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Abstract

This paper presents a random rotation perturba-
tion approach for privacy preserving data classi-
fication. Concretely, we identify the importance
of classification-specific information with respect
to the loss of information factor, and present a
random rotation perturbation framework for pri-
vacy preserving data classification. Our approach
has two unique characteristics. First, we identify
that many classification models utilize the geo-
metric properties of datasets, which can be pre-
served by geometric rotation. We prove that the
three types of classifiers will deliver the same per-
formance over the rotation perturbed dataset as
over the original dataset. Second, we propose a
multi-column privacy model to address the prob-
lems of evaluating privacy quality for multidi-
mensional perturbation. With this metric, we de-
velop a local optimal algorithm to find the good
rotation perturbation in terms of privacy guaran-
tee. We also analyze both naive estimation and
ICA-based reconstruction attacks with the privacy
model. Our initial experiments show that the ran-
dom rotation approach can provide high privacy
guarantee while maintaining zero-loss of accuracy
for the discussed classifiers.

1 Introduction
We are entering a highly connected information-intensive
era. This information age has enabled organizations to col-
lect large amount of data continuously. Many organiza-
tions wish to discover and study interesting patterns and
trends over the large collections of datasets to improve their
productivity and competitiveness. Privacy preserving data
mining has become an important enabling technology for
integrating data and mining interesting patterns from pri-
vate collections of databases. This has resulted in a consid-
erable amount of work on privacy preserving data mining
methods in recent years such as [1, 3, 5, 2, 8, 9, 15, 18, 19],
etc.

Data perturbation techniques are one of the most popu-
lar models for privacy preserving data mining [3, 1]. It is
especially convenient for applications where the data own-
ers need to export/publish the privacy-sensitive data. A data
perturbation procedure can be simply described as follows.
Before the data owner publishes the data, theyrandomly
change the data in certain way to disguise the sensitive in-
formation while preserving the particular data property that

is critical for building the meaningful classification mod-
els. Several perturbation techniques have been proposed
recently, among which the most popular ones are random-
ization approach [3] and condensation approach [1].
Loss of Privacy vs. Loss of Information.
Perturbation techniques are often evaluated with two basic
metrics, loss of privacy and loss of information (resulting
in loss of accuracy for data classification). An ideal data
perturbation algorithm should aim at minimizing both pri-
vacy loss and information loss. However, the two metrics
are not well-balanced in many existing perturbation tech-
niques [3, 2, 7, 1].

Loss of privacy can be intuitively described as the dif-
ficulty level in estimating the original value from the per-
turbed data. In [3], the variance of the added random noise
is used as the level of difficulty for estimating the original
values. However, later research [7, 2] reveals that variance
is not an effective indicator for random noise addition since
the original data distribution is known− if a particular data
distribution is considered, certain part of data in the dis-
tribution cannot be effectively protected. In addition, [14]
shows that the loss of privacy is also subject to the special
attacks that can reconstruct the original data from the per-
turbed data.

The loss of information typically refers to the amount
of critical information preserved about the data sets after
the perturbation. Different data mining tasks, such as clas-
sification mining, association mining, typically utilize dif-
ferent set of properties about the data sets. Thus informa-
tion properties of a data set that are considered critical to
data classification mining may differ from those that are
critical to association rule mining. We argue that the ex-
act information that need to be preserved after each per-
turbation should be “task-specific”. For example, the task
of building decision trees primarily concerns the column
distribution. Hence, the quality of preserving column dis-
tribution becomes the key in applying randomization ap-
proach [3] to decision tree model. In comparison, most
classification models typically concern all columns of the
dataset participating in training. Thus , the perturbation
is required to preserve multi-dimensional task specific in-
formation rather than single dimensional. To our knowl-
edge, very few perturbation-based privacy protection pro-
posals so far have consideredmulti-dimensional perturba-
tion techniques.

Interesting to note is that the loss of privacy metric and
the loss of information metric have exhibited contradictory
rather than complimentary results in existing data pertur-
bation techniques [3, 2, 7, 1]. Typically data perturbation



algorithms that aims at minimizing the loss of privacy of-
ten have to bear with higher information loss. The intrinsic
correlation between the loss of privacy and the loss of infor-
mation raises a number of important issues regarding how
to find a right balance between the two measures and how
to build a data perturbation algorithm that ensures desired
privacy requirements and yet minimizes the loss of infor-
mation for the specific data processing task.
Contribution and Scope of the paper.
Bearing these issues in mind, we have developed a random
rotation perturbation approach to privacy preserving data
classification. In contrast to other existing privacy preserv-
ing classification methods [1, 3, 9, 15], our random rota-
tion based perturbation exploits the task-specific informa-
tion about the datasets to be classified, which is critical to
a large category of classification algorithms, aiming at pro-
ducing a robust data perturbation that exhibits a better bal-
ance between loss of privacy and loss of information, with-
out performance penalty.

Concretely, we observe that the multi-dimensional geo-
metric properties of datasets are the critical “task-specific
information” for many classification algorithms. By pre-
serving multi-dimensional geometric properties of the orig-
inal dataset, classifiers trained over the perturbed dataset
presents the same quality as classifiers over the origi-
nal dataset. One intuitive way to preserve the multi-
dimensional geometric properties is to perturb the origi-
nal dataset through geometric rotation transformation. We
have identified and proved that kernel methods, SVM clas-
sifiers with the three popular kernels, and the hyperplane-
based classifiers, are the three categories of classifiers that
are “rotation-invariant”.

Another important challenge for the random rotation
perturbation approach is the privacy loss measurement (the
level of uncertainty) and privacy assurance (the resilience
of the rotation transformation against unauthorized disclo-
sure). Given that a random rotation based perturbation is
a multi-dimensional perturbation, the privacy guarantee of
the multiple dimensions (attributes) should be evaluated
collectively to ensure the privacy of all columns involved
and the privacy of the multi-column correlations. We de-
sign a unified privacy model to tackle the problem of pri-
vacy evaluation for multi-dimensional perturbation, which
addresses three types of possible attacks: direct estimation,
approximate reconstruction, and distribution-based infer-
ence attacks.

