1

A Random Rotation Perturbation Approach to Privacy
Preserving Data Classification

Keke Chen

Ling Liu

Georgia Institute of Technology
{kekechen, linglig@cc.gatech.edu

Abstract

This paper presents a random rotation perturba-
tion approach for privacy preserving data classi-
fication. Concretely, we identify the importance
of classification-specific information with respect
to the loss of information factor, and present a
random rotation perturbation framework for pri-
vacy preserving data classification. Our approach
has two unique characteristics. First, we identify
that many classification models utilize the geo-
metric properties of datasets, which can be pre-
served by geometric rotation. We prove that the
three types of classifiers will deliver the same per-
formance over the rotation perturbed dataset as
over the original dataset. Second, we propose a
multi-column privacy model to address the prob-
lems of evaluating privacy quality for multidi-
mensional perturbation. With this metric, we de-
velop a local optimal algorithm to find the good
rotation perturbation in terms of privacy guaran-
tee. We also analyze both naive estimation and
ICA-based reconstruction attacks with the privacy
model. Our initial experiments show that the ran-
dom rotation approach can provide high privacy
guarantee while maintaining zero-loss of accuracy
for the discussed classifiers.

Introduction

is critical for building the meaningful classification mod-
els. Several perturbation techniques have been proposed
recently, among which the most popular ones are random-
ization approach [3] and condensation approach [1].

Loss of Privacy vs. Loss of Information.

Perturbation techniques are often evaluated with two basic
metrics, loss of privacy and loss of information (resulting
in loss of accuracy for data classification). An ideal data
perturbation algorithm should aim at minimizing both pri-
vacy loss and information loss. However, the two metrics
are not well-balanced in many existing perturbation tech-
niques [3, 2, 7, 1].

Loss of privacy can be intuitively described as the dif-
ficulty level in estimating the original value from the per-
turbed data. In [3], the variance of the added random noise
is used as the level of difficulty for estimating the original
values. However, later research [7, 2] reveals that variance
is not an effective indicator for random noise addition since
the original data distribution is known if a particular data
distribution is considered, certain part of data in the dis-
tribution cannot be effectively protected. In addition, [14]
shows that the loss of privacy is also subject to the special
attacks that can reconstruct the original data from the per-
turbed data.

The loss of information typically refers to the amount
of critical information preserved about the data sets after
the perturbation. Different data mining tasks, such as clas-
sification mining, association mining, typically utilize dif-
ferent set of properties about the data sets. Thus informa-

We are entering a highly connected information-intensivetion properties of a data set that are considered critical to
era. This information age has enabled organizations to codata classification mining may differ from those that are
lect large amount of data continuously. Many 0rganiza-Cl‘itiC&| to association rule mining. We argue that the ex-
tions wish to discover and study interesting patterns and@ct information that need to be preserved after each per-
trends over the large collections of datasets to improve theiiurbation should be “task-specific’. For example, the task
productivity and competitiveness. Privacy preserving datef building decision trees primarily concerns the column
mining has become an important enabling technology fodistribution. Hence, the quality of preserving column dis-
integrating data and mining interesting patterns from pri-tribution becomes the key in applying randomization ap-
vate collections of databases. This has resulted in a consigroach [3] to decision tree model. In comparison, most
erable amount of work on privacy preserving data miningC|aSSificati0n models typically concern all columns of the
methods in recent years such as [1, 3, 5, 2, 8, 9, 15, 18, 19}lataset participating in training. Thus , the perturbation
etc. Is required to preserve multi-dimensional task specific in-
Data perturbation techniques are one of the most popuformation rather than single dimensional. To our knowl-
lar models for privacy preserving data mining [3, 1]. It is edge, very few perturbation-based privacy protection pro-
especially convenient for applications where the data ownposals so far have considereullti-dimensional perturba-
ers need to export/publish the privacy-sensitive data. A datdon techniques
perturbation procedure can be simply described as follows. Interesting to note is that the loss of privacy metric and
Before the data owner publishes the data, tteydomly  the loss of information metric have exhibited contradictory
change the data in certain way to disguise the sensitive irrather than complimentary results in existing data pertur-
formation while preserving the particular data property thatbation techniques [3, 2, 7, 1]. Typically data perturbation



