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SUMMARY

This dissertation has formalized a service-oriented computing (SOC) based

approach to cyber-physical systems (CPS) in the form of a service-oriented CPS ref-

erence model. The proposed reference model extends the traditional SOC paradigm

for handling hard real-time CPS aspects by introducing resource-aware service de-

ployment and quality-of-service (QoS)-aware service operation phases alongwith the

mandate for following formal guarantees: 1) functional equivalence between a CPS

design specification and the corresponding service-based CPS field deployment and

2) non-interference between the co-deployed CPS services from the perspective of

their timing performance. As a result, the proposed CPS reference model enables

a provably-correct process for converting a new CPS application from a CPS design

specification to a service-based CPS deployment in the field without affecting the

timing performance of already deployed CPS applications or disrupting the opera-

tion of already deployed CPS applications for system upgrade. Therefore, unlike the

traditional task-based reference model from the domains of automotive and avionics,

the proposed service-oriented CPS reference model enables disruption-free incremen-

tal system deployment and reconfiguration that are fundamental requirements of the

emerging safety-critical but large scale and "always-online" CPS application domains

such as smart grid and vehicular networks.

Although the development of suitable technologies for a domain according to the

requirements of a reference model for that domain is meant to be an on-going effort

by a research community, this dissertation has contributed to this effort by proposing

solutions for the following technological requirements of service-oriented CPS refer-

ence model: 1) CPS design specification language, 2) simulation environment for

xv



CPS design refinement, 3) service description language, and 4) service-based comput-

ing platform for CPS computing nodes. By leveraging the Manna-Pnueli approach

of formal methods for reactive computer systems, this dissertation has also shown

how the aforementioned technological solutions combine to provide the formal per-

formance guarantees, mandated by the proposed CPS reference model. Finally, this

dissertation has also presented simulation-based smart grid testbeds that can be used

to demonstrate the advantages of the proposed service-oriented CPS approach in a

virtual environment before its implementation on safety-critical, live smart grid in-

frastructure.
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CHAPTER I

INTRODUCTION

During the age of industrialization, the human race conquered many physical pro-

cesses of the universe and used them for its own advantage. These achievements

were enabled by the field of feedback control systems, which deals with the process of

controlling a physical system through a feedback controller [7]. Traditionally, these

feedback controllers were implemented in the analog domain using different electric

circuit elements. However, the advent of computation and networking technologies

created the opportunity to implement these feedback controllers more easily and flexi-

bly in the digital domain as a special breed of computer systems, known as a real-time

computer systems, which are characterized by the need to perform computations un-

der timing constraints. The resulting configuration of a feedback control system, in

which the feedback controller is implemented as a real-time computer system, is re-

ferred to as embedded control system [3]. Some prime examples of embedded control

systems are automotive and avionics systems [61] [12].

The typical development process of an embedded control system can be partitioned

into two distinct stages: controller design and controller implementation. During

the controller design stage, a control engineer models the physical plant, derives

the feedback control law, and validates the controller design through mathematical

analysis and simulation. During the controller implementation stage, a computer

systems engineer implements the feedback controller as a real-time computer system.

To facilitate the development process of embedded control systems, various tools

and technologies have been developed by different stakeholders, over the years, in a

somewhat isolated and ad-hoc manner. However, the relationship and integration of

1



these tools and technologies can be studied by utilizing the concept of a reference

model. A reference model for a domain is defined as an ontology, consisting of a set

of interlinked and unifying concepts for that domain. A reference model is designed

to enable clear communication among various stakeholder of the domain as well as

the development of a coherent and consistent set of technologies and tools for that

domain [58] [63]. For the domain of embedded control systems, a "task-based reference

model" has been proposed in the literature [45]. According to this task-based reference

model, an embedded control system can be described by three elements:

1. Controller application model that describes the feedback control algorithm as a

set of tasks. Each task is a unit of computation that needs to be done by the

feedback controller.

2. Computing platform model that describes the available computing platform as

a set of processors and resources. Processors are active entities such as central

processing units, transmission links, and database servers, while resources are

passive entities such as memory, mutexes, and database locks.

3. Set of task scheduling algorithms. Each task must have one or more processors

and resources in order to make progress on its assigned unit of computation.

When a task has the required processors and resources, it is said to be "sched-

uled" and it can "execute" its unit of computation at a certain speed.

According to this task-based reference model, major steps in the development of

embedded control system are requirements engineering, feedback controller design,

controller design refinement through simulation, task-based feedback controller speci-

fication, task implementation, task priority assignment, task deployment, and testing

(or formal verification). Figure 1.1 summarizes the major elements and development

methodology of the task-based reference model for embedded control systems.
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Figure 1.1: Task-based reference model for embedded control systems.

Based on the above mentioned summary of task-based reference model, it can be

seen that various state-of-the-art tools and technologies in the domain of embedded

control systems have evolved into a form that is consistent with this reference model.

For instance, real-time operating systems support task deployment with different task

priorities and provide various task scheduling algorithms [66]. General purpose pro-

gramming languages as well as specialized programming languages for the embedded

control system domain (such as Giotto [25]) provide a task-based programming model.

Formal analysis tools have been developed that study the schedulability of multiple

time-constrained tasks on a computing node [10]. Various code generation tools have

been developed that automatically translate a Simulink-based description of feedback

controller into task-based source code [51] [50].

Dramatic decrease in the cost of communication and computation technologies,

seen in the last two decades, has enabled the development of a new breed of embed-

ded control systems that are much larger in scale such as smart grid [75], vehicular

networks [54], and automated irrigation networks [72]. Besides their larger scale, this

new breed of embedded control systems have other distinguishing characteristics such

as their "always-online" nature and a much longer lifecycle. Reliable development of
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this new breed of embedded control systems through traditional development tools,

which were based on a task-based reference model, will result in unsustainable de-

velopment and maintenance costs, because these traditional tools are ill-equipped to

provide appropriate support for disruption-free incremental system deployment and

system reconfiguration that are fundamental requirements for handling the larger-

scale, "always-online" nature, and longer life-cycles of this new breed of systems.

Over the last few years, limitations of traditional embedded control system devel-

opment techniques have spawned the new field of cyber-physical systems (CPS), which

takes a fresh look at the abstractions used in the traditional embedded control system

development process. CPS research aims to develop an integrated theory as well as

an integrated development toolset for controller design and controller implementation

phases of the embedded control system development process. The hope is that this

integrated CPS theory and development toolset will enable the reliable development

and maintenance of more complex versions of traditional embedded control systems

(such as automotive and avionics) as well as the emerging larger scale and "always

online" embedded control systems (such as smart grid and vehicular networks) with

manageable costs.

However, advances in CPS research still focus on the traditional task-based pro-

gramming model of a real-time computer system, historically popular in the auto-

motive and avionics domains. As noted earlier, the task-based model is a relatively

low-level of abstraction for a real-time computer system and provides poor support

for disruption-free incremental system deployment and reconfiguration. As a result,

these advances in CPS research, by themselves, cannot effectively handle the unique

challenges posed by the larger scale and "always online" nature of emerging CPS

application domains such as smart grid and vehicular networks.
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Figure 1.2: Service-oriented reference model for cyber-physical systems.

