and (β′, ρ′) while passing through one of these related

points may be shorter than a direct path. In total, there are 8 types of such paths:

D1 : (β, ρ)→ (β, eiφ) 99K (eiφβ,−e−iφ)→ (β′, ρ′) ,

D2 : (β, ρ)→ (eiφ
′
β′,−e−iφ′) 99K (β′, eiφ

′
)→ (β′, ρ′) ,

D3 : (β, ρ)→ (β, eiφ) 99K (eiφβ,−e−iφ)→ (eiφ
′
β′,−e−iφ′) 99K (β′, eiφ

′
)→ (β′, ρ′) ,

D4 : (β, ρ)→ (β, eiφ)→ (β′, ρ′) ,

D5 : (β, ρ)→ (β′, eiφ
′
)→ (β′, ρ′) ,

D6 : (β, ρ)→ (β, eiφ)→ (β′, eiφ
′
)→ (β′, ρ′) ,

D7 : (β, ρ)→ (β, eiφ) 99K (eiφβ,−e−iφ)→ (β′, eiφ
′
)→ (β′, ρ′) ,

D8 : (β, ρ)→ (β, eiφ)→ (eiφ
′
β′,−e−iφ′) 99K (β′, eiφ

′
)→ (β′, ρ′) .

(2.10)

32

(eiφ
′
β′,−e−iφ′)

(β′, eiφ
′
)

(β, ρ) (β′, ρ′)

(β, eiφ)

(eiφβ,−e−iφ)

Figure 2.5: An illustration of the 8 types of paths, D1–D8 in Equation 2.10 connecting
(β, ρ) and (β′, ρ′) via 4 extra points in {(β0, ρ0) | β0 ∈ K, |ρ0| = 1, ρ0 ∈ P}.

Figure 2.6: The lattice space L is a product space K/ ∼1 ×P/ ∼2 modulo ∼3. The
distance dL ((β, ρ), (β′, ρ′)) is the minimal length of the paths connecting (β, ρ) and (β′, ρ′)
when the distance between equivalent points is reduced to 0. Here the green line shows D
in Equation 2.8, the red line isD3 in Equation 2.10, and the blue line isD4 in Equation 2.10.
Since D satisfies the triangle inequality, D is shorter than D4.

Here the pairs of lattices connected by 99K are equivalent via ∼3, thus 99K has 0 length;

and the paths denoted by→ have lengths measured by D. Figure 2.5 illustrates these paths

combinatorially showing that the list in Equation 2.10 is complete. Figure 2.6 exemplifies

some paths in the lattice space L : D in green, D3 from Equation 2.10 in red, and D4 from

Equation 2.10 in blue.

We define the lattice metric as the length of the shortest path connecting (β, ρ) and

(β′, ρ′):

dL ((β, ρ), (β′, ρ′)) = min{D, min
φ,φ′∈[π/3,2π/3]

Dj(φ, φ
′) , j = 1, 2, 3} , (2.11)

33

where D is from Equation 2.8, and {Dj(φ, φ
′)}3

j=1 are from Equation 2.10. Notice that

it is not necessary to consider the cases with two consecutive → in Equation 2.10. Since

D satisfies the triangle inequality, a direct path is always shorter. For completeness, we

present a pseudo-code for computing dL in section A.1. Although dL thus defined is a

pseudometric, since dL ((β, ρ), (β′, ρ′)) = 0 if and only if [β, ρ] = [β′, ρ′], dL is in fact a

metric on L .

Remark 2.3.1. Notice that dL is invariant under translation. It takes inputs from the

lattice space L , where only translational lattices are concerned. We may regard the visual

difference between a lattice and its translated copy as a consequence of the boundedness

of the image domain; thus, it is not intrinsic to the patterns.

2.3.2 Sub-lattices and Parent-lattices in the Lattice Space

In section 2.2, we regard the collection of Möbius transforms as a group. Exploiting its sub-

group, the modular group Γ allows us to address the problems of the basis representation.

More generally, the group of Möbius transforms has a monoid structure where the inverse

elements are not required compared with the definition of a group. Here we explore further

the value of Möbius transforms by investigating one of its submonoids, M2(Z). We present

the close relation between sub-lattices of a lattice and the monoid M2(Z). A one-to-one

correspondence between sub-lattices and parent-lattices of a lattice is proved to extend this

relation to that between parent-lattices and M2(Z). Such exploration also has practical sig-

nificance. In section 2.5, when evaluating the lattice candidates, the confusion caused by

moiré effects is eliminated by adding the density restriction in Equation 2.21. Figure 2.20

illustrates the necessity of this term numerically; here, we show the complexities from a

theoretical perspective. The notions of sub- and parent-lattices can be algebraically defined

using descriptors β and ρ.

Definition 2.3.2 (Sub-lattice). Let Λ = Λ〈β, ρ〉 and Λ′ = Λ〈β′, ρ′〉 be two lattices. We say

that Λ′ is a sub-lattice of Λ, if there exists k = (k1, k2, k3, k4) ∈ Z4 with k1k4 − k2k3 > 0

34

such that
β′ = β(k1 + k2ρ)

ρ′ = (k3 + k4ρ)/(k1 + k2ρ)

.

Λ〈β′, ρ′〉 is said to be a sub-lattice of Λ〈β, ρ〉 induced by k.

This definition is derived from the equivalent expression:

β′ = k1β + k2βρ

β′ρ′ = k3β + k4βρ

, (2.12)

with k1k4 − k2k3 > 0, which says that the basis for a sub-lattice comes from a non-

degenerate linear combination of the basis of the original lattice using integer coefficients.

The set of transformations:

z 7→ k3 + k4z

k1 + k2z
, {ki}4

i=1 ⊂ Z , such that k1k4 − k2k3 > 0, for any z ∈ H ,

forms a monoid with function composition, which is denoted by M2(Z). In the category of

monoids, PSL2(Z) ≤M2(Z) ≤ PGL2(Z); hence, the discussion here is a generalization of

section section 2.2. Symmetrically, we define parent-lattices as follows:

Definition 2.3.3 (Parent-lattice). Let Λ = Λ〈β, ρ〉 and Λ′ = Λ〈β′, ρ′〉 be two lattices. We

say that Λ′ is a parent-lattice of Λ, if there exists k = (k1, k2, k3, k4) ∈ Z4 with v =

1/(k1k4 − k2k3) > 0 such that

β′ = vβ(k1 + k2ρ)

ρ′ = (k3 + k4ρ)/(k1 + k2ρ)

.

Λ′ is said to be a parent-lattice of Λ induced by k.

35

This definition says that for a parent-lattice (β′, ρ′) of (β, ρ), there exist constants

a, b, c, d with u = ad− bc > 0 such that

β′ = aβ + bβρ

β′ρ′ = cβ + dβρ

⇐⇒

β = dβ′/u− bβ′ρ′/u

βρ = −cβ′/u+ aβ′ρ′/u

. (2.13)

Note that only when a, b, c, d are integers that Λ′ becomes a sub-lattice of Λ. Comparing

the left side of Equation 2.13 with Definition 2.3.3, we observe that a = vk1, b = vk2,

c = vk3 and d = vk4, and u = v2(k1k4 − k2k3) = v, thus the right side of Equation 2.13

becomes:
β = β′(k4 − k2ρ

′)

ρ = (−k3 + k1ρ
′)/(k4 − k2ρ

′)

. (2.14)

From Definition 2.3.2, we see that Λ′ is a parent-lattice of Λ, if Λ is a sub-lattice of Λ′

induced by (k4,−k2,−k3, k1). By checking the equivalence relations among descriptors,

we have the following proposition:

Proposition 2.3.1. Given a lattice Λ = Λ〈β, ρ〉, there is a one-to-one correspondence:

{
Sub-lattices of Λ

} ϕ←→
{

Parent-lattices of Λ
}

(2.15)

well-defined as follows: if k determines a sub-lattice via Definition 2.3.2, then it determines

a parent-lattice via Definition 2.3.3.

Figure 2.7 shows an example of parent- and sub-lattices. Once all the sub-lattices of a

lattice are found, a complete set of its parent-lattices comes for free by employing Equa-

tion 2.15.

Finding all the sub-lattices of a lattice with shape descriptor ρ ∈ P is equivalent to

searching for all the elements in M2(Z) that send ρ back to P . It suffices to see its action

36

(a) (b) (c)

Figure 2.7: One-to-one correspondence between the sub- and the parent-lattices. (a) A
lattice Λ〈β, ρ〉 = Λ〈14.7721 + 2.6047i, eiπ/3〉. (b) A sub-lattice Λ〈β, 2ρ+ 1〉 in white, with
lattice (a) in gray. (c) A parent-lattice Λ〈β/2, 2ρ + 1〉 of (a). The common particles are
emphasized with white color.

on three distinct points by the property of the Möbius transformation. Generally, given

a ρ ∈ P , finding all such integer coefficients is difficult and not fruitful. There are two

families of sub-lattices, which are easy to consider:

1. For Λ = Λ(β, ρ) ∈ L with |ρ| ≥ n, for an arbitrary integer n ≥ 1, Λ(mβ, ρ/m) is a

sub-lattice of Λ induced by k = (m, 0, 0, 1) for any m ≤ n,m ∈ N; the correspond-

ing M2(Z)-action is z 7→ z/m for z ∈ C.

2. For Λ = Λ(β, ρ) ∈ L with |Re(ρ)| ≤ 1/(2n), for an arbitrary integer n ≥ 1,

Λ(β,mρ) is a sub-lattice of Λ induced by k = (1, 0, 0,m) for any m ≤ n,m ∈ N;

the corresponding M2(Z)-action is z 7→ mz for z ∈ C.

In some cases, it can be easy to find conditions for k ∈ Z4 whose associated action sends

ρ ∈ P to P . For example, when k2 = 0 (which forces k1 6= 0), we find ∞ → ∞,

0 7→ k3/k1 and ±1/2 7→ (±k4/2 + k3)/k1 by the M2(Z)-action determined by this

(k1, k2, k3, k4). In order to have a non-empty intersection with P , we must require:

min{(±k4/2 + k3)/k1} ≤ 1/2 or

k2
3 − k2

4/4 < 0 and min{(±k4/2 + k3)/k1} ≥ 1/2 .

By Proposition 2.3.1, these results also extend symmetrically to parent-lattices.

37

2.4 Validation of the Lattice Space L and Metric dL

2.4.1 Visual Validation

For the purpose of comparison, one may assign the following 4-tuple to a lattice with a

positive minimal basis (b1, b2):

(|b1|, |b2|, θ, ψ) = (|b1|, |b2|,Arg b1, cos−1(
Re(b1b2)

|b1||b2|
)) . (2.16)

Here θ ∈ (−π/2, π/2] is the angle from the positive real axis to b1, and ψ ∈ [π/3, 2π/3]

is the angle between b1 and b2. Similar to dL , the differences in these parameters indi-

cate visual differences between lattice patterns; however, dL is more stable and consistent.

Figure 2.8 compares the 4-tuple representations in Equation 2.16 and dL . The pair of

very similar lattices, ΛA = Λ(12, 12.5, 10◦, 90◦) in (a) and ΛB = Λ(12, 12.5,−80◦, 90◦)

in (b) show a large relative difference in θ: 900%; while their metric distance dL =

0.0816 is short. In general, when |b1| ≈ |b2|, minor numerical errors trigger large rel-

ative errors in θ-component due to the equivalence relations. The lattices (a) ΛA, (c)

ΛC = Λ(13, 13.5, 10◦, 85◦), and (d) ΛD = Λ(12.5, 13.5, 11◦, 91◦) are more distinguish-

able. Equation 2.16 shows the difference in multiple numbers; in contrast, dL , as a single

value, provides compact information integrating various aspects of the visual differences.

This feature of dL allows a simple lattice pattern comparison.

Figure 2.9 (a)–(e) present five different lattice patterns and their pairwise distances in

L . Visually, lattice ΛA is more different from ΛC than from ΛB, and the corresponding

distances, dL (ΛA,ΛC) = 0.7083 > dL (ΛA,ΛB) = 0.5493, are consistent with this obser-

vation. Among all the pairs of the five lattices, ΛA and ΛD are the most similar ones, and

accordingly, dL (ΛA,ΛD) = 0.0203 is the shortest distance. The difference between ΛB

and ΛC , and that between ΛD and ΛE are similar, which is well represented by the distance

dL (ΛB,ΛC) = 0.4472 being close to dL (ΛD,ΛE) = 0.4472. This is also the case for the

38

(a) ΛA (b) ΛB (c) ΛC (d) ΛD

Lattice pair The 4-tuple measure system Equation 2.16 dL

||b′1| − |b1||/|b1| ||b′2| − |b2||/|b2| |θ′ − θ|/|θ| |ψ′ − ψ|/|ψ|
ΛA,ΛB 0% 0% 900% 0% 0.0816
ΛA,ΛC 8.3333% 8% 0% 5.5556% 0.2401
ΛA,ΛD 4.1667% 8% 10% 1.1111% 0.1200

Figure 2.8: Metric comparison. Lattice (a) ΛA = Λ(11.8177 + 2.0838i,−2.1706 +
12.3101i) and (b) ΛB = Λ(2.0838 − 11.8177i, 12.3101 + 2.1706i) are visually simi-
lar. The 4-tuple measure indicates a significant difference in θ, while dL gives a small
value. The lattices (a), (c) ΛC = Λ(−1.1766 + 13.4486i,−2.0838 + 11.8177i) and (d)
ΛD = Λ(11.8177 + 2.0838i,−2.1706 + 12.3101i) are more distinguishable, but the differ-
ences are scattered in four numbers using (Equation 2.16). dL integrates these differences
and provides a compact measure.

pair ΛB and ΛD, compared to the pair ΛC and ΛE , where dL (ΛB,ΛD) = 0.5293 is close

to dL (ΛC ,ΛE) = 0.5293.

2.4.2 Quantitative Validation

The representation Λ〈β, ρ〉 provides a universal framework to characterize lattices. For

example, Λ〈10, i〉 represents a cubic lattice; Λ〈10, eiπ/3〉 denotes a hexagonal lattice; and

the notation Λ〈e−2πi/9, e4πi/9〉 represents a centered rectangular lattice.

A useful feature of dL is that it can adjust sensitivity to orientation versus scale. De-

pending on the application, we can change the weight parameter w in Equation 2.9 to

emphasize the inconsistency in angles or lengths. When w = 0, only the lattice orientation

is considered, which is similar to [104]. Figure 2.10 (a) shows dL (Λ〈10, eπi/3〉,Λ〈(10 +

∆|β|)eiπ/9, eiπ/3〉) when w = 0.5, 0.05 and 0.005, where the scale variation ∆|β| ∈ [−5, 5]

and orientation difference is fixed at eiπ/9.

39

(a) (b) (c) (d) (e)

Figure 2.9: Visual effects of dL . Five different lattices: (a) ΛA = Λ〈11, eiπ/3〉,
(b) ΛB = Λ〈11, eiπ/2〉, (c) ΛC = Λ〈13, eiπ/2〉, (d) ΛD = Λ〈11, ei61π/180〉, and (e)
ΛE = Λ〈13, ei61π/180〉 are displayed. Pairwise distances: dL (ΛA,ΛB) = 0.5493,
dL (ΛA,ΛC) = 0.7083,dL (ΛA,ΛD) = 0.0203, dL (ΛA,ΛE) = 0.4477, dL (ΛB,ΛC) =
0.4472, dL (ΛB,ΛD) = 0.5293, dL (ΛB,ΛE) = 0.6929, dL (ΛC ,ΛD) = 0.6929,
dL (ΛC ,ΛE) = 0.5293, and dL (ΛD,ΛE) = 0.4472 are computed. They are consistent
with the visual perception of the lattice differences.

Typical configuration of atoms present hexagonal patterns, and to dL , the misorienta-

tion between hexagonal lattices is more distinguishable. Figure 2.10 (b) shows dL (Λ〈10, eπi/3〉,Λ〈β, ρ〉)

for a set of different β with unit ρ, whose arguments varies within [π/3, 2π/3]. Notice that

dL has the biggest differences when ∆Arg ρ = 0 and ∆Arg ρ = 60◦ corresponding to

the left and right boundary respectively, which produces hexagonal lattices. This shows

that dL is most sensitive to the misorientation between hexagonal lattices. Since rotating

a hexagonal by 30◦ clockwise and counter-clockwise result in an identical lattice, we see

the red curve (Arg β = 30◦) is mirror-symmetric. The two global minima of this red curve

bring up an important property that the Riemannian center in (L , dL) is not unique. As a

consequence, we can not directly apply centroid-based analysis.

From a different perspective, in Figure 2.10 (c), we compute dL (Λ〈10, ρ〉,Λ〈β, ρ〉)

for a set of different ρ with β satisfying |β| = 10 and Arg β varies within [0, π]. Since

Λ〈10, eπi/3〉, Λ〈10eπi/3, eπi/3〉 and Λ〈10e2πi/3, eπi/3〉 are equivalent (hexagonal) lattices,

and Λ〈10, eπi/2〉 and Λ〈10eπi/2, eπi/2〉 are equivalent (rectangular) lattices, their distances

are 0 respectively. Figure 2.10(b) and (c) also show that lattice metric dL is able to mea-

sure the differences between lattices of any Bravais lattice types. The comparison using

dL considers differences between equivalence classes of lattice representations, which is

40

(a) (b) (c)

Figure 2.10: Properties of dL . (a) Effect of changing w. (b) Misorientation of hexagonal
lattices is emphasized using dL , which corresponds to the left and right edges. (c) High
symmetry of the hexagonal lattice is reflected by the symmetry of the blue curve. Lattices to
be compared are not necessarily of the same type, and dL considers the lattice equivalence
relations.

different from [104] where lattice differences are measured via intensities between image

patches.

2.5 Application to Error Quantification of Lattice Identification and Separation Al-

gorithm (LISA)

In this section, we describe the Lattice Identification and Separation Algorithm (LISA),

which is used to separate superposed lattices: a mixture of multiple two-dimensional lat-

tices laid over another. This structure is referred to as a superlattice [137]. Superlattices

are explored in solid physics [138, 139, 140], surface waves [141, 142] and nonlinear op-

tics [143]. One of the most significant discoveries in low-dimensional material sciences is

the family of transition metal dichalcogenides (TMDs) [144, 145], such as MoS2 [146] and

WTe2 [147]. A single sheet of TMD shows a superlattice structure: the top and the bottom

are lattice layers of chalcogen atoms, and the middle is a lattice layer of transition metal

atoms. The main idea behind LISA is to measure the periodicities globally by the Fourier

transform. For higher accuracy of the lattice basis estimation, we exploit the Fourier Slice

Theorem [114]. By evaluating pairs of peaks on the power spectrum, we find the optimal

lattice structure. Also, we use a stepwise refinement to obtain a stable estimation. The pro-

41

(a) (b) (c)

Figure 2.11: Challenges of pattern separation. Each image above has two lattices super-
posed. (a) The red boxes indicate textons of a single lattice, and they have different interiors
which can confuse the texton-based methods. (b) Using non-superposed lattice identifica-
tion methods, wrong local features (e.g., L-shapes [115], shown as the red arrows) can be
identified. These red arrows do not correspond to any of the true underlying lattices. (c)
The pink and the yellow L-shapes in the upper-left corner denote the true lattice compo-
nents. The moiré patterns indicated by the red, blue, and green regions are different from
the underlying lattices.

posed method is designed to handle moiré effects, excessive density, and inhomogeneous

texton interiors.

We analytically study the properties of LISA. In particular, we explore the effects of

particle radius, lattice density, and relative translations on LISA’s performances, and show

that LISA is robust against the Gaussian perturbation with bounded variation.

Separating individual lattice patterns from a superlattice is challenging. First, it is dif-

ficult to determine the unit, e.g., the texton [148] and the L-shape [115]. Effective methods

for non-superposed lattices, such as [149, 115] may fail due to the interaction from differ-

ent lattice layers. Figure 2.11 (a) shows a typical situation where the textons of one lattice

have inhomogeneous interiors, and (b) shows where local L-shapes do not represent the

correct underlying patterns.

Secondly, superposed periodic patterns may produce new periodic structures, i.e., the

moiré patterns [150], which can confuse the identification process. (This phenomenon is

exploited in applications such as [151, 152].) Figure 2.11 (c) shows three different moiré

patterns generated by two lattices, whose bases are represented by the pink and yellow

L-shapes in the upper-left corner. Thirdly, human supervision [153] can be unreliable.

42

Psychological evidence [154, 148, 155, 156] proves that similarities in geometry can hinder

the visual search. For example, less than 15◦ of rotational differences between the targets

and the background increase errors [155]; and small variations in densities can interfere

with the target identification [148].

2.5.1 Variational Model for Lattice Separation

For a given image with a mixture of latticesU : Ω ⊆ R2 → [0, 1] as defined in Equation 2.1,

assuming that σ is sufficiently small, we propose to identify the underlying lattice patterns

by minimizing the following energy:

min
N∈N,Λj∈L ,µj∈C

∫
Ω

|U − max
j=1,··· ,N

TµjΛj| dx dy + hN , (2.17)

where dx dy is the Lebesgue measure on R2, and h > 0 is a penalty coefficient. The

regularization term hN helps to avoid identifying multiple sub-lattices from a single dense

lattice. It suppresses the number of lattice layers when fitting a mixture to the given image.

For a fixed N , this energy is balancing two competing terms. Using |a− b| = a + b−

2 min(a, b) for any a, b ∈ R, the minimization of Equation 2.17 becomes

min
Λj∈L
µj∈C

{
∫

Ω

U −min(U, max
j=1,...,N

TµjΛj) dxdy +

∫
Ω

max
j=1,...,N

TµjΛj −min(U, max
j=1,...,N

TµjΛj) dxdy} .

(2.18)

These integrals are equivalent to counting particles. Let Up denote the set of locations of

particles in U , and then we have the following correspondences:

∫
Ω

U −min(U, max
j=1,...,N

TµjΛj) dx dy ⇐⇒ Up − Up
⋂ N⋃

j=1

(Λj + µj) ,

∫
Ω

max
j=1,...,N

TµjΛj −min(U, max
j=1,...,N

TµjΛj) dx dy ⇐⇒
N⋃
j=1

(Λj + µj)− Up
⋂ N⋃

j=1

(Λj + µj) .

43

The sets on the right sides can be further expressed as

N⋂
j=1

(
Up
⋂

(Λj + µj)
c
)
, and

N⋃
j=1

(
(Λj + µj)

⋂
U c
p

)
,

respectively. The problem in Equation 2.18 is thus equivalent to

min
Λj∈L
µj∈C

{
∫

Ω

U − max
j=1,...,N

(min(U, TµjΛj)) dx dy︸ ︷︷ ︸
under-fitting

+

∫
Ω

max
j=1,...,N

(TµjΛj −min(U, TµjΛj)) dx dy︸ ︷︷ ︸
over-fitting

} .

(2.19)

The first term in the objective function measures the remaining intensities of U after points

are extracted by N lattices, i.e., the under-fitting. The second term evaluates the total

excessive intensities of these N lattices, i.e., the over-fitting. As N increases, the under-

fitting decreases. If we control the over-fitting to be 0, i.e., each lattice candidate has no

extra lattice points, then by including more layers, Equation 2.19 reaches the minimum.

Therefore, we solve Equation 2.19 using a greedy strategy, which leads to LISA in the

following section.

2.5.2 Lattice Identification and Separation Algorithm (LISA)

We present the outline of the algorithm in algorithm 1, and a demonstration of its workflow

is in Figure 2.12.

In real applications, the size, the shape, and the intensity of each particle may differ,

which complicates the identification. After background denoising if necessary (e.g., using

the Otsu’s method [157]), we process the image by replacing each local maximum on the

intensity surface with a common Gaussian PSF Gσ. We denote this processing by F :

F(U) = Gσ ∗ δ(|∇U |) . (2.20)

44

. . .

20.4915

. . .

(A) (B) (C)

(D)

(E)

(F) (G)

8.9000 21.3966 8.6324

x1

x2

x3

x4

x5

Identi�ed Lattice Absolute Di�erence Residual After Extraction

Figure 2.12: Steps of LISA. (A) An image processed by (Equation 2.20). Step 1: (B) The
power spectrum on the polar coordinate, and the high responses using J = 5. (C) Peak
locations refined via matching Gaussian impulses. Step 2: (D) Generate lattice candidates
Tµk,lΛ(k,l), k, l = 1, · · · , 5, k 6= l, for each pair of high peaks, and compute their energies
(Equation 2.21). Pick (x3, x5) (red and purple in (B)) to be the optimal Tµ1Λ1, since it
has the lowest energy. Step 3: (Optional) (E) Update Tµ1Λ1 with T1Λ

(5)
µ1 . Step 4: (F) The

optimal lattice Tµ1Λ1 identified in this iteration; and the absolute difference between Tµ1Λ1

and the underlying true lattice. The absolute difference has an average value of 0.0202, and
maximum of 0.1924, showing the effectiveness of LISA. (G) The remainder image. The
average intensity 0.0710 is greater than the accuracy criterion 0.01; thus, proceed to the
next iteration.

45

Inputs:
1. U : the given gray scale image of a superlattice;

2. J : a parameter to control the number of lattice candidates;

3. (Optional) K: the number of iterations for the refinement.

Let j = 1. While TRUE:
Step 1. Compute the Fourier transform of U on the polar coordinate. Collect the
local maxima on the power spectrum, Cj = {x1, x2, · · · , xM} within J connected
components.
Step 2. For every pair (xk, xl) ∈ Cj , k 6= l, construct a lattice pattern and compute
the translation µk,l to get Tµk,lΛ(k,l). Take
TµjΛj = arg mink,l=1,...,M ;k 6=l E(Tµk,lΛ(k,l)) as in (Equation 2.21).
Step 3. (Optional) K-step-refinement of TµjΛj .
Step 4. For the identified optimal candidate TµjΛj , if mean(U − TµjΛj) < 0.01,
terminate the algorithm; otherwise, updateU = F(U−TµjΛj), j = j+1 and repeat.

Algorithm 1: Lattice Identification and Separation Algorithm (LISA)

For images with low or medium resolution, we apply the Gaussian approximation method [158]

to calibrate the peak locations (also see [159, 160] for other peak localization methods).

Letting U(x, y) be a discrete local maximum, i.e., U(x, y) ≥ U(x′, y′), for x′ = x± 1 and

y′ = y ± 1, the calibrated coordinate (x̂, ŷ) for the peak (x, y) is computed via

x̂ = x− log(U(x+ 1, y))− log(U(x− 1, y))

2(log(U(x+ 1, y)) + log(U(x− 1, y))− 2 log(U(x, y)))
,

ŷ = y − log(U(x, y + 1))− log(U(x, y − 1))

2(log(U(x, y + 1)) + log(U(x, y − 1))− 2 log(U(x, y)))
.

In Step 1, we compute the Radon transform of the image by a B-spline convolution-

based method [161]. The result is a 1D signal for each projecting angle, upon which we

apply the standard 1D FFT. The collection of these 1D spectra form the 2D Fourier trans-

form of the image on the polar coordinate (see Theorem 2.1.1), see Figure 2.12 (B). For

computational efficiency, we focus on peaks with sufficient heights. We set the threshold

such that above which, the power spectrum has J connected components, e.g., J = 5 and

46

the filtered peaks x1, · · · , x5 in Figure 2.12 (B). To achieve sub-pixel precision, we adjust

the peak locations by perturbing the period. Figure 2.12 (C) demonstrates this process:

consider trains of Gaussian impulses placed periodically along the radial direction; by per-

turbing the period from the origin, we choose the one that overlaps with the signal the most

and select its period to be the adjusted distance.

In Step 2, each pair of local maxima on the power spectrum corresponds to a lattice

candidate in the image domain. Figure 2.12 (D) displays 4 examples of such combinations.

The Fourier transform of a lattice Λ(b1, b2) in the image domain is a lattice in the frequency

domain, called its reciprocal lattice Λ(ω1, ω2). This relation is given by:

[b1 | 0]T = ([ω2 | 0]T × [0, 0, 1]T)/(|[ω1 | 0]T × [ω1 | 0]T · [0, 0, 1]T |)

[b2 | 0]T = ([0, 0, 1]T × [ω1 | 0]T)/(|[ω1 | 0]T × [ω2 | 0]T · [0, 0, 1]T |)
.

We identify the translation for each candidate by finding the maximum of the cross-

correlation between the candidate and the original image. To evaluate the lattice candidates

shown in Figure 2.12 (D), we propose the following energy:

E(TµΛ) = ||F(U − TµΛ)�F(U)||2︸ ︷︷ ︸
under-fitting

+γ | #TµΛ

#F(TµΛ� U) + ε
− 1|︸ ︷︷ ︸

over-fitting

, Λ ∈ L , µ ∈ C .

(2.21)

Here U denotes the original image, # · counts the number of particles, and � is the

element-wise multiplication of matrices. We truncate the intensity differences between

images so that negative values are replaced by 0. γ > 0 is a penalty coefficient (we set

γ = 10), and ε > 0 is a small constant to avoid division by 0 (we set ε = 1× 10−8).

Notice the similarities between Equation 2.21 and the target function in Equation 2.19.

The first component in Equation 2.21 measures the portion of particles not covered by the

lattice candidate, i.e., the under-fitting. A small value represents that more particles in the

47

image are identified with the lattice points of TµΛ. We normalize the remainder U − TµΛ

to be comparable with F(U). The element-wise multiplication with F(U) prevents new

points generated by incomplete particles after the extraction. The second term in Equa-

tion 2.21 compares the ratio between the number of lattice points of the candidate and what

is identified in the image, i.e., the over-fitting. Therefore, the optimal candidate lattice has

minimal energy.

Step 3, illustrated in Figure 2.12 (E), is similar to a sampling procedure with replace-

ment. This step is optional, yet when the number of underlying lattices is large, it improves

the accuracy of identification. As shown in subsection 2.5.3, superposing lattices com-

plicate the power spectrum; the early identification is affected the most, yielding unstable

identifications for the remaining lattices. This optional step refines the results, and proceeds

iteratively. Initialize t = 1 and let TµjΛ
(1)
j = TµjΛj . For t = 1, · · · , K, compute and nor-

malize the remainder F(U −TµjΛ
(t)
j). Then iterate Step 1 and Step 2 on F(U −TµjΛ

(t)
j) to

find the next candidate, TµjΛ
(t+1)
j . AfterK such candidates are generated, as in Figure 2.12

(E), update TµjΛj with the one giving the minimal energy (the red in Figure 2.12 (E)). This

is the output for this iteration of LISA, shown in Figure 2.12 (F).

In Step 4, the optimal candidate TµjΛj is subtracted from the original image, and the

difference is truncated so that negative values are replaced by 0. Figure 2.12 (G) shows

the remainder image. We compute the average intensity of the residual image U − TµjΛj

and terminate the algorithm if it is smaller than the accuracy criterion 0.01; otherwise, we

preprocess the residual using F , update the original image, and repeat Step 1–4.

2.5.3 Analytical Properties of LISA: Superlattice and Spectrum Surface

We describe the close relation between LISA and the geometric features of a superlattice.

Assuming that in (Equation 2.1), the remainder image has 0 intensity, i.e., R = 0, and

maxj=1,··· ,N TµjΛ(bj,1, bj,2) ≈
∑

j=1,··· ,N TµjΛ(bj,1, bj,2), the Fourier transform of a super-

48

lattice image becomes

Û(ξ) = Ĝσ(ξ)
N∑
j=1

Λ∗j(ξ)

det Λj

exp(−i2πξ · µj) , ξ ∈ R2 . (2.22)

Here, ξ represents the frequency coordinate; Ĝσ corresponds to the Fourier transform of

the PSFGσ; and the rotation exp(−i2πξ ·µj) is due to the shift µ in the image domain. The

Fourier transform of the lattice impulse Λj , j = 1, · · · , N , consists of its reciprocal lattice

impulse Λ∗j modulated by det Λj , the fundamental volume of Λj = Λ〈βj, ρj〉 computed via

Im(βjβjρj). The reciprocal lattice impulse Λ∗j can be expressed in the lattice space by:

[β̂j, ρ̂j] = [
βj exp(−iπ/2)

det Λj

, ρj] ∈ L .

Equation 2.22 implies that the Fourier transform of a superlattice image is a mixture of

complex lattices influenced by three factors: the centered Gaussian Ĝσ, the fundamental

volumes det Λj , and the lattice translations µj , j = 1, 2, . . . , N . Without these modifica-

tions, every lattice in the image domain corresponds to two peaks on the power spectrum.

Notice that for ξ ∈ R2, Λ∗j(ξ) = 1 if and only if 1/|ξ| is a period of Λj along the direction

of ξ. Hence, we can identify lattices {Λj}Nj=1 with correct combinations of the peaks on the

power spectrum surface, and we apply this in Step 2 of LISA.

The Gaussian PSF and the fundamental volumes of lattices complicate the problem.

First, independent of the positions of the superlattice particles, a centered Gaussian Ĝσ

globally dampens the power spectrum. If |ξ| is small, Ĝσ(ξ) has little influence on the

power spectrum, and if |ξ| is large, Ĝσ(ξ) considerably decreases the power at ξ. Second,

the radius of particles controls the rate of radial decay of the power spectrum surface. High-

frequency components are preserved if the particles of the superlattice have a small radius,

as the standard deviation σ is small. Third, the fundamental volumes of the original lattices

affect the power spectrum. The magnitudes of a pair of peaks on the spectrum surface

associated with the lattices with the smaller fundamental volumes are augmented, and those

49

(a) (b) (c) (d)

Figure 2.13: Effect of relative translation. (a) A superlattice composed of T4−3iΛ〈12, i〉 and
T−4+3iΛ〈12, i〉. (b) The power spectrum of (a) where peaks are missing due to the relative
translations. From this incomplete reciprocal lattice, LISA identifies lattice (c) and (d) each
shown in white, superposed over (a) in gray.

with the larger fundamental volumes are decreased. This coincides with our experience that

dense lattices are easier to recognize compared to the sparse ones. Consequently, LISA

tends to find lattices with smaller particle sizes and smaller fundamental volumes first, and

it identifies the sparser ones later.

Relative translations of the lattice layers have a more delicate influence on the power

spectrum surface. The translation in the spatial domain results in a phase change in the

frequency domain, and it does not affect the power spectrum if there is only one lattice.

When multiple lattices are superposed, the frequencies along one direction will interact

with each other. Suppose for some 1 < m ≤ N , Λ∗1(ξ) = · · · = Λ∗m(ξ) = 1 and Λ∗j(ξ) = 0

for j = m+1, · · · , N , then Û(ξ) is a sum ofm complex numbers, whose magnitude varies

based on the directions of µ1, · · · , µm. An extreme case is that, if Λ1 = Λ2, µ1 = −µ2 6= 0,

and there exists an ξ such that Λ∗1(ξ) = 1 and Re(ξµ̄1) 6= 0, then |Û(ξ)| = 0. Figure 2.13

shows an example. LISA detects potential lattices, even though the reciprocal lattices are

incomplete and the reciprocal bases are not minimal. If any basis of the reciprocal lattice

remains high response in the power spectrum, LISA will consider it as a candidate to be

evaluated.

50

2.5.4 Robustness of LISA against Gaussian Perturbation

In practice, the atomic configuration in a crystal-melt interface [162] can be modeled us-

ing a lattice distorted by a Gaussian perturbation. We modify Equation 2.22 to consider

such cases. To simplify notations, we assume that there is only one unshifted lattice. It

is easy to extend to multiple lattices with arbitrary translations. Ignoring the remainder

image in Equation 2.1, the image Ũ of a lattice T0Λ(b1, b2) with perturbed particles can be

expressed as

Ũ(x, y) =
∑

k1,k2∈Z

Gσ ∗ δ(k1b1 + k2b2 + ∆xk1,k2 + i∆yk1,k2 − x− iy) ,

with (∆xk1,k2 ,∆yk1,k2) ∈ R2, denoting the perturbation on the particle parameterized by

(k1, k2) ∈ Z2 in the lattice. The Fourier transform of Ũ is

Ĝσ(ξ)
∑

k1,k2∈Z

exp(−2πiφk1,k2(ξ)) ,

where φk1,k2(ξ) = (∆xk1,k2 + i∆yk1,k2 + k1b1 + k2b2) · ξ. We assume that the perturba-

tions are independent and identically distributed Gaussian vectors with uncorrelated coor-

dinates, that is (∆xk1,k2 ,∆yk1,k2) ∼ N (0,Σ) where Σ =

s2 0

0 s2

, s > 0 constant, for

any (k1, k2) ∈ Z2. This implies that for any ξ in the frequency domain,

φk1,k2(ξ) ∼ N ((k1b1 + k2b2) · ξ, s2|ξ|2) .

Some observations are immediate. First, for a single lattice, perturbations only alter the

phases. If there are multiple lattices, the magnitude of the power spectrum will be modified

as discussed in subsection 2.5.3. Second, E[φk1,k2(ξ)] depends on the angle between k1b1 +

k2b2 and ξ. The perturbations have stronger effects on non-lattice points than lattice points.

If ξ is reciprocal to the lattice point k1b1 + k2b2, then they are perpendicular; thus, the

51

(a) (b) (c)

(d) (e) (f)

Figure 2.14: LISA’s robustness against Gaussian perturbation. In the first column, a single
lattice T0Λ〈12, eiπ/18〉 is shown in (a) with its power spectrum surface in (d). A centered
Gaussian perturbation is applied with standard deviation (b) s = 0.5 and (c) s = 1, and
their power spectra are displayed in (e) and (f), respectively. Notice that in the frequency
domain, the reciprocal bases away from the origin are smeared by noises, but those near
the origin remain high responses. The lattices identified by LISA in (b) and (c) are robust
against the perturbation; their distances to (a) are 0.0046 and 0.0081, respectively.

average perturbation is 0. Finally, with a fixed s, the standard deviation of φk1,k2(ξ) only

depends on |ξ|. When we are approximating relatively long periods, i.e., |ξ| is small, the

Fourier transform of the perturbed lattice is almost the same as that of the unperturbed

one. In Figure 2.14, the lattice points are shifted by Gaussian perturbations with different

standard deviations, and the low-frequency components maintain high responses. LISA

is empirically robust against Gaussian perturbation with bounded standard deviation, and

the detection of medium-sized lattices is effective. When the standard deviation is large,

LISA identifies the correct lattices, yet the extraction procedure may be modified. For

example, instead of direct subtraction, extract the point from the original image nearest to

the candidate lattice.

52

(a) Original image (b) dL (Λ, Λ̂) = 0.004 (c) dL (Λ, Λ̂) = 0.009 (d) dL (Λ, Λ̂) = 0.059

Figure 2.15: A typical example of LISA. (a) A superlattice of three lat-
tices: T2−4iΛ〈−9.9927 + 0.0315i, 1.0014ei17π/36〉, T−7−4iΛ〈−4.4820 + 12.1815i, i〉 and
T1−5iΛ〈−4.9898− 8.5389i, 1.0298ei7π/12〉. (b)–(d) display the lattices identified by LISA.
Each metric value shows the distance between the true lattice and the identified one in L .

2.5.5 Numerical Experiments with Various Superlattice Patterns

We present various numerical results in this section. The radius of each particle is set to be

2.5 ∼ 3 pixels, and we choose 2.7 for visualization. The performance of LISA is evaluated

visually as well as numerically by computing the distances between the identified and the

real patterns in the lattice space. The identified lattices are displayed in the same order as

they are found during the iterations of LISA. For the choice of parameters, we fix J = 6

and K = 10.

Figure 2.15 shows a typical example of LISA. The given image is a superlattice com-

posed of three distinguishable lattices, and LISA successfully extracts all the underlying

lattices, one after another. For a better comparison, (b)–(d) display each identified lattice

(white) overlaid on the original image (gray) (a). For each layer, the identified lattice and

the true one show minor visual differences, which is also reflected in a small dL value

above the figure.

Figure 2.16 shows a more complex mixture where the given image (a) seems almost ran-

dom. The more layers of lattices there are, the more complicated the superlattice becomes.

Randomly clustered particles, curve-like segments, and highly inhomogeneous texton re-

gions present visible challenges. As shown in (b)–(f), LISA identifies five different lattice

patterns from (a) without any prior knowledge of the number of lattice layers, the lattice

53

(a) Original image (b) dL (Λ̂,Λ) = 0.0224 (c) dL (Λ̂,Λ) = 0.0053

(d) dL (Λ̂,Λ) = 0.0065 (e) dL (Λ̂,Λ) = 0.0067 (f) dL (Λ̂,Λ) = 0.0025

Figure 2.16: Superlattice with more layers. (a) A superlattice of 5 lat-
tices: T2−5iΛ〈11, ei7π/18〉, T3+4iΛ〈11.7378 + 2.4949i, i〉, T0Λ〈3.7082 + 11.4127i, e4π/9〉,
T1−2iΛ〈14.0954 + 5.1303i, i〉, and T0〈11.8177 + 2.0838i, i〉. (b)–(f) show the extracted
patterns using LISA. Notice that all the metric values dL (Λ̂,Λ) comparing the true lattices
with the identified ones are very small.

translations, nor the lattice bases. The identified lattice patterns are of high precision. Their

distances to the underlying true lattices are all less than 0.03. The identified lattice patterns

(c) and (f) are very similar, and the distance between them in the lattice space is 0.0340.

LISA can distinguish small differences since, in the power spectrum surface, the periodic

structures are more easily identified as strong responses.

The new lattice representation and the metric are independent of the translation of a

lattice pattern. Figure 2.17 presents the results of LISA concerning the translational lat-

tices. There are four lattices mixed in the given image (a). They were generated with

two different lattices, and each of them is translated differently to create an additional two

distinct lattices. Using the cross-correlation function (in Step 2 of LISA), the underlying

four lattices are extracted sequentially by LISA even if most of the particles are located

close to each other. Figure 2.18 is a superlattice containing three lattices, generated with

54

(a) Original image (b) dL (Λ̂,Λ) = 0.0406

(c) dL (Λ̂,Λ) = 0.0095 (d) dL (Λ̂,Λ) = 0.0053 (e) dL (Λ̂,Λ) = 0.0074

Figure 2.17: Mixture of translational lattices. (a) A superlattice of four lattices: T0Λ〈12, i〉,
T1+iΛ〈11.8177+2.0838i, i〉, T2−3iΛ〈12, i〉, and T2−5iΛ〈11.8177+2.0838i, i〉. (b)–(e) show
the identified patterns by LISA.

one lattice which is translated differently three times. Such a configuration results in many

L-shapes [115] in the image. This local ambiguity presents no confusion for LISA since

LISA observes the image globally in the frequency domain. The sensitivity of LISA to the

distance between particles is affected by the particle size of the lattice candidates.

In practice, some images may contain partial lattice patterns. For example, Figure 2.19

(a) is a superlattice containing a complete lattice (b) and a partial lattice (c), where 50% of

its particles are missing. The incompleteness modifies the power spectrum by convolving

the reciprocal lattice of (c) with the Fourier transform of a lower triangular shape, resulting

in weaker responses. LISA identifies the complete lattice (b) first, then reveals the incom-

plete lattice (c). Notice that LISA identifies the basis for the lattice pattern corresponding

to (c), instead of the image of an incomplete lattice. This is shown in (e), where the identi-

fied pattern extends to the upper triangular region. (f) shows the intersection of the lattice

identified in (e) (in white) with the original (a) (in gray). We also experiment in situations

where 70% of the particles from one of the lattices are missing, and LISA recognizes the

55

(a) Original image (b) dL (Λ̂,Λ) = 0.007 (c) dL (Λ̂,Λ) = 0.015 (d) dL (Λ̂,Λ) = 0.011

Figure 2.18: Close particles. (a) A superlattice of three lattices obtained by translating
T0Λ〈14.7721 + 2.6047i, i〉 by 4 − 2i, 1 − 2i and 2 − 5i. These translations push particles
close, and generate a pattern whose lattice points are composed of three dots. (b)-(d) show
that LISA successfully distinguishes them with high precision as indicated by the values of
dL .

incomplete lattices successfully. To be identified, the average intensity of the incomplete

lattice must be at least 0.01, required by the terminating condition of LISA.

The evaluation energy (Equation 2.21) proposed in section 2.5 considers the density

restriction, i.e., the overfitting term. Figure 2.20 illustrates its importance. Generated by

two lattices, the superlattice in (a) presents a region of moiré pattern at the center. Without

the density restriction in Equation 2.21, a dense lattice is identified as in (b); while with the

density restriction, a different lattice is identified as in (c). The comparison between (b) and

(c), as illustrated in (d), indicates that (c) is similar to a sub-lattice of (b). Although (b) has

more points, many of them are not present in (a), which is demonstrated in (e). In this case,

lattice (c) is visually indistinguishable from one of the underlying lattices. In the frequency

domain, large-scale moiré patterns can produce strong responses on the power spectrum.

Lattice candidates associated with these high responses are excessively dense, and they

partially coincide with the moiré pattern in the given image, which causes instability for

the subsequent identifications. The density restriction in Equation 2.21 makes LISA robust

against possible moiré patterns.

Superposed lattices can present interesting patterns, and the formation may involve

scaling and rotating. Hexagonal lattices, which share shape descriptors ρ = ±1/2+i
√

3/2,

56

(a) Original image (b) Complete lattice Λ1 (c) Partial lattice Λ2

(d) dL (Λ̂1,Λ1) = 0.0056 (e) dL (Λ̂2,Λ2) = 0.0036 (f) Improved (e)

Figure 2.19: Incomplete lattice. (a) A superlattice composed of a complete lattice
T0Λ〈11.6924+2.6994i, ei4π/9〉, shown in (b), and a portion of T2−3iΛ〈11.8177+2.0838i, i〉,
shown in (c). (d) and (e) are the identified patterns by LISA (in white) over the original (a)
(in gray). (f) min(T Λ̂2, I), where T Λ̂2 is the identified lattice in (e) and I is the original
image in (a). This shows the intersection of (a) and (e).
.

57

(a) (b) (c)

(d) (e)

Figure 2.20: Importance of the density restriction. (a) A superlattice of
T2−10iΛ〈10, ei17π/36〉 and T−3+5iΛ〈9.9756 + 0.6976i, ei17π/36〉. Without the second term
in (Equation 2.21), we obtain a dense lattice T Λ̃ in (b). With the density restriction, we get
T Λ̂ in (c) which is the correct lattice pattern. (d) compares (b) and (c), where the white pix-
els are T Λ̃∩T Λ̂ (the particles commonly captured by (b) and (c)), the green are T Λ̃−T Λ̂
(the extra points in (b) compared to (c)), and the red are T Λ̂ − T Λ̃ (particles in (c) not
covered by (b)). It shows that (c) is almost a sub-lattice of (b). (e) min{T Λ̃, I} showing
the intersection of (a) and (b). This shows that the dense lattice (b) approximates the moiré
pattern at the center of (a)
.

58

(a) Original image

(b) dL (Λ̂,Λ) = 0.012 (c) dL (Λ̂,Λ) = 0.023 (d) dL (Λ̂,Λ) = 0.006 (e) dL (Λ̂,Λ) = 0.014

Figure 2.21: Flake-like pattern generated by lattices. (a) A flake-like superlattice of hexag-
onal lattices with β equal to 10, 13, 15 and 12. In the same order, (b)–(e) show LISA
successfully identifies the underlying lattices.

are useful components; in the lattice space, their equivalent classes have the most elements,

i.e., they are more symmetrical than the other lattices. In Figure 2.21, four hexagonal

lattices with β = 10, 12, 13 and 15 are superposed, and the superlattice displays a flake-

like pattern. In Figure 2.22, a flower-like pattern is formed by four hexagonal lattices

with identical scale descriptor norm |β| = 11, and with different inclination angles: 53◦,

−53◦, 143◦ and−143◦. LISA successfully identifies each lattice pattern. We compare each

identified lattice with the original one, and the small distance value dL (above each figure)

shows the effectiveness of LISA, even for complicated mixed patterns.

Figure 2.23 (a) displays a portion of an image from [163], which is acquired by per-

forming SAED on a Na-exfoliated single-layer MoS2. A TMD monolayer contains three

layers of lattices. In the top-view, S-atoms on the top overlap with those in the bottom.

LISA successfully identifies the visible layers shown in (b). Figure 2.23 (c) shows a part of

an HREM image of a MoSe2 monolayer from [164]. In (d), underlying lattices with bright

lattice particles are identified and separated by LISA, yet the dimmer lattice particles fail

59

(a) Original image

(b) dL (Λ̂,Λ) = 0.015 (c) dL (Λ̂,Λ) = 0.009 (d) dL (Λ̂,Λ) = 0.006 (e) dL (Λ̂,Λ) = 0.004

Figure 2.22: Flower pattern generated by lattices. (a) A flower superlattice of four lattices
with scale descriptors having a common norm |β| = 11, and inclination angles equal to
53◦, 143◦, −53◦ and −143◦. (b)–(e) show the lattices identified with high precision by
LISA.

to be recognized. This can be addressed by lowering the threshold obtained by the Otsu’s

method, image enhancing techniques, or sophisticated feature point detectors.

We test LISA on the grain segmentations from material science. LISA identifies one

lattice pattern from each homogeneous region. By directly comparing these identified lat-

tices with the preprocessed given image, we classify the grain regions. Different from the

grain boundary detection, here we focus on the classification of the lattice patterns, which

is similar to [165]. Figure 2.24 (a) shows a part of an image from [166], where a grain

boundary is formed in the graphene grown by chemical vapor deposition (CVD). LISA

detects two lattices as in (b) and (c). In (d), particles in the given image (a) shared with (b)

are colored green, and those shared with (c) are colored red. The white particles indicate

where (b) and (c) intersect. This example demonstrates the potential applications of LISA

beyond superlattice separation.

Finally, we investigate the computational efficiency of LISA. We focus on three major

60

(a) (b) (c) (d)

Figure 2.23: LISA on real images. (a) and (c) are the images of TMD monolayers adjusted
from [163] 3 and [164] 1 (c), respectively. (b) and (d) show the identified lattice patterns,
and lattice points from different layers are colored in red and green, respectively.

(a) (b) (c) (d)

Figure 2.24: LISA on grain segmentation. (a) A grain image adjusted from
[166] 15 (a). (b) T−1.3794+9.7510iΛ〈−10.9881 − 12.1163i,−0.4579 + 0.8950i〉 and (c)
T9.6287+9.5640iΛ〈−15.7326 − 4.7420i, 0.4813 + 0.8800i〉 are the lattice patterns identified
by LISA . (d) Particles shared in (a) and (b) are colored in green, and those shared with (c)
in red. The white particles are shared by the lattices in (b) and (c).

61

(a) (b) (c)

Figure 2.25: CPU time of LISA. Fixing two lattices, the base image width is m = 119,
K = 10, and J = 6. (a) The image width m is increasing while K and J are fixed. (b)
The number of iteration K is increasing with m and J fixed. (c) The number of connected
components J is increasing while keepingm andK fixed. Roughly, LISA depends linearly
on J and K respectively, and quadratically on m.

factors contributing to the run-time of LISA: the image size, the number of connected

components on the spectrum surface (J in Algorithm algorithm 1), and the number of

stabilizing iterations (K in Algorithm algorithm 1). Fixing a superlattice consisting of

two lattices T0Λ〈12, i〉 and T0Λ〈11.2763 + 4.1042i, ei4π/9〉, the CPU times (in seconds) of

LISA are plotted against each one of these factors when the other two are fixed. The results

roughly show that the complexity of LISA depends linearly on J and K, and quadratically

on the image width. This is consistent with the analysis in [161], where the complexity

of the B-spline convolution-based Radon transform is proportional to the image size, i.e.,

image width times image length.

2.6 Application to Grain Defect Detection

In crystalline materials, a grain is a homogeneous region that is composed of a single

layer of crystal [167]. The presence of crystal defects such as particle dislocation, grain

deformation, and grain boundary has unfavorable influences on macro-scale properties of

the materials. To automatically detect these structures in atomic-scale 2D crystal images,

many methods are developed in the literature. Variational model-based methods [102, 103,

104, 168, 105, 107] extract and classify the grains by minimizing certain functional en-

62

ergy; wavelet type methods [169, 170, 171, 106] measure the local properties of wave-like

components to reveal crystal defects; and Voronoi type methods [172, 173, 174] detect the

problematic particles by comparing the Voronoi cells with hexagonal polygons. Different

from these methods, we approach the grain defect detection problem by clustering particles

in an abstract metric space directly, where lattice representation is unique, and comparison

between lattice patterns is systematic.

In this section, we apply the lattice metric space (L , dL) developed in [118] to grain

defect detection problem. The lattice metric space (L , dL) can detect lattice inconsisten-

cies such as grain boundaries in non-hexagonal crystalline materials without any particular

modification. Voronoi type methods are limited to hexagonal lattices, and other techniques

are involved to analyze non-hexagonal ones [174]. In 2D, the other types of lattices are

oblique (e.g., orthoclase), square (e.g., halite), primitive rectangular (e.g., epsomite) and

centered rectangular (e.g., hemimorphite). These classes are encoded in (β, ρ) and further

refined by considering the metric structure on L . Moreover, the metric dL provides a

single-valued yet comprehensive measurement of the dissimilarities between any grains. It

is robust and sensitive enough to expose the grain boundaries and to reveal particle dislo-

cations as well as continuous deformations.

Specifically, we describe an efficient algorithm to extract grains and detect grain de-

fects. The main idea of this method is to classify particles into visually distinct grains by

checking their vicinities. For each particle, by comparing a 9-point stencil with nearby

points, a lattice is extracted and mapped to L . In L , Riemannian center of mass is non-

unique, which poses an obstacle for application of clustering methods requiring the notion

of centers, such as k-means [175]. To tackle this challenge, an over-segmentation using

regularized k-means [176] is employed, and the clusters are merged L with an agglomera-

tive hierarchical clustering method [175]. In addition, we introduce a function considering

the sizes of clusters to assist the cut-off selection for the merging.

63

Table 2.1: Lattice Clustering Algorithm

Inputs:

1. U : given gray-scale image;

2. λ: the parameter in regularized k-means;

3. T : threshold for merging.

Step 1. Particle and local lattice identification. Each local maxima is refined by fitting a
narrow Gaussian to find each particle pj , j = 1, 2, · · · , N . Among the k-nearest (k = 5)
neighbors of each particle pj , two vectors which gives the best match of a 9-point stencil is
picked for pj . Let A be the collection of such vectors in R4.
Step 2. Apply the regularized k-means to A, and obtain K clusters {Cl}Kl=1 with Euclidean
centers {(βl, ρl)}Kl=1.
Step 3. Considering the equivalence relations among descriptors, merge {Cl}Kl=1 by clus-
tering the lattices {Λ〈βl, ρl〉}Kl=1 in L with hierarchical clustering using the threshold T .

2.6.1 Lattice Clustering Algorithm based on Lattice Metric Space

We introduce an efficient algorithm to capture structural defects in multigrain from a gray-

scale image. Our approach is based on clustering, and particles with visually similar vicin-

ity are grouped. The algorithm is summarized in Table 2.1.

In Step 1, each particle is located by identifying local maxima refined by fitting a narrow

Gaussian. For each particle pj , k-nearest (k = 5 in our method) particles are found, denoted

as q1, q2 · · · , qk. For each pair of (qs, qt), s 6= t, we construct a 9-point stencil with Gaussian

weight located at pj + a(qs − pj) + b(qt − pj), a, b = 0,±1. We choose the pair with the

highest response and compute its corresponding descriptors (βj, ρj). Then pj is assigned

with the lattice Λ〈βj, ρj〉.

In Step 2, we first cluster the lattices A = {Λ〈βj, ρj〉}Nj=1 by clustering the descriptors

{(βj, ρj)}Nj=1 in R4 equipped with the Euclidean norm. As discussed in section 2.3, the

quotient geometry of L is non-trivial, which complicates directly clustering the descriptors

in L . To overcome this difficulty, we over-segment the lattices using the regularized k-

means [176] in R4 first. The reason is that if (βj, ρj) and (βk, ρk) are close in R4, then

64

Λ〈βj, ρj〉 and Λ〈βk, ρk〉 are close in L , but the inverse is not true. Consequently, there

might be two clusters whose members are similar lattices. We denote the resulting clusters

by {Cl}Kl=1 with centers {Λ〈βl, ρl〉}Kl=1, where (βl, ρl) is the Euclidean center of pairs of

descriptors in Cl.

In Step 3, we merge the clusters {Cl}Kl=1 considering the equivalence relations among

lattices. We compute the pair-wise lattice distances dL among {Λ〈βl, ρl〉}Kl=1 and employ

the standard agglomerative hierarchical clustering method [177]. This method requires a

cut-off t > 0, and cluster centers closer than t will be merged. To assist choosing the

optimal threshold, we consider the following function:

g(t) = max
m=1,2,··· ,s

{
∑Jm

j=Jm−1+1 |Cj|
maxj=Jm−1+1,··· ,Jm{|Cj|}

}, (2.23)

which measures the energy of the current stage of clustering using cut-off t; here, without

loss of generality, J0 = 0, {Cj}J1
j=1, {Cj}J2

j=J1+1,· · · , and {Cj}Jsj=Js−1+1, represent the clusters

of particles to be merged respectively when the cut-off is t; and |Cl| denotes the counting

measure l = 1, 2, · · · , K. In general, g(t) is a staircase function of t > 0. In order for the

merging to be stable and substantial, we pick optimal thresholds T in the intervals upon

which the graph of g is flat and the previous discontinuity has high jump.

2.6.2 Numerical Experiments on Grain Defect Detection

We apply LCA to images from the literature [102, 104, 178, 179, 180]. Throughout this

paper, we fix the weighting parameter w = 0.05, and the suitable range for λ in regularized

k-means is found to be 0.2 ∼ 0.5. The particles belonging to a common grain region are

colored with identical color.

65

Lattice representation: (b1, b2) versus (β, ρ)

Compared to basis representation (b1, b2), descriptor representation (β, ρ) is stable. Arg b2

ranges from 0 to 2π, yet Arg ρ takes value in [π/3, 2π/3], which is more restrictive. In

practice, grains in polycrystalline materials generally have similar lattice patterns, thus

the shape descriptors ρ in the data are concentrated. The benefit of L is exemplified

in Figure 2.26. Fixing a particle, colored red, as the reference, we compare the lattice

representations (b1, b2) and (β, ρ) to those at the reference. Darker color indicates closer

in the chosen distance. If we compare (b1, b2) in Euclidean metric for R4, then (d) and

(f) display the results for two distinct reference points which are nearly random. Using

the same reference points, if we apply the lattice metric dL on (β, ρ), (e) and (g) show the

advantage of using descriptor representation compared to (d) and (f) respectively. The color

distributions in (e) and (g) comply with our perception of homogeneity. Figure 2.26 (e) and

(g) also reveal grain defects and continuous deformation within homogeneous regions.

We note this experiment is done by comparing every particle to the reference (red point)

without using LCA. Every lattice label is compared to that of the reference particle directly

in L , and the distance is represented by the color. This approach shows excellent results,

yet the computation is very slow. In the following, we apply LCA, which is more compu-

tationally efficient.

General example of LCA

There are two parameters in LCA: λ and T . λ is a penalty parameter in the regularized

k-means, which implicitly controls the number of clusters K. In general, choosing λ is

straightforward [176], and the optimal ones are found within wide intervals. Large λ pe-

nalizes clusters with small elements, hence fewer clusters with even sizes are obtained;

small λ produces more clusters with even sizes. Applying LCA to the image in Figure 2.26

(a), we plot the function g(t) in Figure 2.27 (a) when t ranges from 0.1 to 1. Notice that

g(t) is a staircase function of t, and the figure shows clear plateau within intervals, e.g.

66

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.26: Direct classification using dL . (a) PFC image from [104] Fig. 4. (b) Lattice
labels obtained in Step 1 of LCA. (c) zoomed-in partial region from (b). (d) and (f) show
Euclidean distance function of (b1, b2) representation with respect to that of the red points.
(e) and (g) show the lattice distance function dL of (β, ρ) representations with respect
to that of the red points, which are the same as those in (d) and (f) respectively. Linear
interpolation is applied to fill the color in (d)–(g).

[0.25, 0.35], [0.35, 0.45], [0.47, 0.7]. One should avoid choosing the threshold T near the

jump-discontinuities. Any perturbation near these points will produce substantially dif-

ferent results. The results with T from the flat regions T = 0.4, T = 0.5 and T = 0.8

present different levels of details, as shown in (b)–(d) in order. Compared to (c), (b) dis-

tinguishes minor disorientation such as those between red and green regions. While large

scale boundaries remain noticeable in (c), only particles inconsistent with ambient patterns

are accentuated in (d). Typical particle defects are not identified in region based methods,

e.g., compare Figure 2.26 with 5 of [104]. Otherwise, both methods agree on large scale

grain boundaries. We also note that regions labeled with the same color have similar lattice

pattern, and they can be separated in different locations, for example, the green regions in

(b).

67

(a) (b) (c) (d)

Figure 2.27: Apply LCA to the image Figure 2.26(a). Here (a) shows the curve g(t).
Results when (b) T = 0.4, (c) T = 0.5 and (d) T = 0.8 show the effect of T .

Over-segmentation using k-means versus Regularized k-means

In LCA, we choose the regularized k-means to over-segment. Using regularized k-means,

the number of clusters K is implicitly controlled by the parameter λ, and K dynamically

evolves depending on the data. This is desirable, especially when we do not know a suitable

K a priori. Moreover, regularized k-means is stable. Every step during the clustering

is deterministic, hence the results from regularized k-means are reproducible. To justify

our choice, we experiment and compare the regularized k-means with the most common

clustering method, k-means [175]. First, K has a direct impact on the results, yet it is not

straightforward to choose. If we apply the k-means instead of the regularized k-means in

LCA Step 1, fix T = 0.5, and rerun the algorithm for 100 times for different choices of

the number of clusters K, then Figure 2.28(a) shows that the number of identified grains

clearly depends on K. Second, the random initialization in k-means causes difficulties in

finding a stable threshold T . Even with the same parameters, e.g., K = 30, T = 0.5, it

exhibits different results each time we run the algorithm, as shown in (b) and (c). Notice

that the blue region in (b) is connected, yet the corresponding purple region in (c) is not.

Also, the point defects in the upper right within the grains have different features in these

results. In (d), using K = 50 and the same threshold T = 0.5 produces a result similar

to Figure 2.28 (c), yet this is not reproducible. However, all the results in Figure 2.27 are

deterministic in the sense that, for any given image, the same combination of λ and T yields

68

(a) (b) (c) (d)

Figure 2.28: Instability of k-means. (a) Box-plot of the number of grains against parameter
K in k-means. (b)–(d) use k-means with different initializations. (b) and (c) set K = 30
and T = 0.5 and (d) uses K = 50 and T = 0.5.

(a) (b) (c) (d)

Figure 2.29: (a) There are 3 grains: one on the top, one in the middle, and one in the
bottom. Image from [102] Fig. 1.(b) The curve g(t) with 3 major jump-discontinuities. (c)
T = 0.5. (d) T = 0.8.

an identical result.

Graph of g and grain features.

The domain for the function g defined in Equation 2.23 is closely related to the lattice metric

dL , and the graph of g reveals geometrical features about the multigrain. In Figure 2.29 (a),

we apply LCA, and g is plotted in (b). Observe that there are 3 major jumps in the graph

of g, which exactly correspond to the grain regions in (a). The grain in the bottom of (c)

is merged with the top one when T = 0.5 in the plateau after the first jump is changed to

T = 0.8 after the second jump, as shown in (d). It is also clear that the height of each jump

is proportionally related to the grain area. See Figure 2.30 and Figure 2.31 for images with

two grain regions. Notice that the threshold T are chosen on the plateau of the function g

respectively.

69

(a) (b) (c)

Figure 2.30: (a) There are 2 grains with a regular boundary. Image adapted from [180] Fig.
1(a). (b) The curve g(t) with 2 major jump-discontinuities. (c) Result with T = 0.4.

(a) (b) (c)

Figure 2.31: (a) There are 2 grains presented and the grain boundary is irregular. Image
adapted from [178] Fig. 1. (b) The curve g(t) with 2 major jump-discontinuities and the
jump is rough. (c) Result with T = 0.8.

70

(a) (b) (c)

Figure 2.32: (a) Grain boundary between non-hexagonal grains. Image adapted from [179]
Fig. 3. (b) The curve g(t). (c) Result with T = 0.7.

Behavior of LCA near grain boundaries.

In Figure 2.29(c), Figure 2.30 (c) and Figure 2.31 (c), LCA assigns the boundary parti-

cles to either of the neighboring lattice patterns; in other cases, LCA creates new classes.

This differs from grain boundary identification using variational approaches, where spa-

tial constraints such as length minimization are added. In the framework of lattice metric

space, each particle is classified only based on k-nearest points, thus it is free to create new

clusters.

Grain boundary detection in non-hexagonal crystalline materials.

As we discussed in Section 2, the generality of the lattice metric space theory allows analy-

sis applicable to any types of Bravais lattices. Since LCA is established on this framework,

we can directly employ LCA to images composed by arbitrary types of grains. Figure 2.32

(a) is a HAADF-STEM image presenting a grain boundary in well-annealed, body-centered

cubic (BCC) Fe. The graph of g in (b) implies choices for T approximately greater than 0.6,

and the result with T = 0.7 is shown in (c). Due to fewer symmetries than the hexagonal

lattices, the boundary between two cubic lattices has a relatively larger gap; hence it is chal-

lenging for methods that depend on hexagonal cells. LCA, with the flexibility supported

by the lattice metric space, classifies the particles on the edges of the gap correctly.

71

2.7 Summary

This chapter addresses two questions about lattice identification and separation in super-

lattices. The first one is: What is a proper space where we can compare any two lattices

quantitatively? Starting from the positive minimal bases, we exploit the modular group

theory and the Poincaré metric to define a lattice space L with a natural metric struc-

ture. This new definition provides rich geometrical intuition for the collection of lattices.

The computation of the metric dL yields compact and visually consistent measure, well-

representing differences between lattice patterns. While it is compatible with the wallpaper

group theory, L provides finer classification.

The second question is: How to practically identify and separate lattices from a su-

perlattice? We introduce the algorithm LISA. Without prior knowledge of the number

of lattice layers in the superposed lattices, LISA sequentially identifies and extracts indi-

vidual lattice patterns until the remainder image has insufficient intensity. We show the

importance of density restriction when evaluating the lattice candidates indicated by pairs

of high responses on the power spectrum surface. This evaluation method renders LISA’s

robustness against moiré patterns. An analytical framework is presented to explore the ef-

fects of relative translations and Gaussian perturbations. The metric space (L , dL) allows

more discussion about special families of lattices, and its geometrical properties are inter-

esting to explore. LISA detects regular lattice patterns as well as near-regular lattices, and

it can be extended to the identification of grain defects.

We also demonstrated an application of the lattice metric space theory to grain defect

detection problems. Most methods such as [104, 168] are free from particle position esti-

mation, since they focus on homogeneous regions. We detect inconsistencies in the local

patterns based on positions of k-nearest neighbors of each particle. More sophisticated

techniques can be applied during this preprocessing stage. Theoretically, this approach is

easily linked with the lattice metric space theory, which provides a uniform framework to

72

classify particles in materials of any type of 2D Bravais lattice. In the described lattice clus-

tering algorithm, LCA, different from variational methods, we emphasize the neighboring

similarity of each particle rather than large scale homogeneity; thus LCA is superior at

identifying various grain defects including grain boundaries. Since length minimization is

not applicable, isolated particle deviating from the lattice point of the neighboring pattern

will create a new cluster.