algorithms that aims at minimizing the loss of privacy of- briefly reviews the related work in section 2. In Section
ten have to bear with higher information loss. The intrinsic3, we describe the properties of geometric rotation trans-
correlation between the loss of privacy and the loss of inforformation and prove that the three most popular categories
mation raises a number of important issues regarding howf classifiers are invariant to rotation. Section 4 intro-
to find a right balance between the two measures and hoduces a general purpose privacy measurement model for
to build a data perturbation algorithm that ensures desiredhulti-column data perturbation and characterizes the pri-
privacy requirements and yet minimizes the loss of infor-vacy property of the rotation-based perturbation in terms of
mation for the specific data processing task. this metric. We present the experimental results in Section
Contribution and Scope of the paper 4 and conclude our work in section 6.
Bearing these issues in mind, we have developed a random
rotation perturbation approach to privacy preserving data Related Work
classification. In contrast to other existing privacy preserv-
ing classification methods [1, 3, 9, 15], our random rota-A considerable amount of work on privacy preserving data
tion based perturbation exploits the task-specific informasmining methods have been reported in recent years [1, 3,
tion about the datasets to be classified, which is critical td, 2, 8, 19], etc. The most relevant work about perturbation
a large category of classification algorithms, aiming at protechniques includes the random noise addition methods and
ducing a robust data perturbation that exhibits a better bafthe condensation-based perturbation technique. We below
ance between loss of privacy and loss of information, with-focus our discussion on these two sets of techniques and
out performance penalty. discuss their weakness in the context of privacy preserving
Concretely, we observe that the multi-dimensional geo-data classification.
metric properties of datasets are the critical “task-specifilRandom Noise Addition Approach
information” for many classification algorithms. By pre-  The random noise addition approach can be briefly
serving multi-dimensional geometric properties of the orig-described as follows. Suppose that the original values
inal dataset, classifiers trained over the perturbed datasét, zs, ..., z,) from a column are randomly drawn from
presents the same quality as classifiers over the origia random variabl&, which has some kind of distribution.
nal dataset. One intuitive way to preserve the multi-The randomization process changes the original data with
dimensional geometric properties is to perturb the origi-Y = X + R, whereR is a zero mean random noise. The
nal dataset through geometric rotation transformation. Weesulting tuplegx; + r1, 22 + ro, ..., 2, + r,) and the
have identified and proved that kernel methods, SVM clasélistribution of R are published. A reconstruction algo-
sifiers with the three popular kernels, and the hyperplanerithm is developed in [3] to construct the distribution of
based classifiers, are the three categories of classifiers th&tbased on the perturbed data and the distributidR.olin
are “rotation-invariant”. particular, an expectation-maximization (EM) reconstruc-
Another important challenge for the random rotationtion algorithm was proposed in [2]. The distribution re-
perturbation approach is the privacy loss measurement (theonstructed by EM algorithm is proved to converge to the
level of uncertainty) and privacy assurance (the resiliencenaximum likelihood estimate of the original distribution.
of the rotation transformation against unauthorized discloA new decision-tree algorithm for the randomization ap-
sure). Given that a random rotation based perturbation iproach is developed in [3], in order to build the decision
a multi-dimensional perturbation, the privacy guarantee otree from the perturbed data. Randomization approach is
the multiple dimensions (attributes) should be evaluatedlso used in privacy-preserving association-rule mining [8].
collectively to ensure the privacy of all columns involved  While the randomization approach is intuitive, several
and the privacy of the multi-column correlations. We de-researchers have recently identified privacy breaches as one
sign a unified privacy model to tackle the problem of pri- of the major problems with the randomization approach.
vacy evaluation for multi-dimensional perturbation, which Kargupta et al. [14, 11] observed that the spectral prop-
addresses three types of possible attacks: direct estimatioerties of the randomized data can be utilized to separate
approximate reconstruction, and distribution-based infernoise from the private data. The filtering algorithms based
ence attacks. on random matrix theory are used to approximately recon-
With the unified privacy metric, we present the privacy struct the private data from the perturbed data. The au-
assurance of the random rotation perturbation as an optthors demonstrated that the randomization approach pre-
mization problem: given that all rotation transformations serves little privacy in many cases.
result in zero-loss of accuracy for the discussed classifiers, Furthermore, there has been research [1] addressing
we want to pick one rotation matrix that provides higherother weaknesses associated with the value based random-
privacy guarantee and stronger resilience against the threéeation approach. For example, most of existing random-
types of inference attacks. Our experiments demonstratization and distribution reconstruction algorithms only con-
that with our attack resilient random rotation selectioncern about preserving the distribution of single columns.
algorithm, our random rotation perturbation can achieveThere has been surprisingly little attention paid on preserv-
much higher privacy guarantee and more robust in counteting value distributions over multiple correlated dimensions.
ing inference attacks than other existing perturbation techSecond, value-based randomization approach needs to de-
nigues. velop new distribution-based classification algorithms. In
In a nutshell, random rotation perturbation refines thecontrast, our random rotation perturbation approach does
definition of loss of privacy and loss of information for not require modify existing data classification algorithms
multidimensional perturbation, and provides a particularwhen applied to perturbed datasets. This is a clear advan-
method for “conveniently raising the privacy guaranteetage over techniques such as the method discussed in [3].
without loss of accuracy for the data classification task”. The randomization approach is also generalized by [7]
The rest of paper is organized as follows. Section 2and [4]. [7] proposes a refined privacy metric for the gen-



eral randomization approach, and [4] develops aframeworl@  Rotation Transformation and Data Classi-
based on the refined privacy metric to improve the balance fication

between the privacy and accuracy. . . o . .
P y y In this section, we first identify the set of geometric prop-

Condensation-based perturbation approachThe con-  erties of the datasets, which are significant to most clas-
densation approach [1] aims at preserving the covariancgification algorithms. Then we describe the definition of
matrix for multiple columns. Different from the random- 3 rotation-based perturbation, and will discuss the effect
ization approach, it perturbs multiple columns as a wholeyf geometric transformations to three categories of popular
to generate entire “perturbed dataset’. The authors argugassification algorithms. In particular, we will discuss the
that the perturbed dataset preserves the covariance matriptation transformation Before entering concrete discus-
and thus, most existing data mining algorithms can be apsjon, we define the notations for datasets.
plied directly to the perturbed dataset without redevelopingrraining Dataset and Unclassified Dataset. Training
any new algorithms. dataset is the part of data that has to be exported/published
The condensation approach can be briefly described d8 Privacy-preserving data classification. A classifier learns
follows. It starts by partitioning the original data inte  the classification model from the training data and then is
record groups. Each group is formed by two steps — ranapplied to classify the unclassified data. SupposeXhet
domly select a record from the existing records as the cer@ training dataset consisting 6f data rows (records) and
ter of group, and then find th@ — 1) nearest neighbors of d columps (at_trlbutes). For the convenience of mathe_mau-
the center as the oth¢k — 1) members. The selectégd cal manipulation, we us&,x v to notate the dataset, i.e.,
records are removed from the original dataset before formX = [x1...xxy], Wherex; is a data tuple, representing a
ing the next group. Since each group has small locality, it is/ector in the real spac&’. Each data tuple belongs to a
possib|e to regenerate a setlofecords to approximate|y predefined class, which is determined by its class label at-
preserve the distribution and covariance. The record retributey;. The class labels can be nominal (or continuous
generation algorithm tries to preserve the eigenvectors anl@®r regression). The class label attribute of the data tuple
eigenvalues of each group. As a result, the distribution anép public, i.e., privacy-insensitive. All other attributes con-
the covariance of the points in the group are approximatelj@ining private information needs to be protected. Unclassi-
preserved as shown in Figure 1. The authors demonstratdigd dataset could also be expored/published with privacy-
that the condensation approach can preserve data covaRrotection if necessary.
ance well, and thus will not significantly sacrifice the ac-
curacy of classifiers if the classifiers are trained with the3.1 Properties of Geometric Rotation