This dissertation has formalized a service-oriented computing (SOC) based ap-

proach to cyber-physical systems (CPS) in the form of a service-oriented CPS ref-

erence model. SOC paradigm can inherently provide support for disruption-free in-

cremental system deployment and reconfiguration, required for handling the larger

scale, "always-online" nature, and longer lifecycle of above mentioned emerging CPS

application domains such as smart grid. However, the proposed reference model

also extends the traditional SOC paradigm for handling hard real-time CPS aspects

by introducing resource-aware service deployment and quality-of-service (QoS)-aware

service operation phases with certain formal performance guarantees. According to

the proposed reference model, each CPS scenario is described by three elements:

1. CPS application model that describes the CPS application to be supported by

the system as a set of resource- and QoS-aware service descriptions.

2. CPS platform model that describes the available CPS platform as a set of com-

puting nodes, communication links, sensors, actuators, and physical system

entities.

3. Set of algorithms that achieve resource-aware service deployment and QoS-aware
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service operation.

According to the proposed service-oriented reference model, major steps in CPS

development are requirements engineering, platform-aware feedback controller design,

CPS design specification, CPS design refinement through simulation, service-based

decomposition of CPS design, service publication and discovery, resource-aware ser-

vice deployment, QoS-aware service operation, and service update. The proposed

reference model also requires the existence of formal guarantees for the following

aspects: (1) functional equivalence between a CPS design specification and the cor-

responding service-based CPS field deployment and (2) non-interference between the

co-deployed CPS services from the perspective of their timing performance. The ex-

istence of these formal guarantees enables a provably-correct process for converting a

new CPS application from a CPS design specification to a service-based CPS deploy-

ment in the field without affecting the timing performance of already deployed CPS

applications.

By adopting the proposed service-oriented CPS reference model, CPS development

effort can focus on the platform-aware feedback controller design and simulation-

based design refinement. Once the performance of a CPS design has been found to be

satisfactory in these two steps, the CPS design can be transformed into a service-based

field deployment in an automated and provably-correct manner, without worrying

about its effects on the existing applications supported by the same CPS computing

platform. As a result, unlike the task-based reference model, the proposed service-

oriented CPS reference model enables disruption-free incremental system deployment

and reconfiguration of emerging safety-critical but large scale and "always online"

CPS application domains such as smart grid and vehicular networks.

Figure 1.2 summarizes the major elements and development methodology of the

proposed service-oriented CPS reference model. This dissertation also identifies some

important technological requirements that must be met to enable CPS development
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and operation based on the proposed reference model. Furthermore, this disserta-

tion presents solutions for the following technological requirements of the proposed

CPS reference model: CPS design specification language, simulation environment for

CPS design refinement, service-description language, and service-based computing

platform for CPS computing nodes. By extending and applying the Manna-Pnueli

Approach [47] of formal methods for reactive computer systems, this dissertation also

presents formal proofs that show the capability of aforementioned technological solu-

tions to provide the following guarantees, mandated by the proposed reference model:

(1) functional equivalence between a CPS design specification and the corresponding

service-based CPS deployment and (2) non-interference between the co-deployed ser-

vices from the perspective of their timing performance. Finally, this dissertation also

presents simulation-based smart grid testbeds that can be used to demonstrate the

advantages of the proposed service-oriented CPS approach in a virtual environment

before its implementation on safety-critical, live smart grid infrastructure.

The structure of this dissertation is as follows. Chapter 2 reviews some relevant

research literature. Chapter 3 outlines the proposed service-oriented CPS reference

model. Chapter 4 identifies the technological requirements that must be met in or-

der to enable CPS development according to the proposed service-oriented reference

model. Chapter 5 presents a smart grid case study that is used in the following chap-

ters to explain various elements of the proposed technological solutions. Next four

chapters (Chapter 6, Chapter 7, Chapter 8, and Chapter 9) of the dissertation present

solutions for the following technological requirements of the proposed CPS reference

model: CPS design specification language, simulation environment for CPS design re-

finement, service-description language, and service-based computing platform for CPS

computing nodes. Chapter 10 shows how the proposed technological solutions provide

the formal performance guarantees, required by the service-oriented CPS reference
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model. Using the smart grid case study from Chapter 5, Chapter 11 presents a per-

formance comparison of task-based embedded control systems approach, enterprise-

domain service-oriented computing approach and the proposed service-oriented CPS

approach through simulation-based smart grid testbeds. Finally, Chapter 12 sum-

marizes the novel contributions made through this research and delivers concluding

remarks.
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CHAPTER II

LITERATURE SURVEY

The literature survey, presented in this chapter, reviews some relevant previous re-

search in the realm of reference models, real-time computer systems, embedded control

systems, cyber-physical systems, and service-oriented computing.

2.1 Reference Model

A reference model for a domain is an abstract conceptual framework, consisting of

a small number of interlinked and unifying concepts for that domain. A reference

model is designed to enable clear communication about the domain among various

stakeholders. A reference model is not a standard or implementation technology in

itself. However, it does "inform" the development of a set of compatible standards

and technologies for a certain domain [58] [9].

In the past, the concept of a reference model has been successfully employed in

various domains to enable the development of a coherent set of technologies and stan-

dards for that domain. Following are some examples of reference models, developed

for various domains:

• Open Systems Interconnection (OSI) Reference Model for communication sys-

tems [83]

• Agent Systems Reference Model (ASRM) for multi-agent systems [63]

• National Institute of Standards and Technology (NIST) Reference Model for

software engineering environments [9]

• National Institute of Standards and Technology (NIST) Reference Model for
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project support environments [8]

• Task-based Reference Model for real-time computer systems [45]

Similarly, the development of an appropriate reference model for cyber-physical

systems (CPS) can not only ensure clear communication among different stakeholders,

but also help in the process of developing a coherent and consistent set of standards

and technologies for cyber-physical systems. However, any reference model for cyber-

physical systems must be based on concepts that are generic enough to be reconciled

with existing technologies (such as Simulink-based controller design refinement [51]

and various industry-standard real-time operating systems and time-sensitive mid-

dleware products [39] [40]), but still provide valuable guidance for the evolution of

existing standards and technologies into a consistent and coherent set of future stan-

dards and technologies.

2.2 Real-Time Computer Systems

In the context of computer systems engineering, a real-time computer system is a

computer system which must respond as quickly as required by the users of the

computer system or as necessitated by the process being controlled by that computer

system [49] [45]. The field of real-time computer systems engineering has various

facets such as computing platforms for real-time systems, application development for

real-time systems, model-driven development of real-time systems, and performance

analysis of real-time systems [40] [39].

The computing platform for a real-time system typically consists of some comput-

ing hardware accompanied by some variation of a real-time operating system (RTOS).

An overview of architectures and principles employed in real-time operating systems

is presented in [66]. A task is a logical abstraction of a program that is schedula-

ble by an RTOS. A task is represented by a data structure containing an identity,

priority, state of execution, and resources allocated to the task. An RTOS performs
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three important functions related to tasks : scheduling, dispatching, and inter-task

communication and synchronization.