73

CHAPTER 3

PDE-BASED SHAPE REPRESENTATION AND VECTORIZATION

Shape representation plays an important role in feature analysis [181], object recogni-

tion [182] as well as classification [183]. A 2D shape is represented either by contour

or region, and both can be further classified as structural or global [47]. For example,

the chain code [48] is a contour-based structural method; the Fourier descriptor [49] is a

contour-based global method; the convex hull is a region-based structure method; and the

Zernike moment [50] is a region-based global method. These representations provide com-

pact information applicable for different purposes. An attractive approach is to encode the

shape using simple geometries such as points, curves, or polygons. It allows user-friendly

shape manipulation and scalable image rendition [184]. In this chapter, we focus on two

types of representations:shape skeleton and silhouette vectorization.

The skeleton of a 2D shape [185, 186, 187, 188, 189, 190] is a region-based structural

representation method. We discuss the flux-ordered thinning algorithm proposed in [191]

and refer to it as the Hamilton-Jacobi Skeleton (HJS). The first part of the algorithm is

to compute the distance function from the boundary of the shape using a Hamiltonian

formalism of the Eikonal equation. Then the flux is defined at each point using the gradient

vector field of the distance function. In the second part, each boundary point with high flux

is examined and removed if the homotopy of the shape remains unchanged. This homotopy

preserving thinning procedure continues until no point is removable anymore, then these

points constitute the skeleton of the shape.

Silhouette vectorization, on the other hand, is a contour-based structural approach. A

silhouette is a subset of the plane traditionally obtained by copying on paper the shadow

projected on a wall by a person placed in front of a point light source1. In digital images,

1https://en.wikipedia.org/wiki/Silhouette

74

https://en.wikipedia.org/wiki/Silhouette

an object can be delineated by a mere luminance threshold (e.g., Otsu’s algorithm [192]) as

long as it is darker or brighter than its surrounding. After a mere color quantization, many

graphics software2 reduces the image to a piecewise constant image, i.e., a union of disjoint

2D shapes. The boundaries of these shapes are encoded in the Scalable Vector Graphics

(SVG) format3 where each involved primitive element is specified by a small number of

2D vectors, called control points, and the encoded shape can be scaled independently from

the resolution. Such conversion from pixel image to SVG is called vectorization.

3.1 Region-based Representation – Shape Skeleton

Let I : Ω → {0, 1} be a binary image, where Ω = [0,M] × [0, N] denotes the continu-

ous image domain, and M,N are positive integers. A 2D shape, A, is a subset of Ω with

piecewise analytical boundary. Its skeleton, S, is a set of points which has equal shortest

distance from two or more boundary points of A [185]. More precisely, the skeleton of a

2D shape is a finite union of C2 curves that are either closed or ending at a finite set of

junctions or endpoints [193]. One of the many equivalent definitions of skeleton [186, 187,

188, 189, 190] is based on the distance transform: the skeleton S of a shape A consists of

the singularities of the distance transform restricted to the inside of A [191]. For exam-

ple, the skeleton of a disk is its center point, and the skeleton of a square is given by its

diagonals. Figure 3.1 shows the skeletons of some simple shapes. A skeleton can be used

to reconstruct a shape via the medial axis transform [186]. It defines a coordinate system

placed along the skeleton that encodes the distance from a skeleton point to the boundary

of the shape. Hence, the contour can be recovered as the envelope of a series of circles

centered at the skeleton with radii specified by the distance transform.

In the literature, different methods have been devised to skeletonize 2D shapes from

various perspectives. For example, Voronoi diagram based methods [194, 195] focus on

characterizing the symmetry axis; continuous transformation based approaches [196, 191,
2See (e.g.) https://en.wikipedia.org/wiki/Adobe Illustrator or Vector Magic
3https://fr.wikipedia.org/wiki/Scalable Vector Graphics

75

https://en.wikipedia.org/wiki/Adobe_Illustrator
https://fr.wikipedia.org/wiki/Scalable_Vector_Graphics

Figure 3.1: Skeletons (black curves) of some elementary shapes.

197, 186, 188, 185, 189, 190] aim at extracting the singularity set of certain evolution of

the boundary curve; and most morphology-based techniques [198, 199] look for maximally

inscribed balls whose centers compose the skeleton. We refer the readers to [200] for

a detailed review. A modified U-net was developed to directly map 2D shapes to their

respective skeletons [201].

3.2 Hamilton-Jacobi Skeleton Algorithm

As summarized in [191], HJS has two main parts: Part I, distance function and flux compu-

tation, and Part II, homotopy preserving algorithm. We present the details in four subsec-

tions. For Part I, the distance function is computed in subsection 3.2.1. We propose to use

the fast sweeping algorithm [202, 203] for the distance computation. In subsection 3.2.2,

the flux is defined for each point using the gradient field of the distance function. For Part

II, in subsection 3.2.3, the homotopy preserving point classification is explained, and in

subsection 3.2.4, the flux-ordered thinning algorithm is presented.

3.2.1 Distance Transform using the Fast Sweeping Algorithm

Let I : Ω∩N2 → {0, 1} be a discretized binary image, where Ω∩N2 represents a union of

square pixels on a grid. We denote by Int(Ω)∩N2 = {1, 2, . . . ,M−1}×{1, 2, . . . , N−1}

the set of pixels in the interior of the image domain. On the continuous domain, the distance

map D : Ω→ R to the contour ∂A of the shape A is defined by

D(x, y) = min
(x′,y′)∈∂A

√
(x− x′)2 + (y − y′)2 . (3.1)

76

The distance D to the contour ∂A is the unique viscosity solution [204, 205] of the Eikonal

equation

|∇D(x, y)| = 1 ,

D(x, y) = 0 , (x, y) ∈ ∂A .

(3.2)

This is a first-order nonlinear PDE of Hamilton-Jacobi type which does not have classical

solutions. To solve D from Equation 3.2, we employ the fast sweeping algorithm [203,

202]. The fast sweeping algorithm is an iterative method that uses an upwind scheme for

discretization and Gauss-Seidel iterations with alternating sweeping orders for solving the

Eikonal equations [202].

In the discrete setting, a pixel (i, j) ∈ Ω ∩ N2 is contained in the given shape A if

I[i, j] = 0, and outside of A if I[i, j] = 1. To trace the contour of A on the discrete domain

Ω ∩ N2, a pixel (i, j) ∈ Int(Ω) ∩ N2 is considered a boundary point if it satisfies:

1. I[i, j] = 0, and

2. at least one of its 8-neighbors is outside the shape, i.e., I[i± 1, j ± 1] = 1.

We denote by B the set of discrete boundary points.

On a rectangular grid, we discretize Equation 3.2 using the Godunov upwind difference

scheme for the interior points (i, j) ∈ Int(Ω) ∩ N2:

[(D[i, j]−Dx,min)+]2 + [(D[i, j]−Dy,min)+]2 = 1 , (3.3)

where Dx,min = min{D[i + 1, j], D[i − 1, j]}, Dy,min = min{D[i, j + 1], D[i, j − 1]},

and (z)+ = z if z > 0 and (z)+ = 0 otherwise. For pixels on the edge of the image,

an one-sided difference scheme is applied. We initialize D[i, j] = 0 for every (i, j) ∈ B

and assign large positive values for the others. Next, we sweep the whole computational

77

domain with four alternating orderings:

1) i = 0, 1, . . . ,M, j = 0, 1, . . . , N. 2) i = M,M − 1, . . . , 0, j = 0, 1, . . . , N.

3) i = M,M − 1, . . . , 0, j = N,N − 1, . . . , 0. 4) i = 0, 1, . . .M, j = N,N − 1, . . . , 0.

As we are at pixel (i, j) ∈ Ω ∩ N2 during the sweeping, we compute the solution D[i, j]

of Equation 3.3 by

D[i, j] =

min{Dx,min, Dy,min}+ 1 , |Dx,min −Dy,min| ≥ 1 ,

1
2
(Dx,min +Dy,min +

√
2− (Dx,min −Dy,min)2) , |Dx,min −Dy,min| < 1 .

(3.4)

Then we update D[i, j] with min{D[i, j], D[i, j]}. Upon completing the four specified

sweepings, the fast sweeping algorithm terminates; hence, the total computational cost is

O(MN). In pratice, we only need to update the values of the pixels in the interior of the

shape.

In [202], Zhao proved that the iterative solution by the fast sweeping algorithm con-

verges monotonically to the solution of the discretized system (Equation 3.3). After four

iterations, the iterative solution at every pixel is bounded from above by its true distance.

Since the numerical Hamiltonian (Equation 3.3) is monotone and first-order consistent,

combining with the fact that the numerical solution from a monotone and consistent scheme

converges to the viscosity solution [205], Zhao concluded that the solution from the fast

sweeping algorithm converges to the distance map. Moreover, by providing a pointwise er-

ror estimation, Zhao proved that this solution is optimal in the sense that any other method

solving Equation 3.3 has the same accuracy if not worse. These properties hold in n-

dimensional Euclidean space (n ≥ 1) as well, where the fast sweeping algorithm takes 2n

iterations.

Remark Starting from the continuous PDE setting, specifically, the Eikonal equa-

78

tion (Equation 3.2), we focus on the fast-sweeping algorithm for its efficiency and sim-

plicity as a PDE numerical scheme. Thanks to one of the reviewers of this paper, we would

like to acknowledge the advances in Euclidean Distance Transform (EDT) in discrete graph

settings. In [206], the authors gave a survey comparing six algorithms proposed between

1994 and 2003. In 2012, Felzenszwalb and Huttenlocher [207] proposed a simple method

focusing on the cost function defined on a grid. They formulated the problem as the mini-

mum convolution of two functions and proposed a simple and fast algorithm. We compare

the performance in subsection 3.3.4.

Input: I a binary image where a pixel is 0 if it is inside the shape and 1
otherwise.

Compute the set of boundary points B.
Assign D[i′, j′] = 0 for all (i′, j′) ∈ B, and D[i′, j′] = M2 +N2 for all
(i′, j′) ∈ (Ω ∩ N2) \ B.

for i=0,1,. . . ,M-1, j=0,1,. . . ,N-1 do
if i = M − 1 then

Define Dx,min = D[i− 1, j].
end
else if i = 0 then

Define Dx,min = D[i+ 1, j].
end
else

Define Dx,min = min{D[i− 1, j], D[i+ 1, j]}.
end
Define Dy,min along the y-direction similarly.
Compute D[i, j] according to Equation 3.4.
Update D[i, j] = min{D[i, j], D[i, j]}.

end
Repeat the above procedure for the other 3 sweeping directions, i.e.,
i = M,M − 1, . . . , 0, j = 0, 1, . . . , N.
i = M,M − 1, . . . , 0, j = N,N − 1, . . . , 0.
i = 0, 1, . . .M, j = N,N − 1, . . . , 0.
Output: Distance map D for the interior points of the shape in I .

Algorithm 2: Distance Computation: The Fast Sweeping [202]

79

3.2.2 Computation of Average Outward Flux

The skeleton points can be distinguished from the others by comparing their average out-

ward fluxes derived from the gradient of the distance transform. On the continuous domain

Ω, the average outward flux F of ∇D is defined by the outward flux through the boundary

of its neighboring region R, normalized by the Hausdorff measure of ∂R:

F (x, y) =

∫
∂R
〈∇D,N〉 ds
|∂R|

, (x, y) ∈ Ω (3.5)

whereN is the outward normal along ∂R, and ds is the length element. By the assumption

that the boundary of a 2D shape is piecewise analytical (in fact, being smooth suffices), the

divergence of ∇D can be regarded as a measure supported by the skeleton of the shape.

By the divergence theorem, when (x, y) is not a skeleton point, and R is sufficiently small,

F (x, y) = 0. At any skeleton point which is not a crossing, up to a translation and a

rotation, the distance function D admits a local expansion

D(x, y) ≈ D0 − x for x ≥ 0 ; D(x, y) ≈ D0 + x for x < 0

where the skeleton point is placed at (0, 0), and D0 denotes the distance from (0, 0) to the

shape’s boundary.

If we consider the disk Rr(s, 0) ≡ {(x, y) : (x− s)2 + y2 ≤ r2}, with r > 0 then the

average outward flux of∇D is given by

∫
∂Rr(s,0)

〈∇D,N〉 ds
|∂Rr(s, 0)|

=

−

∫ arccos(s/r)
− arccos(s/r)

cos(t)rdt+
∫ 2π−arccos(s/r)
arccos(s/r)

cos(t)rdt

2πr
= − 2

π

√
1−

(
s
r

)2
if |s| < r

0 if |s| ≥ r

therefore the average outward flux of ∇D has a minimum at the skeleton point when we

move in the direction orthogonal to the skeleton curve and the function s→ − 2
π

√
1−

(
s
r

)2

80

gives us an idea about how the average outward flux varies when approaching the skeleton.

More generally, notice that for any nonnegative test function ϕ ∈ C∞c with a sufficiently

small support R such that (0, 0) ∈ R, we have

∫
∂R

〈∇D,∇ϕ〉 ds =

∫∫
R2

div (∇D)ϕdx dy

≈ −
∫∫

x≤0

ϕx dx dy −
∫∫

x≥0

−ϕx dx dy

= −2

∫
R
ϕ(0, y) dy .

The above calculation explains why, numerically, skeleton points are expected to have a

clearly negative outward flux.

We compute the gradient vector field ∇D = (∂xD, ∂yD) using a finite difference

scheme that can be derived from optimization. We approximate D(x, y) using a linear

function:

D̂(x, y) = D[i, j] + a(x− i) + b(y − j) .

Comparing to the Taylor expansion, we have ∂xD[i, j] ≈ a and ∂yD[i, j] ≈ b. To determine

the coefficients a and b explicitly, we fit D̂ to the 3 × 3 stencil centered at P = (i, j) ∈

Int(Ω) ∩ N2 by minimizing the following weighted squared-error:

E(a, b) = (D[i+ 1, j]− D̂(i+ 1, j))2 + (D[i− 1, j]− D̂(i− 1, j))2+

(D[i, j + 1]− D̂(i, j + 1))2 + (D[i, j − 1]− D̂(i, j − 1))2+

1√
2

(D[i+ 1, j + 1]− D̂(i+ 1, j + 1))2 +
1√
2

(D[i− 1, j − 1]− D̂(i− 1, j − 1))2+

1√
2

(D[i+ 1, j − 1]− D̂(i+ 1, j − 1))2 +
1√
2

(D[i− 1, j + 1]− D̂(i− 1, j + 1))2 .

81

This provides approximations for partial derivatives at interior points:

∂xD[i, j] = (1− α)
D[i+ 1, j]−D[i− 1, j]

2
+

α
D[i+ 1, j + 1]−D[i− 1, j + 1] +D[i+ 1, j − 1]−D[i− 1, j − 1]

4
(3.6)

∂yD[i, j] = (1− α)
D[i, j + 1]−D[i, j − 1]

2
+

α
D[i+ 1, j + 1]−D[i+ 1, j − 1] +D[i− 1, j + 1]−D[i− 1, j − 1]

4
(3.7)

where α = 2−
√

2. Note that the scalar α is derived from requiring the estimated gradient

to have a norm invariant under rotations of 45◦.

In the discrete domain, to compute F [i, j] as defined in Equation 3.5 for the pixel

(i, j) ∈ Int(Ω) ∩ N2, we replace R with a square containing the 8-neighboring points

of (i, j). We pre-compute the outward normals at the neighboring points,Nn = (N x
n ,N y

n),

n = 0, 1, . . . , 7, as illustrated in Figure 3.2 (a), and we approximate the integral by a Rie-

mann sum. The formula for computing the average outward flux at (i, j) is:

F [i, j] =
1

8

7∑
n=0

(∂xD[i, j]×N x
n + ∂yD[i, j]×N y

n) . (3.8)

3.2.3 Point Classification based on Local Topology

As a thinning algorithm, HJS finds the skeleton of a shape by consecutively removing non-

skeleton points. For an appropriate shrinkage, each pixel needs to be examined carefully

based on the local topology, i.e., the intensity distribution of its 8-neighboring pixels. In

particular, two types of points are critical in the success of HJS.

A point is simple if its removal does not affect the topology of the object [191]. This

means that removing a simple point does not create a new connected component nor a hole

in the original shape. We construct a graph G for every pixel P ∈ Int(Ω) ∩ N2 based on

82

(a) (b)

N3 = (1, 0)

N2 = (
√
2/2,
√
2/2)

N4 = (
√
2/2,−

√
2/2)

N7 = (−1, 0)

N0 = (−
√
2/2,
√
2/2)

N6 = (−
√
2/2,−

√
2/2)

N1 = (0, 1)

N5 = (0,−1)

6

7

0 1 2

P 3

45

Figure 3.2: (a) The normal vectors at the neighboring points used for approximating the
flux Equation 3.8 at the central pixel. (b) An example graph G constructed for the pixel P .
For any arbitrary pixel, its 8 neighborhoods are indexed as shown here. Neighboring pixels
inside the shape (black circles) are the vertices of G, and two vertices are connected if they
are 8-neighborhood to each other. We avoid the 3-loops at the corners, e.g., 0 − 1 − 7, by
directly connecting the furthest two among them.

,

its 8-neighbors and use the Euler’s characteristic of a graph to decide if P is simple. See

Figure 3.2 (b). In G, each vertex corresponds to a neighboring pixel that is inside the shape

A, and there is an edge if the associated two pixels are neighbors to each other. Because

P is simple if and only if G is a tree [191], it suffices to check if the number of vertices

minus the number of edges of G, i.e., the Euler characteristic of graph, is exactly 1. For

convenience, we label the 8-neighboring pixels by integer indices from 0 to 7 in a clockwise

orientation starting at the top-left one (see Figure 3.2 (b)).

The procedure for checking if a point is simple goes as follows. At each point, construct

a set V collecting the indices of neighbors that are inside A. Initialize v = 0 and e = 0

for recording the number of vertices and edges of G, respectively. For k = 0, 1, . . . , 7, if

both neighbor k and neighbor mod(k + 1, 8) are found in V , we increase both v and e by

1; otherwise, we increase only v by 1. The graph may contain unnecessary loops of length

3 when all the three vertices on the corners are in V . For example, the neighbor 0, 1, and 7

in Figure 3.2 (b). To simplify the graph, we delete the shortest two edges in such a loop. In

particular, if the neighbor k (k = 0, 2, 4, 6) is in V , and if both neighbor mod(k− 1, 8) and

83

neighbor mod(k+ 1, 8) are in V as well, we reduce both v and e by 1. Finally, we compute

v − e; if it is 1, then we mark P as a simple point, otherwise, P is not a simple point.

In addition, endpoints need to be tracked. An endpoint corresponds to the end of a

4-connected or 8-connected digital curve [191]. Identifying these points helps to produce

robust skeletons and avoid interior points in the final result. A pixel P is an endpoint if

the associated vertex set V only has one element, or if V only has two elements whose

indices differ by 1 or 7, i.e., they are 4-neighborhood to each other. Otherwise, P is not an

endpoint.

3.2.4 Homotopy Preserving Thinning

The second part of HJS, called the homotopy preserving thinning, sifts through the pixels

inside the shape such that the remaining pixels are the skeleton points. The flux computed

in subsection 3.2.2 as well as the point type discussed in subsection 3.2.3 are the keys. To

avoid early removals of the pixels that are likely to be skeleton points, the average outward

flux ranks the pixels inside the shape from high to low, which are then examined in order.

To preserve the homotopy of the shape, only simple points and endpoints with high fluxes

are considered removable.

An important part of the implementation is the heap data structure, which allows op-

erations such as insert, top, and pop. Elements stored in a heap are associated with

sorting keys. A heap will automatically sort the inserted data so that the first element,

retrieved by top, always has the maximal key value; and pop automatically deletes the

top element. It is noted that a heap only allows access to the top element, thus retrieving

the element with the maximal key is very efficient. In C++, one may define a heap via a

priority queue; and in Python, one can resort to heapq.

In our case, we construct a heap of pixels with their average outward fluxes as the

sorting keys. To save the storage, we directly update the pixels of the given binary image

I using three types of labels: points that are currently in the heap (label 2), removed points

84

(label 1), and candidate skeleton points (label 0).

First, we insert all the boundary points that are simple into a heap H sorted by their

fluxes and label them by 2. We sift through the points via iterations. During the updates,

some points that are not simple may become simple later, or vice versa; thus it is necessary

to test simple points at each iteration. In each iteration, we extract the top element in the

heap by applying H.top() followed by H.pop(). If the top element is an endpoint and

its average flux is below a threshold, τ , indicating that it has more potential to be a skeleton

point (See subsection 3.2.2), we remove it from H and update its label by 0. Otherwise, we

change its label to 1, then we consider its 8-neighbors. If any of them is labeled 0, we insert

it in the heap together with its sorting key and label it by 2. Here we propose a practical

formula for the threshold:

τ = min
(i,j)∈A∩N2

F [i, j]/γ . (3.9)

This γ > 0 is a parameter whose default value is γ = 2.5 in our experiments. The iteration

terminates when there are no more points to be removed, i.e., H is empty. The pixels

labeled by 0 constitute the skeleton of the shape A.

We display a complete description of HJS in the form of pseudo-code in algorithm 3.

The full algorithm divides into two parts. Part I computes the distance function and the

average outward flux of the gradient of the distance transform, and Part II describes the

homotopy preserving thinning.

3.3 Numerical Experiments on Shape Skeletons

We present numerical results to illustrate various interesting aspects of HJS. Throughout

the experiments, our default choice was γ = 2.5. If the image is grayscale with dynamic

range [0, 255], we transform it into binary by setting the pixels to be 1 if the intensity

> 125, and 0 if the intensity ≤ 125. For an RGB image, we use the same binarization on

85

Input: I a binary image which takes value 0 for points inside the shape,
and 1 for outside; τ a threshold parameter for flux value.

Part I: Distance Function and Average Outward Flux
Compute the distance map D Equation 3.11 of the set of boundary points.
Compute the gradient vector field∇D according to Equation 3.6 and Equation 3.7.
Compute the average outward flux of the gradient, F , using Equation 3.8.
Part II: Homotopy Preserving Flux-ordered Thinning
Initialize an empty heap H . For each point P on the boundary of the shape :
if P is simple then

insert (P, F (P)) into a heap H with the flux F (P) as the sorting key;
update I(P) = 2

end
while H is not empty do

Let (P, F (P))← H.top(). Delete P from H via H.pop()
if P is simple then

if P is not an endpoint OR F (P) > τ then
update I(P) = 1
for neighboring point Q of P do

if I(Q) = 0 then
if Q is simple then

Insert (Q,F (Q)) into H
update I(Q) = 2.

end
end

end
end
else

update I(P) = 0
end

end
end
Output: A binary image I where pixels labeled by 0 represent skeleton points.

Algorithm 3: Hamilton-Jacobi Skeleton (HJS) [191]

86

its lightness obtained via (R +G+B)/3.

3.3.1 Skeletonization of 2D Shapes

In Figure 3.3, we show the skeletons computed using HJS for various types of shapes. In the

first row, variations from a disk shape are shown. Compared to a disk whose skeleton is a

single point, these shapes have more complicated skeletons due to continuous modifications

on their boundaries. Some features of the shape can be understood from the graph topology

of the skeleton. For example, each convex corner of the shape creates a branch; the last

shape in the first row of Figure 3.3 has 16 convex corners, and its skeleton is a tree with 16

branches. In the second row, we applied HJS to shapes of some common objects: a cup, an

apple, a vase, and a hammer. Both the cup and the vase which are topologically equivalent

to an annulus, provide examples for the fact that a skeleton may contain loops, the number

of which is equal to the genus of the shape. We also observe the correspondence between

the convex corners of the shape and the branches of the skeleton as mentioned above.

This exact property explains instability in computing the skeleton: any perturbation on the

boundary of the shape may create a prominent change in the skeleton. Applying HJS to

varying shapes of the lizard in the third row, we observe some extraneous branches on

the skeleton due to the non-smooth boundaries. For this issue, many techniques, such as

skeleton evolution [208] and pruning [209], have been proposed to automatically delete the

irrelevant branches.

3.3.2 Effects of the Parameter γ

In HJS, an endpoint is kept if its average flux is greater than a threshold τ . As a consequence

of the homotopy preserving, the whole branch attached to that endpoint remains as a part

of the skeleton. Therefore, when we increase γ in Equation 3.9, we expect to see more

branches.

In Figure 3.4, we demonstrate the effects of γ by applying HJS to a shape modified

87

Figure 3.3: Skeletons (red curves) for various shapes computed by HJS. In all examples
aboves, we used the default parameter γ = 2.5.

88

from a pentagon whose boundary is highly perturbed. Figure 3.4 (a) is produced when

γ = 2.5 (the default choice in this paper); due to the irregularities on the boundary, many

branches are created. Observe the length of the skeleton branches in contrast to the size

of the perturbations on the boundary: they are not proportional. The local distribution of

skeleton branches, rather than individual ones, may infer the smoothness of the boundary.

For instance in (a), along a segment of the skeleton near the top-left boundary of the pen-

tagon, there are more branches on the lower side compared to the upper side; within that

range, the upper-side boundary is smoother than the lower-side boundary.

In (b), with γ = 1.5, many of the branches in (a) disappear, leaving only those associ-

ated with sharp corners. The order of cancellation is determined by the flux. During the

homotopy preserving thinning, the threshold τ only acts on endpoints. Consequently, as

long as the average flux at the tip of skeleton is comparatively low, the whole branch is kept

as a part of the identified skeleton.

We further reduced γ to 1.2 in (c) and observe that only two major components remain:

the S-shape and a single branch caused by the sharp corner at the bottom-left of the pen-

tagon. By considering the medial axis to reconstruct the shape from the skeleton, with a

small γ, one can obtain a compact representation of a shape with regularized contour. The

evolution from (a) to (b), then to (c) shows that the set of skeletons extracted from different

γ’s provides a multi-scale representation of the given shape. It is analogous to applying

bandpass filters to a signal to separate the low-frequency components of the original se-

quence from the high-frequency components such as noise. As we gradually decrease γ,

we omit the small-scale variations along the boundary, and focus more on capturing the

principal shape. A similar approach to shape analysis can be found in [49, 210].

For a smaller value such as 0 < γ < 1, HJS shows an interesting property. The shape

is simply-connected if and only if the skeleton identified using γ < 1 is a single point. This

is based on the fact that HJS preserves the homotopy. In Figure 3.5, we applied HJS with

γ = 0.9 to three different shapes and used this property to check the simple-connectedness.

89

(a) (b) (c)

Figure 3.4: Multi-scale representation of the shape using skeletons computed by different
γ. (a) γ = 2.5. (b) γ = 1.5. (c) γ = 1.2. By choosing a smaller γ, the identified
skeleton becomes more robust against boundary perturbation and captures the large-scale
shape features.

In (a), since the skeleton is a single point (shown at the corner of the right-bottom branch),

the shape is simply-connected. The converged skeleton point appears at the minimum of

the average fluxes of the entire image, and depending on the shape, it is not necessarily at

the center of mass of the shape. In (b), the skeleton is homeomorphic to a circle, formed by

the line segments (the mug body) and an arc (the handle). Since genus is a homeomorphic

invariant, we infer that this mug shape has genus 1. It is worth noting that the number of

connected components of the skeleton graph is the same as that of the shape. In (c), the

skeleton consists of 10 points, hence the shape has 10 simply-connected components. With

the remark that the skeletons identified using any γ ∈ (0, 1) are identical, this experiment

shows that HJS with 0 < γ < 1 can be applied as an effective homotopy type detector.

Since HJS with 0 < γ < 1 effectively distinguishes simply-connected shapes from the

others, we apply it to detect small holes inside the shape which are not immediately visible

to humans. Figure 3.6 (a) shows the non-trivial skeleton identified using γ = 0.9, which

indicates that the perturbed boundary contains loops. When we zoom in the top-left (b) and

bottom-right (c) of the original shape, the homotopy type of the shape is indeed modified

by the perturbed pixels.

90

(a) (b) (c)

Figure 3.5: HJS with γ < 1 used as a homotopy classifier. (a) The skeleton is a single
point, hence the shape is simply-connected. (b) The skeleton is homeomorphic to a circle,
hence the shape is not simply-connected and has genus 1. (c) The skeleton consists of 10
points, hence the shape has ten simply-connected components. In (a) and (c), the identified
skeleton points are emphasized by red disks for visualization.

(a) (b) (c)

Figure 3.6: HJS with γ < 1 used as a deficiency detector in binary shapes. (a) The given
shape and identified non-trivial skeleton using γ = 0.9. (b) A hole on the boundary of
the top-left petal. (c) A hole on the bottom-right pedal. (b) and (c) show the deficiencies
inducing the non-trivial skeleton in (a). In all examples here, we keep γ = 0.9.

91

3.3.3 Shape Reconstruction from Medial Axis

Skeleton serves as a compact representation of the original shape. Combined with the

distance function evaluated at the skeleton points, a medial axis allows shape reconstruction

via taking a union of disks. In particular, from the set of skeleton points, Sk(So), of the

discrete shape So, our reconstructed discrete shape Sr is computed by

Sr =
⋃

(i′,j′)∈Sk(So)

{(i, j) ∈ Ω ∩ N2 |
√

(i− i′)2 + (j − j′)2 ≤ D[i′, j′] + ε} . (3.10)

Here, we introduce a dilation parameter ε > 0 to address the bias introduced by pixeliza-

tion. We take ε = 1.5 as the default, which is justified later.

Figure 3.7 shows the reconstructed shapes from HJS using different values of γ. Recall

from the previous discussion that, as γ > 0 increases, the identified skeleton consists of

more branches representing details of the silhouette. Consistent with this feature charac-

terization, from (b) to (d), as γ is increased from 0.9 to 20, more details of the original

shape are recovered using the medial axis. Since γ < 1 for column (b), the reconstructed

shape indicates existence of holes or simply connected components in the shapes in (a). In

particular, the sakura in the first row is simply connected, the knot in the second row has

12 simply connected components, the trophy in the third row is of genus 6, and the deer in

the fourth row contains many corrupted pixels (small holes) which are hard to observe at

first glance. When γ = 2.5 (our default value), we recover most parts of the shapes in all

cases. The results in column (d) are obtained using γ = 20, which recovers finer details of

the original shapes compared to (c). For example, the sharp tips of the petals, the corners

and T-junctions in the knot, the layers on the bottom of the trophy, and the elongated horns

of the deer.

To quantify the reconstruction results, we compare the orginal discrete shape So =

{(i, j) ∈ Ω∩N2 | I(i, j) = 0}with the reconstructed shape Sr by considering the following

92

(a) (b) (c) (d)

Figure 3.7: Shape reconstructed from the medial axis transform. (a) Original shapes. (b)-
(d) The shapes reconstructed from the HJS using (b) γ = 0.9, (c) γ = 2.5, and (d) γ = 20.
Here we fixed ε = 1.5.

93

three measures:

Jaccard Index [211]: J =
|So ∩ Sr|
|So ∪ Sr|

.

Dice Similarity Coefficient [212]: DSC =
2|So ∩ Sr|
|So|+ |Sr|

.

Bpn Bias Estimator [213]: Bpn =
|Sr \ So| − |So \ Sr|

|So ∩ Sr|
.

Here | · | denotes the cardinality of a set. Higher values of Jaccard index or Dice similarity

coefficient indicate higher similarity between So and Sr. A positive (negative) Bpn bias

estimator signifies that Sr is an over-(under-) coverage of So, and a zero value means no

bias, i.e., the size of the over-coverage cancels out with the size of the under-coverage.

These measures behave differently. For the Jaccard index, every element in the intersection

is counted once, whereas for the Dice similarity coefficient, every element in the inter-

section is counted twice. In fact, the Jaccard index and the Dice similarity coefficient is

related via J = DSC/(2−DSC), hence, compared to the Dice similarity coefficient, the

Jaccard index is less sensitive to distinct objects, while more sensitive to similar objects.

The Bpn bias estimator provides the additional information for avoiding over-coverage or

under-coverage.

In Table 3.1, we report these measures for the results in Figure 3.7. In all cases, when

we increase γ, the shape reconstructed from the medial axis becomes more similar to the

original shape, which is characterized by the increasing J and DSC. Since we are using

disks with radius enlarged by 1.5 pixels for reconstruction, Bpn’s change their signs from

negative (under-coverage) to positive (over-coverage) as the endpoints of the skeleton ap-

proach the boundary of the original shapes, respctively. For comparison, we also include

these measures when ε = 0. Using ε = 1.5 improves the reconstructions measured by

higher J’s and DSC’s, and it produces less biases quantified by the smaller absolute val-

ues of Bpn’s. We notice that when γ = 0, Bpn’s always remain negative in our examples.

Figure 3.8 provides a further investigation on the effects of varying ε as γ = 2.5 is fixed.

94

In both (a) and (b), the maximal rescaled values of J and DSC occur around ε = 1, but to

acquire the minimal bias, larger values of ε are needed. This is due to the fact that we are

using unions of finitely many disks to cover non-convex shapes, and slighly increasing ε

allows balancing the over- and under-fitting. Hence, we recommend ε = 1.5, which leads

to results with highly accurate shape reconstruction and low bias.

Table 3.1: Comparative measures of the reconstruction results in Figure 3.7 (ε = 1.5).
Higher values of J and DSC indicate higher similarity between So and Sr. When Bpn is
positive (negative), Sr is an over- (respctively under-) coverage for So, and when Bpn = 0,
there is no bias. We report these measures when ε = 0 for comparison.

Sakura (1st row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.1267 0.1340 0.9566 0.9770 0.9715 0.9816
DSC 0.2247 0.2363 0.9778 0.9884 0.9855 0.9907
Bpn −6.8943 −6.4625 −0.0454 0.0006 −0.0294 0.0187

Knot (2nd row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.1714 0.1911 0.9451 0.9719 0.9436 0.9479
DSC 0.2926 0.3209 0.9718 0.9858 0.9732 0.9831
Bpn −4.8351 −4.2234 −0.0581 0.0272 −0.0550 0.0342

Trophy (3rd row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.5576 0.5729 0.9641 0.9787 0.9745 0.9832
DSC 0.7160 0.7285 0.9817 0.9892 0.9871 0.9915
Bpn −0.7933 −0.7146 −0.0372 0.0043 −0.0261 0.0170

Deer (4th row)
γ = 0.9 γ = 2.5 γ = 20

ε = 0 ε = 1.5 ε = 0 ε = 1.5 ε = 0 ε = 1.5
J 0.8361 0.8691 0.9324 0.9736 0.9411 0.9662
DSC 0.9108 0.9300 0.9650 0.9866 0.9697 0.9828
Bpn −0.1960 −0.1153 −0.0725 0.0174 −0.0626 0.0332

3.3.4 Performance of Distance Computation

As a natural extension of the Eikonal equation, the fast sweeping algorithm suits our pur-

pose. In this section, we compare the fast sweeping algorithm with a brute-force method,

and the celebrated [207], which is based on an optimization model efficiently solved using

morphological operations.

95

(a) Sakura (b) Trophy

Figure 3.8: Effects of varying ε on the comparative measures. Here we plot the values of the
rescaled measures, J , DSC and |Bpn|, against different values of ε, when HJS (γ = 2.5)
is applied to the sakura in the first row and the trophy in the third row of Figure 3.7. Both
plots indicate that using slightly dilated disks improves the reconstruction results.

On a discrete image domain, similarly to definition (Equation 3.1), one may define for

each pixel (i, j) ∈ Ω ∩ N2, its distance to the boundary specified by B by

D[i, j] = min
(i′,j′)∈B

√
(i− i′)2 + (j − j′)2 . (3.11)

The implementation is straightforward, and we present the pseudo-code in algorithm 4. If

there are K boundary points, then the cost of the brute-force method is of the order of

O(KMN), and it can be reduced by focusing only on the interior points of the shape.

The Felzenszwalb-Huttenlocher (F-H) algorithm [207] views the distance transform as

a minimum convolution of two functions. More specifically, the squared Euclidean distance

to the boundary of the shape A ⊆ Ω is obtained via an optimization problem

DF-H(x, y) = min
x′,y′

(
(x− x′)2 + (y − y′)2 + χ∂A(x′, y′)

)
(3.12)

where χ∂A(x′, y′) = 0 if (x′, y′) ∈ ∂A and +∞ otherwise. The discretized version of Equa-

tion 3.12 is efficiently solved via two main steps in each dimension. First, compute the

96

Input: I a binary image which takes value 0 for points inside the shape,
and 1 for background points

Compute the set of boundary points B.
Assign D[i′, j′] = 0 for every boundary point (i′, j′) ∈ B.
for (i, j) ∈ Ω \ B with I[i, j] = 0 do

Set D[i, j] = M2 +N2.
for (i′, j′) ∈ B do

if (i− i′)2 + (j − j′)2 < D[i, j] then
D[i, j] = (i− i′)2 + (j − j′)2.

end
end
Update D[i, j]←

√
D[i, j].

end
Output: Distance map D for the interior points of the shape in I .

Algorithm 4: Distance Computation: A Brute-force Method

lower envelope of parabolas induced by each grid point’s squared Euclidean distance func-

tion; at this stage, the minimum convolution is employed. Second, the distance values at

grid points are filled in by comparing them with the computed lower envelope. The total

computational cost is O(2MN).

We applied theses three methods to the shape of a cat in Figure 3.9 (a). The distance

transform computed using the brute-force method is shown in (b), the distance transform

obtained using the fast sweeping algorithm is in (c), and the distance transform by the

F-H algorithm is in (d). Noticeably, the computation of both fast sweeping algorithm

(141.22 ms) and F-H algorithm (23.16 ms) are much faster than the brute-force method

(3424.08 ms), yet all theses methods produce similar results. The skeletons computed

based on the distance transform of these methods are respectively displayed in (e), (f), and

(g). Notice that compared to (e) and (g), the skeleton in (f) obtained based on the fast-

sweeping has fewer short branches and more robust against small-scale fluctuations on the

shape’s boundary. This was expected since the fast sweeping algorithm’s distance trans-

form approximates a diffusive solution of the Eikonal equation. Hence, (c) can be regarded

as a slightly smoothed version of the exact distance transform.

97

(a)

(b) Brute-force (3424.08 ms) (c) Fast Sweeping (141.22 ms) (d) F-H Algorithm (23.16 ms)

(e) (f) (g)

Figure 3.9: (a) Binary image (537 × 700): a cat silhouette. The distance function is com-
puted by (b) a brute-force method (algorithm 4), (c) the fast sweeping algorithm (algo-
rithm 2), and (d) the F-H algorithm [207]. Brighter pixels indicates further distance from
the contour. The F-H algorithm is the fastest, then the fast-sweeping, and the brute-force
is the slowest. (e) shows the skeleton computed based on the distance transform in (b);
(f) shows the skeleton computed based on the distance transform in (c); and (g) shows the
skeleton computed from (d). In all cases, we fixed γ = 2.5.

98

3.4 Contour-based Representation – Silhouette Vectorization

A silhouette appears as one of the connected components of an upper or lower set of the

image. More generally, the study of shape promoted by Mathematical Morphology [214]

defines 2D shapes as any such connected component. Silhouettes are essential for the

human perception of shapes, and the distribution of corners along their outlines are closely

linked to the psychophysical models of the visual system [215]. They are also fundamental

to image representation [216] where an image can be decomposed into a tree of connected

shapes ordered by inclusion.

There are various ways to characterize silhouettes. As proved in [217], if a closed sub-

set of the plane has a finite perimeter, then it can be described by its essential boundary,

which is a countable set of Jordan curves with finite length. From digital images, upper-

level sets can be extracted by mere thresholding, in which case they are a finite union of

pixels, bounded by a finite number of Jordan curves made of vertical and horizontal seg-

ments. Using a parametric interpolation such as the bilinear, one can extract the boundary

of a level set as a union of pieces of hyperbolae [218]. In a founding work, Montanari [219]

introduced a polygonal approximation of outlines of rasterized silhouettes. After the dis-

crete boundary is traced, the polygonal vertices’ sub-pixel locations are determined by

minimizing global length energy with an L∞ loss to the initial outline.

In modern computer graphics, describing a silhouette’s boundary as a union of primitive

components, such as line segments, circular arcs, and Bézier curves is more popular for

their real-time rendering [220]. The scalable feature of vetcorization is crucial for 2D

shapes such as logos or fonts, which require printing in different sizes. The geometric

features captured by the vectorization are also important in feature identification [221],

remote sensing [222], and others applications [223, 224, 225].

Common silhouette vectorization methods [226, 227, 228, 229, 230, 223, 231, 232]

consist of two steps: identification of control points and approximation of curves connect-

99

ing the control points. Ramer [227] proposed an iterative splitting scheme for identifying

a set of control points on a polygonal line C such that the Bézier polygon Ĉ defined by

these vertices approximates C in L∞ norm. The Hausdorff distance between Ĉ and C is

constrained to stay below a predefined threshold, and the number of control points is sub-

optimal. More recently, Safraz [232] proposed an outline vectorization algorithm that splits

the outline at corners which are identified without computing curvatures [233], then new

control points are introduced to improve curve fitting.

The control points produced by many methods are near curvature extrema of the outline,

but this may happen by algorithmic convergence rather than by an explicit design. It is well-

known that the direct computation of curvature is not reliable [234]. We shall use the affine

scale-space [235] on curves to detect corners. Our method is related to [236, 237] where the

authors use the Affine Morphological Scale Space (AMSS) [238] to define a morphological

cornerness measure based on the expected evolution of an ideal corner through AMSS. The

authors use a closed-form expression for the evolution of a perfect corner under AMSS as

a “traveling wave”. Their method applies to raster digital images using a finite difference

scheme for AMSS and is expanded to analyze multiple junctions. Our setup here will use

Moisan’s geometric curve evolution scheme [239], which processes a Jordan curve and

ensures a natural sub-pixel positioning of the curvature extrema. Our experience being

that many tips in shapes have a more complex geometry than a straight corner, we do

not use a closed-form expression for their evolution. We rely on the original scale-space

paradigm, that essential features can be detected at coarse scales and then backtracked in

scale space to their initial position. While the name of scale-space [240] is associated

with this method, the invention of the method for shape analysis is much anterior and goes

back to the Japanese school of shape analysis [241], in particular, the founding works of T.

Iijima [242] on character recognition. The methods mentioned above reflect the challenges

of estimating the outline’s curvature on shapes extracted from raster images.

100

3.5 Outline of the Affine-scale Space Vectorization Procedure

We introduce a novel vectorization approach [243] fundamentally based on mathematical

advances for their stability and sub-pixel accuracy. The proposed method has three main

steps that work together to find geometrically meaningful control points: it first identifies

(i) curvature extrema of the outline computed at the sub-pixel level, by (ii) backpropagating

control points detected as curvature extrema at coarser scale in the affine scale-space, then

(iii) computing piecewise least-square cubic Bézier joining these control points while fitting

the smoothed outline with a predefined accuracy. We describe the outline of the method

here, and leave the details in later sections.

On a rectangular domain Ω = [0, H]×[0,W] ⊂ R2 withH > 0 andW > 0, a silhouette

is a compact subset S ⊂ Ω whose topological boundary ∂S, the outline, is a piecewise

smooth curve. Suppose S is shown in a raster binary image I : Ω ∩ N2 → {0, 255}, that

is, the set of black pixels

S = {(i, j) ∈ Ω ∩ N2 | I(i, j) = 0}

approximates S. We assume that S ∩ ∂Ω = ∅. The main objective of this paper is to

find a cubic Bézier polygon close to ∂S in the Hausdorff distance such that the vertices

are geometrically meaningful. As a result, the proposed algorithm takes any binary raster

image and converts it to an SVG file with compact size.

Figure 3.10 shows the overview of the proposed method. From the input image (a),

which is a pixelized raster image, bilinear outlines are computed in (c), and affine scale-

space is used to find the control points in (f). By cubic Bézier polygon, the vectorized result

is presented in (g). Images (a) and (h) show the zoom-in of one of the corners, which illus-

trates a sharp representation of the given raster image in the vectorized form. Every step

is designed to fully explore mathematically and geometrically meaningful features of the

silhouette, utilizing the techniques which promote affine invariance. This approximation

101

Figure 3.10: A flowchart of the proposed method. (a) A given raster image of a cat’s
silhouette. (b) Zoom-in of (a). (c) Extracted bilinear outline of (a). (d) Inversely tracing the
curvature extrema along the affine shortening flow. (e) The vectorized outline of (a) with
control points marked as red dots. (f) Zoom-in of (e). (g) Vectorized result of silhouette (a)
by the proposed method. (h) Zoom-in of (g). Notice the improvement from the given raster
image (a) to the proposed method’s result in (g), as well as the zoom of (b) and (h).

guarantees subpixel accuracy in reconstruction.

There are mainly three steps in our proposed vectorization method.

• Computation of sub-pixel curvature (section 3.6): In the first step, we find the outline

curvature extrema by computing curvatures of the bilinear level lines at arbitrary resolu-

tions [244]. Compared to the conventional finite difference approach, this method yields a

more accurate and visually conformal evaluation of the curvatures. It is essential to smooth

the level lines first when working with raster images [219]. The affine shortening [235] pre-

serves affine invariants of the outline while effectively reducing the staircase effects [245].

To avoid grid-dependence, we use a fully consistent geometric scheme [239] for the affine

shortening partial differential equation.

• Identification of control points (section 3.7) Secondly, we propose to use Witkin’s scale

space strategy [240] adapted to the affine scale space to identify the geometrically mean-

ingful control points. To sort out the “real curvature extrema” in the initial fine-scale curve,

which is noisy and aliased, the affine scale space is applied to the initial curve. The initial

curve has many curvature extrema, but most of them are irrelevant to the general shape.

Using the scale-space approach, the (fewer) curvature extrema detected at a coarser scale

are traced back to the initial fine-scale outline. Since the curve’s normal direction at any

scale is well-defined, we identify and trace back the curvature extrema from the coarser

102

scale to the finer scale by reversing the affine scale space in the normal direction. Note that

Witkin’s scale space strategy was used to detect the signal’s or image’s gradient’s relevant

extrema, namely those that persist after applying the heat equation to the initial datum.

In this paper, the scale-space strategy is used, not to detect image edges, but to identify

relevant curvature extrema.

• Refinement of control points (section 3.8). In the final step of our vectorization, we fit

piecewise cubic Bézier curves to the outline’s segments joining the control points. Similar

to [229], we set a threshold for the global error, and our algorithm adaptively inserts new

control points to guarantee that accuracy. We also consider the degenerate cases where

no curvature extrema are identified, e.g., a circle or a smoothly varying planar curve in a

high-resolution image.

In the following sections, we present the details.

3.6 Sub-pixel Curvature Extrema Localization

Our control points are largely derived from the outline’s curvature extrema. To compute

sub-pixel curvatures, we start with the bilinear interpolation [244] u : Ω → [0, 255] such

that

u(i+ 1/2, j + 1/2) = I(i, j) , (i, j) ∈ Ω ∩ N2 .

Here brc is the floor function giving the greatest integer smaller than the real number r.

For any λ ∈ (0, 255), the level line of u corresponding to λ is defined as Cλ = {(x, y) ∈

Ω | u(x, y) = λ}. It approximates the discrete outline as a piecewise C2 Jordan curve

except for at finitely many points, e.g., saddle points [246]. Fixing any non-integer λ∗ ∈

(0, 255), Cλ∗ is either piecewise linear (horizontal or vertical) or a part of a hyperbola whose

asymptotes are adjacent edges of a single pixel.

Due to pixelization, Cλ∗ shows strong staircase effects [245], which causes unstable

103

curvature computation. Such oscillatory behavior is effectively reduced by the affine short-

ening flow [245, 235] by evolving the noisy curve C by the following time-dependent PDE

∂C(s, t)
∂t

= κ1/3(s, t)N(s, t) , C(s, 0) = C(s) , t ≥ 0 (3.13)

till some short time T0 ≥ 0. Here each curve C(·, t) is arc-length parametrized s ∈

[0,Length(C(·, t))] for any t, κ denotes the signed scalar curvature, and N is the inward

unit normal at C(s, t). This process is independent from the viewpoint on the shape [247,

248].

Denoting the smooth bilinear outline by Γλ∗ , at any vertex P ∈ Γλ∗ , its unit normal di-

rection N(P) is computed by central difference, and its curvature κ(P) is approximated

by the curvature of the circumcircle that passes through three consecutive vertices on

Γλ∗ [249]. The discrete curvature values can be obtained at arbitrary resolution based on

the sampling frequency applied to the bilinear outline Cλ∗ .

3.7 Affine Scale-space Control Points Identification

The curvature extrema computed above capture the abrupt geometrical changes in the

smooth bilinear outline, but they are sensitive to noise. We propose to filter the control

points by incorporating varying geometric scale of the outline based on the affine scale-

space.

3.7.1 Backward Tracing via Inverse Affine Shortening Flow

The set of solutions of Equation 3.13 at different time t ≥ 0, i.e., {C(·, t)}t>=0 defines an

affine scale-space [235], and the non-negative parameter t is called scale. This parametric

space satisfies the causality:

Proposition 3.7.1. [235] In the affine invariant scale-space of a planar curve, the number

of extrema of Euclidean curvature is a nonincreasing function of time.

104

In other words, every curvature extremum on the curve at a coarser scale. i.e., at larger t,

is the continuation of at least one of the extrema at a finer scale, i.e., at smaller t. The lack of

one-to-one correspondence is due to the possibility of multiple extrema (e.g., two maxima

and one minimum) merging to a single one during the evolution. By tracing curvature

extrema from the coarser scales to the finer scales, the resulting extrema are robust to noise

and help capture prominent corners.

We define the control points as the curvature extrema on Γλ∗ which persist across differ-

ent scales in its affine scale-space. Given a sequence of discrete scales t0 = 0 < t1 < · · · <

tK for some positive integer K, we obtain the curve C(·, tn) at scale tn by the affine short-

ening flow Equation 3.13 for n = 0, 1, . . . , K. For any 1 ≤ n ≤ K, the affine shortening

flow Equation 3.13 is approximated as

C(s, tn)− C(s, tn−1)

tn − tn−1

= (κn(s))1/3Nn(s) + r(s) , (3.14)

where κn and Nn denote the curvature and normal at the scale tn, and r is a remainder such

that ||r(s)|| = O(tn − tn−1). Rearranging Equation 3.14 gives

C(s, tn−1) = C(s, tn)− (tn − tn−1)(κn(s))1/3Nn(s)+

(tn − tn−1)r(s) .

This expression shows that, if tn − tn−1 is sufficiently small, by following the opposite

direction of the affine shortening flow at C(s, tn), that is,

−sign(κn(s))Nn(s) ,

we can find C(s, tn−1) nearby. Here sign(r) denotes the sign function which gives +1 if

r > 0, −1 if r < 0 and 0 if r = 0. This gives a well-defined map from the curve at a

coarser scale tn to a finer scale tn−1 via the inverse affine shortening flow.

105

Starting from K, for any curvature extremum XK on CK = C(·, tK), we set up the

following constrained optimization problem to find a curvature extremum XK−1 on CK−1

at scale tK−1:

max
X∈CK−1

〈X −XK ,−sign(κK)NK〉
||X −XK ||

(3.15)

s.t.

〈X −XK ,−sign(κn)Nn〉
||X −XK ||

> α,

||X −XK || < D, and

X is a curvature extremum on CK−1,

where D > 0 is a positive parameter that controls the closeness between X and XK , and

α enforces that the direction of X − XK is similar to that of the inverse affine shortening

flow. The problem Equation 3.15 looks for the curvature extremum on CK−1 in the D-

neighborhood of XK that is the nearest to the line passing XK in the direction of the

inverse affine shortening flow. When D and α are properly chosen, if Equation 3.15 has

one solution, we define it to be XK−1. If Equation 3.15 has multiple solutions, we choose

the one with the shortest distance from XK to be XK−1. In case multiple solutions are

having the same shortest distance from XK , we arbitrarily select one to be XK−1. In

practice, if Equation 3.15 has a solution, it is almost always unique.

We repeat Equation 3.15 for decreasingK−1,K−2, . . . , 0. Either the solutions always

exist until the scale t0, or there exists some m ≥ 1, such that Equation 3.15 at tm does not

have any solution. In the first case, we call XK a complete point, and in the second case,

we call it incomplete. For each curvature extremum XK on CK , we construct a sequence

of points L(XK) that contains the solutions of Equation 3.15 for K,K − 1, K − 2,. . . ,

starting at XK in a scale-decreasing order. If XK is complete, then L(XK) has exactly

K + 1 elements, and we call the sequence complete; otherwise, the size of L(XK) is

strictly smaller than K + 1, and we call the sequence incomplete.

We define the last elements of the complete sequences as the candidate control points,

106

and denote them as {Oi(tK)}M(tK)
i=1 . These points are ordered following the orientation of

Γλ∗ . The parameter tK in the parenthesis indicates that the candidate control points are

associated with the curvature extrema identified at the scale tK . When the scale tK is fixed,

we simply write {Oi}Mi=1.

This inverse affine scale-space approach prioritizes the curvature extrema, which persist

across different affine shortening flow scales. This step is essential in keeping geometrically

meaningful control points and reducing the total number of control points.

3.7.2 Degenerate Case

When the underlying silhouette is a disk or has a smoothly varying boundary, provided that

the image has a sufficiently high resolution, there may not be any candidate control points

identified on Γλ∗ associated with the curvature extrema at scale tK . We call it a degenerate

case.

If S is a disk, the vectorization only requires its center and radius. We use the isoperi-

metric inequality to determine if Γλ∗ represents a circle: for any closed plane curve with

area A and perimeter L, we have 4πA ≤ L2 and the equality holds if and only if the

curve is a circle. In practice, we decide that Γλ∗ is a circle only if the corresponding ratio

1− 4πA/L2 is sufficiently small. By this criterion, if Γλ∗ is classified as a circle, its center

and radius are easily computed by arbitrarily three distinct points on Γλ∗ . For numerical

stability, we take three outline points that are equidistant from each other. Otherwise, we

insert a pair of most distant points on Γλ∗ to be the candidate control points. An efficient

approach for finding these points is to combine a convex hull algorithm, e.g., the monotone

chain method [250], which takes O(N logN) time, with the rotating calipers [251], which

takes O(N) time. Here N is the number of vertices of the polygonal line Γλ∗ .

107

3.8 Adaptive Cubic Bézier Polygon Approximation

After the control points are identified from the affine scale-space, H := {Oi}Mi , we adjust

H by deleting non-salient sub-pixel curvature extrema and inserting new control points for

guaranteeing a predefined accuracy. This adaptive approach yields a cubic Bézier polygon

B(H) whose vertices are points in H and edges are cubic Bézier curves computed by least-

square fittings.

3.8.1 Bézier Fitting with Chord-length Parametrization

A cubic Bézier curve is specified by four points B0, B1, B2, and B3. Its parametric form is

B(s) = (1− s)3B0 + 3(1− s)2sB1+

3(1− s)s2B2 + s3B3 ,

for s ∈ [0, 1]. Specifically, it has the following properties: (i) B0 and B3 are the two

endpoints for B(s); and (ii) B1 −B0 is the right tangent of B(s) at B0, and B2 −B3 is the

left tangent at B3. To approximate a polygonal line segment Σ = {P0, P1, . . . , PN}, we

find a cubic Bézier curve that is determined by B0 = P0, B1, B2, and B3 = PN such that

the squared fitting error

S̃ =
N∑
i=0

(
Pi − ((1− s̃i)3B0 + 3(1− s̃i)2s̃iB1+

3(1− s̃i)s̃i2B2 + s̃i
3B3)

)2

(3.16)

is minimized. Here s̃i = (
∑i

k=1 ||Pk − Pk−1||)/(
∑N

k=1 ||Pk − Pk−1||) is the chord-length

parameter for Pi with i = 0, 1, . . . , N . We note that Equation 3.16 is used to initialize an

iterative algorithm in [252] for a more accurate Bézier fitting. The benefit of this approxi-

mating setup is that we have closed-form formulae [229] for the minimizing Bj , j = 1, 2,

108

Hence we gain computational efficiency.

3.8.2 Control Point Refinement: Deletion of Sub-pixel Extrema

Recall that the candidate control points H = {Oi}Mi=1 in section 3.7 are curvature extrema

at sub-pixel level. Hence they may not reflect salient corners of the silhouette. To remove

spurious sub-pixel extrema from H , we compare the left tangent and right tangent at each

candidate control point.

We take advantage of the second property of cubic Bézier curves mentioned in subsec-

tion 3.8.1. For i = 1, . . . ,M , we fit a cubic Bézier to the polygonal line segment whose set

of vertices is

{Oi = Pj(i), Pj(i)+1, . . . , Pj(i+1) = Oi+1} ,

where we take OM+1 = O1, and obtain the estimated defining points Bi,1 and Bi,2 for the

Bézier curve. The left and right tangent at Oi are computed as

T−i = Bi−1,2 −Oi , T+
i = Bi,1 −Oi , (3.17)

respectively, where B−1,2 = BM,2. These tangent vectors are associated with all the points

between neighboring candidate control points. Therefore, the angle formed by T−i and T+
i

measures the sharpness of Γλ∗ at Oi from a more global perspective. We delete Oi from the

set of candidate control points H if

〈T+
i , T

+
i 〉

||T+
i || ||T−i ||

+ 1 < ε ,

for some small ε > 0. It is equivalent to the condition that the angle between T+
i and T−i is

close to π. The set H is updated with the remaining control points.

When all the candidate control points {Oi}Mi=1 are removed after this procedure, we

109

encounter a degenerate case. If the underlying outline is a circle, we compute the center

and radius; if it is not, we take the most distant pair of outline points to update H .

3.8.3 Control Point Refinement: Insertion for Accuracy

The candidate control points in H split the outline Γλ∗ into polygonal line segments, each

of which is approximated by a cubic Bézier using least square fitting as described in sub-

section 3.8.1. We obtain a Bézier polygon that approximates Γλ∗ , denoted by B(H). A

natural measure for the error of approximating Γλ∗ using the Bézier polygon B(H) is

e = max
Pi∈Γλ∗

dist(Pi,B(H)) , (3.18)

where dist(Pi,B(H)) = infP∈B(H) ||Pi − P || is the distance from Pi to the curve B(H).

It is desirable that the user can specify the threshold for the error, τe > 0. To guarantee

that e ≤ τe, we apply the splitting strategy [227] which inserts Pnew ∈ Γλ∗ to H as a new

control point if

dist(Pnew,B(H)) > τe , (3.19)

and among those points on Γλ∗ satisfying Equation 3.19, the distance from Pnew to B(H)

is the largest. After the insertion, we fit Γλ∗ using a Bézier polygon based on the new set

of control points in H . If the error of the newly fitted Bézier polygon is still greater than

τe, we insert another point based on the same criterion. This series of insertions terminates

once the condition e ≤ τe is met.

Finally, B(H) with the updated set of control points H gives a Bézier polygon that

approximates the outline ∂S. With its interior filled with black, we obtain the vectorized

silhouette for S from the raster image I .

Remark 3.8.1. For a further reduction on the size of H , we may consider an optional step

to merge neighboring Bézier cubics if the union of the underlying polygonal line segments

110

can be approximated by a single Bézier cubic via Equation 3.16 with an error below τe.

We can regard the insertion in subsection 3.8.3 as controlling the data fidelity, and the

simplification described here as minimizing the complexity of an estimator. Alternatively

iterating these procedures provides a numerical scheme for a constrained optimizing prob-

lem minH⊆Γλ∗ |H| under the constraint that maxPi∈Γλ∗ dist(Pi,B(H)) ≤ τe, where |H|

denotes the number of elements in H . For any τe ≥ 0, it always has a solution, yet the

uniqueness largely depends on the geometric structure of Γλ∗ .

3.9 Numerical Experiments on Silhouette Vectorization

We present a comprehensive set of numerical experiments to evaluate and compare the

proposed algorithm’s performance for the criteria of compression, accuracy, stability, com-

plexity, and repeatability. We start with a description of the data and implementation de-

tails.

3.9.1 Data Preparation and Parameter Settings

After obtaining the SVGs from [253], we rasterized them as PNG images, which were

used as inputs in the following experiments. The inputs were either binary or gray-scale.

We extracted the level line for λ∗ = 127.5 to approximate the outlines throughout the

experiments.

To solve Equation 3.13, we apply the fully consistent geometric scheme [239] which

is independent of grid discretization. Consequently, the scale parameter t is conveniently

replaced by a chord-area parameter σ. The scale T0 for the initial smoothing (section 3.6)

required for curvature computation thus corresponds to some smoothness parameter σ0.

The computed discrete curvatures are filtered by moving average with periodic boundary

condition to suppress the noise. A curvature extremum is identified only if it has absolute

value greater than its neighbors and above 0.001. For the parameters in Equation 3.15,

we fixed D = 10 and α = 0.9. During the inverse tracing (subsection 3.7.1), K = 4,

111

and since the sequence of scales {tk}Kk=1 can be replaced by chord-area parameters, the

curvature extrema were traced for scales corresponding to chord-areas k∆σ, k = 1, 2, 3, 4

respectively, where ∆σ = 0.5. The threshold for the degenerate case (subsection 3.7.2) is

set to be 0.005.

By default, we set the error threshold τe = 1, so that the vectorized outline was guaran-

teed to have sub-pixel accuracy; and the smoothness parameter σ0 = 1. Table B.1 collec-

tively displays the silhouettes used in the following experiments.

3.9.2 General Performance

We present some results of our proposed algorithm in Figure 3.11. In (a), we have a sil-

houette of a cat. It has a single outline curve that contains multiple sharp corners on the

tail, near the neck, and around the paws. These features provide informative visual cues for

silhouette recognition, and our algorithm identifies them as control points for the silhouette

vectorization shown as the red dots in (b). The outline of a butterfly in (c) has multiple

connected components. In addition to the control points corresponding to corners, we ob-

serve in (d) some others on smooth segments of the outline. They are inserted during the

refinement step of our algorithm, where a single Bézier cubic is inadequate to guarantee the

accuracy specified by the error threshold τe = 1. In (e), we show a tessellation of words,

and (f) presents the vectorized result. The input is a PNG image of dimension 1934× 1332

and takes 346 KB in the storage. In contrast, its silhouette vectorization, saved as an SVG

file, has 2683 control points and takes 68 KB if the coordinates are stored in float. In this

example, our algorithm provides a compression ratio of about 80.35%. The total compu-

tational time for this case only takes 0.83 seconds. We also compared the resulted size

with the lossy compression format JPG to show that the proposed method has a superior

compression ratio. More statistics are summarized in Table 3.2.

112

Figure 3.11: General performance. (a) Cat and (b) its vectorized outline (42 control points).
(c) Butterfly and (d) its vectorized outline (158 control points). (e) Text design and its
vectorized outline (2683 control points). Each red dot signifies the location of a control
point. (g) Two letters exerted from (e) scaled up with the same magnitude. (h) Zoom-in of
the vectorization (f) on the two letters in (g).

Table 3.2: Performance of the proposed method applied to examples in Figure 3.11. The
compression ratios are displayed for PNG and JPG, respectively. ∗We note that the PNG
image in (a) has a single channel, thus converting it to JPG increases the size.

Shape *(a) (c) (e)
PNG Size 5 KB 178 KB 346 KB
JPG Size 11 KB∗ 35 KB 155 KB

Result Size 2 KB 5 KB 68 KB
Ratio (PNG) 60% 97.19% 80.35%
Ratio (JPG) 81.82% 85.71% 56.13%
Proc. Time 0.10 Sec. 0.15 Sec. 0.83 Sec.

113

3.9.3 Tests on Degenerate Cases

An important feature of our algorithm is that it has flexibility for degenerate cases, where

the silhouette does not have identifiable curvature extrema on its outline, e.g., Figure 3.12

(a). Once our algorithm classifies the outline as a circle, instead of fitting Bézier cubics,

it directly approximates the center and radius of the circle and draws a perfect circle. See

Figure 3.12 (b). We note that Bézier curves cannot perfectly fit a circle [254], and it requires

more than 6 distinct control points, whereas we only need one control point for the center

and one scalar for the radius.

Figure 3.12 (c) shows another degenerate case. It consists of a rectangle in the mid-

dle and two half disks attached on its opposite sides, whose diameters are equal to the

rectangle’s height. This particular silhouette has no strict curvature extrema on its outline.

By computation, its area is 172644 and perimeter is 1742.07; since 4πArea/Perimeter2 =

4× π × 172644/(1742.07)2 = 0.7149 < 1, the outline is not a circle. Hence the algorithm

inserts a pair of most distant points on the outline, the left-most and the right-most points

in this case, and conducts the Bézier fitting routine for the non-degenerate cases.

The design of this special procedure for degenerate cases is important for two reasons.

First, it makes the algorithm adaptive to image resolutions. If we reduce the resolution of

(c) from 774 × 320 to 144 × 58, whose magnified version is shown in (e), due to strong

pixelization, all the control points are identified as local curvature extrema. (f) shows the

magnified vectorization of the low-resolution image. Second, it improves the compression

ratio. To fit a circle using a Bézier polygon requires at least two pieces of cubics; hence

we need to store the coordinates of at least 6 points. With our algorithm, only the center’s

coordinate and the value of the radius are required, which saves the space for 9 float or int

type data. Figure 3.12 (g) shows mixture of degenerate and non-degenerate outline curves.

The vectorization in (h) shows that the circles are represented as perfect circles, and the

others are represented as Bézier polygons.

114

Figure 3.12: Degenerate cases. In (a) and (c), no candidate control points were identified.
Our algorithm handles such situations by checking if the outline is a circle. If it is, e.g.
(a), the center and radius are computed, and a circle is drawn without Bézier fitting; hence,
there is no control point (red dots) on the vectorized outline (b). The blue dot indicates the
center of the circle. If it is not a circle, e.g., (c), a pair of most distant points are inserted to
initiate the Bézier fitting, such as in (d). (e) shows the low-resolution version of (c), and (f)
displays its vectorization. When the resolution is low, all the control points are identified
curvature extrema. In (g), three of the outline curves are identified as circles, and the others
are fitted by Bézier polygons. (h) shows the vectorized result.

115

3.9.4 Effect of the Error Threshold τe

The error threshold τe controls the accuracy of the Bézier polygon approximating the out-

line. When the value of τe is reduced, the user requires higher accuracy of the Bézier fitting.

Since any Bézier cubic contains at most one inflection point, a single cubic only allows a

limited amount of variations. Hence, by adding more control points to split the outline into

shorter segments, the specified accuracy is achieved.

To better illustrate the effect of varying the threshold τe, we computed in percentage the

reduction of the number of control points when the threshold is τe > 0.5 compared to that

when the threshold is 0.5:

ρ(τe) =
#C(τe)−#C(0.5)

#C(0.5)
× 100% , τe > 0.5 . (3.20)

Here #C(τe) denotes the number of control points when the threshold is τe. Figure 3.13

(a) shows the average values and the standard deviations of Equation 3.20 when we apply

the proposed method to the 20 silhouettes in our data set. We observe that when τe < 1, the

effect of increasing τe is the strongest: the number of control points reduces exponentially.

On average, the percentage curves show inflection points around τe = 1, that is, when the

fitted Bézier polygon has a distance to the sub-pixel outline smaller than 1 pixel. After

passing τe = 1, increasing τe has less impact on the variation of the number of control

points. For even larger values of τe, there is almost no need to insert new control points,

and the corresponding control points are closely related to the corners of the outline. This

is justified by the regression in Figure 3.13 (b), where each point represents a silhouette

in our data set. It shows that there is a positive relation between the number of corners

computed by the Harris-Stephens corner detector [255] and the number of control points

when τe = 10.0, which is relatively large.