perturbed data. Let Ry q represent the rotation matrix. Geometric rota-

tion of the dataX is generally notated as a functig.xX ),

A eigenvectors g9(X) = RX. Note that the transformation will not change
¥ the class label of data tuples, i.&x;, the rotation of data
. x recordx;, still has the label;;.
\ A rotation matrix Ry« 4 is defined as a matrix having
* °:§:961’ the follows properties. LeR” represent the transpose of
;;% - Q{ the matrixR, r;; represent th¢:, j) element ofR, and
f;f; 0 be the identity matrix. Both the rows and the columngof
° - areorthonormal[16], i.e., for any colummy, Zle r,?j =1,
and for any two columng andk, Zf’:l rijrie = 0. The
*  the original data similar property is held for rows. The definition infers that
0 theregenerated data RTR = RRT = I. It also implies that by changing the or-

der of the rows or columns of rotation matrix, the resulting
matrix is still a rotation matrix. A random rotation matrix
can be efficiently generated following the Haar distribution
[17].

A key feature of rotation transformation is preserving

T
However, we have observed that the condensation aﬂl‘_er)l(gtﬁn: I;(E}t: ; eLergrseesnetqtr]ghFerggﬂsg]? Zevgr:t;?cgl; ?ﬂg

e s otwe ton ofoaton i v have o || x | Ths,
'ata group : . . ; otation also preserves the Euclidean distance between any

preserving covariance information and preserving pr'VaCypair of pointsx andy, due tof| R(x — y) |[=|| x —y |

AS the authors claim, the smaller' the size of the locality Similarly, the inner product is also invariant to rotation.

in e_ach group, the better the quality of_ preserving the Ot ot < x v = = xTy represent the inner product gfand

variance with the regeneratédrecords is. Note that the h7 T T

regenerated records are confined in the small spatial lo- y. We haves Rx, Ry >=x"R Ry =<x,y >. .

cality as Fiqure 1 shows. We desian an algorithm that tries Intuitively, rotation also preserves the geometric shapes

ty 9 > Jesign an aig such as hyperplane and hyper curved surface in the multi-

to find the nearest neighbor in the original data for eaChdimensionaI space

regenerated record. The result (section 5) shows that the pace.

difference between the regenerated records and the near%SE Rotation-invariant Classifiers

neighbor in original data are very small, and thus, the orig-—"

inal data records can be estimated from the perturbed dat&/e first define the concept of “transformation-invariant

with high confidence. classifiers”, and then discuss the concrete classifiers hav-

Figure 1: Condensation approach



ing certain property. We say a classification algorithm isA kernel classifier for continuous class ladeis defined

invariant to a transformation, if the classifier trained usingas,

the transformed data has the similar accuracy as that trained i Kk, x4)y (1)
Z?:l KA(Xv Xi)

by the original data. We formally define a transformation-
Let )\ be the width that determines the geometric area of the

fx(x)
invariant classifier as follows.

We can treat the classification problem as function ap-_". : .
proximation problem — the classifiers are the functionsh€ighborhood ak [10]. The kemel, (x, x;) is defined

learned from the training data [10]. Therefore, we can use ™’ Y
. o A N | x—x ||
functions to represent the classifiers. Lfgt represent a Ki(x,%x;) = D(f
classifierf trained with dataseX and fx (Y") be the clas- . ) L )
sification result on datasaf. Let7(X) be any transfor- D(f) is afunction, for examplel)(t) = 7 exp{—t/2}.
mation function, which transforms the dataseto another ~ Since|| Rx — Rx; ||=| x —x; || and is constantD(t)
datasetY’. We useErr(fx(Y)) to notate the error rate of is not changed after rotation and, thus,(Rx, kx;) =
classifierfy on testing datd” and let= be some small real Kx(x,x;). Since the geometric area around the point

) )

numbere| < 1. is not changed, the point set in the neighborhood?af
are still the rotation of those in the neighborhoodxof
Definition 1. A classifier f is invariant to some -€ {X1,X2,...,xn} = {Rx1, Rx,..., Rx,} and these
transformation 7 if and only if Err(fx(Y)) = 71 points are used infrx, which makesfrx(Rx) =
Err(frx)(T(Y))) + ¢ for any training datasety and  fx(x). O

testing dataseY’.
. . Support Vector Machines
With the strict conditionfx (Y) = frx)(T(Y)), we

also have the following corollary. Support Vector Machine (SVM) classifiers also utilize ker-

nel functions in training and classification. However, it uses
Corollary 1. In particular, if JEX(Y) _ fT(X)(T(Y)), for the information fromall points in the training set. Lat; be

any training dataseX and testing datasét, the classifier tEe class label to da tupl:e_g- In dﬂ;)e tra|_n|_ng Se;@is?/rllﬂdﬁ? be.f_
is invariant to the transformatiof’( X ). the parameters determined by training. classifier

calculates the classification resultsousing the following

If a classifier f is invariant torotation transformation, ~runction.

we specifically name it asratation-invariant classifier N

In the subsequent sections, we will prove that ker- fx(x) = ZaiyiK(x,xi) + Bo 3)
nel methods, SVM classifiers with certain kernels, and i=1
hyperplane-based classifiers, are the three categories of

classifiers that are rotation-invariant. The proofs are based Different from the kernel methods, which do not have
on the strict condition given by Corollary 1. a training procedure, we shall prove that SVM classifiers

are invariant to rotation in two steps, 1) training with the
KNN Classifiers and Kernel Methods rotated data resg!ts n the sanjeAsfet. of pqramed;msd_ﬁ 0
and 2) the classification functiohis invariant to rotation.