Real-time computer system applications are typically developed by using the task-

based programming model provided by an RTOS. However, in the recent past, the

subject of model-driven development (MDD) has received considerable attention due

to its potential for improving the software development productivity [65]. In MDD

paradigm, high-level or platform-independent models (PIM) are transformed into

lower-level or platform-specific models (PSM) through the process of model trans-

formation. High-level models are typically created using a domain-specific modeling

language (DSML). The syntax of DSML and lower-level platform is defined in a

meta-modeling step. A meta-model defines the basic constructs that can be used

in a modeling language. Model transformation step typically uses the meta-models

of DSML and the platform to define transformation rules from high-level models to

low-level platform specific code. Model-Driven Architecture (MDA) [19], Model In-

tegrated Computing (MIC) [38], and Eclipse Modeling Framework (EMF) [67] [23]

initiatives represent three popular MDD efforts. However, it must be noted that the

current MDD toolsets for real-time computer systems employ task-based program-

ming model, provided by RTOS, as the low-level platform model.

Performance analysis of a typical computer system is usually carried out in the

testing phase of a software development process. However, real-time computer sys-

tems are frequently employed in safety-critical applications. Therefore, it is not suf-

ficient to "show" (through testing) that the system does not have errors. In many

cases, real-time system developers must "prove" that the system does not have er-

rors [2] [56]. As a result, a lot of research has been focused on techniques that allow

system designers to estimate, predict, or prove the performance of a real-time com-

puter system at an early stage in the development process. The task-based model of

real-time computer system has been used to formalize this performance analysis issue
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Figure 2.1: Real-time computer system as a part of embedded control system.

as a scheduling theory problem, and various useful results have been obtained over

the years [10] [45].

2.3 Embedded Control Systems

The field of feedback control systems deals with the process of controlling a physical

plant through a feedback controller. Traditionally, these feedback controllers were

implemented in the analog domain using different electric circuit elements. However,

the advent of computing and networking technologies created the opportunity to

implement these feedback controllers more easily and flexibly in the digital domain

as a real-time computer system. The resulting configuration of a feedback control

system (shown in Figure 2.1), in which the feedback controller is implemented as a

real-time computer system, is referred to as embedded control system [3]. Some prime

examples of embedded control systems are automotive and avionics systems [61] [12].

The typical development process of an embedded control system can be partitioned

into two distinct stages: controller design and controller implementation. During

the controller design stage, a control engineer models the physical plant, derives

the feedback control law, and validates the controller design through mathematical

analysis and simulation. During the controller implementation stage, a computer

systems engineer implements the feedback controller as a real-time computer system.

To facilitate the development process of embedded control systems, various tools and

technologies have been developed by different stakeholders over the years. Figure 2.2

presents a summary of specification languages and analysis tools used in the different
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Figure 2.2: A summary of state-of-the-art approach and tools for development of
embedded control systems.

stages of a typical embedded control system development process.

Simulink, developed by MathWorks, Inc., is a simulation and model-based design

tool that provides a graphical editor for specifying a model as a set of hierarchical

block diagrams [51]. Simulink is often used in conjunction with some auxiliary tools

that provide specialized types of blocks to be used in Simulink block diagram. Two

important examples of such auxiliary tools are Stateflow [52] and Simscape [29].

Stateflow allows the users to model decision logic based on the state machine and

flow chart formalisms. Simscape provides fundamental building blocks from various

domains (such as electrical, mechanical, and hydraulic) that can be combined to

model a physical plant. Simulink (combined with auxiliary tools such as Stateflow

and Simscape) has become a defacto standard in the field of embedded control systems

for specification and refinement (through simulation) of the feedback controller design,

developed by a control engineer through the application of various analytical controller

design strategies available in the literature for the field of control theory [7] [59].

Once a feedback controller design has shown acceptable performance in the Simulink-

based simulation environment, a computer system engineer takes on the the task of

implementing this feedback controller design as a real-time computer system. Various
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tools have been developed over the years to help a computer system engineer in this

process of converting a feedback controller design from a Simulink-based specification

to a real-time computer system implementation. Specialized modeling languages,

such as UML (combined with MARTE profile) [64], SysML [20], and AADL [17],

help in the process of designing the system and software architecture of the required

real-time computer system. Specialized programming languages, such as Lustre [24],

Esterel [6], and Signal [42], help in the development of real-time computer system

whose timing performance can be formally guaranteed. However, it must be noticed

that the above mentioned modeling languages as well as programming languages work

with the assumption of a task-based programming model for real-time computer sys-

tem that requires the re-implementation and testing of the whole real-time computer

system if the same computing platform is used at a later stage (of system upgrade

or reconfiguration) to support the real-time implementation of another feedback con-

troller.

Model-driven development (MDD) has also been successfully employed in the do-

main of embedded control system in order to improve the productivity of a computer

system engineer during the process of conversion of a feedback controller design into

a real-time computer system. Various model transformation (code generation) tools

have been developed to automatically generate executable code from Simulink models

for various real-time computing platforms. Embedded Coder [50], from Mathworks,

Inc., is a commercially-available example of such a code generation tool. Another ex-

ample of a Simulink-based MDD toolset for a more specialized real-time computing

platform has been reported in [11].

2.4 Cyber-Physical Systems

As detailed in the last section, the field of embedded control systems brings together

the fields of control theory and real-time computer systems. However, as noted in [27],
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the fields of control theory and real-time computer systems employ two completely

different types of models: analytical models and computational models. As a result,

two very different design processes are used in the two stages of embedded control

system development process: feedback controller design and feedback controller im-

plementation as real-time computer system. These inherent differences have resulted

in a set of development methodologies for embedded control systems, which sup-

port very few correct-by-construction properties and depend heavily on testing the

final implementation for creating confidence in the correct operation of an embedded

control system under various operating conditions. As a result, these development

methodologies provide poor support for system upgrade and reconfiguration, because

any small change in the system requirements and design creates the need to take

the system offline and repeat the expensive system testing process. Therefore, tra-

ditional development techniques for embedded control systems are not capable of

efficiently handling the ever increasing complexity of traditional applications (such

as automotive and avionics) and larger scale and "always-online" nature of emerg-

ing applications (such as smart grid, vehicular networks, and automated irrigation

networks).

These limitation of the traditional embedded control system development tech-

niques have created interest in taking a fresh look at the abstractions used in the

traditional embedded control systems development process, resulting in a new field,

cyber-physical systems (CPS) [79]. The aim of CPS research is to develop an in-

tegrated theory as well as an integrated development toolset for controller design

and controller implementation phases of the embedded control system development

process. The hope is that this integrated CPS theory and development toolset will

enable the reliable development and maintenance of more complex versions of tra-

ditional embedded control systems (such as automotive and avionics) as well as the

emerging larger scale and "always online" embedded control systems (such as smart
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grid) with manageable costs.

By leveraging the theoretical developments from the fields of hybrid systems [4],

switched systems [15] [43], time-delay systems [14], networked control systems [82],

multi-agent networked systems [53], and game theory [33], CPS research has focused

on a "platform-aware" feedback controller design process for embedded control system

applications [74]. This controller design process takes into account the imperfections

of the runtime computing platform (such as communication delays or failures caused

by communication network congestion or cyber security attacks) at the design time.