With τe � 1, the silhouette representation is more compact yet less accurate. With

small values of τe < 1, we have a more accurate representation yet less efficient. Hence,

116

(a) (b)

0 2 4 6 8 10
0

10

20

30

40

50

60

70

-6 -4 -2 0 2
2

3

4

5

6

7

8

Figure 3.13: (a) For the 20 silhouettes in our data set (Table B.1), the solid curve shows
the average relative reduction of the number of control points ρ(τe) Equation 3.20, and
the dashed curves indicate the standard deviations. (b) The positive relation between the
number of control points when τe = 10.0 is large and the number of corners of a silhouette.
Each dot represents a sample in our data set. The red curve is computed by linear regression
with a goodness of fit R2 = 0.75592.

we would recommend τe = 1.

3.9.5 Effect of the Smoothness Parameter σ0

The smoothness parameter σ0 adjusts the regularity of the smooth bilinear outline, which

approximates ∂S. With larger values of σ0, oscillatory features of the given outline are

suppressed. With smaller values of σ0, the vectorized silhouette preserves sharp corners.

Figure 3.14 demonstrates this effect of σ0. We applied the proposed method using

σ0 = 2.0, 1.0 and 0.5 on the silhouette of a tree (a), and the zoom-ins of vectorization results

within the boxed region of (a) are presented in (b), (c), and (d), respectively. Observe that

the zig-zag around the tree’s silhouette is better preserved by reducing σ0. As a trade-off,

this introduces more control points to recover the sharpness of the outline.

3.9.6 Qualitative Comparison with Feature Point Detectors

Our algorithm produces a set of informative point features of the outline. They include

the control points which separate the outline curves into segments for cubic Bézier fitting

and the centers of circles. In Figure 3.15, we compare the distribution of these points

117

Figure 3.14: Effect of the smoothing parameter σ0. (a) A silhouette of a tree where the
boxed region is examined in detail. Vectorization using (b) σ0 = 2.0 (362 control points)
(c) σ0 = 1.0 (448 control points), and (d) σ0 = 0.5 (500 control points). With smaller
values of σ0, the vectorized outline is sharper, and the number of control points increases.

with the results of some extensively applied feature point detectors: the Harris-Stephens

corner detector [255], the features from Accelerated Segment Test (FAST) detector [256],

the Speeded Up Robust Features (SURF) detector [257], and the Scale-Invariant Feature

Transform (SIFT) [258].

The Harris-Stephens corner detector is a local auto-correlation based method. It locally

filters the image with spatial difference operators and identifies corners based on the re-

sponse. In (a), the Harris-Stephens corner detector identifies all the corners except for the

one on the label’s right side. The set of control points produced by our algorithm contains

all the corners found by the Harris-Stephens detector plus the missed one.

The FAST detector only considers the local configurations of pixel intensities; hence

it is widely applied in real-time applications. From (b), we see that FAST identifies all

the prominent corners the same as our method. Similarly to (a), there are no FAST points

identified around the balloon. However, on the circular outline at the center, FAST detects

multiple false corners; this illustrates how our algorithm is robust against pixelization.

The SURF detector combines a fast Hessian measure computed via integral images and

the distribution of local Haar-wavelet responses to identify feature points that are scale-

and translation-invariant. It is similar in that it utilizes the Gaussian scale-space and scale-

space interpolation to localize the points of interest. The SURF points are marked over

scales; hence we see most of the green crosses in (c) form sequences converging toward the

118

Figure 3.15: Comparison between the control points (red dots) plus the centers of circles
(blue dots) produced by the proposed algorithm and other point feature detectors (green
crosses). (a) Compared with the Harris corner detector [255]. (b) Compared with the
FAST feature detector [256]. (c) Compared with the SURF detector [257]. (d) Compared
with the SIFT detector [258]

outline. These limit points correspond precisely to our control points (red dots) distributed

over the outline, including those around the balloon. Moreover, there is a SURF point at

the center of the circular hole in the label, which overlaps with our identified center of the

circle (blue dot). Rather than showing feature points over scales, our method locates them

directly on the original outline. In (c), notice that our identified points are much simpler

compared to SURF points.

SIFT detects scale-invariant features of a given image. As shown in (d), SIFT success-

fully indicates the presence of corners and marks the balloon’s centers as well as the label,

which are visually robust features of the silhouette. Our method focuses on the outline

instead of the interior points and provides interesting boundary points’ locations exactly.

Around the balloon, the symmetric distribution is compatible with the SIFT point at the

center.

The set of control points plus the centers of circles produced by our algorithm is com-

parable to some of the frequently used feature point detectors in the literature. Hence, in

addition to being an effective silhouette vectorization method, the identified control points

can be used for other applications where feature point detectors are needed.

119

3.9.7 Quantitative Comparison with Feature Point Detectors

To further justify that our method can be applied as a stable point feature detector for

silhouettes, we compared the techniques discussed above with ours by quantitatively eval-

uating their performance for the repeatability ratio [259]. This ratio measures the geometric

stability of the detected feature points under various transformations.

In particular, for each method, given any angle θ, 0◦ < θ < 360◦, we rotated the sil-

houettes in the first column of Figure 3.16 with respect to their centers by θ respectively,

recorded the detected feature points, applied the inverse transform on these points by rotat-

ing them back by −θ, then compared their positions with the feature points detected on the

original silhouette. Let nrepeat = 0. For any rotated feature point, within its ε-neighborhood,

if we find at least one feature point on the original silhouette, we increase nrepeat by 1. The

ε-repeatability ratio is computed as

nrepeat

min{n0, ntransform}
(3.21)

where n0 denotes the number of feature points detected on the original silhouette, and

ntransform is the number of feature points detected on the transformed one. During the angle

(or scale) changes, this value staying near 1 indicates that the applied method is invariant

under rotation (or scale). We fixed ε = 1.5 for this experiment.

The second column of Figure 3.16 shows the repeatability ratios under rotations. The

set of feature points produced by our method has superior stability when the silhouette is

rotated by arbitrary angles. In contrast, the other detectors have low repeatability ratios, es-

pecially when the silhouette is turned almost upside-down. Moreover, our method performs

consistently well for silhouettes with different geometric features. The house silhouette has

straight outlines and sharp corners; the butterfly silhouette is defined by smooth curves; and

the fish silhouette has prominent curvature extrema which are not perfect corners.

For the third column of Figure 3.16, we computed the repeatability ratios when the

120

Figure 3.16: Repeatability ratios of the methods in comparison when the silhouettes in the
first column are rotated or scaled. Notice that the blue lines (proposed method) are near 1.
The performance of our method is the most consistent across these different silhouettes.

transformation is replaced by scaling. Observe that our method is comparable with other

detectors, and it is the most consistent one across these different silhouettes.

3.9.8 Comparison with State-of-the-art Software

There are many software available for image vectorization, e.g., Vector Magic [260], Inkspace [261],

and Adobe Illustrator 2020 (AI) [262]. In the following set of experiments, we compare

our method with these software using the number of control points generated for given

silhouettes as a criterion. This quantity is equal to the number of curve segments used for

approximating the outline, and a smaller value indicates a more compact silhouette repre-

sentation.

For comparison, after acquiring SVG files of various silhouettes, we rasterized them

and used the PNG images as inputs. Table 3.3 summarizes the results. For Vector Magic,

we tested three available settings: high, medium, and low for the vectorization quality.

For AI, we chose the setting“Black and White Logo”, as it is suitable for the style of our

121

inputs. We also include the results when the automatic simplification was used, which are

marked by daggers. For Inkspace, we used the default parameter settings. As shown by the

mean relative reduction values on the number of control points in the last row, our method

produces the most compact vectorization results.

With such an effective reduction in the number of control points, it remains to verify

that our method does not over-simplify the representation. We show a detailed comparison

in Figure 3.17 between our proposed method and AI. In particular, we used AI without

simplification and our method with two sets of parameters: σ0 = 1, τe = 1 and σ0 = 0.1,

τe = 0.5. We note that σ0 specifies the smoothness of the recovered outline, and τe controls

the accuracy. Notice that our method gives fewer control points under these settings, and

our results preserve more details of the given silhouettes, for example, the strokes on the

scales at the bottom and the sharp outlines on the rear fin.

3.9.9 Quantitative Study of Efficiency and Accuracy

We quantified AI’s performance and our method by comparing the given image I and the

image I ′ rasterized from the vectorization result. Denote S0 = {(x, y) ∈ Ω∩N2 | I(x, y) <

127.5} and Sr = {(x, y) ∈ Ω ∩ N2 | I ′(x, y) < 127.5} as the interior pixels of the given

silhouette and the reconstructed one. We evaluated the accuracy of approximating S0 using

Sr by the Dice similarity coefficient [212]

DSC =
2|S0 ∩ Sr|
|S0|+ |Sr|

. (3.22)

Higher values of DSC (0 ≤ DSC ≤ 1) imply a better matching between two silhouettes.

We evaluated the performance with wide ranges of parameters for both AI and the proposed

method. For AI, we tested various combinations of the curve simplification parameter µ

(0%–100%) and the corner point angle threshold γ (0◦–180◦). For our method, we used

different combinations of τe and σ0. Roughly speaking, µ in AI corresponds to τe in ours,

122

which controls the approximating accuracy, and γ in AI corresponds to σ0 in ours, which

adjusts the smoothness of the vectorized outline. Figure 3.18 plots the number of con-

trol points against the corresponding DSC values for various parameter settings in both

methods. In (a), we fixed the sharpness requirement, i.e., fixed γ = 150◦ (default value

for the automatic simplification used in AI) and fixed σ0 = 1, and varied µ for AI (the

blue curve) and τe for ours (the red curve). On the blue curve, larger dots correspond to

smaller values of µ; on the red curve, larger dots correspond to larger values of τe. Moving

from left to right along both curves indicates more accurate outline approximations. The

red curve staying below the blue one, compared to AI, means that our method produces

fewer control points while achieving the same level of DSC values. In (b), we present

the results of AI using a simplification specified by a set of combinations of parameters

(γ = 0◦, 10◦, . . . , 180◦, µ = 0%, 10%, . . . , 100%). They are organized so that each blue

curve corresponds to a fixed value of γ; higher curves (lighter shades of blue) correspond to

larger values of γ while moving from left to right (smaller sizes of dots) along each of the

curves corresponds to decreasing µ. The red curve shows our results using different values

of τe when the merging is applied, and σ0 is fixed at 0.5. From left to right, the value of τe

decreases. Observe that the red curve gives a close lower bound for the blue curves when

DSC< 0.93. For higher requirements on the accuracy (DSC> 0.93), our method again

shows superior efficiency: it requires fewer control points to reach larger DSC values. In

contrast, for AI, the best DSC value it can achieve is around 0.95, and adding more control

points does not bring any improvement.

3.10 Summary

In this chapter, we considered two types of shape pattern representation via shape skele-

tons and silhouette vectorization. For the skeleton approach, we discussed the flux-ordered

thinning algorithm proposed by [191], which we referred to as the Hamilton-Jacobi Skele-

ton (HJS), and described an implementation of this method for extracting skeletons of 2D

123

Table 3.3: Comparison with image vectorization software in terms of the number of con-
trol points. We compared with Vector Magic (VM), Inkspace (IS), and Adobe Illus-
trator 2020 (AI). For VM, we report the number of control points using three settings:
High/Medium/Low. For AI, the values with dagger† indicate the numbers of control points
produced by the automatic simplification. The input image dimensions are 581 × 564,
625× 598, 400× 390, 903× 499, 515× 529, and 1356× 716 from top to bottom. We also
report the mean relative reduction (MRR) of the number of control points computed for the
results above.

Number of Control Points (#C)
Test Image Original VM IS AI Proposed

405 248/256/245 330 280 (193†) 168

611 359/343/325 383 340 (293†) 222

682 296/294/263 272 211 (128†) 120

1434 915/828/715 932 698 (462†) 379

4434 2789/2582/2370 3292 2120 (1431†) 1407

6664 5470/5218/4955 6493 4870 (3441†) 2810
MRR — 37..97%/40.55%/45.01% 29.88% 45.79% (61.58%†) 67.38%

Figure 3.17: Comparison among the given raster image (red boxes), AI (orange boxes), the
proposed with σ0 = 1, τe = 1 (green boxes), and the proposed with σ0 = 0.1, τe = 0.5
(blue boxes). With smaller numbers of control points (#C), our method preserves better
the geometric details of the given silhouette.

124

(a) (b)

0.91 0.92 0.93 0.94 0.95
2000

2500

3000

3500

4000

4500

5000

0.9 0.91 0.92 0.93 0.94 0.95 0.96
1500

2000

2500

3000

3500

4000

4500

5000

Figure 3.18: (a) Comparison between AI (γ = 150◦) and the proposed method (σ0 = 1)
when the complexity parameters (µ for AI, τe for ours) vary. The circled dot corresponds
to our default setting. (b) Comparison between AI with simplification specified by various
combinations of µ and γ, and the proposed method using merging with fixed σ0 = 0.5
and varying τe. In both figures, smaller dots indicate higher levels of complexity for AI
(µ) and the proposed method (τe), respectively. A dot locating to the right indicates higher
accuracy, and a dot in a lower position implies higher efficiency.

shapes from binary images. As a natural extension of the PDE framework, we updated

a part of the algorithm computing the distance transformation by the fast sweeping al-

gorithm [202], which improves the efficiency. The robustness of the identified skeleton

against boundary perturbations can be adjusted via a single parameter γ > 0. For arbitrary

shapes, we recommend fixing γ = 2.5 which produces the principal skeleton component

and some branches indicating highly irregular features on the boundary. By applying HJS

to a fixed shape using varying values of γ, we can obtain a multi-scale shape representation

analogous to the approach considered in frequency component analysis. We investigated

the special case where γ < 1 by exploring its connection to the homotopy type of a given

shape and illustrating its usage as a deficiency detector for binary shapes. Moreover, we

tested the skeleton identified by HJS as a tool for reconstructing shapes from their medial

axes. When γ increases, the reconstruction is more precise.

Moreover, we introduced an efficient and effective algorithm for silhouette vectoriza-

tion [243]. The outline of the silhouette is interpolated bilinearly and uniformly sampled at

a sub-pixel level. To reduce the oscillation due to pixelization, we applied the affine short-

125

ening to the bilinear outline. We identified a set of candidate control points by tracing the

curvature extrema across different scales along the well-defined inverse affine shortening

flow. This set is then refined by deleting sub-pixel extrema that do not reflect salient corners

and inserting new points to guarantee any user-specified accuracy. We also designed spe-

cial procedures to address the degenerate cases, such as disks, so that our algorithm adapts

to arbitrary resolutions and offers better information compression. Our method provides

a superior compression ratio by vectorizing the outlines. When the given silhouette un-

dergoes affine transformations, the distribution of control points generated by our method

remains relatively stable. These properties are quantitatively justified by the repeatability

ratio when compared with popular feature point detectors. Our method is competitive com-

pared to some well-established image vectorization software. It produces results with fewer

control points for equally high accuracy. As we saw, the general set up of a vectorization

method has been known for a long time and has led to very competitive software. We have

adopted this existing set up, but we have verified that applying carefully scale space theory

still brings improvements on existing methods. To the best of our knowledge, this yields a

first practical evidence that the causality and invariance requirements of scale space theory

do lead to better and more accurate shape encoding. This fact has been illustrated by an

end-to-end shape rasterization algorithm, which we make public and verifiable on line.

126

CHAPTER 4

SUBMANIFOLD REPRESENTATION INDUCED BY POINT CLOUD

Acquisition, creation and processing of 3D digital objects is an important topic in vari-

ous fields, e.g., medical imaging [263], computer graphics [264, 265], industry [266], and

preservation of cultural heritage [267]. In industrial and scientific fields [267, 263], sur-

face reconstruction from point cloud data is a critical step in informative data visualization

and successful high-level data processing. Effective methods to reconstruct a continuous

surface from finitely many points can reduce the burden in data transmission and facili-

tate shape manipulations. One of the main goals of surface reconstruction is to render a

meaningful and reliable surface which captures the geometrical features of the point cloud.

A fundamental step is to reconstruct a surface from a set of point cloud data [268],

denoted by D ⊆ Rm for m = 2 or 3, such as in Figure 4.1. By the celebrated level

set function [269] to represent the surface, for d ∈ N, a d-dimensional implicit surface is

represented by the set

Γ = {x ∈ Rd+1 | φ(x) = 0},

for a level set function φ : Rd+1 → R. Implicit surfaces enjoy the flexibility in topological

changes, and via φ, one can easily derive and express geometric features of Γ, such as

normals, mean curvature, and Gaussian curvature.

There are a number of related works using implicit surface reconstruction: a data-driven

logarithmic prior for noisy data was considered in [270], surface tension was used to enrich

the Euler-Lagrange equations in [271], and principal component analysis was used to re-

construct curves which is embedded in sub-manifolds in [272]. In [273], convexified image

segmentation model with a fast algorithm was proposed for implicit surface reconstruction

for point clouds. In [274], an efficient algorithm for level set method which preserves dis-

127

(a) (b) (c)

Figure 4.1: Test point clouds. (a) Five-fold circle (200 points). (b) Jar (2100 points). (c)
Torus (2000 points).

tance function was proposed. Open surface reconstruction using graph-cuts was proposed

in [275], where reconstruction of open surface based on domain decomposition was also

proposed. In [276], the authors proposed a variational model consisting of the distance, the

normal direction, and the smoothness terms. In [277], a ridge and corner preserving model

based on vectorial TV regularization for surface restoration was introduced. In [273], the

authors defined the surface via a collection of anisotropic Gaussians centered at each entry

of the input point cloud, and used TVG-L1 model for minimization. A similar strategy

addressing an `0 gradient regularization model can be found in [278].

In this chapter, we focus on reconstructing Γ, i.e., a curve in R2 or a surface in R3,

to represent the underlying structure of the point cloud D. We will assume only the point

locations are given, and no other geometrical information such as normal vectors at each

point is known. There are various related works on surface reconstruction from point cloud

data: a convection model proposed in [279], a data-driven logarithmic prior for noisy data

in [270], using surface tension to enrich the Euler-Lagrange equations in [271], and using

principal component analysis to reconstruct curves embedded in sub-manifolds in [272].

A semi-implicit scheme is introduced in [280] to simulate the curvature and surface diffu-

sion motion of the interface. In [273], the authors defined the surface via a collection of

anisotropic Gaussians centered at each entry of the input point cloud, and used TVG-L1

model [281] for minimization. A similar strategy addresses an `0 gradient regularization

model proposed in [278]. Some models incorporate additional information. In [276], the

128

authors proposed a novel variational model, consisting of the distance, the normal, and

the smoothness term. Euler’s Elastica model is incorporated for surface reconstruction in

[282] where graph cuts algorithm is used. The model in [274] extends the active contours

segmentation model to 3D and implicitly allows controlling the curvature of the level set

function.

In particular, we describe two variational models, one is solely based on Euclidean

distance from the point cloud to the candidate submanifold, and the other considers an

additional curvature regularization. Since the resulted functionals are non-convex, we ad-

dress the optimization challenges by including discussions of the fast algorithms based on

operator-splitting and semi-implicit schemes.

4.1 Surface Identification via Minimizing Distance-weighted Surface Area

4.1.1 Energy by Distance-weighted Surface Area

In [279, 203], the authors proposed the minimal surface model by interpreting the recon-

structed surface as an elastic membrane attached to the given point cloud. It finds the

zero-level set surface Γ that minimizes the following energy:

Es(Γ) =

(∫
Γ

ds(x)dσ

) 1
s

(4.1)

Here, dσ is the area element, s > 0 is an exponent coefficient, d(x) = infy∈D{|x −

y|} measures the point-to-point-cloud distance, and D is the set of point cloud data. The

energy (Equation 4.1) minimizes the surface area weighted by the distance from surface to

point cloud.

In this section, we will explore fast algorithms to minimize the weighted minimum sur-

face energy (Equation 4.1) for p = 1 and 2 proposed in [283]. We describe a Semi-Implicit

Method (SIM) to relax the time-step constraint for p = 2, and an Augmented Lagrangian

Method (ALM) based on the alternating direction method of multipliers (ADMM) ap-

129

proach for p = 1. These algorithms minimize the weighted minimal surface energy (Equa-

tion 4.1) with high accuracy and superior efficiency. We analyze the behaviors of ALM

in terms of the parameter choices and explore its connection to SIM. Various numerical

experiments are presented to discuss the effects of the algorithms.

Let Ω ⊂ Rm (m = 2 or 3) denote a bounded domain containing the given point cloud

data, D, a finite set of points. Using the level-set formulation for a codimension 1 subman-

ifold Γ, the d-weighted minimum surface energy (Equation 4.1) can be rewritten as:

Ep(φ) =

(∫
Ω

|d(x)|pδ(φ)|∇φ| dx

) 1
p

. (4.2)

Here δ(x) is the Dirac delta function which takes +∞ when x = 0, and 0 elsewhere. Com-

pared to Equation 4.1, this integral is defined on Ω, which makes the computation flexible

and free from explicitly tracking Γ. We use p = 2 for SIM introduced in subsection 4.1.2,

and p = 1 for ALM in subsection 4.1.3. In general, p = 2 is a natural choice, since it

provides better stability and efficiency for a semi-implicit type PDE-based method. For

ALM, we explore p = 1 to take advantage of an aspect of fast algorithm in ADMM setting

such as shrinkage, similarly to the case in [284]. Visually, the numerical results of surface

reconstruction are similar for p = 1 or p = 2 (see section 4.2).

4.1.2 Semi-Implicit Method (SIM)

We introduce a gradient-flow-based semi-implicit method to minimize

E2(φ) =

(∫
Ω

d(x)2δ(φ)|∇φ| dx

) 1
2

. (4.3)

130

Following [285], the first variation of E2(φ) with respect to φ is characterized as a func-

tional:

〈
∂E2(φ)

∂φ
, v

〉
= −

∫
Ω

1

2
δ(φ)

[∫
Ω

d2(x)δ(φ)|∇φ|dx
]−1/2

∇ ·
[
d2(x)

∇φ
|∇φ|

]
vdx

+

∫
∂Ω

d(x)2δ(φ)

|∇φ|
(∇φ · n)vdx

for any test function v from the Sobolev space H1 where n denotes the outward normal

direction along ∂Ω. Minimizing Equation 4.3 is equivalent to finding the critical point φ

such that
〈
∂E2(φ)
∂φ

, v
〉

= 0,∀v ∈ H1. This is associated with solving the following initial

value problem:

∂φ

∂t
= f̄(d, φ)∇ ·

[
d2(x)

∇φ
|∇φ|

]
in Ω,

d(x)2δ(φ)
|∇φ|

∂φ
∂n

= 0 on ∂Ω,

φ(x, 0) = φ0,

(4.4)

where φ0 is an initial guess for the unknown φ, and f̄(d, φ) =
1

2
δ(φ)

[∫
Ω

d2(x)δ(φ)|∇φ| dx

]−1/2

.

The steady state solution of Equation 4.4 gives a minimizer φ∗ of E2(φ).

Remark 4.1.1. Since we focus on the zero level set of φ, to make our scheme more stable,

we apply a reinitialization to φ after every several iterations which modifies φ to be a signed

distance function while keeping the location of the zero level set. See subsection 4.1.5

for more details. Consequently, the effect of the boundary condition is negligible. For

the computational efficiency (e.g., applying the Fast Fourier Transform), we replace the

boundary condition of φ in Equation 4.4 by a periodic boundary condition.

Here the delta function δ is realized as the derivative of the one dimensional Heaviside

function H : R→ {0, 1}. We adopt the smooth approximation of H(φ) as in [286]:

H(φ) ≈ Hε(φ) =
1

2
+ arctan(φ/ε)/π and δ(φ) ≈ H ′ε(φ) =

ε

π(ε2 + φ2)
(4.5)

131

with ε > 0 as the smoothness parameter. Then f̄ is approximated by its smoothed version

f expressed as

f(d, φ) =
1

2

ε

π(ε2 + φ2)

[∫
Ω

d2(x)
ε

π(ε2 + φ2)
|∇φ| dx

]−1/2

.

We add a stabilizing diffusive term −β∆φ for β > 0 on both sides of the PDE in

Equation 4.4 to consolidate the computation, similarly to [280]:

∂φ

∂t
− β∆φ = −β∆φ+ f(d, φ)∇ ·

[
d2(x)

∇φ
|∇φ|

]
. (4.6)

Employing a semi-implicit scheme, we solve φ from Equation 4.6 by iteratively updating

φn+1 using φn via the following equation:

φn+1

∆t
− β∆φn+1 =

φn

∆t
− β∆φn + f(d, φn)∇ ·

[
d2(x)

∇φn

|∇φn|

]
, (4.7)

where ∆t is the time-step. This equation can be efficiently solved by the Fast Fourier

Transform (FFT). Denoting the discrete Fourier transform by F and its inverse by F−1, we

have

F(φ)(i± 1, j) = e±2π
√
−1(i−1)/MF(φ)(i, j), F(φ)(i, j ± 1) = e±2π

√
−1(j−1)/NF(φ)(i, j).

Accordingly, the discrete Fourier transform of ∆φ is

F(∆φ)(i, j) =
[
2 cos(π

√
−1(i− 1)/M) + 2 cos(π

√
−1(j − 1)/N)− 4

]
Fφ(i, j).

Here the coefficient in front of Fφ(i, j) represents the diagonalized discrete Laplacian

operator in the frequency domain. Let g1 be the right side of Equation 4.7, then the solution

132

φn+1(i, j) of Equation 4.7 is computed via

φn+1(i, j) = F−1

(
F(g1)(i, j)(

1− β∆t
[
2 cos(π

√
−1(i− 1)/N) + 2 cos(π

√
−1(j − 1)/N)− 4

])) .
(4.8)

As for the stopping criterion, we exploit the mean relative change of the weighted min-

imum surface energy (Equation 4.1). At the nth iteration, the algorithm terminates if

|ēkn−1 − ēkn|
ēkn

< 10−4, where ēkn =
1

k

n∑
i=n−k

Ep(φ
i). (4.9)

Here the quantity ēkn represents the average of the energy values computed from the (n−k)th

to the nth iteration for some k ∈ N, k ≥ 1. We fix k = 10 and set p = 2 for SIM. We

summarize the main steps of SIM in Algorithm algorithm 5.

Initialization: d, φ0 and n = 0.
while the stopping criterion (Equation 4.9) with p = 2 is greater than 10−4 do

Update φn+1 from φn solving Equation 4.8;
Update n← n+ 1;

end
Output: φn such that {φn = 0} approximates {φ∗ = 0}.

Algorithm 5: SIM for the weighted minimum surface (Equation 4.3)

4.1.3 Augmented Lagrangian Method (ALM)

In this section, we present an augmented Lagrangian-based method to minimize the weighted

minimum surface energy (Equation 4.2) for p = 1, i.e.,

E1(φ) =

∫
Ω

d(x)δ(φ)|∇φ| dx. (4.10)

For the non-differentiable term |∇φ| in (Equation 4.10), we utilize the variable-splitting

technique and introduce an auxiliary variable p = ∇φ. We rephrase the minimization of

133

E1(φ) as a constrained optimization problem:

{φ∗,p∗} = arg min
φ,p

∫
Ω

εd|p|
π(ε2 + φ2)

dx, subject to p = ∇φ, (4.11)

here we replace δ(φ) by its smooth approximation H ′ε(φ) as in (Equation 4.5). To solve

problem (Equation 4.11), we formulate the augmented Lagrangian function:

L(φ,p,λ; r) =

∫
Ω

εd|p|
π(ε2 + φ2)

dx +
r

2

∫
Ω

|p−∇φ|2 dx +

∫
Ω

λ · (p−∇φ) dx, (4.12)

where r > 0 is a scalar penalty parameter and λ : Rm → Rm represents the Lagrangian

multiplier. Minimizing Equation 4.12 amounts to considering the following saddle-point

problem:

Find (φ∗,p∗,λ∗) ∈ R× Rm × Rm

s.t. L(φ∗,p∗,λ; r) ≤ L(φ∗,p∗,λ∗; r) ≤ L(φ,p,λ∗; r);

∀(φ,p,λ) ∈ R× Rm × Rm. (4.13)

Given φn, pn, and λn, for n = 0, 1, 2, · · · , the (n + 1)th iteration of an ADMM-type

algorithm for Equation 4.13 consists of solving a series of sub-problems:

φn+1 = arg min
φ
L(φ,pn,λn; r); (4.14)

pn+1 = arg min
p
L(φn+1,p,λn; r); (4.15)

λn+1 = λn + r
(
pn+1 −∇φn+1

)
. (4.16)

Each sub-problem can be solved efficiently. First, we find the minimizer of the sub-

problem (Equation 4.14) by solving its Euler-Lagrange equation:

−r∆φn+1 =
2dε|pn|φn

π(ε2 + (φn)2)2
−∇ · (rpn + λn). (4.17)

134

Here ∆ is the Laplacian operator. Following [284], we introduce a frozen-coefficient term

ηφ, for η > 0, on both sides of Equation 4.17 to stabilize the computation; thus, Equa-

tion 4.14 is solved using the following equation:

ηφn+1 − r∆φn+1 = ηφn +
2dε|pn|φn

π(ε2 + (φn)2)2
−∇ · (rpn + λn). (4.18)

We solve this via FFT, similarly to Equation 4.8 for SIM. Thus, the φ sub-problem is solved

via

φn+1(i, j) = F−1

(
F(g2)(i, j)(

η − r
[
2 cos(π

√
−1(i− 1)/N) + 2 cos(π

√
−1(j − 1)/N)− 4

])) .
(4.19)

Second, the p sub-problem (Equation 4.15) is equivalent to a weighted Total Variation

(TV) minimization, whose solution admits a closed-form expression using the shrinkage

operator [287]. Explicitly, the updated pn+1 is computed via:

pn+1 = max

{
0, 1− d ε

π(ε2 + (φn+1)2)|r∇φn+1 − λn|

}(
∇φn+1 − λn

r

)
. (4.20)

Finally, the Lagrangian multiplier λ is updated by Equation 4.16. The stopping criterion

for the ALM iteration is the same as that for SIM (Equation 4.9), but with p = 1. We

summarize the main steps of ALM in algorithm 6.

Input: Set d, φ0, p0, λ0, and n = 0.
while the stopping criterion (Equation 4.9) with p = 1 is greater than 10−4 do

Update φn+1 = arg minφ L(φ,pn,λn; r) via (Equation 4.19) ;
Update pn+1 = arg minp L(φn+1,p,λn; r) via (Equation 4.20);
Update λn+1 = λn + r(pn+1 −∇φn+1);
Update n← n+ 1;

end
Output: φn such that {φn = 0} approximates {φ∗ = 0}.

Algorithm 6: ALM for the weighted minimum surface (Equation 4.10)

135

4.1.4 Connection between SIM and ALM Algorithms

Note that both SIM and ALM involve solving elliptic PDEs of the form:

aφ− b∆φ = g, (4.21)

for some constants a, b > 0, and a function g defined on Ω. For SIM, it is Equation 4.7:

1

∆t︸︷︷︸
a

φn+1 − β︸︷︷︸
b

∆φn+1 =
φn

∆t
− β∆φn + f(d, φn)∇ ·

[
d2(x)

∇φn

|∇φn|

]
︸ ︷︷ ︸

g

,

and for ALM, it is Equation 4.18:

η︸︷︷︸
a

φn+1 − r︸︷︷︸
b

∆φn+1 = ηφn +
2dε|pn|φn

π(ε2 + (φn)2)2
−∇ · (rpn + λn)︸ ︷︷ ︸

g

.

We remark interesting connections between SIM and ALM. First, both methods have

stabilizing terms but in different positions on the left side of Equation 4.21. For SIM, it is

−β∆φ, while for ALM, it is ηφ. Second, relating the coefficients of φ, 1/∆t in SIM gives

insight to the effect of η in ALM. In general, a large η slows down the convergence of ALM,

while a small η accelerates it (as the effect of 1
∆t

on SIM). Figure 4.2 shows convergence

behaviors of ALM for different η, using the five-fold circle point cloud in Figure 4.1 (a).

It displays the CPU time (in seconds) for r = 1, ε = 1, and η varying from 0.05 to

0.5. Note that as η increases, the time required to reach the convergence increases almost

quadratically at first, then stays around the same level. Third, the correspondence between

b = β in SIM, and b = r in ALM allows another interpretation of the parameter r in ALM.

In SIM, a large β smears the solution and avoids discontinuities or sharp corners, and for

ALM, large r also allows to pass through fine details. Figure 4.7 in Section section 4.2

presents more details, where we experiment with different r and ε values for the five-fold

136

Figure 4.2: The CPU-time (s) of ALM until convergence for the five-fold circle point cloud
in Figure 4.1 (a). Here r = ε = 1 and η varies from 0.05 to 0.5. The connection between
SIM and ALM indicates that large η slows down ALM. In this graph, as η increases, the
time required to reach the convergence increases.

circle point cloud shown in Figure 4.1 (a).

4.1.5 Implementation Details

We illustrate the details for planar point clouds, i.e., D ⊆ R2, and the extension to R3

is straightforward. Let the computational domain Ω = [0,M] × [0, N], M,N > 0, be

discretized by a Cartesian grid with ∆x = ∆y = 1. For any function u (or a vector field

v = (v1, v2)) defined on Ω, we use ui,j or u(i, j) to denote u(i∆x, i∆y). We use the usual

backward and forward finite difference schemes:

∂−1 ui,j =

ui,j − ui−1,j, 1 < i ≤M ;

u1,j − uM,j, i = 1.

∂+
1 ui,j =

ui+1,j − ui,j, 1 ≤ i < M − 1;

u1,j − uM,j, i = M.

∂−2 ui,j =

ui,j − ui,j−1, 1 < j ≤ N ;

ui,1 − ui,N , j = 1.

∂+
2 ui,j =

ui,j+1 − ui,j, 1 ≤ j < N − 1;

ui,1 − ui,N , j = N.

137

The gradient, divergence and the Laplacian operators are approximated as follows:

∇ui,j = ((∂−1 ui,j + ∂+
1 ui,j)/2, (∂

−
2 ui,j + ∂+

2 ui,j)/2);

∇ · vi,j = (∂+
1 v

1
i,j + ∂−1 v

1
i,j)/2 + (∂+

2 v
2
i,j + ∂−2 v

2
i,j)/2;

∆ui,j = ∂+
1 ui,j − ∂−1 ui,j + ∂+

2 ui,j − ∂−2 ui,j.

The distance function d is computed once at the beginning and no update is needed. It

satisfies an Eikonal equation:

|∇d| = 1 in Ω,

d(x) = 0 for x ∈ D,
(4.22)

and discretizing Equation 4.22 via the Lax-Friedrich scheme leads to an updating formula:

dn+1
i,j =

1

2

(
1− |∇dni,j|+

dni+1,j + dni−1,j

2
+
dni,j+1 + dni,j−1

2

)
. (4.23)

We solve Equation 4.23 using the fast sweeping method [288] with complexity O(G) for

G grid points.

Keeping φn to be a signed distance function during the iteration improves the stability

of level-set-based algorithms. We reinitialize φn at the nth iteration by solving the following

PDE:
φτ + sign(φ)(|∇φ| − 1) = 0,

φ(x, 0) = φn.

(4.24)

Here the subscript τ represents the partial derivative with respect to an artificial time, and

sign : R → {−1, 0, 1} is the sign function. We discretize Equation 4.24 via an explicit

138

time Lax-Friedrichs scheme. For k = 0, 1, . . . , K, we update

φ
(k+1)
i,j = φ

(k)
i,j −∆τ sign

[
(φ

(k)
i,j)(|∇φ(k)

i,j | − 1)−
φki−1,j + φki+1,j + φki,j−1 + φki,j+1 − 4φki,j

2

]
,

(4.25)

with φ(0)
i,j = φni,j . In practice, φn being a signed distance function near the 0-level-set is

important; thus, it is sufficient to evolve Equation 4.25 for a small K and update φn with

φ(K). We fix K = 10 throughout this paper.

For many problems, various spacial resolutions, i.e., different values for ∆x and ∆y,

may be needed. We allow this flexibility by scaling the data up (or down) to some level

such that ∆x = ∆y = 1 is sufficient; then we transform the reconstructed surface back to

the original scale. Hence, the accuracy depends on the density of the rescaled point cloud

data.

4.2 Numerical Experiments on Model of Distance-weighted Surface Area

4.2.1 General Performance on 2D and 3D Point Clouds

For both SIM and ALM, we vary the value of ε from 0.5 to 1. For SIM, we use ∆t = 500.

When the point cloud D is in 2D, we set β = 0.1, and when D is in 3D, β = 0.01. For

ALM, the value of η ranges from 0.05 to 1, and r from 0.5 to 2.

The code is written in MATLAB and executed without additional machine support,

e.g. parallelization or GPU-enhanced computations. All the experiments are performed

on Intel R© CoreTM4-Core 1.8GHz (4.0GHz with Turbo) machine, with 16 GB/RAM and

Intel R© UHD Graphics 620 graphic card under Windows OS. The contours and isosurfaces

are displayed using MATLAB visualization engine. No post-processing, e.g., smoothing or

sharpening, is applied.

For our first experiment, Figure 4.3 displays a set of planar curves reconstructed from

2D point clouds confined within a square Ω = [0, 100]2 ⊂ R2. We generate the data using

four different shapes: a triangle, an ellipse, a square whose corners are missing, and a five-

139

Figure 4.3: The test point clouds: triangle with 150 number of points, ellipse with 100
points, square with 80 points, and five-fold-circle with 200 points. (a) The top row, identical
initial condition applied to SIM and ALM for different D. (b) The middle row, the results
obtained by SIM. (c) The bottom row, the results obtained by ALM using r = 1.5. Both
methods give compatible results.

fold circle. For these cases, we use a centered circle with radius 30 as the initial guess,

shown in Figure 4.3 (a). Figure 4.3 (b) and (c) display the given D, as well as the curves

identified by SIM and ALM with r = 1.5, respectively. Both methods produce comparably

accurate results. In the triangle example, corners get as close as the approximated delta

function (with parameter ε) allows for both methods. The ellipse and square results fit very

closely to the respective point clouds. For the five-fold-circle, there is a slight difference in

how the curve fits the edges, yet the results are very compatible.

Table 4.1 shows the CPU times (in seconds) for SIM, ALM using r = 0.5, 1, 1.5, and 2,

as well as the times for the explicit method in [285] using ∆t = 20 on the same data sets.

With proper choices of r, ALM outperforms the other methods in terms of computational

efficiency. SIM is stable without any dependency on the choice of parameters, and its run-

times are comparable to the best performances of ALM in most cases. Both methods are

faster than the explicit method in all the examples.

The second set of experiments reconstruct surfaces from the point clouds in 3D: a jar

140

(a) (b)

(c) (d)

Figure 4.4: The first row shows ALM and SIM applied to the 3D jar point cloud in Fig-
ure 4.1 (b). (a) The result of ALM with r = 1.3, ε = 0.5, η = 0.6. (b) The result of SIM.
The second row shows the methods applied to the 3D torus point cloud in Figure 4.1 (c).
(c) The result of ALM with r = 1.3, ε = 0.5, η = 0.6. (d) The result of SIM. Both methods
are compatible and shows good results.

141

Table 4.1: CPU time (s) for SIM, ALM using r = 0.5, 1, 1.5, and 2, and the explicit
method in [285] with ∆t = 20 for the point cloud data sets in Figure 4.3. Both SIM and
ALM shows fast convergence.

Object ALM(r = 0.5) ALM(r = 1) ALM(r = 1.5) ALM(r = 2) SIM [285]
Triangle − 1.45 1.31 1.48 1.50 5.25
Ellipse 1.22 1.03 1.33 1.37 1.49 3.89
Square − − 0.94 1.20 1.09 2.07

Five-fold circle 0.83 1.44 1.86 1.22 1.96 4.18

in Figure 4.1 (b) and a torus in Figure 4.1 (c) within Ω = [0, 50]3. In Figure 4.4, we show

the reconstructed surfaces using SIM and ALM. A portion of the given point cloud is su-

perposed for validation in each case. Both methods successfully capture the overall shapes

and non-convex features of the jar, as well as the torus. There are only slight differences in

the reconstruction between using SIM with p = 2 and using ALM with p = 1.

Table Table 4.2 shows the efficiency of SIM and ALM compared to the explicit method

in [285] for the experiments in Figure 4.4. Thanks to the semi-implicit scheme, the time

step can be large and we used ∆t = 500 in SIM; in the explicit method, we are forced to use

much smaller time step ∆t = 20 to maintain the stability. The improvement of run-time in

ALM is carefully controlled by the parameters r, ε and η. We choose r = 1.3, ε = 0.5 and

η = 0.6 for both cases. Both SIM and ALM efficiently provide accurate reconstructions.

Table 4.2: CPU time (s) of SIM and ALM compared to the explicit method in [285] for the
point cloud data sets of Figure 4.4. Both SIM and ALM show fast convergence.

Object ALM SIM [285]
Jar 29.69 29.42 74.44

Torus 47.32 33.58 114.20

The third set of examples show the effect of the distance function d. Notice that the

weighted minimal surface energy (Equation 4.1) is mainly driven by the distance function

d, that is, the given point cloud D determines the landscape of d, which affects the be-

havior of the level-set during the evolution. Figure 4.5 shows the evolution using ALM,

applied to different subsets of point clouds sampled from the same bunny face shape. The

142

Figure 4.5: The effect of the distance function for varying-density point clouds: the face
with n1 points, the head with n2 points, and each ear with n3 points. (a) the given point
cloud is with (n1, n2, n3) = (20, 10, 20), and shows the 0-level-set of φn at 15th iteration,
(b) (n1, n2, n3) = (50, 10, 20), and shows 18th iteration, and (c) (n1, n2, n3) = (20, 10, 40),
and shows 20th iteration. These three curves eventually degenerate to a point. (d) is with
(n1, n2, n3) = (50, 10, 40) and shows the converged solution. The potential energy (Equa-
tion 4.1) is mainly driven by the distance function d, which affects the level-set evolution.

densities of the point cloud vary for the three different regions: the face with n1 points,

the head with n2 points, and each ear with n3 points. Figure 4.5 (a) shows the given

point cloud for (n1, n2, n3) = (20, 10, 20), with the 0-level-set of φn at 15th iteration, (b)

for (n1, n2, n3) = (50, 10, 20), at 18th iteration, and (c) for (n1, n2, n3) = (20, 10, 40),

at 20th iteration. These three curves eventually degenerate to a point, since the energy

model (Equation 4.2) drives curves to have short lengths, i.e., the level set tends to shrink.

(d) for (n1, n2, n3) = (50, 10, 40) and shows the converged solution. In (a)–(c), denser

parts of the point cloud attract the curve with stronger forces, and the sparser parts of the

point cloud fail to lock the curve. In (d), with a more balanced distribution of points, the

curve converges to correct shape.

The fourth set of examples demonstrates the robustness of ALM and SIM against noise.

Figure 4.6 shows the reconstructed curves from clean and noisy data: (a)-(c) are results of

ALM, and (d)-(f) are results of SIM. (a) and (d) in the first column show results obtained

from the clean data, which has 200 points sampled from a three-fold circle. Gaussian

noise with standard deviation 1 is added to both x and y coordinates to generate noisy

point cloud in the second column, (b) and (e). To show the differences, the third column

superposes both results reconstructed from clean and noisy point clouds. Both ALM and

143

(a) (b) (c)

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

result with clean data

result with noisy data

(d) (e) (f)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

result with clean data

result with noisy data

Figure 4.6: The influence of noise on reconstructing three-fold circle with 200 points: (a)-
(c) ALM and (d)-(f) SIM. The first column shows the reconstructed curves from clean data,
and the second column the reconstructions from noisy data. The third column shows the
comparison between the two reconstructed curves in first two columns.

SIM provide compatible results. For the noisy data, although the reconstructed curves show

some oscillation, they are very close to the solutions using the clean data, respectively.

4.2.2 Choice of Parameters for ALM and the Effects

The proposed ALM has one parameter r > 0, and the model (Equation 4.2) uses the

delta function, where the smoothness parameter ε > 0 is added to stabilize the computa-

tion. Both parameters have straightforward effects on the level-set evolution from Equa-

tion 4.17. For example, consider a set of points within a thin-band around the 0-level-set

of φn, denoted by Bε = {x | −2ε/
√

3 < φn(x) < 2ε/
√

3}. By the continuity of φn, there

exist y and z ∈ Bε such that φn(y) = −ε/
√

3 and φn(z) = ε/
√

3; these values are the

minimum and maximum of the function h(x) = 2εx
π(ε2+x2)2 , respectively. At these points,

144

Figure 4.7: Results by ALM with different r and ε. For each column, from top to bottom,
ε = 1, 1.5, 2; and for each row, from left to right, r = 0.5, 0.8, 1, 2. Increasing ε renders
the curve less sharp and more convex. Increasing r induces a stronger diffusion effect on
φn.

Equation 4.17 takes the following forms:

∆φn+1 =

−9 d |pn|/(8

√
3π ε2r) +∇ · (pn + λn

r
) at y.

9 d |pn|/(8
√

3π ε2r) +∇ · (pn + λn

r
) at z.

(4.26)

The first terms in the right hand side of Equation 4.26 show that with a smaller value of

ε, there are less number of points in Bε, but the influence from d becomes stronger. With

a larger value of ε, d affects more number of points in Bε, but with a weaker influence.

Varying values of r also modifies the effect of d, while the size of Bε is not changed.

We also find that ε interacts with r and effectively modifies the shape of the level-set.

Figure 4.7 shows the results for ALM using different combinations of r and ε, on the five-

fold circle point cloud in Figure 4.1 (a). For a fixed r, increasing ε makes the approximated

delta function smoother; consequently, narrow and elongated shapes are omitted, and the

reconstructed curve becomes more convex. For a fixed ε, larger r loses more details, as

discussed in subsection 4.1.4. The speed of convergence varies for different combinations

145

of r and ε. When the choices are reasonable, the algorithm converges fast within 2 seconds.

When both r and ε are large, results are not as good, and the convergences are slow.

Another observation comes from Equation 4.20. For any point x and n ≥ 0, if the value

Qn(ε, r) := φnπ|r∇φn − λn−1|ε2 − dε+ (φn)3π|r∇φn − λn−1|

is positive, then pn(x) = 0, and d has no direct effect on Equation 4.18 at x in the next

iteration. Regarding Qn(ε, r) as a quadratic polynomial in terms of ε parameterized by r,

the sign of Qn(ε, r) depends on the sign of φn(x) and the sign of its discriminant computed

via:

DiscQn = d2 − 4(φn)4π2|r∇φn − λn−1|2.

The sign of φn(x) is related to the position of x relative to the 0-level-set. The sign of

DiscQn is determined by comparing the length of a vector difference r∇φn − λn−1 with

the quantity d/(4(φn)2π). By the projection theorem, |r∇φn − λn−1|2 is bounded below

by αn := |λn−1|2 − |Proj∇φnλ
n−1|2 = |λn−1|2 − |λn−1 · ∇φn|2/(|λn−1|2|∇φn|2), i.e., the

squared residual of orthogonal projection of λn−1 onto ∇φn; therefore, we can decide the

sign of DiscQn using r via the following cases:

1. When d2

4(φn)4π2 < αn, for any r > 0, DiscQn < 0.

2. When d2

4(φn)4π2 ≥ αn:

(a) if r > rnU or r < rnL, then DiscQn < 0;

(b) if max{0, rnL} ≤ r ≤ rnU , then DiscQn ≥ 0.

Here,

rnU =
|Proj∇φnλ

n−1|+
√

d2

4(φn)4π2 − αn

|∇φn|
and rnL =

|Proj∇φnλ
n−1| −

√
d2

4(φn)4π2 − αn

|∇φn|
.

146

When φn(x) > 0, Qn concaves upwards and Qn(0, r) ≥ 0 for any r. If DiscQn < 0, Qn is

positive for all ε and d has no effect on level set evolution. If DiscQn ≥ 0, Qn is positive

for ε outside the interval bounded by two roots of Qn, i.e.,

0 < ε <
d−
√

DiscQn

2φnπ|r∇φn − λn−1|
or ε >

d+
√

DiscQn

2φnπ|r∇φn − λn−1|
.

When φn(x) < 0, Qn concaves downwards, and Qn(0, r) ≤ 0 for any r. In this case, Qn

is never positive: either DiscQn < 0, i.e., no roots, or DiscQn ≥ 0 but both roots are

negative.

Notice that the bounds, rnL and rnU , are closely related to the ratio d/(φn)2, which con-

tributes to the adaptive behavior of ALM. For example, for a point x where φn(x) > 0,

when |φn(x)| is close to 0 but d(x) � 0, rnL < 0 and rnU becomes extremely large; thus,

for a moderate value of r, d has a strong influence on the evolution of the level-set near x

and swiftly moves the curve towards the point cloud. For a point x which is close to both

D and {φn = 0}, the level-set evolution becomes more stringent about the minimization of

the energy (Equation 4.10).

Figure 4.8 illustrates this effect,for the five-fold circle point cloud in Figure 4.1 (a) with

r = 2 and ε = 1. Figure 4.8 shows (a) DiscQn, (b) rnU , (c) rnL , and (d) the region where

d effects the level set evolution. The figures are for iterations n = 2, 3, 4, 7, 8, 10, 11, 13

and 38 (converged). The region inside {φn = 0} always experiences the influence of d,

as described above. Figure 4.8 (a) shows that the region outside {φn = 0} is mostly blue

indicating DiscQn < 0; hence, for almost every point outside the 0-level-set, as long as

rnL ≤ r ≤ rnU , the landscape of d has strong effects on the evolution. In (b) and (c), observe

that high values of rnU only concentrate near the 0-level-set while rnL remains relatively

small in the whole domain; thus, the influence of d is strong near {φn = 0}. (d) displays

the white regions where d explicitly guides the level-set evolution and the black regions

where d has no direct effect. These results show that, although ALM evolves the level-set

147

(a) (b)

(c) (d)

Figure 4.8: (a) DiscQn, (b) rnU , (c) rnL at certain iterations. (d) The region (in white) where
d explicitly guides the level-set evolution by ALM. The distance function d refines the
local structures and it is only active near {φn = 0}. This partially explains the efficiency
of ALM.

148

globally, it ignores the effects of d when evolving the regions far away from the level-sets;

and it utilizes the values of d to refine the local structures for the regions of the level-sets

close to D.

4.3 Curvature-regularized Energy and Its Fast Optimizing Algorithms

From this section, we consider energy functionals with curvature constraints to enforce

desired properties. One such curvature constraint is the squared mean curvature, κ2, such

as Euler’s elastica minimization model [289]. In addition to image inpainting, it has been

applied to denoising [290], segmentation problem [291], and others. For any closed surface

Γ in R3, the bending energy, ∫
Γ

κ2 dσ,

where dσ denotes the surface area element, is a conformal invariant [292], and it has a uni-

versal lower bound [293]:
∫

Γ
κ2 dσ ≥ 4π. Another curvature constraint we consider is the

absolute mean curvature |κ|, i.e.,
∫

Γ
|κ| dσ, which preserves sharp edges and corners in var-

ious cases, e.g., denoising [290, 294], and segmentation [295]. As a related work, in [282],

graph cuts algorithm was explored for a functional with the absolute mean curvature term.

In [296], a variation using a function which is sensitive to large curvature was considered.

Other works used weighted mean curvature [297], principle curvature [298], Gaussian cur-

vature [299], Menger curvature [300], and other high-order geometrical information, e.g.,

conformal factor [301] and elastic ratio [302].

Optimizing a curvature regularized functional is a non-convex and non-linear problem.

Computation of such functional is particularly challenging. There are a number of different

approaches to design a fast and efficient algorithm, e.g., multigrid method [303], graph-cut

algorithm [282], homotopy method [304] and convex relaxation [305, 306], just to name

a few. A semi-implicit scheme introduced in [280] simulates the curvature and surface

diffusion motion of the interface. One of the major class of methods is based on split-

149

ting [307]. The common spirit of these methods is to cast the complicated primal problem

into a series of more tamable subproblems, then to find the minimizer using alternative

direction method. There are various strategies to obtain such decompositions from the op-

timization problem. One can derive the associated Euler-Lagrange equations, then apply

operator splitting methods on the differential equations, e.g., Lie-Trotter method [308]. A

new operator splitting algorithm was proposed for Euler’s elastica model for image smooth-

ing in [290]. One can also introduce auxiliary variables and transform the primal problem

into a constrained one, then obtain a series of subproblems by alternatively optimizing

one variable at a time while keeping the others fixed; e.g., augmented Lagrangian method

(ALM) [295, 287, 309, 310].

Specifically, we focus on a variational functional with a curvature constraint to recon-

struct implicit surfaces from point cloud data, and explore fast algorithms to solve the as-

sociated non-convex, non-linear optimization problem proposed in [311]. The minimizing

functional balances two terms, the Euclidean distance from the point cloud to the surface

and the mean curvature of the surface. We show that the curvature term improves corner

reconstruction and recovers non-convex features of the underlying shape of the point cloud

data. To avoid dealing with the high-order PDEs resulting from the gradient descent ap-

proach, we introduce a semi-implicit method to solve an easier, but equivalent, problem

derived by the operator splitting method (OSM). We also explore an ALM method recently

proposed by Bae et al. [295], which reduces the number of parameters compared to other

curvature regularized models. Our approaches work effectively for 2D/3D cases, as well as

for noisy and sparse point cloud.

4.3.1 Curvature Regularized Surface Reconstruction Model

Let D be the set of given point cloud data, d(x) = infy∈D{|x− y|} measures the point-to-

point-cloud distance, and dσ is the area element. To reconstruct a surface from a given point

150

cloud data D, we propose the following curvature-constrained minimal surface energy:

Es(Γ) =

(∫
Γ

|d(x)|sdσ
) 1

s

+ η

(∫
Γ

|κ(x)|sdσ
) 1

s

. (4.27)

Here, κ is the mean curvature of Γ, and the exponent coefficient s > 0 is a constant integer.

We explore the cases when s = 1 and s = 2. The first term, the surface integral of the

distance from point cloud to the surface, signifies the fidelity of reconstruction. It moves

the surface Γ closer toward the point cloud. The second term, which is the integral of the

surface mean curvature along the reconstructed surface, is the regularization. This induces

regularized geometric features for Γ independent to the point cloud location. Geometric

features can include sharp corners, smooth corners, or straight segments, depending on

the choice of s. The parameter η > 0 controls the influence of the curvature regularization.

When η = 0, the model (Equation 4.27) degenerates to the minimal surface model proposed

in [279].

Remark 4.3.1. The 1/s power in Equation 4.27 comes from the original model (Equa-

tion 4.1). If one takes the distance function as the potential function of the point cloud, then

the energy is an Ls norm of the potential on Γ. Based on this, we add the regularization

term related to the mean curvature of Γ, and the 1/s power is used to keep the two terms in

the same format. One may remove this power to get a simpler energy and still get the same

minimizer when η is chosen appropriately.

We employ implicit the surface representation [312] to rewrite the energy (Equation 4.27),

and the level set function φ is defined such that Γ is its zero level set:

φ(x) is

> 0, if x is outside of Γ,

= 0, if x is on Γ,

< 0, if x is inside Γ.

151

Using φ, the functional Es(Γ) restricted to the surface Γ can be expressed as

Es(φ) =

(∫
Ω

|d(x)|sδ(φ)|∇φ|dx
) 1

s

+ η

(∫
Ω

|κ(x)|sδ(φ)|∇φ|dx
) 1

s

, (4.28)

where δ(φ) = H ′(φ) is the Dirac Delta function with H being the Heaviside step function:

H(φ) = 1 if φ > 0, and 0 otherwise. We use the smooth approximation [295] for practical

computation

Hε(φ) =
1

2
+

1

π
arctan

(
φ

ε

)
and δε(φ) = H ′ε(φ) =

ε

π(ε2 + φ2)
, (4.29)

with ε > 0, which is a constant controlling the smoothness. For any point x on Γ, its mean

curvature can be computed as, κ(x) = ∇ ·
(
∇φ(x)
|∇φ(x)|

)
. Putting these together, we focus on

the smoothed energy

Es,ε(φ) =

(∫
Ω

|d(x)|s ε

π(ε2 + φ2)
|∇φ|dx

) 1
s

+ η

(∫
Ω

∣∣∣∣∇ · (∇φ|∇φ|
)∣∣∣∣s ε

π(ε2 + φ2)
|∇φ|dx

) 1
s

,(4.30)

and the reconstructed surface is defined as the minimizer of the energy (Equation 4.30),

i.e.,

Γ = {x|ψ(x) = 0} for ψ = arg min
φ

Es,ε(φ).

Here ψ represents the optimal level set function.

4.3.2 Analytical Aspects

We consider the first variation of each term of the functional (Equation 4.27). The first

variation of Equation 4.27 when η = 0 is [203]:

1

s

(∫
Γ

ds(x) dσ
)1/s−1

(sds−1∇d · n + dsκ) , (4.31)

152

which shows the interaction between the data-dependent driving force, d, and the shape

geometric feature, κ. When Γ is close to the point cloud, i.e., d is small, the shape of Γ

becomes flexible, i.e., κ can be large. When Γ is away from the point cloud, i.e., d is large,

the shape of Γ becomes rigid, and κ must be small. For the regularization term, the effect

of the mean-curvature κ of Γ is adjusted by the surface area. Notice that this term only

focuses on the geometry of Γ, and the point cloud data has no influence. The first variation

of the functional
(∫

Γ
|κ(x)|s dσ

)1/s can be derived as [296]:

1

s

(∫
Γ

κ(x)s dσ
)1/s−1 ×

divΓ(δ(κ)∇Γκ) + sign(κ)|W |2 − κ|κ| s = 1

divΓ(|κ|s−2s(s− 1)∇Γκ) + sκ|κ|s−2|W |2 − κ|κ|s s ≥ 2.

(4.32)

Here ∇Γ is the tangent component of the gradient, and divΓ is its dual operator; W is the

Weingarten map of Γ, and |W | equals the Gaussian curvature if Γ is a 2D surface. Com-

pared to Equation 4.31, the first variation related to the regularization term (Equation 4.32)

is more complicated. While the first variation (Equation 4.31) connects the distance and

curvature, Equation 4.32 only depends on the geometric feature of the surface Γ.

When s = 1 in the model (Equation 4.27), we compare the cases with η = 0 and

η 6= 0. We first note that κ of the minimizer can not be constantly zero, since there is

no compact minimal surface. When η = 0, i.e., without curvature constraint, a minimizer

of Equation 4.27 satisfies the necessary condition: ∇d · n + dκ = ∇ · (dn) = 0; when

η 6= 0, i.e., with the curvature constraint, the optimality condition becomes ∇ · (dn) +

η[divΓ(δ(κ)∇Γκ) + sign(κ)|W |2 − |κ|κ] = 0. On the open subset of the minimizer where

κ > 0, this condition becomes∇ · (dn) = η[κ2 − |W |2], while on the region where κ < 0,

it is ∇ · (dn) = η[κ2 + |W |2]. Hence, the curvature regularization modifies the distance

weighted area of the minimizing surface depending on the local concavity/convexity and

the Gaussian curvature. These modifications introduce more flexibility when fitting the

153

point cloud, and our experiments show that they can help to improve reconstruction results.

When s = 2, the first variation of the curvature regularization term
(∫

Γ
κ2d σ

)1/2 is

(∫
Γ

κ(x)2 dσ
)−1/2

(∆Γκ+ κG2 − κ3/2) , (4.33)

where ∆Γ is the Laplace-Beltrami operator, and G is the Gaussian curvature. Since Equa-

tion 4.33 contains ∆Γκ, we expect to see that our model with s = 2 will be influenced by

the locally averaged mean curvature, which leads to smoothing effects. Here we show this

model’s behavior in the following special case.

Proposition 4.3.1. Suppose the point cloud is sampled from a smooth closed surface Γ with

mean curvature κ and Gaussian curvature G satisfying:

κ(G2 − κ2/2) = 0 . (4.34)

If the point cloud is sufficiently dense, i.e. the computed d is very close to the exact distance

function, then Γ is a minimizer of Equation 4.27 only if it is a sphere of radius
√

2.

Proof. Since Γ passes through the point cloud, (Equation 4.31) degenerates to 0. Moreover,

by Equation 4.34 together with Equation 4.32, the necessary condition for Γ being a min-

imizer is that ∆Γκ = 0. Because Γ is closed, κ is a non-zero constant. By Equation 4.34,

this implies that G is also constant; hence, we know that Γ can only be a sphere. Finally,

since G = 1/r2 and κ = 1/r with r the radius of the sphere, we can solve for the radius of

Γ, which is
√

2.

The curvature regularization term
(∫

Γ
κ2d σ

)1/2 inflates the membrane supported by

the point cloud. Mylar balloon [313], which resembles slightly flattened sphere, satisfies

the condition (Equation 4.34). Proposition 4.3.1 claims that, if the point cloud lies on a My-

lar balloon, the minimizer of the functional (Equation 4.27) deviates from the underlying

surface.

154

The following result shows a two dimensional example where the object is a circle,

denoted by C0, which is centered at the origin with radius r0. It is fair to assume that a

local minimizer of Es(Γ) is a circle, denoted by C, with the same center and radius close

to r0. Denote the radius of C by r. Then we have the following proposition:

Proposition 4.3.2. Under the setting of the above example, for s = 1, r = r0 is a local

minimizer of E1(C) for any η. For s = 2, r = r0 is a local minimizer of E2(C) if η ≤ 2r0

and r = (r0 +
√
r2

0 + 12η)/6 is a local minimizer if η > 2r0.

Proof. Note that for a circle with radius r and the same center as C0, d = |r − r0| and

κ = 1/r. Es(C) can be written as

Es(C) = (2π)
1
s

(
|r − r0|r

1
s + ηr

1
s
−1
)
.

For s = 1, E1(C) = (2π)
1
s

(
|r − r0|r

1
s + η

)
of which C0 is a local minimizer for any

η.

For s = 2, E2(C) = (2π)
1
2

(
|r − r0|r

1
2 + ηr−

1
2

)
whose subdifferential is

∂E2(C) =

(2π)

1
2

(
r0
2
r−

1
2 − 3

2
r

1
2 − η

2
r−

3
2

)
, for r < r0,

(2π)
1
2

(
3
2
r

1
2 − r0

2
r−

1
2 − η

2
r−

3
2

)
, for r > r0.

For r < r0, it can be easily shown that if 12η ≤ r2
0 and (r0 +

√
r2

0 − 12η)/6 < r < r0,

∂E2(C) < 0. If 12η > r0, ∂E2(C) < 0 for any r < r0. In other words, if r < r0 and r is

sufficiently close to r0, ∂E2(C) < 0.

For r > r0, if η ≤ 2r0, ∂E2(C) > 0 and thus r = r0 is a local minimizer of E2(C).

If η > 2r0, then ∂E2(C) < 0 for r0 < r < (r0 +
√
r2

0 + 12η)/6 and ∂E2(C) > 0

for r > (r0 +
√
r2

0 + 12η)/6. Thus r = (r0 +
√
r2

0 + 12η)/6 is a local minimizer of

E2(C).

These properties show that the minimizer of the model (Equation 4.27) is not easy to

155

be analyzed even in a simple case such as a circle, and the results heavily depend on the

combination of d and κ.

4.3.3 Operator Splitting Method (OSM)

One of our main challenges is that Es in Equation 4.28 is highly nonlinear in terms of φ,

and the corresponding Euler-Lagrange equation is a high-order nonlinear PDE. See Equa-

tion 4.31 and Equation 4.32 in subsection 4.3.2. To circumvent this difficulty, we propose

a new operator splitting strategy, which leads to an equivalent differential equation system

that is much easier to solve.

We follow the direction of gradient flow; however, we first decouple the data fidelity

term and the curvature regularization term, then minimize the simplified functional via its

gradient flow. For s = 2, using Equation 4.30, we rewrite the energy Equation 4.27 in the

following equivalent form:

Ẽ2,ε(φ) =

(∫
Ω

d2(x)δε(φ)|∇φ|dx
) 1

2

+ η

(∫
Ω

q2(x)δε(φ)|∇φ|dx
) 1

2

,

with q = ∇ · ∇φ
|∇φ|

,

(4.35)

with the notation δε(φ) as in Equation 4.29. We then compute the variation of Ẽ2,ε(φ) with

respect to φ [279]. For ∀v ∈ H2, H2 denoting the Sobolev space, we have

〈
∂Ẽ2,ε(φ)

∂φ
, v

〉
= −

∫
Ω

1

2
δε(φ)

[∫
Ω

d2(x)δε(φ)|∇φ|dx
]−1/2

∇ ·
[
d2(x)

∇φ
|∇φ|

]
vdx

− η

∫
Ω

1

2
δε(φ)

[∫
Ω

q2(x)δε(φ)|∇φ|dx
]−1/2

∇ ·
[
q2(x)

∇φ
|∇φ|

]
vdx.

If ψ is a minimizer of Ẽ2,ε, it satisfies the optimality condition

〈
∂Ẽ2,ε(ψ)

∂φ
, v

〉
= 0, q −∇ · ∇ψ

|∇ψ|
= 0, ∀v ∈ H2. (4.36)

156

To solve for ψ, we associate Equation 4.36 with the an initial value problem

∂φ

∂t
= f(d, φ)∇ ·

[
d2(x)

∇φ
|∇φ|

]
+ ηf(q, φ)∇ ·

[
q2(x)

∇φ
|∇φ|

]
,

∂q

∂t
+ γ(q −∇ · ∇φ

|∇φ|
) = 0,

(4.37)

with

f(d, φ) =
1

2
δε(φ)

[∫
Ω

d2(x)δε(φ)|∇φ|dx
]−1/2

.

The steady state of Equation 4.37 is a minimizer of Ẽ2,ε in Equation 4.35. On the right

hand side of the first equation in Equation 4.37, the two terms are of the same form, only

differing by η, d and q. The first term is the driving velocity to minimize the squared

distance from the surface to the given data. The second term is the driving velocity to

minimize the squared curvature along the reconstructed surface. The parameter η controls

the trade-off between these two terms.

We adopt the Lie type of operator splitting and refer the readers to [314] for a com-

plete discussion of different splitting schemes. Given {φk, qk} at the k-th step, we update

{φk+1, qk+1} in two fractional steps. In particular, for k > 0, we update the variables

through {φk, qk} → {φk+1/2, qk+1/2} → {φk+1, qk+1} as follows:

Fractional step 1: Solve

∂φ

∂t
= f(d, φ)∇ ·

[
d2(x)

∇φ
|∇φ|

]
+ ηf(q, φ)∇ ·

[
q2(x)

∇φ
|∇φ|

]
on Ω× [tk, tk+1],

∂q

∂t
= 0 on Ω× [tk, tk+1],

φ(tk) = φk, q(tk) = qk

(4.38)

and set φk+1/2 = φ(tk+1), qk+1/2 = q(tk+1).

157

Fractional step 2: Solve

∂φ

∂t
= 0 on Ω× [tk, tk+1] ,

∂q

∂t
+ γ(q −∇ · ∇φ

k+1/2

|∇φk+1/2|
) = 0 on Ω× [tk, tk+1] ,

φ(tk) = φk+1/2, q(tk) = qk+1/2 .

(4.39)

and set φk+1 = φ(tk+1), qk+1 = q(tk+1).

We have two subproblems Equation 4.38 and Equation 4.39 to address. There is no

difficulty to solve Equation 4.39, since we have the closed form solution

q = eγ∆tqk+1/2 + (1− eγ∆t)∇ · ∇φ
k+1/2

|∇φk+1/2|
.

To solve Equation 4.38 for φk+1/2, the simplest way is to use the explicit scheme as the

following:

φk+1/2 − φk

∆t
= f(d, φk)∇ ·

[
d2(x)

∇φk

|∇φk|

]
+ ηf(qk, φk)∇ ·

[
(qk)2(x)

∇φk

|∇φk|

]
.