A KNN classifier determines the class label of a point by

looking at the labels of it nearest neighbors in the train- Theorem 2. SVM classifiers using polynomial, radial ba-
ing dataset and classifies the point to the class that most &S, and neural network kernels are invariant to rotation.
its neighbors belong to. Since the distances between any

points are not changed after rotation, theearest neigh- Proof. The training problem is an optimization problem,
bors are not changed and thus the classification result is ngthich maximizes the Lagrangian (Wolfe) dual objective
changed after rotation. Therefore, we have the first conclutunction [10]

sion about thé Nearest Neighbor (KNN) classifiers.

N N
Lemma 1. KNN classifiers are rotation-invariant. Lp=>) ai—1/2 Y aiayiy;K(xi,x;)
=1 i,5=1
KNN classifier is a special case of kernel methods. We .
assert that any kernel methods will be invariant to rota-SuPject to:
tion too. Same as the KNN classifier, a traditional kernel N
method is a local classmcatlc_)n methqd, which cIaSS|_f|es the 0<a; <7, Z i =0
new data only based on the information from the neighbors =
in the training data.
, Wherey is a parameter chosen by the user, a lasgeor-
Theorem 1. Any kernel methods are invariant to rotation. responding to assigning a higher penalty to errors. We see
] ] that the training result ofy; is determined by the form of
Proof. Let us formally define the ker_nel methods first. In kernel functionk (x;, x;). Givena, fy can be determined
general, a kernel method also estimates the class Iabgk, solvingy; fx (x;) = 1 for anyx; [10], which is again

of a pointx with the class labels of its neighbors. Let yeermined by the kernel function. Therefore, itis clear that
K, (x,x;) represent the weighting function of any point

x; in x’s neighborhood, V\{hiCh' is namgd asrnel Let 11t has different form for discrete class labels, but the proof will be
{x1,x%2,...,%,} be the points in the neighborhood ®f  similar.




if K(Rx, Rx;) = K(x,x;) is held, the training procedure In general, since rotation will preserve distance, density,

results in the same set of parameters. and geometric shapes, any classifiers that find the decision
There are the three popular choices for kernels listed ilboundary based on the geometric properties of the dataset,
the SVM literature [6, 10]. will still find the rotated decision boundary.

_ iale AN / d . . .
d-th degree polynomial: K(X’/X)_ (4 <x,x />) ' 4 Evaluating Privacy Quality for Random
radial basis: K(x,x') =exp(— || x—x"] /o), Rotation Perturbation

neural network: K(x,x’) = tanh(k; < x,x’ > +/<2_?_ ) .
he goals of rotation based data perturbation are twofold:

Note that the three kernels only involve distance and innepreserving the accuracy of classifiers, and preserving the
product calculation. As we discussed in section 3.1, thérivacy of data. As we mentioned in the introduction, the
two operations keep invariant to the rotation transformadoss of privacy and the loss of information (accuracy) are
tion. Apparently,K (Rx, Rx') = K (x,x’) are held for the  often considered as a pair of conflict factors for other ex-
three kernels. Therefore, training with the rotated data willisting data perturbation approaches. In contrast, a distinct
not change the parameters for the SVM classifiers using thégature of our rotation based perturbation approach is its

three popular kernels. clean separation of these two factors. The discussion about
Similarly, fx(x) = frx (Rx) is held for the classifica- the rotation-invariant classifiers has proven that the rotation
tion function (3) for the same reason. transformation theoretically guarantees zero-loss of accu-

racy for three popular types of classifiers, which makes the
random rotation perturbation applicable to a large category
of classification applications. We dedicate this section to
Perceptron is the simplest neural network, which is a lineadiscuss how good the rotation perturbation approach is in
method for classification. We use perceptron as the repterms of preserving privacy.

resentative example for hyperplane-based linear classifiers. The critical step to identify thgoodrotation perturba-
The result for perceptron classifier can be easily generalion is to define a multi-column privacy measure for eval-

Perceptrons

ized to all hyperplane-based linear classifiers. uating the privacy quality of any rotation perturbation to a
A perceptron classifier uses a hyperplane to separate trgiven dataset. With this privacy measure, we can employ
training data, with the weightss” = [wy,...,ws] and  some optimization methods to find the good rotation per-

bias 3. The weights and bias parameters are determinetirbations for a given dataset.
by the training process. A trained classifier is represented
as follows. 4.1 Privacy Model for Multi-column Perturbation

£ T
X)=w' x+ . - N
fx(x) Po Unlike the existing value randomization methods, where
Theorem 3. Perceptron classifiers are invariant to rota- Multiple columns are perturbed separately, the random ro-
tion. tation perturbation needs to pertuab columns together.
The privacy quality of all columns is correlated under one

Proof. As Figure 2 shows, the hyperplane can be repre_single transformation. Our ap_proach to evaluating t_he pri-
sented asv? (x — x¢) = 0, wherew is the perpendicular V&Y quality of random rotation perturbation consists of

axis to the hyperplane, and, represents the deviation of WO Steps: First, we define a general-purpose privacy met-
the plane from the origin (i.edo = —w7xy). Intuitively ric that is effective for any multi-dimensional perturbation

method. Then, the metric is applied to analyze the random
rotation perturbation.
Hyperplang’ Since in practice different columns(attributes) may have
* different privacy concern, we consider that the general-
* ° purpose privacy metrieb for entire dataset is based on
. w / . column privacy metric. An abstract privacy model is
"N o ° defined as follows. Lep be the column privacy met-
* ric vectorp = (pi1,p2,.-.,p4), and there arerivacy
/ ° weightsassociated to the columns, respectively, notated as
x| N ° w = (wy,ws,...,wg). & = &(p, w) defines the privacy
LNy, guarantee. Basically, the design of privacy model should
consider determining the three factgrsw, and function
.
We will leave the concrete discussion about the design
Figure 2: Hyperplane and its parameters of p in the next section, and define the other two factors
) ) o first. Since different columns may have different impor-
rotation will make the classification hyperplane rotated agance in terms of the level of privacy-sensitivity, the first
well, which rotates the perpendicular axisto Rw and  gesign idea is to take the column importance into consid-
the deviationx; to Rx;. Letx" represent the data in the graiion. Letw denote the importance of columns in terms
rotate;:l space. The rotated hyperplane is represented 8§ yreserving privacy. Intuitively, the more important the
(Bw)" (x" — Rx;) = 0, and the classifier is transformed ¢qymn s, the higher level of privacy guarantee will be re-
to frx(x") = w'RT(x" — Rx). Sincex" = Rx and  quired for the perturbed data, corresponding to that column.
RTR =1, frx(x") = w'RTR(x —x¢) = w' (x = x¢)  Therefore, we le}"?_, w; = 1 and use; /w; to represent
= fx(x). The two classifiers are equivalent. O  theweighted column privacy