The resulting "platform-aware" feedback controller is either robust against the imper-

fections of runtime computing platform or possesses the capability to switch between

different control modes to overcome the imperfections of runtime computing platform.

CPS research has also proposed specialized computing platforms that have more

predictable timing performance. Some examples of this approach are provided in [44],

[36], and [41]. Co-design of control and real-time computing aspects of a systems has

also been addressed by CPS research, as seen in [81]. Furthermore, CPS researchers

have addressed the issue of converting a high-level controller model to a provably-

correct implementation as the source code of a real-time computing platform. For

instance, this issue is addressed in [32] by converting model-level theoretical proper-

ties, such as stability and convergence, into code-level assertions and invariants for C

code. The need for an integrated CPS development toolset has also been the focus of

considerable research effort as demonstrated by numerous initiatives towards analytic

virtual integration [48] and model-driven development(MDD) [37] for cyber-physical

systems.

These advances in CPS research still focus on the traditional task-based program-

ming model of a real-time computer system, historically popular in the automotive

and avionics domains. As noted earlier, the task-based model is a relatively low-

level of abstraction for a real-time computer system and provides poor support for
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disruption-free incremental system deployment and reconfiguration. As a result, the

above mentioned CPS solutions, by themselves, cannot effectively handle the unique

challenges posed by the larger scale and "always online" nature of emerging CPS

application domains such as smart grid.

Building on the CPS research, summarized above, this dissertation has formalized

a service-oriented computing (SOC) [21] based approach to cyber-physical systems

in the form of a reference model. The proposed CPS reference model advocates the

use of a CPS design specification language (CPS-DSL) to capture the results of the

above mentioned "platform-aware" feedback controller design process. According to

the proposed reference model, this CPS design specification serves as input for the

processes of CPS design refinement through cyber-physical co-simulation and the

field deployment of a service-based CPS application. The proposed CPS reference

model also requires the existence of formal guarantees for the following aspects: (1)

functional equivalence between a CPS design specification and the corresponding

service-based CPS field deployment and (2) non-interference between the co-deployed

CPS services from the perspective of their timing performance. The existence of these

formal guarantees will provide a provably-correct process for converting a new CPS

application from a CPS design specification to a service-based CPS deployment in

the field without affecting the performance of already deployed CPS applications.

By adopting the proposed service-oriented CPS reference model, CPS development

effort can focus on the platform-aware feedback controller design and simulation-based

design refinement. Once the performance of a CPS design has been found to be sat-

isfactory in these two steps, the CPS design can be transformed into a service-based

field deployment in an automated and provably-correct manner, without worrying

about its effects on the existing applications supported by the same CPS computing

platform. As a result, unlike the task-based reference model, the proposed service-

oriented CPS reference model and associated technological solutions will enable the
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Figure 2.3: Overview of service-oriented computing in the domain of enterprise
system integration; adapted from [16].

disruption-free incremental system deployment and reconfiguration that are funda-

mental requirements of the emerging safety-critical but large scale and "always online"

CPS application domains such as smart grid and vehicular networks.

2.5 Service-Oriented Computing

Because of its potential for developing flexible systems, service-oriented computing

(SOC) paradigm has seen an increase in its popularity over the last decade. In the

SOC paradigm, software applications take one of the following three roles: service

consumers, service brokers and service producers. Service producers publish their

services to service brokers (service directories) by using their service descriptions.

Service consumers discover these services by contacting the service brokers. Once

service consumers have discovered these services, they directly interact with services,

hosted by service-producers, through the exchange of messages. Thus, three major

aspects of SOC paradigm are service description, service discovery and service inter-

action. Efforts to standardize these aspects have resulted in Web Services, a set of

standards that deal with these three major aspects of service-oriented computing [16].

As illustrated in Figure 2.3, the SOC paradigm has traditionally been used for

enterprise integration applications. However, recent efforts in the fields of service-

oriented system engineering (SOSE) [76] and device profile for web services (DPWS) [31]
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have tried to move SOC concepts from enterprise application domain to the embed-

ded computing domain. The focus of these efforts has been the interoperability of

networked embedded devices. These efforts have not concentrated on enhancing the

traditional SOC paradigm with mechanisms that will allow its application to the com-

plete range of real-time systems, especially those with hard timing constraints. This

research tries to address these concerns by adding resource-aware service deployment

and quality-of-service (QoS)-aware service operation phases to the traditional SOC

paradigm [68] [69]. These developments make service-oriented computing a good

candidate for serving as the foundation of a generic CPS reference model.
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CHAPTER III

SERVICE-ORIENTED REFERENCE MODEL FOR CYBER

PHYSICAL SYSTEMS

This chapter presents the details of the proposed reference model for cyber-physical

systems (CPS). The proposed reference model is based on the service-oriented com-

puting (SOC) paradigm [21], because this paradigm is uniquely suitable for handling

the larger scale, "always-online" nature, and longer life-cycles of emerging CPS ap-

plication domains such as smart grid, vehicular networks, and automated irrigation

networks. Currently, SOC paradigm is being used widely in the enterprise com-

puting domain through Web Services technology [16]. However, the traditional SOC

paradigm cannot be directly applied to the domain of cyber-physical systems, because

it is not capable of handling the hard real-time aspects of cyber-physical systems. To

address this limitation of the traditional SOC paradigm, the proposed CPS reference

model extends the traditional SOC paradigm by introducing resource-aware service

deployment and QoS-aware service operation phases with certain formal performance

guarantees.

According to the proposed reference model, each CPS scenario is described by

three elements:

1. A CPS application model that describes the CPS application to be supported

by the system as a set of resource- and QoS-aware service descriptions.

2. A CPS platform model that describes the available CPS platform as a set of

computing nodes, communication links, sensors, actuators, and physical system

entities.
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Figure 3.1: Service-oriented reference model for cyber-physical systems.

3. A set of algorithms that achieve resource-aware service deployment and QoS-

aware service operation.

Figure 3.1 shows three major elements of the proposed service-oriented reference

model for cyber-physical systems.

3.1 Development Steps

As shown in Figure 3.1, major development steps for a cyber-physical system, accord-

ing to the proposed reference model, are requirements engineering, platform-aware

feedback controller design, CPS design specification, CPS design refinement through

simulation, service-based decomposition of CPS design, service publication and dis-

covery, resource-aware service deployment, QoS-aware service operation, and service

update. Further explanation of these development steps is provided below:
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3.1.1 Requirements Engineering

In this development step, requirements of the CPS application and the constraints of

the available computing, sensing, and communication platform are documented.

3.1.2 Platform-aware Feedback Controller Design

In traditional feedback control design process, a plant is modeled and a feedback

control law is derived using mathematical analysis that assumes either perfect or a

worst-case performance of the runtime computing and communication infrastructure.

However, in this development step, a feedback control law is developed that provides

an active adaptation strategy to respond to various performance levels of underlying

communication infrastructure.