With the unified privacy metric, we present the privacy
assurance of the random rotation perturbation as an opti-
mization problem: given that all rotation transformations
result in zero-loss of accuracy for the discussed classifiers,
we want to pick one rotation matrix that provides higher
privacy guarantee and stronger resilience against the three
types of inference attacks. Our experiments demonstrate
that with our attack resilient random rotation selection
algorithm, our random rotation perturbation can achieve
much higher privacy guarantee and more robust in counter-
ing inference attacks than other existing perturbation tech-
niques.

In a nutshell, random rotation perturbation refines the
definition of loss of privacy and loss of information for
multidimensional perturbation, and provides a particular
method for “conveniently raising the privacy guarantee
without loss of accuracy for the data classification task”.

The rest of paper is organized as follows. Section 2

briefly reviews the related work in section 2. In Section
3, we describe the properties of geometric rotation trans-
formation and prove that the three most popular categories
of classifiers are invariant to rotation. Section 4 intro-
duces a general purpose privacy measurement model for
multi-column data perturbation and characterizes the pri-
vacy property of the rotation-based perturbation in terms of
this metric. We present the experimental results in Section
4 and conclude our work in section 6.

2 Related Work

A considerable amount of work on privacy preserving data
mining methods have been reported in recent years [1, 3,
5, 2, 8, 19], etc. The most relevant work about perturbation
techniques includes the random noise addition methods and
the condensation-based perturbation technique. We below
focus our discussion on these two sets of techniques and
discuss their weakness in the context of privacy preserving
data classification.
Random Noise Addition Approach

The random noise addition approach can be briefly
described as follows. Suppose that the original values
(x1, x2, . . . , xn) from a column are randomly drawn from
a random variableX, which has some kind of distribution.
The randomization process changes the original data with
Y = X + R, whereR is a zero mean random noise. The
resulting tuples(x1 + r1, x2 + r2, . . . , xn + rn) and the
distribution of R are published. A reconstruction algo-
rithm is developed in [3] to construct the distribution of
X based on the perturbed data and the distribution ofR. In
particular, an expectation-maximization (EM) reconstruc-
tion algorithm was proposed in [2]. The distribution re-
constructed by EM algorithm is proved to converge to the
maximum likelihood estimate of the original distribution.
A new decision-tree algorithm for the randomization ap-
proach is developed in [3], in order to build the decision
tree from the perturbed data. Randomization approach is
also used in privacy-preserving association-rule mining [8].

While the randomization approach is intuitive, several
researchers have recently identified privacy breaches as one
of the major problems with the randomization approach.
Kargupta et al. [14, 11] observed that the spectral prop-
erties of the randomized data can be utilized to separate
noise from the private data. The filtering algorithms based
on random matrix theory are used to approximately recon-
struct the private data from the perturbed data. The au-
thors demonstrated that the randomization approach pre-
serves little privacy in many cases.

Furthermore, there has been research [1] addressing
other weaknesses associated with the value based random-
ization approach. For example, most of existing random-
ization and distribution reconstruction algorithms only con-
cern about preserving the distribution of single columns.
There has been surprisingly little attention paid on preserv-
ing value distributions over multiple correlated dimensions.
Second, value-based randomization approach needs to de-
velop new distribution-based classification algorithms. In
contrast, our random rotation perturbation approach does
not require modify existing data classification algorithms
when applied to perturbed datasets. This is a clear advan-
tage over techniques such as the method discussed in [3].

The randomization approach is also generalized by [7]
and [4]. [7] proposes a refined privacy metric for the gen-



eral randomization approach, and [4] develops a framework
based on the refined privacy metric to improve the balance
between the privacy and accuracy.

Condensation-based perturbation approachThe con-
densation approach [1] aims at preserving the covariance
matrix for multiple columns. Different from the random-
ization approach, it perturbs multiple columns as a whole
to generate entire “perturbed dataset”. The authors argue
that the perturbed dataset preserves the covariance matrix,
and thus, most existing data mining algorithms can be ap-
plied directly to the perturbed dataset without redeveloping
any new algorithms.

The condensation approach can be briefly described as
follows. It starts by partitioning the original data intok-
record groups. Each group is formed by two steps – ran-
domly select a record from the existing records as the cen-
ter of group, and then find the(k − 1) nearest neighbors of
the center as the other(k − 1) members. The selectedk
records are removed from the original dataset before form-
ing the next group. Since each group has small locality, it is
possible to regenerate a set ofk records to approximately
preserve the distribution and covariance. The record re-
generation algorithm tries to preserve the eigenvectors and
eigenvalues of each group. As a result, the distribution and
the covariance of the points in the group are approximately
preserved as shown in Figure 1. The authors demonstrated
that the condensation approach can preserve data covari-
ance well, and thus will not significantly sacrifice the ac-
curacy of classifiers if the classifiers are trained with the
perturbed data.
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Figure 1: Condensation approach

However, we have observed that the condensation ap-
proach is weak in protecting the private data. TheKNN -
based data groups result in some serious conflicts between
preserving covariance information and preserving privacy.
As the authors claim, the smaller the size of the locality
in each group, the better the quality of preserving the co-
variance with the regeneratedk records is. Note that the
regeneratedk records are confined in the small spatial lo-
cality as Figure 1 shows. We design an algorithm that tries
to find the nearest neighbor in the original data for each
regenerated record. The result (section 5) shows that the
difference between the regenerated records and the nearest
neighbor in original data are very small, and thus, the orig-
inal data records can be estimated from the perturbed data
with high confidence.