However, due to the stability consideration, one needs to choose a very small time step of

order O(h2) where h is the spatial step size. To relax the time step constraint, for some

α > 0, we add −α∆φ on both sides of Equation 4.38, as in [280], to get

∂φ

∂t
− α∆φ = −α∆φ+ f(d, φ)∇ ·

[
d2(x)

∇φ
|∇φ|

]
+ ηf(q, φ)∇ ·

[
q2(x)

∇φ
|∇φ|

]
. (4.40)

We discretize (Equation 4.40) in time semi-implicitly:

φk+1/2 − φk

∆t
−α∆φk+1/2 = −α∆φk+f(d, φk)∇·

[
d2(x)

∇φk

|∇φk|

]
+ηf(qk, φk)∇·

[
(qk)2(x)

∇φk

|∇φk|

]
.

We fix α = 1 in this paper. This equation is a Laplacian equation of φk+1/2 and can be

158

solved efficiently by fast Fourier transformation (FFT). The updating formula is summa-

rized as
φk+1 − φk

∆t
− α∆φk+1 = −α∆φk + f(d, φk)∇ ·

[
d2(x)

∇φk

|∇φk|

]
+ ηf(qk, φk)∇ ·

[
(qk)2(x)

∇φk

|∇φk|

]
,

qk+1 = eγ∆tqk + (1− eγ∆t)∇ · ∇φ
k+1

|∇φk+1|
.

(4.41)

To solve Equation 4.41, we need the initial condition (φ0, q0). We choose φ0 to be

a signed distance function whose zero level set encloses all data. q0 is assigned as ∇ ·

((∇φ0)/|∇φ0|). The algorithm of OSM with s = 2 is stated in algorithm 7. In algorithm 7,

the reinitialization is used to keep φ to be a signed-distance function near its zero level set.

The details of reinitialization are discussed in subsection 4.3.5.

Initialization: d, φ0, q0.
while not converge do

Update {φk+1, qk+1} by solving Equation 4.41.
Reinitialize φk+1.

end
Output: φk.

Algorithm 7: Operator Splitting Method (OSM) for s = 2.

In the following, we give a brief derivation of OSM for s = 1. With s = 1, E1,ε has the

same minimizer as

Ẽ1,ε(φ) =

∫
Ω

d(x)δε(φ)|∇φ|dx + η

∫
Ω

|q(x)|δε(φ)|∇φ|dx ,

with q = ∇ · ∇φ
|∇φ|

,

whose corresponding gradient flow initial value problem is

∂φ

∂t
= δε(φ)∇ ·

[
d(x)

∇φ
|∇φ|

]
+ ηδε(φ)∇ ·

[
|q| ∇φ
|∇φ|

]
,

∂q

∂t
+ γ(q −∇ · ∇φ

|∇φ|
) = 0 .

(4.42)

159

With the Lie type splitting in time and introducing the term−α∆φ on both sides in the first

equation of Equation 4.42, we get the updating formula

φk+1 − φk

∆t
− α∆φk+1 = −α∆φk + δε(φ)∇ ·

[
d(x)

∇φk

|∇φk|

]
+ ηδε(φ)∇ ·

[
|qk| ∇φ

k

|∇φk|

]
,

qk+1 = eγ∆tqk + (1− eγ∆t)∇ · ∇φ
k+1

|∇φk+1|
.

(4.43)

We note that Equation 4.35 can be solved similarly by κTV method proposed in [310]

for image inpainting problem. One advantage of OSM in this paper is its simplicity and

having less parameters: once the model parameter, i.e., η is fixed, there is only one param-

eter, the artificial time step, to tune. Numerical experiments show that there is a wide range

of the time step we can choose.

4.3.4 Augmented Lagrangian Method (ALM)

We present another efficient algorithm to find the minimizer of Equation 4.30 with s = 1.

The reason for only focusing on s = 1 in this case is that we can take advantage of the

shrinkage operator. We first introduce three new variables: p = ∇φ, n = ∇φ/|∇φ| and

q = ∇ · (∇φ/|∇φ|). Finding the minimizer of E1,ε becomes equivalent to solving

min
φ,p,n,q

∫
ε

(d(x) + η|q|)|p|
π(ε2 + φ2)

dx with p = ∇φ, n = ∇φ/|∇φ|, q = ∇ · (∇φ/|∇φ|) .

This can be addressed via alternating direction method of multipliers by introducing

160

Lagrange multipliers λ1, λ2,λ3. The associated Augmented Lagrangian functional is

L(φ, q,p,n,λ1, λ2,λ3)

=

∫
Ω

ε(d+ η|q|)|p|
π(ε2 + φ2)

dx+
r1

2

∫
Ω

|p−∇φ|2 dx+

∫
Ω

λ1 · (p−∇φ) dx

+
r2

2

∫
Ω

(q −∇ · n)2 dx+

∫
Ω

λ2(q −∇ · n) dx+
r3

2

∫
Ω

||p|n− p|2 dx+

∫
Ω

λ3 · (|p|n− p) .

(4.44)

where p,n,λ1,λ3 are vectors, φ, q, λ2 are scalars, r1, r2, r3 are fixed constants. To find

the saddle point of L, we update each variable in an alternative manner. In each iteration,

for each variable, we minimize the corresponding functional while keeping other variables

fixed. After all variables are updated, we update Lagrange multipliers. This procedure is

repeated until we achieve a steady state. In each iteration, we have four subproblems to

minimize:

E1(φ) =

∫
Ω

ε(d+ η|q|)|p|
π(ε2 + φ2)

dx+
r1

2

∫
Ω

|p−∇φ|2dx ,+
∫

Ω

λ1 · (p−∇φ)dx (4.45)

E2(q) =

∫
Ω

ε(d+ η|q|)|p|
π(ε2 + φ2)

dx+
r2

2

∫
Ω

(q −∇ · n)2 dx+

∫
Ω

λ2(q −∇ · n) dx , (4.46)

E3(p) =

∫
Ω

ε(d+ η|q|)|p|
π(ε2 + φ2)

dx+
r1

2

∫
Ω

|p−∇φ|2 dx+

∫
Ω

λ1 · (p−∇φ) dx ,

+
r3

2

∫
Ω

||p|n− p|2 dx+

∫
Ω

λ3 · (|p|n− p) . (4.47)

E4(n) =
r2

2

∫
Ω

(q −∇ · n)2 dx+

∫
Ω

λ2(q −∇ · n) dx+
r3

2

∫
Ω

||p|n− p|2 dx

+

∫
Ω

λ3 · (|p|n− p) . (4.48)

After those four variables being updated correspondingly, Lagrange multipliers are updated

as

λ1 ← λ1 + r1(p−∇φ), λ2 ← λ2 + r2(q −∇ · n), λ3 ← λ3 + r3(n|p| − p) .

161

These subproblems can be solved efficiently as described in the following.

Subproblem of φ: For E1(φ) in Equation 4.45, the corresponding Euler-Lagrange equation

is:

−r1∆φ+ βφ = βφ+ (d+ η|q|) 2ε|p|φ
π(ε2 + φ2)2

−∇ · (r1p + λ1) ,

where β > 0 is a frozen coefficient. We discretize the time as follows

−r1∆φk+1 + βφk+1 = βφk + (d+ η|qk|) 2ε|pk|φk

π(ε2 + (φk)2)2
−∇ · (r1p

k + λk1) . (4.49)

This is the Laplacian equation of φk+1, and we efficiently solve it by FFT.

Subproblem of q: In Equation 4.46, E2(φ) can be written as:

E2(q) =

∫
Ω

ηε|p|
π(ε2 + φ2)

|q|+ r2

2

(
q − (∇ · n− λ2

r2

)
)2
dx+ C ,

where C is independent of q. Then, the minimizer can be found via the shrinkage operator

arg min
q
E2(q) = max

{
0, 1− ηε|p|

r2π(ε2 + φ2)|q∗|

}
q∗ , (4.50)

with q∗ = ∇ · n− λ2/r2.

Subproblem of p: In Equation 4.47, E3(φ) can be rewritten as

E3(p) =

∫
Ω

[
(d+ η|q|) ε

π(ε2 + φ2)
+ λ3 · n

]
︸ ︷︷ ︸

ω

|p|+ r1 + r3(1 + |n|2)

2︸ ︷︷ ︸
µ

∣∣∣∣p− λ3 + r1∇φ− λ1

r1 + r3(1 + |n|2)︸ ︷︷ ︸
a

∣∣∣∣2

−
∫

Ω

r3n︸︷︷︸
ν

·p|p|+ C̃ ,

162

where C̃ is independent of p. This E3(p) can be simplified as

E3(p) =

∫
Ω

ω|p|+ µ

2
|p− a|2 − ν · p|p|+ C̃ .

Following the idea of Theorem 2 in [295], we can minimize this energy efficiently.

Theorem 4.3.1. Assume that µ > 2|ν|. Let θ be the angle between a and the minimum

vector of E3(p), and α is the angle between a and ν. Then the following arguments hold:

• if ω ≥ µ|a|, then arg minp E3(p) = 0.

• if ω < µ|a|:

1. if a = ν = 0, then arg minp E3(p) =

0 , when ω ≥ 0,

any vector of length − ω/µ , when ω < 0;

2. if a 6= 0,ν = 0, arg minp E3(p) = (1− ω
µ|a|)a;

3. if a = 0,ν 6= 0, arg minp E3(p) = ω
µ−2|ν|

ν
|ν| ;

4. if a 6= 0,ν 6= 0, the angles θ and α satisfy the equation:

µ2|a| sin θ + µ|ν||a| sin θ cos(θ − α) + ω|ν| sin(θ − α) + µ|a||ν| sinα = 0 ,

(4.51)

and arg minp E3(p) = [µ(b·a)−ω]b
µ+2ν·b with b being a unit vector satisfying:

b =
1

|a|

cos θ̃ − sin θ̃

sin θ̃ cos θ̃

 a ,

and θ̃ = θ if det[ν a] ≥ 0, θ̃ = −θ if det[ν a] < 0. Here [ν a] denotes the 2×2

matrix with the vector ν and a being the first and second column respectively.

Note that the condition in Theorem 4.3.1 is always satisfied since µ = r1+r3(1+|n|2)
2

, ν =

r3n and r3(1 + |n|2) ≥ 2r3|n| for any n. From Equation 4.51, θ is solved by Newton’s

163

method.

Subproblem of n. For E4(φ) in Equation 4.48, the Euler-Lagrange equation is:

−r2∇(∇ · n) +Dn = (D − r3|p|2)n−∇(r2q + λ2)− (λ3 − r3p)|p| , (4.52)

where D = maxx∈Ω(r3|p|2 + β2) and β2 is a small positive number. We discretize in time

as

−r2∇(∇ · nn+1) +Dnn+1 = (D − r3|pn|2)nn −∇(r2q
n + λn2)− (λn3 − r3p

n)|pn| .

(4.53)

which can be solved efficiently by FFT.

For the initial condition, we use the same φ0 and q0 as that in OSM. For other variables,

we use p0 = ∇φ0,n0 = p0/|p0|,λ0
1 = λ0

3 = 0, λ0
2 = 0.

The outline of augmented Lagrangian is summarized in algorithm 8.

4.3.5 Implementation Details

For a rectangular domain Ω = [0,M] × [0, N] ∈ R2 with M,N being positive integers,

we discretize it by a Cartesian grid with ∆x = ∆y = 1. For any function u (resp. v =

(v1, v2)T) defined on Ω, we use ui,j (resp. vi,j = (v1
i,j, v

2
i,j)

T) to denote u(i∆x, j∆y) (resp.

v(i∆x, j∆y)T) for 0 ≤ i ≤ M, 0 ≤ j ≤ N . Denote the standard forward and backward

difference as

∂−1 ui,j =

ui,j − ui−1,j, 1 < i ≤M ;

u1,j − uM,j, i = 1.

∂+
1 ui,j =

ui+1,j − ui,j, 1 ≤ i < M − 1;

u1,j − uM,j, i = M.

∂−2 ui,j =

ui,j − ui,j−1, 1 < j ≤ N ;

ui,1 − ui,N , j = 1.

∂+
2 ui,j =

ui,j+1 − ui,j, 1 ≤ j < N − 1;

ui,1 − ui,N , j = N.

164

Initialization: d, φ0, q0,p0,n0,λ0
1, λ

0
2,λ

0
3.

while not converge do
Update variables
Update φk+1 = arg minφ L(φ, qk,pk,nk,λk1, λ

k
2,λ

k
3) by solving

(Equation 4.49).
Update qk+1 = arg minq L(φk, q,pk,nk,λk1, λ

k
2,λ

k
3) by solving

(Equation 4.50).
Update pk+1 = arg minp L(φk, qk,p,nk,λk1, λ

k
2,λ

k
3) according to Theorem

Theorem 4.3.1.
Update nk+1 = arg minn L(φk, qk,pk,n,λk1, λ

k
2,λ

k
3) by solving

(Equation 4.53).
Reinitialize φk+1.
Update Lagrange multipliers:

λk+1
1 = λk1 + r1(pk+1 −∇φk+1),

λk+1
2 = λk2 + r2(qk+1 −∇ · nk+1),

λk+1
3 = λk3 + r3(nk+1|pk+1| − pk+1).

end
Output: φk.

Algorithm 8: Augmented Lagrangian Method (ALM) for s = 1.

165

The gradient, divergence and the Laplacian operators are approximated as follows:

∇ui,j = ((∂−1 ui,j + ∂+
1 ui,j)/2, (∂

−
2 ui,j + ∂+

2 ui,j)/2) ,

∇ · vi,j = (∂+
1 v

1
i,j + ∂−1 v

1
i,j)/2 + (∂+

2 v
2
i,j + ∂−2 v

2
i,j)/2 ,

∆ui,j = ∂+
1 ui,j − ∂−1 ui,j + ∂+

2 ui,j − ∂−2 ui,j .

Denote the discrete Fourier transform and its inverse by F and F−1, respectively. For a

function u, we have

F(u)(i± 1, j) = e±2π
√
−1(i−1)/MF(u)(i, j), F(u)(i, j ± 1) = e±2π

√
−1(j−1)/NF(u)(i, j) ,

which givs rise to

F(∂−1 u)(i, j) = (1− e−2π
√
−1(i−1)/M)F(u)(i, j) ,

and F(∂+
1 u)(i, j),F(∂−2 u)(i, j) and F(∂+

2 u)(i, j) can be computed similarly. Both OSM

and ALM use FFT to enhance the computational efficiency. The first equation of Equa-

tion 4.43 and the first equation of Equation 4.49 belong to the same class:

−a∆u+ bu = c , (4.54)

for a function u with constants a, b > 0 and constant c. Using the Fourier transform, we

have

F(∆u)(i, j) =
[
2 cos(π

√
−1(i− 1)/M) + 2 cos(π

√
−1(j − 1)/N)− 4

]
Fu(i, j) .

166

Then Equation 4.54 can be solved by

u = F−1

(
F(c)

b− a
(
2 cos(π

√
−1(i− 1)/M) + 2 cos(π

√
−1(j − 1)/N)− 4

)) .

The equation (Equation 4.52) is in the form of

−a∇(∇ · v) + bv = c , (4.55)

for some vector valued function v = (v1, v2)T where a, b are constant positive scalars and

c = (c1, c2)T is a vector valued constant. After the distretization, Equation 4.55 can be

written as
−a∇(∂+

1 ∂
−
1 v

1 + ∂+
1 ∂
−
2 v

2) + bv1 = c1,

−a∇(∂+
2 ∂
−
1 v

1 + ∂+
2 ∂
−
2 v

2) + bv2 = c2.

(4.56)

Applying the discrete Fourier transform on both sides of Equation 4.56, we get

A

F(v1)(i, j)

F(v2)(i, j)

 =

F(c1)(i, j)

F(c2)(i, j)

 , (4.57)

with

A =

b− a(e
√
−1(i−1)/M − 1)(1− e−

√
−1(i−1)/M) −a(e

√
−1(i−1)/M − 1)(1− e−

√
−1(j−1)/N)

−a(e
√
−1(j−1)/N − 1)(1− e−

√
−1(i−1)/M) b− a(e

√
−1(j−1)/N − 1)(1− e−

√
−1(j−1)/N)

 .
Hence, v can be computed by first solving Equation 4.57 for (F(v1),F(v2))T and then

apply inverse Fourier transform.

For any x ∈ Ω, d(x) is the distance from x to the collection of the point cloud D, and

167

it can be computed by solving the Eikonal equation

|∇d| = 1 ,

d(x) = 0 , ∀x ∈ D.
(4.58)

The simplest monotonic scheme to discretize Equation 4.58 is the Lax-Friedrich scheme

which leads to the updating formula [288]:

dn+1
i,j =

1

2

(
1− |∇dni,j|+

dni+1,j + dni−1,j

2
+
dni,j+1 + dni,j−1

2

)
.

This is updated with a fast sweeping method.

To make our algorithm robust, when updating φ, we reinitialize the level set to be a

signed distance function via solving

φτ + sign(φ)(1− |∇φ|) = 0.

In practice, after each iteration, we only solve this PDE for a few iterations. For three

dimensional space, we use a simple extension of the two dimensional case.

Remark 4.3.2. In three-dimensional surface reconstruction problems, the point cloud can

be large and the computer memory is limited. One can consider a narrow tube which

encloses the point cloud, and assume the reconstructed surface lies inside this tube during

the evolution. Adopting the local level set method such as [315], only the values of the level

set function on grid points inside the tube need to be stored. ALM and OSM can be applied

under the local level set method framework except for solving the Laplace equations. Under

this framework, one can derive a corresponding linear system for each Laplace equation

which can be solved efficiently by the conjugate gradient method.

168

4.4 Numerical Results and Comparisons

We present numerical results of the proposed model (Equation 4.27). Without specification,

when OSM is used, we refer to algorithm 7 for model (Equation 4.35) with γ = 10, α = 1

and ∆t = 50; when ALM is used, we refer to Algorithm algorithm 8 for model (Equa-

tion 4.44) with β = 0.1. For a fixed η, OSM only has one (the time step) parameter,

whereas ALM has three parameters (r1, r2, r3). We use domain [0, 100]2 for two dimen-

sional problems and [0, 50]3 for three dimensional problems. In all examples, ε = 1 is

used.

In this section, we first consider the effect of parameters for ALM. Second, we compare

the performance of ALM and OSM. We find that using OSM with s = 2 gives the best

results. We conclude this section by several examples to further explore the performance

of OSM when s = 2.

4.4.1 Choice of Parameters for ALM Method

In the case of ALM, the choice and combinations of the parameters are delicate. When r1

or r2 is increased, the reconstruction becomes closer to the point cloud. In Figure 4.9, we

fix r2 = 10, r3 = 3, and η = 2, and let r1 vary. With increased r1, ALM renders the curve

closer to the point cloud. In Figure 4.10, we fix r1 = 10, r3 = 3, and η = 2, and let r2 vary;

larger r2 induces better reconstruction. For this example, r3 has little influence, yet, with a

large r3, the results may become unstable or divergent.

In Figure 4.11, we fix r1 = 15, r2 = 10, and r3 = 3, and increase η. With more

influence on the curvature, as η is increased from 0 to 1, the indent on the rectangle is

better reconstructed. When we increase η from 1 to 5, we see that, the indent is preserved,

yet the tip of the wedge does not extend inward as much as in the case where η = 1. This

is because a large value of η encourages both small mean curvature and short curve length.

We find that increasing η also helps to avoid oscillation during the iteration. In Figure 4.11,

169

Figure 4.9: Effect of r1 in ALM. For fixed r2 = 10, r3 = 3, and η = 2, increasing r1

induces better reconstruction on the concave part.

Figure 4.10: Effect of r2 in ALM. For fixed r1 = 10, r3 = 3, and η = 2, increasing r2

induces better reconstruction on the concave part.

170

10
0

10
1

10
2

10
3

log Iteration

10
3

10
4

lo
g

 E
n

e
rg

y

=0

=1

=5

Figure 4.11: Effect of η in ALM. Here r1 = 15, r2 = 10, and r3 = 3 are fixed. Increasing
η induces reconstruction of the concave wedge. Although in cases, the energy curves are
identical before the 100-th iteration, larger η suppresses the oscillation of the energy curve:
yellow line (η = 5) is more stable compared to red (η = 1) or blue (η = 0).

we plot the energy curves corresponding to the these cases. Before the 100-th iteration,

these curves are indistinguishable; however, after the 100-th iteration, larger values of η

suppress the oscillation of the energy curve, which gives a more stable convergence.

Figure 4.12 shows the robustness against noise. The point cloud is sampled from a

circle in Ω = [0, 200]2, and Gaussian noise with standard deviation 2 is added to the data.

Using ALM with r1 = 15, r2 = 10, r3 = 3, η is varied from 0, 1, to 10. Figure 4.12 (a)

shows similar performances, while the zoomed-in results in Figure 4.12 (b) show that the

larger the η the smoother the result becomes.

4.4.2 Comparison between OSM and ALM

Figure 4.13 (a) shows the energy convergence comparison between OSM (with s = 2) and

ALM (s = 1). In ALM, r1 = 15, r2 = 10, r3 = 3 is used. Convergence to the steady state

is faster for OSM. The reconstructed curves are shown in Figure 4.13 (b) and (c). ALM

171

(a) (b)

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Point Cloud

Initial

=0

=1

=10

125 130 135 140 145
50

52

54

56

58

60

62

64

66

68

70

Point Cloud

=0

=1

=10

Figure 4.12: (a) Results by ALM with noisy data and r1 = 15, r2 = 10, r3 = 3. (b) shows a
zoom-in of the right-bottom of (a). The noise is additive Gaussian with standard deviation
2. As η increases, the curve becomes less oscillatory.

with s = 1 prefers to shorten the length, since it allows sharp corners. There is a balance

between the distance term and the regularization term in the functional. OSM performs

better in preserving corners, while the results extrude out a little bit at all corners. In this

case of s = 2, the reconstruction is more circular, since sharp corners are not allowed.

Using OSM, we fix s = 2 for the distance term in Equation 4.27 and explore the

difference between using (I) no curvature term η = 0, (II) L1 norm of the mean curvature,

and (III) L2 norm of the mean curvature. Figure 4.14 (a) shows the comparison between

(a) (b) (c)

10
0

10
1

10
2

10
3

log Iteration

10
2

10
3

10
4

lo
g

 E
n

e
rg

y

ALM

OSM

Figure 4.13: With η = 2, comparison between OSM with s = 2 and ALM. In ALM,
r1 = 15, r2 = 10, r3 = 3 is used. Convergence to the steady state is faster for OSM. The
reconstructed curves are shown in (b) for ALM and in (c) for OSM: ALM may shorten the
curve, while OSM can extrude a corner to make a circular reconstruction.

172

Figure 4.14: (a) By OSM with s = 2 for the distance term in (Equation 4.27), the compar-
ison between (I) η = 0 (green curve), (II) s = 1 (red curve), and (III) s = 2 (blue curve)
for the curvature term. (b) OSM with η = 2.5 for s = 2 in the model (Equation 4.35). This
is the blue curve in (a). OSM using s = 2 gives the best result in terms of capturing the
structure of the underlying surface more accurately.

(a) (b)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

data

(I)

(II)

(III)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

η = 0 (green curve), s = 1 (red curve), and s = 2 (blue curve). The blue curve (OSM

with s = 2) in (a) is presented separately in Figure 4.14 (b). OSM using s = 2 gives the

best result capturing the structure of the underlying surface more accurately. The rest of

the numerical experiments use OSM with s = 2, which gives more stable results with less

number of parameters and faster convergence with smaller minimized energies.

4.4.3 Effect of curvature constraint: OSM with s = 2

Figure 4.15 shows the comparison between the algorithm from [274] (the first row), η = 0

(the second row), and OSM with η > 0 (the third row) for different surfaces. In the

algorithm from [274], r1 = r2 = 8, r3 = r4 = 3 are used and the reinitialization is used to

post-process the surface. For the boomerang shape in column (d), the surface constructed

by [274] first shrinks to a point and then disappears. From this comparison, OSM with the

curvature regularization provides the best results. The performance of the algorithm from

[274] is similar to that of OSM without curvature regularization.

With the curvature term, the shape of the underlying surface is better captured in the

third row. The interior triangle shape of Figure 4.15 (a), the first column, is better captured

173

(a) (b) (c) (d)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4.15: Comparison between the algorithm from [274] and OSM with or without
curvature constraints: The first row results are by the algorithm proposed in [274] with
r1 = r2 = 8, r3 = r4 = 3. The second row results are by OSM without any curvature term,
η = 0. The third row results are by OSM with curvature constraint (s = 2): (a) η = 3, (b)
η = 2, (c) η = 1, and (d) η = 2. The shape of the underlying surface are more accurately
captured using our proposed model with the curvature constraint.

with the curvature term. Without the curvature term, the reconstructed curve does not move

further inside, since the prominent part has attained the balance between the curve length

and its distance to the two sides of the triangle. Notice that the prominent part in the second

row has non-zero curvature. With a positive η, this balance is broken and the prominent

part will further move towards the upper vertex of the triangle. Also, for the cases with

sharp corners in Figure Figure 4.15 (c)-(d), our model with the curvature term improves the

results and recover the underlying shape better.

As η increases, different effect can be shown. See Figure 4.16. As one increases η,

the two sharp corners are recovered better. However, if η is too large, like 3 and 4 in this

example, the corners get more circular. As η, the weight of curvature term, gets larger, the

174

(a) (b) (c)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(d) (e)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4.16: Effect of η in OSM. (a) η = 0. (b) η = 1. (c) η = 2. (d) η = 3. (e) η = 4.
As η increases, the two sharp corners are recovered better. As η gets larger, the corners get
more circular to avoid large curvature.

reconstructed curve becomes even more circular to avoid large curvature.

Figure 4.17 shows results when the given point cloud are sparse. The point cloud for

(a) and (b) is a boomerang shape and that for (c) and (d) is a sparse square with an indent at

the bottom. With sparse boomerang data, just using the distance term (η = 0) can recover

very limited part of the given point cloud; see Figure 4.17 (a). With η = 4, We recover

the general shape of boomerang in Figure 4.17 (b). For the sparse square shape, only four

corners and one point exist on each side in Figure 4.17 (c)-(d). While for η = 0, the bottom

part of the recovered shape is smooth. With η = 2, the rectangle shape is clearly recovered

showing corners in the bottom area in Figure 4.17 (d). Figure 4.18 shows the case where

even less number of points are given. See Figure 4.18 (a). Only two points around each

corner are given. Figure 4.18 (b) and (c) show results with η = 1 and η = 1.5, respectively.

Even with extremely sparse data, curvature constraint model can reconstruct the corners

well. We observe that when the given point cloud is non-uniform, or data are missing in

some region, our algorithm yields results with straight edges between distant points and

175

(a) (b) (c) (d)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4.17: By OSM, sparse data results with or without curvature constraints. (a) η = 0,
and (b) η = 4 for a point cloud sampled from a Boomerang shape. (c) η = 0 and (d) η = 2,
for a sparse square shape where only four corners and one point on each side are given. For
both examples, with curvature constraint, the recovery is more accurate and sharper.

(a) (b) (c)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4.18: By OSM, extremely sparse data: (a) Given data. (b) The recovered result with
η = 1 and (c) with η = 1.5. Even with extremely sparse data, curvature constraint model
can reconstruct the square corners well.

smooth corners. These are due to the fact that the curvature along a straight edge is zero,

and smooth corners have smaller curvature than sharp corners for s = 2 in the discrete

setting.

The next experiment is for the noisy boomerang data, where Gaussian noise with stan-

dard deviation 1 is added to the locations of the point cloud. The results with η = 0, 1, 2 are

shown in Figure 4.19. As η gets larger, the two lower corners get recovered better. Even

with noisy data, OSM shows a strong competence of recovering the sharp corners.

4.4.4 Three Dimensional Examples

We conclude this section with experiments of reconstruction of surfaces in three dimen-

sional space. We use OSM with s = 2 to reconstruct the pyramid, the yoyo, and the ice

176

(a) (b) (c)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4.19: By OSM, reconstruction with noisy data: (a) η = 0, (b) η = 1, (c) η = 2.
The noise is Gaussian with standard deviation 1. As η gets larger, the two lower corners
are better recovered.

(a) (b) (c)

Figure 4.20: Examples of three dimensional point cloud data. (a) A pyramid. (b) A yoyo.
(c) An ice cream cone.

cream cone, whose point clouds are shown in Figure 4.20. The data in these examples are

concentrated within a cube [0, 50]3. The pyramid has a relatively simple geometry struc-

ture: it is convex and its surface only consists of five plans. We can use a large time step

∆t = 500. For the yoyo and the ice-cream cone we use ∆t = 100, since the underlying

surfaces have more details, e.g., the neck of the yoyo and the upper concave part of the ice

cream cone.

For the pyramid, the reconstructed surfaces with η = 0, 5, 10 and the comparison of

cross sections along y = 25 (a middle section) are shown in Figure 4.21. In this case,

we see limited improvements of capturing the vertices when the curvature constraint is

included.

For the yoyo, the reconstructed surface with η = 0, 5 and the comparison of cross

177

(a) (b) (c)

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

=0

=5

=10

exact

Figure 4.21: Reconstruction of the pyramid by OSM with s = 2: (a) Result with η = 0.
(b) Result with η = 10. (c) Comparison of cross section along y = 25.

sections along y = 25 are shown in Figure 4.22. The advantage of the curvature term is

obvious. With η = 0, the solution attains the energy balance between surface area and

distance to the data at some location away from the middle neck part. Since the curvature

at that part is non-zero, given a positive η, the surface further evolves to capture the neck.

For comparison, the reconstructed surface by the algorithm in [274] is shown in Figure 4.22

(a). Similarly to the result by OSM with η = 0, [274] fails to capture the neck part.

The ice cream cone surface consists of two layers and its cross section looks like a

boomerang. For this example, if we use η = 0, the solution shrinks to a point and then

disappears. The reconstructed surfaces with η = 5, 10 and the comparison of cross sections

along y = 25 are shown in Figure 4.23 (b)-(d). The effect of the value of η on this ice

cream cone is similar to that on the boomerang. Results with larger values of η capture

better the features of the underlying surface such as corners. The reconstructed surface by

the algorithm in [274] is shown in Figure 4.23 (a). [274] recovers the bottom corner better

but fails to reconstruct the upper concave part of the surface.

4.5 Summary

In this chapter, we explored the surface reconstruction models based on point cloud data

based on two energy functionals. The first one finds the underlying level-set representation

178

(a) (b)

(c) (d)

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

=0

=5

exact

Figure 4.22: Reconstruction of the ice cream cone by the algorithm from [274] and OSM
with s = 2: (a) Result by the algorithm proposed in [274] with r1 = r2 = 8, r3 = r4 = 3.
(b) Result by OSM with η = 0. (c) Result by OSM with η = 5. (c) Comparison of cross
sections of results by OSM along y = 25.

179

(a) (b)

(c) (d)

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

=5

=10

exact

Figure 4.23: Reconstruction of the ice cream cone by the algorithm from [274] and OSM
with s = 2: (a) Result by the algorithm proposed in [274] with r1 = r2 = 8, r3 = r4 = 3.
(b) Result by OSM with η = 5. (c) Result by OSM with η = 10. (c) Comparison of cross
sections of results by OSM along y = 25.

180

of submanifold by minimizing a distance-weighted surface area. We described two fast al-

gorithms, SIM and ALM, to reconstruct a codimensional 1 submanifold from unstructured

point clouds in R2 or R3 by minimizing the weighted minimum surface energy (Equa-

tion 4.2). SIM improves the computational efficiency by relaxing the constraint on the

time-step using a semi-implicit scheme. ALM follows an augmented Lagrangian approach

and solves the problem by an ADMM-type algorithm. Numerical experiments show that

the proposed algorithms are superior at the computational speed, and both of them produce

accurate results. Theoretically, we demonstrate the delicate interaction among parameters

involved in ALM and show the connections between SIM and ALM. This explains the

behaviors of ALM from the perspective of SIM.

The second model combines the distance from surface to the point cloud with a global

curvature regularization. Introducing this high-order geometric information allows us to

impose geometric features around the corners and to reconstruct concave features of the

point cloud better. We find that the interactions between two terms of the functional are

subtle. For example, for s = 1, since it allows sharp corners, it may be more relaxed

around the corners and give shorter length reconstruction. For the curvature term in model

(Equation 4.27), larger s gives more weight to the part of the surface which has large cur-

vature, i.e., corners. As a result, the corners of the reconstructed surface are smoothed and

extruded out a little bit. For a fast computation, instead of directly solving the complicated

terms in its Euler-Lagrange equations, we use a new operator splitting strategy and min-

imize the energy by a semi-implicit scheme. We also explore an augmented Lagrangian

method, which has the advantage of having less parameters compared to other ADMM ap-

proaches. Both methods are computationally efficient and produce reliable results in many

cases, including those where the point cloud is noisy or sparse. Comparison between OSM

and ALM shows advances of OSM in flexibility, stability, and efficiency. Comparing the

results of OSM using s = 1 and s = 2, we find that OSM with s = 2 provides better results

when reconstructing features of the point clouds. There are a number of extensions to be

181

considered, including different curvature constraints and using additional information such

as surface normal directions to facilitate the reconstruction. Applications to segmentation

and image inpainting can also be considered.

182

CHAPTER 5

COMPLEMENTARY ADAPTATION IN UNDERWATER COLOR CORRECTION

Water absorbs light similarly to an optical filter but with higher variations and complexi-

ties [316]. Depending on the dissolved or suspended substances, a liquid medium modifies

the spectral power distribution of the transmitted light, such that a strong bluish or green-

ish color cast dominates the acquired underwater image, e.g., Figure 5.1 (Top). Typically,

underwater images have insufficient contrast and unbalanced color distribution [316, 317,

318, 319, 320], hence many image contents, such as patterns and textures are hardly rec-

ognizable for human observers. An effective color correction method is needed to recover

and enhance these details.

We can understand this task as reversing the process of image formation. The com-

plex factors determining the irradiance on an imaging sensor are often simplified by the

Koschmieder model [322]. It expresses the image colors as a convex combination of the

unattenuated objects’ colors and the veiling light via a scalar transmission map. The veil-

ing light is approximated by various types of dark-channel priors [317, 318, 319], and

the estimation of the transmission map is converted to depth computation based on the

Beer-Lambert law [323]. Hence, for any combination of a veiling light and a transmission

map, the color-corrected image is uniquely determined. These methods are sensitive to the

identified veiling lights such that small perturbations on the estimated RGB values of the

background trigger visually significant results [319]. More sophisticated models along this

direction consider the Jerlov’s water types [324, 320] to improve the stability.

Essentially, the goal is to find a color distribution on the image domain that is favorable

for a human observer. Different from models of physics, many methods in the literature

adjust the image colors based on principles of the human visual system (HVS). One of the

important properties of HVS is color constancy: the appearance of the color of an object

183

Figure 5.1: (Top) Underwater image with heavy green cast. (Bottom) Result of the pro-
posed method. In the middle, several zoomed-in regions are displayed for comparison. The
resulted image has enhanced contrast, balanced colors, and many image contents, e.g., the
patterns on the swimming shorts, are more recognizable. In this paper, all the underwater
images are from the benchmark data set [321].

184

remains approximately stable under varying illuminations [325]. This chromatic adap-

tation for instance allows an observer to recognize the brown statue and the blue shorts

in Figure 5.1 (Top), even though the image is dominated by a heavy green cast. Theo-

ries [326, 327, 328] have been proposed to explain the underlying mechanism from vari-

ous perspectives including the well-known Retinex theory by Land [53]. It is argued that

HVS perceives a scene based on local variation of image lightness rather than an absolute

lightness, and this theory induces a huge class of algorithmic interpretations of the adapta-

tion process applied in computer vision, e.g., Multiscale Retinex [329, 330], random-spray

Retinex [331], non-local Retinex [332] and many others [54, 55, 333].

In this chapter, we introduce a novel approach for underwater image color correction

which converts Figure 5.1 (Top) to (Bottom), whose color distribution is more balanced

and compatible with HVS. Instead of the Retinex theory, we present a new mathematical

interpretation for the Complementary Adaptation Theory (CAT) first formulated by Gib-

son [334] in 1937. The key principle is that, the quality of a constantly applied stimulus will

be temporarily shifted towards the corresponding complementary quality, thus resulting in

a neutral state. This applies not only to HVS, but also to other bilateral sensory processes,

e.g., temperature perception. Both Retinex theory and CAT emphasize the importance of

relative levels over absolute levels of sensation, yet they are fundamentally different in the

following aspects.

• Mechanism: The Retinex theory ascribes the color constancy to HVS’s ability of es-

timating the reflectance independent from the illumination, while CAT describes the

color constancy as a result from the neutralization of the illumination by a negative

sensory process.

• Role of illuminating color: In Retinex theory, illumination is treated as unknown

and its color can be derived after identifying the reflectance; whereas in CAT, the

illuminating light determines the direction and magnitude of the adaptation process.

185

• Adapting time: The Retinex theory was supported by experiments with short-time

adapting; in contrast, recent experiments show that the chromatic neutralization pre-

dicted by CAT occurs after multiple days [335, 336].

Our method captures these features of CAT and produces a color distribution complying

with the long-term chromatic adaptation. Figure 5.2 shows the outline of our method.

The idea is that, we utilize the complementary pairs of the locally approximated color

cast to modify the image colors, such that any image colors similar to the color cast are

muted, while the others keep their differences relative to the color cast. In other words,

we shift the reference color from the chromatic color cast, typically blue and green, to a

neutral gray. The resulted color distribution has softer contrast and lower saturation due to

the long-term adaptation. Hence, for visualization purposes, we enhance the image while

preserving the adapted hues.

In particular, we consider the CIELAB color space and formulate the CAT adaptation

process as a Tikhonov-type optimization problem [337]. As a metric space, CIELAB is a

subspace of the three dimensional Euclidean space, where the distance between any two

colors measures their perceptive difference. Using the CIELAB color difference metric,

our optimization model consists of a fidelity term and a regularization characterizing the

behavior of CAT adaptation. Then we enhance the adapted color distribution for visual-

ization purposes. We also address some technical issues about CIELAB to improve its

uniformity. These modifications are kept minimal so that problematic behaviors are effec-

tively adjusted, and high efficiency is achieved.

5.1 CIELAB Color Space

5.1.1 Basic Notions of CIELAB

Before stating our model, we fix some notations. We denote an arbitrary color by c, which

is specified in the CIELAB color space by its lightness L∗, red-green value: a∗, and yellow-

186

Figure 5.2: Pipeline of the proposed method. The result shown here uses η = 10, β = 1/3
as the model parameters.

blue value: b∗, i.e., c = (L∗, a∗, b∗). In particular, the range for L∗ is [0, 100], where

L∗ = 0 yields black and L∗ = 100 yields diffuse white. The a∗-b∗ section specifies the

chromaticity. A positive value of a∗ indicates red while a negative value gives green. A

positive value of b∗ indicates yellow and a negative value gives blue. From CIELAB, one

can derive

Chroma: C∗ =
√

(a∗)2 + (b∗)2 , (5.1)

which measures the relative saturation of c, and

Hue angle: h◦ = atan2(b∗, a∗) , (5.2)

which defines the hue of c.

Given a pair of colors ci = (L∗i , a
∗
i , b
∗
i), i = 1, 2, the CIELAB color difference between

187

them is computed by

∆E∗(c1, c2) =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 , (5.3)

which is simply the Euclidean distance between the CIELAB coordinates of the colors to

be compared. This formula suggests that CIELAB color space is designed to be uniform.

The complementary color of c in CIELAB is denoted by c−, which is computed by

c− = (100− L∗,−a∗,−b∗) . (5.4)

On a rectangular image domain Ω = [0,W] × [0, H] ⊂ R2, W,H > 0, we define a

color image, or a color distribution as a mapping c from Ω to the CIELAB color space

c(x, y) = (L∗(x, y), a∗(x, y), b∗(x, y)) , (x, y) ∈ Ω . (5.5)

For a triplet σ = (σ1, σ2, σ3) ∈ R3 with positive entries, we define the component-wise

Gaussian convolution Gσ applied on a color distribution c as

Gσ ∗ c(x, y) =

(Gσ1 ∗ L∗(x, y),Gσ2 ∗ a∗(x, y),Gσ3 ∗ b∗(x, y)) , (5.6)

where each component is the ordinary Gaussian convolution with intensity specified by

σi, i = 1, 2, 3. We take mirror reflect for computing the convolved values near the image

boundary.

5.1.2 CIELAB Boundary Estimation

The RGB color space is geometrically a cube embedded in the Euclidean space R3, how-

ever, the transformation from RGB to CIELAB maps the RGB cube to an irregular shape.

188

See the illustration in Figure 5.3 (a)–(c). Here, we randomly sample 5 × 105 points in

the RGB cube, convert them to the CIELAB space, digitize their lightness coordinates by

taking the ceil function, and compute the convex hull of the chromaticity section for each

digitized lightness. Hence, the CIELAB gamut is approximated by the union of these con-

vex slices at different lightness levels

100⋃
L∗=0

conv{Vi(L∗)}N(L∗)
i=1 , (5.7)

where Vi(L∗) represents a vertex of the convex hull computed using the color samples

with digitized lightness L∗, and conv{·} computes the convex hull supported by a finite

set of points. This approach offers a simple estimation of the chroma boundary given the

lightness L∗ and hue angle h◦ according to basic trigonometry

C∗max(L∗, h◦) =
lj(h◦) sin(ρj(h◦))

sin(π − θj(h◦) − ρj(h◦))
,

j(h◦) ∈ {1, 2, . . . , N(L∗)} (5.8)

where θj(h◦) < h◦ < θj(h◦)+1, θj(h◦) is the angle from the positive direction of the a∗-

axis to Vj(h◦)(L∗) in a counter-clockwise orientation, θN(L∗)+1 takes θ1, and lj(h◦) is the

distance from Vj(h◦)(L
∗) to the origin. Both quantities lj(h◦) and θj(h◦) depend onL∗, and we

suppress this notation in Equation 5.8 for simplicity. See Figure 5.3 (d) for an illustration.

5.2 Complementary Adaptation Model in CIELAB

5.2.1 Tikhonov-type Optimization in CIELAB

Given a color distribution c0 = (L∗0, a
∗
0, b
∗
0) over Ω, we propose the Complementary Adap-

tation Model by defining the adapted color at (x, y) ∈ Ω as the minimizer of the following

189

Figure 5.3: (a) CIELAB gamut projection on the L∗-a∗ plane. (b) Projection on the L∗-b∗

plane. (c) Projection on the a∗-b∗ plane. (d) Geometry for computing the chroma upper
limit C∗max(L, θ + γi) in the direction of the hue angle θ + γi on the lightness level of L.
Here the chroma direction falls within the sector [γi, γi+1], i = 1, 2,

optimization problem

cadapt(x, y) = arg min
c∈R3

(∆E∗(c(x, y), c0(x, y)))2

+ λ
(
∆E∗(c(x, y), (Gσ ∗ c0(x, y))−)

)2
, (5.9)

where λ > 0 is a weight parameter, and σ = (σL∗ , σa∗ , σb∗) such that σa∗ = σb∗ and

σL∗ = nσa∗ for some n > 1. This is a Tikhonov-type optimization problem consisting of

two terms. The first term measures the difference between the given color distribution c0

and the adapted color cadapt, thus it imposes the fidelity condition. The second term models

the effect of CAT adaptation process, which acts as a regularization. The proposed color

distribution cadapt is a balance between the original image and the complementary of the

estimated color cast Gσ∗C. In this paper, we fix σa∗ = σb∗ = σ0 := 0.25(max(W,H)/2−1)

so that the size of the filter is roughly max(W,H)/2, n = 3, and λ = 1.

Thanks to the simple formula (Equation 5.3) for computing the color difference, (Equation 5.9)

190

has a unique global minimizer obtained by calculus:

cadapt(x, y) = (L∗adapt(x, y), a∗adapt(x, y), b∗adapt(x, y)) , (5.10)

where
L∗adapt(x, y) = (L∗0(x, y) + (100− G3σ0 ∗ L∗0(x, y))) /2

a∗adapt(x, y) = (a∗0(x, y)− Gσ0 ∗ a∗0(x, y))) /2

b∗adapt(x, y) = (b∗0(x, y)− Gσ0 ∗ b∗0(x, y))) /2

(5.11)

This formulation shows that the adapted color cadapt(x, y) is the midpoint of the image color

c0(x, y) and the complementary pair of the estimated color cast at (x, y) in the CIELAB

space.

Some remarks are needed for the proposed model:

1. Locality principle: The adaptation is spatially dependent [338]. Notice that in the

second term of the model, the complementary operator is applied to the Gaussian

filtered color distribution instead of the original c0. The locality of the adaptation is

adjusted by the parameter σ0. A greater value of σ0 implies a larger field of adaptation

and the estimated color cast is spatially more uniform. In contrast, a smaller value of

σ0 induces a more focused adaptation and the estimated color cast is more variant.

Consequently, the neutralization effect is stronger when σ0 is small; when σ0 → 0,

the adapted color distribution becomes uniformly neutral gray.

2. CIELAB gamut consideration: In practice, the 3-tuple cadapt computed by Equa-

tion 5.11 stay inside the CIELAB gamut. There are two reasons to support this

statement. First, the adapted lightness L∗adapt concentrates around 50, where the chro-

maticity section of the CIELAB gamut has the most extended domain (Figure Fig-

ure 5.3 (a) and (b)). Second, the dominating color casts in underwater images are

191

mostly blue or green. Observe that the CIELAB gamut (Figure 5.3 (c)) correspond-

ing to the green-blue region only has limited expansion, hence both Gσ0 ∗ a∗0 and

Gσ0 ∗ b∗0 are relatively small. Consequently, the triangle spanned by (a∗0, b
∗
0) and

(Gσ0 ∗a∗0,Gσ0 ∗b∗0) is most likely contained in the chromaticity domain at the lightness

L∗adapt. For robustness, in case cadapt(x, y) for some (x, y) falls outside the CIELAB

gamut, we keep its adapted lightness and hue angle while shrinking its chroma to

the corresponding maximal chroma. Other possible solutions can be found in [339]

and [340].

3. Long-term adaptation: The proposed color distribution cadapt is based on the neutral-

ization of dominant colors, which is a long-term chromatic adaptation that can take

multiple days [335, 336]. This is different from the daily experience where the time

of adaptation ranges from seconds to a few minutes [341]. Similarly to the exper-

imental setting [335], the Gaussian filtered color distribution can be considered as

colored lenses, and the long-term adaptation behavior is modeled by the regulariza-

tion term. Hence, our model predicts the perceived colors when the observer wears

the lenses for a long time and the dominant colors are neutralized by their comple-

mentary pairs, respectively.

4. Connection to other works: The proposed model (Equation 5.9) also provides a vari-

ational substitute for the well-known Gray World (GW) assumption [342], which is a

key component in many methods in the literature, e.g., ACE [71]. In [71], Bertalmı́o

et al. connect ACE to the Wilson-Cowan equations [343] from computational neuro-

science, where the GW assumption is used to set an absolute neutral state such that

only deviations from this level are considered meaningful. Noticing the drawback

of using an absolute level, in [344], Bertalmı́o proposes to replace it with a local

average; however, by doing so, no color correction is in action. Our model provides

an elegant solution which maintains an effective color correction while avoiding an

192

absolute reference.

5.2.2 Robust Hue-preserving Image Enhancement

The adapted color distribution cadapt represents a long-term result rarely achieved in com-

mon life experience. For visualization purpose, we enhance the lightness L∗adapt and the

chroma C∗adapt (Equation 5.1) computed using a∗adapt, b
∗
adapt, while preserving the adapted hue

h◦adapt (Equation 5.2) where the dominant color cast has been neutralized.

We enhance the adapted lightness by a linear stretch. The enhanced lightness is denoted

by L̂∗adapt. To keep the transform consistent with the CIELAB gamut, we rescale the chroma

of the adapted colors by

C∗1(x, y) =

(
C∗adapt(x, y)

C∗max(L∗adapt(x, y), h◦adapt(x, y))

)
× C∗max(L̂∗adapt(x, y), h◦adapt(x, y)) . (5.12)

which preserves the percentage of the relative saturation of cadapt. Here C∗max(L∗, h◦) de-

notes the maximal chroma in the CIELAB gamut when the lightness is L∗ and the hue

angle is h◦, whose computation is detailed in subsection 5.1.2. Notice that the adapted hue

angles are unchanged during this rescaling.

For the fixed lightness L̂∗adapt, we enhance the chroma of the newly obtained color

distribution (L̂∗adapt, a
∗
1, b
∗
1) by the following transformation

C∗2(x, y) =

(
C∗1(x, y)

C∗max(L̂∗adapt(x, y), h◦adapt(x, y))

)1/η

×

C∗max(L̂∗adapt(x, y), h◦adapt(x, y)) . (5.13)

We note that this is a gamma correction applied to the percentage of relative saturation.

See Figure 5.4 (a). Here, η ≥ 1 is the enhancing parameter. When η increases, a stronger

enhancement is applied, and when η = 1, the gamma function reduces to the identity map.

193

Figure 5.4: (a) Gamma function used for chroma enhancement (Equation 5.13) with vary-
ing values of η. (b) Robust factor (Equation 5.14) for suppressing the noisy hues with
varying values of β.

To improve stability, for some 0 < β ≤ 1, we define

Robust factor: F (θ) =

(
θ

180◦

)β
, (5.14)

for any θ ∈ [0, 180◦] ,

whose behavior is shown in Figure 5.4 (b). We propose the robust hue-preserving enhance-

ment of the adapted color distribution cadapt by

ĉadapt(x, y) = (L̂∗adapt(x, y), â∗adapt(x, y), b̂∗adapt(x, y)) , (5.15)

where
â∗adapt(x, y) = F (θ(x, y))a∗2(x, y)

b̂∗adapt(x, y) = F (θ(x, y))b∗2(x, y)

. (5.16)

and θ(x, y) denotes the hue angle difference between the image color and the estimated

color cast at (x, y). Notice that by multiplying the robust factor, when θ(x, y) ≈ 0◦, i.e.,

the hue angle difference between the image color and the estimated color cast is small,

ĉadapt(x, y) becomes almost achromatic. As for image colors deviating from the estimated

color cast at the same locations, the differences are emphasized.

194

5.2.3 Improvement on the Uniformity of CIELAB

The main purpose of the CIELAB as an alternative to RGB is to quantify the perceptive

color difference. This is only approximate due to the intrinsic complexity and non-linearity

of the HVS. In this work, we employ two simple modifications to achieve a better unifor-

mity.

Adjustment in the Blue Region

As known to many researchers [345, 346, 347, 348], the blue region of CIELAB, which

roughly corresponds to the subset of colors with hue angles ranging from 250◦ to 300◦, is

not hue-linear. It means that, with the CIELAB lightness and hue angle fixed, increasing

the CIELAB chroma yields a perceivable hue-shift.

In this work, we propose to address this technical problem by applying the following

transform before solving for the adapted color distribution via Equation 5.9:

h◦adjust = h◦−

µ◦ ×

√
(C∗)m

(C∗)m + 10m
× exp

(
−
(
h◦ − 275◦

25◦

)2
)
. (5.17)

This formula is modified from [349], which adjusts the hue angle by a product of three

factors. The first factor µ◦ denotes the maximal distorted hue angle. The second factor

predicts the increase of the hue rotation from neutral, i.e., C∗ = 0 until around C∗ = 10

and remains constant in the high chroma region [349]. The last factor restricts the hue

adjustment within the region 275◦ < h◦ < 300◦. We fix µ◦ = 45◦ and choose m = 7

in this paper. For a more precise hue adjustment based on a look-up-table, we refer the

readers to [347].

For underwater images, the pre-processing (Equation 5.17) is especially important,

since the general color distributions concentrate around the blue region. In Figure 5.5, we

195

Figure 5.5: Pre-processing by hue angle adjustment in the blue region of CIELAB. (a) Part
of an underwater image. (b) Proposed method without the pre-processing (Equation 5.17).
(c) Proposed method with the pre-processing. With the adjustment, the blueness on the
strap is preserved.

apply the proposed method to an underwater image (a) without the hue adjustment (Equation 5.17)

and the blue goggle straps turn into purple (b). With the hue correction (c), we observe that

the blueness is correctly preserved. Hence, including the adjustment (Equation 5.17) as a

pre-processing compensates for the distortion of the hue angle as we enhance the chroma.

The Helmholtz-Kohlrausch Effect

The Helmholtz-Kohlrausch (H-K) effect is a perceptual phenomenon where the perceived

lightness of a color with increasing saturation is brighter [350]. To enhance the chroma (Equation 5.16)

while keeping the perceived lightness unchanged, we need to adjust L̂∗adapt. For an arbitrary

color c = (L∗, a∗, b∗) in CIELAB, the perceived lightness L∗H-K when considering the H-K

effect can be estimated by [351]

L∗H-K = L∗ + (2.5− 0.025L∗)g(h◦)C∗ , (5.18)

where

g(h◦) = 0.116×
∣∣∣ sin(h◦ − 90◦

2

) ∣∣∣+ 0.085 . (5.19)

(5.20)

196

Figure 5.6: Post-processing considering the HK-effect. (a) Zoom-in of part of the underwa-
ter image in Figure 5.1. (b) Proposed method without the post-processing (Equation 5.18).
(c) Proposed method with the post-processing. Post-processing considering the HK-effect
reduces over-exposure.

Hence, assuming that L̂∗adapt corresponds to the perceived lightness before the chroma en-

hancement, the associated CIELAB lightness after the chroma enhancement is computed

by inverting (Equation 5.18), which gives

(L̂∗adapt)adjust =
L̂∗adapt − 2.5g(ĥ◦adapt)Ĉ∗adapt

1− 0.025g(ĥ◦adapt)Ĉ∗adapt

. (5.21)

Similar improvement is also considered in [340] for food image enhancement.

The post-processing in regard to the HK-effect (Equation 5.18) addresses the over-

exposure caused by the enhancing saturation. In Figure 5.6, we focus on a zoomed-in

region of an underwater image (a) and show the result without the post-processing (b) as

well as the processed one (c). Comparing these results, we observe that when the HK-effect

is considered, the image contrast is also improved. See the patterns on the shorts and the

red tube.

5.3 Numerical Experiments

5.3.1 General Examples

The proposed method is flexible and adaptive to different image contents. It yields improve-

ments on the image contrasts and color balance which are typically degraded in underwater

images. In Figure 5.7, we demonstrate various examples where underwater images are

197

Figure 5.7: General examples of the proposed method. (a) A typical underwater image
showing dominating blue cast, and the contrast is relatively low. (b) Result of the proposed
method applied to (a) removes the blue cast and enhances the textures on the riverbed. (c)
A blurry underwater image where objects are hardly visible. (d) Result of the proposed
method applied to (c) which shows vibrant colors and sharp objects’ boundaries. (e) A
deep underwater image commonly seen in field exploration. (f) Result of the proposed
method applied to (e) which renders the details of the structure of interest.

used for (a) submarine biology, (c) recreational purposes, and (e) field exploration. Given

possible differences in the imaging environment and devices, our method shows consistent

and stable behaviors in terms of removing the color casts and enhancing the image quality,

and the corresponding processed results are in (b), (d), and (f).

5.3.2 Different Underwater Color Cast

Underwater imaging environment is complicated and various conditions can affect the

chromatic attributes of the color cast. In Figure 5.8, we show the stability of our pro-

posed method for underwater images with different color casts. The scene in the first row

shows strong blue veiling light (hue angles concentrating around 210◦), the one in the sec-

ond row has a yellow color cast (around 95◦), and the third is dominated by a green color

198

Figure 5.8: The proposed method shows consistent performance for underwater images
with different color casts. For each underwater image in the first 3 rows, we show their
hue angle distributions in the second column; in the third columns we show the distribution
of the final results, which are displayed in the last row. In all cases, we have η = 6 and
β = 1/4.

(around 150◦). In the third column, we observe that the hue angles of the processed results

are more spread out, and the resulted images are displayed in the last row. Although the

color casts in the original images are distinct, the colors different from the estimated color

casts are preserved and emphasized in the final results.

199

5.3.3 Necessity of the Robust Factor

The procedure (Equation 5.13) enhances the residual colors after the dominating cast is

neutralized. Specifically, the absolute change of the hue angle can be expressed as

|h◦adapt(x, y)− h◦0(x, y)| =

180◦

π
arccos

(
a∗adapt(x, y)a∗0(x, y) + b∗adapt(x, y)b∗0(x, y)

C∗adapt(x, y)C∗0(x, y)

)
. (5.22)

Let C∗G(x, y) =
√

(Gσ0 ∗ a∗0(x, y))2 + (Gσ0 ∗ b∗0(x, y))2 be the chroma of the estimated

color cast at (x, y), ρ(x, y) = C∗0(x, y)/CG(x, y) as the ratio of image chroma and color cast

chroma, and γ(x, y) = (a∗0(x, y)(Gσ∗a∗0)(x, y)+b∗0(x, y)(Gσ∗b∗0)(x, y))/(C∗0(x, y)C∗G(x, y))

as a measure of the hue angle difference between the image color and the color cast,

then Equation 5.22 can be rewritten as

180◦

π
arccos

(
ρ(x, y)− γ(x, y)√

ρ2(x, y)− 2γ(x, y)ρ(x, y) + 1

)
. (5.23)

Notice that when the image color and the estimated color cast have similar hue angles, i.e.,

γ(x, y) ≈ 1, Equation 5.23 shows that

|h◦adapt(x, y)− h◦0(x, y)| ≈

180◦ , if ρ(x, y) < 1

90◦ , if ρ(x, y) = 1

0◦ , if ρ(x, y) > 1

, (5.24)

which is independent of the lightness. This implies that a direct enhancement as in Equa-

tion 5.13 is very sensitive to the ratio of the image chroma and color cast chroma.

Such instability will cause chromatic noise in areas where the colors are slightly differ-

ent from the estimated color cast, and typically this happens when the underwater image

contains a large portion of background, e.g., Figure 5.9 (a). In Figure 5.9 (b), we show

200

Figure 5.9: (a) Original underwater image. (b) Proposed method without applying the
robust factor (Equation 5.14) (η = 8). (c) Proposed method without applying the robust
factor (η = 2). (d) Proposed method with the robust factor (η = 8, β = 1/3). Using the
robust factor suppresses the background noisy colors while enhancing the saturation of the
other regions.

the image resulted from the direct enhancing (Equation 5.13) using η = 8, which presents

noisy colors in the background region. A possible remedy is to use smaller values of η,

however, this will also subdue the saturation of regions which deserve enhancing. For ex-

ample, in Figure 5.9 (c) where we use η = 2, although the noisy colors in the background

are suppressed, the riverbed becomes almost achromatic. By using the proposed robust

factor (Equation 5.14), the corrected image as shown in Figure 5.9 (d) reduces the noise

while maintaining a more saturated rendering outside the background region.

5.3.4 Behaviors of the Saturation Parameter η

The chroma enhancement parameter η (Equation 5.13) allows flexible adjustment of the

image saturation. In Figure 5.10, fixing β = 1/3, we apply the proposed method to the

underwater image (a) using η = 2, η = 4 and η = 10, which are shown in (b), (d), and

(d), respectively. When we increase the parameter η, the saturated green color cast in the

original image keeps muted, as it is neutralized before the chroma enhancement. As for

the objects of colors different from the color cast, e.g., the string and statue, they become

201

Figure 5.10: Effect of the chroma enhancement parameter η. (a) Original underwater im-
age. (b) Result with η = 2. (c) η = 4. (d) η = 10. Here we fix β = 1/4.

more recognizable when greater values of η are applied. This example demonstrates two

features of our method.

First, objects of smaller scales compared to the radius of the Gaussian kernel used

in Equation 5.9 are the most distinguishable in the results. This is due to the fact that, the

pixels of these objects have little impact on the estimated color cast, thus the complimentary

pairs of the objects’ colors will not contribute to the neutralization process according to

CAT. Consequently, they preserve most of their chromatic properties and get emphasized

after the neutralization of the color cast and the chroma enhancement. For instance, see the

red string, the white oxymeter, and the texture of the sand.

Second, although enhancing the saturation by Equation 5.13 is global, the background

color remain relatively muted compared to others during this process. When we increase

the value of η, the red string and brown statue become more saturated than the green back-

ground. This can render the objects in the scene more distinguishable and help improve the

image contrast in a global scale.

202

5.3.5 Qulitative Comparison

We compare our proposed method to some of the state-of-art approaches in the literature.

They are designed either specifically for underwater images, or for color constancy for gen-

eral color images. On the oirginal image in Figure 5.11 (a), we compare Zhao et al. [352]

(shown in (b)), Peng et al. [319] (shown in (c)), Histogram Equalization (shown in (d)), Li-

mare et al. [353] (shown in (e)), Automatic Color Correction (ACE) [71, 354], Local Color

Correction [355] (shown in (g)), Multiscale Retinex [329, 330] (shown in (h)), and the pro-

posed method in (i). We see that these methods exhibit different chromatic properties in

their results.

Both (b) and (c) are obtained from underwater-image-specific approaches based on the

Koschmieder model. They differ from each other by the techniques used for background

light and transmission map estimation. As pointed out in [319], these estimated quantities

determine the results, and in many cases, such relation is very sensitive. With careful com-

bination of different priors and estimations, the result in (c) shows better color restoration

on some region of the statue and the riverbed compared to (b).

The methods used in the second row manipulate the image histogram. For (d), we

see the typical over-saturation in HE. The method in (e), which aims at enhancing the

dynamical ranges of the RGB-channels, does not show effective color balancing in this

example. As a localized version of HE, (f) renders more realistic colors compared to (d).

The method for (g) is based on a nonlinear filter applied in the HSL color space, which

demonstrate enhancement on the brightness and saturation, yet the green cast is not re-

moved. The Multiscale Retinex used in (h) improves the image brightness and makes

many textures visible, but the colors are still biased toward green.

The proposed method in (i) shows distinct visual perception from the others. First, the

strong green cast in the original underwater image is effectively removed. This renders a

neutral background and recovers realistic tones for the statue, which is perceived as white in

(a). Second, the colors for small-scale textures become apparent. For example, we clearly

203

see the brownish mud around the statue and the color variations on the riverbed. Third,

because of the neutralization of the background and the enhancement on the small scale

contents, our result shows better contrast improvement. Notice the head and shoulder of

the statue, as well as the patterns on the pottery.

5.3.6 Quantitative Evaluation and Comparison

In this set of experiments, we evaluate the performances of the proposed algorithm and

other methods in the literature using two measures: Underwater Color Image Quality

Evaluation metric (UCIQE) [317] and Underwater Image Quality Measure (UIQM) [356].

These metrics are specifically designed to evaluate the quality of underwater images. Both

UCIQE and UIQM are linear combinations of certain image attributes such as colorfulness,

saturation, and contrast, whose coefficients are statistically derived. Higher values of these

metrics indicate better image qualities.

Figure 5.12 collectively shows the results from Histogram Equalization, Peng et al. [319],

Automatic Color Enhancement (ACE) [71], and the proposed method, where the underwa-

ter images have various contents and complexities. Our method performs consistently the

best measured by UIQM, and the values of UICQE for some of our results are the highest.

Among all the methods in comparison, HE produces the most colorful results, yet some of

which are overly saturated. The method proposed by Peng et al. performs well when the

veiling light color is correctly estimated. ACE is a local HE in principle, hence we observe

similar chromatic features between them. Compared to HE, ACE produces more natural

color distributions. Among the results from the proposed method, observe that a common

characteristic is that the strong color casts in the original underwater images are neutral-

ized. This feature induces a visual effect that the objects against the original saturated

background have sharper boundaries.

204

(a) Original Image (b) Zhao et al. (c) Peng et al.

(d) Histogram Equalization (e) Limare et al. (f) Automatic Color Enhancement

(g) Local Color Correction (h) Multiscale Retinex (i) Proposed Method

Figure 5.11: Qualitative comparison of different methods (a) Original underwater image.
(b) Zhao et al. [352] (c) Peng et al. [319] (d) Histogram Equalization (HE) (e) Limare
et al. [353] (f) Automatic Color Enhancement (ACE) [71, 354] (g)Local Color Correc-
tion [355] (h) Multiscale Retinex [329, 330] (i) Proposed Method.

205

Figure 5.12: Quantitative evaluation and comparison. We compare our methods with His-
togram Equalization (HE), Peng et al. [319], and Automatic Color Enhancement (ACE) [71,
354]. The quality of each image is evaluated by UCIQE [317] (left, blue marks the best)
and UIQM [356] (right, red marks the best). In all the cases, we use η = 10 and β = 1/4
for the proposed method.

206

5.4 Conclusion

In this chapter, we presented a new mathematical interpretation of the complimentary adap-

tation theory proposed by Gibson in 1937. As an alternative of the well-known Retinex

theory for understanding the color constancy, CAT emphasizes the neutralization function

of the complementary pair of the lasting stimulus rather than HVS’s competence of identi-

fying the reflectance. We modeled this adaptation process as a Tikhonov-type optimization

problem in the CIELAB color space. This is a simple model which produces the adapted

colors as a balance between the original underwater image and the complimentary pair of

the estimated color cast. We overcame the lack of uniformity of CIELAB by employing

two techniques: a pre-processing compensating the hue-distortion in the blue region, and a

post-processing addressing the H-K effect. Numerically, we demonstrated the necessities

of the introduced techniques and qualitatively compared our model with some of the state-

of-art methods for underwater images. The proposed method shows superior stability when

dealing with various underwater environments and recovers realistic colors compatible with

the visual perception.

We also notice a more significant data-dependence in this task compared to the previous

chapters’ materials. The Tikhonov-type optimization model sets up an elegant framework

for characterizing the color-balancing behaviors based on the complementary adaptation

theory. However, the visual effects are determined by the CIELAB colorspace, which was

developed based on experiments. Like other color spaces, CIELAB has its own limitations,

and to address them, additional parameters estimated from experimental data are necessary.

This brings up an important issue of model-based representation in problems with less

structured data: how to take advantage of the data efficiently to improve the model? To

answer this, in the following two chapters, we will discuss data-driven approaches.

207

CHAPTER 6

AUTOMATIC PDE IDENTIFICATION FROM NOISY DATA

Partial Differential Equations (PDEs) are used to model various real-world phenomena in

science and engineering. Numerical solvers for PDEs and analysis of various properties of

the solutions have been widely studied in the literature. In this chapter, we focus on the

inverse problem: Given a set of time-dependent noisy data, how to identify the governing

PDE.

Let the given noisy time-dependent discrete data set be

D := {Un
i ∈ R | n = 0, · · · , N ; i = (i1, · · · , id) with ij = 0, · · · ,M − 1, j = 1, · · · , d}

(6.1)

for sufficiently large integers N,M ∈ N, where i is a d-dimensional spatial index of a

discretized domain in Rd, and n represents the time index at time tn. The objective is to

find an evolutionary PDE of the form

∂tu = f(u, ∂xu, ∂
2
xu, · · · , ∂kxu, · · ·) , (6.2)

which represents the dynamics of the given data D. Here t is the time variable, x =

[x1, ..., xd] ∈ Rd denotes the space variable, and ∂kxu denotes the set of partial deriva-

tives of u with respect to the space variable of order k for k = 0, 1, · · · , i.e., ∂kxu :={
∂ku

∂x
k1
1 ∂x

k2
2 ···∂x

kd
d

| k1, · · · , kd ∈ N,
∑d

j=1 kj = k

}
. We assume that f is a polynomial of its

arguments so that the right-hand side of Equation 6.2 is a linear combination of linear and

nonlinear differential terms. The model in Equation 6.2 includes a class of parametric PDEs

where the parameters are the polynomial coefficients in f .