3.1.3 CPS Design Specification

In this development step, the result of platform-aware controller design process is

captured as a CPS design specification that specifies the physical plant as well as net-

worked controller aspects of a CPS design. Moreover, it also describes the feedback

control adaptation strategy to handle the imperfect performance of runtime comput-

ing and communication platform. This CPS design specification also serves as an

interface between the control engineer and computer systems engineer.

3.1.4 CPS Design Refinement through Simulation

In traditional feedback control design, an initial feedback control law, developed

using mathematical analysis, is refined through a simulation environment such as

Simulink [51]. Similarly, in this development step, a cyber-physical co-simulation

environment is used to refine a CPS design by simulating the performance of the

proposed CPS design under various realistic operating conditions of the runtime

computing and communication platform. Parameters of the proposed CPS design
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are tweaked until it shows satisfactory performance for the realistic operating con-

ditions of the runtime computing and communication platform in the cyber-physical

co-simulation environment.

3.1.5 Service-based Decomposition of CPS Design

In this development step, a set of service descriptions are generated from the CPS

design that was specified earlier in the development process. A service description

specifies the following: (1) messages that a service exchanges with other services, (2)

sensing and control actions that a service takes on the co-located physical entities,

(3) quality-of-service constraints (QoS) constraints on message exchanges with other

services, (4) platform resource requirements of a service, and (5) various modes of

operation of a service for various QoS fault scenarios.

3.1.6 Service Publication and Discovery

In this development step, service descriptions are published to one or more service

repositories. These services are then discovered by appropriate computing nodes.

This process of service publication and discovery could be performed offline or online

depending on the nature of CPS application.

3.1.7 Resource-aware Service Deployment

In this development step, a service-based computing platform is ported to all the

heterogeneous computing nodes involved in the CPS scenario. Then, each computing

node accesses its service repository to access its associated service descriptions, which

are then deployed on the computing node in a resource-aware manner. If the com-

puting node does not have sufficient resources, service deployment fails. This ensures

that any resource constraints in the system are captured at the deployment time and

there are no surprise timing failures of CPS application at run time due to resource

constraints.
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3.1.8 QoS-aware Service Operation

During the service operation, services interact with co-located physical entities through

sensing and control actions. Services also interact with each other by sending mes-

sages to each other. Moreover, during this step, services switch between different

modes of operation if QoS violations occur during message exchange.

3.1.9 Service Update

If the CPS application needs to be updated at some point during its life cycle, a

service update step could be carried out. In this step, services again pass through

service publication, discovery, resource-aware service deployment, and QoS-aware ser-

vice operation phases.

3.2 Formal Performance Guarantees

The proposed CPS reference model requires the existence of formal guarantees for

the following aspects:

1. functional equivalence between a CPS design specification and the correspond-

ing service-based CPS field deployment.

2. non-interference between the co-deployed services from the perspective of their

timing performance.

The above mentioned formal guarantees enable a provably-correct process of con-

verting a CPS application from a CPS design specification to a service-based CPS

deployment in the field without affecting the performance of already deployed CPS

applications on the same CPS computing platform. Hence, CPS development ef-

fort can focus on the platform-aware feedback controller design and simulation-based

design refinement. Once the performance of a CPS design has been found to be sat-

isfactory in these two steps, the CPS design can be transformed into a service-based
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Figure 3.2: Incremental deployment of applications: task-based reference model for
embedded control systems (Notice the disruption in system operation during period
[t4, t5]).

Figure 3.3: Incremental deployment of applications: service-oriented CPS reference
model.

field deployment in an automated and provably-correct manner, without worrying

about its effects on the existing applications supported by the same CPS computing

platform. Therefore, inherent availability of above mentioned formal guarantees in

the proposed CPS reference model will enable continuous system evolution, reconfig-

uration, and maintenance for safety-critical but large scale and "always-online" CPS

application domains such as smart grid.

3.3 Advantages over Task-based Reference Model

Through the development steps and inherent formal guarantees outlined above, the

proposed service-oriented CPS reference model can address most of the challenges
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being faced by traditional task-based embedded control system development tech-

niques (from the automotive and avionics domain) in the development of emerging

wide-area cyber-physical systems such as smart grid [75] and vehicular networks [54].

For instance, as illustrated in Figure 3.2 and Figure 3.3, the proposed service-oriented

CPS reference model can support system reconfiguration and update without taking

the system out of operation. This is a critical requirement of the emerging wide-area

CPS applications such as smart grid, because (unlike automotive and avionics do-

main) these systems cannot be taken out of operation for the sake of introducing new

functionality in the system.

Unlike the task-based reference model, the inherent formal guarantees of the pro-

posed service-oriented CPS reference model also ensure that in case of an update to

the system, the system does not need to be tested from scratch (at the time of system

upgrade) as any new service deployments are formally guaranteed to not affect the

performance of already deployed services.
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CHAPTER IV

TECHNOLOGICAL REQUIREMENTS OF

SERVICE-ORIENTED REFERENCE MODEL FOR

CYBER-PHYSICAL SYSTEMS

As noted earlier in this dissertation, the reference model for a domain enables the

development of a consistent set of technologies and tools for that domain [58]. This

chapter identifies some technological requirements based on the service-oriented CPS

reference model, described in Chapter 3. Later in this dissertation (Chapter 6, Chap-

ter 7, Chapter 8, and Chapter 9), solutions will be presented for the technological

requirements identified in this chapter.

Following are some of the major technological requirements based on the proposed

service-oriented reference model for cyber-physical systems:

• CPS design specification language.

• simulation environment for CPS design refinement.

• service description language.

• service-based computing platform for CPS computing nodes with support for

resource-aware service deployment and QoS-aware service interaction.

• automated model transformation tool that generates a set of functionally equiv-

alent service descriptions from a CPS design description.

It must be emphasized that the concept of a reference model and associated

technological requirements allows the research community to investigate and com-

pare multiple solution approaches for meeting these technological requirements [58].
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Figure 4.1: Technological requirements of a service-oriented reference model for
cyber-physical systems.

Therefore, there could be multiple candidate solutions for meeting each of the techno-

logical requirements of the proposed CPS reference model, identified in this chapter.

However, any set of solutions for the above mentioned technological requirements of

the proposed CPS reference model must ensure the existence of formal guarantees for

the following aspects: (1) functional equivalence between a CPS design specification

and the corresponding service-based CPS field deployment and (2) non-interference

between the co-deployed services from the perspective of their timing performance.

Figure 4.1 shows the role played by the technological requirements, identified in

this chapter, during a CPS development process according to the proposed reference

model. Further details of these technological requirements are provided below:

4.1 CPS Design Specification Language

According to the proposed CPS reference model, a CPS design specification captures

the results of platform-aware feedback controller design process. Moreover, this CPS

design specification also serves as input for the processes of design refinement through

simulation and decomposition of CPS design into a set of functionally equivalent
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service descriptions. In order to develop a CPS design specification that can meet

the above mentioned requirements, an appropriate CPS design specification language

(CPS-DSL) is required.