3 Rotation Transformation and Data Classi-
fication

In this section, we first identify the set of geometric prop-
erties of the datasets, which are significant to most clas-
sification algorithms. Then we describe the definition of
a rotation-based perturbation, and will discuss the effect
of geometric transformations to three categories of popular
classification algorithms. In particular, we will discuss the
rotation transformation. Before entering concrete discus-
sion, we define the notations for datasets.
Training Dataset and Unclassified Dataset. Training
dataset is the part of data that has to be exported/published
in privacy-preserving data classification. A classifier learns
the classification model from the training data and then is
applied to classify the unclassified data. Suppose thatX is
a training dataset consisting ofN data rows (records) and
d columns (attributes). For the convenience of mathemati-
cal manipulation, we useXd×N to notate the dataset, i.e.,
X = [x1 . . .xN ], wherexi is a data tuple, representing a
vector in the real spaceRd. Each data tuple belongs to a
predefined class, which is determined by its class label at-
tributeyi. The class labels can be nominal (or continuous
for regression). The class label attribute of the data tuple
is public, i.e., privacy-insensitive. All other attributes con-
taining private information needs to be protected. Unclassi-
fied dataset could also be expored/published with privacy-
protection if necessary.

3.1 Properties of Geometric Rotation

Let Rd×d represent the rotation matrix. Geometric rota-
tion of the dataX is generally notated as a functiong(X),
g(X) = RX. Note that the transformation will not change
the class label of data tuples, i.e.,Rxi, the rotation of data
recordxi, still has the labelyi.

A rotation matrixRd×d is defined as a matrix having
the follows properties. LetRT represent the transpose of
the matrixR, rij represent the(i, j) element ofR, andI
be the identity matrix. Both the rows and the columns ofR

areorthonormal[16], i.e., for any columnj,
∑d

i=1 r2
ij = 1,

and for any two columnsj andk,
∑d

i=1 rijrik = 0. The
similar property is held for rows. The definition infers that
RT R = RRT = I. It also implies that by changing the or-
der of the rows or columns of rotation matrix, the resulting
matrix is still a rotation matrix. A random rotation matrix
can be efficiently generated following the Haar distribution
[17].

A key feature of rotation transformation is preserving
length. LetxT represent the transpose of vectorx, and
‖ x ‖= xT x represent the length of a vectorx. By the
definition of rotation matrix, we have‖ Rx ‖=‖ x ‖ Thus,
rotation also preserves the Euclidean distance between any
pair of pointsx andy, due to‖ R(x− y) ‖=‖ x− y ‖.

Similarly, the inner product is also invariant to rotation.
Let < x,y > = xT y represent the inner product ofx and
y. We have< Rx, Ry > = xT RT Ry =< x,y >.

Intuitively, rotation also preserves the geometric shapes
such as hyperplane and hyper curved surface in the multi-
dimensional space.

3.2 Rotation-invariant Classifiers

We first define the concept of “transformation-invariant
classifiers”, and then discuss the concrete classifiers hav-



ing certain property. We say a classification algorithm is
invariant to a transformation, if the classifier trained using
the transformed data has the similar accuracy as that trained
by the original data. We formally define a transformation-
invariant classifier as follows.

We can treat the classification problem as function ap-
proximation problem – the classifiers are the functions
learned from the training data [10]. Therefore, we can use
functions to represent the classifiers. Letf̂X represent a
classifierf̂ trained with datasetX andf̂X(Y ) be the clas-
sification result on datasetY . Let T (X) be any transfor-
mation function, which transforms the datasetX to another
datasetX ′. We useErr(f̂X(Y )) to notate the error rate of
classifierf̂X on testing dataY and letε be some small real
number,|ε| < 1.

Definition 1. A classifier f̂ is invariant to some
transformation T if and only if Err(f̂X(Y )) =
Err(f̂T (X)(T (Y ))) + ε for any training datasetX and
testing datasetY .

With the strict conditionf̂X(Y ) ≡ f̂T (X)(T (Y )), we
also have the following corollary.

Corollary 1. In particular, if f̂X(Y ) ≡ f̂T (X)(T (Y )), for
any training datasetX and testing datasetY , the classifier
is invariant to the transformationT (X).

If a classifierf̂ is invariant torotation transformation,
we specifically name it as arotation-invariant classifier.

In the subsequent sections, we will prove that ker-
nel methods, SVM classifiers with certain kernels, and
hyperplane-based classifiers, are the three categories of
classifiers that are rotation-invariant. The proofs are based
on the strict condition given by Corollary 1.

KNN Classifiers and Kernel Methods

A KNN classifier determines the class label of a point by
looking at the labels of itsk nearest neighbors in the train-
ing dataset and classifies the point to the class that most of
its neighbors belong to. Since the distances between any
points are not changed after rotation, thek nearest neigh-
bors are not changed and thus the classification result is not
changed after rotation. Therefore, we have the first conclu-
sion about thek Nearest Neighbor (KNN) classifiers.

Lemma 1. KNN classifiers are rotation-invariant.

KNN classifier is a special case of kernel methods. We
assert that any kernel methods will be invariant to rota-
tion too. Same as the KNN classifier, a traditional kernel
method is a local classification method, which classifies the
new data only based on the information from the neighbors
in the training data.

Theorem 1. Any kernel methods are invariant to rotation.

Proof. Let us formally define the kernel methods first. In
general, a kernel method also estimates the class label
of a point x with the class labels of its neighbors. Let
Kλ(x,xi) represent the weighting function of any point
xi in x’s neighborhood, which is named askernel. Let
{x1,x2, . . . ,xn} be the points in the neighborhood ofx.

A kernel classifier for continuous class labels1 is defined
as,

f̂X(x) =
∑n

i=1 Kλ(x,xi)yi∑n
i=1 Kλ(x,xi)

(1)

Letλ be the width that determines the geometric area of the
neighborhood atx [10]. The kernelKλ(x,xi) is defined
as,

Kλ(x,xi) = D(
‖ x− xi ‖

λ
) (2)

D(t) is a function, for example,D(t) = 1√
2π

exp{−t2/2}.
Since‖ Rx − Rxi ‖=‖ x − xi ‖ andλ is constant,D(t)
is not changed after rotation and, thus,Kλ(Rx, Rxi) =
Kλ(x,xi). Since the geometric area around the point
is not changed, the point set in the neighborhood ofRx
are still the rotation of those in the neighborhood ofx,
i.e. {x1,x2, . . . ,xn} ⇒ {Rx1, Rx2, . . . , Rxn} and these
n points are used inf̂RX , which makesf̂RX(Rx) =
f̂X(x).