Parameter identification in differential equations and dynamical systems has been con-

208

sidered by physicists or applied scientists. Earlier works include [357, 358, 359, 360, 361,

362, 363], and among which, [358, 363] considered the PDE model as in Equation 6.2. Two

important papers [364, 365] used symbolic regression to recover the underlying physical

systems from experimental data. Recently, sparse regression and L1-minimization were in-

troduced to promote sparsity in the identification of PDEs or dynamical systems [366, 367,

368, 369]. In [366], Brunton et al. considered the discovery of nonlinear dynamical sys-

tems with sparsity-promoting techniques. The underlying dynamical systems are assumed

to be governed by a small number of active terms in a prescribed dictionary, and sparse re-

gression is used to identify these active terms. This sparse regression approach’s extensions

can be found in [370, 371, 372]. In [367], Schaeffer considered the problem of PDE identi-

fication using the spectral method and focused on the benefit of using L1-minimization for

sparse coefficient recovery. The identification of dynamical systems with highly corrupted

and undersampled data are considered in [373, 374]. In [368], Rudy et al. proposed iden-

tifying PDEs by solving the L0-regularized regression followed by a post-processing step

of thresholding. Sparse Bayesian regression was considered in [375] for the recovery of

dynamical systems. This series of work focused on the benefit of using L1-minimization

to resolve dynamical systems or PDEs with specific sparse pattern [376]. Another related

problem is to infer the interaction law in a system of agents from the trajectory data. In

[377, 378], nonparametric regression was used to predict the interaction function, and a

theoretical guarantee was established. Another category of methods uses deep learning

[379, 380, 381, 382, 383, 384, 385]. In [369], Identifying Differential Equation with Nu-

merical Time evolution (IDENT) was proposed. It is based on the convergence principle

of numerical PDE schemes. LASSO is used to find a candidate set efficiently, and the cor-

rect PDE is identified by computing the numerical Time Evolution Error (TEE). Among all

the PDEs from the candidate set, the one whose numerical solution best matches the given

data dynamics is chosen as the identified PDE. When the given data are contaminated by

noise, the authors used a Least-Square Moving Average method to denoise the data as a

209

pre-processing step. When the coefficients vary in the spatial domain, a Base Element

Expansion (BEE) technique was proposed to recover the varying coefficients.

We will first focus on the numerical aspects of the data-driven PDE modeling problem

by introducing the work proposed in [386], and then we switch to the theoretical aspects

where the convergence of `1-norm regularized identification method is concerned.

6.1 Data Organization and Denoising

6.1.1 Data Organization and Notations

Let the time-space domain be Ω = [0, T] × [0, X]d for some T > 0 and X > 0. Suppose

the noisy data D are given as (Equation 6.1) on a regular grid in Ω, with time index n =

0, · · · , N ,N ∈ N and spatial index i ∈ I, where I = {(i1, · · · , id) | ij = 0, · · · ,M−1, j =

1, · · · , d,M ∈ N}. Denote ∆t := T/N and ∆x := X/(M − 1) as the time and space

spacing in the given data, respectively.

At the time tn and the location xi, the datum is given as

Un
i = u(xi, t

n) + εni , (6.3)

where tn := n∆t ∈ [0, T], xi := (i1∆x, · · · , id∆x) ∈ [0, X]d, and εni is i.i.d. random

Gaussian noise with mean 0. For n = 0, 1, · · · , N − 1, we vectorize the data in all spatial

domains at time tn, and denote it as Un ∈ RMd . Concatenating the vectors {Un}N−1
n=0

vertically gives rise to a long vector U ∈ RNMd .

The underlying function f in Equation 6.2 is assumed to be a finite order polynomial

of its arguments:

f(u, ∂xu, ∂
2
xu, · · · ∂kxu, · · ·) = c1 + c2∂x1u+ · · ·+ cmu∂x1u+ · · · . (6.4)

where ∂kx denotes all k-th order partial derivatives and ∂xi denotes the partial derivative

210

with respect to the i-th variable. We refer to each term, such as 1, ∂x1u, and u∂x1u, . . . in

Equation 6.4, as a feature. Since f is a finite order polynomial, only a finite number of

features are included. Denote the number of features by K. Under this model, the function

f is expressed in a parametric form as a linear combination of K features. Our objective is

to recover the parameters, or coefficients,

c = [c1 c2 . . . cm . . . cK]T ∈ RK ,

where many of the entries may be zero.

From D, we numerically approximate the time and spatial derivatives of u to obtain the

following approximated time derivative vector DtU ∈ RNMd and approximated feature

matrix F ∈ RNMd×K :

DtU =

U1−U0

∆t

U2−U1

∆t

...

UN−UN−1

∆t

, F =

1Md×1 U0 · · · U0 ◦Dx1U
0 · · ·

1Md×1 U1 · · · U1 ◦Dx1U
1 · · ·

...
... · · ·

1Md×1 UN−1 · · · UN−1 ◦Dx1U
N−1 · · ·

. (6.5)

In this paper, the time derivatives in DtU are approximated by the forward difference

scheme, and the spatial derivatives, such as Dx1U
n for n = 0, 1, . . . , N − 1 in F are

computed using the 5-point ENO scheme [387]. Our method can be applied if other nu-

merical differentiation schemes are used. The vector 1Md×1 ∈ RMd denotes the 1-vector of

size Md, and the Hadamard product ◦ is the element-wise multiplication between two vec-

tors. Each column of F is referred to as a feature column. The PDE model in Equation 6.2

suggests that, an optimal coefficient vector c should satisfy the following approximation:

DtU ≈ Fc . (6.6)

211

The objective is to find the correct set of coefficients in Equation 6.4. Due to the large size

of K, the idea of sparsity becomes useful.

Throughout this chapter, we denote F0 as the true feature matrix whose elements are

the exact derivatives evaluated at the corresponding time and space location as those in F .

For a vector c, ‖c‖p := (
∑

j |cj|p)
1
p is the Lp norm of c. In particular, ‖c‖∞ := maxj |cj|.

When p = 0, ‖c‖0 := #{cj : cj 6= 0} represents the L0 semi-norm of c. The support of

c is denoted by supp(c) := {j : cj 6= 0}. The vector c is said to be k-sparse if ‖c‖0 = k

for a non-negative integer k. For any matrix Am×n and index sets L1 ⊆ {1, 2, . . . , n},

L2 ⊆ {1, 2, . . . ,m}, we denote [A]L1 as the submatrix of A consisting of the columns

indexed by L1, and [A]L2 as the submatrix of A consisting of the rows indexed by L2. AT ,

A∗ and A† denote the transpose, conjugate transpose and Moore-Penrose pseudoinverse of

A, respectively. For x ∈ R, bxc denotes the largest integer no larger than x. Moreover,

we use the following notation for asymptotics: For sufficiently large n, we write f(n) =

O(g(n)), if there exists a constant K > 0 such that f(n) ≤ Kg(n), and f(n) = Ω(g(n))

if f(n) ≥ K ′g(n) for some constant K ′ > 0. The notation f(n) = Θ(g(n)) means that

f(n) = O(g(n)) and f(n) = Ω(g(n)). We adopt bold lower-case letters for vectors and

bold upper-case letters for matrices. For a vector v ∈ Rn, ‖v‖1 :=
∑n

i=1|vi|, ‖v‖2 :=√∑n
i=1 v

2
i , and ‖v‖∞ := max

1≤i≤n
|vi|. For a matrix A ∈ Rn×m, AT denotes its transpose,

�A�2 := max∀‖x‖2=1 ‖Ax‖2, �A�∞ := max
1≤i≤n

∑m
j=1 |Ai,j|, �A�∞,∞ := max

1≤i,j≤n
|Ai,j|, and

�A�F :=
√∑n

i=1

∑m
j=1 A

2
i,j .

6.1.2 Noise Amplification during Differentiation

Despite the developments of many useful methods, when the given data are noisy, PDE

identification is still challenging. A small amount of noise can make a recovery unsta-

ble, especially for high order PDEs. It was shown in [369] that the noise to signal ratio

for LASSO depends on the order of the underlying PDE, and IDENT can handle a small

amount of noise when the PDE contains high order derivatives. A significant issue is that

212

(a) (b) (c)

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

exact

noisy

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

exact

noisy

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

exact

noisy

Figure 6.1: The sensitivity of numerical differentiation to noise. (a) Graph of sin(x), 0 ≤
x ≤ 2π (black), and its noisy version (red) with Gaussian noise of mean 0 and standard
deviation 0.01. (b) The first-order derivatives of the function (black) and the data (red).
(c) The second-order derivatives of the function (black) and the data (red). The derivatives
of data in (b) and (c) are computed using the five-point ENO scheme. As the order of
derivative increases, the noise gets amplified.

the numerical differentiation often magnifies noise, which is illustrated by an example in

Figure 6.1.

In the following, we introduce a class of robust PDE identification methods that can

handle a large amount of noise.

6.1.3 Successively Denoised Differentiation (SDD)

As shown in Figure 6.1, when the given data are contaminated by noise, numerical differ-

entiation amplifies noise. It introduces a large error in the time derivative vector DtU and

the approximated feature matrix F . With random noise, the regularity of the given data is

different from the PDE solution’s regularity. Thus, the denoising plays a vital role in PDE

identification.

We introduce a smoothing operator S to process the data. Kernel methods are good

options for S, such as Moving Average [388] and Moving Least Square (MLS) [389]. In

this paper, the smoothing operator S is chosen as the MLS, where data are locally fit by

quadratic polynomials. In MLS, a weighted least squares problem, in the time domain or

213

(a) (b) (c)

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

exact

SDD

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

exact

SDD

0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

exact

SDD

Figure 6.2: Performance of SDD on the data in Figure 6.1. (a) Graph of sin(x), 0 ≤ x ≤ 2π
(black) and the denoised data (red) using MLS. (b) First-order derivatives of the function
(black) and the denoised data using SDD (red). (c) Second-order derivatives of the function
(black) and the denoised data using SDD (red). Derivatives are computed by the five-point
ENO scheme, and the smoothing operator S is MLS.

the spatial domain, is solved at each time tn and spatial location xi as follows:

S(x) [Un
i] = pni (xi), with pni = arg min

p∈P2

∑
j∈I

(p(xj)− Un
j)2 exp

(
−‖xi − xj‖2

h2

)
, (6.7)

S(t) [Un
i] = pni (tn), with pni = arg min

p∈P2

∑
0≤k≤N

(p(tk)− Uk
i)2 exp

(
−‖t

n − tk‖2

h2

)
. (6.8)

Here h > 0 is a width parameter of the kernel, and P2 denotes the set of polynomials of

degree no more than 2. When data are one dimensional, i.e. d = 1 and for a fixed time index

n, we say that the given data set {Un
i }M−1

i=0 with the spatial grid length ∆x is a third order

approximation of a smooth function u(x, tn), if |Un
i −u(xi, t

n)| = O(∆x3) for any i. It has

been shown that if {Un
i }M−1

i=0 is a third-order approximation of a smooth function u(x, tn),

and if h is properly chosen, the output of MLS also gives a third-order approximation of

u(x, tn) [390, 369]. Such a result also holds for a fixed spatial index iwhen we consider the

third-order approximation of u(xi, t) in terms of the time grid length ∆t. This result can

be generalized to multi-dimensions and higher-order polynomial approximations in MLS.

In practice, the width parameter h is found empirically from data.

We describe the Successively Denoised Differentiation (SDD) procedure to stabilize the

numerical differentiation [386]. For every derivative approximation, smoothing is applied

214

Table 6.1: The procedure of SDD, where the spatial and time smoothing operators S(x) and
S(t) are defined in Equation 6.7 and Equation 6.8 respectively. The operator Dt given in
Equation 6.5 represents numerical time differentiation by the forward difference scheme,
and DxiU for i = 0, 1, . . . , N − 1 represents numerical spatial differentiation with respect
to xi given by the 5-point ENO scheme [387].

Successively Denoised Differentiation (SDD)
Expression for Approximation Explanation

u ≈ S(x)[U] The given data set U is
denoised by MLS.

∂tu ≈ S(t)DtS(x)[U] Denoising at numerical
time differentiation.

∂kxu ≈ (S(x)Dx1)k1 · · · (S(x)Dxd)
kdS(x)[U], Denoising

where k = (k1, . . . , kd), and at every step of the∑d
i=1 ki = k for k = 1, 2, . . . numerical spatial differentiation.

as described in Table 6.1. The main idea of SDD is to smooth the data at each step (before

and after) the numerical differentiation. This simple idea effectively stabilizes numerical

differentiation. Figure 6.2 shows the results of SDD for the same data in Figure 6.1. The

approximations of the first and second-order derivatives of u are greatly improved.

In subsection 6.3.8, we explore details of SDD when different smoothing operators are

used. We find that MLS has the best performance in terms of preserving the derivative

profiles. Therefore, we set S to be MLS in our numerical experiments.

To simplify the notations, in the rest of this paper, we use U to denote the denoised data

S(x)[U], and DtU as well as Dk
xU to denote the numerical derivatives with SDD applied as

above.

6.2 PDE Model Identification Methods: ST and SC

Under the parametric model in Equation 6.4, the PDE identification problem can be reduced

to solving the linear system (Equation 6.6) for a sparse vector c with few nonzero entries.

215

Sparse regression can be formulated as the following L0-minimization

min ‖c‖0 , subject to ‖Fc−DtU‖ ≤ ε , (6.9)

for some ε > 0. However, the L0-minimization in Equation 6.9 is NP-hard. Its approximate

solutions have been intensively studied in the literature. The most popular surrogate for the

L0 semi-norm is the L1 norm as applied in image and signal processing [391, 392]. The

L1-regularized minimization is called Least Absolute Shrinkage and Selection Operator

(LASSO) [393], which was used in [369, 367, 368] for PDE identification. The common

strategy in these works is to utilize LASSO to select a candidate set, then refine the results

with other techniques.

We utilize a greedy algorithm called Subspace Pursuit (SP) [394] to select a candidate

set. Unlike LASSO, SP takes the sparsity as an input, allowing direct control of the sparsity

of the reconstructed coefficient. Let k be a positive integer and denote b = DtU . For a

fixed sparsity level k, SP(k;F,b) in algorithm 9 gives rise to a k-sparse vector whose

support is selected in a greedy fashion. It was proved that SP gives rise to a solution of

the L0-minimization (Equation 6.9) under certain conditions of the matrix F , such as the

restricted isometry property [394].

We introduce two new methods based on SP for PDE identification: Subspace pursuit

Time evolution (ST) and Subspace pursuit Cross-validation (SC). ST uses multi-shooting

numerical time evolution and selects the PDE, which yields the least evolution error. From

a different perspective, SC computes the cross-validation error in the least-squares fitting

and picks the PDE that gives the smallest error.

6.2.1 Subspace Pursuit Time Evolution (ST)

We first describe a method combining SP and the idea of time evolution. In [369], Time

Evolution Error (TEE) quantifies the mismatch between the solution simulated from a can-

216

Input: F ∈ RNMd×K , b ∈ RNMd and sparsity k ∈ N.
Initialization: j = 0;
G← column-normalized version of F ;
I0 = {k indices corresponding to the largest magnitude entries in the vector G∗b};
b0

res = b−GI0G†I0b.
while True do

Step 1. Ĩj+1 = Ij ∪ {k indices corresponding to the largest magnitude entries
in the vector G∗bjres};

Step 2. Set cp = G†
Ĩj+1

b;
Step 3. Ij+1 = {k indices corresponding to the largest elements of cp};
Step 4. Compute bj+1

res = b−GIj+1G†Ij+1b;
Step 5. If |bj+1

res ‖2 > ‖bjres‖2, let Ij+1 = Ij and terminate the algorithm;
otherwise set j ← j + 1 and iterate.

end
Output: ĉ ∈ RK satisfying ĉIj = F †Ijb and ĉ(Ij){ = 0.

Algorithm 9: Subspace Pursuit SP(k;F,b)

didate PDE and the denoised data. Any candidate coefficient vector ĉ = (ĉ1, ĉ2 . . .) defines

a candidate PDE:

ut = ĉ1 + ĉ2∂x1u+ · · ·+ ĉmu∂x1u+ · · · .

This PDE is numerically evolved from the initial condition U0 with a smaller time step

∆̃t � ∆t. Specifically, if r is the highest order of the spatial derivatives, we set the

time step as c(∆x)r with some constant c < 1. Denote Û1, Û2, . . . , ÛN as this numerical

solution at the same time-space location as U1, U2, . . . , UN . The TEE of the candidate

PDE given by ĉ is

TEE(ĉ) =
1

N

N∑
n=1

‖Ûn − Un‖2 ,

where Un is the denoised data at time tn. Figure 6.3 (a) and (b) illustrate the idea of TEE.

When there are several candidate PDEs, the one with the least TEE is picked [369].

This TEE idea is based on the convergence principle that a correct numerical approximation

converges to the true solution as the time step ∆̃t goes to zero. The error from the wrongly

identified terms grows during this time evolution process [369]. More specifically, assume

217

that the solution u is smooth and decays sufficiently fast at infinity. Consider the following

linear equation with constant coefficients:

∂u

∂t
= a0u+ a1

∂u

∂x
+ · · ·+ am

∂mu

∂xm
.

After taking the Fourier transform for the equation and solving the ODE, one can obtain

the transformed solution:

û(ξ, t) = û(ξ, 0)ea0tea1iξte−a2ξ2t · · · eam(iξ)mt,

where i =
√
−1 and ξ is the variable in the Fourier domain. If a term with an even-order

derivative, such as a2
∂2u
∂x2 , is mistakenly included in the PDE, it will make every frequency

mode grow or decrease exponentially in time; if a term with an odd-order derivative, such

as a1
∂u
∂x

, is mistakenly included in the solution, it will introduce a wrong-speed oscillation

of the solution. In either case, the correct solution’s deviation grows fast in time, providing

an efficient way to distinguish the wrong terms.

We introduce a Multi-shooting Time Evolution Error (MTEE). The idea is to evolve a

candidate PDE from multiple time locations with a time step ∆̃t � ∆t using the forward

Euler scheme for a time length of w∆t, where w is a positive integer. Let Û (n+w)|n be the

numerical solution of the candidate PDE at the time (n+w)∆t, which is evolved from the

initial condition Un at time tn = n∆t. The MTEE is defined as

MTEE(ĉ;w) =
1

N − w

N−1−w∑
n=0

‖Û (n+w)|n − Un+w‖2 . (6.10)

Figure 6.3 (c) and (d) demonstrate the process of multi-shooting time evolution. While the

TEE evolution starts from the initial condition U0 and ends at T , the MTEE evolution starts

from various time locations, such as tn, n = 0, . . . , N − 1−w, and lasts for a shorter time,

e.g., w∆t in our case.

218

Figure 6.3: (a) and (b) illustrate the idea of TEE. (c) and (d) explain MTEE when w = 2.
The blue arrows in (a) and (c) represent time evolution using the forward Euler scheme on
a fine time grid with spacing ∆̃t � ∆t. In (b), two different PDEs (green and red) are
evolved, and the green one has a smaller TEE. In (d), the candidate PDEs are evolved from
multiple time locations, and their numerical solutions are compared with the denoised data
after a time length of w∆t.

MTEE has two advantages over TEE: (1) MTEE is more robust against noise in com-

parison with TEE. If w � N , the noise in the initial condition accumulates for a smaller

amount of time in MTEE, which helps to stabilize numerical solvers.

For example, given a set of noisy solution of the Burgers’ equation ut = −uux gener-

ated with T = 0.05,∆t = 0.001,∆x = 1/256 (as shown in Figure 6.5(a)), if we evolve

the noisy initial condition with the correct PDE, i.e., ut = −uux, the solution blows up at

t = 0.032 (the solution before the blow up at t = 0.03 is shown in Figure 6.5(c)). As a

result, the TEE does not exist and cannot be used. On the other hand, if we evolve the initial

condition for a shorter time, say t = 0.02, we can get a solution (as shown in Figure 6.5(b)).

Thus MTEE can be computed and used for PDE identification.

(2) MTEE is more flexible, and its computation is parallelizable. The flexibility of

219

Figure 6.4: An example of the ST iteration. Starting with a large number K, the first
iteration gives rise toK candidate coefficients for k = 1, . . . , K. The PDE with the smallest
MTEE is picked, e.g., SP(3) with cardinality K1 = 3 and support A1. The second iteration
gives rise to the candidate coefficients only supported on A1 using SP(k) with k = 1, 2, 3.
The PDE with the smallest MTEE is found, e.g., SP(2) with cardinalityK2 = 2 and support
A2. The third iteration does not change the support, i.e.,A3 = A2, so the final output is the
coefficient vector of SP(2).

MTEE comes from two aspects: (1) The error accumulation time can be controlled by

the parameter w such that the PDE is evolved for a time length of w∆t. (2) One may

assign different weights in the calculation of the evolution errors in different periods. Since

each time evolution in the multi-shooting is independent, the computation of MTEE can be

parallelized.

The SP algorithm finds a coefficient vector with a specified sparsity, but it is difficult to

know the correct sparsity from the given data. We propose Subspace pursuit Time evolution

(ST), which iteratively refines the selection of features.

As an initial condition, we set K0 = K and A0 = {1, . . . , K}. At the first iteration, all

possible sparsity levels are considered in the SP algorithm. For each k = 1, . . . , K, we run

SP(k;F,DtU) to obtain a coefficient vector ĉ(k) ∈ RK such that ‖ĉ(k)‖0 = k, which gives

rise to the PDE:

ut = fSP(k) where fSP(k) := ĉ
(k)
1 + ĉ

(k)
2 ∂x1u+ · · ·+ ĉ(k)

m u∂x1u+ · · · . (6.11)

220

(a) (b) (c)

0 0.5 1

-1

-0.5

0

0.5

1

1.5

0 0.5 1

-1

-0.5

0

0.5

1

1.5

0 0.5 1

-4

-2

0

2

4

6

Figure 6.5: Robustness of MTEE over TEE. (a) Noisy solution set of the Burgers’ equation
ut = −uux generated with T = 0.05,∆t = 0.001,∆x = 1/256. By evolving the noisy
initial condition according to ut = −uux, (b) shows the solution at t = 0.02 and (c) shows
the solution at t = 0.03. The solution blows up at t = 0.032.

Input: F ∈ RNMd×K , DtU ∈ RNMd and a positive integer w.
Initialization: j = 0, K0 = K and A0 = {1, 2, · · · , K}.
while Aj+1 6= Aj do

Step 1. For k = 1, 2, · · · , Kj , run SP(k; [F]Aj , DtU) to obtain a coefficient
vector ĉ(k) ∈ RK such that

ĉ
(k)
Aj = SP(k; [F]Aj , DtU) and ĉ

(k)

A{
j

= 0 ,

and the associated PDE ut = fSP(k) given in Equation 6.11.
Step 2. Among all the PDEs ut = fSP(k) for k = 1, . . . , Kj , select the one with
the minimum MTEE(ĉ(k);w) and update

Kj+1 = arg min
k=1,2,··· ,Kj

MTEE(ĉ(k);w) and Aj+1 = supp(ĉ(kj+1)) .

If Aj+1 = Aj , terminate the algorithm; otherwise, update j = j + 1.
end
Output: Recovered coefficient ĉKj+1 and the corresponding PDE, denoted by

ST(w).
Algorithm 10: Subspace pursuit Time evolution (ST)

221

We then numerically evolve each PDE ut = fSP(k), for k = 1, . . . , K and calculate the

corresponding MTEE. Among these PDEs, the one with the smallest MTEE is selected,

then let

K1 = arg min
k=1,2,··· ,K

MTEE(ĉ(k);w) and A1 = supp(ĉ(K1)) .

If A1 = A0, the algorithm is terminated; otherwise, we continue to the second iteration.

The proposed method requires solving the sparsity-constrained least-squares problems at

least K times. Meanwhile, these computations and the evaluation of MTEE are paralleliz-

able.

At the second iteration, we refine the selection from the index set A1 with cardinality

K1. For k = 0, . . . , K1, we run SP(k; [F]A1 , DtU) to obtain a coefficient vector ĉ(k) ∈ RK

such that

ĉ
(k)
A1

= SP(k; [F]A1 , DtU) , and ĉ
(k)

A{
1

= 0 ,

and the associated PDE ut = fSP(k) as in (Equation 6.11). Among these PDEs, the one

with the smallest MTEE is selected, and we denote

K2 = arg min
k=1,2,··· ,K1

MTEE(ĉ(k);w) , and A2 = supp(ĉ(K1)) .

If A2 = A1, the algorithm is terminated; otherwise, we continue to the next iteration

similarly.

The ST iteration will be terminated when the index set remains the same, i.e., Aj =

Aj+1. The ST outputs a recovered coefficient vector and the corresponding PDE denoted

by ST(w). A complete description of ST is given in Algorithm algorithm 10, and Figure 6.4

illustrates an example of the ST iteration.

6.2.2 Subspace Pursuit Cross Validation (SC)

Our second method utilizes the idea of cross-validation for the linear system in Equa-

tion 6.6. Cross-validation is commonly used in statistics for the choice of parameters in

222

order to avoid overfitting [395]. We consider the two-fold cross-validation where data are

partitioned into two subsets. One subset is used to estimate the coefficient vector, and

the other one is used to validate the candidates. If a suitable coefficient vector is found

within one subset, it should yield a small validation error for the other subset because of

consistency.

For some fixed ratio parameter α ∈ (0, 1), we split the rows of DtU ∈ RNMd (and

F ∈ RNMd×K) into two groups indexed by T1 and T2, such that T1 consists of the indices

of the first bαNMdc rows and T2 consists of the indices of the rest of the rows. Since we

focus on PDEs with constant coefficients, the idea of cross validation is applicable: if a

correct support is identified, the coefficient vector obtained from the data in T1 should be

compatible with the data in T2.

We introduce our Subspace pursuit Cross-validation (SC) algorithm where cross-validation

is incorporated into the SP algorithm. SC consists of the following three steps:

Step 1: For each sparsity level k = 1, 2, ..., K, use SP to select a set of active features:

Ak = supp(SP(k;F,DtU)) .

Step 2: Use the data in T1 to compute the estimator for the coefficient vector, ĉ(k) ∈ RK ,

by the following least squares problem

ĉ(k) = arg min
c∈RKsuch that c

A{
k

=0

‖[F]T1AkcAk − [DtU]T1‖2
2 ,

and then use the data in T2 to compute a Cross-validation Estimation Error (CEE)

CEE(Ak;α, T1, T2) = ‖[DtU]T2 − [F]T2 ĉ(k)‖2 . (6.12)

Step 3: Set kmin = arg mink CEE(Ak;α, T1, T2) and the estimated coefficient vector is

223

given as

ĉ = arg min
c∈RKsuch that c

A{
k

=0

‖[F]T1Akmin
cAkmin

− [DtU]T1‖2
2 .

The identified PDE by SC is denoted as SC(α).

CEE in Equation 6.12 is an effective measure for consistency. If the estimated coeffi-

cient vector’s support matches that of the true one, CEE is guaranteed to be small provided

with sufficiently high resolution in time and space.

Theorem 6.2.1. Assume that DtU → ut and F → F0 pointwise as ∆t,∆x → 0. Let

A0 = supp(c0) where c0 is the coefficient vector of the true PDE. For any set of support

A, we have

CEE(A;α, T1, T2) ≤
∥∥∥([F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F0]T1A

)†)
[ut]
T1
∥∥∥

2
+ g(A;α, T1, T2) ,

where g > 0 is a summation of residual terms of approximating the partial derivatives and

feature matrix using data, see Equation C.1, which is independent of A0, such that g → 0

as ∆t,∆x→ 0.

Proof. See section C.1.

In Equation 6.12, the data in T1 serve as the training set, and the data in T2 act as

the validation set. One can also use the data in T2 for training and the data in T1 for

validation, which gives rise to the cross validation estimation error CEE(Ak; 1−α, T2, T1).

To improve the robustness of SC, we replace Equation 6.12 with the following averaged

cross-validation error:

CEE(Ak, α) =
1

2
(CEE(Ak;α, T1, T2) + CEE(Ak; 1− α, T2, T1)) .

In general, one can randomly pick a part of the data as the training set and use the rest

224

as the validation set. For simplicity, we split the data according to the row index in this

paper.

The proposed SC algorithm is summarized in algorithm 11. In comparison with ST, SC

does not involve any numerical evolution of the candidate PDE, so the computation of SC

is faster.

Input: F ∈ RNMd×K and DtU ∈ RNMd; 0 < α < 1 ratio of the training
data.

Step 1. For k = 1, 2, · · · , K, run SP(k;F,DtU) to obtain the support of the
candidate coefficients

Ak = supp(SP(k;F,DtU)) .

Step 2. For each k, compute the averaged cross validation error

CEE(Ak, α) =
1

2
(CEE(Ak;α, T1, T2) + CEE(Ak; 1− α, T2, T1)) .

Step 3. Choose the k which gives the smallest cross validation error and denote it
by kmin

kmin = arg min
k

CEE(Ak, α) .

Estimate the coefficients by least squares as

ĉ = arg min
c∈RKsuch that c

A{
k

=0

‖[F]T1Akmin
cAkmin

− [DtU]T1‖2
2 .

Output: Recovered coefficient ĉ and the identified PDE denoted by SC(α).

Algorithm 11: Subspace pursuit Cross validation (SC) Algorithm

6.3 Numerical Experiments on Robust PDE Identification

In this section, we perform a systematic numerical study to demonstrate the effectiveness

of ST and SC and compare them to IDENT [369]. To measure the identification error, we

225

use the following relative coefficient error ec and grid-dependent residual error er:

ec = ‖ĉ−c‖1
‖c‖1 , er =

√

∆x∆t‖F (ĉ− c)‖2 for 1D PDE.

√
∆x∆y∆t‖F (ĉ− c)‖2 for 2D PDE.

. (6.13)

The relative coefficient error ec measures the accuracy in the recovery of PDE coefficients,

while the residual error er measures the difference between the learned dynamics and the

denoised one by SDD. Since each feature vector in F may have different scales, er can be

different from ec in some cases. When the given data contain noise, the features containing

higher-order derivatives have greater magnitudes than the features containing lower order

derivatives. In this case, a small coefficient error in the high order terms may lead to a large

er. We use both ec and er to quantify the PDE identification error.

To measure how well the solution of the identified PDE matches the dynamics of the

correct PDE, we use the following evolution error

ee = ∆x∆t

(∑
n

∑
i

|u(xi, t
n)− û(xi, t

n)|

)
(6.14)

where u and û denote the solution of the exact and identified PDE respectively.

To generate the data, we first solve the underlying PDE by forward Euler scheme

using time and space step δt and δx (and δy) respectively, then downsample the data

with time and space step ∆t and ∆x (and ∆y). In the noisy case, we add Gaussian

noise with standard deviation σ to the clean data. We say that the noise is p% by set-

ting σ = p
100

√
1

NMd

∑
n

∑
i(u(xi, tn))2. In the computation of DtU and the feature matrix

F , we always use SDD with MLS with h = 0.04 as the smoother. When MLS is used to

denoise the data of two dimensional PDEs, one can either fit two-dimensional polynomials

or fit one-dimensional polynomials in each dimension. In this work, we use the second

approach. In ST, without specification, ∆̃t = ∆t/5 is used.

We first consider PDEs containing partial derivatives up to the second order. Let

226

the governing equation f be a polynomial with degree up to 2. There are 10 features:

1, u, u2, ux, u
2
x, uux, uxx, u

2
xx, uuxx, uxuxx in the dictionary for one dimensional PDEs. For

two dimensional PDEs, there are 28 features, which contain 1, u, ux, uy, uxx, yxy, uyy and

their pairwise products. In the following examples, the spatial domain [0, 1] is used for

one-dimensional PDEs and [0, 1]2 is used for two-dimensional PDEs. For both cases, zero

Dirichlet boundary condition is used for all examples.

6.3.1 Transport Equation

Our first experiment is a transport equation with zero Dirichlet boundary condition:

ut = −ux , (6.15)

with an initial condition of

u(x, 0) =

sin2(2πx/(1− T)) cos(2πx/(1− T)), for 0 ≤ x ≤ 1− T,

0, otherwise
,

for 0 ≤ x ≤ 1 and 0 < t ≤ T . The clean data D is generated by explicitly solving

Equation 6.15 with δx = ∆x = 1/256, δt = ∆t = 10−3 and T = 0.05. In theory, for

the transport equation, the zero boundary condition should only be applied to the inflow

boundary. We design our initial condition and choose the evolution time T in such a way

that the evolution of the solution is only restricted within the given spatial domain so that

the PDE is well-defined. The same setup is considered in the rest of this section.

Table 6.2 shows the results of ST(20) and SC(1/200) with various noise levels. In

practice, we have no a priori knowledge of whether the given data contain noise, so we

conduct two experiments with and without SDD to check the effect of SDD on clean data.

We observe that SDD makes a small difference in the noise-free case. With clean data, SC

identifies an additional uxx term with a small coefficient, while ST can rule out all wrong

227

Table 6.2: Identification of the transport equation (Equation 6.15) with different noise lev-
els. In the noise-free case, applying SDD does not introduce a strong bias. The identifica-
tion results (second column) by ST and SC are stable even with 30% noise. Here w = 20
for ST, and α = 1/200 for SC.

Method 0% noise without SDD ec er
ST ut = −0.9994ux 6.20× 10−4 4.89× 10−4

SC ut = −0.9993ux − 0.0010uxx 1.65× 10−3 1.11× 10−2

0% noise with SDD ec er
ST ut = −0.9997ux 3.36× 10−4 2.64× 10−4

SC ut = −0.9997ux − 0.0010uxx 1.34× 10−3 1.11× 10−2

10% noise without SDD ec er
ST ut = −3.028× 10−4uxx 1.00 5.55
SC ut = 9.4224u− 2.9992uxx 1.04× 10 5.62

10% noise with SDD ec er
ST, SC ut = −1.0357ux 3.57× 10−2 2.67× 10−2

30% noise without SDD ec er
ST ut = 8.0587× 10u− 2.6316× 10−4uxx 8.16× 10 1.88× 10
SC ut = 8.2488× 10u 8.25× 10 1.86× 10

30% noise with SDD ec er
ST, SC ut = −0.9421ux 5.79× 10−2 4.31× 10−2

terms. The corresponding ec and er are both small. For 10% or 30% noise, the results by

ST and SC with and without SDD are also shown. With SDD, both ST and SC identify the

correct PDE with small ec and er values. SDD significantly improves the results.

To further demonstrate the significance of SDD and the effectiveness of ST and SC,

we display the noisy data with 10% and 30% noise, the denoised data, and the recovered

dynamics in Figure 6.6. Even though the given data contain a large amount of noise, the

recovered dynamics are close to the clean data. In the rest examples, SDD is always used

for ST and SC on noisy data.

Figure 6.7 shows how ec, er and ee change when the noise level varies. Each experiment

is repeated 50 times and the error is averaged. We test IDENT, ST(20) and SC(1/200).

Figure 6.7 (a) shows that ec of ST or SC is much smaller than that of IDENT when the noise

level is larger than 20%. Figure 6.7 (b) and (c) shows er and ee versus noise, respectively.

The coefficient error ec by ST and SC is significantly smaller than that of IDENT.

228

(a) (b) (c) (d)

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

(e) (f) (g)

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.6: Noisy and denoised data of the transport equation (Equation 6.15), as well as
simulations of the recovered PDE. (a) The clean data, (b) data with 10% noise, (c) the
denoised data Sx[U], (d) simulation of the PDE identified by ST and SC (identical). (e)
Data with 30% noise, (f) the denoised data S(x)[U], and (g) simulation of the PDE identified
by ST and SC (identical).

(a) (b) (c)

0 10 20 30 40 50

noise level in percentage

0

0.5

1

1.5

2

e
c

IDENT

ST(20)

SC(1/200)

0 10 20 30 40 50

noise level in percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
r

IDENT

ST(20)

SC(1/200)

0 10 20 30 40 50

noise level in percentage

0

0.5

1

1.5

2

e
e

10
-3

IDENT

ST(20)

SC(1/200)

Figure 6.7: The average error ec, er and ee over 50 experiments for the transport equation
(Equation 6.15) with respect to various noise levels. (a) The curve represents the average
ec for IDENT [369] (Green), ST (Red) and SC (Blue), and the standard deviation is repre-
sented by vertical bars. (b) The average and variation of er for IDENT (Green), ST (Red)
and SC (Blue). (c) The average and variation of ee for IDENT (Green), ST (Red) and SC
(Blue). The coefficient error ec by ST and SC is significantly smaller than that of IDENT.

In Figure 6.8, we explore the robustness of SC with respect to the choice of α. We

present ec and er versus 1/α in (a) and (b) respectively, with 1%, 5%, 10%, 20% noise.

Each experiment is repeated 50 times, and the error is averaged. The result shows that SC,

in this case, is not sensitive to α, and there are wide range choices of α that give rise to a

small error.

229

(a) (b)

10
0

10
1

10
2

10
3

10
4

1/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
c

1% noise

5% noise

10% noise

20% noise

10
0

10
1

10
2

10
3

10
4

1/

0

0.02

0.04

0.06

0.08

e
r

1% noise

5% noise

10% noise

20% noise

Figure 6.8: Robustness of SC to the choice of α for the recovery of the transport equation
(Equation 6.15). (a) and (b) display ec and er versus 1/α respectively, with 1% (Blue), 5%
(Red), 10% (Orange), 20% (Purple) noise. Each experiment is repeated 50 times, and the
errors are averaged. We observe that SC is not sensitive to α, and there is a wide range of
values for α that give rise to a small error.

We next test ST and SC on data generated from the transport equation with a discontin-

uous initial condition. We set the initial condition as

u(x, 0) =

sin2(2πx/(1− T)) cos(2πx/(1− T)), for 0 ≤ x < (1− T)/3,

− cos2(2πx/(1− T)) + 0.5, for (1− T)/3 ≤ x < 2(1− T)/3,

sin2(2πx/(1− T)), for 2(1− T)/3 ≤ x ≤ (1− T),

0, otherwise.
(6.16)

The clean data is generated by explicitly solving (Equation 6.15) with δx = ∆x = 1/256, δt =

∆t = 10−3 and T = 0.05. After adding i.i.d. Gaussian noise, we have the noisy data. We

show the clean data and the noisy data in Figure 6.9. The identification results are shown in

Table 6.3. Even with the existence of discontinuities, ST and SC are stable and can identify

the correct PDE with up to 30% noise.

230

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.9: Clean and noisy data of the transport equation (Equation 6.15) with the initial
condition (Equation 6.16). (a) Clean data. (b) Noisy data with 10% noise. (c) Noisy data
with 30% noise.

Table 6.3: Identification of the transport equation (Equation 6.15) with the discontinuous
initial condition (Equation 6.16) and different noise levels. In the noise-free case, applying
SDD does not introduce strong bias. The identification results (second column) by ST and
SC are stable even with 30% noise. Here w = 20 for ST, and α = 1/200 for SC.

Method 0% noise without SDD ec er
ST ut = −1.0091ux + 9.65× 10−4uxx 1.01× 10−2 1.64× 10−1

SC ut = −1.0511ux 5.11× 10−2 4.43× 10−2

0% noise with SDD ec er
ST, SC ut = −1.0274ux 2.74× 10−2 1.95× 10−2

10% noise ec er
ST, SC ut = −0.9913ux 8.72× 10−3 5.90× 10−3

30% noise ec er
ST, SC ut = −0.9239ux 7.61× 10−2 5.36× 10−2

6.3.2 Burgers’ Equation

In the second example, we test our methods on the Burgers’ equation, which is a first-order

nonlinear PDE:

ut = −uux (6.17)

for 0 ≤ x ≤ 1 and 0 < t ≤ T . We use the initial condition

u(x, 0) = sin(4πx) cos(πx) (6.18)

and zero Dirichlet boundary condition. Our data is generated by solving Equation 6.17

with δx = ∆x = 1/256, δt = ∆t = 10−3 and T = 0.05.

231

Table 6.4: Identification of the Burgers’ equation (Equation 6.17) with initial condition
(Equation 6.18) and different noise levels. The identification results (second column) by
ST and SC are good with small ec and er for a noise level up to 40%. Here w = 20 for ST,
and α = 1/500 for SC.

Method 0% noise without SDD ec er
ST ut = −1.0023uux − 2.38× 10−5uxuxx 2.35× 10−3 5.07× 10−3

SC ut = −0.9960uux 4.01× 10−3 2.58× 10−3

0% noise with SDD ec er
ST ut = −1.0079uux − 0.0001uxuxx 7.97× 10−3 1.43× 10−2

SC ut = −0.9888uux 1.12× 10−2 7.20× 10−3

10% noise ec er
ST, SC ut = −1.0246uux 2.46× 10−2 1.52× 10−2

40% noise ec er
ST, SC ut = −0.7366uux 2.63× 10−1 1.64× 10−1

Table 6.4 shows the results of ST(20) and SC(1/500) with various noise levels. With

clean data, ST identifies an additional term, but its coefficient is very small, and the corre-

sponding ec and er are small. SC works very well on clean data. With 10% and 40% noise,

both methods identify the same PDE with small ec and er.

Figure 6.10 shows how ec, er and ee change when the noise level varies. Each ex-

periment is repeated 50 times and the errors are averaged. We test IDENT, ST(20) and

SC(1/500). The results in Figure 6.10 show that ST and SC perform better than IDENT.

We then compare SC, ST in this paper with IDENT in [369] and the method proposed in

[367]. The method from [367] uses the spectral method to compute the spatial derivatives,

which requires periodic boundary conditions. For a fair comparison, we use the initial

condition

u(x, 0) = sin(4πx) cos(2πx) (6.19)

and the periodic boundary condition (in which the boundary values are always 0). Our

data is generated by solving Equation 6.17 with δx = ∆x = 1/256, δt = ∆t = 10−3 and

T = 0.05. We set w = 20 for ST, and α = 1/500 for SC. For IDENT, we use SDD to

232

(a) (b) (c)

0 10 20 30 40 50

noise level in percentage

0

0.2

0.4

0.6

0.8

e
c

IDENT

ST(20)

SC(1/500)

0 10 20 30 40 50

noise level in percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

e
r

IDENT

ST(20)

SC(1/500)

0 10 20 30 40 50

noise level in percentage

0

0.2

0.4

0.6

0.8

1

e
e

10
-3

IDENT

ST(20)

SC(1/500)

Figure 6.10: The average error ec, er and ee over 50 experiments for the Burgers’ equation
(Equation 6.17) with respect to various noise levels, where the initial condition is Equa-
tion 6.18. (a) The curve represents the average ec for IDENT [369] (Geeen), ST (Red) and
SC (Blue), and the standard deviations are represented by vertical bars. (b) The average and
variation of er for IDENT (Geeen), ST (Red) and SC (Blue). (c) The average and variation
of ee for IDENT (Geeen), ST (Red) and SC (Blue). The ec, er and ee of ST and SC are
much smaller than those of IDENT.

denoise the data and to compute the partial derivatives, which improves the original IDENT

in [369]. For the method in [367], we use the denoising method specified in [367, Example

3.9]. The identification results are shown in Table 6.5. Table 6.5 shows that ST, SC and

IDENT are more robust than the method in [367] at various noise levels. The errors given

by ST, SC, and IDENT are also smaller.

6.3.3 Burgers’ Equation with Diffusion

Our third example is the Burgers’ equation with diffusion, which is a second order nonlin-

ear PDE:

ut = −uux + 0.1uxx . (6.20)

We use the initial condition u(x, 0) = sin(3πx) cos(πx) and zero Dirichlet boundary con-

dition. We first solve Equation 6.20 with δx = 1/256, δt = 10−5 and T = 0.05. The given

data is downsampled from the numerical solution such that ∆x = 1/64 and ∆t = 10−4.

Table 6.6 shows the results of ST(20) and SC(1/10) with various noise levels. With

clean data, 1% and 5% noise, both methods identify the PDE with small ec and er.

Figure 6.11 shows how ec, er and ee change when the noise level varies from 0.1% to

233

Table 6.5: Comparison of ST, SC with IDENT in [369] and the method in [367] for the
identification of the Burgers’ equation (Equation 6.17) with the initial condition (Equa-
tion 6.19), and various noise levels. In this table, we only include the reconstructed terms
with the coefficient magnitudes above 10−2. ST, SC and IDENT are very stable compared
to the method in [367]. The coefficient error ec (Equation 6.13) and the time evolution
error ee (Equation 6.14) are shown. The errors given by ST, SC and IDENT are smaller
than the errors given by the method in [367].Comparison of ST, SC with IDENT in [369]
and the method in [367] for the identification of the Burgers’ equation (Equation 6.17) with
the initial condition (Equation 6.19), and various noise levels. This table only includes the
reconstructed terms with the coefficient magnitudes above 10−2. ST, SC, and IDENT are
very stable compared to the method in [367]. The coefficient error ec (Equation 6.13) and
the time evolution error ee (Equation 6.14) are shown. The errors given by ST, SC, and
IDENT are smaller than the method’s errors in [367].

Method 0% noise ec ee
[367] ut = −0.95uux − 0.01u 6.55× 10−2 1.53× 10−4

ST, SC, IDENT ut = −1.0013uux 1.27× 10−3 2.62× 10−5

1% noise ec e2

[367] ut = −0.89uux − 0.13u+ 0.07u2 3.15× 10−1 3.42× 10−4

ST, SC, IDENT ut = −0.97uux 2.53× 10−2 7.38× 10−5

5% noise ec ee

[367]
ut =− 0.35uux + 0.09u2

+ 0.05u+ 0.06
8.54× 10−1 2.00× 10−3

ST, SC, IDENT ut = −0.98uux 2.03× 10−2 5.95× 10−5

Table 6.6: Identification of the Burgers’ equation with diffusion (Equation 6.20) with dif-
ferent noise levels. The identification results (second column) by ST and SC are good with
small ec and er for a noise level up to 5%. Here w = 20 for ST, and α = 1/10 for SC.

Method 0% noise without SDD ec er
ST, SC ut = −1.0018uux + 0.1001uxx 1.67× 10−3 8.14× 10−4

0% noise with SDD ec er
ST, SC ut = −0.9994uux + 0.1009uxx 1.36× 10−3 7.68× 10−3

1% noise ec er
ST, SC ut = −0.9901uux + 0.1013uxx 1.02× 10−2 1.19× 10−2

5% noise ec er
ST, SC ut = −1.0170uux + 0.0976uxx 1.77× 10−2 2.21× 10−2

10%. Each experiment is repeated 50 times, and the error is averaged. We test IDENT,

ST(20), and SC(1/10). Among the three methods, ST is the best. SC does not perform as

well as ST and IDENT when the noise level is large. For high order PDEs, the high order

derivatives are heavily contaminated by noise, even with SDD, which affects the accuracy

234

of cross-validation. While ST and IDENT use time evolution, it is easier to pick correct

features. In general, ST performs better than SC for high order PDEs when the given data

contain heavy noise.

(a) (b) (c)

0 2 4 6 8 10

noise level in percentage

0

0.5

1

1.5

e
c

IDENT

ST(20)

SC(1/10)

0 2 4 6 8 10

noise level in percentage

0

0.1

0.2

0.3

0.4

0.5

0.6

e
r

IDENT

ST(20)

SC(1/10)

0 2 4 6 8 10

noise level in percentage

0

0.5

1

1.5

2

2.5

e
e

10
-5

IDENT

ST(20)

SC(1/10)

Figure 6.11: The average error ec, er and ee over 50 experiments of the Burgers’ equation
with diffusion (Equation 6.20) with respect to various noise levels. (a) The curve repre-
sents the average ec for IDENT [369] (Geeen), ST (Red) and SC (Blue), and the standard
deviations are represented by vertical bars. (b) The average and variation of er for IDENT
(Green), ST (Red) and SC (Blue). (b) The average and variation of ee for IDENT (Green),
ST (Red) and SC (Blue). Among the three methods, ST gives the best result.

In Figure 6.12, we explore the effect of α in SC on the Burgers’ equation with diffusion.

Figure 6.12 (a) and (b) show ec and er versus 1/α respectively, with 0.5%, 1%, 3%, and 5%

noise. When the noise level is low, such as 0.5% and 1%, we have a wide range of good

choices of α which gives rise to a smaller error. As the noise level increases, the range of

the optimal α becomes narrow.

6.3.4 The KdV Equation

In this example, we test our proposed algorithm to identify the KdV equation

ut + 6uux + uxxx = 0, (6.21)

on the spatial domain [−10, 10] and the time domain 0 ≤ t ≤ T with T = 0.4. We use the

initial condition u(x, 0) = 5sech2(1.2x). The data is generated with δx = ∆x = 0.1, δt =

10−5. Data are downsampled in the time domain with ∆t = 10−3. Our dictionary contains

235

(a) (b)

10
0

10
1

10
2

10
3

1/

0

0.2

0.4

0.6

0.8

1

1.2

e
c

0.5% noise

1% noise

3% noise

5% noise

10
0

10
1

10
2

10
3

1/

0

0.05

0.1

0.15

0.2

0.25

0.3

e
r

0.5% noise

1% noise

3% noise

5% noise

Figure 6.12: Robustness of SC to the choice of α for the recovery of the Burgers’ equation
with diffusion (Equation 6.20). (a) and (b) display ec and er versus 1/α respectively, with
0.5% (Blue), 1% (Red), 3% (Orange), 5% (Purple) noise. Each experiment is repeated 50
times, and the errors are averaged. When the noise level is low, such as 0.5% and 1%, there
is a wide range of values for α, which give a small error. As the noise level increases, the
range of the optimal α becomes narrow.

1, u, ux, uxx and uxxx and their pairwise products. There are 15 terms in the dictionary.

The identified PDE by ST and SC from clean data is shown in Table 6.7. In this example

w = 20, ∆̃t = 100 is used in ST and α = 1/1000 is used in SC. Our results show that both

ST and SC can identify the correct PDE.

Table 6.7: Identification of the KdV equation (Equation 6.21). Both ST and SC can identify
the correct PDE.

Method Identified PDE ec er
ST, SC ut = −6.135uux − 1.0580uxxx 2.77× 10−2 1.21

6.3.5 A Larger Dictionary

The examples above involve a particular set of a dictionary which consists of the leading

terms in the Taylor expansion of the governing equation f(u, ∂xu, ∂
2
xu). Our method is

general and can be applied if we use other sets of the dictionary.

We next test ST and SC on a larger set of dictionary, including 1, u, ux, uxx and sin(2πu), cos(2πu)

and their pairwise products. Since sin2(2πu) + cos2(2πu) = 1, we exclude the term

cos2(2πu) to guarantee a set of linearly independent features. This dictionary contains

236

20 features. We consider the following PDE

ut = u− 0.1ux sin(2πu) (6.22)

with initial condition

u(x, 0) = 0.8 sin(3πx) cos(πx) (6.23)

and zero Dirichlet boundary condition. The data are generated by solving Equation 6.22

with δx = ∆x = 1/256, δt = ∆t = 4×10−3 and T = 0.2. The identified PDEs by ST and

SC with various noise levels are shown in Table 6.8. On the clean data without SDD, ST

identifies an additional term whose coefficient is very small. The corresponding ec and er

are very small. With noise level up to 10%, both ST and SC identify the correct PDE with

a small ec and er.

Table 6.8: Identification of Equation 6.22 with different noise levels. The identification
results (second column) by ST and SC are good with small ec and er for a noise level up to
5%. Here w = 20 for ST, and α = 1/500 for SC.

Method 0% noise without SDD ec er

ST
ut =0.9994u− 0.0995 sin(2πu)ux

− 2.90× 10−5 cos(2πu)uxx
1.01× 10−3 1.73× 10−3

SC ut = 0.9987u− 0.0992 sin(2πu)ux 1.88× 10−3 1.13× 10−3

0% noise with SDD ec er
ST, SC ut = 0.9903u− 0.0895 sin(2πu)ux 1.83× 10−2 1.49× 10−2

5% noise ec er
ST, SC ut = 0.9909u− 0.0887 sin(2πu)ux 1.85× 10−2 1.56× 10−2

10% noise ec er
ST, SC ut = 1.0646u− 0.1026 sin(2πu)ux 6.11× 10−2 1.33× 10−2

6.3.6 Two Dimensional PDEs

We apply our methods to identify PDEs in a two-dimensional space. The PDEs are solved

with δx = δy = 0.02 and δt = 8 × 10−4. Data are downsampled from the numerical

237

solution with ∆x = 0.04 and ∆t = 8 × 10−3. We fix w = 10 for ST and α = 3/200 for

SC.

The identification of two-dimensional PDEs is more challenging and more sensitive to

noise. There are more features in two dimensions, and the directional variation of the data

adds complexity to the problem. We will show that both ST and SC are still robust against

noise.

We first consider the following PDE:

ut = 0.02uxx − uuy for (x, y, t) ∈ [0, 1]2 × [0, 0.1],

u(x, y, 0) = sin2(3πx
0.9

) sin2(2πx
0.9

) when (x, y) ∈ [0, 0.9]2 and 0 otherwise.
, (6.24)

which has different dynamics along the x and y directions. Table 6.9 shows the identifi-

cation results of ST(10) and SC(3/200) with noise level 0%, 5% and 10%. Both methods

identify the same features with small ec and er.

Table 6.9: Identification of the two dimensional PDE (Equation 6.24) with different noise
levels. The identification results (second column) by ST and SC have small ec and er for a
noise level up to 10%. Here w = 10 for ST, and α = 3/200 for SC.

Method 0% noise ec er
ST, SC ut = 0.0189uxx − 0.9525uuy 4.75× 10−2 2.48× 10−2

5% noise ec er
ST, SC ut = 0.0178uxx − 0.9362uuy 8.43× 10−2 7.45× 10−2

10% noise ec er
ST, SC ut = 0.0134uxx − 0.8674uuy 1.33× 10−1 1.79× 10−1

6.3.7 Identifiability Based on the Given Data

For the PDE identification, especially in high dimensions, the given data U plays an impor-

tant role. When the initial condition has sufficient variations in each dimension, the correct

PDE can be identified. Otherwise, there may be multiple PDEs which generate the same

238

dynamics. For example, consider the following transport equation without noise:

ut = −0.5ux + 0.5uy, (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 0.1]

u(x, y, 0) = f(x, y), (x, y) ∈ [0, 1]× [0, 1]

, (6.25)

where f denotes the initial condition.

Choosing δx = δy = 0.02 and δt = 7 × 10−4, taking the downsampling rate in

space as 2 and in time as 10, we first choose f(x, y) = sin(2πx/0.9))2 sin(2πy/0.9)2 for

(x, y) ∈ [0, 0.9]× [0, 0.9] and 0 otherwise. The identified PDE by SC(1/200) is

ut = −0.5001ux + 0.4800uy ,

where the recovered coefficients are very close to the true coefficients. The same result

is identified by using ST(20). Next we choose f(x, y) = sin(2πx/0.9))2 for (x, y) ∈

[0, 0.9]× R and 0 otherwise, then SC(1/200) gives

ut = −0.4992ux . (6.26)

which is also identified by using ST(20). With the specified initial condition, the PDE in

Equation 6.25 has the exact solution:

u(x, y, t) =

sin(2π(x−0.5t)

0.9
)2, x ∈ [0.5t, 0.9 + 0.5t], (x, y) ∈ R× [0, 1], t ∈ [0, 0.1]

0, Otherwise

which also satisfies ut = −0.5ux. The identified PDE in Equation 6.26 approximates this

simpler equation. Since the given data only vary along the x direction, the columns in the

feature matrix related to y, e.g., uy, uxuy, and uyy, are mostly 0. This explains why our

method identifies the PDE in Equation 6.26, instead of Equation 6.25.

In this problem, the original PDE can be identified if the initial condition has sufficient

239

variations. The identifiability can be defined as follows: Suppose the original PDE is asso-

ciated with the coefficient vector c0 with sparsity S. This PDE is identifiable if there is a

unique coefficient vector with sparsity no more than S, such that the evolution of the PDE

associated with this coefficient vector, starting from the given initial condition, matches the

given data. We believe it is an open question to investigate the theoretical conditions under

which the PDE problem is identifiable. Roughly speaking, the PDE problem is identifi-

able if the PDE solution with a given initial condition gives rise to the feature matrix F ,

which has a small pairwise coherence, in the sense that any two columns of F have a small

correlation. We refer to [369, Theorem 1] for an identifiability condition in Lasso.

6.3.8 Choice of Smoother in SDD

In this paper, we use Moving Least Square (MLS) as the denoising in SDD. To numerically

justify this choice among Moving Average (MA) [396], cubic spline interpolation [397],

and diffusion smoothing [240], we present the SDD results with these smoothers in Figure

Figure 6.13. We first solve the PDE

ut = −0.4uux − 0.2uuy, (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 0.15] , (6.27)

with ∆t = 0.005 and ∆x = ∆y = 0.01, where the initial condition is u(x, y, 0) =

sin(3πx) sin(5πy). Then 5% Gaussian noise is added to the numerical solution. Given

the noisy data, we perform SDD denoising with different smoothers to obtain various par-

tial derivatives. In MLS, we take the bandwidth h = 0.04. For MA, the window size for

averaging is fixed to be 3. For Cubic Spline, we use the MATLAB function csaps with

p = 0.5. For the Diffusion denoising, we evolve the noisy surface following the heat equa-

tion ut = uxx + uyy with a time step size (∆x)2/4 for 5 iterations. Figure 6.13 shows the

SDD results of u, ux, uyy, uux at t = 0.15 when different smoothers are used in SDD. All

of them recover U (the first row), while MLS preserves the underlying dynamics the best,

240

i.e., the first and second-order derivatives.

6.4 Support Recovery in Statistics

The discussion in the previous sections leads us to consider a theoretical question: what

does sparsity dp during the process of PDE identification? This is directly related to the

support recovery or variable selection problems of Lasso, which have a long and intensive

history in the statistical literature. In the noiseless setting, many researchers [398, 399,

400, 401, 402, 391] established different sufficient conditions for either the deterministic

or random predictors for the support recovery problems of linear systems via the `1-norm.

Since our work falls into the category of noisy setting, we focus more on reviewing

the body of work in the noisy setting. In [403], authors studied the asymptotic behav-

ior of the Lasso-type estimator with fixed dimension K under the general centered i.i.d.

noises with variance σ2 > 0. Both [404] and [400] independently developed sufficient

conditions for the support of Lasso estimator to be contained within true support of the

sparse model. Under a more general setting, when the exterior noise is i.i.d. with finite

moments, [405] showed that the Irrepresentable Condition [406] is almost necessary and

sufficient for Lasso’s signed-support recovery for fixed K and s. Furthermore, under the

Gaussian noise assumption, they showed that Lasso can still achieve signed-support re-

covery when K is allowed to grow exponentially faster than n. In a non-asymptotic set-

ting, [407] established the sharp relationship of n, K, and s, required for the exact sign

consistency of Lasso, where K and s are allowed to grow as n increases under mutual

incoherence condition. Using a similar technique in [407], the paper [408] studied Lasso

under Poisson-like model with heteroscedastic noise and show that irrepresentable condi-

tion can serve as a necessary and sufficient condition for signed-support recovery in their

setting. In the context of graphical model, [409, 410] analyzed the model selection con-

sistency of Gaussian graphical models, and [411] showed the signed-support recovery of

241

u ux uyy uux

0% -1

-0.5

0

0.5

1

-30

-20

-10

0

10

-1000

-500

0

500

1000

-10

-5

0

5

10

5%

MA

CS

DF

MLS

Figure 6.13: SDD results with different smoothers. The first row is the numerical so-
lution of Equation 6.27 at t = 0.15 (0% noise) with the initial condition u0(x, y) =
sin(3πx) sin(5πy) and its various partial derivatives. The second row shows the noisy
data and its numerical derivatives when 5% Gaussian noise is added to the clean data. The
bottom four rows are the SDD results at t = 0.15 using MA, cubic spline (CS), diffusion
(DF), and MLS in order. While all methods recover U (the first row), the dynamics of the
derivatives, especially in the third and fourth rows, are best preserved by MLS.

242

Ising models. See [412] for a more comprehensive overview on this topic.

6.5 PDE Identification via `1-PsLS

6.5.1 Problem Setting

To answer the theoretical question of signed support recovery, we focus on a particular form

of PDE identification setting. Take (x, t) ∈ [0, Xmax)× [0, Tmax) for some finite constants

0 < Xmax, Tmax < ∞. Recall that the underlying mapping F is a degree 2 polynomial1

parametrized by a coefficient vector β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p,q, . . .) with real entries, that is,

ut(x, t) = F(u, ∂xu, ∂
2
xu, . . . , ;β

∗) := β∗0 + β∗1u+ β∗2ux + β∗3uxx + · · ·+ β∗p,q∂
p
xu∂

q
xu+

(6.28)

We call the monomials in the right-hand side of Equation 6.28 as feature variables. We

set a finite integer upper-bound, Pmax > 0, for the possible orders of the partial derivatives

of u with respect to x in Equation 6.28. Hence, We assume that β∗ ∈ RK , with K =

1 + 2(Pmax + 1) +
(
Pmax+1

2

)
; consequently, constant and any term of the form ∂pxu or

∂pxu∂
q
xu, for 0 ≤ p, q ≤ Pmax, are contained in (Equation 6.28). Notice that many entries of

β∗ can be zero. We denote S(β∗) := {0 ≤ j ≤ K | β∗j 6= 0}, or simply S, as the support

of the coefficient vector β∗, i.e., the set of indices of the non-zero entries. Additionally, we

denote s as the cardinality of the set S, i.e., s := |S(β∗)|.

The given data setD = {
(
Xi, tn, U

n
i

)
| i = 0, . . . ,M−1;n = 0, . . . , N−1} ⊆ Ω×R

consists of M × N data, where M,N ∈ R, M,N ≥ 1. Each (Xi, tn) ∈ Ω represents a

space-time sampling grid point, and Un
i is a representation of u(Xi, tn) contaminated by

additive Gaussian noise:

Un
i = u(Xi, tn) + νni , νni

i.i.d.∼ N (0, σ2) ,

1It should be noted that our setting can be generalized to higher-degrees of polynomials and functions
with multiple spatial dimensions.

243

whose second moment is uniformly bounded as follows: supN,M∈R maxn,iE |Un
i |

2 :=

η2 <∞. Here N (0, σ2) denotes the centered normal distribution with variance σ2 > 0.

6.5.2 Local-Polynomial Regression Estimators for Derivatives

Given data {(Xi, tn, U
n
i)} with i = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1, we employ

a local quadratic regression to estimate ut(Xi, ·) for each fixed space point Xi and use a

Local-Polynomial with degree p + 1 to estimate ∂pxu(·, tn) at each temporal point tn, for

each degree p = 0, 1, . . . , Pmax. More specifically, we solve the following optimization

problems:

{
b̂j(Xi, t)

}
j=0,1,2

= arg min
bj(t)∈R,0≤j≤2

N−1∑
n=0

(
Un
i −

2∑
j=0

bj(t)(tn − t)j
)2

KhN
(
tn − t

)
,

for i = 0, 1, . . . ,M − 1 ; (6.29){
ĉpj(x, tn)

}
j=0,1,...,p+1

= arg min
cj(t)∈R,0≤j≤p+1

M−1∑
i=0

(
Un
i −

p+1∑
j=0

cpj(t)(Xi − x)j
)2

KwM
(
Xi − x

)
,

for n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , Pmax. (6.30)

and set ût(Xi, t) = b̂1(Xi, t) and ∂̂pxu(x, tn) = p!ĉpp(x, tn). Here hN and wp,M denote the

window width parameters, and Kw(z) := K(z/w)/w for some kernel function K with

window width w > 0. Specific choices of the order of polynomial fit for the functions ût

and ∂̂pxu are to strike the balance between modeling bias and variance. See Subsections

3.1 and 3.3 of Fan and Gijbels [413] for more rigorous treatments on this topic. Also the

kernel K is assumed to be uniformly continuous and absolutely integrable with respect to

Lebesgue measure on the real-line; K(z) → 0 as |z| → +∞; and
∫
|z ln |z‖1/2|dK(z)| <

+∞.

Optimization problems Equation 6.29 and Equation 6.30 have closed-form solutions

in the form of weighted least square estimator. See Appendix section C.3. However, for

theoretical investigation, we employ the notion of equivalent kernel [413, 414] to write the

244

solutions as follows: for any fixed spatial point Xi, i = 0, 1, . . . ,M − 1, ût(Xi, t) can be

written as:

ût(Xi, t) =
1

Nh2
N

N−1∑
n=0

K∗2
(
tn − t
hN

)
Un
i

{
1 + oP(1)

}
. (6.31)

Similarly, for any fixed temporal point tn, n = 0, 1, . . . , N − 1, the estimation for the p-th

order partial derivative takes the form:

∂̂pxu(x, tn) =
p!

Mwp+1
M

M∑
i=1

K∗p
(
Xi − x
wM

)
Un
i

{
1 + oP(1)

}
. (6.32)

Here, K∗j (z) = eTj S
−1(1, z, . . . , zp)TK(z) is called an equivalent kernel, where ej denotes

a unit vector with 1 on the j th position; S = (
∫
zl+sK(z)dz)0≤l,s≤p is the moment matrix

associated with kernel K; and oP(1) denotes a random quantity tending to zero as either N

or M tends to infinity. From here, we will omit the dependency on j for the simplicity of

notation when using the equivalent kernel.

Remark 6.5.1. The most important reason for using the Local-Polynomial fitting for the

estimation of state variables and their derivatives is its rich literature in asymptotic prop-

erties and uniform convergence of the estimator [413, 415, 416, 414]. Specifically, these

results allow us to explore the behavior of the tail-probability of the measurement error τ ,

which is essential for the analysis of the `1-PsLS estimator. See Subsection subsection 6.7.2

for more information.

6.5.3 `1-regularized Pseudo Least Square Model

First, we introduce matrix-vector notations for compact expressions of the problem. We let

ut ∈ RNM denote the vectorization of {ut(Xi, tn)}n=0,...,N−1
i=0,...,M−1 in a dictionary order prioritiz-

ing the spatial dimension; that is, uTt =

[
ut(X0, t0) ut(X1, t0) · · ·

]
. Recall the feature

245

matrix, F ∈ RNM×K , as the collection of values of feature variables organized as follows:

F :=

1 u(X0, t0) ∂xu(X0, t0) · · · ∂pxu(X0, t0)∂qxu(X0, t0) · · ·

1 u(X1, t0) ∂xu(X1, t0) · · · ∂pxu(X1, t0)∂qxu(X1, t0) · · ·
...

...
... · · ·

1 u(XM−1, t0) ∂xu(XM−1, t0) · · · ∂pxu(XM−1, t0)∂qxu(XM−1, t0) · · ·

1 u(X0, t1) ∂xu(X0, t1) · · · ∂pxu(X0, t1)∂qxu(X0, t1) · · ·
...

...
... · · ·

1 u(XM−1, tN−1) ∂xu(XM−1, tN−1) · · · ∂pxu(XM−1, tN−1)∂qxu(XM−1, tN−1) · · ·

.

With these notations, Equation 6.28 can be written as ut = Fβ∗. Note that before es-

timating the correct signed-support of β∗, ut and F need to be estimated. Conventional

regression techniques such as Local-Polynomial regression, smoothing spline, and regres-

sion spline, among others, can be used to estimate ut and columns of F. In this paper, we

employ the Local-Polynomial approach. We denote ût ∈ RNM and F̂ ∈ RNM×K by re-

placing the entries of ut and F respectively with the corresponding estimators. (i.e., (̂ut)ni ,

(̂∂pxu)ni , and (̂∂pxu)ni (̂∂qxu)ni .)