4.2 Simulation Environment for CPS Design Refinement

According to the proposed CPS reference model, a CPS design, developed through

a platform-aware feedback controller design process, must be refined further through

simulation. This design refinement step requires the availability of an appropriate

cyber-physical co-simulation environment that can load a CPS design specification

and show its performance under various realistic operating conditions of the runtime

computing and communication infrastructure.

4.3 Service Description Language

According to the proposed CPS reference model, a service description plays a cen-

tral role. Once a mature CPS design has been developed through the processes of

platform-aware feedback controller design and simulation-based design refinement,

this CPS design is decomposed into a set of interacting services, each with its own

service description. These service descriptions must specify the following information:

4.3.1 Service Interface

The service interface section of a service description describes the messages that

the service exchanges with other services and sensing and control actions that a

service takes on the co-located physical entities. This section also identifies the QoS

constraints on these messages and sensing and control actions.

4.3.2 Service Resources

The service resources section of a service description describes platform resource

requirements of a service in order to satisfy the QoS constraints identified in the
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service interface section.

4.3.3 Service Modes

Unlike traditional embedded control system domains (such as automotive and avionics

systems), some emerging CPS application domains (such as smart grid) are wide-area

systems. As a result, QoS constraints on message exchange among computing nodes

of a CPS scenario in these domains cannot be guaranteed by the communication

subsystem. Therefore, service description for a service must contain a section which

defines different modes of operation of the service for different QoS-fault scenarios.

In order to develop service descriptions that contain the above mentioned informa-

tion (service interface, service resources, and service modes), an appropriate service

description language (SDL) is required.

4.4 Service-based Computing Platform for CPS Computing
Nodes

To enable CPS development according to the proposed reference model, each CPS

computing node must have an appropriate service-based computing platform that can

support resource-aware service deployment and QoS-aware service operation. Gener-

ally, a CPS scenario involves a set of heterogeneous computing nodes with different

processors, operating systems, and middleware technologies. Therefore, the required

service-based computing platform must be capable of being ported to these hetero-

geneous computing nodes.

The resource-aware deployment of a service on a computing platform, as suggested

by the proposed reference model, requires the existence of an appropriate service

compiler as a part of the service-based computing platform. This service compiler

must be capable of reading the service description (specified using an appropriate

service description language) and deciding whether a certain computing nodes has

enough resources to successfully deploy this service such that the service can meet its
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QoS constraints.

4.5 Automated Model Transformation between CPS Design
Specification and Service Descriptions

According to the proposed CPS reference model, a CPS design, represented by its

CPS design specification, is decomposed into a functionally equivalent set of services,

each represented by its own service description. The existence of an automated model

transformation tool that can translate a CPS design specification into a functionally

equivalent set of service descriptions, can be really useful to streamline the process of

CPS development.
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CHAPTER V

CASE STUDY: SMART GRID

The need for incorporating environmentally sustainable energy sources into the exist-

ing energy mix has resulted in a set of worldwide initiatives towards the development

of a smart electric grid [80]. These initiatives aim to overlay the existing electric grid

with a more extensive sensing, communication, and computation infrastructure that

can enable the grid to handle a higher penetration of intermittent, distributed renew-

able energy resources without compromising the reliability of service. Implementation

of the proposed vision for smart grid will result in a wide-area embedded control sys-

tem with unprecedented complex interactions between the power infrastructure and

accompanying cyber infrastructure [75].

Development of reliable smart grid applications through the traditional task-

based approach for embedded control systems will result in prohibitively high de-

velopment and maintenance costs, because the task-based approach is unable to

support disruption-free incremental system deployment and reconfiguration that are

fundamental requirements for handling the larger scale, longer life-cycle, and "always-

online" nature of smart grid. Therefore, smart grid provides an excellent application

domain for illustrating the utility of the service-oriented CPS reference model and

associated technologies, presented in this research.

This chapter describes a smart grid scenario that will be used as a case study in

the subsequent chapters to not only explain the details of various technological ele-

ments associated with the proposed service-oriented CPS reference model, but also

demonstrate their advantages over the technologies associated with task-based refer-

ence model. The smart grid scenario consists of a 24-bus system, shown in Figure 5.1,
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Figure 5.1: IEEE 24-bus case [28].

with two smart grid applications: demand response [1] and power agreement [62]. De-

mand response application is deployed first, and after a period of successful operation

of this application, power agreement application is deployed using the same comput-

ing infrastructure. This smart grid scenario has been designed in such a way that

it is simple enough to clearly convey the details of the proposed CPS technologies

without requiring expertise in the domain of power systems, yet it contains all the el-

ements of a typical wide-are embedded control system that are needed to demonstrate

the usefulness of the proposed service-oriented CPS reference model over traditional

task-based reference model.

5.1 Demand Response Application

Demand response is a simple but canonical example of a smart grid application.

Through demand response application, utilities try to shape elastic load by directly

controlling some assets at the consumer premises or by sending price signals to the
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Figure 5.2: Demand response application.

consumer [1].

According to the smart grid scenario under consideration, a direct-control demand

response application tries to make the elastic load at Bus_20 follow the ever-changing

power output of a wind generator at Bus_23. The wind power profile assigned to

the wind generator at Bus_23 is based on the data from a National Renewable En-

ergy Laboratory (NREL) report, which provides mean and standard deviation of

one-second wind power step change for a 14-turbine string of 138 turbine wind farm,

located in the Buffalo Ridge region of southwest Minnesota [78]. Figure 5.2 shows

the relevant power and cyber system topology of the demand response scenario un-

der consideration. The cyber system topology consists of three computing nodes:

CompNodeA (co-located with wind generator at Bus_23), CompNodeB (co-located

with controllable load at Bus_20), and a CommandCenter.

5.2 Power Agreement Application

Traditionally, electricity grid has been operated by electric utilities using a centralized

paradigm in which large-scale generation plants are adjusted from a control center

to meet the requirements of ever changing power consumption by the customers.

However, due to various renewable energy initiatives, large amounts of customer-end
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Figure 5.3: Prosumer network graph.

distributed generation and storage resources are expected to be deployed in near

future. Application of centralized control paradigm for managing these small-scale

distributed energy resources (DER) will result in intractably large control and opti-

mization problems. Due to this limitation of traditional centralized control paradigm,

there is growing interest in the distributed control paradigm for power systems [22].

Various research initiatives are underway to develop distributed algorithms for the

traditional operating tasks of a power system such as unit commitment [18], economic

dispatch [13], and frequency regulation [55].

According to the smart grid scenario under consideration, a recently reported

distributed algorithm for smart grid is employed on the 24-bus system in the form

of a power agreement application [62]. In the domain of distributed control of smart

grid, power system is usually divided into a set of independent control agents. These

control agents are also referred to as prosumers [22]. In this case study, the 24-bus

case diagram is divided into 10 prosumers, as shown in Table 5.1. Figure 5.3 shows

the resulting graph; each node in this graph represents a prosumer and each edge
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Table 5.1: Division of IEEE 24-bus Case into 10 Prosumers
Prosumer Buses

1 1,5
2 2,4
3 3,7,24
4 6,13
5 8,16,18
6 9,21
7 10,23
8 11,12,14
9 15,17
10 19,20,22

in the graph shows that the two prosumers (represented by the nodes at the two

ends of the edge) are neighbors. In prosumer-based distributed control of smart grid,

two prosumers are considered neighbors if there is a branch going from a bus in one

prosumer to a bus in the other prosumer.