The second intuition is the conceptmfnimum privacy  vacy). In [3], Y’ is defined a&’ = Y + R, R represents
guaranteeamong all columns. Concretely, when we mea-a zero mean noise random variable. Thereféd)] = 0
sure the privacy quality of a multi-column perturbation, we and the estimation solely depends on the distribution of the
need to pay special attention to the column having the lowadded random noisB.. For simplicity, we user to repre-
est weighted column privacy, because such columns couldent the privacy level.
become the breaking point of privacy. Hence, we design To evaluate the privacy quality of multi-dimensional
the first composition functio®; = min?_,{p;/w;} and  perturbation, we need to evaluate the privacy of all per-
call it minimum privacy guarantee Similarly, theaver-  turbed columns together. Unfortunately, the single-column
age privacy guarante®f the multi-column perturbation privacy metric does not work across different columns
Oy = éZlepi/wz' is another interesting measure. since it ignores the effect of value range and the mean of

With the definition of privacy guarantee, we can evalu-the original data column. The same amount of VoD is not
ate the privacy quality of a give perturbation, and most im-equally effective for different value ranges. One effective
portantly, we can use it to find the multi-dimensional per-way to unify the different value ranges is viarmalization
turbation that optimizes the privacy guarantee. With theWith normalization, the unified privacy metric is calculated
rotation approach, we will demonstrate that it is convenientn following three steps:

to adjust the perturbation method to considerably increase 1 | et s, = 1/(maz(Y:) — min(Y;)), t; =
the privacy guarantee without compromising the accuracy i, (Y,)/(max(Y;) — min(Y;:)) denote the con-
of the classifiers. stants that are determined by the value range of the
) , . . . columnY,;. The columnY; is scaled to range [O,
4.2 Multi-column Privacy Analysis: A Unified Privacy 1], generatingY,;, with the transformatiorl,; =
Metric 5;(Y;—t;). This allows all columns to be evaluated on

Intuitively, for data perturbation approach, the quality of ~ the same base, eliminating the effect of diverse value
preserved privacy can be understood as the difficulty level ~ ranges.

of estimating the original data from the perturbed (_1ata. Ba- 5 The normalized datyy; is perturbed toY”,. LetD)/,
sically, the attacks to the data p_erturbat|on tec_hnlques can =Y'. — Y,;. We useVar(D}), instead of ar(D;),

!oe summar_lzed in three categories: (1)estimating the orig- s the unified measure of privacy quality.

inal data directly from the perturbed data [3, 2], without

any other knowledge about the data (naive inference); (2) 3. The unified column privacy metrics compose the pri-
approximately reconstructing the data from the perturbed  vacy vectorp. The composition function§; and®,
data and then estimating the original data from the recon-  are applied to calculate the minimum privacy guaran-
structed data [14, 11] (approximation-based inference); and  tee and the average privacy guarantee, respectively.

(3) if the distributions of the original columns are known,  this above evaluation should be applied to all of the

the values or the properties of the values in the particulag, e kinds of attacks and the lowest one should be con-
part of the distribution can be estimated [2, 7] (distribution- g;yared as the final privacy guarantee.

based inference). A unified metric should be applicable to

all three types of inference attacks to determine the robusyy 3 muylti-column Privacy Analysis for Random Rota-
ness of the perturbation technique. Due to the space limi-  {jon Perturbation

tation, we will not deal with the issues about distribution- ) . ]

oriented attacks to random rotation in this paper, and temWith the variance metric over the normalized data, we can

porarily assume the column distributions are unknown toformally analyze the privacy quality of random rotation
the users. Interested reader can refef}o [ perturbation. LetX be the normalized dataseX,’ be the

Without any knowledge about the original data, the meanX’ — X, and the VoD fOI"i-/th column is the element (i,i) in
and variance of the difference present the level of difficultythe covariance matrix ok’ — X', which is represented as

for the estimation. Since the mean only presents the aver- ,

age difference, which is not a robust measure for protect- Cov(X" = X)(i,i) = Cov(RX — X))

ing privacy, we choose to use the variance of the difference = (R—1I)Cou(X)(R—1a)") i) 4)
(VoD) as the primary metric to determine the level of diffi- _ _
culty in estimating the original data. Letr;; represent the eleme(t, j) in the matrixR, andc;;

Let Y be a random variable, representing a column ofoe the elementi, j) in the covariance matrix ok. The
the datasetY’ be the perturbed/reconstructed result of VoD for ith column is computed as follows.
Y, and D be the difference betweeW andY’. Thus . J
we haveD = Y’ — Y. Let E[D] andVar(D) denote ,
the mean and the variance B¥ respectivelyy’ be a per- Cov(X" = X)) = Z Z TijTikChj — 2 Z”jciﬂ' + Cii
turbed/reconstructed value ¥’, o be the standard devi- j=1k=1 j=1 )

ation of D, andc denote some constant depending on the When the random rotation matrix generated followin
distribution ofD and the confidence level. The correspond- c . 9 wing
the Haar distribution, a considerable number of matrix en-

glé;lot\)A:!glnal valuey in Y is located in the range defined tries are a.pproxi'mately independent normal N(O, 1/_d)' [13].
ly — E[D] — co,y — E[D] + co] The full discussion about the numerical characteristics of
y Y the random rotation matrix is out of the scope of this paper.
The width of the estimation rang2¢o, presents the hard- However, we can still get some observations from equation
ness to guess the original value (or amount of preserved pri5):