Let ∆ut = ût−ut, ∆F = F̂−F denote the difference between the obtained estimators

ût and F̂ via Local-Polynomial regression and their ground-truth counterparts. With these

notations, we formally obtain a regression model

ût = F̂β∗ + τ , where τ = ∆Fβ∗ −∆ut . (6.33)

The natural extension for inducing sparsity of the parameter of interest is to add positively

weighted `1-penalty term ‖β‖1 to the squared loss ‖ût−F̂β‖2
2, which leads to the following

estimator:

β̂λ = arg min
β∈RK

{
1

2NM

∥∥∥ût − F̂β
∥∥∥2

2
+ λN ‖β‖1

}
, (6.34)

246

where λN > 0 is a regularization hyper-parameter. Note that we normalize the columns of

F̂ such that 1√
NM

maxj=1,...,K ‖F̂j‖2 ≤ 1 while solving (Equation 6.34).

Observe that Equation 6.34 is formally identical to Lasso [393] for high-dimensional

sparsity recovery. We call (Equation 6.34) as `1-Pseudo Least Square method instead of

Lasso. Similarly with [417], the word pseudo comes from the setting of our problem, that

is, β̂λ is not a true `1-least square estimator, but a minimizer of the `1-least square fit with

the estimated ût and F̂.

Additionally, the residual vector τ violates conventional assumptions on residuals in

linear regression, where they are assumed to be centered and independent among entries.

See [405, 407, 403]. If ût and F̂ are unbiased estimators of ut and F, τ is a residual vector

with mean zero, but its entries are not independent. However, if ût and F̂ are biased estima-

tors such as Local-Polynomial estimators in our case, τ is not a mean zero random vector.

Moreover, the unknown signal β∗ makes the distribution of τ completely inaccessible.

These complexities make the study of the proposed estimator β̂λ challenging.

6.6 Recovery Theory for `1-PsLS based PDE Identification

6.6.1 Signed-Support Recovery

The main goal of this paper is to provide provable guarantees that the proposed `1-PsLS

method gives asymptotically consistent estimator of β∗ in the sense of signed-support re-

covery. We can formally state this problem with the adoption of S±(β) notation, that is:

for any vecto r β ∈ RK , we define its extended sign vector, whose each entry is written as:

S±(βi) :=

+1 if βi > 0

−1 if βi < 0

0 if βi = 0,

247

for i ∈ {1, . . . , K}. This notation encodes the signed-support of the vector β. Denote β̂λ

as the unique solution of `1-PsLS. Then under some regularity conditions on the design

matrix F, we will show,

P
[
S±(β̂λ) = S±(β∗)

]
→ 1 as N,M → +∞,

where N and M denote the grid size of temporal and spatial dimensions, respectively.

6.6.2 Assumptions

We introduce two sufficient conditions frequently assumed in `1-regularized regression

models for the signed-support recovery of the true signal β∗.

1. Minimal eigenvalue condition. There exists some constant Cmin > 0 such that:

Λmin

(
1

NM
FT
SFS

)
≥ Cmin. (A1)

Here Λmin(A) denotes the minimal eigenvalue of a square matrix A ∈ Rn×n, and FS

is made of columns of F when the column index is in the support set S. Note that

if this condition is violated, the columns of FS would be linearly dependent, and it

would be impossible to estimate the true signal β∗ even in the “oracle case” when the

support set S is known a priori.

2. Mutual incoherence condition. For some incoherence parameter µ ∈ (0, 1]:

���(FT
ScFS

)(
FT
SFS

)−1
���
∞
≤ 1− µ. (A2)

This condition states that the irrelevant predictors cannot exhibit an overly strong

influence on the relevant predictors. More specifically, for each index j ∈ Sc, the

vector (FT
SFS)−1FT

SFj is the regression coefficient of Fj on FS , thus, it is a measure

of how well the column Fj aligns with the columns of FS . A large µ close to 1

248

indicates that the columns {Fj, j ∈ Sc} are nearly orthogonal to the columns of FS ,

which is desirable for support recovery.

For future reference, we define Q∗ :=
(
FT
ScFS

)(
FT
SFS

)−1, and name it as population

incoherence matrix. Also, define its estimated counterpart as Q̂N :=
(
F̂T
ScF̂S

)(
F̂T
S F̂S

)−1,

and call it sample incoherence matrix. Note that the dependence of the support set S on

quantities Q∗ and Q̂N is suppressed for notational simplicity.

6.6.3 Statement of Main Result

Theorem 6.6.1. Given the observed data set D whose spatial resolution is related to

the temporal resolution via M = Θ(N
2Pmax+5

7), we take the bandwidths of the kernels

in (Equation 6.29) and (Equation 6.30) as hN = Θ(N−
1
7), wM = Θ(M− 1

7), respec-

tively. Under the assumptions (item A1) and (item A2) imposed on the ground-truth fea-

ture matrix F, suppose that the sequence of regularization hyper-parameters {λN} satis-

fies λN = Ω

(
C
√
K lnN

µN2/7−c

)
for some large enough N , some constant C > 0 and 0 < c <

2
7

independent of N . Then, the following properties hold with probability greater than

1−O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))
→ 1 as N →∞:

1. The `1-PsLS method (Equation 6.34) has a unique minimizer β̂λ ∈ RK with its sup-

port contained within the true support, that is S(β̂λ) ⊆ S(β∗), and the estimator

satisfies the `∞ bound:

∥∥∥β̂λS − β∗S

∥∥∥
∞
≤ K3/2Cmin

(
C

lnN

N2/7−c + λN

)
. (6.35)

2. Additionally, if the minimum value of the model parameters supported on S is greater

than the upper-bound of Equation 6.35, that is min1≤i≤s |(β∗S)i| > K3/2Cmin

(
C lnN
N2/7−c + λN

)
,

then β̂λ has a correct signed-support. i.e., S±(β̂λ) = S±(β∗).

The overall proof sketch of Theorem 6.6.1 is described in the subsection 6.6.4, and rel-

evant technical propositions and lemmas are further provided in section 6.6 and section 6.7.

249

Here, we give some important remarks about Theorem 6.6.1.

1. The uniqueness claim of β̂λ in (1) seems trivial since the objective function in Equa-

tion 6.34 is strictly convex in the regime of K being fixed and NM →∞. However,

we need to ensure that minimal eigenvalue condition hold over the estimated fea-

ture matrix F̂, given the assumption (item A1) for some Cmin > 0. We defer this

statement as Lemma 6.8.1 in section 6.8 and provide the proof in subsection C.5.1.

2. The first item (1) claims that `1-PsLS does not falsely select the arguments in that

are not in the support of β∗. Also note that part (2) is a consequence of the sup-norm

bound from Equation 6.35: as long as minimum value of |β∗i | over indices i ∈ S is

not small, `1-PsLS is signed-support recovery consistent.

3. The asymptotic orders of M , hN , and wM are specifically chosen for simplification.

Although there is certain flexibility, the spatial resolutionM and the temporal resolu-

tion N (as well as hN and wM) need to be coordinated well to guarantee the support

recovery property. This was expected in practice since we need sufficient sampling

frequencies both in temporal and space to estimate the underlying dynamics. Here,

the Theorem 6.6.1 present a rigorous justification for a combination of these resolu-

tions which is sufficient for the support recovery.

4. The quantity c is derived from the Tusnady’s strong approximation [416] where the

error of an empirical distribution is compared with a Brownian bridge in tail probabil-

ity. See subsection C.4.1. With a larger value of c, the regularization hyper-parameter

λN needs to remain relatively large, but the convergence is faster. Whereas for a

smaller value of c, we can relax the regularization in the cost of a slower probability

convergence rate.

5. The threshold of λN in the statement of the Theorem shows that when the number of

data increases, there is more flexibility in tuning this parameter. If the incoherence

250

parameter µ is small, or equivalently, the group of correct feature variables and the

group of the others are similar, to guarantee that the support of the estimated coeffi-

cient vector is contained in the correct one, it suffices to use a large value of λN . Such

behavior of the threshold is consistent with that described in Theorem 1 of [407].

6. The upper-bound for the `∞-norm of the coefficient error in Equation 6.35 consists

of two components. The first one concerns the grid resolution determined by N , and

the underlying function u as well as the choice of regression kernels encapsulated in

the constant C. AsN increases to∞, this part converges to 0 without explicit depen-

dence on the choice of feature variables selected by `1-PsLS. The second component

is simple: K3/2CminλN . When N increases, this part does not vary. This indicates

that asymptotically, `1-PsLS recovers signed-support of governing PDE, as long as

min1≤i≤s |(β∗S)i| > K3/2CminλN .

6.6.4 Proof Strategy of the Main Theorem

The analysis for the proof of Theorem 6.6.1 is naturally divided into two steps as follows:

In the first step, we prove a result analogous to that of the Theorem 6.6.1 by imposing in-

coherence assumption on the estimated feature matrix F̂. Specifically, since F̂ is a random

matrix, we assume that for some µ ∈ (0, 1], the event, {�Q̂N�∞ ≤ 1 − µ}, holds with

some probability at least Pµ, for some Pµ ∈ (0, 1]. Under this assumption, we prove that

the success probability of signed-support recovery of `1-PsLS converges to Pµ with an ex-

ponential decay rate. This is formally stated as Proposition 6.7.1 in subsection 6.7.1.

In the second step, we show that the success probability Pµ goes to 1, given that the

ground-truth matrix F satisfies assumptions (item A1) and (item A2). This is equivalent

to proving that, given the assumptions (item A1) and (item A2) for F for some Cmin > 0

and µ ∈ (0, 1], the same assumptions hold for the estimated F̂ in probability. We state these

results formally in Lemmas 6.8.1 and 6.8.2 in Section section 6.8.

251

6.7 Analysis Under Sample Incoherence Matrix Assumptions

In this section, we provide a proof overview of Proposition 6.7.1 and the key technical

contribution of our paper. All the detailed statements and proofs of the Proposition 6.7.1

and its relevant lemmas are relegated to the Appendix for the conciseness.

6.7.1 Statement of Proposition

We establish the signed-support consistency of `1-PsLS estimator when the assumptions

are directly imposed on the estimated feature matrix F̂, instead on the ground-truth feature

matrix F. More specifically, we assume that there exist some constants µ ∈ (0, 1] and

Cmin > 0, such that the followings hold:

P
[���Q̂N���

∞
≤ 1− µ

]
≥ Pµ and Λmin

(1

NM
F̂T
S F̂S

)
≥ Cmin almost surely . (A3)

Here, Pµ ∈ [0, 1] denotes some probability that Q̂N satisfies the incoherence assumption.

Equipped with this assumption, we have the following proposition:

Proposition 6.7.1. Given the observed data set D, where the spatial resolution is related

to the temporal resolution via M = Θ(N
2Pmax+5

7), we take the bandwidths of the kernels

in Equation 6.29 and Equation 6.30 as hN = Θ(N−
1
7), wM = Θ(M− 1

7), respectively.

Under the assumptions in Equation A3 imposed on the estimated feature matrix F̂, suppose

that the sequence of regularization hyper-parameters {λN} satisfies λN = Ω

(
C
√
K lnN

µN2/7−c

)
for some constant C > 0 and 0 < c < 2

7
independent of N . Then, the following properties

hold :

1. With probability greater than Pµ − O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))
→ Pµ as N →

∞, the `1-PsLS method (Equation 6.34) has a unique minimizer β̂λ ∈ RK with its

support contained within the true support, that is S(β̂λ) ⊆ S(β∗).

2. With probability greater than 1−O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))
→ 1 as N →∞, β̂λ

252

satisfies the `∞ bound:

∥∥∥β̂λS − β∗S

∥∥∥
∞
≤ K3/2Cmin

(
C

lnN

N2/7−c + λN

)
. (6.36)

3. Additionally, if the minimum value of model parameter supported on S is greater

than the upper-bound of Equation 6.36, that is min1≤i≤s |(β∗S)i| > K3/2Cmin

(
C lnN
N2/7−c + λN

)
,

then β̂λ has a correct signed-support. (i.e., S±(β̂λ) = S±(β∗))

We remark that the first item (1) in Proposition 6.7.1 holds with probability Pµ ≤ 1

asymptotically, while the second item (2) holds with probability 1 asymptotically. They

are not contradictory, since (1) focuses on the estimation errors on entries within the true

support S , whereas (2) describes the support recovery of the coefficient vector over all

indices. Technically speaking, proof of (1) is involved with mutual incoherence condition

in Equation A3, whereas (2) is involved with minimum-eigen value condition on F̂ in

Equation A3.

6.7.2 Proof Overview of Proposition 6.7.1

Readers can find the proof of Equation 6.36 in subsection C.4.6. Here, we focus on pro-

viding the high-level idea on the proof of (1) of Propostion 6.7.1. The most important

ingredient for the success of PDW construction is to establish the strict dual feasibility of

the dual vector ẑ, when ẑ ∈ ∂‖β̂λ‖1, where ∂‖β̂λ‖1 is a sub-differential set of ‖ · ‖1 evalu-

ated at β̂λ. In other words, we need to ensure that ‖ẑSc‖∞ < 1 with high probability. (See

section C.2.) Through Karush–Kuhn–Tucker (KKT) condition of the optimal pair (β̂λ, ẑ)

of Equation 6.34 and settings of PDW construction, we can explicitly derive the expression

of the dual vector ẑ supported on the complement of the support set S as follows:

ẑSc = F̂T
ScF̂S(F̂T

S F̂S)−1ẑS +
1

λNMN
F̂T
ScΠS⊥(∆ut −∆FSβ

∗
S)︸ ︷︷ ︸

:=Z̃Sc

, (6.37)

253

where ΠS⊥ is an orthogonal projection operator on the column space of F̂S . By the mu-

tual incoherence condition in Equation A3, the first term of the right-hand side in Equa-

tion 6.37 is upper-bounded by 1−µ for some µ ∈ (0, 1], with some probability Pµ ∈ [0, 1].

The remaining task is to control the tail probability of Z̃j for j ∈ Sc: that is to ensure

P
[

maxj∈Sc |Z̃j| ≥ µ
]
→ 0 with some exponential decay rate. With the help of Lemma

C.4.1 in the Appendix, controlling the probability P
[
‖Z̃Sc‖∞ ≥ µ

]
reduces to controlling

P
[
‖∆FSβ

∗
S −∆ut‖∞ ≥ µ λN√

K

]
. Controlling the bound on P

[
‖τ‖∞ ≥ ε

]
for some ε > 0

is challenging, since the exact form of the residual distribution τ is unknown. (Note that

τ = ∆FSβ
∗
S −∆ut since ut = Fβ∗.)

We circumvent this difficulty by using the following inequality: for some thresholds

εN > 0 and εM > 0, both of which go to 0 as N and M tends to∞, we have,

P
[
‖τ‖∞ ≥ εN + εM

]
≤ P

[
max

0≤i≤M−1
sup

t∈[0,Tmax)

|∆ut(Xi, t)| ≥ εN

]
+ P

[
max
1≤k≤s

0≤n≤N−1

sup
x∈[0,Xmax)

|∆Fk(x, tn)| ≥ εM
s‖β∗‖∞

]
≤M · P

[
sup

t∈[0,Tmax)

|∆ut(Xi, t)| ≥ εN

]
+ sN · P

[
sup

x∈[0,Xmax)

|∆Fk(x, tn)| ≥ εM
s‖β∗‖∞

]
.

The above inequality naturally leads us to study the uniform convergence of Local-Polynomial

estimator to its ground-truth function of interest. Say, for sufficiently large enough grid

size of temporal dimension N , for some εN ≥ 0 that is hN -dependent threshold and

Xi ∈ [0, Xmax), we will achieve

P

[
sup

t∈[0,Tmax)

|ût(Xi, t)− ut(Xi, t)| > εN

]
→ 0, (6.38)

with an exponential decay rate. As for obtaining the exponential decay rate in Equa-

tion 6.38, it turns out that thresholds εN and εM are functions of bandwidth parameters

hN and wM in Equation 6.31 and Equation 6.32. We choose correct orders of hN and wM

so that we can ensure that the thresholds εN and εM go to zero. Then, with the proper

254

choice on the order of λN together with P
[
‖τ‖∞ ≥ µ λN√

K

]
, we conclude the proof.

6.7.3 Technical Challenges

Several researchers have tried to achieve uniform convergence of Local-Polynomial or ker-

nel smoothing estimators in almost sure sense. See the works of Masry [418] and Li and

Hsing [419].

Here, we provide a high-level idea of the proof of Lemma C.4.2. First, we observe that

the higher-order Local-Polynomial smoothing is asymptotically equivalent to higher-order

kernel smoothing through equivalent kernel theory [413]. See Equation 6.31 and Equa-

tion 6.32 for their equivalences in mathematical form with kernel smoothing estimators.

Second, we employ Mack and Silverman’s [415] truncation idea on the Local-Polynomial

estimator and decompose ût(Xi, t)− ut(Xi, t) into three parts as follows:

ût − ut =

(
ût − ût

B′N − E
(
ût − ût

B
′
N
))

︸ ︷︷ ︸
Asymptotic deviation of truncation error

+

(
ût
B
′
N − Eût

B
′
N

)
︸ ︷︷ ︸

Asymptotic deviation of
truncated estimator

+

(
Eût − ut

)
︸ ︷︷ ︸

Asymptotic bias

,

where B′N is some increasing sequence in N , and ût
B′N denotes the truncated Local-

Polynomial estimator of ut. We control the sup over t ∈ [0, Tmax) on each of these three

components. The last component, Asymptotic bias of ût can be obtained through the classi-

cal result from [413, 414]. The exponential decay rate comes from the first two components

as follows:

1. Asymptotic deviation of truncation error can be decomposed into two parts. The first

part, which is ût − ût
B′N , can be easily controlled via chernoff bound of gaussian

random variable. by using the definition of truncated estimator ût
B′N . The second

part, which is the expected difference E
(
ût − ût

B
′
N
)
, can be bounded by some de-

terministic function of B′N and hN using the similar arguments in Proposition 1 of

[415].

255

2. Asymptotic deviation of truncated estimator is decomposed into two components as

well: (1) Brownian Bridge and (2) difference between some two-dimensional em-

pirical process and the Brownian Bridge. (1) can be controlled via uniform conver-

gence of Gaussian Process using the arguments similar to [420], together with simple

Markov inequality. (2) can be controlled via Tusnady’s strong uniform approxima-

tion theory [415, 416], stating that the two-dimensional empirical process can be well

approximated by a certain solution path of two-dimensional Brownian-bridge.

Same ideas can be employed for the uniform convergence of ∂̂pxu to ∂pxu for p ≥ 0.

6.8 Uniform Convergence of Sample Incoherence Matrix

In this section, we provide two lemmas that can complete the proof of Theorem 6.6.1. Here,

the minimum-eigenvalue and incoherence assumptions are imposed on the ground-truth

feature matrix F, instead on the estimated feature matrix F̂. See (item A1) and (item A2).

That is, there exist Cmin > 0 and µ ∈ (0, 1] such that the followings hold for the unknown

support set S:

Λmin

(1

NM
FT
SFS

)
≥ Cmin and

��Q∗��∞ ≤ 1− µ.

Equipped with the above assumptions, we can formally show that success probability of

the sample incoherence condition Pµ in Equation A3 tends to 1 as N →∞. Note that this

result is not an immediate consequence of classical random matrix theory (see [421, 422]),

since the elements in F̂T F̂ are highly dependent.

To prove the result, we first need the following lemma asserting that if there exists

Cmin > 0 such that the minimum eigen-value condition holds for FS , then the sample

minimum eigen-value condition holds with probability converging to 1 with an exponential

decay rate.

256

Lemma 6.8.1. Suppose that the assumption (item A1) holds with some constant Cmin > 0

and 0 < c < 2
7
, then with probability at least 1−O(N exp(−1

6
N c)), we have,

Λmin

(1

NM
F̂T
S F̂S

)
≥ Cmin .

With the help of Lemma 6.8.1, we can show that the sample incoherence condition holds

with high probability, given that there exists µ ∈ (0, 1] for the ground-truth version of

(item A2).

Lemma 6.8.2. Suppose that the assumption (item A2) holds with some constant µ ∈ (0, 1]

and 0 < c < 2
7
, then with probability at least 1−O(N exp(−1

6
N c)), we have,

���Q̂N���
∞
≤ 1− µ .

Verification of Lemma 6.8.2 automatically leads to the complete proof of Theorem

Theorem 6.6.1, together with Proposition 6.7.1. Therefore, as long as the two assumptions

(item A1) and (item A2) hold for F, with sufficiently fine-grained grid points over the

function u(X, t), `1-PsLS can always find the correct signed-support of the given PDE

model, with the minimum absolute value of β∗S not too close to zero.

Remark 6.8.1. (Technical Difficulties of Lemma 6.8.1 and 6.8.2.) The proof procedure

is involved with controlling the tail probability of difference between inner-product of two

arbitrary columns of F̂ and inner-product of the two corresponding columns of ground-

truth F. This problem is challenging even if the exact distribution of any entries of F̂ is

known, since the distribution of
∑NM

k=1 F̂kiF̂kj needs to be derived. We circumvent this

problem by taking the advantage of the uniform convergence result of ∂̂pxu for any p ≥ 0.

257

6.9 Numerical Experiments

6.9.1 Experimental Setting

In this subsection, we provide detailed descriptions on (1) two popular PDE models that

we are going to work on throughout the experiments, and on (2) how to generate the data

from respective models, and (3) how to design the regression problem for the experiments

to be presented.

We consider the following viscous Burgers’ equation:

ut = −uux + νuxx , 0 < x < 1, 0 < t < 0.1 (6.39)

u(x, 0) = sin2(2πx) + cos3(3πx) , 0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.

and the Korteweg–de Vries equation whose dimensionless form is given as

ut + uxxx + 6uux = 0 . (6.40)

with the initial condition:

u(x, 0) = 3.5 sin3(4πx) + 1.5 exp
(
− sin(2πx)(1− x)

)
,

0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.

For N -size sampling in the temporal dimension, by Theorem Theorem 6.6.1, we take

M = bN (2×Pmax+5)/7c sample size in the space dimension. We numerically solve Viscous

Burgers’ equation (Equation 6.39) by the Lax-Wendroff scheme on a grid with interval

width δt = 0.1/(100N) in temporal and δx = 1/M in space, then we downsampled the

data in the temporal dimension by a factor of 100; thus the resulted clean data is distributed

over a grid with N nodes in temporal and M nodes in space. Lastly, we added i.i.d. Gaus-

sian noise with standard deviation σ = 0.25 to the data. i.e., νni
i.i.d.∼ N (0, 0.252). As

258

for solving the KdV equation (Equation 6.40), the same approaches with Viscous Burger’s

equation are applied, with i.i.d. Gaussian noises with standard deviation σ = 0.025.

Constructions of Regression Problems

We employ the Local-Polynomial smoothing for estimating ût and F̂ as described in Sub-

section subsection 6.5.2. Regarding a choice of kernel for constructing ût and F̂, we use

the Epanechnikov kernel defined by:

K(z) =
3

4
(1− z2)+ , z ∈ R ,

where (·)+ := max(0, ·). Bandwidth parameters hN and wM in Equation 6.29 and Equa-

tion 6.30 are chosen in the order of hN = Θ(N−
1
7) and wM = Θ(M− 1

7), respectively.

As displayed in Table 6.10, for the experiments presented in this Section, we choose spe-

cific constant factors in the order expressions of hN and wM for Viscous Burgers equation

and KdV equation. It is also worth noting that we do not use Equation 6.31 and Equa-

tion 6.32 as solutions of the optimization problems (Equation 6.29) and (Equation 6.30)

for the experiments, since the expressions in Equation 6.31 and Equation 6.32 are derived

in asymptotic settings. For the reader’s convenience, We provide the closed form solutions

of Equation 6.31 and Equation 6.32 in section C.3.

For Viscous Burgers’ equation, on the set of noisy data, Local-Polynomial fitting with

Pmax = 2 is applied to construct ût and F̂. Specifically, our goal is to identify the fifth

and the sixth coefficients, β5 and β6, of a following linear measurement via our proposed

`1-PsLS model (Equation 6.34):

ût = β0 + β1û + β2û
2 + β3ûx + β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx.

For KdV equation, after generating the data-points, ût and F̂ are fitted through Local-

Polynomial with Pmax = 3. We want `1-PsLS to select β5 and β10 as non-zero coefficients

259

Table 6.10: Specific choices of the constants in the order of hN = Θ(N−
1
7) and wM =

Θ(M− 1
7) for the experiments on Viscous Burgers equation and KdV equation are presented.

wM hN
Viscous Burgers 0.75M− 1

7 0.25N−
1
7

KdV 0.1M− 1
7 0.01N−

1
7

in a following linear measurement:

ût = β0 + β1û + β2û
2 + β3ûx+β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx

+ β10ûxxx + β11û
2
xxx + β12ûxûxxx + β13ûxxûxxx + β14ûûxxx.

6.9.2 Numerical Verifications of Main Statements

In this subsection, we design an experiment to numerically verify following two main state-

ments of this paper.

1. Under the assumptions (item A1) and (item A2), and with large enough data points,

there exist some λ ≥ 0 such that `1-PsLS model (Equation 6.34) recovers a signed-

support
(
S±(β̂) = S±(β∗)

)
of an unique PDE that admits the underlying function

as a solution in probability.

2. Given the assumptions (item A2) for some µ ∈ (0, 1], sampled incoherence param-

eter µ′ converges to ground-truth incoherence parameter µ in probability with large

enough data points.

The experiment is conducted over two PDE models, Viscous Burgers’ equation and

KdV equation introduced in subsection 6.9.1. We generate the data by setting ν = 0.03

in Equation 6.39. In Figure 6.14, the probability of signed-support recovery P[S±(β̂) =

S±(β∗)] versus the grid size of temporal dimension N , and ‖ẑSc‖∞ versus N are recorded

on the same plot for respective models. Each point on each curve, which represents

P[S±(β̂) = S±(β∗)], in (a) and (b) corresponds to the average over 100 trials. For each

iteration, the hyper-parameter λN is chosen in an optimal way: we used the value yielding

260

(a) Viscous Burgers (b) KdV

20 30 40 50 60 70 80 90 100 130 160 190 220 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80 90 100 130 160 190 220 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.14: Probability of signed-support recovery P[S±(β̂) = S±(β∗)] versus the grid
size of temporal dimension N , and ‖ẑSc‖∞ versus N are recorded on the same plot for
Viscous Burger’s equation in panel (a) and for KdV equation in panel (b), respectively.

the correct number of nonzero coefficient. With the chosen λN , ẑSc is calculated as given in

Equation 6.37. Note that Equation 6.37 can be calculated only when the `1-PsLS finds λN

that gives the minimizer of Equation 6.34 β̂λ such that β̂λSc = 0 and S(β̂λ) ⊆ S(β∗). For

this reason, boxplots of ‖ẑSc‖∞ in (a) and (b) are drawn from the point when `1-PsLS starts

to find such λN . For both models, P[S±(β̂) = S±(β∗)] goes to 1, as we observe more data

points on finer grid. Furthermore, it is worth noting that the strict dual feasibility condition

(i.e., ‖ẑSc‖∞ < 1) holds for both cases. In Figure 6.15, boxplots of �Q̂N�∞ versus N are

displayed for Viscous Burgers’ equation and KdV equation respectively. A dotted horizon-

tal line in each panel represents 1 − µ calculated from the ground-truth feature matrix F.

Notice that as the number of observed data gets larger, the sampled incoherence parameter

goes below the dotted lines for both models.

6.9.3 Impact of β∗min in Signed-Support Recovery of `1-PsLS

Theorem 6.6.1 states that as long as β∗min := mini∈S |β∗i | is beyond certain threshold, `1-

PsLS is signed-support recovery consistent. In this subsection, we design an experiment

to numerically confirm this claim. The experiment is performed over Viscous Burgers’

261

(a) Viscous Burgers (b) KdV

20 30 40 50 60 70 80 90 100 130 160 190 220 250 280 310 340

0.75

0.8

0.85

0.9

0.95

20 30 40 50 60 70 80 90 100 130 160 190 220 250

0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 6.15: Boxplots of �Q̂N�∞ versus N are displayed for Viscous Burgers’ equation in
panel (a) and KdV equation in panel (b), respectively.

equation by varying the coefficient ν in Equation 6.39 : we set ν = 0.03, 0.02, 0.01, 0.005.

The Figure Figure 6.16 (a) displays the curves representing P[S±(β̂) = S±(β∗)] versus N

for each of the four cases. Each point on each curve represents the average over 100 trials.

The Figure 6.16 (b) exhibits the range of λN for which `1-PsLS finds the support of β̂λ that

is contained within the true support, when ν is set as 0.005. More specifically, boxplots in

(b) record the range of λN that picks ûxx as the selected argument. In (a), we can check

that, as the magnitude of mini∈S |β∗i | decreases from 0.03 to 0.01, `1-PsLS requires more

data-points for the signed-support recovery, and when mini∈S |β∗i | drops to 0.005, `1-PsLS

fails to recover the governing PDE. On the other hand, (b) says that there exists a range

of λN for which `1-PsLS can still recover a subset of β∗, while the perfect signed-support

recovery is difficult.

6.10 Summary

In the first half of this chapter, we introduced two robust methods for PDE identification

when noisy data are given. First, we described a Successively Denoised Differentiation

(SDD) procedure to stabilize numerical differentiation, which significantly improves the

accuracy in the computation of the feature matrix from noisy data. We then discussed

262

(a) (b)

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50 60 70 80 90 100 130 160 190 220 250

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.16: Left panel (a) displays the curves representing P[S±(β̂) = S±(β∗)] versus
N , when ν = 0.03, 0.02, 0.01, 0.005. Right panel (b) exhibits the range of λN for which
`1-PsLS gives the solution β̂λ such that S(β̂λ) ⊆ S(β∗) with respect to N , when ν is set
as 0.005.

two new robust PDE identification algorithms called ST and SC. These algorithms utilize

the Subspace Pursuit (SP) greedy algorithm to select a candidate set and then refine the

results by time evolution or cross-validation. We presented various numerical experiments

to demonstrate the effectiveness of both methods. SC is more computationally efficient,

while ST performs better for PDEs with high order derivatives. We also provided an error

analysis of ST and SC in the context of PDE identification, which unifies many related

methods in the literature.

In the second half, we provided a formal theoretical analysis on the PDE identifica-

tion via `1-regularized Pseudo Least Square method from the statistical point of view. In

this article, we assume that the differential equation governing the dynamic system can

be represented as a linear combination of various linear and nonlinear differential terms.

We employ the Local-Polynomial fitting and apply the `1 penalty for model selection. A

signed-support recovery of `1-PsLS method with an exponential convergence rate is ob-

tained under the classical mutual incoherence condition on the feature matrix F. We divide

the cases into two for the proof of the Theorem 6.6.1. Firstly, a signed-support recovery

of `1-PsLS method is shown with mutual incoherence assumption being imposed on the

263

estimated feature matrix F̂. Then, we show Q̂N gets close to Q∗ under �·�∞ ensuring

the statement of the Theorem 6.6.1. We run numerical experiments on two popular PDE

models, and the results from the experiments corroborate our theoretical predictions.

264

CHAPTER 7

DEEP SPATIAL-TEMPORAL SYNTHESIZER FOR DYNAMIC PET

RECONSTRUCTION

Positron emission tomography (PET) is a non-invasive imaging technique that measures

various biochemical and physiological activities via capturing gamma rays generated by

annihilation of positrons emitted from the nucleus of radioisotope [423, 424, 425]. Having

no pharmacological actions, these isotopes are injected into the bloodstream as tracers de-

tected by the gamma scanner. The variation of radiotracer concentration provides an enor-

mous amount of physiological information including oxygen consumption rate [426] and

tumor growth rate [427]. Diagnosis and treatment in cancers [428], heart diseases [429],

brain disorders [430] and many other fields have found PET valuable. In terms of the ac-

quired materials, there are mainly two types of PET: static PET [424] and dynamic PET

(dPET) [425]. Contrary to static PET, which renders single images, dPET records the ki-

netic data of the tracer in the body and produces image sequences. dPET is widely applied

in respiratory motion monitoring [431], myocardial blood flow examination [432], and

neurotransmitter response [433].

Reconstruction of the tracer’s distribution, or pixel-wise time activity curves (TACs),

from dPET projection data is a challenging inverse problem, as the decay of biochemical

is very fast compared to that of data acquisition. Typically, the reconstruction methods

involve minimizing a regularized functional [434, 435, 436, 437, 438, 439]. Depending on

the noise model, both L2-norm [440] and Kullback–Leibler divergence [438, 437] are used

for data fidelity. To amend the problem’s ill-posedness, many regularization terms were ex-

plored, such as total variation (TV) norm [437, 441, 442], nonlocal TV [443], and in-class

discrepancy [437]. Considering spatial and temporal relationship between the dynamic im-

ages, non-negative matrix factorization (NMF) [442, 437, 444] is a popular strategy where

265

Nlsq

Reconstruction Workflow

NMF Rec.

S
p
a
c
ia

l
 B

a
s
e
s

TAC
Feature

Extractor

Domain
Synthesizer

Two-head Camera Projections Reconstruction

Figure 7.1: Workflow of the proposed STIS model.

the reconstructed image sequence is assumed to have a low-rank decomposition into spa-

tial and temporal bases. It often requires multiple regularizers, thus many manually-tuned

parameters, to produce reasonable results due to instability caused by the sparse sampling

and noise [442, 437]. The resulted models are often non-convex and challenging to solve

with guaranteed convergence.

Recently, deep learning shows great success in feature extraction, which inspired re-

searchers to devise many architectures that combine physical model to improve reconstruc-

tion quality in medical images [445, 444]. For example, based on the NMF model, a unsu-

pervised dPET reconstruction paradigm supplied with dense sampling [444] was proposed

to generate regularized spatial bases using parallel U-Nets without CT/MRI references.

However, there is limited work on dPET reconstruction from sparse sampling, e.g., each

frame is only projected by a two-head camera [442].

In this chapter, we take the deep learning perspective and introduce a particularly in-

teresting neural architecture proposed in [446]. It allows to extract spatial and temporal

features of the projection data from PET image sequences in an effective way.

7.1 Workflow Overview

Starting from a preliminary NMF reconstruction, the temporal information is encoded by

a NN, called TAC feature extractor, for identifying the pointwise kinetic features from a

266

rough reconstruction. A spatial encoder-decoder, called domain synthesizer, follows to

locally integrate these features and identify homogeneous regions as the spatial bases. The

proposed method is thus named as Spacial and Temporal Information Synthesis (STIS).

The reconstruction of dPET can be obtained by combining the spatial bases and temporal

bases via a non-negative least-square fitting. The updated temporal bases reveal better

underlying TAC dynamics, which facilitate TAC feature extraction; hence we augment the

model by alternatively iterating spatial and temporal bases updates. Figure 7.1 shows the

proposed model’s workflow, where I is the maximal number of iteration and the block for

the i-th iteration is expanded for details.

This method enjoys the interpretability based on NMF and the flexibility of DNNs for

both temporal and spatial feature synthesis. Moreover, the proposed network is easy to

train thanks to the reduced number of parameters resulted from temporal-spatial separa-

tion. The numerical results on sparsely sampled projection validate the proposed method’s

advantages over other state-of-art methods applied for dPET reconstruction.

7.2 Nonnegative Matrix Factorization for dPET

7.2.1 Imaging Model for Sparsely Sampled dPET

Let u(x, t) denote the tracer distribution at location x ∈ Ω and at time 0 ≤ t ≤ Tmax. The

TAC at x refers to the curve {u(x, ·) : 0 ≤ t ≤ Tmax}. Here Ω = [0, H] × [0,W] is a

rectangular image domain withH,W both positive integers, and Tmax > 0 is the maximum

observing time. dPET projection of u by a single camera initially pointing at angle θ0

and rotating with angular speed ∆θ is modeled by the time-dependent attenuated Radon

transform [441]

Ru(θ0 + t∆θ, s, t) =

∫
L(θ0+t∆θ,s)

u(x, t) exp(−µH(x)) dx . (7.1)

267

Here s ∈ R is the collimator coordinate; the projection line L(θ, s) = {tθ + sθ⊥ : t ∈ R}

has angle θ ∈ [0, π); H(x) is the distance from x to the collimator; and µ ≥ 0 is a constant

grade of attenuation of gamma rays. We note that the projection angle in Equation 7.1

varies with time, and the sparsely sampled dPET data refers to a sampling paradigm where

only a limited number of cameras is available.

7.2.2 NMF Reconstruction

As homogeneous tissues present approximately uniform radiotracer concentration through-

out the observation [447], the interplay between temporal and spatial characteristics of

dPET data implies an effective dimension reduction.

Upon discretization, for positive integers N,M , we assume that the original activity

map consists of N frames: {Un}Nn=1, each of which is a 2D image with M pixels. Let

U =

[
vec(U1) vec(U2) · · · vec(UN)

]
, where vec(Un) ∈ RM denotes the vectorization

of the image Un obtained by stacking its columns on top of one another. We assume that

U admits a non-negative factorization U = ABT where A ∈ RM×K whose columns are

the spatial bases and B ∈ RN×K whose columns are the temporal bases, are matrices

with non-negative entries. Here K � N and M , thus it offers a low-rank representation

of U . Suppose there are C ≥ 1 cameras initially posed at angles θc, c = 1, 2, . . . , C,

rotating at a constant angular velocity ∆θ. The NMF method provides the reconstruction

ÛNMF = ÂNMFB̂
T
NMF by solving a non-negative least-square problem

{ÂNMF, B̂NMF} =

arg min
A≥0,B≥0

C∑
c=1

‖R(θc)vec
(
ABT

)
− vec(Fc)‖2

2 . (7.2)

Here the inequalities are element-wise,R(θc) is the system matrix approximating (Equation 7.1),

and Fc ∈ RP×N records the projection collected by the c-th camera, whose (i, j)-th entry

is the data on the i-th bin of the collimator at j-th frame.

268

7.3 Proposed Model

When the dPET radioactivity maps are observed sequentially, it is natural to identify homo-

geneous regions characterized by similarly varying TACs. Motivated by this observation,

for a fixed number of bases K ≥ 1 and number of iteration I ≥ 1, we propose our model,

STIS, which synthesizes temporal and spatial information for dPET reconstruction ÛSTIS

based on C-camera projection of some unknown activity map U as follows

ÛSTIS = A(I)
(
B(I)

)T
, (7.3)

where

A(i) = N2

(
N1

(
A(i−1)

(
B(i−1)

)T
; Θ

(i)
1

)
; Θ

(i)
2

)
B(i) = arg min

B∈RN×K+

C∑
c=1

‖R(θc)vec
(
A(i)BT

)
− vec(Fc)‖2

2

for i = 1, 2, . . . , I , and A(0) = ÂNMF, B(0) = B̂NMF. During the i-th iteration, the spa-

tial basis A(i) is obtained by composing two networks: TAC feature extractor N1(·,Θ(i)
1) :

RM×N → RM×K′ for some integer K ′ such that 1 ≤ K ≤ K ′ < N and domain syn-

thesizer N2(·,Θ(i)
2) : RM×K′ → RM×K ; and Θ

(i)
1 and Θ

(i)
2 denote the network parameters

such as kernel weights and biases for the i-th components. More explicitly, the TAC fea-

ture extractor is defined for any matrix X ∈ RM×N with row vectors xT1 , . . . , x
T
M , such

that the j-th row of the output matrix N1(X; Θ
(i)
1) is ν(i)(xj) for j = 1, 2, . . . ,M , where

ν(i) : RN → RK′ is described in Figure 7.2 (a). The domain synthesizer is defined in

Figure 7.2 (b), which maps the feature image resulted fromN1 to the learned spatial bases.

In this work, we fix K ′ = 32.

Our network structure is intuitive: spatial bases are naturally induced by identifying

TACs sharing similar dynamic features. The temporal information plays a dominating role

in our work. The TAC feature extractor maps the high dimensional and low-quality TACs in

269

RN to a lower-dimensional feature space. In general cases, pixels with similar TACs have

similar feature representations. The method generates spatial bases to imitate the observer’s

impression of homogeneous regions based on intensity variation rather than the underlying

biochemical functionalities or geometric affinity. Based on the resulted spatial bases, we

find that applying a non-negative least-square fitting is sufficient for a stable identification

of the corresponding temporal bases. The domain synthesizer is analogous to a pixel-wise

image classifier. However, we note that in general image classification, an extensive range

of abstract contents, such as shapes and styles, are crucial for robust recognition; hence,

deeper architectures are preferable. In our setting, local affinity in the spatial domain of

Ũ is relevant to the clustering of TAC features. Therefore, we use a shallow U-net [86] to

integrate the kinetic information and compose the spatial bases locally. Finally, our method

provides a new and effective hybrid paradigm that has natural interpretability, enjoys data-

adaptability, and allows various extensibility such as multiple iterations for refinement.

We present the following theorem to justify our motivation for using TACs to assist

spatial basis reconstruction.

Theorem 7.3.1. Let Bn denote the n-th row of the temporal basis B. For i = 1, . . . ,M , let

Ai denote the i-th row of the spatial basis A, and TACi be the i-th row of the radioactivity

map U recording the TAC at the i-th pixel. For any 1 ≤ i, j ≤ M , if there exists a positive

number ζ > 0 such that for all n, the ratio ρi,jn =
‖Ai−Aj‖2
‖Bn‖2 satisfies

1 + | sin θn| < ρi,jn < (3− ζ)/2

or (1 + ζ)/2 < ρi,jn < 1− | sin θn| (7.4)

where θn is the angle between Bn and Ai − Aj , then

√
Nζ‖Ai − Aj‖2 ≤ ‖TACi − TACj‖2 . (7.5)

Proof. When i, j are fixed, to simplify the notations, we let γ = Ai − Aj and denote

270

zn = ‖γ‖2/‖Bn‖2. Consider the following differentiable function of h ∈ R

f(h) =
‖ Bn
‖Bn‖2 −

γ
‖γ‖2h‖2

|1− zn|
− h =

√
h2 − 2h cos θn + 1

|1− zn|
− h ,

where cos θn = BTn γ
‖Bn‖2‖γ‖2 . Notice that f can only have positive root if any exists. By the

assumption that (3−ζ)/2 > zn > 1+ | sin θn| or (1+ζ)/2 < zn < 1−| sin θn|, it is readily

checked that f always has a root h+
n =

− cos θn−
√
z2
n−2zn+cos2 θn

z2
n−2zn

> 0. Evaluating f(h+
n) and

reorganizing terms gives

‖Bn −
h+
n ‖Bn‖2

‖γ‖2

γ‖2 =
h+
n

2

∣∣∣∣2‖Bn‖2

‖γ‖2

− 2

∣∣∣∣ ‖γ‖2

Now taking Hn = 2
zn
− 1, the equation above becomes

‖Bn −
Hnh

+
n + h+

n

2
γ‖2 =

|Hnh
+
n − h+

n |
2

‖γ‖2 ,

which allows us to apply the reverse Cauchy-Schwarz inequality [448] and gives

‖TACi − TACj‖2
2 =

N∑
n=1

γTBn ≥

N∑
n=1

(
‖Bn‖2

2 −
1

4
‖γ‖2

2

(
(Hn − 1)h+

n

)2
)
‖γ‖2

2 . (7.6)

We then prove that ‖Bn‖2
2 > 1

4
‖γ‖2

2 ((Hn − 1)h+
n)

2
+ ζ , hence Equation 7.6 is useful.

Consider the case where 1 < 1 + | sin θn| < zn < (3 − ζ)/2 < 2, indicating that

ζz2
n(zn − 2)2 + 2zn − 3 < 0, which can be written as z2

n(zn−1)2

(z2
n−2zn)2 + ζz2

n < 1. Notice that

this implies (1 − zn)2 (h+)
2

+ ζz2
n < 1, which by simple computation leads to ‖Bn‖2

2 >

1
4
‖γ‖2

2 ((Hn − 1)h+
n)

2
+ ζ . Similarly, we can prove for the case where 1 > 1− | sin θn| >

271

zn > (1 + ζ)/2 by starting with ζz4
n− 2zn + 1 < 0. Therefore, from Equation 7.6, we have

‖TACi − TACj‖2
2 ≥ Nζ‖γ‖2

2 .

which completes the proof.

Theorem 7.3.1 implies that, when the sine distance betweenBn andAi−Aj is small, or

equivalently, two vectors are highly correlated, and their scales are comparable, if the i, j

pixels have similar TACs, their spatial bases at these positions need to have close values. In

particular, if we interpret the value Ai,k as the belief of the i-th pixel belonging to the k-th

basis, Theorem 7.3.1 says that pixels can be classified by utilizing their TACs.

7.4 Numerical Experiments

We present different numerical results to validate our model. Our dataset consists of 192

synthetic images from [442]. Each sample contains 90 frames of 64 × 64 images, where

the pixel intensity variations were induced by TAC curves distributed over an anatomic

mask of a rat’s abdomen. The system matrix simulates a two-head camera which projects

to collimators with 95 bins at two orthogonal angles per frame. Initially fixed at the top and

right of the domain of interest, these cameras rotate 1◦ per frame clockwise. To optimize

the network parameters, we used 80% of the data for training and the rest for testing. We

used the Adam optimizer with a learning rate 5 × 10−4, which is factored by 0.8 every 50

epochs. The training consists of 500 epochs in total. In all the experiments, we fix the

decay rate µ = 0.01. Results shown in this paper are from the testing dataset. We trained

our model using Intel(R) Xeon(R) CPU E5-2689 v4 @ 3.10GHz with 10 cores and 20

threads, equipped with 24G RTX Titan V GPU.

272

(a)

INPUT
N

8 8

1
3

1616

1
3

323232

1
2

64

32

OUTPUT
K ′

1D Conv 1D BN Tanh
Linear MaxPool

(b)

INPUT
H ×W ×K ′

1
2 64 64 2

3232K
OUTPUT

H ×W ×K

2D Conv 2D BN Tanh
Sigmoid

MaxPool Concat Deconv

Figure 7.2: (a) Structure of a coordinate component of the TAC feature extractor N1. The
input is a TAC in RN (N = 90) and the output is a feature vector in RK′ (K ′ = 32). The
convolution kernels are of size 3 and the zero-paddings are of size 1. The numbers above
Conv are the number of channels,and those above Linear are node sizes. (b) Structure of
the domain synthesizerN2. The input is an image whose channels are TAC feature vectors.
Here H is the image height and W is the image width such that M = HW . The output is
an image with K channels, each of which defines a spatial basis for the reconstruction.

273

Original dPET sequence

Identified Bases
Spatial basis I Spatial basis II Spatial basis III

Temporal basis I Temporal basis II Temporal basis III

Figure 7.3: Interpretability of spatial and temporal bases identified by STIS using a low
rank (K = 3). Each spatial basis roughly corresponds to homogeneous regions with sim-
ilar dynamic features, and the associated temporal basis describes its contribution to the
concentration distribution.

7.4.1 Interpretability of Low-rank Bases

When K is set at a sufficient level to cover the underlying radiotracer concentration, the

proposed STIS model produces low-rank dPET reconstruction with interpretable bases.

With K = 3 and I = 2, Figure Figure 7.3 shows an original dPET sequence in the first

row and the identified spatial and temporal bases in the second and third row, respectively.

STIS generates spatial bases as homogeneous regions with similar radioactivity variations.

For example, the 1st basis corresponds to the high concentration regions. The tumor, which

rapidly accumulates tracers in the early frames is captured by the 2nd basis. The 3rd basis

characterizes the tissue with a slower accumulation rate and lower stabilizing level. Corre-

spondingly, each temporal basis defines the contribution of each spatial basis to the activity

map.

7.4.2 Performance on TAC Reconstruction

As an indicator of the radiotracer concentration measured over time, the TAC plays an es-

sential role in pharmacokinetic analysis and clinical diagnosis. For instance, the slope of

274

(a) (b)

Figure 7.4: Performance on TAC reconstruction. (a) Three 3 × 3 square ROIs marked on
the final frame of an original test sample. (b) Average TACs of the respective ROIs in (a).

TAC can be helpful in non-invasive discrimination of brain tumor subtype [449]. Focusing

on a test sample and its three ROIs showed in Figure 7.4(a) and using STIS with K = 3,

I = 2, we recorded the respective reconstructed TACs and the original ones in (b). In this

experiment, each ROI is a 3 × 3 square, and the TACs were averaged within the corre-

sponding regions. For the rapidly accumulating region with a steady high concentration

(R1), STIS recovered the TACs with high accuracy. For the region with a moderate accu-

mulation rate and a lower stabilized level (R2), the reconstructed TACs stay close to the

true ones, especially after frame 20. For the region where the radiotracer’s concentration

rapidly grows and decays (R3), STIS successfully captured this dynamic feature of the

underlying TACs and correctly estimated the peak level and the peak width.

7.4.3 Tests on Hyperparameters

There are two major hyperparameters in the proposed model, i.e., the number of bases

(K), and the number of iterations (I). On the positive side, STIS with a larger K has

higher flexibility and better generalizability; and STIS with a larger I can further refine

the reconstruction results. However, increasing K and I makes the training unstable and

more demanding to converge. In Table 7.1, we quantitatively compare STIS using various

combinations of K and I by the average RMSE of reconstruction based on the testing

dataset. First, we see that STIS models with I ≥ 2 have a clear advantage over those with

I = 1. This was expected, since the spatial bases identified by STIS with I = 1 do not gain

275

Table 7.1: Comparison among proposed model with various combinations of hyperparam-
eters: number of bases (K) and number of iterations (I).

Config. RMSE Config. RMSE Config. RMSE
K3I1 3.55e-2 K3I2 2.41e-2 K3I3 2.42e-2
K5I1 2.82e-2 K5I2 2.11e-2 K5I3 2.32e-2
K7I1 2.71e-2 K7I2 2.19e-2 K7I3 2.10e-2

any improvement resulted from the updated temporal bases. Second, except for K7I2, we

observe a general improvement of using larger K when I is fixed. Third, STIS performs

better when both K and I increase coordinately. It means that simply increasing either I or

K while the other fixed may not lead to better results. To cope with the training instability

when I is greater than 3, other network structure modifications are necessary.

7.4.4 Qualitative Comparison

We compare the proposed model, STIS, with some methods in the literature from the visual

perspective. Specifically, we consider two model-based approaches, NMF (Equation 7.2)

and SEMF [450], and two data-driven approaches, DnCNN [451](image domain denois-

ing method) and LEARN [452] (optimization-unrolling-based reconstruction method). For

NMF, we fix the number of bases as 7 and apply the oblique projected Landweber algo-

rithm [453] with 100 outer iterations and 5 inner iterations. For SEMF, the iteration number

is fixed to be 50 as the convergence is observed and the base number 7 (SEMF7) and 16

(SEMF16) are tested. Both DnCNN and LEARN are trained for 200 epochs on our train-

ing dataset. Taking NMF result as input, DnCNN with 17 layers is trained for 3D image

denoising. For LEARN, we consider 50 iterations in the unrolling model and the other

network parameters are the same as [452].

On a projection input data chosen from the test dataset, we added 1% Gaussian noise

and tested these methods whose results are shown in Figure 7.5. As expected, without

regularization, NMF suffered from blurriness in the face of noise and sparse sampling.

DnCNN roughly captured the intensity variation trend and approximately recovered the

276

Method t = 0 t = 5 t = 10 t = 40 t = 90

Original

NMF

DnCNN

LEARN

SEMF7

SEMF16

Prop. (K3I2)

Prop. (K7I3)

Figure 7.5: Qualitative comparison of different methods on a test dPET image sequence.
The mark region is further examined in Figure 7.6.

277

(a) (b) (c) (d) (e)

Figure 7.6: Zoom-in comparisons among (a) Original (b) SEMF7 (c) SEMF16 (d) Proposed
(K3I2) (e) Proposed (K7I3) on the final frame of the tests in Figure 7.5.

(a) (b)

(c) (d)

Figure 7.7: Comparison of different methods on TAC reconstruction. (a) Three 3×3 square
ROIs marked on the final frame of an original test sample. (b) Comparison of the average
TACs in R1 (c) in R2, and (d) in R3.

278

regions with high concentration level; however, many geometric details of the underlying

organs were lost. Similarly to DnCNN, LEARN produced false ring patterns due to sparse

sampling, and the reconstructed frames for the earlier frames are unstable. Both SEMF7

and SEMF16 produced satisfying reconstructions for the later frames where TACs vary

slowly, and compared to SEMF7, boundaries rendered by SEMF16 become sharper. Their

reconstructions for earlier frames are less appealing. Observe that there are significant

shadowing artifacts projecting from the identified rapidly glowing regions, whose levels

of concentration are not comparable to the underlying ones. Our proposed method using

either configuration K3I2 and K7I3 successfully recovered both the kinetic and geometric

features of the underlying dPET image sequence. Notice that both K3I2 and K7I3 have

superior performance for the reconstruction during the early stage, immune from prominent

artifacts. With larger numbers of bases and iterations, K7I3 greatly improved the mild

oscillation in the homogeneous regions and loss of fine details by K3I2. This is further

justified by the zoom-in comparison in Figure 7.6, where we also observe that the delicate

tissue recovered by K7I3 has better continuity and a more accurate level of concentration

compared to either SEMF7 or SEMF16.

Figure 7.7 compares different methods in terms of TAC reconstructions in three ROIs

marked in a final frame of a test sample in (a). For the region with a rapid increment and

high stabilizing level (R1), all methods have comparable approximations of the underlying

truth. In R2, where the radiotracer concentration grows slowly and converges to a rela-

tively lower level, TACs reconstructed by NMF and the proposed method with K3I2 and

K7I3 stay close to the underlying one. Although both SEMF7 and SEMF16 stay around

the correct level, they present oscillatory behaviors. This is analogous to the reconstruc-

tion from DnCNN. The concentration in R3 grows first then decays rapidly and converges

to a relatively low level. Both LEARN and NMF fail to capture the concentration peak.

DnCNN, SEMF7 and SEMF16 detect the existence of peak, yet the peak levels are far

from the true value. The proposed method has superior identification of the peak height

279

and width.

7.4.5 Quantitative Comparison

For further validation, we quantitatively compared the above methods by measuring the

reconstruction quality using RMSE, PSNR, and SSIM in Table 7.2 and evaluating their

efficiency in Table 7.3 based on the same testing dataset. In particular, for the reconstruction

quality, we evaluate the results grouped by three different ranges of frames: (i) 1 ∼ 5, (ii)

5 ∼ 15, and (iii) 15 ∼ 90, which roughly correspond to (i) the early stage where the

concentration of radiotracer is generally low, (ii) the active stage where abrupt increment

or decay of concentration mostly occurs, and (iii) the final stage where most TACs evolve

slowly or stabilize. For examining the efficiency of data-driven methods, we recorded both

training time and testing time for a fair comparison.

Consistent with the visual inspection, NMF without any regularization performs poorly.

Both DnCNN and LEARN produce better quality in stage (i), and the reconstructions are

unstable in stage (ii) and (iii) in general. In terms of reconstruction quality, the most com-

petitive models are SEMF and STIS. We note that the results by SEMF enjoy higher quality

than those by STIS in stage (iii) using all these metrics. Based on PSNR, SEMF also outper-

forms STIS in stage (ii). However, both RMSE and SSIM, which are less controversial than

PSNR as video quality metrics [454], indicate that STIS provides superior reconstructions

over SEMF in stage (i) and (ii). The variability of TACs during these stages is pertinent

to kinetic parameters such as the tracer exchange rates [455]. Hence, the quality of recon-

struction of these frames is critical in practice. Moreover, when considering the efficiency,

reconstructing a dPET sequence takes about 21.40 minutes for SEMF7, whereas it only

takes the trained STIS (K7I3) about 5.09 seconds to produce the high-quality results.

280

Ta
bl

e
7.

2:
Q

ua
nt

ita
tiv

e
co

m
pa

ri
so

n
(M

ea
n±

St
d.

)
of

di
ff

er
en

tm
et

ho
ds

’p
er

fo
rm

an
ce

s
on

th
e

te
st

in
g

da
ta

se
t(

39
sa

m
pl

es
).

Fo
rt

he
re

su
lts

of
qu

al
ity

ev
al

ua
tio

n,
th

e
be

st
on

es
ar

e
bo

ld
ed

,a
nd

th
e

se
co

nd
be

st
∗

on
es

ar
e

m
ar

ke
d

w
ith

as
te

ri
sk

s.
D

ee
p

le
ar

ni
ng

ba
se

d
m

et
ho

ds
w

er
e

tr
ai

ne
d

us
in

g
th

e
sa

m
e

tr
ai

ni
ng

da
ta

se
t(

15
3

sa
m

pl
es

)o
n

a
co

m
m

on
m

ac
hi

ne
co

nfi
gu

ra
tio

n.

In
de

x
Fr

am
e

N
M

F
D

nC
N

N
L

E
A

R
N

SE
M

F7
SE

M
F1

6
Pr

op
.(K

3I
2)

Pr
op

.(K
7I

3)

R
M

SE
×

10
−

2

1∼
5

2.
19
±

2.
97

1.
91
±

1.
60

2.
21
±

1.
93

1.
62
±

1.
94

1.
64
±

2.
04

1
.3

8
±

1
.6

2
1.

41
±

1.
45
∗

5∼
15

3.
19
±

3.
79

2.
06
±

2.
12

2.
51
±

2.
53

1.
71
±

2.
31

2.
67
±

3.
81

1.
43
±

1.
84
∗

1
.4

1
±

1
.7

8
15
∼

90
8.

24
±

4.
93

3.
19
±

1.
82

5.
34
±

3.
31

1.
32
±

1.
06
∗

1
.0

5
±

0
.9

0
2.

11
±

1.
44

1.
80
±

1.
19

PS
N

R
×

10

1∼
5

4.
58
±

1.
95

3.
71
±

0.
68

3.
62
±

0.
73

4.
84
±

1.
96

5
.3

0
±

2
.4

5
4.

92
±

1.
90
∗

4.
24
±

1.
05

5∼
15

2.
06
±

1.
56

2.
23
±

1.
59

2.
10
±

1.
50

2.
73
±

2.
20
∗

2
.9

3
±

2
.4

6
2.

69
±

2.
04

2.
64
±

1.
96

15
∼

90
1.

73
±

0.
84

2.
40
±

1.
10

2.
04
±

0.
97

3.
12
±

1.
47
∗

3
.3

1
±

1
.5

7
2.

74
±

1.
28

2.
84
±

1.
32

SS
IM

1∼
5

0.
89
±

0.
18

0.
89
±

0.
05

0.
83
±

0.
08

0.
91
±

0.
10

0.
91
±

0.
10

0
.9

6
±

0
.0

5
0.

95
±

0.
05
∗

5∼
15

0.
50
±

0.
36

0.
57
±

0.
39

0.
51
±

0.
35

0.
61
±

0.
42

0.
61
±

0.
43

0
.6

6
±

0
.4

5
0
.6

6
±

0
.4

5
15
∼

90
0.

45
±

0.
22

0.
64
±

0.
29

0.
51
±

0.
24

0.
80
±

0.
36
∗

0
.8

1
±

0
.3

6
0.

76
±

0.
35

0.
78
±

0.
35

Ta
bl

e
7.

3:
Tr

ai
ni

ng
an

d
te

st
in

g
ef

fic
ie

nc
y.

St
ag

e
N

M
F

D
nC

N
N

L
E

A
R

N
SE

M
F7

SE
M

F1
6

Pr
op

.(K
3I

2)
Pr

op
.(K

7I
3)

Tr
ai

ni
ng

Ti
m

e
-

5.
5

ho
ur

3.
1

da
ys

-
-

1.
3

da
ys

1.
9

da
ys

Te
st

in
g

Ti
m

e
4.

83
m

in
.

0.
16

se
c.

2.
39

se
c.

21
.4

0
m

in
.

32
.5

0
m

in
.

2.
60

se
c.

5.
09

se
c.

281

7.5 Summary

In this chapter, we described the STIS model, which synthesizes temporal and spatial in-

formation for reconstructing the dPET activity maps from sparsely sampled projections.

There are a limited number of work for dPET reconstruction under the comparable sam-

pling condition, where only two projection angles are availabel for each frame. By our

novel TAC feature extractor and domain synthesizer, the proposed STIS is robust against

deficient samples, and it also renders interpretable spatial and temporal bases for the low-

rank reconstruction of dPET sequences. By comparison studies, we observed that STIS

preserves homogeneous regions and definite boundaries. It captures kinetic features such

as abrupt increment and decay of radiotracer concentration, which are generally challeng-

ing for the other methods.

282

CHAPTER 8

CONCLUSION

This thesis showcases diverse types of mathematical pattern representation and illustrates

their applications in various fields. We started with the rigid pattern of lattices represented

by pairs of complex numbers in a quotient space, whose equivalence relations are charac-

terized by the modular group and metric structure is derived from the Poincaré geometry.

This lattice metric space encodes not only the defining properties of every lattice pattern, it

also allows measurement of the visual differences among any two lattices. Then we dived

into a more flexible visual pattern: shapes. Unlike symmetries in rigid patterns, human

perception plays a more critical role. As a consequence, the description of shape pat-

terns is less structural. From region-based and contour-based perspectives, we discussed

two shape representations with different understanding of how human perceives and distin-

guishes shape patterns. To reflect the scale-invariant geometric features deemed as visual

cues, we utilized the affine-shortening PDE to preserve prominent characteristics in pat-

tern recognition. With more versatile data distributions, identifying suitable submanifold

representations of point clouds starts to reflect the importance of regularization, which im-

poses model’s stability against data noise and enforces desired representation properties.

Meanwhile, we discussed the fast algorithms associated with the resulted non-convex op-

timization problems. As moving on to the next topic, underwater color correction, we

introduced a model-based approach: Tikhonov optimization framework in CIELAB moti-

vated by the complementary adaptation theory in psychology, yet the color representation

already shows a strong dependence on experimental data. For example, the correction of

the blue region uniformality and the adjustment for Helmholtz-Kohlrausch effect involve

many parameter fittings. This discussion marks a critical point of transitioning from model-

based approaches to data-driven ones. For the data-driven representations, we started with

283

the automatic PDE modeling from noisy data which illustrates how to identify suitable PDE

representations by learning spatial-temporal features of single trajectories. This project re-

veals the influence of data cast on the model selection. Given a fixed underlying PDE, the

data sampled from some trajectories may lead to more accurate identification than the oth-

ers. Theoretically, we also discussed the role of sparsity from the point of view of statistical

sparse signal recovery and proved that the signed support of the underlying PDE features

can be recovered if certain conditions are satisfied by the sample data. Finally, we entered

the topic of deep learning by focusing on an application in medical image reconstruction.

Instead of an end-to-end training paradigm, we described an interesting network structure

based on a low-rank model-based representation of the reconstructed image sequences. By

this hybrid scheme, we gain a considerable dimension reduction on the feature space, thus

leading to a more stable training.

In general, for rigid patterns, the mathematical framework is more definite, and the anal-

ysis on the model can directly lead to knowledge about the pattern. As for more versatile

patterns, it is necessary to supplement reasonable assumptions for an accessible model-

based representation due to the complicated or unclear mechanisms behind the pattern

formation and recognition. From different perspectives, we can introduce various regu-

larization terms or priors to specify desired properties about the solutions and manually

tune the associated parameters to obtain good results. On the positive side, most mathe-

matically defined regularization terms bear clear indication of the enforced conditions, i.e.,

smoothness, and piecewise constant, thus by adjusting the parameters, we foresee what are

the effects on the results. However, many challenging inverse problems require multiple

regularizations, and choosing which combinations as well as the optimal parameters is a

rather involved task. Data-driven approaches, on the other hand, address such challenges by

learning pattern features from data. With sufficiently many data for training, DNNs often

acquire powerful expressivity such that they can approximate large classes of mappings.

When the training data is not enough, end-to-end learning can fail and the training process

284

is unstable. A promising direction is to look into hybrid scheme where model-based ap-

proaches can be applied to establish the basic framework, while leaving the unknown or

complicated components learned from data. Therefore, the training only needs to focus

on learning limited number of features, and the fundamental relations among samples are

specified by well-defined models.

Data-driven representations, especially those constructed by deep learning methods,

have been extensively explored in recent years; however, this by no means indicates that

model-based approaches are outdated. For well-studied patterns, model-based representa-

tions provide accurate description, and many more implications can be derived via rigorous

analysis. In other words, model-based methods are white-boxes. In contrast, data-driven

representations yield mappings that reflect various features of the available data, yet it is

demanding to interpret the resulted network; hence data-driven methods are often black-

boxes. There is no universal criteria to decide which approach is absolutely better than

the other. In fact, in some cases, model-based representations noticeably outperform the

data-driven ones, and such situation occurs especially when the training data is expensive

to access with large amount. It is thus important and beneficial to keep open-minded about

both directions.

285

Appendices

APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Psudo-code for computing dL

The definition of dL (Equation 2.11) requires multiple comparisons. For paths passing

through {(β, ρ) | β ∈ K, |ρ| = 1, ρ ∈ P}, the minimal is found by considering all four

paths.

Inputs: two lattice bases (b1, b2) and (b′1, b
′
2) ∈ C2.

Step 1. Transfer to descriptors: β ← b1, β′ ← b′1, ρ← b2/b1, and ρ′ ← b′2/b
′
1.

Step 2. Compute D((β, ρ), (β′, ρ′)) as defined in (Equation 2.8).

Step 3. Fix an integer N .

For j = 0, 1, · · · , N :

For k = 0, 1, · · · , N :

Dj,k ← D(β, ρ′, β, ρ′);

Dj,k ← min{Dj,k, D(β, ρ, ei(π/3+kπ/3)β′,−1/ei(π/3+kπ/3))+D(β′, ei(π/3+kπ/3), β′, ρ′)};

Dj,k ← min{Dj,k, D(β, ρ, β, ei(π/3+jπ/3))+D(ei(π/3+jπ/3)β,−1/ei(π/3+jπ/3), β′, ρ′)};

Dj,k ← min{Dj,k, D(β, ρ, β, ei(π/3+jπ/3)) +D(ei(π/3+jπ/3)β,−1/ei(π/3+jπ/3), ...

ei(π/3+jπ/3)β′,−1/ei(π/3+jπ/3)) +D(β′, ei(π/3+jπ/3), β′, ρ′)};

End For

End For

dL ((β, ρ), (β′, ρ′))← minj,kDj,k.

287

APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Dataset and Image Credits for Shape Skeleton

MPEG-

7 Core Experiment CE-Shape-1 Test Set1 [456], provided by Dr. Longin Jan Latecki, Professor,

Department of Computer and Information Sciences, Temple University, US

2 Cat Stretch Silhouette In Black, CC0 Public Domain K

3 4 5 svgsilh.com, Creative Commons CC0

B.2 Silhouette Data Set

In Table Table B.1, we collectively display the 20 silhouettes used in this paper. They are

all downloadable from https://svgsilh.com, which are released under Creative Commons

CC0.

1http://www.dabi.temple.edu/∼shape/MPEG7/dataset.html
2https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=

cat-stretch-silhouette-in-black
3https://svgsilh.com/image/152115.html
4https://svgsilh.com/image/365843.html
5https://svgsilh.com/image/1614530.html

288

https://svgsilh.com
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=cat-stretch-silhouette-in-black
https://www.publicdomainpictures.net/en/view-image.php?image=32201&picture=cat-stretch-silhouette-in-black
https://svgsilh.com/image/152115.html
https://svgsilh.com/image/365843.html
https://svgsilh.com/image/1614530.html

Table B.1: Silhouette dataset used in the experiments. The last four are used in Figure Fig-
ure 3.13 for computing the average ρ(τe). These silhouettes are chosen from [253], which
are released under Creative Commons CC0.