The distributed power agreement algorithm for a prosumer network, as detailed

in [62], considers a set of N prosumers, where each prosumer has computed its desired

(or required) power need Pn by taking into consideration its local load, generation,

and storage capabilities. As in a physical power network, the power generation and

consumption must be balanced, a prosumer cannot consume or produce power in iso-

lation. Therefore, these N prosumers must first co-ordinate (i.e. solve a distributed

power agreement problem) to come up with the actual power P̃n that should be pro-

duced by each prosumer. In [62], this problem has been formulated as a constrained

optimization problem, which minimizes the weighted least squares sum of residuals

(between desired power Pn and actual power P̃n) subject to a power conservation

constraint. Moreover, a decentralized control law to solve this optimization problem

has also been presented in [62]. Figure 5.4 summarizes this distributed control law

for power agreement in prosumer networks.

For the distributed solution of power agreement control law, presented in [62],

participating prosumers go through a series of iterations, consisting of information
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Figure 5.4: Summary of power agreement control law [62].

exchange and local computations, before converging to the agreed actual power P̃n

to be generated by each prosumer. During each iteration, a prosumer needs to know

the required power of its 1-hop neighbors and potentials of 2-hop (or less) neigh-

bors. In the prosumer-based distributed operation of power system, power agreement

algorithm must run periodically, say every 5 minutes. Therefore, a single run of

distributed power agreement algorithm must converge in a reasonably short span of

time, say 30 seconds.

Figure 5.5 shows the computing node topology for a corresponding prosumer net-

work. Each prosumer has a ProsumerCompNode that is responsible for local sensing,

computation, and control as well as the information exchange with other prosumers

in order to successfully implement the distributed power agreement algorithm.

5.3 Incremental Co-deployment of Smart Grid Applications

Although the development of individual smart grid applications (such as demand re-

sponse and power agreement) is an interesting test case for any CPS development

methodology, the application domain of smart grid poses many additional CPS chal-

lenges due to its long lifecycle and "always-online" nature. In particular, unlike an
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Figure 5.5: Computing nodes for a prosumer network.

automotive or avionic system, an existing smart grid system cannot be taken offline

for introducing new functionality [75].

In order to capture these additional challenges of a wide area embedded control

system, this smart grid case study assumes that a demand response application has

been deployed at a certain time t0 and is operating successfully. Then, at a later time

instant t1, the power agreement application is deployed using the same computing

infrastructure. As a result, CompNodeA from Figure 5.2 and ProsumerCompNodeP7

from Figure 5.5 are implemented using the same computing node, while CompNodeB

from Figure 5.2 and ProsumerCompNodeP10 from Figure 5.5 are also implemented

using the same computing node.
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CHAPTER VI

CPS DESIGN SPECIFICATION LANGUAGE

According to the proposed CPS reference model, a CPS design specification captures

the results of platform-aware feedback controller design process. Moreover, this CPS

design specification also serves as input for the processes of design refinement through

simulation and decomposition of CPS design into a set of functionally equivalent

service descriptions. In order to develop a CPS design specification that can meet

the above mentioned requirements, an appropriate CPS design specification language

(CPS-DSL) is required. Figure 6.1 shows the role played by the CPS-DSL in the

context of the proposed service-oriented CPS reference model.

6.1 Requirements

Following are some of the major requirements that a CPS design specification lan-

guage (CPS-DSL) must meet:

6.1.1 Physical Plant Specification

An appropriate CPS-DSL must have the capability to describes the the physical

plant of a CPS through a combination of atomic elements of that physical plant.

Moreover, CPS-DSL must clearly identify the physical plant parameters that are

sensed or actuated upon by the feedback controller.

6.1.2 Networked Controller Specification

An appropriate CPS-DSL must also describe the various elements of a networked

controller design. These elements include topology of sensors, actuators, and control

nodes, local control law for each control node, and information exchanged between
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Figure 6.1: Role of the CPS Design Specification Language (presented in this chap-
ter) in the service-oriented reference model for cyber-physical systems.

different control nodes.

6.1.3 Specification of Controller Adaptation Strategies

As described earlier, for the emerging wide-area CPS application domains, the per-

formance of communication subsystem cannot be guaranteed. Therefore, CPS-DSL

must also define the timing constraints on the information exchange among different

control nodes and the control adaptation strategies in case of violation of these timing

constraints.

6.1.4 Interface between Control Engineer and Real-time Computer Sys-
tems Engineer

A CPS design specification captures the output of platform-aware feedback controller

design process, and it also serves as input to the process of developing functionally

equivalent service descriptions. Therefore, the CPS-DSL should be designed in such

a way that it can serve as an interface between control systems engineer and real-time

computer systems engineer.
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6.2 Design

This section presents various aspects of a proposed CPS-DSL that can meet the

requirements identified in Section 6.1 . In particular, various language elements, con-

crete syntax, abstract syntax, and semantics of the proposed CPS-DSL are described.

6.2.1 Language Elements

The individual language elements of the proposed CPS-DSL can be divided into

three categories: physical system elements, cyber system elements, and cyber-physical

interface elements.

6.2.1.1 Physical System Elements

CompoundPhysicalPlant, AtomicPhysicalPlant, PhysicalSystemParameter and Phys-

icalLink elements belong to the category of physical system elements. Physical plant

component of a CPS design can be specified by a set of AtomicPhysicalPlant elements

connected to each other through PhysicalLink elements. A set of AtomicPhysicalPlant

and PhysicalLink elements can also be grouped together into a CompuondPhysi-

calPlant element. Moreover, PhysicalSystemParameter elements are used to identify

the parameters of a physical plant that are to be sensed and actuated upon by the

cyber system.

6.2.1.2 Cyber-Physical Interface Elements

Sensor and Actuator elements make up the category of cyber-physical interface ele-

ments. Cyber-physical interface of a CPS design is captured by a set of Sensor and

Actuator elements. Each Sensor and Actuator element is associated with a corre-

sponding PhysicalSystemParameter element.
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6.2.1.3 Cyber System Elements

ComputingNode, CommunicationNetwork, ControlApp, SensorPort, ActuatorPort, In-

putMsgPort, OutputMsgPort, Mode, ModeSwitchLogic, ControllerFunction, Periodic-

ControllerInput, and PeriodicControllerOutput make up the category of cyber system

elements. Cyber aspects of a CPS design include the topology of computing nodes,

the controller application executing on each computing node, and the message ex-

change among computing nodes. The topology of controller computing nodes is cap-

tured by connecting a set of ComputingNode elements to a CommunicationNetwork

element. Each ComputingNode element includes a ControlApp element and a set

of SensorPort, ActuatorPort, InputMsgPort, and OutputMsgPort elements. Sensor-

Port, ActuatorPort, and ControlApp elements combine to capture the local control

application executing on a computing node.