Support Vector Machines

Support Vector Machine (SVM) classifiers also utilize ker-
nel functions in training and classification. However, it uses
the information fromall points in the training set. Letyi be
the class label to a tuplexi in the training set,αi andβ0 be
the parameters determined by training. A SVM classifier
calculates the classification result ofx using the following
function.

f̂X(x) =
N∑

i=1

αiyiK(x,xi) + β0 (3)

Different from the kernel methods, which do not have
a training procedure, we shall prove that SVM classifiers
are invariant to rotation in two steps, 1) training with the
rotated data results in the same set of parametersαi andβ0;
and 2) the classification function̂f is invariant to rotation.

Theorem 2. SVM classifiers using polynomial, radial ba-
sis, and neural network kernels are invariant to rotation.

Proof. The training problem is an optimization problem,
which maximizes the Lagrangian (Wolfe) dual objective
function [10]

LD =
N∑

i=1

αi − 1/2
N∑

i,j=1

αiαjyiyjK(xi,xj)

subject to:

0 < αi < γ,

N∑

i=1

αiyi = 0

, whereγ is a parameter chosen by the user, a largerγ cor-
responding to assigning a higher penalty to errors. We see
that the training result ofαi is determined by the form of
kernel functionK(xi,xj). Givenαi, β0 can be determined
by solvingyif̂X(xi) = 1 for anyxi [10], which is again
determined by the kernel function. Therefore, it is clear that

1It has different form for discrete class labels, but the proof will be
similar.



if K(Rx, Rxi) = K(x,xi) is held, the training procedure
results in the same set of parameters.

There are the three popular choices for kernels listed in
the SVM literature [6, 10].

d-th degree polynomial: K(x,x′) = (1+ < x,x′ >)d,

radial basis: K(x,x′) = exp(− ‖ x− x′ ‖ /c),
neural network: K(x,x′) = tanh(κ1 < x,x′ > +κ2)

Note that the three kernels only involve distance and inner
product calculation. As we discussed in section 3.1, the
two operations keep invariant to the rotation transforma-
tion. Apparently,K(Rx, Rx′) = K(x,x′) are held for the
three kernels. Therefore, training with the rotated data will
not change the parameters for the SVM classifiers using the
three popular kernels.

Similarly, f̂X(x) = f̂RX(Rx) is held for the classifica-
tion function (3) for the same reason.

Perceptrons

Perceptron is the simplest neural network, which is a linear
method for classification. We use perceptron as the rep-
resentative example for hyperplane-based linear classifiers.
The result for perceptron classifier can be easily general-
ized to all hyperplane-based linear classifiers.

A perceptron classifier uses a hyperplane to separate the
training data, with the weightswT = [w1, . . . , wd] and
biasβ0. The weights and bias parameters are determined
by the training process. A trained classifier is represented
as follows.

f̂X(x) = wT x + β0

Theorem 3. Perceptron classifiers are invariant to rota-
tion.

Proof. As Figure 2 shows, the hyperplane can be repre-
sented aswT (x− xt) = 0, wherew is the perpendicular
axis to the hyperplane, andxt represents the deviation of
the plane from the origin (i.e.,β0 = −wT xt). Intuitively,
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Figure 2: Hyperplane and its parameters

rotation will make the classification hyperplane rotated as
well, which rotates the perpendicular axisw to Rw and
the deviationxt to Rxt. Let xr represent the data in the
rotated space. The rotated hyperplane is represented as
(Rw)T (xr − Rxt) = 0, and the classifier is transformed
to f̂RX(xr) = wT RT (xr − Rxt). Sincexr = Rx and
RT R = I, f̂RX(xr) = wT RT R(x− xt) = wT (x− xt)
= f̂X(x). The two classifiers are equivalent.

In general, since rotation will preserve distance, density,
and geometric shapes, any classifiers that find the decision
boundary based on the geometric properties of the dataset,
will still find the rotated decision boundary.

4 Evaluating Privacy Quality for Random
Rotation Perturbation

The goals of rotation based data perturbation are twofold:
preserving the accuracy of classifiers, and preserving the
privacy of data. As we mentioned in the introduction, the
loss of privacy and the loss of information (accuracy) are
often considered as a pair of conflict factors for other ex-
isting data perturbation approaches. In contrast, a distinct
feature of our rotation based perturbation approach is its
clean separation of these two factors. The discussion about
the rotation-invariant classifiers has proven that the rotation
transformation theoretically guarantees zero-loss of accu-
racy for three popular types of classifiers, which makes the
random rotation perturbation applicable to a large category
of classification applications. We dedicate this section to
discuss how good the rotation perturbation approach is in
terms of preserving privacy.

The critical step to identify thegood rotation perturba-
tion is to define a multi-column privacy measure for eval-
uating the privacy quality of any rotation perturbation to a
given dataset. With this privacy measure, we can employ
some optimization methods to find the good rotation per-
turbations for a given dataset.

4.1 Privacy Model for Multi-column Perturbation

Unlike the existing value randomization methods, where
multiple columns are perturbed separately, the random ro-
tation perturbation needs to perturball columns together.
The privacy quality of all columns is correlated under one
single transformation. Our approach to evaluating the pri-
vacy quality of random rotation perturbation consists of
two steps: First, we define a general-purpose privacy met-
ric that is effective for any multi-dimensional perturbation
method. Then, the metric is applied to analyze the random
rotation perturbation.