1. the mean level o/ oD; is affected by the variance of ICA is a fundamental problem in signal process-
the original data column, i.ec;. Largec;; tends to ing which is highly effective in several applications
give higher privacy level on average. such as blind source separation [12] of mixed electro-

_ o encephalographic(EEG) signals, audio signals and the

2. The variance ofVoD; affects the efficiency of analysis of functional magnetic resonance imaging (fMRI)
randomization.  The larger th& ar(VoD;), the  data. Let matrixX composed by the source signals, where
more likely the randomly generated rotation matri- each row vector is a signal. Suppose we can observe the
ces can provide a high privacy level compared to themixed signalsY’, which is generated by linear transforma-
mean level ofVoD;. Exact form of Var(VoD;)  tion X’ = AX. ICA model can be applied to estimate the
should be complicated, but from the equation (5),independent components (the row vectors) of the original
we can seé/ar(VoD;) might be tightly related to  gjgnalsX, from the mixed signal&”, if the following con-
the average of the squared covariance entries, i.€jjtions are satisfied:

o(1/d Z?:l Z?:l cij).

1. The source signals are independent, i.e., the row vec-

3. VoD, only considers the-th row vectors of rotation tors of X are independent;
matrix. Thus, it is possible to simply swap the rows of
R to locally improve the overall privacy guarantee. 2. All the source signals must be non-Gaussian with pos-

, . sible exception of one signal;
The third observation leads us to propose a row- P d

swapping based fast local optimization method for find- 3 The number of observed signals, i.e. the number of

ing a better rotation from a given rotation. This method row vectors ofX’, must be at least as large as the in-
can significantly reduce the search space and thus pro- dependent source signals.

vides better efficiency. Our experimental result shows that,

with the local optimization, the minimum privacy level can 4. The transformation matrixd must be of full column
be increased by about 10% or more. We formalize the  gnk.

swapping-maximization method as follows: Considet a

dimensional dataset. L¢{1),(2),...,(d)} be a permuta- For rotation matrices, the 3rd and 4th conditions are al-
tion of the sequencgl, 2, ..., d}. Letthe importance level ways satisfied. However, the first two conditions, espe-
of privacy preserving for the columns be;, ws, . .., wq]. cially the independency condition, although practical for

The goal is to find the permutation of rows that maximizesignal processing, seem not very common in data classi-
the minimum or average privacy guarantee for a given rofication. In practice, the dependent source signals can be
tation matrix. approximately regarded as one signal in ICA and people
can often tolerate considerable errors in the applications of
argmazy(),(),....@H audio/video signal reconstruction, cracking the privacy of
d the original dataseX requires to exactly locate and pre-
mini<;<af( Zr(i)jr(i)kckj — cisely estimate the original row vectors. This has greatly
=1 k=1 restricted the effectiveness of ICA model based attacks to
the rotation-based perturbation.
T(i);Cij + Cii) /wit} (6) Concretely, there are two basic difficu]ties in applying
1 the above ICA-based attack to the rotation-based pertur-
bation. First of all, if there is significant dependency be-
Since the matrix®’ generated by swapping the rowsBf  tween any attributes, ICA fails to converge and results in
is still a rotation matrix (recall section 3.1), the above localless row vectors than the original ones, which cannot be
optimization step will not change the rotation-invarianceused to effectively detect the private information. Second,
property of the givenclassifiers. even ICA can be done perfectly, the order of the original in-
The unified privacy metric evaluates the privacy guaran-dependent components cannot be preserved or determined
tee and the resilience against nave inferendbe firsttype  through ICA [12]. Formally, any permutation matrik
of privacy attack. Considering the approximation-based in-and its inverseP~! can be substituted in the model to give
ference— the second level of privacy attack through apply- X’ = AP~'PX. ICA could possibly give the estimate for
ing some reconstruction method to the random rotation persome permutated souréeX. Thus, we cannot identify the
turbation, we identify that Independent Component Anal-particular column assuming that the original column distri-
ysis (ICA) [12] could be applied to estimate the structurebutions are unknown or perturbed.
of the normalized dataset. We dedicate the next sec-  The effectiveness of the ICA reconstruction method can
tion to analyze the ICA-based attacks and show that oube evaluated with the unified metric as well. The VoDs
rotation-based perturbation is robust to this type of infer-are now calculated based on the reconstructed data and the

~
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ence attacks. original data. Since the ordering of the reconstructed row
vectors is not certain, we estimate the VoDs with the best
4.4 ICA-based Attack to Rotation Perturbation effort — considering all of thel! possible orderings and

finding the most likely one. The most likely ordering is

Intuitively, one might think that the Independent Compo- , . . .
nent Analysis (ICA) could be considered as the most Com_deflned as the one that gives the lowest privacy guarantee

monly used method to breach the privacy protected by th@Mong all of the orderings. LeX), be the ICA recon-
random rotation perturbation approach. However, we arguétructed dataX reordered with one of the row orderings,
that ICA is in general not effective in breaking the rotation andp;™" be the minimum privacy guarantee faf;, k =
perturbation in practice. L...dl, i.e,p™ = mini<i<q {ﬁ(COU(Xk X))



The ordering that gives lowest minimum privacy quality is Algorithm 1 Finding a Better RotationX s« v, W, m)

selected as the most likely ordering.

Input: X4« n:the original datasety: weights of attributes in privacy

We observed that, when there is certain dependency be-evaluationyn: the number of iterations. '
tween the attributes (columns), the ICA method cannot ef- Output: R:: the selected rotation matrig;.: the rotation centerp:

fectively lower the privacy guarantee. More importantly,

privacy quality
calculate the covariance matiix of X;

one can carefully sel_ect the rote_lt.ion matrix such that the ,, _ o and randomly generate the rotation ceffter
chosen perturbation is more resilient to the ICA-based at- for Each iteratiordo

tacks.