Silhouette Data Set

289

APPENDIX C

APPENDIX FOR CHAPTER 6

C.1 Proof of Proposition Theorem 6.2.1

Proof.

[DtU]T2 − [F]T2A
(
[F]T1A

)†
[DtU]T1

= [DtU]T2 − [ut]
T2 + [ut]

T2 − [F]T2A
(
[F]T1A

)†
[DtU]T1

= [DtU]T2 − [ut]
T2︸ ︷︷ ︸

E1

+[ut]
T2 − [F]T2A

(
[F]T1A

)†
[ut]
T1 −[F]T2A

(
[F]T1A

)†
([DtU]T1 − [ut]

T1)︸ ︷︷ ︸
E2

= [ut]
T2 − ([F0]T2A + [F]T2A − [F0]T2A)

(
[F]T1A

)†
[ut]
T1 + E1 + E2

= [ut]
T2 − [F0]T2A

(
[F]T1A

)†
[ut]
T1 −([F]T2A − [F0]T2A)

(
[F]T1A

)†
[ut]
T1︸ ︷︷ ︸

E3

+E1 + E2

= [ut]
T2 − [F0]T2A0

(
[F0]T1A0

)†
[ut]
T1︸ ︷︷ ︸

=0

+
(
[F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F]T1A

)†)
[ut]
T1

+ E1 + E2 + E3

=
(
[F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F]T1A

)†)
[ut]
T1 + E1 + E2 + E3

=
(
[F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F0]T1A

)†)
[ut]
T1

−[F0]T2A
((

[F]T1A
)† − ([F0]T1A

)†)
[ut]
T1︸ ︷︷ ︸

E4

+E1 + E2 + E3

=
(
[F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F0]T1A

)†)
[ut]
T1 + E1 + E2 + E3 + E4 .

290

Then we have:

CEE(Ak;α, T1, T2) ≤ ‖
(
[F0]T2A0

(
[F0]T1A0

)† − [F0]T2A
(
[F0]T1A

)†)
[ut]
T1‖2

+ ‖[DtU]T2 − [ut]
T2‖2 + ‖

(
[F]T1A

)†‖2

(
‖[F]T2A ‖2 ‖[DtU]T1 − [ut]

T1‖2

+ ‖[F]T2A − [F0]T2A ‖2 ‖[ut]T1‖2

)
+ ‖[F0]T2A ‖2 ‖

(
[F]T1A

)†‖2 ‖
(
[F0]T1A

)†‖2 ‖[F]T1A − [F0]T1A ‖2 ‖[ut]T1‖2 .

In the last term on the right hand side of the inequality, we applied the norm bound in

Theorem 4.1 of [457]. Then by setting

g(A;α, T1, T2) = ‖[DtU]T2 − [ut]
T2‖2 + ‖

(
[F]T1A

)†‖2

(
‖[F]T2A ‖2 ‖[DtU]T1 − [ut]

T1‖2

+ ‖[F]T2A − [F0]T2A ‖2 ‖[ut]T1‖2

)
+ ‖[F0]T2A ‖2 ‖

(
[F]T1A

)†‖2 ‖
(
[F0]T1A

)†‖2 ‖[F]T1A − [F0]T1A ‖2 ‖[ut]T1‖2 (C.1)

we have proved the theorem.

C.2 Primal-Dual Witness construction

In this Section, we briefly review the PDW construction in [458] for reader’s convenience.

A primal-dual pair (β̂, ẑ) ∈ RK×K is said to be optimal if β̂ is a minimizer of (Equa-

tion 6.34) and ẑ ∈ ∂‖β̂‖1, where ∂‖β̂‖1 denotes a sub-differential set of ‖ · ‖1 evaluated at

β̂. Any such pair must satisfy zero-subgradient condition of (Equation 6.34), which is as

follows:

− 1

NM
F̂T (ût − F̂β̂) + λẑ = 0 , for ẑ ∈ ∂‖β̂‖1 . (C.2)

291

Recall that we denote the ground-truth support of β∗ as S, and suppose that we know S

apriori. For the ground-truth support set S and its complement set Sc, PDW is said to be

successful if the constructed tuple, (β̂S , β̂Sc , ẑS , ẑSc), is primal-dual optimal, and act as a

witness for the fact that the LASSO finds the unique optimal solution with correct support

set. We construct the tuple through the following three steps.

1. Set β̂Sc = 0.

2. Find (β̂S , ẑS) by solving the s-dimensional oracle sub-problem

β̂S ∈ arg min
βS∈Rs

{
1

2NM

∥∥∥ût − F̂SβS

∥∥∥
2

+ λ‖βS‖1

}
,

where s is the cardinality of the set S . Thus ẑS ∈ ∂‖β̂S‖1 satisfies the relation

− 1
NM

F̂T
S (ût − F̂S β̂S) + λẑS = 0.

3. Solve for ẑSc through the zero-subgradient equation (Equation C.2), and check whether

or not the strict dual feasibility condition ‖ẑS‖∞ < 1 holds.

C.3 Local-Polynomial estimator : Closed-form solutions

Recall that we want to solve following two optimization problems for constructing ût and

F̂, given the noisy observationD = {
(
Xi, tn, U

n
i

)
| i = 0, . . . ,M − 1;n = 0, . . . , N − 1}.

{
b̂j(Xi, t)

}
j=0,1,2

= arg min
bj(t)∈R,0≤j≤2

N−1∑
n=0

(
Un
i −

2∑
j=0

bj(t)(tn − t)j
)2

KhN
(
tn − t

)
,

for i = 0, 1, . . . ,M − 1 ; (C.3){
ĉpj(x, tn)

}
j=0,1,...,p+1

= arg min
cj(t)∈R,0≤j≤p+1

M−1∑
i=0

(
Un
i −

p+1∑
j=0

cpj(t)(Xi − x)j
)2

KwM
(
Xi − x

)
for n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , Pmax. (C.4)

292

and set ût(Xi, t) = b̂1(Xi, t) and ∂̂pxu(x, tn) = p!ĉpp(x, tn). Then, the standard weighted

least-square theory leads to the solutions of (Equation C.3) and (Equation C.4), respec-

tively:

ût(Xi, t) = ξT1
(
T1

TWtT1

)−1
T1

TWtUi, ∀i = 0, 1, . . . ,M − 1, (C.5)

∂̂pxu(x, tn) = p!ξTp,x
(
Xp

TWxXp

)−1
Xp

TWxU
n, ∀p = 0, 1, . . . , Pmax, ∀n = 0, 1, . . . , N − 1,

(C.6)

where Ui = [U0
i , . . . , U

N−1
i]T and Un = [Un

0 , . . . , U
n
M−1]T, and

T1 :=

1 t0 − t
(
t0 − t

)2

1 t1 − t
(
t1 − t

)2

...
...

...

1 tN−1 − t
(
tN−1 − t

)2

, Xp :=

1 X0 − x · · ·
(
X0 − x

)p+1

1 X1 − x · · ·
(
X1 − x

)p+1

...
...

...
...

1 XM−1 − x · · ·
(
XM−1 − x

)p+1

,

for p = 0, . . . , Pmax, and

Wt := diag
{
KhN (t0 − t), . . . ,KhN (tN−1 − t)

}
,

Wx := diag
{
KwM (X0 − x), . . . ,KwM (XM−1 − x)

}
,

are N × N and M ×M diagonal matrices of kernel weights, and ξ2 is the 3 × 1 vector

having 1 in the 2nd entry and zeros in the other entries, and ξp,x is the (p + 1) × 1 vector

having 1 in the pth entry and zeros in the other entries.

C.4 Proof of Proposition 3.7.1

By the KKT-condition, any minimizer β̌ of (Equation 6.34) satisfies:

− 1

NM
F̂T (ût − F̂β̌) + λN ž = 0 , for ž ∈ ∂‖β̌‖1 . (C.7)

293

Recall that ∆ut = ût−ut, ∆F = F̂−F denote the error terms. By using the ground-truth

PDE ut = Fβ∗ and definitions of ∆ut and ∆F, we have ût = F̂β∗ −∆Fβ∗ + ∆ut. Thus

from (Equation C.7), we get

F̂T F̂(β̌ − β∗) + F̂T (∆Fβ∗ −∆ut) + λNNMz = 0 . (C.8)

We decompose (Equation C.8) as follows:

 F̂T
S F̂S F̂T

S F̂Sc

F̂T
ScF̂S F̂T

ScF̂Sc

β̌S − β∗S

0

+

 F̂T
S

F̂T
Sc

 (∆FSβ
∗
S −∆ut) + λNNM

 žS

žSc

 =

0

0

 ,

(C.9)

where we used the fact β∗Sc = 0 and β̌Sc = 0 via PDW construction. Solving (Equation C.9),

we have following two equalities:

F̂T
S F̂S

(
β̌S − β∗S

)
+ F̂T

S (∆FSβ
∗
S −∆ut) + λNNM žS = 0 (C.10)

F̂T
ScF̂S

(
β̌S − β∗S

)
+ F̂T

Sc(∆FSβ
∗
S −∆ut) + λNNM žSc = 0 (C.11)

Using the minimum eigen-value condition in the assumption (Equation A3), from (Equation C.10),

we have

β̌S − β∗S =
(
F̂T
S F̂S

)−1
(

F̂T
S (∆ut −∆FSβ

∗
S)− λNNM žS

)
. (C.12)

Plugging (Equation C.12) into (Equation C.11) gives:

žSc = F̂T
ScF̂S(F̂T

S F̂S)−1zS +
1

λMN
F̂T
ScΠS⊥(∆ut −∆FSβ

∗
S) ,

where ΠS⊥ = I − F̂S(F̂T
S F̂S)−1F̂T

S is an orthogonal projection operator on the column

space of F̂S . By the complementary slackness condition, for j ∈ Sc, |žj| < 1 implies

β̌j = 0, which guarantees the proper support recovery. i.e., S(β̌) ⊆ S(β∗). Now, we can

294

focus on proving that, as N,M →∞, for µ in (Equation A3), P
[

maxj∈Sc |Z̃j| ≥ µ
]
→ 0,

for Z̃j = [F̂Sc]
T
j ΠS⊥

∆ut−∆FSβ
∗
S

λNM
, [F̂Sc]j is the j-th column of F̂Sc . By the following lemma,

we claim that to prove (1) of Proposition 3.7.1, it suffices to bound `∞-norm of the PDE

estimation error τ .

Lemma C.4.1. For any ε > 0:

P
[

max
j∈Sc

∣∣∣Z̃j∣∣∣ ≥ ε

]
≤ P

[
‖τ‖∞ ≥

λε√
K

]
.

Proof.

P

[∥∥∥F̂T
ScΠS⊥

τ

λNM

∥∥∥
∞
≥ ε

]
≤ P

[∥∥∥F̂TΠS⊥
τ

λNM

∥∥∥
2
≥ ε

]

≤ P

[���ΠS⊥
(
F̂
)���

2

∥∥∥ τ

λNM

∥∥∥
2
≥ ε

]

≤ P

[���F̂
���
F

∥∥∥ τ

λNM

∥∥∥
2
≥ ε

]

≤ P

[
‖τ‖2 ≥ λε

√
NM

K

]

≤ P

[
‖τ‖∞ ≥

λε√
K

]
.

In the second inequality, we use the definition of spectral norm of matrix, and in the

third inequality, we use the fact �ΠS⊥�2 = 1. In the fourth inequality, the condition

1√
NM

maxj=1,...,K ‖F̂j‖2 ≤ 1 is used, giving us �F̂�F ≤
√
KNM . In the last inequality,

we use ‖τ‖2 ≤
√
NM‖τ‖∞.

C.4.1 Sufficient conditions for bounding ût − ut

Lemma C.4.2. Let K∗max = ‖K∗‖∞, BN be an arbitrary increasing sequence BN →∞ as

N → ∞, and B
′
N = BN + ‖u‖L∞(Ω). For any i = 0, 1, . . . ,M and arbitrary real r, there

exist finite positive constants A(Xi), C
∗(Xi), a0, b0, c0, and d0(Xi) which do not depend on

295

the temporal sample size N , such that for any α > 1 and

ε∗N(Xi, r, α) >

max

{
3|C∗(Xi)|h2

N ,
6K∗maxB

′
N

Nh2
N

, 6
A(Xi)

(
B
′
N

)−1

hN
,
6B

′
NK∗max(a0 lnN + r) lnN

h2
NN

,

12
√
αd0(Xi)

√
ln 1/hN
h3
NN

}
,

as long as N is sufficiently large, we have:

P
[

sup
t∈[0,T]

|∆ut(Xi, t)| > ε∗N(Xi, r, α)
]
< 2N exp

(
− B2

N

2σ2

)
+ b0 exp

(
− c0r

)
+ 4
√

2η4hαN .

Proof. In the following argument, we fix some i = 0, · · · ,M − 1 and omit the dependence

on Xi in the notations. Let B′N = BN + ‖u‖L∞(Ω) with BN being a sequence of increasing

positive numbers such that BN →∞ as N →∞, then define the truncated estimate

ût
B
′
N (Xi, t) =

1

Nh2
N

N−1∑
n=0

K∗
(
tn − t
hN

)
Un
i I{|Un

i | < B
′

N} (C.13)

=
1

h2
N

∫∫
|y|<B′N

K∗
(
z − t
hN

)
y dfN(z, y),

where fN(·, ·) := fN(·, ·|Xi) is the empirical distribution of (tn, U
n
i) conditioned on the

space Xi. For any (Xi, t), decomposing the estimation error of the temporal partial deriva-

tive as follows

ût − ut =

(
ût − ûtB

′
N − E

(
ût − ûtB

′
N
))

︸ ︷︷ ︸
Asymptotic deviation on the truncation error

+

(
ût
B
′
N − EûtB

′
N

)
︸ ︷︷ ︸

Asymptotic deviation of
truncated estimator

+

(
Eût − ut

)
︸ ︷︷ ︸

Asymptotic bias

,

we will prove that the error is bounded (in probability) by showing each component is

bounded.

296

Component 1. Asymptotic deviation on the truncation error: Notice that for any ε0,N ≥
K∗maxB

′
N

Nh2
N

:

P
[

sup
t
|ût − ûtB

′
N | > ε0,N

]
= P

[
sup
t

∣∣∣∣∣ 1

Nh2
N

N−1∑
n=0

K∗
(
tn − t
hN

)
Un
i I{|Un

i | ≥ B
′

N}

∣∣∣∣∣ > ε0,N

]
≤ P

[K∗max

Nh2
N

N−1∑
n=0

|Un
i |I{|Un

i | ≥ B
′

N} > ε0,N

]
≤ P

[
∃n = 0, 1, · · · , N − 1, |Un

i | ≥ B′N

]
= P

[
max

n=0,1,··· ,N−1
|Un

i | ≥ B′N

]
≤ P

[
max

n=0,1,··· ,N−1
|Un

i − uni | ≥ BN

]
≤ 2N exp

(
− B2

N

2σ2

)

where σ denotes the standard deviation of the Gaussian noise added on the data. On the

other hand, from Proposition 1 of [415]:

E |ût − ûtB
′
N | ≤

A
(
B
′
N

)−1

hN
.

forA =
∫
|K(ζ)| dζ×supt

∫
|y|f(t, y|Xi) dy with f(·, ·|Xi) as the distribution of (t, U(Xi, t));

hence for any ε1,N ≥ 2 max{K
∗
maxBN
Nh2

N
,
A
(
B
′
N

)−1

hN
}, we have:

P
[

sup
t
|ût(Xi, t)− ûtB

′
N (Xi, t)− (E(ût(Xi, t)− ûtB

′
N (Xi, t)))| > ε1,N

]
≤ 2N exp

(
− B2

N

2σ2

)
.

Component 2. Asymptotic deviation of truncated estimator: Observe that

ût
B
′
N − E

(
ût
B
′
N
)

=
1√
Nh2

N

∫
z∈R

∫
|y|≤B′N

K∗
(
z − t
hN

)
ydzdy

(√
N(fN(z, y)− f(z, y))

)
︸ ︷︷ ︸

:=ZN (z,y)

=
1√
Nh2

N

∫
z∈R
K∗
(
z − t
hN

)
dzU

B
′
N (z), (C.14)

where UB
′
N (z) is defined by

UB′N (z) :=

∫
|y|≤B′N

ydyZN(z, y).

297

Let T : R2 → [0, 1]2 be the Rosenblatt transformation [459], and define B as the 2-

dimensional solution path of the Brownian Bridge which takes the transformed T (z, y) as

an argument; then we have

UB′N (z) :=

∫
|y|≤B′N

ydy
{
ZN(z, y)− B(T (z, y))

}
+

∫
|y|≤B′N

ydyB(T (z, y)). (C.15)

Plug in (Equation C.15) to (Equation C.14), we get

ût
B
′
N − E

(
ût
B
′
N
)

=
1√
Nh2

N

∫
z∈R
K∗
(
z − t
hN

)
dz

∫
|y|≤B′N

ydy
{
ZN(z, y)− B(T (z, y))

}
︸ ︷︷ ︸

γN (t)

+
1√
N

1

h2
N

∫
z∈R

∫
|y|≤B′N

K∗
(
z − t
hN

)
ydzdyB(T (z, y))︸ ︷︷ ︸

ρN (t)

= γN(t) +
1√
N
ρN(t).

In the following, we bound γN and ρN(t)/
√
N respectively.

1. Bound for γN(t): Since K∗ has compact support, applying integration by parts on

γN(t) gives

γN(t) = − 1√
Nh2

N

∫
z∈R

∫
|y|≤B′N

ydy
{
ZN(z, y)− B(T (z, y))

}
dzK∗

(
z − t
hN

)
≤ 2B

′
NK∗max√
Nh2

N

sup
z,y

∣∣∣∣ZN(z, y)− B(T (z, y))

∣∣∣∣. (C.16)

By Tusnady’s strong approximation result [416], there exist absolute positive con-

stants a0, b0 and c0 such that

P
[

sup
z,y

∣∣∣∣ZN(z, y)− B(T (z, y))

∣∣∣∣ >
(
a0 lnN + r

)
lnN

√
N

]
< b0 exp(−c0r) (C.17)

holds for any real r. Therefore, if we take ε′2,N(r) =
2B
′
NK
∗
max(a0 lnN+r) lnN

Nh2
N

, combin-

298

ing (Equation C.16) and (Equation C.17) gives

P
[

sup
t
|γN(t)| > ε′2,N(r)

]
< b0 exp(−c0r). (C.18)

2. Bound for ρN(t)/
√
N : Similarly to (7) of [415], we have

h
3/2
N supt |ρN(t)|√

ln 1
hN

≤ 16(lnV)1/2S1/2
(

ln
1

hN

)−1/2
∫
|ζ|1/2 |dK∗(ζ)|︸ ︷︷ ︸

:=Q1,N

+ 16
√

2h
−1/2
N

(
ln

1

hN

)−1/2
∫
q(ShN |ζ|) |dK∗(ζ)|︸ ︷︷ ︸

:=Q2,N

,

where V is a random variable satisfying EV ≤ 4
√

2η4 (recall that η2 := max
i,n

E(Un
i)2),

q(r) :=
∫ r

0
1
2
(1
y

ln 1
y
)1/2 dy, S := supz

∫
y2f(z, y) dy. Let d0 = 16

√
2S1/2

∫
|ζ|1/2|dK∗(ζ)|,

which is a positive number independent of either N or M . Consider the following

inequality for an arbitrary ε

P

(
h

3/2
N supt |ρN(t)|√

ln 1
hN

≥ ε

)
≤ P

(
Q1,N ≥

ε

2

)
+ P

(
Q2,N ≥

ε

2

)

≤ P

((
lnV

)1/2 ≥
ε
(

ln 1
hN

)1/2

2d0

)
+ P

(
Q2,N ≥

ε

2

)

≤ 4
√

2η4 exp

(
−
ε2
(

ln 1
hN

)
4d2

0

)
+ P

(
Q2,N ≥

ε

2

)
,

(C.19)

where the Markov Inequality is used in the last inequality. Setting ε′′2,N = ε

√
ln 1
hN

Nh3
N

gives

P

(
supt |ρN(t)|√

N
≥ ε′′2,N

)
≤ 4
√

2η4 exp

(
−
ε2
(

ln 1
hN

)
4d2

0

)
+ P

(
Q2,N ≥

ε

2

)
.

Notice that Q2,N converges to d0 by Silverman [420]. For any arbitrary α > 1, if

299

ε = 2
√
αd0, there exists a positive integer N(α) such that as long as N > N(α),

we have Q2,N <
√
αd0; hence the second probability in (Equation C.19) becomes 0.

Considering that ε′′2,N now depends on α, we write it as ε′′2,N(α), and for sufficiently

large N (N > N(α)), we obtain

P

(
supt |ρN(t)|√

N
≥ ε′′2,N(α)

)
≤ 4
√

2η4hαN . (C.20)

Now if we take ε2,N(r, α) = 2 max{ε′2,N(r), ε′′2,N(α)} and combine (Equation C.18)

with (Equation C.20), we have

P
(

sup
t
|ûtB

′
N − E

(
ût
B
′
N
)
| > ε2,N(r, α)

)
< b0 exp(−c0r) + 4

√
2η4hαN

Component 3. Asymptotic bias: From [413], the asymptotic bias of the estimator directly

follows

E
(
ût
)
− ut = C∗h2

N .

for some constant C∗ independent of N . Specifically, since we fit a degree 2 polynomial

to obtain ût(Xi, ·), we plug p = 2 and ν = 1 in the expression of asymptotic bias of the

estimator. See page 83 of the paper [413] for the expression. Taking ε3,N = |C∗|h2
N , we

have P
(
|E
(
ût
)
− ut| > ε3,N

)
= 0.

Combining all the three components above and taking ε∗N(r, α) > 3 max{ε1,N , ε2,N(r, α), ε3,N}

gives the desired result.

C.4.2 Sufficient conditions for bounding (F̂− F)β∗

For the p-th order partial derivative estimators with respect to x, we have results similarly

to Lemma C.4.2.

300

Lemma C.4.3. Fix an order p ≥ 0, and let BM be an arbitrary increasing sequence

BM → ∞ as M → ∞, and B
′
M = BM + ‖u‖L∞(Ω). For any n = 0, 1, . . . , N − 1 and

arbitrary r, there exist finite positive constants Ap(tn), C∗(tn), a0, b0, c0, and d0(tn) which

do not depend on the spacial sample size M , such that for any α > 1 and

ε∗M,p(tn, r, α) >

max

{
3|C∗(tn)|w2

M ,
6p!K∗maxB

′
M

Mw1+p
M

,

6
p!Ap(tn)(B′M)−1

wpM
,
6p!B

′
M(a0 lnM + r) lnM

w1+p
M M

, 12p!
√
αd0(tn)

√
ln 1/wM

w2p+1
M M

}
,

as long as M > M(α) for some positive integer M(α), we have:

P
[

sup
x∈[0,Xmax)

|∂̂pxu(x, tn)− ∂pxu(x, tn)| > ε∗M,p

]
< 2M exp

(
− B2

M

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4wαM .

Proof. Notice that for any fixed temporal point tn, n = 0, 1, . . . , N − 1, the estimation for

the p-th order partial derivative takes the form

∂̂pxu(x, tn) =
p!

Mwp+1
M

M∑
i=1

K∗
(
Xi − x
wM

)
Un
i (C.21)

with probability 1 [414]. Hence, we can prove the desired result by substituting h2
N with

wp+1
M /p! in (Equation C.13) and follow the proof of Lemma C.4.2 and keeping in mind

that the constants now depend on tn and not on M . Notice that the kernel K used for the

spacial dimension may be different from that used for the temporal; this can be addressed

by taking K∗max to be the larger value between their `∞-norms. Finally, given any fixed tn,

the asymptotic bias takes the form

E
(
∂̂pxu
)
− ∂pxu = C∗pw

2
M

where C∗p ≤ maxp=0,1,...,Pmax

{ ∫
zp+1K∗p(z) dz

}
p!

(p+2)!
∂p+1
x u := C∗ for any 0 ≤ p ≤ Pmax.

301

Here, since we fit the Local-Polynomial with degree `+ 1 to obtain ∂̂`xu, we plug p = `+ 1

and ν = ` in the expression of asymptotic bias in [413].

As for the product terms:

Lemma C.4.4. Fix any two orders p, q ≥ 0, and let BM be an arbitrary increasing se-

quence BM →∞ as M →∞, and B
′
M = BM + ‖u‖L∞(Ω). For any n = 0, 1, . . . , N − 1

and arbitrary r, there exist finite positive constants A(tn), C∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗M,p,q > max{3‖∂pxu(·, tn)‖∞ε∗M,p, 3‖∂qxu(·, tn)‖∞ε∗M,q, 3(ε∗M,p)
2, 3(ε∗M,q)

2}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P
[

sup
x∈[0,Xmax)

|∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)| > ε∗∗M,p,q

]
< 2M exp(−B

2
M

2σ2
) + b0 exp(−c0r) + 4

√
2η4wαM ,

Here ε∗M,p and ε∗M,q (depending onB′M) are the thresholds in Lemma C.4.3 for the sup-norm

bound of the estimator ∂̂pxu and ∂̂qxu, respectively,

Proof. Notice that for any ε > 0, we can bound the probability:

P
[

sup
x∈[0,Xmax)

|∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)| > ε
]

≤ P
[
‖∂pxu(·, tn)‖∞ sup

x∈[0,Xmax)

|∆∂qxu(x, tn)| > ε/3
]

+ P
[
‖∂qxu(·, tn)‖∞ sup

x∈[0,Xmax)

|∆∂pxu(x, tn)| > ε/3
]

+ P
[

sup
x∈[0,Xmax)

|∆∂pxu(x, tn)| >
√
ε

3

]
+ P

[
sup

x∈[0,Xmax)

|∆∂qxu(x, tn)| >
√
ε

3

]
,

hence the results follow from Lemma C.4.3.

302

As for higher degree terms, we can take the similar approach to obtain general results

but with more complicated notations. In this work, we focus on demonstrating the essence

without involving more indices.

C.4.3 Simplification on the Probability Bounds

Before proceeding further, we simplify the expressions for ε∗N as well as the probability

bounds in Lemma C.4.2 by considering the window width hN and the diverging sequence

BN as follows

hN =
1

Na
, BN = N b .

Here a, b > 0 are positive coefficients to be determined.

Consequently, we update the expressions of the five terms whose maximum defines the

threshold ε∗N

E1(N) =
3|C∗(Xi)|
N2a

, E2(N) =
6K∗max(N b + ‖u‖L∞(Ω))

N1−2a
, E3(N) =

6A(Xi)

N−a
(
N b + ‖u‖L∞(Ω)

)
E4(N) =

6K∗max(N b + ‖u‖L∞(Ω))(a0 lnN + r) lnN

N1−2a
, E5(N) = 12

√
αd0(Xi)

√
a lnN

N1−3a
.

When N is sufficiently large, to determine ε∗N , we only need to focus on comparing the

powers of N in Ei(N), i = 1, 2, · · · , 5; this immediately leads to:

E2(N) = O (E4(N)) ,

hence it’s sufficient to only consider E1(N), E2(N), E4(N), and E5(N). The optimal

303

choice of a and b is determined by requiring

2a = 1− b− 2a

2a = 1−3a
2

=⇒

a = 1

7

b = 3
7

To summarize the discussion above, we have

Corollary C.4.1. Let hN = N−1/7. For any i = 0, 1, . . . ,M and arbitrary real r, there

exist finite positive constants C∗(Xi), a0, b0, c0, and d0(Xi) which do not depend on the

temporal sample size N , such that for N sufficiently large, any α > 1, and

ε∗N(Xi, r, α) > N−
2
7 max

{
3|C∗(Xi)|, 6(a0 lnN + r) lnN, 12

√
αd0(Xi)

√
lnN

7

}
,

we have:

P
[

sup
t∈[0,T]

|∆ut(Xi, t)| > ε∗N(Xi, r, α)
]
< 2N exp

(
−N

6/7

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4N−α/7 ,

Similarly, we can obtain optimal wM = M−1/(2p+5) and BM = M (p+2)/(2p+5) for

the estimation of p-th partial derivative of u. Consequently, the threshold lower bound

in Lemma C.4.3 becomes

ε∗M,p(tn, r, α) > M−2/(2p+5) max

{
3|C∗(tn)|, 6p!(a0 lnM + r) lnM, 12p!

√
αd0(tn)

√
lnM

2p+ 5

}
.

Notice that the right hand side of the inequality above is non-decreasing with respect to p ≥

0. Moreover, note that for sufficiently large M , if the probability bound in Lemma C.4.3

holds for some wM , then it holds for any smaller window width w′M < wM . Therefore, we

have the following simplified result

Corollary C.4.2. Let wM = M−1/7. For any n = 0, 1, . . . , N − 1 and arbitrary r, there

exist finite positive constants C∗(tn), a0, b0, c0, and d0(tn) which do not depend on the

304

spacial sample size M , such that for M sufficiently large, any α > 1, and

ε∗M(tn, r, α) >

M−2/(2Pmax+5) max

{
3|C∗(tn)|, 6Pmax!(a0 lnM + r) lnM, 12Pmax!

√
αd0(tn)

√
lnM

2Pmax + 5

}
,

we have:

P
[

sup
x∈[0,Xmax)

|∂̂pxu(x, tn)− ∂pxu(x, tn)| > ε∗M

]
< 2M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4M−α/(2Pmax+5)

for any order 0 ≤ p ≤ Pmax.

Similarly, for the product terms, we have

Corollary C.4.3. Let wM = M−1/7. For any n = 0, 1, . . . , N − 1 and arbitrary r, there

exist finite positive constants C∗(tn), a0, b0, c0, and d0(tn) which do not depend on the

spacial sample size M , such that for M sufficiently large, any α > 1, and

ε∗∗M > max{3‖u(·, tn)‖Pmax,∞ε
∗
M , 3(ε∗M)2}

where ‖u(·, tn)‖Pmax,∞ =
∑

0≤k≤Pmax
‖∂kxu(·, tn)‖∞, we have

1

4
P
[

sup
x∈[0,Xmax)

|∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)| > ε∗∗M

]
< 2M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4M−α/(2Pmax+5)

for any orders 0 ≤ p, q ≤ Pmax.

305

C.4.4 `∞ Bound for the PDE Estimation Error τ

Notice that in the previous results, although the constants C∗(Xi) and d0(Xi) are indepen-

dent of N , they show dependence on the spacial point Xi. Similarly, C∗(tn) and d0(tn)

are independent of M , yet their values may depend on N . To guarantee that as both

N,M →∞, these constants are uniformly bounded, we prove the following lemma.

Lemma C.4.5. For any integerM ≥ 1, and any i = 0, 1, · · · ,M−1, |C∗(Xi)| and d0(Xi)

in Corollary C.4.1 are bounded by constants that are independent of M . That is, there exist

constants C∗, d0 > 0 such that for any M ≥ 1

max
i=0,··· ,M−1

|C∗(Xi)| ≤ C∗‖∂3
t u‖∞, and max

i=0,··· ,M−1
d0(Xi) ≤ d0 .

Proof. From (3.7) in the Theorem 3.1 of [414], we have

|C∗(Xi)| ≤ C∗‖∂3
t u‖∞ <∞

where C∗ only depends on the choice of the kernel function and the order of the Local-

Polynomial. Recalling that d0(Xi) = 16S1/2
∫
|ζ|1/2|dK∗(ζ)|where S = supz

∫
y2f(z, y|Xi) dy.

For a general real number s, we know that

sup
z∈[0,Tmax]

∫
|y|sf(z, y|Xi) dy = sup

z∈[0,Tmax]

∫
|y|s 1√

2πσ2
exp

(
− (y − u(Xi, z))

2

2σ2

)
dy

= sup
z∈[0,Tmax]

σs2s/2
Γ
(

1+s
2

)
√
π

1F1

(
− s

2
,
1

2
,−1

2

(u(Xi, z)

σ

)2
)

where 1F1(p, q, w) is Kummer’s confluent hyper-geometric function of w ∈ C with param-

eters p, q ∈ C (See, e.g.[460]) and Γ is the Gamma function. Since 1F1(− s
2
, 1

2
, ·) is an

306

entire function for fixed parameters,

sup
z∈[0,Tmax]

∫
|y|sf(z, y|Xi) dy ≤ sup

z∈[0,Tmax]

σs2s/2
Γ
(

1+s
2

)
√
π

sup

w∈[−maxx∈Ω u2(x,z)

2σ2 ,−minx∈Ω u2(x,z)

2σ2]

1F1(−s
2
,
1

2
, w) <∞

which clearly does not depend on M . Taking s = 2, we can obtain that d0(Xi) ≤ d0 for

some d0 that only depends on the choice of kernel K, underlying function ‖u‖L∞(Ω), and

noise level σ.

Note that the same proof can derive that the constants in Lemma C.4.3 and Lemma C.4.4

are also bounded by N -independent constants. This technical lemma allows us to state

Proposition C.4.1. Take hN = N−1/7 in the temporal direction and wM = M−1/7 in the

space direction. There exist constants C, a0, b0, and c0 which do not depend on N nor M

such that for N and M sufficiently large, any r, α > 1, and

εN,M(r, α) > C max

{
(a0 lnN + r) lnN

N2/7
,

√
α lnN

N2/7
,
(a0 lnM + r) lnM

M2/(2Pmax+5)
,

√
α lnM

(2Pmax + 5)M4/(2Pmax+5)

}

we have

P
[
‖τ‖∞ > εN,M

]
<

2NM exp

(
−N

6/7

2σ2

)
+ b0 exp(−c0r)M + 4

√
2η4MN−α/7+

8sNM exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4sb0 exp(−c0r)N + 16

√
2η4sNM−α/(2Pmax+5)

Here K is the number of feature variables in the dictionary.

Proof. By triangle inequality, the `∞-norm of PDE estimation error τ (Equation 6.33) can

be bounded by

‖τ‖∞ ≤ ‖∆Fβ∗‖∞ + ‖∆ut‖∞ .

307

By Corollary C.4.1 and Lemma C.4.5, there exists a constant C1 independent of N and

M such that with sufficiently large N and any εN(r, α) > C1N
−2/7 max{(a0 lnN +

r) lnN,
√
α lnN}, we have

P
[
‖∆ut‖∞ > εN(r, α)

]
≤ P

[
max

i=0,1,··· ,M−1
sup

t∈[0,Tmax]

|∆ut(Xi, t)| > εN(r, α)
]

≤
M−1∑
i=0

P
[

sup
t∈[0,Tmax]

|∆ut(Xi, t)| > εN(r, α)
]

< 2NM exp

(
−N

6/7

2σ2

)
+ b0 exp(−c0r)M + 4

√
2η4MN−α/7 .

On the other hand, if we denote ∆Fk(x, t) as the approximation error of the k-th feature

variable at time t and space x, we have

‖∆Fβ∗‖∞ ≤ max
n=0,1,··· ,N

‖β∗‖∞ sup
x∈[0,Xmax)

s∑
k=1

|∆Fk(x, tn)| .

By Corollary C.4.2 and C.4.3, there exists a constant C2 independent ofN andM such that

with sufficiently largeM and any εK,M(r, α) > C2Pmax!K‖β∗‖∞M−2/(2Pmax+5) max{(a0 lnM+

r) lnM,
√

α lnM
2Pmax+5

}, we have

P
[
‖∆Fβ∗‖∞ > εM(r, α)

]
≤

N−1∑
n=0

s∑
k=1

P
[

sup
x∈[0,Xmax)

|∆Fk(x, tn)| > εM(r, α)

s‖β∗‖∞

]
< 8NMs exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r)Ns+ 16

√
2η4NsM−α/(2Pmax+5) .

Taking C = max{2C1, 2s‖β∗‖∞C2Pmax!} proves the theorem.

C.4.5 Further Simplification

We further simplify our result by taking M = N b for some coefficient b > 0. Since r and

α are arbitrary, we can vary them as we increase M,N by taking r = N c and α = Nd for

some positive coefficients c > 0 and d > 0, respectively. Consequently, we have the lower

308

bound for εN,M in Proposition C.4.1 becoming

εN,M(r, α) >

C max

{
(a0 lnN +N c) lnN

N2/7
,

√
lnN

N2/7−d/2 ,
b(a0b lnN +N c) lnN

N2b/(2Pmax+5)
,

√
b lnN

(2Pmax + 5)N4b/(2Pmax+5)−d

}
,

(C.22)

To guarantee that the lower bound (Equation C.22) converges to 0 as N →∞, we have the

following constraints on positive coefficients b, c, and d

0 < c < 2/7

2/7− d/2 > 0

c < 2b/(2Pmax + 5)

4b/(2Pmax + 5)− d > 0

Furthermore, we take d = 2c so that

√
lnN

N2/7−d/2 = O
(

(a0 lnN +N c) lnN

N2/7

)
,

√
b lnN

N4b/(2Pmax+5)−d = O
(
b(a0b lnN +N c) lnN

N2b/(2Pmax+5)

)
.

and we can focus on the second and fourth term in (Equation C.22). As a result, the optimal

choice for b is computed by 2/7 = 2b/(2Pmax + 5) =⇒ b = (2Pmax + 5)/7. Based on the

set-ups above, we obtain that for N sufficiently large, with

εN(c) > C
lnN

N2/7−c

309

for any 0 < c < 2/7, we have

P
[
‖τ‖∞ > εN(c)

]
<

2N (2Pmax+12)/7 exp

(
−N

6/7

2σ2

)
+ b0 exp(−c0N

c)N (2Pmax+5)/7 + 4
√

2η4N−N
2c/7+

8N (2Pmax+12)/7K exp

(
−N

(2Pmax+5)/7

2σ2

)
+ 4b0 exp(−c0N

c)NK + 16
√

2η4KN−N
2c/7

= O
(
N

2Pmax+5
7 exp

(
− 1

6
N c

))
,

where in the last equality, we plug b0 = 2 and c0 = 1
6

from [461]. Combining this with

Lemma C.4.1 proves the first part of the Proposition 3.7.1.

C.4.6 Proof of `∞ bound in (Equation 6.36)

Recall that in (Equation C.12), we have

β̌S − β∗S =
(
F̂T
S F̂S

)−1
(

F̂T
S (∆ut −∆FSβ

∗
S)− λNNM žS

)
.

Now, we are ready to bound the
���β̂λS − β∗S

��� `∞ bound in (Equation 6.36) as follows:

max
k∈S
|βk − β∗k| ≤

����(F̂T
S F̂S

)−1
����

2

‖F̂T
Sτ‖∞ + λNM

����(F̂T
S F̂S

)−1
����

2

≤
����(F̂T

S F̂S/(NM)
)−1

����
2

(
‖F̂T
Sτ‖∞/(NM) + λ

)
(item A1)
≤
√
KCmin

(
‖F̂T
Sτ‖∞/(NM) + λ

)

≤
√
KCmin

(
‖τ‖∞

���F̂S
���
∞,∞

NM
+ λ

)

≤
√
KCmin

(
‖τ‖∞

���F̂
���
F√

NM
+ λ

)
≤
√
KCmin

(
K‖τ‖∞ + λ

)
,

310

where we use normalized columns of F̂ in the last inequality. Following the set-ups from

Proposition 3.7.1 gives the desired result.

C.5 Proofs of Lemmas 6.8.1 and 6.8.2

Corollary C.5.1. Fix any four orders p, q, k ≥ 0, and let BM be an arbitrary increasing

sequence BM →∞ as M →∞, and B
′
M = BM +‖u‖L∞(Ω). For any n = 0, 1, . . . , N −1

and arbitrary r, there exist finite positive constants A(tn), C∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗∗M,p,q,k > max

{
3‖∂kxu(·, tn)‖∞ε∗∗M,p,q, 3‖∂pxu(·, tn)∂qxu(·, tn)‖∞ε∗∗M,k, 3(ε∗∗M,p,q)

2, 3(ε∗∗M,k)
2

}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P

[
sup

x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)∂̂kxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)∂kxu(x, tn)
∣∣∣ > ε∗∗∗M,p,q,k

]

< 8M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r) + 16

√
2η4M−α/(2Pmax+5) ,

Here ε∗∗M,p,q and ε∗∗M,k,l (depending on B′M) are the thresholds in Corollary C.4.3 for the

sup-norm bound of the estimator ∂̂pxu∂̂qxu and ∂̂kxu∂̂lxu, respectively,

311

Proof. Notice that for any ε > 0, we can bound the probability:

P

[
sup

x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)∂̂kxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)∂kxu(x, tn)
∣∣∣ > ε

]

≤ P

[
‖∂kxu(·, tn)‖∞ sup

x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)
∣∣∣ > ε/3

]

+ P

[
‖∂pxu(·, tn)∂qxu(·, tn)‖∞ sup

x∈[0,Xmax)

∣∣∣∂̂kxu(x, tn)− ∂kxu(x, tn)
∣∣∣ > ε/3

]

+ P
[

sup
x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)
∣∣∣ >√ε

3

]
+ P

[
sup

x∈[0,Xmax)

∣∣∣∂̂kxu(x, tn)− ∂kxu(x, tn)
∣∣∣ >√ε

3

]
,

hence the results follow from corolloary C.4.3.

Corollary C.5.2. Fix any four orders p, q, k, l ≥ 0, and let BM be an arbitrary increasing

sequence BM →∞ as M →∞, and B
′
M = BM +‖u‖L∞(Ω). For any n = 0, 1, . . . , N −1

and arbitrary r, there exist finite positive constants A(tn), C∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗∗∗M,p,q,k,l >

max

{
3‖∂pxu(·, tn)∂qxu(·, tn)‖∞ε∗∗M,p,q, 3‖∂kxu(·, tn)∂lxu(·, tn)‖∞ε∗∗M,k,l, 3(ε∗∗M,p,q)

2, 3(ε∗∗M,k,l)
2

}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P[sup
x∈[0,Xmax)

|∂̂pxu(x, tn)∂̂qxu(x, tn)∂̂kxu(x, tn)∂̂lxu(x, tn)

− ∂pxu(x, tn)∂qxu(x, tn)∂kxu(x, tn)∂lxu(x, tn)| > ε∗∗∗∗M,p,q,k,l]

< 8M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r) + 16

√
2η4M−α/(2Pmax+5) ,

Here ε∗∗M,p,q and ε∗∗M,k,l (depending on B′M) are the thresholds in Corollary C.4.3 for the

sup-norm bound of the estimator ∂̂pxu∂̂qxu and ∂̂kxu∂̂lxu, respectively,

312

Proof. Notice that for any ε > 0, we can bound the probability:

P

[
sup

x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)∂̂kxu(x, tn)∂̂lxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)∂kxu(x, tn)∂lxu(x, tn)
∣∣∣ > ε

]

≤ P

[
‖∂kxu(·, tn)∂lxu(·, tn)‖∞ sup

x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)
∣∣∣ > ε/3

]

+ P

[
‖∂pxu(·, tn)∂qxu(·, tn)‖∞ sup

x∈[0,Xmax)

∣∣∣∂̂kxu(x, tn)∂̂lxu(x, tn)− ∂kxu(x, tn)∂lxu(x, tn)
∣∣∣ > ε/3

]

+ P
[

sup
x∈[0,Xmax)

∣∣∣∂̂pxu(x, tn)∂̂qxu(x, tn)− ∂pxu(x, tn)∂qxu(x, tn)
∣∣∣ >√ε

3

]
+ P

[
sup

x∈[0,Xmax)

∣∣∣∂̂kxu(x, tn)∂̂lxu(x, tn)− ∂kxu(x, tn)∂lx0u(x, tn)
∣∣∣ >√ε

3

]
,

hence the results follow from corolloary C.4.3.

Lemma C.5.1. Let ε∗M , ε
∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M be the thresholds defined in corollaries C.4.2, C.4.3, C.5.1,

and C.5.2. Then for any εmax
′

M such that

εmax
′

M >
√
s(K − s) max

{
ε∗M , ε

∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M

}
,

then, for 0 < c < 2
7
, and for sufficiently large enough N , we have

P

[
1

NM

���F̂T
ScF̂S − FT

ScFS
���

2
> εmax

′

M

]
≤ O

(
N exp

(
− 1

6
N c
))
.

313

Proof.

P

[
1

NM

���F̂T
ScF̂S − FT

ScFS
���

2
> εmax

′

M

]

≤ P

[���F̂T
ScF̂S − FT

ScFS
���

F
> NMεmax

′

M

]

≤ P

[���F̂T
ScF̂S − FT

ScFS
���
∞,∞

> NM
εmax

′

M√
s(K − s)

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

′

M√
s(K − s)

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

′

M√
s(K − s)

]

≤ O
(
N exp

(
− 1

6
N c
))

,

where we use the results from corollaries C.4.2, C.4.3, C.5.1, and C.5.2, and simplication

argument used in the Appendix subsection C.4.5 in the last inequality.

C.5.1 Proof of Lemma 6.8.1

Proof. Observe that we can write:

Λmin

(
1

NM
FT
SFS

)
:=

1

NM
min
‖x‖2=1

xT
(

FT
SFS

)
x

=
1

NM
min
‖x‖2=1

{
xT
(

F̂T
S F̂S

)
x+ xT

(
FT
SFS − F̂T

S F̂S

)
x

}
≤ 1

NM

{
yT
(

F̂T
S F̂S

)
y + yT

(
FT
SFS − F̂T

S F̂S

)
y

}

where y ∈ RK is a unit-norm minimal eigen-vector of 1
NM

FT
SFS . Therefore, we can write,

Λmin

(
1

NM
F̂T
S F̂S

)
≥ Λmin

(
1

NM
FT
SFS

)
− 1

NM

���FT
SFS − F̂T

S F̂S
���

2

≥ Cmin −
1

NM

���F̂T
S F̂S − FT

SFS
���

2
.

314

By using a similar argument used in Lemma C.5.1, we can prove 1
NM

���F̂T
S F̂S − FT

SFS
���

2
→

0 with high-probability as N →∞. For any εmax
M such that,

εmax
M > smax

{
ε∗M , ε

∗∗
M , ε

∗∗∗
M , ε∗∗∗∗M

}
,

Then, we can bound the probability as follows:

P

[
1

NM

���F̂T
S F̂S − FT

SFS
���

2
> εmax

M

]

≤ P

[���F̂T
S F̂S − FT

SFS
���

F
> NMεmax

M

]
≤ P

[���F̂T
S F̂S − FT

SFS
���
∞,∞

> NM
εmax
M

s

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤ O
(
N exp

(
− 1

6
N c
))

.

C.5.2 Proof of Lemma 6.8.2

Proof. Motviated from [411], we begin the proof by decomposing the sample matrix(
F̂T
ScF̂S

)(
F̂T
S F̂S

)−1 into four parts:

(
F̂T
ScF̂S

)(
F̂T
S F̂S

)−1
= FT

ScFS

((
F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
)

︸ ︷︷ ︸
:=T1

+

(
F̂T
ScF̂S − FT

ScFS

)(
FT
SFS

)−1

︸ ︷︷ ︸
:=T2

+

(
F̂T
ScF̂S − FT

ScFS

)((
F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
)

︸ ︷︷ ︸
:=T3

+
(
FT
ScFS

)(
FT
SFS

)−1︸ ︷︷ ︸
:=T4

.

315

Since we know �T4�∞ ≤ 1− µ for some µ ∈ (0, 1], the decomposition reduces the proof

showing �Ti�∞ → 0 with probability 1−O(N exp(−1
6
N c)) for i = 1, 2, 3.

1. Control of T1: Observe that we can re-factorize T1 as follows:

T1 =
(
FT
ScFS

)(
FT
SFS

)−1[
FT
SFS − F̂T

S F̂S
](

F̂T
S F̂S

)−1
.

Then, by taking the advantage of sub-multiplicative property �AB�∞ ≤ �A�∞�B�∞ and

the fact �T4�∞ ≤ 1 − µ and �C�∞ ≤
√
N�C�2 for C ∈ RM×N , we can bound �T1�∞

as follows:

��T1

��
∞ ≤

���(FT
ScFS

)(
FT
SFS

)−1
���
∞

���FT
SFS − F̂T

S F̂S
���
∞

���(F̂T
S F̂S

)−1
���
∞

≤ s(1− µ)

(
1

NM

���FT
SFS − F̂T

S F̂S
���

2

)(
NM

���(F̂T
S F̂S

)−1
���

2

)
≤ s(1− µ)

Cmin

(
1

NM

���FT
SFS − F̂T

S F̂S
���

2

)
.

Note that we use �(F̂T
S F̂S

)−1�2 ≤ 1
NMCmin

with probability 1−O(N exp(−1
6
N c)) in the

last inequality from Lemma 6.8.1.

2. Control of T2: With similar techniques employed for controlling �T1�∞, we can bound

�T2�∞ as follows:

��T2

��
∞ ≤

���F̂T
ScF̂S − FT

ScFS
���
∞

���(FT
SFS

)−1
���
∞

≤ s
���F̂T
ScF̂S − FT

ScFS
���

2

���(FT
SFS

)−1
���

2

= s

(
1

NM

���F̂T
ScF̂S − FT

ScFS
���

2

)(
NM

���(F̂T
S F̂S

)−1
���

2

)
≤ s

Cmin

(
1

NM

���F̂T
ScF̂S − FT

ScFS
���

2

)
.

316

3. Control of T3: To bound
��T3

��
∞, we re-factorize the second argument of product in

T3: (
F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
=
(
FT
SFS

)−1[(
FT
SFS

)
−
(
F̂T
S F̂S

)](
F̂T
S F̂S

)−1

With the factorization, we bound �(F̂T
S F̂S

)−1−
(
FT
SFS

)−1�∞ by using sub-multiplicative

property and the fact �C�∞ ≤
√
N�C�2 for any C ∈ RM×N again:

���(F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
���
∞

=
���(FT

SFS
)−1[(

FT
SFS

)
−
(
F̂T
S F̂S

)](
F̂T
S F̂S

)−1
���
∞

≤
√
s

���(FT
SFS

)−1[(
FT
SFS

)
−
(
F̂T
S F̂S

)](
F̂T
S F̂S

)−1
���

2

≤
√
s

���(FT
SFS

)−1
���

2

���[(FT
SFS

)
−
(
F̂T
S F̂S

)]���
2

���(F̂T
S F̂S

)−1
���

2

≤
√
s

NMC2
min

(
1

NM

���FT
SFS − F̂T

S F̂S
���

2

)
. (C.23)

Now we can bound
��T3

��
∞ as follows:

��T3

��
∞ =

����(F̂T
ScF̂S − FT

ScFS

)((
F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
)����
∞

≤
���F̂T
ScF̂S − FT

ScFS
���
∞

���(F̂T
S F̂S

)−1 −
(
FT
SFS

)−1
���
∞

≤ s

Cmin

(
1

NM

���F̂T
ScF̂S − FT

ScFS
���

2

)(
1

NM

���FT
SFS − F̂T

S F̂S
���

2

)
,

where in the last inequality, we use (Equation C.23) and �C�∞ ≤
√
N�C�2 for any

C ∈ RM×N . Take εmax
′′

M such that, for εmax′
M and εmax

M in Lemma C.5.1 and Lemma 6.8.1

respectively:

εmax
′′

M > max

{
Cmin

s(1− µ)
εmax
M ,

Cmin

s
εmax

′

M

}
,

for large enough N , we have

P

[
∀i = 1, 2, 3 :

��Ti

��
∞ > εmax

′′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.

317

REFERENCES

[1] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[2] G. E. Hutchinson, “The concept of pattern in ecology,” Proceedings of the Academy
of Natural Sciences of Philadelphia, vol. 105, pp. 1–12, 1953.

[3] H. Meinhardt, “Models of biological pattern formation,” New York, vol. 118, 1982.

[4] U. Grenander, Elements of pattern theory. JHU Press, 1996.

[5] M. Honarkhah and J. Caers, “Stochastic simulation of patterns using distance-based
pattern modeling,” Mathematical Geosciences, vol. 42, no. 5, pp. 487–517, 2010.

[6] D. Mumford and A. Desolneux, Pattern theory: the stochastic analysis of real-
world signals. CRC Press, 2010.

[7] P. Ball and N. R. Borley, The self-made tapestry: pattern formation in nature. Ox-
ford University Press Oxford, 1999, vol. 198.

[8] S. K. Reed, “Pattern recognition and categorization,” Cognitive psychology, vol. 3,
no. 3, pp. 382–407, 1972.

[9] N. Lund, Attention and pattern recognition. Psychology Press, 2001.

[10] R. Pless and R. Souvenir, “A survey of manifold learning for images,” IPSJ Trans-
actions on Computer Vision and Applications, vol. 1, pp. 83–94, 2009.

[11] J. Wang, Geometric structure of high-dimensional data and dimensionality reduc-
tion. Springer, 2012, vol. 5.

[12] C. M. Drain, F. Nifiatis, A. Vasenko, and J. D. Batteas, “Porphyrin tessellation
by design: Metal-mediated self-assembly of large arrays and tapes,” Angewandte
Chemie International Edition, vol. 37, no. 17, pp. 2344–2347, 1998.

[13] H. Huang, P. Y. Mok, Y. Kwok, and J. Au, “Block pattern generation: From param-
eterizing human bodies to fit feature-aligned and flattenable 3d garments,” Com-
puters in Industry, vol. 63, no. 7, pp. 680–691, 2012.

[14] M. P. Winsor, “Starfish, jellyfish, and the order of life,” Issues in, 1976.

[15] R. C. Moore and L. R. Laudon, Evolution and classification of Paleozoic crinoids.
Geological Society of America, 1943, vol. 46.

318

[16] B. B. Mandelbrot and B. B. Mandelbrot, The fractal geometry of nature. WH free-
man New York, 1982, vol. 1.

[17] W. James, The principles of psychology. Cosimo, Inc., 2007, vol. 1.

[18] C. Chabris and D. J. Simons, The invisible gorilla: And other ways our intuitions
deceive us. Harmony, 2010.

[19] M. Halle, The sound pattern of Russian. De Gruyter Mouton, 2011.

[20] J.-J. Nattiez, Music and discourse: Toward a semiology of music. Princeton Uni-
versity Press, 1990.

[21] E. Weber, Johann gottfried walther,’musicalisches lexicon oder musicalische bib-
liothec’, 2002.

[22] J. Niessing and R. W. Friedrich, “Olfactory pattern classification by discrete neu-
ronal network states,” Nature, vol. 465, no. 7294, pp. 47–52, 2010.

[23] K. A. Dahl and D. W. Oppo, “Sea surface temperature pattern reconstructions in
the arabian sea,” Paleoceanography, vol. 21, no. 1, 2006.

[24] C. d. S. Pires, “Remark on the vectorlike nature of electromagnetism and electric
charge quantization,” Physical Review D, vol. 60, no. 7, p. 075 013, 1999.

[25] W. O’Grady, M. Dobrovolsky, and F. Katamba, Contemporary linguistics. St. Mar-
tin’s, 1997.

[26] N. Chomsky, Syntactic structures. Walter de Gruyter, 2002.

[27] P. N. Edwards, “Infrastructure and modernity: Force, time, and social organiza-
tion in the history of sociotechnical systems,” Modernity and technology, vol. 1,
pp. 185–226, 2003.

[28] H. V. Roberts, “Stock-market ”patterns” and financial analysis: Methodological
suggestions,” The Journal of Finance, vol. 14, no. 1, pp. 1–10, 1959.

[29] C. Darwin, The origin of species. PF Collier & son New York, 1909.

[30] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, popula-
tions, plasticity. Cambridge university press, 2002.

[31] D. Romer, Advanced macroeconomics. Mcgraw-hill, 2012.

[32] R. S. Pindyck and D. L. Rubinfeld, Microeconomics. Pearson Education, 2014.

319

[33] A. Einstein, “The general theory of relativity,” in The Meaning of Relativity, Springer,
1922, pp. 54–75.

[34] A. Zeilinger, “Experiment and the foundations of quantum physics,” More Things
in Heaven and Earth, pp. 482–498, 1999.

[35] E. Meron, “Vegetation pattern formation: The mechanisms behind the forms,” Physics
Today, vol. 72, no. 11, pp. 30–36, 2019.

[36] F. Borgogno, P. D’Odorico, F. Laio, and L. Ridolfi, “Mathematical models of veg-
etation pattern formation in ecohydrology,” Reviews of Geophysics, vol. 47, no. 1,
2009.

[37] B. T. Werner, “Complexity in natural landform patterns,” Science, vol. 284, no. 5411,
pp. 102–104, 1999.

[38] J. H. Brown, V. K. Gupta, B.-L. Li, B. T. Milne, C. Restrepo, and G. B. West,
“The fractal nature of nature: Power laws, ecological complexity and biodiversity,”
Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, vol. 357, no. 1421, pp. 619–626, 2002.

[39] R. J. Baron, “Mechanisms of human facial recognition,” International Journal of
Man-Machine Studies, vol. 15, no. 2, pp. 137–178, 1981.

[40] W. Shugen, “Framework of pattern recognition model based on the cognitive psy-
chology,” Geo-spatial Information Science, vol. 5, no. 2, pp. 74–78, 2002.

[41] K. M. Galotti, Cognitive psychology in and out of the laboratory. Sage Publications,
2017.

[42] P. V. Foukal, Solar astrophysics. John Wiley & Sons, 2008.

[43] S. Wada, H. Kikura, and M. Aritomi, “Pattern recognition and signal processing
of ultrasonic echo signal on two-phase flow,” Flow Measurement and Instrumenta-
tion, vol. 17, no. 4, pp. 207–224, 2006.

[44] A. Wang et al., “An industrial strength audio search algorithm,” in Ismir, Citeseer,
vol. 2003, 2003, pp. 7–13.

[45] C. Eivind and F. Drablos, “Detecting periodic patterns in biological sequences,”
Bioinformatics (Oxford, England), vol. 14, no. 6, pp. 498–507, 1998.

[46] D. G. Kendall, D. Barden, T. K. Carne, and H. Le, Shape and shape theory. John
Wiley & Sons, 2009, vol. 500.

320

[47] D. Zhang and G. Lu, “Review of shape representation and description techniques,”
Pattern recognition, vol. 37, no. 1, pp. 1–19, 2004.

[48] T. Pavlidis, Algorithms for graphics and image processing. Springer Science &
Business Media, 2012, p. 143.

[49] P. Maragos, “Pattern spectrum and multiscale shape representation,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 11, no. 7, pp. 701–716,
1989.

[50] M. Teague, “Image analysis via the general theory of moments,” JOSA, vol. 70,
no. 8, pp. 920–930, 1980.

[51] K. Yamada and K. Knight, “A syntax-based statistical translation model,” in Pro-
ceedings of the 39th Annual Meeting of the Association for Computational Linguis-
tics, 2001, pp. 523–530.

[52] E. H. Land, “Experiments in color vision,” Scientific American, vol. 200, no. 5,
pp. 84–99, 1959.

[53] ——, “The retinex theory of color vision,” Scientific american, vol. 237, no. 6,
pp. 108–129, 1977.

[54] J.-M. Morel, A. B. Petro, and C. Sbert, “Fast implementation of color constancy
algorithms,” in Color Imaging XIV: Displaying, Processing, Hardcopy, and Appli-
cations, International Society for Optics and Photonics, vol. 7241, 2009, p. 724 106.

[55] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, “A variational framework
for retinex,” International Journal of computer vision, vol. 52, no. 1, pp. 7–23,
2003.

[56] S. Zhang, T. Wang, J. Dong, and H. Yu, “Underwater image enhancement via ex-
tended multi-scale retinex,” Neurocomputing, vol. 245, pp. 1–9, 2017.

[57] K. Schwarzschild, “On the gravitational field of a mass point according to einstein’s
theory,” arXiv preprint physics/9905030, 1999.

[58] J. Droste, “On the field of a single centre in einstein’s theory of gravitation,” Konin-
klijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical
Sciences, vol. 17, pp. 998–1011, 1915.

[59] D. Castelvecchi, “Black hole pictured for first time-in spectacular detail,” Nature,
vol. 568, no. 7752, pp. 284–285, 2019.

321

[60] E. H. T. Collaboration et al., “First m87 event horizon telescope results. i. the
shadow of the supermassive black hole,” arXiv preprint arXiv:1906.11238, 2019.

[61] I.-S. Liu, “On fourier’s law of heat conduction,” Continuum mechanics and Ther-
modynamics, vol. 2, no. 4, pp. 301–305, 1990.

[62] J. Hadamard, “Sur les problémes aux dérivées partielles et leur signification physique,”
Princeton university bulletin, pp. 49–52, 1902.

[63] J. Percus, “Equilibrium state of a classical fluid of hard rods in an external field,”
Journal of Statistical Physics, vol. 15, no. 6, pp. 505–511, 1976.

[64] J. Mawhin, Critical point theory and Hamiltonian systems. Springer Science &
Business Media, 2013, vol. 74.

[65] T. Kottos and U. Smilansky, “Periodic orbit theory and spectral statistics for quan-
tum graphs,” Annals of Physics, vol. 274, no. 1, pp. 76–124, 1999.

[66] Y. A. Kuznetsov, Elements of applied bifurcation theory. Springer Science & Busi-
ness Media, 2013, vol. 112.

[67] R. T. Glassey, “Finite-time blow-up for solutions of nonlinear wave equations,”
Mathematische Zeitschrift, vol. 177, no. 3, pp. 323–340, 1981.

[68] L. I. Rudin and S. Osher, “Total variation based image restoration with free local
constraints,” in Proceedings of 1st International Conference on Image Processing,
IEEE, vol. 1, 1994, pp. 31–35.

[69] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[70] D. B. Mumford and J. Shah, “Optimal approximations by piecewise smooth func-
tions and associated variational problems,” Communications on pure and applied
mathematics, 1989.

[71] M. Bertalmıéo, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction
through variational techniques,” IEEE Transactions on Image Processing, vol. 16,
no. 4, pp. 1058–1072, 2007.

[72] H. Weyl, Symmetry. Princeton University Press, 2015, vol. 104.

[73] B. C. Van Fraassen, “Laws and symmetry,” 1989.

322

[74] Y. Liu, R. T. Collins, and Y. Tsin, “A computational model for periodic pattern
perception based on frieze and wallpaper groups,” IEEE transactions on pattern
analysis and machine intelligence, vol. 26, no. 3, pp. 354–371, 2004.

[75] E. Hitzer and D. Ichikawa, “Representation of crystallographic subperiodic groups
in clifford’s geometric algebra,” Advances in Applied Clifford Algebras, vol. 23,
no. 4, pp. 887–906, 2013.

[76] H. Hiller, “Crystallography and cohomology of groups,” The American Mathemat-
ical Monthly, vol. 93, no. 10, pp. 765–779, 1986.

[77] C. J. Mulvey, “A generalisation of gelfand duality,” Journal of Algebra, vol. 56,
no. 2, pp. 499–505, 1979.

[78] J. M. Lee, “Smooth manifolds,” in Introduction to Smooth Manifolds, Springer,
2013, pp. 1–31.

[79] J. E. Whitesitt, Boolean algebra and its applications. Courier Corporation, 2012.

[80] S. Awodey, Category theory. Oxford university press, 2010.

[81] M. Barr and C. Wells, Category theory for computing science. Prentice Hall New
York, 1990, vol. 49.

[82] M. D. Resnik, Mathematics as a Science of Patterns. Oxford University Press,
1997.

[83] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, 2. MIT press
Cambridge, 2016, vol. 1.

[84] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[85] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431–3440.

[86] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image comput-
ing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[87] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

323

[88] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[89] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape
of neural nets,” arXiv preprint arXiv:1712.09913, 2017.

[90] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International conference on machine learning, PMLR, 2013,
pp. 1310–1318.

[91] L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization: Theory
and numerical examples,” arXiv preprint arXiv:1903.06733, 2019.

[92] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, “Co-
teaching: Robust training of deep neural networks with extremely noisy labels,”
arXiv preprint arXiv:1804.06872, 2018.

[93] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[94] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks,” arXiv preprint arXiv:1602.07868,
2016.

[95] L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume,” Mathema-
tische Annalen, vol. 70, no. 3, pp. 297–336, 1911.

[96] E. Fedorov, “Symmetry in the plane,” in Zapiski Imperatorskogo S. Peterburgskogo
Mineralogichesgo Obshchestva [Proc. S. Peterb. Mineral. Soc.], vol. 2, 1891, pp. 345–
390.

[97] H. Hiller, “Crystallography and cohomology of groups,” The American Mathemat-
ical Monthly, vol. 93, no. 10, pp. 765–779, 1986.

[98] Y. Liu, R. Collins, and Y. Tsin, “A computational model for periodic pattern percep-
tion based on frieze and wallpaper groups,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, no. 3, pp. 354–371, 2004.

[99] C. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.

[100] M. Jana and C. Rao, “Two-dimensional inorganic analogues of graphene: Transi-
tion metal dichalcogenides,” Phil. Trans. R. Soc. A, vol. 374, no. 2076, p. 20 150 318,
2016.

324

[101] D. Voiry, A. Mohite, and M. Chhowalla, “Phase engineering of transition metal
dichalcogenides,” Chemical Society Reviews, vol. 44, no. 9, pp. 2702–2712, 2015.

[102] B. Berkels, A. Rätz, M. Rumpf, and A. Voigt, “Identification of grain boundary
contours at atomic scale,” in International Conference on Scale Space and Varia-
tional Methods in Computer Vision, Springer, 2007, pp. 765–776.

[103] ——, “Extracting grain boundaries and macroscopic deformations from images on
atomic scale,” Journal of Scientific Computing, vol. 35, no. 1, pp. 1–23, 2008.

[104] M. Boerdgen, B. Berkels, M. Rumpf, and D. Cremers, “Convex relaxation for
grain segmentation at atomic scale.,” in Vision, Modeling, and Visualization, 2010,
pp. 179–186.

[105] P. Hirvonen, G. M. La Boissoniére, Z. Fan, C. V. Achim, N. Provatas, K. R. Elder,
and T. Ala-Nissila, “Grain extraction and microstructural analysis method for two-
dimensional poly and quasicrystalline solids,” Physical Review Materials, vol. 2,
no. 10, p. 103 603, 2018.

[106] J. Lu and H. Yang, “Phase-space sketching for crystal image analysis based on
synchrosqueezed transforms,” SIAM Journal on Imaging Sciences, vol. 11, no. 3,
pp. 1954–1978, 2018.

[107] D. Zosso, K. Dragomiretskiy, A. L. Bertozzi, and P. S. Weiss, “Two-dimensional
compact variational mode decomposition,” Journal of Mathematical Imaging and
Vision, vol. 58, no. 2, pp. 294–320, 2017.

[108] W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei Röentgenstrahlen,”
Annalen der Physik, vol. 346, no. 10, pp. 971–988, 1913.

[109] G. Thomson and A. Reid, “Diffraction of cathode rays by a thin film,” Nature,
vol. 119, no. 3007, p. 890, 1927.

[110] D. Petersen and D. Middleton, “Sampling and reconstruction of wave-number-
limited functions in N-dimensional Euclidean spaces,” Information and Control,
vol. 5, no. 4, pp. 279–323, 1962.

[111] H. Wu, K. Malafant, L. Pendridge, P. Sharpe, and J. Walker, “Simulation of two-
dimensional point patterns: Application of a lattice framework approach,” Ecolog-
ical Modelling, vol. 38, no. 3-4, pp. 299–308, 1987.

[112] W. Haynes, CRC Handbook of Chemistry and Physics. CRC Press, 2014.

[113] W. Davey, “Precision measurements of the lattice constants of twelve common
metals,” Physical Review, vol. 25, no. 6, p. 753, 1925.