Since in practice different columns(attributes) may have
different privacy concern, we consider that the general-
purpose privacy metricΦ for entire dataset is based on
column privacy metric. An abstract privacy model is
defined as follows. Letp be the column privacy met-
ric vector p = (p1, p2, . . . , pd), and there areprivacy
weightsassociated to the columns, respectively, notated as
w = (w1, w2, . . . , wd). Φ = Φ(p,w) defines the privacy
guarantee. Basically, the design of privacy model should
consider determining the three factorsp, w, and function
Φ.

We will leave the concrete discussion about the design
of p in the next section, and define the other two factors
first. Since different columns may have different impor-
tance in terms of the level of privacy-sensitivity, the first
design idea is to take the column importance into consid-
eration. Letw denote the importance of columns in terms
of preserving privacy. Intuitively, the more important the
column is, the higher level of privacy guarantee will be re-
quired for the perturbed data, corresponding to that column.
Therefore, we let

∑d
i=1 wi = 1 and usepi/wi to represent

theweighted column privacy.



The second intuition is the concept ofminimum privacy
guaranteeamong all columns. Concretely, when we mea-
sure the privacy quality of a multi-column perturbation, we
need to pay special attention to the column having the low-
est weighted column privacy, because such columns could
become the breaking point of privacy. Hence, we design
the first composition functionΦ1 = mind

i=1{pi/wi} and
call it minimum privacy guarantee. Similarly, theaver-
age privacy guaranteeof the multi-column perturbation
Φ2 = 1

d

∑d
i=1 pi/wi is another interesting measure.

With the definition of privacy guarantee, we can evalu-
ate the privacy quality of a give perturbation, and most im-
portantly, we can use it to find the multi-dimensional per-
turbation that optimizes the privacy guarantee. With the
rotation approach, we will demonstrate that it is convenient
to adjust the perturbation method to considerably increase
the privacy guarantee without compromising the accuracy
of the classifiers.

4.2 Multi-column Privacy Analysis: A Unified Privacy
Metric

Intuitively, for data perturbation approach, the quality of
preserved privacy can be understood as the difficulty level
of estimating the original data from the perturbed data. Ba-
sically, the attacks to the data perturbation techniques can
be summarized in three categories: (1)estimating the orig-
inal data directly from the perturbed data [3, 2], without
any other knowledge about the data (naive inference); (2)
approximately reconstructing the data from the perturbed
data and then estimating the original data from the recon-
structed data [14, 11] (approximation-based inference); and
(3) if the distributions of the original columns are known,
the values or the properties of the values in the particular
part of the distribution can be estimated [2, 7] (distribution-
based inference). A unified metric should be applicable to
all three types of inference attacks to determine the robust-
ness of the perturbation technique. Due to the space limi-
tation, we will not deal with the issues about distribution-
oriented attacks to random rotation in this paper, and tem-
porarily assume the column distributions are unknown to
the users. Interested reader can refer to [?].

Let the difference between the original column data and
the perturbed/reconstructed data be a random variableD.
Without any knowledge about the original data, the mean
and variance of the difference present the level of difficulty
for the estimation. Since the mean only presents the aver-
age difference, which is not a robust measure for protect-
ing privacy, we choose to use the variance of the difference
(VoD) as the primary metric to determine the level of diffi-
culty in estimating the original data.

Let Y be a random variable, representing a column of
the dataset,Y′ be the perturbed/reconstructed result of
Y, and D be the difference betweenY and Y′. Thus
we haveD = Y′ − Y. Let E[D] andV ar(D) denote
the mean and the variance ofD respectively,y′ be a per-
turbed/reconstructed value inY′, σ be the standard devi-
ation ofD, andc denote some constant depending on the
distribution ofD and the confidence level. The correspond-
ing original valuey in Y is located in the range defined
below:

[y′ − E[D]− cσ, y′ − E[D] + cσ]

The width of the estimation range,2cσ, presents the hard-
ness to guess the original value (or amount of preserved pri-

vacy). In [3],Y′ is defined asY′ = Y + R, R represents
a zero mean noise random variable. Therefore,E[D] = 0
and the estimation solely depends on the distribution of the
added random noiseR. For simplicity, we useσ to repre-
sent the privacy level.

To evaluate the privacy quality of multi-dimensional
perturbation, we need to evaluate the privacy of all per-
turbed columns together. Unfortunately, the single-column
privacy metric does not work across different columns
since it ignores the effect of value range and the mean of
the original data column. The same amount of VoD is not
equally effective for different value ranges. One effective
way to unify the different value ranges is vianormalization.
With normalization, the unified privacy metric is calculated
in following three steps:

1. Let si = 1/(max(Yi) − min(Yi)), ti =
min(Yi)/(max(Yi) − min(Yi)) denote the con-
stants that are determined by the value range of the
column Yi. The columnYi is scaled to range [0,
1], generatingYsi, with the transformationYsi =
si(Yi−ti). This allows all columns to be evaluated on
the same base, eliminating the effect of diverse value
ranges.

2. The normalized dataYsi is perturbed toY′
si. Let D′

i

=Y′
si −Ysi. We useV ar(D′

i), instead ofV ar(Di),
as the unified measure of privacy quality.

3. The unified column privacy metrics compose the pri-
vacy vectorp. The composition functionsΦ1 andΦ2

are applied to calculate the minimum privacy guaran-
tee and the average privacy guarantee, respectively.

This above evaluation should be applied to all of the
three kinds of attacks and the lowest one should be con-
sidered as the final privacy guarantee.

4.3 Multi-column Privacy Analysis for Random Rota-
tion Perturbation

With the variance metric over the normalized data, we can
formally analyze the privacy quality of random rotation
perturbation. LetX be the normalized dataset,X ′ be the
rotation ofX, andId be thed-dimensional identity matrix.
Thus, VoD can be evaluated based on the difference matrix
X ′−X, and the VoD fori-th column is the element (i,i) in
the covariance matrix ofX ′ −X, which is represented as

Cov(X ′ −X)(i,i) = Cov(RX −X)(i,i)
= ((R− Id)Cov(X)(R− Id)T )(i,i) (4)

Let rij represent the element(i, j) in the matrixR, andcij

be the element(i, j) in the covariance matrix ofX. The
VoD for ith column is computed as follows.