4.5 Selecting Rotation Center
Note that rotation does not perturb the points equally. The

points near the rotation center will change less than those
distant to the center. With the origin as the center, the small

values close to 0 keep small after rotation, which is weak
in protecting privacy. This can be remedied by randomly
“floating” the rotation center so that the weakly perturbed
points are not predictable. Concretely, the dimensional

randomly generate a rotation matik
swapping the rows of R to get R/,
miny<i<a{ 3-(Cov(R'X — X))}
po = the privacy quality ofR’, p1 = 0;
if po > pthen

generateX with ICA;

p1 = i

which maximizes

min{p} nk o= 1...d}, pzlm = mini<i<q
{w%(COU(Xk = X))}

end if

if p < min(po,p1) then
p = min(po,p1), Rt = R’;

end if

value of the center is uniformly drawn from the range [0, end for

1], so that the center is randomly selected in the normal-

ized data space. The rotation transformation for non-origirb.1  Rotation-invariant Classifiers
centers is done by first translating the dataset to the cent
and then rotating the dataset. [te the translation ma-
trix. The VoDs are not changed by translation due to th
fact Cov(R(X — T) — X) = Cov(RX — X). When the
center-translated rotation is applied to the original data, th
center is simply scaled up (denormalized) by the parame-
terss; andt; defined earlier. Since translation preserves
all of the basic geometric properties, the classifiers seekin
the geometric decision boundary will be still invariant to
translation.

Th this experiment, we verify the invariance property of sev-
eral classifiers discussed in section 3.2. Three classifiers:
KNN classifier, SVM classifier with RBF kernel, and per-
eptron, are picked as the representative of the discussed
ree kinds of classifiers.

Each dataset is randomly rotated 10 times with differ-
nt rotation matrices. Each of the 10 resultant datasets is
sed to train and cross-validate the classifiers. The reported
numbers are the average of the 10 testing results. We calcu-
late the difference of performance, i.e., accuracy, between
the classifier trained with the original data and those trained
with the rotated data.

In the table 1, ‘orig’ is the classifier accuracy to the orig-
We have discussed the unified privacy metric for evaluinal datasets, ‘R’ denotes the result of the classifiers trained
ating the quality of a random rotation perturbation with with rotated data, and the numbers in ‘R’ columns are the
the unified privacy metric. We have also shown how toperformance difference between the classifiers trained with
choose the rotation matrix in order to maximize the uni-priginal and rotated data, for example; .0 +0.2” means
fied metric in terms of the naive value estimation attackthat the classifiers trained with the rotated data have the ac-
(naive inference) and reconstruction-based estimation akuracy ratel.0% lower than the original classifier on aver-
tack (approximation-based inference). In addition, weage, and the standard deviation0i€%. We use single-
choose to randomly optimize the rotation so that the atperceptron classifiers in the experiment. Therefore, the
tacker cannot inference anything from the optimization al-gatasets having more than two classes, such as “E.Coli",
gorithm. “Iris” and “Wine” datasets, are not evaluated for percep-

Algorithm 1 runs in a given number of iterations. Ini- tron classifier. It shows that the accuracy of the classifiers
tially, the rotation center is randomly selected. In each iteraimost does not change when rotation is applied.
ation, the algorithm randomly generates a rotation matrix.

Local maximization of variance through swapping rows is
then applied to find a better rotation matrix, which is then
tested by the ICA reconstruction. The rotation matrix isWe investigate the privacy property of the transformation
accepted as the currently best perturbation if it providesapproach with the multi-column privacy metric introduced
higher minimum privacy guarantee than the previous perin section 4. Each column is considered equally important
turbations. in privacy preserving, thus, the weights are not included in
evaluation. We use FastICA package, which can be down-
loaded from http://www.cis.hut.fi/projects/ica/fastica/, in

5 Experimental Result
. . ) . valuating the effectiven f ICA- reconstruction.
We design three sets of experiments. The first set is use% T?lijart]t gic;eeo(?TZEtleel gjfn?naﬁzeg?ﬁzdev?o\?l?at?é:gtfo ri-
to show that the discussed classifiers are invariant to rota-_ |~ 9 "> ) P
) . : vacy quality on the experimental datasets. The results are
tions. The second set shows privacy quality of the good ro-, .”. : . : : ;
. : . : ..—obtained in 50 iterations with Algorithm 1. The num-
tation perturbation. Finally, we compare the privacy quality VoD — ) tandard deviati f1h
between the condensation approach and the random rota?r"s arevyol) = o, 1.6, Slandard deviation ot the

tion approach. All datasets used in the experiments can paierence between the normalized original data and the
foundﬁﬁ UCI machine learning database P perturbed/reconstructed data (LOPs/ICAs). The column

LOP,,;, represents the locally optimal minimum privacy
guarantee in the 50 iteration&.0 P,,,, represents the lo-

4.6 Putting All Together: Randomized Algorithm for
Finding a Better Rotation

5.2 Privacy Quality of Random Rotation Perturbation

2http://www.ics.uci.edutmlearn/Machine-Learning.html



Dataset N d | k KNN SVM(RBF) Perceptron LOPyin | LOPavg | ICApin | ICAqug
orig R orig R orig R