325

[114] T. Matsuyama, S. Miura, and M. Nagao, “Structural analysis of natural textures
by Fourier transformation,” Computer Vision, Graphics, and Image Processing,
vol. 24, no. 3, pp. 347–362, 1983.

[115] M. Park, K. Brocklehurst, R. Collins, and Y. Liu, “Deformed lattice detection in
real-world images using mean-shift belief propagation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 31, no. 10, pp. 1804–1816, 2009.

[116] F. Schaffalitzky and A. Zisserman, “Geometric grouping of repeated elements within
images,” in Shape, Contour and Grouping in Computer Vision, Springer, 1999,
pp. 165–181.

[117] J. Hays, M. Leordeanu, A. Efros, and Y. Liu, “Discovering texture regularity as
a higher-order correspondence problem,” in European Conference on Computer
Vision, Springer, 2006, pp. 522–535.

[118] Y. He and S. H. Kang, “Lattice identification and separation: Theory and algo-
rithm,” arXiv:1901.02520, 2018.

[119] J. Hock and R. McQuistan, “The occupation statistics for indistinguishable dumb-
bells on a 2×2×N lattice space,” Journal of Mathematical Physics, vol. 24, no. 7,
pp. 1859–1865, 1983.

[120] C. Rogers, “Mean values over the space of lattices,” Acta Mathematica, vol. 94,
no. 1, pp. 249–287, 1955.

[121] L. Schiff, “Lattice-space quantization of a nonlinear field theory,” Physical Review,
vol. 92, no. 3, p. 766, 1953.

[122] B. Vallée and A. Vera, “Probabilistic analyses of lattice reduction algorithms,” in
The LLL Algorithm, Springer, 2009, pp. 71–143.

[123] H. Farkas and I. Kra, “Riemann surfaces,” in Riemann Surfaces, Springer, 1992,
pp. 9–31.

[124] C. Siegel, Lectures on the Geometry of Numbers. Springer Science & Business
Media, 2013.

[125] G. Airy, “On the diffraction of an object-glass with circular aperture,” Transactions
of the Cambridge Philosophical Society, vol. 5, p. 283, 1835.

[126] R. Bracewell, “Strip integration in radio astronomy,” Australian Journal of Physics,
vol. 9, no. 2, pp. 198–217, 1956.

326

[127] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry. American
Mathematical Soc., 2001, vol. 33.

[128] H. Minkowski, “Geometrie der zahlen,” Bulletin of American Mathematical Soci-
ety, vol. 21, no. 3, pp. 131–132, 1914.

[129] ——, “Üeber die positiven quadratischen Formen und über kettenbruchähnliche
Algorithmen.,” Journal für die Reine und Angewandte Mathematik, vol. 107, pp. 278–
297, 1891.

[130] C. Hermite and E. Picard, Oeuvres de Charles Hermite. Gauthier-Villars, 1908,
vol. 2.

[131] J. Cassels, Rational Quadratic Forms. Courier Dover Publications, 2008.

[132] A. Korkine and G. Zolotareff, “Sur les formes quadratiques,” Mathematische An-
nalen, vol. 6, no. 3, pp. 366–389, 1873.

[133] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials with rational coef-
ficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534, 1982.

[134] M. Ajtai, “The shortest vector problem in L2 is NP-hard for randomized reduc-
tions,” in Proceedings of the 30th Annual ACM Symposium on Theory of Comput-
ing, ACM, 1998, pp. 10–19.

[135] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory. Springer
Science & Business Media, 2012, vol. 41.

[136] R. Alperin, “Notes: PSL2(Z) = Z2 ∗ Z3,” Amer.Math.Monthly, vol. 100, no. 4,
pp. 385–386, 1993.

[137] C. Johansson and J. Linde, “Röntgenographische Bestimmung der Atomanord-
nung in den Mischkristallreihen Au-Cu und Pd-Cu,” Annalen der Physik, vol. 383,
no. 21, pp. 439–460, 1925.

[138] T. Harman, P. Taylor, M. Walsh, and B. LaForge, “Quantum dot superlattice ther-
moelectric materials and devices,” Science, vol. 297, no. 5590, pp. 2229–2232,
2002.

[139] T. Musho and D. Walker, “Thermoelectric properties of superlattice materials with
variably spaced layers,” Journal of Materials Research, vol. 26, no. 15, pp. 1993–
2000, 2011.

327

[140] P. Yashar, S. Barnett, J. Rechner, and W. Sproul, “Structure and mechanical prop-
erties of polycrystalline CrN/TiN superlattices,” Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films, vol. 16, no. 5, pp. 2913–2918, 1998.

[141] A. Kudrolli, B. Pier, and J. Gollub, “Superlattice patterns in surface waves,” Phys-
ica D: Nonlinear Phenomena, vol. 123, no. 1-4, pp. 99–111, 1998.

[142] M. Silber, C. Topaz, and A. Skeldon, “Two-frequency forced faraday waves: Weakly
damped modes and pattern selection,” Physica D: Nonlinear Phenomena, vol. 143,
no. 1-4, pp. 205–225, 2000.

[143] E. Westhoff, V. Kneisel, Y. Logvin, T. Ackemann, and W. Lange, “Pattern forma-
tion in the presence of an intrinsic polarization instability,” Journal of Optics B:
Quantum and Semiclassical Optics, vol. 2, no. 3, p. 386, 2000.

[144] W. Choi, N. Choudhary, G. Han, J. Park, D. Akinwande, and Y. Lee, “Recent de-
velopment of two-dimensional transition metal dichalcogenides and their applica-
tions,” Materials Today, vol. 20, no. 3, pp. 116–130, 2017.

[145] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grig-
orieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Sci-
ence, vol. 306, no. 5696, pp. 666–669, 2004.

[146] C. Rao, U. Maitra, and U. Waghmare, “Extraordinary attributes of 2-dimensional
MoS2 nanosheets,” Chemical Physics Letters, vol. 609, pp. 172–183, 2014.

[147] A. Eftekhari, “Tungsten dichalcogenides (WS 2, WSe 2, and WTe 2): Materials
chemistry and applications,” Journal of Materials Chemistry A, vol. 5, no. 35,
pp. 18 299–18 325, 2017.

[148] B. Julesz, “Textons, the elements of texture perception, and their interactions,” Na-
ture, vol. 290, no. 5802, p. 91, 1981.

[149] T. Leung and J. Malik, “Detecting, localizing and grouping repeated scene ele-
ments from an image,” in European Conference on Computer Vision, Springer,
1996, pp. 546–555.

[150] I. Amidror, The Theory of the Moiré Phenomenon: Volume I: Periodic Layers.
Springer Science & Business Media, 2009, vol. 38.

[151] G. Bassett, J. Menter, and D. Pashley, “Moiré patterns on electron micrographs,
and their application to the study of dislocations in metals,” Proc. R. Soc. Lond. A,
vol. 246, no. 1246, pp. 345–368, 1958.

328

[152] M. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using
structured illumination microscopy,” Journal of Microscopy, vol. 198, no. 2, pp. 82–
87, 2000.

[153] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary & region
segmentation of objects in nd images,” in Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, IEEE, vol. 1, 2001, pp. 105–112.

[154] C. G. Healey and J. T. Enns, “Building perceptual textures to visualize multidi-
mensional datasets,” in Proceedings Visualization’98 (Cat. No. 98CB36276), IEEE,
1998, pp. 111–118.

[155] C. Weigle, W. Emigh, G. Liu, R. Taylor, J. Enns, and C. Healey, “Oriented tex-
ture slivers: A technique for local value estimation of multiple scalar fields,” in
Proceedings Graphics Interface, 2000, pp. 163–170.

[156] J. Wolfe, K. Cave, and S. Franzel, “Guided search: An alternative to the feature
integration model for visual search.,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 15, no. 3, p. 419, 1989.

[157] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[158] D. Naidu and R. Fisher, “A comparative analysis of algorithms for determining
the peak position of a stripe to sub-pixel accuracy,” in BMVC91, Springer, 1991,
pp. 217–225.

[159] C. Sun, “Fast optical flow using 3D shortest path techniques,” Image and Vision
Computing, vol. 20, no. 13-14, pp. 981–991, 2002.

[160] H. Nobach and M. Honkanen, “Two-dimensional Gaussian regression for sub-
pixel displacement estimation in particle image velocimetry or particle position
estimation in particle tracking velocimetry,” Experiments in Fluids, vol. 38, no. 4,
pp. 511–515, 2005.

[161] S. Horbelt, M. Liebling, and M. Unser, “Discretization of the Radon transform
and of its inverse by spline convolutions,” IEEE Transactions on Medical Imaging,
vol. 21, no. 4, pp. 363–376, 2002.

[162] A. Bonissent and F. Abraham, “Application of perturbation theory to the crystal–
melt interface,” The Journal of Chemical Physics, vol. 74, no. 2, pp. 1306–1309,
1981.

329

[163] J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Nai, H. Shin, H. Jeong, B. Liu, and K.
Loh, “High yield exfoliation of two-dimensional chalcogenides using sodium naph-
thalenide,” Nature Communications, vol. 5, p. 2995, 2014.

[164] C. Rao, M. Ramakrishna, and U. Maitra, “Graphene analogues of inorganic layered
materials,” Angewandte Chemie International Edition, vol. 52, no. 50, pp. 13 162–
13 185, 2013.

[165] Y. He and S. H. Kang, “Lattice metric space application to grain defect detection,”
in International Conference on Scale Space and Variational Methods in Computer
Vision, Springer, 2019.

[166] L. Biró and P. Lambin, “Grain boundaries in graphene grown by chemical vapor
deposition,” New Journal of Physics, vol. 15, no. 3, p. 035 024, 2013.

[167] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics. Wiley
New York, 1996, vol. 8.

[168] N. Mevenkamp and B. Berkels, “Variational multi-phase segmentation using high-
dimensional local features,” in 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, 2016, pp. 1–9.

[169] H. Singer and I. Singer, “Analysis and visualization of multiply oriented lattice
structures by a two-dimensional continuous wavelet transform,” Physical Review
E, vol. 74, no. 3, p. 031 103, 2006.

[170] I. Daubechies, “A nonlinear squeezing of the continuous wavelet transform based
on auditory nerve models,” Wavelets in medicine and biology, pp. 527–546, 1996.

[171] H. Yang, J. Lu, and L. Ying, “Crystal image analysis using 2D synchrosqueezed
transforms,” Multiscale Model Simul., vol. 13, no. 4, pp. 1542–1572, 2015.

[172] E. A. Lazar, J. Han, and D. J. Srolovitz, “Topological framework for local structure
analysis in condensed matter,” Proceedings of the National Academy of Sciences,
vol. 112, no. 43, E5769–E5776, 2015.

[173] A. Stukowski, “Structure identification methods for atomistic simulations of crys-
talline materials,” Model. Simul. Mater. Sci. Eng., vol. 20, no. 4, p. 045 021, 2012.

[174] G. M. La Boissoniere and R. Choksi, “Atom based grain extraction and mea-
surement of geometric properties,” Model Simul. Mater. Sci. Eng., vol. 26, no. 3,
p. 035 001, 2018.

330

[175] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”
in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[176] S. H. Kang, B. Sandberg, and A. M. Yip, “A regularized k-means and multiphase
scale segmentation,” Inverse Problems & Imaging, vol. 5, no. 2, pp. 407–429, 2011.

[177] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and knowledge
discovery handbook, Springer, 2005, pp. 321–352.

[178] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Lev-
endorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, et al., “Grains
and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature,
vol. 469, no. 7330, p. 389, 2011.

[179] D. Medlin, K. Hattar, J. Zimmerman, F. Abdeljawad, and S. Foiles, “Defect charac-
ter at grain boundary facet junctions: Analysis of an asymmetric Σ= 5 grain bound-
ary in Fe,” Acta Materialia, vol. 124, pp. 383–396, 2017.

[180] T. Radetic, F. Lancon, and U. Dahmen, “Chevron defect at the intersection of
grain boundaries with free surfaces in Au,” Physical review letters, vol. 89, no. 8,
p. 085 502, 2002.

[181] J. Toriwaki, T. Saitoh, and M. Okada, “Distance transformation and skeleton for
shape feature analysis,” in Visual Form, Springer, 1992, pp. 547–563.

[182] T. Sebastian and B. Kimia, “Curves vs. skeletons in object recognition,” Signal
processing, vol. 85, no. 2, pp. 247–263, 2005.

[183] X. Yang, X. Bai, D. Yu, and L. Latecki, “Shape classification based on skeleton
path similarity,” in International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition, Springer, 2007, pp. 375–386.

[184] N. Chapman and J. Chapman, Digital multimedia. Wiley Publishing, 2009, p. 86.

[185] U. Montanari, “Continuous skeletons from digitized images,” Journal of the ACM
(JACM), vol. 16, no. 4, pp. 534–549, 1969.

[186] H. Blum, “A transformation for extracting new descriptors of shape,” Models for
the perception of speech and visual form, vol. 19, no. 5, pp. 362–380, 1967.

[187] H. Blum and R. Nagel, “Shape description using weighted symmetric axis fea-
tures,” Pattern recognition, vol. 10, no. 3, pp. 167–180, 1978.

331

[188] U. Montanari, “A method for obtaining skeletons using a quasi-Euclidean dis-
tance,” Journal of the ACM (JACM), vol. 15, no. 4, pp. 600–624, 1968.

[189] A. Frank, J. Daniels, and D. Unangst, “Progressive image transmission using a
growth-geometry coding,” Proceedings of the IEEE, vol. 68, no. 7, pp. 897–909,
1980.

[190] L. Calabi and W. Hartnett, “Shape recognition, prairie fires, convex deficiencies
and skeletons,” The American Mathematical Monthly, vol. 75, no. 4, pp. 335–342,
1968.

[191] k. Siddiqi, s. Bouix, A. Tannenbaum, and S. Zucker, “Hamilton-Jacobi skeletons,”
International Journal of Computer Vision, vol. 48, no. 3, pp. 215–231, 2002.

[192] J. P. Balarini and S. Nesmachnow, “A C++ Implementation of Otsu’s Image Seg-
mentation Method,” Image Processing On Line, vol. 6, pp. 155–164, 2016.

[193] H. Choi, S. Choi, and H. Moon, “Mathematical theory of medial axis transform,”
pacific journal of mathematics, vol. 181, no. 1, pp. 57–88, 1997.

[194] J. W. Brandt and V. R. Algazi, “Continuous skeleton computation by voronoi dia-
gram,” CVGIP: Image understanding, vol. 55, no. 3, pp. 329–338, 1992.

[195] R. L. Ogniewicz and M. Ilg, “Voronoi skeletons: Theory and applications.,” in
CVPR, vol. 92, 1992, pp. 63–69.

[196] F. Leymarie and M. D. Levine, “Simulating the grassfire transform using an active
contour model,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
no. 1, pp. 56–75, 1992.

[197] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and defor-
mations i: The components of two-dimensional shape and the reaction-diffusion
space,” International journal of computer vision, vol. 15, no. 3, pp. 189–224, 1995.

[198] C. Arcelli and G. S. Di Baja, “A width-independent fast thinning algorithm,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, no. 4, pp. 463–474,
1985.

[199] I. Bitter, A. E. Kaufman, and M. Sato, “Penalized-distance volumetric skeleton
algorithm,” IEEE Transactions on Visualization and computer Graphics, vol. 7,
no. 3, pp. 195–206, 2001.

[200] P. K. Saha, G. Borgefors, and G. S. di Baja, “A survey on skeletonization algorithms
and their applications,” Pattern recognition letters, vol. 76, pp. 3–12, 2016.

332

[201] S. Nathan and P. Kansal, “Skeletonnet: Shape pixel to skeleton pixel,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, 2019, pp. 0–0.

[202] H. Zhao, “A fast sweeping method for Eikonal equations,” Mathematics of compu-
tation, vol. 74, no. 250, pp. 603–627, 2005.

[203] H. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit and nonparametric shape
reconstruction from unorganized data using a variational level set method,” Com-
puter Vision and Image Understanding, vol. 80, no. 3, pp. 295–314, 2000.

[204] M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-jacobi equations,”
Transactions of the American mathematical society, vol. 277, no. 1, pp. 1–42, 1983.

[205] E. Rouy and A. Tourin, “A viscosity solutions approach to shape-from-shading,”
SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 867–884, 1992.

[206] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2d euclidean distance
transform algorithms: A comparative survey,” ACM Computing Surveys (CSUR),
vol. 40, no. 1, pp. 1–44, 2008.

[207] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled func-
tions,” Theory of computing, vol. 8, no. 1, pp. 415–428, 2012.

[208] J. August, A. Tannenbaum, and S. Zucker, “On the evolution of the skeleton,” in
Proceedings of the Seventh IEEE International Conference on Computer Vision,
IEEE, vol. 1, 1999, pp. 315–322.

[209] X. Bai, L. Latecki, and W. Liu, “Skeleton pruning by contour partitioning with
discrete curve evolution,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 29, no. 3, pp. 449–462, 2007.

[210] I. Kunttu, L. Lepisto, J. Rauhamaa, and A. Visa, “Multiscale Fourier descriptor
for shape classification,” in 12th International Conference on Image Analysis and
Processing, 2003. Proceedings., IEEE, 2003, pp. 536–541.

[211] M. Levandowsky and D. Winter, “Distance between sets,” Nature, vol. 234, no. 5323,
pp. 34–35, 1971.

[212] T. Sørensen, “A method of establishing groups of equal amplitude in plant soci-
ology based on similarity of species content and its application to analyses of the
vegetation on danish commons,” 1948.

[213] M. Cardoso, T. Arbel, S. Lee, V. Cheplygina, S. Balocco, D. Mateus, G. Zahnd,
L. Maier-Hein, S. Demirci, E. Granger, and L. Duong, “Intravascular imaging

333

and computer assisted stenting, and large-scale annotation of biomedical data and
expert label synthesis,” in CVII-STENT and Second International Workshop, LA-
BELS, Springer, 2017.

[214] G. Matheron, Random sets and integral geometry. Wiley New York, 1974, xxiii,
261 p. ISBN: 0471576212.

[215] F. Attneave, “Some informational aspects of visual perception,” Psychological re-
view, vol. 61, no. 3, p. 183, 1954.

[216] P. Monasse and F. Guichard, “Scale-space from a level lines tree,” Journal of Visual
Communication and Image Representation, vol. 11, no. 2, pp. 224–236, 2000.

[217] L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel, “Connected components
of sets of finite perimeter and applications to image processing,” Journal of the
European Mathematical Society, vol. 3, no. 1, pp. 39–92, 2001.

[218] F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé, and F. Sur, A theory of shape identifica-
tion. Springer Science & Business Media, 2008.

[219] U. Montanari, “A note on minimal length polygonal approximation to a digitized
contour,” Communications of the ACM, vol. 13, no. 1, pp. 41–47, 1970.

[220] M. E. Mortenson, Mathematics for computer graphics applications. Industrial Press
Inc., 1999.

[221] C. Nadal, R. Legault, and C. Y. Suen, “Complementary algorithms for the recogni-
tion of totally unconstrained handwritten numerals,” in [1990] Proceedings. 10th
International Conference on Pattern Recognition, IEEE, vol. 1, 1990, pp. 443–449.

[222] A. Kirsanov, A. Vavilin, and K. Jo, “Contour-based algorithm for vectorization
of satellite images,” in International Forum on Strategic Technology 2010, IEEE,
2010, pp. 241–245.

[223] H.-M. Yang, J.-J. Lu, and H.-J. Lee, “A bezier curve-based approach to shape de-
scription for chinese calligraphy characters,” in Proceedings of Sixth International
Conference on Document Analysis and Recognition, IEEE, 2001, pp. 276–280.

[224] K. Tombre and S. Tabbone, “Vectorization in graphics recognition: To thin or not to
thin,” in Proceedings 15th International Conference on Pattern Recognition. ICPR-
2000, IEEE, vol. 2, 2000, pp. 91–96.

[225] J. J. Zou and H. Yan, “Cartoon image vectorization based on shape subdivision,” in
Proceedings. Computer Graphics International 2001, IEEE, 2001, pp. 225–231.

334

[226] H.-H. Chang and H. Yan, “Vectorization of hand-drawn image using piecewise
cubic bezier curves fitting,” Pattern recognition, vol. 31, no. 11, pp. 1747–1755,
1998.

[227] U. Ramer, “An iterative procedure for the polygonal approximation of plane curves,”
Computer graphics and image processing, vol. 1, no. 3, pp. 244–256, 1972.

[228] L. Cinque, S. Levialdi, and A. Malizia, “Shape description using cubic polynomial
bezier curves,” Pattern Recognition Letters, vol. 19, no. 9, pp. 821–828, 1998.

[229] A. S. Montero and J. Lang, “Skeleton pruning by contour approximation and the
integer medial axis transform,” Computers & Graphics, vol. 36, no. 5, pp. 477–487,
2012.

[230] S. Pal, P. Ganguly, and P. Biswas, “Cubic bézier approximation of a digitized
curve,” Pattern recognition, vol. 40, no. 10, pp. 2730–2741, 2007.

[231] W. Pan, Z. Lian, Y. Tang, and J. Xiao, “Skeleton-guided vectorization of chinese
calligraphy images,” in 2014 IEEE 16th International Workshop on Multimedia
Signal Processing (MMSP), IEEE, 2014, pp. 1–6.

[232] M. Sarfraz, “Vectorizing outlines of generic shapes by cubic spline using simu-
lated annealing,” International Journal of Computer Mathematics, vol. 87, no. 8,
pp. 1736–1751, 2010.

[233] D. Chetverikov, “A simple and efficient algorithm for detection of high curvature
points in planar curves,” in International Conference on Computer Analysis of Im-
ages and Patterns, Springer, 2003, pp. 746–753.

[234] L. Alvarez and J. M. Morel, “Formalization and computational aspects of image
analysis,” Acta numerica, vol. 3, pp. 1–59, 1994.

[235] G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” International journal
of computer vision, vol. 11, no. 1, pp. 25–44, 1993.

[236] L. Alvarez and F. Morales, “Affine morphological multiscale analysis of corners
and multiple junctions,” International Journal of Computer Vision, vol. 25, no. 2,
pp. 95–107, 1997.

[237] L. Alvarez, “Corner detection using the affine morphological scale space,” in Inter-
national Conference on Scale Space and Variational Methods in Computer Vision,
Springer, 2017, pp. 29–40.

[238] L. Álvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, “Axiomes et équations fon-
damentales du traitement d’images.(analyse multiéchelle et edp),” Comptes rendus

335

de l’Académie des sciences. Série 1, Mathématique, vol. 315, no. 2, pp. 135–138,
1992.

[239] L. Moisan, “Affine plane curve evolution: A fully consistent scheme,” IEEE Trans-
actions on Image Processing, vol. 7, no. 3, pp. 411–420, 1998.

[240] A. P. Witkin, “Scale-space filtering,” in Readings in Computer Vision, Elsevier,
1987, pp. 329–332.

[241] J. Weickert, S. Ishikawa, and A. Imiya, “Linear scale-space has first been proposed
in japan,” Journal of Mathematical Imaging and Vision, vol. 10, no. 3, pp. 237–252,
1999.

[242] T. Iijima, “Basis theory on the normalization of two-dimensionalvisual pattern,
studies on information and control, pattern recognition issue,” IEICE Japan, vol. 1,
1963.

[243] Y. He, S. H. Kang, and J.-M. Morel, “Silhouette vectorization by affine scale-
space,” arXiv preprint arXiv:2007.12117, 2020.

[244] A. Ciomaga, P. Monasse, and J. M. Morel, “Level lines shortening yields an image
curvature microscope,” in 2010 IEEE International Conference on Image Process-
ing, IEEE, 2010, pp. 4129–4132.

[245] F. Cao, Geometric curve evolution and image processing. Springer Science & Busi-
ness Media, 2003.

[246] V. Caselles and P. Monasse, Geometric description of images as topographic maps.
Springer, 2009.

[247] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from
maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10,
pp. 761–767, 2004.

[248] J.-M. Morel and G. Yu, “Asift: A new framework for fully affine invariant image
comparison,” SIAM journal on imaging sciences, vol. 2, no. 2, pp. 438–469, 2009.

[249] A. Ciomaga, P. Monasse, and J.-M. Morel, “The image curvature microscope: Ac-
curate curvature computation at subpixel resolution,” Image Processing On Line,
vol. 7, pp. 197–217, 2017.

[250] A. Andrew, “Another efficient algorithm for convex hulls in two dimensions,” In-
formation Processing Letters, vol. 9, no. 5, pp. 216–219, 1979.

336

[251] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction. Springer
Science & Business Media, 2012.

[252] M. Plass and M. Stone, “Curve-fitting with piecewise parametric cubics,” in Pro-
ceedings of the 10th annual conference on Computer graphics and interactive tech-
niques, 1983, pp. 229–239.

[253] SVG SILH, https://svgsilh.com, All contents are released under Creative Commons
CC0.

[254] M. Goldapp, “Approximation of circular arcs by cubic polynomials,” Computer
Aided Geometric Design, vol. 8, no. 3, pp. 227–238, 1991.

[255] C. G. Harris, M. Stephens, et al., “A combined corner and edge detector,” in Alvey
vision conference, Citeseer, vol. 15, 1988, pp. 10–5244.

[256] E. Rosten and T. Drummond, “Fusing points and lines for high performance track-
ing,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol-
ume 1, Ieee, vol. 2, 2005, pp. 1508–1515.

[257] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
European conference on computer vision, Springer, 2006, pp. 404–417.

[258] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceed-
ings of the seventh IEEE international conference on computer vision, Ieee, vol. 2,
1999, pp. 1150–1157.

[259] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,”
International Journal of computer vision, vol. 37, no. 2, pp. 151–172, 2000.

[260] Vector Magic, https://vectormagic.com.

[261] Inkspace, https://inkscape.org.

[262] Adobe Illustrator, https://www.adobe.com/products/illustrator.html.

[263] D. Khan, M. A. Shirazi, and M. Y. Kim, “Single shot laser speckle based 3D acqui-
sition system for medical applications,” Optics and Lasers in Engineering, vol. 105,
pp. 43–53, 2018.

[264] G. Casciola, D. Lazzaro, L. B. Montefusco, and S. Morigi, “Shape preserving sur-
face reconstruction using locally anisotropic radial basis function interpolants,”
Computers & Mathematics with Applications, vol. 51, no. 8, pp. 1185–1198, 2006.

337

https://svgsilh.com
https://vectormagic.com
https://inkscape.org
https://www.adobe.com/products/illustrator.html

[265] F. Calakli and G. Taubin, “SSD: Smooth signed distance surface reconstruction,” in
Computer Graphics Forum, Wiley Online Library, vol. 30, 2011, pp. 1993–2002.

[266] Z. Bi and L. Wang, “Advances in 3D data acquisition and processing for industrial
applications,” Robotics and Computer-Integrated Manufacturing, vol. 26, no. 5,
pp. 403–413, 2010.

[267] L. Gomes, O. R. P. Bellon, and L. Silva, “3D reconstruction methods for digital
preservation of cultural heritage: A survey,” Pattern Recognition Letters, vol. 50,
pp. 3–14, 2014.

[268] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Point set
surfaces,” in Proceedings of the Conference on Visualization’01, IEEE Computer
Society, 2001, pp. 21–28.

[269] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton–Jacobi formulations,” Journal of Computational
Physics, vol. 79, no. 1, pp. 12–49, 1988.

[270] Y. Shi and W. C. Karl, “Shape reconstruction from unorganized points with a data-
driven level set method,” in 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, IEEE, vol. 3, 2004, pp. iii–13.

[271] J. Haličková and K. Mikula, “Level set method for surface reconstruction and
its application in surveying,” Journal of Surveying Engineering, vol. 142, no. 3,
p. 04 016 007, 2016.

[272] H. Liu, Z. Yao, S. Leung, and T. F. Chan, “A level set based variational principal
flow method for nonparametric dimension reduction on Riemannian manifolds,”
SIAM Journal on Scientific Computing, vol. 39, no. 4, A1616–A1646, 2017.

[273] J. Liang, F. Park, and H.-K. Zhao, “Robust and efficient implicit surface recon-
struction for point clouds based on convexified image segmentation,” Journal of
Scientific Computing, vol. 54, no. 2-3, pp. 577–602, 2013.

[274] V. Estellers, D. Zosso, R. Lai, S. Osher, J.-P. Thiran, and X. Bresson, “Efficient
algorithm for level set method preserving distance function,” IEEE Transactions
on Image Processing, vol. 21, no. 12, pp. 4722–4734, 2012.

[275] M. Wan, Y. Wang, E. Bae, X.-C. Tai, and D. Wang, “Reconstructing open surfaces
via graph-cuts,” IEEE transactions on visualization and computer graphics, vol. 19,
no. 2, pp. 306–318, 2012.

338

[276] H. Liu, X. Wang, and W. Qiang, “Implicit surface reconstruction from 3D scattered
points based on variational level set method,” in 2008 2nd International Symposium
on Systems and Control in Aerospace and Astronautics, IEEE, 2008, pp. 1–5.

[277] R. Lai, X.-C. Tai, and T. F. Chan, “A ridge and corner preserving model for surface
restoration,” SIAM Journal on Scientific Computing, vol. 35, no. 2, A675–A695,
2013.

[278] H. Li, Y. Li, R. Yu, J. Sun, and J. Kim, “Surface reconstruction from unorganized
points with `0 gradient minimization,” Computer Vision and Image Understanding,
vol. 169, pp. 108–118, 2018.

[279] H.-K. Zhao, S. Osher, and R. Fedkiw, “Fast surface reconstruction using the level
set method,” in Proceedings IEEE Workshop on Variational and Level Set Methods
in Computer Vision, IEEE, 2001, pp. 194–201.

[280] P. Smereka, “Semi-implicit level set methods for curvature and surface diffusion
motion,” Journal of Scientific Computing, vol. 19, no. 1, pp. 439–456, 2003.

[281] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and S. Osher, “Fast global
minimization of the active contour/snake model,” Journal of Mathematical Imaging
and Vision, vol. 28, no. 2, pp. 151–167, 2007.

[282] J. Shi, M. Wan, X.-C. Tai, and D. Wang, “Curvature minimization for surface re-
construction with features,” in International Conference on Scale Space and Vari-
ational Methods in Computer Vision, Springer, 2011, pp. 495–507.

[283] Y. He, M. Huska, S. H. Kang, and H. Liu, “Fast algorithms for surface reconstruc-
tion from point cloud,” arXiv preprint arXiv:1907.01142, 2019.

[284] E. Bae, X.-C. Tai, and W. Zhu, “Augmented Lagrangian method for an Euler’s elas-
tica based segmentation model that promotes convex contours,” Inverse Problems
& Imaging, vol. 11, no. 1, pp. 1–23, 2017.

[285] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape
reconstruction from unorganized points using a variational level set method,” Com-
puter Vision and Image Understanding, vol. 80, no. 3, pp. 295–319, 2000.

[286] R. Bracewell and R. Bracewell, The Fourier Transform and Its Applications, ser. Elec-
trical Engineering Series. McGraw Hill, 2000, ISBN: 9780073039381.

[287] X.-C. Tai, J. Hahn, and G. J. Chung, “A fast algorithm for Euler’s elastica model
using augmented Lagrangian method,” SIAM Journal on Imaging Sciences, vol. 4,
no. 1, pp. 313–344, 2011.

339

[288] C. Y. Kao, S. Osher, and J. Qian, “Lax–Friedrichs sweeping scheme for static
Hamilton–Jacobi equations,” Journal of Computational Physics, vol. 196, no. 1,
pp. 367–391, 2004.

[289] J. Shen, S. H. Kang, and T. F. Chan, “Euler’s elastica and curvature-based inpaint-
ing,” SIAM Journal on Applied Mathematics, vol. 63, no. 2, pp. 564–592, 2003.

[290] L.-J. Deng, R. Glowinski, and X.-C. Tai, “A new operator splitting method for the
Euler elastica model for image smoothing,” SIAM Journal on Imaging Sciences,
2019.

[291] W. Zhu, X.-C. Tai, and T. Chan, “Image segmentation using Euler’s elastica as the
regularization,” Journal of Scientific Computing, vol. 57, no. 2, pp. 414–438, 2013.

[292] W. Blaschke, “Über topologische fragen der differentialgeometrie.,” Jahresbericht
der Deutschen Mathematiker-Vereinigung, vol. 38, pp. 193–205, 1929.

[293] T. Willmore, “Mean curvature of immersed surfaces,” An. Sti. Univ.”Al. I. Cuza”
Iasi, Sec. I. a Mat.(NS), vol. 14, pp. 99–103, 1968.

[294] W. Zhu and T. Chan, “Image denoising using mean curvature of image surface,”
SIAM Journal on Imaging Sciences, vol. 5, no. 1, pp. 1–32, 2012.

[295] E. Bae, X.-C. Tai, and Z. Wei, “Augmented lagrangian method for an euler’s elas-
tica based segmentation model that promotes convex contours,” 2017.

[296] M. Droske and A. Bertozzi, “Higher-order feature-preserving geometric regular-
ization,” SIAM Journal on Imaging Sciences, vol. 3, no. 1, pp. 21–51, 2010.

[297] Y. Gong and O. Goksel, “Weighted mean curvature,” Signal Processing, vol. 164,
pp. 329–339, 2019.

[298] X. Qiao, “The principle curvature-driven diffusion model for image de-noising,”
in 3rd International Conference on Multimedia Technology (ICMT-13), Atlantis
Press, 2013.

[299] Y. Gong and I. F. Sbalzarini, “Local weighted gaussian curvature for image process-
ing,” in 2013 IEEE International Conference on Image Processing, IEEE, 2013,
pp. 534–538.

[300] B. Goldluecke and D. Cremers, “Introducing total curvature for image processing,”
in 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1267–1274.

[301] L. M. Lui, C. Wen, and X. Gu, “A conformal approach for surface inpainting,”
Inverse Problems and Imaging, vol. 7, no. 3, pp. 863–884, 2013.

340

[302] T. Schoenemann, S. Masnou, and D. Cremers, “The elastic ratio: Introducing cur-
vature into ratio-based image segmentation,” IEEE Transactions on Image Process-
ing, vol. 20, no. 9, pp. 2565–2581, 2011.

[303] C. Brito-Loeza and K. Chen, “Multigrid method for a modified curvature driven
diffusion model for image inpainting,” Journal of Computational Mathematics,
pp. 856–875, 2008.

[304] F. Yang, K. Chen, and B. Yu, “Homotopy method for a mean curvature-based de-
noising model,” Applied Numerical Mathematics, vol. 62, no. 3, pp. 185–200, 2012.

[305] K. Bredies, T. Pock, and B. Wirth, “A convex, lower semicontinuous approximation
of Euler’s elastica energy,” SIAM Journal on Mathematical Analysis, vol. 47, no. 1,
pp. 566–613, 2015.

[306] T. Schoenemann, F. Kahl, S. Masnou, and D. Cremers, “A linear framework for
region-based image segmentation and inpainting involving curvature penalization,”
International Journal of Computer Vision, vol. 99, no. 1, pp. 53–68, 2012.

[307] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Meth-
ods in Nonlinear Mechanics. SIAM, 1989, vol. 9.

[308] H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of the
American Mathematical Society, vol. 10, no. 4, pp. 545–551, 1959.

[309] X.-C. Tai and C. Wu, “Augmented Lagrangian method, dual methods and split
Bregman iteration for ROF model,” in International Conference on Scale Space
and Variational Methods in Computer Vision, Springer, 2009, pp. 502–513.

[310] M. Yashtini and S. H. Kang, “A fast relaxed normal two split method and an effec-
tive weighted TV approach for Euler’s elastica image inpainting,” SIAM Journal on
Imaging Sciences, vol. 9, no. 4, pp. 1552–1581, 2016.

[311] Y. He, S. H. Kang, and H. Liu, “Curvature regularized surface reconstruction from
point clouds,” SIAM Journal on Imaging Sciences, vol. 13, no. 4, pp. 1834–1859,
2020.

[312] S. Osher, R. Fedkiw, and K. Piechor, “Level set methods and dynamic implicit
surfaces,” Appl. Mech. Rev., vol. 57, no. 3, B15–B15, 2004.

[313] I. M. Mladenov and J. Oprea, “The mylar ballon: New viewpoints and generaliza-
tions,” in Proceedings of the Eighth International Conference on Geometry, Inte-
grability and Quantization, Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences, 2007, pp. 246–263.

341

[314] R. Glowinski, S. J. Osher, and W. Yin, Splitting Methods in Communication, Imag-
ing, Science, and Engineering. Springer, 2017.

[315] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE-based fast local
level set method,” Journal of computational physics, vol. 155, no. 2, pp. 410–438,
1999.

[316] K. Zhang and H. Huang, “Underwater image transmission and blurred image restora-
tion,” Optical Engineering, vol. 40, no. 6, 2001.

[317] M. Yang and A. Sowmya, “An underwater color image quality evaluation metric,”
IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 6062–6071, 2015.

[318] H. Wen, Y. Tian, T. Huang, and W. Gao, “Single underwater image enhancement
with a new optical model,” in 2013 IEEE International Symposium on Circuits and
Systems (ISCAS2013), IEEE, 2013, pp. 753–756.

[319] Y.-T. Peng and P. C. Cosman, “Underwater image restoration based on image blur-
riness and light absorption,” IEEE transactions on image processing, vol. 26, no. 4,
pp. 1579–1594, 2017.

[320] D. Berman, T. Treibitz, and S. Avidan, “Diving into haze-lines: Color restoration of
underwater images,” in Proc. British Machine Vision Conference (BMVC), vol. 1,
2017.

[321] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, and D. Tao, “An underwater
image enhancement benchmark dataset and beyond,” IEEE Transactions on Image
Processing, vol. 29, pp. 4376–4389, 2019.

[322] H. Koschmieder, “Theorie der horizontalen sichtweite,” Beitrage zur Physik der
freien Atmosphare, pp. 33–53, 1924.

[323] D. Swinehart, “The Beer-Lambert law,” Journal of chemical education, vol. 39,
no. 7, p. 333, 1962.

[324] N. Jerlov, “Irradiance optical classification,” Optical Oceanography, pp. 118–120,
1968.

[325] J. Beck, “The perception of surface color,” Scientific American, vol. 233, no. 2,
pp. 62–77, 1975.

[326] G. Finlayson and S. Hordley, “Improving gamut mapping color constancy,” IEEE
Transactions on Image Processing, vol. 9, no. 10, pp. 1774–1783, 2000.

342

[327] A. Moore, J. Allman, and R. M. Goodman, “A real-time neural system for color
constancy,” IEEE Transactions on Neural networks, vol. 2, no. 2, pp. 237–247,
1991.

[328] G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: Sensor trans-
formations for improved color constancy,” JOSA A, vol. 11, no. 5, pp. 1553–1563,
1994.

[329] Z.-u. Rahman, D. J. Jobson, and G. A. Woodell, “Multi-scale retinex for color im-
age enhancement,” in Proceedings of 3rd IEEE International Conference on Image
Processing, IEEE, vol. 3, 1996, pp. 1003–1006.

[330] A. B. Petro, C. Sbert, and J.-M. Morel, “Multiscale Retinex,” Image Processing On
Line, pp. 71–88, 2014.

[331] E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random
spray retinex: A new retinex implementation to investigate the local properties of
the model,” IEEE Transactions on Image Processing, vol. 16, no. 1, pp. 162–171,
2006.

[332] D. Zosso, G. Tran, and S. J. Osher, “Non-local retinex—a unifying framework and
beyond,” SIAM Journal on Imaging Sciences, vol. 8, no. 2, pp. 787–826, 2015.

[333] J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,”
IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2825–2837, 2010.

[334] J. J. Gibson, “Adaptation with negative after-effect.,” Psychological review, vol. 44,
no. 3, p. 222, 1937.

[335] S. C. Belmore and S. K. Shevell, “Very-long-term and short-term chromatic adap-
tation: Are their influences cumulative?” Vision research, vol. 51, no. 3, pp. 362–
366, 2011.

[336] K. E. Tregillus and S. A. Engel, “Long-term adaptation to color,” Current Opinion
in Behavioral Sciences, vol. 30, pp. 116–121, 2019.

[337] A. N. Tikhonov, “On the solution of ill-posed problems and the method of regu-
larization,” in Doklady Akademii Nauk, Russian Academy of Sciences, vol. 151,
1963, pp. 501–504.

[338] J. McCann, “Local/global mechanisms for color constancy,” Die Farbe, vol. 34,
pp. 275–283, 1987.

[339] T. Azetsu and N. Suetake, “Hue-preserving image enhancement in CIELAB color
space considering color gamut,” Optical Review, vol. 26, no. 2, pp. 283–294, 2019.

343

[340] C. Ueda, T. Azetsu, N. Suetake, and E. Uchino, “Lightness and chroma enhance-
ment for food images considering helmholtz–kohlrausch effect,” Optical Review,
vol. 24, no. 3, pp. 301–309, 2017.

[341] S. K. Shevell, “The time course of chromatic adaptation,” Color Research & Ap-
plication: Endorsed by Inter-Society Color Council, The Colour Group (Great
Britain), Canadian Society for Color, Color Science Association of Japan, Dutch
Society for the Study of Color, The Swedish Colour Centre Foundation, Colour
Society of Australia, Centre Français de la Couleur, vol. 26, no. S1, S170–S173,
2001.

[342] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal
of the Franklin institute, vol. 310, no. 1, pp. 1–26, 1980.

[343] H. R. Wilson and J. D. Cowan, “Excitatory and inhibitory interactions in localized
populations of model neurons,” Biophysical journal, vol. 12, no. 1, pp. 1–24, 1972.

[344] M. Bertalmıéo, “From image processing to computational neuroscience: A neural
model based on histogram equalization,” Frontiers in computational neuroscience,
vol. 8, p. 71, 2014.

[345] K. McLaren, “CIELAB hue-angle anomalies at low tristimulus ratios,” Color Re-
search & Application, vol. 5, no. 3, pp. 139–143, 1980.

[346] F. Ebner and M. D. Fairchild, “Finding constant hue surfaces in color space,” in
Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III,
International Society for Optics and Photonics, vol. 3300, 1998, pp. 107–117.

[347] G. J. Braun, M. D. Fairchild, and F. Ebner, “Color gamut mapping in a hue-linearized
CIELAB color space,” in Color and imaging conference, Society for Imaging Sci-
ence and Technology, vol. 1998, 1998, pp. 163–168.

[348] N. Moroney, “A hypothesis regarding the poor blue constancy of CIELAB,” Color
Research & Application: Endorsed by Inter-Society Color Council, The Colour
Group (Great Britain), Canadian Society for Color, Color Science Association of
Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Founda-
tion, Colour Society of Australia, Centre Français de la Couleur, vol. 28, no. 5,
pp. 371–378, 2003.

[349] M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference
formula: CIEDE2000,” Color Research & Application: Endorsed by Inter-Society
Color Council, The Colour Group (Great Britain), Canadian Society for Color,
Color Science Association of Japan, Dutch Society for the Study of Color, The
Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français
de la Couleur, vol. 26, no. 5, pp. 340–350, 2001.

344

[350] R. L. Donofrio, “The Helmholtz-Kohlrausch effect,” Journal of the Society for In-
formation Display, vol. 19, no. 10, pp. 658–664, 2011.

[351] M. D. Fairchild and E. Pirrotta, “Predicting the lightness of chromatic object colors
using CIELAB,” Color Research & Application, vol. 16, no. 6, pp. 385–393, 1991.

[352] X. Zhao, T. Jin, and S. Qu, “Deriving inherent optical properties from background
color and underwater image enhancement,” Ocean Engineering, vol. 94, no. jan.15,
pp. 163–172,

[353] N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert, “Simplest Color
Balance,” Image Processing On Line, vol. 1, pp. 297–315, 2011.

[354] P. Getreuer, “Automatic Color Enhancement (ACE) and its Fast Implementation,”
Image Processing On Line, vol. 2, pp. 266–277, 2012.

[355] J. G. Gomila Salas and J. L. Lisani, “Local Color Correction,” Image Processing
On Line, vol. 1, pp. 260–280, 2011.

[356] K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired underwater
image quality measures,” IEEE Journal of Oceanic Engineering, vol. 41, no. 3,
pp. 541–551, 2016.

[357] H. G. Bock, “Recent advances in parameter identification techniques for ODE,”
in Numerical treatment of inverse problems in differential and integral equations,
Springer, 1983, pp. 95–121.

[358] T. Müller and J. Timmer, “Parameter identification techniques for partial differen-
tial equations,” International Journal of Bifurcation and Chaos, vol. 14, no. 06,
pp. 2053–2060, 2004.

[359] E. Baake, M. Baake, H. Bock, and K. Briggs, “Fitting ordinary differential equa-
tions to chaotic data,” Physical Review A, vol. 45, no. 8, p. 5524, 1992.

[360] T. G. Müller and J. Timmer, “Fitting parameters in partial differential equations
from partially observed noisy data,” Physica D: Nonlinear Phenomena, vol. 171,
no. 1-2, pp. 1–7, 2002.

[361] H. G. Bock, “Numerical treatment of inverse problems in chemical reaction kinet-
ics,” in Modelling of chemical reaction systems, Springer, 1981, pp. 102–125.

[362] U. Parlitz and C. Merkwirth, “Prediction of spatiotemporal time series based on
reconstructed local states,” Physical review letters, vol. 84, no. 9, p. 1890, 2000.

345

[363] M. Bär, R. Hegger, and H. Kantz, “Fitting partial differential equations to space-
time dynamics,” Physical Review E, vol. 59, no. 1, p. 337, 1999.

[364] J. Bongard and H. Lipson, “Automated reverse engineering of nonlinear dynami-
cal systems,” Proceedings of the National Academy of Sciences, vol. 104, no. 24,
pp. 9943–9948, 2007.

[365] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” science, vol. 324, no. 5923, pp. 81–85, 2009.

[366] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the
national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[367] H. Schaeffer, “Learning partial differential equations via data discovery and sparse
optimization,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 473, no. 2197, p. 20 160 446, 2017.

[368] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of
partial differential equations,” Science Advances, vol. 3, no. 4, e1602614, 2017.

[369] S. H. Kang, W. Liao, and Y. Liu, “Ident: Identifying differential equations with
numerical time evolution,” arXiv preprint arXiv:1904.03538, 2019.

[370] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynam-
ics for model predictive control in the low-data limit,” Proceedings of the Royal
Society A, vol. 474, no. 2219, p. 20 180 335, 2018.

[371] J.-C. Loiseau and S. L. Brunton, “Constrained sparse galerkin regression,” Journal
of Fluid Mechanics, vol. 838, pp. 42–67, 2018.

[372] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor, “Model selection for
dynamical systems via sparse regression and information criteria,” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473,
no. 2204, p. 20 170 009, 2017.

[373] G. Tran and R. Ward, “Exact recovery of chaotic systems from highly corrupted
data,” Multiscale Modeling & Simulation, vol. 15, no. 3, pp. 1108–1129, 2017.

[374] H. Schaeffer, G. Tran, and R. Ward, “Extracting sparse high-dimensional dynamics
from limited data,” SIAM Journal on Applied Mathematics, vol. 78, no. 6, pp. 3279–
3295, 2018.

[375] M. M. Zhang, H. Lam, and L. Lin, “Robust and parallel bayesian model selection,”
Computational Statistics & Data Analysis, vol. 127, pp. 229–247, 2018.

346

[376] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher, “Sparse dynamics for partial
differential equations,” Proceedings of the National Academy of Sciences, vol. 110,
no. 17, pp. 6634–6639, 2013.

[377] M. Bongini, M. Fornasier, M. Hansen, and M. Maggioni, “Inferring interaction
rules from observations of evolutive systems i: The variational approach,” Math-
ematical Models and Methods in Applied Sciences, vol. 27, no. 05, pp. 909–951,
2017.

[378] F. Lu, M. Zhong, S. Tang, and M. Maggioni, “Nonparametric inference of interac-
tion laws in systems of agents from trajectory data,” Proceedings of the National
Academy of Sciences, vol. 116, no. 29, pp. 14 424–14 433, 2019.

[379] Z. Long, Y. Lu, X. Ma, and B. Dong, “PDE-net: Learning PDEs from data,” arXiv
preprint arXiv:1710.09668, 2017.

[380] Z. Long, Y. Lu, and B. Dong, “Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network,” Journal of Computational Physics, vol. 399, p. 108 925,
2019.

[381] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learning
(part I): Data-driven solutions of nonlinear partial differential equations,” arXiv
preprint arXiv:1711.10561, 2017.

[382] T. Qin, K. Wu, and D. Xiu, “Data driven governing equations approximation using
deep neural networks,” Journal of Computational Physics, 2019.

[383] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of
nonlinear partial differential equations,” Journal of Computational Physics, vol. 357,
pp. 125–141, 2018.

[384] Y. Khoo and L. Ying, “SwitchNet: A neural network model for forward and inverse
scattering problems,” arXiv preprint arXiv:1810.09675, 2018.

[385] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear em-
beddings of nonlinear dynamics,” Nature communications, vol. 9, no. 1, p. 4950,
2018.

[386] Y. He, S. H. Kang, W. Liao, H. Liu, and Y. Liu, “Robust PDE identification from
noisy data,” arXiv preprint arXiv:2006.06557, 2020.

[387] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, “Uniformly high order
accurate essentially non-oscillatory schemes, iii,” in Upwind and high-resolution
schemes, Springer, 1987, pp. 218–290.

347

[388] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing. Cal-
ifornia Technical Pub. San Diego, 1997.

[389] P. Lancaster and K. Salkauskas, “Surfaces generated by moving least squares meth-
ods,” Mathematics of computation, vol. 37, no. 155, pp. 141–158, 1981.

[390] H. Wendland, “Local polynomial reproduction and moving least squares approxi-
mation,” IMA Journal of Numerical Analysis, vol. 21, no. 1, pp. 285–300, 2001.

[391] E. J. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Transactions
on information theory, vol. 52, no. 2, pp. 489–509, 2006.

[392] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[393] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[394] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal re-
construction,” IEEE transactions on Information Theory, vol. 55, no. 5, pp. 2230–
2249, 2009.

[395] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009.

[396] M. Tham, “Dealing with measurement noise. moving average filter,” Chemical En-
gineering and Advanced Materials, University of Newcastle upon Tyne, 1998.

[397] P. Craven and G. Wahba, “Smoothing noisy data with spline functions,” Numerische
mathematik, vol. 31, no. 4, pp. 377–403, 1978.

[398] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[399] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic decompo-
sition,” IEEE transactions on information theory, vol. 47, no. 7, pp. 2845–2862,
2001.

[400] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcom-
plete representations in the presence of noise,” IEEE Transactions on information
theory, vol. 52, no. 1, pp. 6–18, 2005.

348

[401] A. Feuer and A. Nemirovski, “On sparse representation in pairs of bases,” IEEE
Transactions on Information Theory, vol. 49, no. 6, pp. 1579–1581, 2003.

[402] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE transactions on
information theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[403] K. Knight and W. Fu, “Asymptotics for lasso-type estimators,” Annals of statistics,
pp. 1356–1378, 2000.

[404] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse sig-
nals in noise,” IEEE transactions on information theory, vol. 52, no. 3, pp. 1030–
1051, 2006.

[405] P. Zhao and B. Yu, “On model selection consistency of lasso,” Journal of Machine
learning research, vol. 7, no. Nov, pp. 2541–2563, 2006.

[406] J.-J. Fuchs, “Recovery of exact sparse representations in the presence of bounded
noise,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3601–3608,
2005.

[407] M. J. Wainwright, “Sharp thresholds for high-dimensional and noisy sparsity re-
covery using `1-constrained quadratic programming (Lasso),” IEEE transactions
on information theory, vol. 55, no. 5, pp. 2183–2202, 2009.

[408] J. Jia, K. Rohe, and B. Yu, “The lasso under poisson-like heteroscedasticity,” Sta-
tistica Sinica, pp. 99–118, 2013.

[409] N. Meinshausen, P. Bühlmann, et al., “High-dimensional graphs and variable se-
lection with the lasso,” The annals of statistics, vol. 34, no. 3, pp. 1436–1462, 2006.

[410] P. Ravikumar, G. Raskutti, M. J. Wainwright, and B. Yu, “Model selection in gaus-
sian graphical models: High-dimensional consistency of l1-regularized mle.,” in
NIPS, 2008, pp. 1329–1336.

[411] P. Ravikumar, M. J. Wainwright, and J. D. Lafferty, “High-dimensional ising model
selection using `1-regularized logistic regression,” The Annals of Statistics, vol. 38,
no. 3, pp. 1287–1319, 2010.

[412] J. Fan and J. Lv, “A selective overview of variable selection in high dimensional
feature space,” Statistica Sinica, vol. 20, no. 1, p. 101, 2010.

[413] J. Fan, T. Gasser, I. Gijbels, M. Brockmann, and J. Engel, “Local polynomial re-
gression: Optimal kernels and asymptotic minimax efficiency,” Annals of the Insti-
tute of Statistical Mathematics, vol. 49, no. 1, pp. 79–99, 1997.

349

[414] J. Fan, Local polynomial modelling and its applications: monographs on statistics
and applied probability 66. Routledge, 2018.

[415] Y.-p. Mack and B. W. Silverman, “Weak and strong uniform consistency of ker-
nel regression estimates,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete, vol. 61, no. 3, pp. 405–415, 1982.

[416] G. Tusnády, “A remark on the approximation of the sample df in the multidimen-
sional case,” Periodica Mathematica Hungarica, vol. 8, no. 1, pp. 53–55, 1977.

[417] H. Liang and H. Wu, “Parameter estimation for differential equation models using
a framework of measurement error in regression models,” Journal of the American
Statistical Association, vol. 103, no. 484, pp. 1570–1583, 2008.

[418] E. Masry, “Multivariate local polynomial regression for time series: Uniform strong
consistency and rates,” Journal of Time Series Analysis, vol. 17, no. 6, pp. 571–599,
1996.

[419] Y. Li, T. Hsing, et al., “Uniform convergence rates for nonparametric regression
and principal component analysis in functional/longitudinal data,” The Annals of
Statistics, vol. 38, no. 6, pp. 3321–3351, 2010.

[420] B. W. Silverman, “Weak and strong uniform consistency of the kernel estimate of
a density and its derivatives,” The Annals of Statistics, pp. 177–184, 1978.

[421] T. Tao, Topics in random matrix theory. American Mathematical Soc., 2012, vol. 132.

[422] K. R. Davidson and S. J. Szarek, “Local operator theory, random matrices and
banach spaces,” Handbook of the geometry of Banach spaces, vol. 1, no. 317-366,
p. 131, 2001.

[423] D. L. Bailey, M. N. Maisey, D. W. Townsend, and P. E. Valk, Positron emission
tomography. Springer, 2005, vol. 2.

[424] C. Liu, L. A. Pierce II, A. M. Alessio, and P. E. Kinahan, “The impact of respiratory
motion on tumor quantification and delineation in static PET/CT imaging,” Physics
in Medicine & Biology, vol. 54, no. 24, p. 7345, 2009.

[425] A. Rahmim, M. A. Lodge, N. A. Karakatsanis, V. Y. Panin, Y. Zhou, A. McMillan,
S. Cho, H. Zaidi, M. E. Casey, and R. L. Wahl, “Dynamic whole-body PET imag-
ing: Principles, potentials and applications,” European journal of nuclear medicine
and molecular imaging, vol. 46, no. 2, pp. 501–518, 2019.

[426] O. Muzik, T. J. Mangner, W. R. Leonard, A. Kumar, J. Janisse, and J. G. Granne-
man, “15O PET measurement of blood flow and oxygen consumption in cold-

350

activated human brown fat,” Journal of Nuclear Medicine, vol. 54, no. 4, pp. 523–
531, 2013.

[427] B. M. Larimer, E. Wehrenberg-Klee, A. Caraballo, and U. Mahmood, “Quantita-
tive CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy,”
Journal of Nuclear Medicine, vol. 57, no. 10, pp. 1607–1611, 2016.

[428] M. Hatt, D. Visvikis, O. Pradier, and C. Cheze-Le Rest, “Baseline 18 F-FDG
PET image-derived parameters for therapy response prediction in oesophageal can-
cer,” European journal of nuclear medicine and molecular imaging, vol. 38, no. 9,
pp. 1595–1606, 2011.

[429] E. Inglese, L. Leva, R. Matheoud, G. Sacchetti, C. Secco, P. Gandolfo, M. Bram-
billa, and G. Sambuceti, “Spatial and temporal heterogeneity of regional myocar-
dial uptake in patients without heart disease under fasting conditions on repeated
whole-body 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 48, no. 10,
pp. 1662–1669, 2007.

[430] P. Videbech, “PET measurements of brain glucose metabolism and blood flow
in major depressive disorder: A critical review,” Acta Psychiatrica Scandinavica,
vol. 101, no. 1, pp. 11–20, 2000.

[431] S. A. Nehmeh, Y. E. Erdi, K. E. Rosenzweig, H. Schoder, S. M. Larson, O. D.
Squire, and J. L. Humm, “Reduction of respiratory motion artifacts in PET imag-
ing of lung cancer by respiratory correlated dynamic PET: Methodology and com-
parison with respiratory gated PET,” Journal of Nuclear Medicine, vol. 44, no. 10,
pp. 1644–1648, 2003.

[432] M. Lortie, R. S. Beanlands, K. Yoshinaga, R. Klein, J. N. DaSilva, and R. A.
DeKemp, “Quantification of myocardial blood flow with 82 Rb dynamic PET imag-
ing,” European journal of nuclear medicine and molecular imaging, vol. 34, no. 11,
pp. 1765–1774, 2007.

[433] M. D. Normandin, W. K. Schiffer, and E. D. Morris, “A linear model for estima-
tion of neurotransmitter response profiles from dynamic PET data,” Neuroimage,
vol. 59, no. 3, pp. 2689–2699, 2012.

[434] M. E. Kamasak, C. A. Bouman, E. D. Morris, and K. Sauer, “Direct reconstruc-
tion of kinetic parameter images from dynamic PET data,” IEEE transactions on
medical imaging, vol. 24, no. 5, pp. 636–650, 2005.

[435] K.-P. Wong, D. Feng, S. R. Meikle, and M. J. Fulham, “Segmentation of dynamic
PET images using cluster analysis,” IEEE Transactions on nuclear science, vol. 49,
no. 1, pp. 200–207, 2002.

351

[436] F. Hashimoto, H. Ohba, K. Ote, A. Teramoto, and H. Tsukada, “Dynamic PET
image denoising using deep convolutional neural networks without prior training
datasets,” IEEE Access, vol. 7, pp. 96 594–96 603, 2019.

[437] J. Cui, H. Yu, S. Chen, Y. Chen, and H. Liu, “Simultaneous estimation and seg-
mentation from projection data in dynamic PET,” Medical physics, vol. 46, no. 3,
pp. 1245–1259, 2019.

[438] J. Cui, X. Liu, Y. Wang, and H. Liu, “Deep reconstruction model for dynamic PET
images,” PloS one, vol. 12, no. 9, e0184667, 2017.

[439] L. Lu, N. A. Karakatsanis, J. Tang, W. Chen, and A. Rahmim, “3.5 D dynamic PET
image reconstruction incorporating kinetics-based clusters,” Physics in Medicine &
Biology, vol. 57, no. 15, p. 5035, 2012.

[440] M. N. Wernick, E. J. Infusino, and M. Milosevic, “Fast spatio-temporal image re-
construction for dynamic PET,” IEEE transactions on medical imaging, vol. 18,
no. 3, pp. 185–195, 1999.

[441] M. Burger, C. Rossmanith, and X. Zhang, “Simultaneous reconstruction and seg-
mentation for dynamic SPECT imaging,” Inverse Problems, vol. 32, no. 10, p. 104 002,
2016.

[442] Q. Ding, M. Burger, and X. Zhang, “Dynamic SPECT reconstruction with temporal
edge correlation,” Inverse Problems, vol. 34, no. 1, p. 014 005, 2017.

[443] Z. Zhang and H. Liu, “Nonlocal total variation based dynamic PET image recon-
struction with low-rank constraints,” Physica Scripta, vol. 94, no. 6, p. 065 202,
2019.

[444] T. Yokota, K. Kawai, M. Sakata, Y. Kimura, and H. Hontani, “Dynamic PET image
reconstruction using nonnegative matrix factorization incorporated with deep im-
age prior,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 3126–3135.

[445] B. Wang and H. Liu, “FBP-Net for direct reconstruction of dynamic PET images,”
Physics in Medicine & Biology, vol. 65, no. 23, p. 235 008, 2020.

[446] Y. He, S. H. Kang, Q. Ding, and X. Zhang, “Deep dynamic pet reconstruction by
spatial and temporal information synthesis,” Submitted, 2021.

[447] R. E. Carson, “Tracer kinetic modeling in PET,” in Positron Emission Tomography,
Springer, 2005, pp. 127–159.

352

[448] S. S. Dragomir, “Reverses of the Schwarz inequality in inner product spaces and
applications,” Research report collection, vol. 7, no. 1, 2004.

[449] Y. Nomura, Y. Asano, J. Shinoda, H. Yano, Y. Ikegame, T. Kawasaki, N. Nakayama,
T. Maruyama, Y. Muragaki, and T. Iwama, “Characteristics of time-activity curves
obtained from dynamic 11 C-methionine PET in common primary brain tumors,”
Journal of neuro-oncology, vol. 138, no. 3, pp. 649–658, 2018.

[450] Q. Ding, Y. Zan, Q. Huang, and X. Zhang, “Dynamic spect reconstruction from few
projections: A sparsity enforced matrix factorization approach,” Inverse Problems,
vol. 31, no. 2, p. 025 004, 2015.

[451] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising,” IEEE transactions on image
processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[452] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J. Zhou,
and G. Wang, “Learn: Learned experts’ assessment-based reconstruction network
for sparse-data ct,” IEEE transactions on medical imaging, vol. 37, no. 6, pp. 1333–
1347, 2018.

[453] B. Johansson, T. Elfving, V. Kozlov, Y. Censor, P.-E. Forssén, and G. Granlund,
“The application of an oblique-projected landweber method to a model of super-
vised learning,” Mathematical and computer modelling, vol. 43, no. 7-8, pp. 892–
909, 2006.

[454] Z. Kotevski and P. Mitrevski, “Experimental comparison of PSNR and SSIM met-
rics for video quality estimation,” in International Conference on ICT Innovations,
Springer, 2009, pp. 357–366.

[455] A. Dimitrakopoulou-Strauss, L. Pan, and C. Sachpekidis, “Kinetic modeling and
parametric imaging with dynamic pet for oncological applications: General consid-
erations, current clinical applications, and future perspectives,” European Journal
of Nuclear Medicine and Molecular Imaging, pp. 1–19, 2020.

[456] L. Latecki, R. Lakamper, and T. Eckhardt, “Shape descriptors for non-rigid shapes
with a single closed contour,” in Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), IEEE, vol. 1, 2000,
pp. 424–429.

[457] P.-Å. Wedin, “Perturbation theory for pseudo-inverses,” BIT Numerical Mathemat-
ics, vol. 13, no. 2, pp. 217–232, 1973.

[458] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

353

[459] M. Rosenblatt, “Remarks on a multivariate transformation,” The Annals of Mathe-
matical Statistics, vol. 23, no. 3, pp. 470–472, 1952.

[460] A. Winkelbauer, “Moments and absolute moments of the normal distribution,”
arXiv preprint arXiv:1209.4340, 2012.

[461] J. Bretagnolle and P. Massart, “Hungarian constructions from the nonasymptotic
viewpoint,” The Annals of Probability, pp. 239–256, 1989.

354

VITA

Yuchen He was born on October 6, 1990, in Chongqing, China. He got his Bachelor

degree in Mathematical Statistics from Chongqing University, Chongqing, China in 2009.

and Master degree in Statistics from Columbia University, New York, New York, USA in

2014. He is pursuing his Ph.D. in Mathematics at Georgia Institute of Technology, Atlanta,

Georgia, USA starting from 2016, and he is anticipated to graduate in May, 2021.

Yuchen He likes painting during his leisure time. In fact, he was trained as an art student

since he was 4 years old, and he decided to pursue the beauty of mathematics since he

entered the college. In his early stage of Ph.D. life, Yuchen He was interested in algebraic

geometry and explored this area under the guidance of Professor Kirsten Wickelgren. After

learning more about numerical mathematics and their applications in various interesting

real-life problems, he decided to focus on applied mathematics under the supervision of

Professor Sung Ha Kang. Since then, he gained experience of working on problems with

diverse applications using various mathematical techniques.

During his Ph.D. journey, he has been active in attending many academic events. He

attended the 2017 Joint Mathematics Meetings in Atlanta, GA, USA. He participated the

CIRM pre-school for a thematic trimester in Institut Henri Poincaré, Centre International

de Reoncontres Mathématiques, Luminy, Marseille, France in 2019. From Jun 2019 to Jul

2019, he went to Germany for the Seventh International Conference on Scale Space and

Variational Methods in Computer Vision and presented a poster. In Jan 2020, supported by

the Chateaubriand Fellowship, he went to École normale supérieure Paris-Saclay, Cachan,

Paris, France, working with Professor Jean-Michel Morel. He also gave a talk at Research

Horizon Seminar at Georgia Institute of Technology in Nov. 2020.

Besides mathematics and painting, he also likes learning foreign languages, swimming,

listening to music.

355

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	What is Pattern?
	Mathematical Pattern Representation
	Organization of the Thesis

	2 | Symmetries and Metric Structures in Lattice Patterns
	Preliminaries and Notations
	Lattice Feature Descriptors and
	From Descriptors to Lattice Metric Space (L,dL)
	Validation of the Lattice Space L and Metric dL
	Application to Error Quantification of Lattice Identification and Separation Algorithm (LISA)
	Application to Grain Defect Detection
	Summary

	3 | PDE-based Shape Representation and Vectorization
	Region-based Representation – Shape Skeleton
	Hamilton-Jacobi Skeleton Algorithm
	Numerical Experiments on Shape Skeletons
	Contour-based Representation – Silhouette Vectorization
	Outline of the Affine-scale Space Vectorization Procedure
	Sub-pixel Curvature Extrema Localization
	Affine Scale-space Control Points Identification
	Adaptive Cubic Bézier Polygon Approximation
	Numerical Experiments on Silhouette Vectorization
	Summary

	4 | Submanifold Representation Induced by Point Cloud
	Surface Identification via Minimizing Distance-weighted Surface Area
	Numerical Experiments on Model of Distance-weighted Surface Area
	Curvature-regularized Energy and Its Fast Optimizing Algorithms
	Numerical Results and Comparisons
	Summary

	5 | Complementary Adaptation in Underwater Color Correction
	CIELAB Color Space
	Complementary Adaptation Model in CIELAB
	Numerical Experiments
	Conclusion

	6 | Automatic PDE Identification from Noisy Data
	Data Organization and Denoising
	PDE Model Identification Methods: ST and SC
	Numerical Experiments on Robust PDE Identification
	Support Recovery in Statistics
	PDE Identification via 1-PsLS
	Recovery Theory for 1-PsLS based PDE Identification
	Analysis Under Sample Incoherence Matrix Assumptions
	Uniform Convergence of Sample Incoherence Matrix
	Numerical Experiments
	Summary

	7 | Deep Spatial-temporal Synthesizer for dynamic PET Reconstruction
	Workflow Overview
	Nonnegative Matrix Factorization for dPET
	Proposed Model
	Numerical Experiments
	Summary

	8 | Conclusion
	Appendices
	A | Appendix for Chapter 2
	B | Appendix for Chapter 3
	C | Appendix for Chapter 6

	References
	Vita