Cov(X ′ −X)(i,i) =
d∑

j=1

d∑

k=1

rijrikckj − 2
d∑

j=1

rijcij + cii

(5)
When the random rotation matrix generated following

the Haar distribution, a considerable number of matrix en-
tries are approximately independent normal N(0, 1/d) [13].
The full discussion about the numerical characteristics of
the random rotation matrix is out of the scope of this paper.
However, we can still get some observations from equation
(5):



1. the mean level ofV oDi is affected by the variance of
the original data column, i.e.,cii. Largecii tends to
give higher privacy level on average.

2. The variance ofV oDi affects the efficiency of
randomization. The larger theV ar(V oDi), the
more likely the randomly generated rotation matri-
ces can provide a high privacy level compared to the
mean level ofV oDi. Exact form of V ar(V oDi)
should be complicated, but from the equation (5),
we can seeV ar(V oDi) might be tightly related to
the average of the squared covariance entries, i.e.
O(1/d2

∑d
i=1

∑d
j=1 cij).

3. V oDi only considers thei-th row vectors of rotation
matrix. Thus, it is possible to simply swap the rows of
R to locally improve the overall privacy guarantee.

The third observation leads us to propose a row-
swapping based fast local optimization method for find-
ing a better rotation from a given rotation. This method
can significantly reduce the search space and thus pro-
vides better efficiency. Our experimental result shows that,
with the local optimization, the minimum privacy level can
be increased by about 10% or more. We formalize the
swapping-maximization method as follows: Consider ad-
dimensional dataset. Let{(1), (2), . . . , (d)} be a permuta-
tion of the sequence{1, 2, . . . , d}. Let the importance level
of privacy preserving for the columns be[w1, w2, . . . , wd].
The goal is to find the permutation of rows that maximize
the minimum or average privacy guarantee for a given ro-
tation matrix.

argmax{(1),(2),...,(d)}{

min1≤i≤d{(
d∑

j=1

d∑

k=1

r(i)jr(i)kckj −

2
d∑

j=1

r(i)jcij + cii)/wi}} (6)

Since the matrixR′ generated by swapping the rows ofR
is still a rotation matrix (recall section 3.1), the above local
optimization step will not change the rotation-invariance
property of the givenclassifiers.

The unified privacy metric evaluates the privacy guaran-
tee and the resilience against nave inference− the first type
of privacy attack. Considering the approximation-based in-
ference− the second level of privacy attack through apply-
ing some reconstruction method to the random rotation per-
turbation, we identify that Independent Component Anal-
ysis (ICA) [12] could be applied to estimate the structure
of the normalized datasetX. We dedicate the next sec-
tion to analyze the ICA-based attacks and show that our
rotation-based perturbation is robust to this type of infer-
ence attacks.

4.4 ICA-based Attack to Rotation Perturbation

Intuitively, one might think that the Independent Compo-
nent Analysis (ICA) could be considered as the most com-
monly used method to breach the privacy protected by the
random rotation perturbation approach. However, we argue
that ICA is in general not effective in breaking the rotation
perturbation in practice.

ICA is a fundamental problem in signal process-
ing which is highly effective in several applications
such as blind source separation [12] of mixed electro-
encephalographic(EEG) signals, audio signals and the
analysis of functional magnetic resonance imaging (fMRI)
data. Let matrixX composed by the source signals, where
each row vector is a signal. Suppose we can observe the
mixed signalsX ′, which is generated by linear transforma-
tion X ′ = AX. ICA model can be applied to estimate the
independent components (the row vectors) of the original
signalsX, from the mixed signalsX ′, if the following con-
ditions are satisfied:

1. The source signals are independent, i.e., the row vec-
tors ofX are independent;

2. All the source signals must be non-Gaussian with pos-
sible exception of one signal;

3. The number of observed signals, i.e. the number of
row vectors ofX ′, must be at least as large as the in-
dependent source signals.

4. The transformation matrixA must be of full column
rank.

For rotation matrices, the 3rd and 4th conditions are al-
ways satisfied. However, the first two conditions, espe-
cially the independency condition, although practical for
signal processing, seem not very common in data classi-
fication. In practice, the dependent source signals can be
approximately regarded as one signal in ICA and people
can often tolerate considerable errors in the applications of
audio/video signal reconstruction, cracking the privacy of
the original datasetX requires to exactly locate and pre-
cisely estimate the original row vectors. This has greatly
restricted the effectiveness of ICA model based attacks to
the rotation-based perturbation.

Concretely, there are two basic difficulties in applying
the above ICA-based attack to the rotation-based pertur-
bation. First of all, if there is significant dependency be-
tween any attributes, ICA fails to converge and results in
less row vectors than the original ones, which cannot be
used to effectively detect the private information. Second,
even ICA can be done perfectly, the order of the original in-
dependent components cannot be preserved or determined
through ICA [12]. Formally, any permutation matrixP
and its inverseP−1 can be substituted in the model to give
X ′ = AP−1PX. ICA could possibly give the estimate for
some permutated sourcePX. Thus, we cannot identify the
particular column assuming that the original column distri-
butions are unknown or perturbed.

The effectiveness of the ICA reconstruction method can
be evaluated with the unified metric as well. The VoDs
are now calculated based on the reconstructed data and the
original data. Since the ordering of the reconstructed row
vectors is not certain, we estimate the VoDs with the best
effort − considering all of thed! possible orderings and
finding the most likely one. The most likely ordering is
defined as the one that gives the lowest privacy guarantee
among all of the orderings. Let̂Xk be the ICA recon-
structed dataX̂ reordered with one of the row orderings,
andpmin

k be the minimum privacy guarantee for̂Xk, k =
1 . . . d!, i.e.,pmin

k = min1≤i≤d { 1
Nwi

(Cov(X̂k−X)(i,i)}.



The ordering that gives lowest minimum privacy quality is
selected as the most likely ordering.