Breast-w | 699 | 10 | 2 | 976 | —0.54+0.3 | 97.2 | 0+0 | 34.5 0+0 0.41 0.50 0.73 0.95
Credit-a 690 | 14| 2 | 827 | +0.2+0.8 | 855 | 0+0 | 555 0+0 0.31 0.47 0.51* 0.97*
Credit-g 1000 | 24 | 2 | 721 | +1.2+09 | 76.3| 0+0 | 30.0 0+0 0.40 0.51 0.52* 0.99*
Diabetes | 768 | 8 | 2 | 733 | +04+0.5 | 77.3 | 0+£0 | 65.1 0+0 0.23 0.28 0.81 0.95
E.Coli 336 | 7 | 8 |851| +0.2+0.8 | 786 | 0£0 - - 0.24 0.34 0.75* 0.95*
Heart 270 | 13| 2 | 789 | +2.1+£0.5 | 848 | 0£0 | 442 | 40.24+0.1 0.42 0.54 0.50* 0.97*
Hepatitis 155 [ 19| 2 | 808 | +1.8+1.5 | 794 | 0+0 | 79.0 | +0.4+£0.3 0.37 0.48 0.53 1.00
lonosphere| 351 | 34| 2 | 864 | +0.5+0.6 | 89.7 | 0+0 | 64.2 0+0 0.31 0.41 0.82* 1.01*
Iris 150 | 4 | 3| 946 | +1.2+04 | 96.7 | 0+0 - - 0.43 0.50 0.69* 0.79*
Tic-tac-toe | 958 | 9 | 2 | 839 | —0.34+04 | 704 | 0+0 | 34.7 0+0 0.61 0.68 0.52 0.88
Votes 435 | 16 | 2 | 925 | +0.44+04 | 956 | 0+0 | 39.2 0+0.1 0.65 0.82 0.50 0.99
Wine 178 | 13| 3| 983 | —0.6+0.5 | 989 | 0+0 - - 0.26 0.34 0.78* 0.97*

Table 1: Experimental result on transformation-invariant classifiers

cally optimal average privacy guaranted.CA,,;, and  method seems not working for such cases at all. Supported
1C A4 represents the lowest minimum privacy and av-by the other two Figures (7 and 8), we can conclude that the
erage privacy the ICA reconstruction can achieve in the 5@ondensation approach only provides weak privacy protec-
iterations, respectively. Among the 12 datasets, ICA doesion and we cannot possibly adjust the perturbation to meet
not converge for 7 datasets which are marked by *" andthe higher privacy requirement.
thus not effectively reduce the privacy guarantee. For the While the rotation approach provides almost zero-loss
rest 5 datasets, ICA can possibly reduce the privacy qualitpf information for classification, it also presents much
by some small amount, such as “Tic-tac-toe” and “Votes”. higher privacy quality than the condensation approach.
Figure 3 for dataset “Breast-Wisconsin” shows that dataFigure 7 and 8 shows the comparison on the minimum pri-
estimated by ineffective ICA reconstruction. In this case,vacy guarantee and the average privacy guarantee of the
the local optimized rotation perturbation is selected as théwo approaches. The numbers for rotation approach are the
best perturbation. Figure 4 shows that ICA reconstructiorresults generated by the randomized algorithm in 50 iter-
may undermine the privacy quality for some datasets. Irations. For exmaple, in Figure 7, “Rotation-Min” denotes
this case, the actual privacy guarantee will be located at bethe optimal minimum privacy guarantee, taking the ICA-
tween the locally optimized privacy guarantee and the ICAattack into account as we discussed. We see that the rota-
reconstruction lowered privacy guarantee, for we can altion approach can easily provide much higher privacy level
ways select a rotation matrix that is more resistent to ICAthan the condensation approach.
reconstruction. When it is detected that ICA reconstruc-
tion can seriously reduce the privacy guarantee, say, to les Conclusion
than 0.2, we need additional methods to perturb the data so ) o )
that the conditions for effective ICA reconstruction are not'e present a random rotation-based multidimensional per-
satisfied. We leave this as a part of future work. turbation approach for privacy preserving data classifica-
tion. Geometric rotation can preserve the important geo-
5.3 Rotation-based Approach vs. Condensation Ap- Metric properties, thus most classifiers utilizing geometric
proach. class boundaries become invariant to the rotated data. We

] ] ) i ) proved analytically and experimentally that the three pop-
We design a simple algorithm to estimate the privacy qualy|ar types of classifiers (kernel methods, SVM classifiers

ity of condensation approach. As we mentioned, since thith certain kernels, and hyperplane-based classifiers) are
perturbation part is done within the KNN neighbors, it is g)| invariant to rotation perturbation.

highly possible that the perturbed data is in the KNN neigh- Random rotation perturbation perturbs multiple
bors of the original data too. For each record in the pertolumns in one transformation, which introduces new
turbed dataset, we try to find the nearest neighbor in thepajienges in evaluating the privacy guarantee for multi-
original data. By comparing the difference between the pergimensional perturbation. We design a unified privacy
turbed data and its nearest neighbor in the original data, Wg,etric based on value-range normalization and multi-
can approximately measure the privacy quality of condenzolumn privacy composition. With this unified privacy
sation _a_pproach. ) ~ metric we are able to find the local optimal rotation
Intuitively, the better locality the KNN perturbation is, nerturbation in terms of privacy guarantee. The unified
the better the condensation approach can preserve the infQffiyacy metric also enables us to identify and analyze the
mation, but the worse the privacy quality is. Figure 5 andresilience of the rotation perturbation approach against the
6 show the relationship between the size of condensatiofca-pased data reconstruction attacks. Our experimental

group and the privacy quality on “E.Coli" and “Diabetes” yesyt shows that the geometric rotation approach not only
datasets. It was demonstrated in the paper [1] that the acCreserves the accuracy of the rotation-invariant classi-

racy of classifiers becomes stable with the increase of thgers put also provides much higher privacy guarantee,

size of condensation group. However, we observed that thgompared to the existing multi-dimensional perturbation
privacy quality generally stays low, no matter how the con-echniques.

densation size changes. Experiment on both datasets shows

the minimum privacy guarantees are very low, neither AR eferences

the average privacy levels. We also observed that the mini-

mum privacy is 0 for “lonosphere” data, which happens to [1] AGGARWAL, C. C., AND Yu, P. S. A conden-
contain one column that has the same value. Condensation sation approach to privacy preserving data mining.
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