We observed that, when there is certain dependency be-
tween the attributes (columns), the ICA method cannot ef-
fectively lower the privacy guarantee. More importantly,
one can carefully select the rotation matrix such that the
chosen perturbation is more resilient to the ICA-based at-
tacks.

4.5 Selecting Rotation Center

Note that rotation does not perturb the points equally. The
points near the rotation center will change less than those
distant to the center. With the origin as the center, the small
values close to 0 keep small after rotation, which is weak
in protecting privacy. This can be remedied by randomly
“floating” the rotation center so that the weakly perturbed
points are not predictable. Concretely, the dimensional
value of the center is uniformly drawn from the range [0,
1], so that the center is randomly selected in the normal-
ized data space. The rotation transformation for non-origin
centers is done by first translating the dataset to the center
and then rotating the dataset. LetT be the translation ma-
trix. The VoDs are not changed by translation due to the
fact Cov(R(X − T ) − X) ≡ Cov(RX − X). When the
center-translated rotation is applied to the original data, the
center is simply scaled up (denormalized) by the parame-
ters si and ti defined earlier. Since translation preserves
all of the basic geometric properties, the classifiers seeking
the geometric decision boundary will be still invariant to
translation.

4.6 Putting All Together: Randomized Algorithm for
Finding a Better Rotation

We have discussed the unified privacy metric for evalu-
ating the quality of a random rotation perturbation with
the unified privacy metric. We have also shown how to
choose the rotation matrix in order to maximize the uni-
fied metric in terms of the naive value estimation attack
(naive inference) and reconstruction-based estimation at-
tack (approximation-based inference). In addition, we
choose to randomly optimize the rotation so that the at-
tacker cannot inference anything from the optimization al-
gorithm.

Algorithm 1 runs in a given number of iterations. Ini-
tially, the rotation center is randomly selected. In each iter-
ation, the algorithm randomly generates a rotation matrix.
Local maximization of variance through swapping rows is
then applied to find a better rotation matrix, which is then
tested by the ICA reconstruction. The rotation matrix is
accepted as the currently best perturbation if it provides
higher minimum privacy guarantee than the previous per-
turbations.

5 Experimental Result
We design three sets of experiments. The first set is used
to show that the discussed classifiers are invariant to rota-
tions. The second set shows privacy quality of the good ro-
tation perturbation. Finally, we compare the privacy quality
between the condensation approach and the random rota-
tion approach. All datasets used in the experiments can be
found in UCI machine learning database2.

2http://www.ics.uci.edu/∼mlearn/Machine-Learning.html

Algorithm 1 Finding a Better Rotation (Xd×N , w, m)
Input : Xd×N :the original dataset,w: weights of attributes in privacy
evaluation,m: the number of iterations.
Output : Rt: the selected rotation matrix,Tr : the rotation center,p:
privacy quality
calculate the covariance matrixC of X;
p = 0, and randomly generate the rotation centerTr ;
for Each iterationdo

randomly generate a rotation matrixR;
swapping the rows of R to get R′, which maximizes
min1≤i≤d{ 1

wi
(Cov(R′X −X)(i,i)};

p0 = the privacy quality ofR′, p1 = 0;
if p0 > p then

generateX̂ with ICA;
p1 = min{pmin

k , k = 1 . . . d!}, pmin
k = min1≤i≤d

{ 1
wi

(Cov(X̂k −X)(i,i)} ;
end if
if p < min(p0, p1) then

p = min(p0, p1), Rt = R′;
end if

end for

5.1 Rotation-invariant Classifiers

In this experiment, we verify the invariance property of sev-
eral classifiers discussed in section 3.2. Three classifiers:
KNN classifier, SVM classifier with RBF kernel, and per-
ceptron, are picked as the representative of the discussed
three kinds of classifiers.

Each dataset is randomly rotated 10 times with differ-
ent rotation matrices. Each of the 10 resultant datasets is
used to train and cross-validate the classifiers. The reported
numbers are the average of the 10 testing results. We calcu-
late the difference of performance, i.e., accuracy, between
the classifier trained with the original data and those trained
with the rotated data.

In the table 1, ‘orig’ is the classifier accuracy to the orig-
inal datasets, ‘R’ denotes the result of the classifiers trained
with rotated data, and the numbers in ‘R’ columns are the
performance difference between the classifiers trained with
original and rotated data, for example, “−1.0±0.2” means
that the classifiers trained with the rotated data have the ac-
curacy rate1.0% lower than the original classifier on aver-
age, and the standard deviation is0.2%. We use single-
perceptron classifiers in the experiment. Therefore, the
datasets having more than two classes, such as “E.Coli”,
“Iris” and “Wine” datasets, are not evaluated for percep-
tron classifier. It shows that the accuracy of the classifiers
almost does not change when rotation is applied.

5.2 Privacy Quality of Random Rotation Perturbation

We investigate the privacy property of the transformation
approach with the multi-column privacy metric introduced
in section 4. Each column is considered equally important
in privacy preserving, thus, the weights are not included in
evaluation. We use FastICA package, which can be down-
loaded from http://www.cis.hut.fi/projects/ica/fastica/, in
evaluating the effectiveness of ICA-based reconstruction.

Right side of Table 1 summarizes the evaluation of pri-
vacy quality on the experimental datasets. The results are
obtained in 50 iterations with Algorithm 1. The num-
bers are

√
V oD = σ, i.e., standard deviation of the

difference between the normalized original data and the
perturbed/reconstructed data (LOPs/ICAs). The column
LOPmin represents the locally optimal minimum privacy
guarantee in the 50 iterations.LOPavg represents the lo-



Dataset N d k KNN SVM(RBF) Perceptron LOPmin LOPavg ICAmin ICAavg

orig R orig R orig R
Breast-w 699 10 2 97.6 −0.5± 0.3 97.2 0± 0 34.5 0± 0 0.41 0.50 0.73 0.95
Credit-a 690 14 2 82.7 +0.2± 0.8 85.5 0± 0 55.5 0± 0 0.31 0.47 0.51* 0.97*
Credit-g 1000 24 2 72.1 +1.2± 0.9 76.3 0± 0 30.0 0± 0 0.40 0.51 0.52* 0.99*
Diabetes 768 8 2 73.3 +0.4± 0.5 77.3 0± 0 65.1 0± 0 0.23 0.28 0.81 0.95
E.Coli 336 7 8 85.1 +0.2± 0.8 78.6 0± 0 - - 0.24 0.34 0.75* 0.95*
Heart 270 13 2 78.9 +2.1± 0.5 84.8 0± 0 44.2 +0.2± 0.1 0.42 0.54 0.50* 0.97*

Hepatitis 155 19 2 80.8 +1.8± 1.5 79.4 0± 0 79.0 +0.4± 0.3 0.37 0.48 0.53 1.00
Ionosphere 351 34 2 86.4 +0.5± 0.6 89.7 0± 0 64.2 0± 0 0.31 0.41 0.82* 1.01*

Iris 150 4 3 94.6 +1.2± 0.4 96.7 0± 0 - - 0.43 0.50 0.69* 0.79*
Tic-tac-toe 958 9 2 83.9 −0.3± 0.4 70.4 0± 0 34.7 0± 0 0.61 0.68 0.52 0.88

Votes 435 16 2 92.5 +0.4± 0.4 95.6 0± 0 39.2 0± 0.1 0.65 0.82 0.50 0.99
Wine 178 13 3 98.3 −0.6± 0.5 98.9 0± 0 - - 0.26 0.34 0.78* 0.97*

Table 1: Experimental result on transformation-invariant classifiers

cally optimal average privacy guarantee.ICAmin and
ICAavg represents the lowest minimum privacy and av-
erage privacy the ICA reconstruction can achieve in the 50
iterations, respectively. Among the 12 datasets, ICA does
not converge for 7 datasets which are marked by ‘*’ and
thus not effectively reduce the privacy guarantee. For the
rest 5 datasets, ICA can possibly reduce the privacy quality
by some small amount, such as “Tic-tac-toe” and “Votes”.

Figure 3 for dataset “Breast-Wisconsin” shows that data
estimated by ineffective ICA reconstruction. In this case,
the local optimized rotation perturbation is selected as the
best perturbation. Figure 4 shows that ICA reconstruction
may undermine the privacy quality for some datasets. In
this case, the actual privacy guarantee will be located at be-
tween the locally optimized privacy guarantee and the ICA
reconstruction lowered privacy guarantee, for we can al-
ways select a rotation matrix that is more resistent to ICA
reconstruction. When it is detected that ICA reconstruc-
tion can seriously reduce the privacy guarantee, say, to less
than 0.2, we need additional methods to perturb the data so
that the conditions for effective ICA reconstruction are not
satisfied. We leave this as a part of future work.

5.3 Rotation-based Approach vs. Condensation Ap-
proach.

We design a simple algorithm to estimate the privacy qual-
ity of condensation approach. As we mentioned, since the
perturbation part is done within the KNN neighbors, it is
highly possible that the perturbed data is in the KNN neigh-
bors of the original data too. For each record in the per-
turbed dataset, we try to find the nearest neighbor in the
original data. By comparing the difference between the per-
turbed data and its nearest neighbor in the original data, we
can approximately measure the privacy quality of conden-
sation approach.

Intuitively, the better locality the KNN perturbation is,
the better the condensation approach can preserve the infor-
mation, but the worse the privacy quality is. Figure 5 and
6 show the relationship between the size of condensation
group and the privacy quality on “E.Coli” and “Diabetes”
datasets. It was demonstrated in the paper [1] that the accu-
racy of classifiers becomes stable with the increase of the
size of condensation group. However, we observed that the
privacy quality generally stays low, no matter how the con-
densation size changes. Experiment on both datasets shows
the minimum privacy guarantees are very low, neither are
the average privacy levels. We also observed that the mini-
mum privacy is 0 for “Ionosphere” data, which happens to
contain one column that has the same value. Condensation

method seems not working for such cases at all. Supported
by the other two Figures (7 and 8), we can conclude that the
condensation approach only provides weak privacy protec-
tion and we cannot possibly adjust the perturbation to meet
the higher privacy requirement.

While the rotation approach provides almost zero-loss
of information for classification, it also presents much
higher privacy quality than the condensation approach.
Figure 7 and 8 shows the comparison on the minimum pri-
vacy guarantee and the average privacy guarantee of the
two approaches. The numbers for rotation approach are the
results generated by the randomized algorithm in 50 iter-
ations. For exmaple, in Figure 7, “Rotation-Min” denotes
the optimal minimum privacy guarantee, taking the ICA-
attack into account as we discussed. We see that the rota-
tion approach can easily provide much higher privacy level
than the condensation approach.

6 Conclusion
We present a random rotation-based multidimensional per-
turbation approach for privacy preserving data classifica-
tion. Geometric rotation can preserve the important geo-
metric properties, thus most classifiers utilizing geometric
class boundaries become invariant to the rotated data. We
proved analytically and experimentally that the three pop-
ular types of classifiers (kernel methods, SVM classifiers
with certain kernels, and hyperplane-based classifiers) are
all invariant to rotation perturbation.

Random rotation perturbation perturbs multiple
columns in one transformation, which introduces new
challenges in evaluating the privacy guarantee for multi-
dimensional perturbation. We design a unified privacy
metric based on value-range normalization and multi-
column privacy composition. With this unified privacy
metric we are able to find the local optimal rotation
perturbation in terms of privacy guarantee. The unified
privacy metric also enables us to identify and analyze the
resilience of the rotation perturbation approach against the
ICA-based data reconstruction attacks. Our experimental
result shows that the geometric rotation approach not only
preserves the accuracy of the rotation-invariant classi-
fiers, but also provides much higher privacy guarantee,
compared to the existing multi-dimensional perturbation
techniques.
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