InputMsgPort and OutputMsgPort elements of proposed CPS-DSL are intended

to capture the message exchange among computing nodes of a CPS. However, in a

generic cyber-physical system, perfect behavior of communication subsystem cannot

be guaranteed. As a result, a CPS design must specify the timing constraints on

information exchange among computing nodes and different modes of operation for

local feedback control law that are used in case of violation of these timing constraints.

In the proposed CPS-DSL, InputMsgPort and OutputMsgPort elements capture the

timing constraints on the information exchange among computing node.

Each ControlApp element includes a ModeSwitchLogic element and a set of Mode

elements to capture the different modes of operation of feedback control law for han-

dling QoS fault scenarios. Each Mode element specifies the control action taken by

the feedback controller in that mode of operation through a set of ControllerFunction,

PeriodicControllerInput, and PeriodicControllerOutput elements.
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Figure 6.2: A CPS design, specified as Simulink model with the proposed CPS-DSL.

6.2.2 Concrete Syntax

Since Simulink [51] (combined with auxiliary Stateflow [52] and Simscape [29] blocks)

has become a defacto standard in the domain of embedded control systems, concrete

syntax of the proposed CPS-DSL has been implemented as an extension to standard

blocks available in Simulink. In particular, a new Simulink library [70] has been

developed that provides a Simulink block for each element of the proposed CPS-DSL,

described in Section 6.2.1. Moreover, Simulink’s mask interface capability has been

used to provide each new Simulink block with a custom look, and a dialog box for

entering element-specific parameters, such as the timing constraints associated with

an InputMsgPort element.

Figure 6.2 shows a Simulink model that specifies a CPS design using the Simulink-

based concrete syntax of the proposed CPS-DSL. Figure 6.3 shows the internal details

of a ComputingNode block, which contains a ControlApp block and a set of Sensor-

Port, ActuatorPort, InputMsgPort, and OutputMsgPort blocks. Figure 6.4 shows

the internal details of ControlApp block, which consists of a set of Mode blocks

and a ModeSwitchLogic block. Figure 6.5 shows the internal details of Mode block,
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Figure 6.3: Internal details of ComputingNode block, named CompNodeB, in Fig-
ure 6.2.

Figure 6.4: Internal details of ControlApp block, named DemandResponseB, in
Figure 6.3.

Figure 6.5: Internal details of Mode block, named NormalMode, in Figure 6.4.

Figure 6.6: Internal details of ControllerFunction block, named NormalController-
Function, in Figure 6.5.
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Figure 6.7: Ecore-based meta-model of proposed CPS-DSL.

which contains a set of ControllerFunction, PeriodicControllerInput, and Periodic-

ControllerOutput blocks. Figure 6.6 shows the internal details of ControllerFuncton

block, which contains a description of feedback control law using standard Simulink

computation blocks.

6.2.3 Abstract Syntax

Abstract syntax of the proposed CPS-DSL has been implemented as an Ecore-based

meta-model [23]. Ecore meta-modeling language was originally developed as a part

of Eclipse Modeling Framework (EMF) project [67]. Figure 6.7 shows a the simplified

version of the Ecore-based meta-model for the proposed CPS-DSL.

6.2.4 Semantics

According to the semantics of the proposed CPS-DSL, at a given time, only one

Mode element inside a ControlApp is active. As long as a certain Mode element

45



is active, its constituent PeriodicControllerInput and PeriodicControllerOutput ele-

ments periodically sample the values at their inputs and store them at the output

until the next sampling time instant. A ControllerFunction element contains the

specification of feedback control law computation and is always sandwiched between

a pair of PeriodicControllerInput and PeriodicControllerOutput elements with same

sampling period T and synchronized sampling instants. Moreover, a ControllerFunc-

tion element takes time ∆t to transfer any change in its input to its output where

0 < ∆t < T .

By design, the proposed CPS-DSL leaves its exact semantics dependent on the

language used to define the control law computation inside a ControllerFunction

element and the language used to describe the behavior of an AtomicPhysicalPlant

element. This capability makes the proposed CPS-DSL more flexible. However, for

the rest of this dissertation, it will be assumed that Simulink computation blocks are

used to define the control law computation inside a ControllerFunction element and

Simulink physical system modeling blocks are used to describe the behavior of an

AtomicPhysicalPlant element.

6.3 Case Study

This section shows the application of the proposed CPS-DSL for design specification

of CPS applications, involved in the smart grid case study, presented in Chapter 5.

Figure 6.2 shows the top-level diagram for a Simulink model that specifies the design

of demand response application, discussed in Section 5.1. Moreover, Figure 6.3, Fig-

ure 6.4, Figure 6.5, and Figure 6.6 show the internal details of the Simulink model,

describing the design of demand response application. Design of the power agreement

application, discussed in Section 5.2, can also be specified by developing a similar

Simulink model to the one depicted in Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5,

and Figure 6.6.
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CHAPTER VII

SIMULATION ENVIRONMENT FOR CPS DESIGN

REFINEMENT

According to the proposed CPS reference model, a CPS design, developed through

a platform-aware feedback controller design process, must be refined further through

simulation. This design refinement requires the availability of an appropriate cyber-

physical co-simulation environment that can load a CPS design specification and show

its performance under various conditions of the runtime communication infrastruc-

ture. Figure 7.1 shows the role played by a simulation environment for CPS design

refinement in the context of the proposed service-oriented CPS reference model.

7.1 Requirements

Following are the major required characteristics of an appropriate simulation envi-

ronment that can be used for simulation-based CPS design refinement process.

7.1.1 Co-simulation of Physical and Cyber Subsystems

An appropriate simulation environment for CPS design refinement must be capable

of simulating both the cyber and physical aspects of the system. Moreover, such a

simulation environment must also faithfully capture the interaction between cyber

and physical components of the system that results from the sensing and actuation

process involved in a cyber-physical system.
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Figure 7.1: Role of the simulation environment for CPS design refinement (presented
in this chapter) in the service-oriented CPS reference model.

7.1.2 Simulation of Computer Networks

Since the cyber subsystem of a CPS consists of a set of networked computing nodes, a

suitable simulation infrastructure for CPS design refinement must simulate the com-

puter network involved in the CPS. Various popular network simulators are available

that can be leveraged while developing an appropriate simulation environment for

CPS design refinement. Some examples of such network simulators are ns-2 [30],

ns-3 [57], and OMNet++ [77].

7.1.3 Simulation of Application-level Software

For simulating the cyber aspects of a CPS, simulation of physical communication layer

and networking protocols of a computer network is not sufficient. An appropriate

simulation environment for CPS design refinement must also be able to simulate the

effects of multi-mode feedback control law, executing as application-level software at

different computing nodes of the computer network.
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7.1.4 Automated Configuration of Simulation Engine

In the simulation-based design refinement step of traditional development method-

ology for embedded control systems, designers make extensive use of user-friendly,

graphical simulation environments such as Simulink [51]. Therefore, an appropri-

ate simulation environment for CPS design refinement must also provide a similar

level of user friendliness by supporting the automated configuration of the underlying

simulation engine from an appropriate front-end user interface.

7.2 Design

This section presents the design of an ns-3 based simulation environment for CPS de-

sign refinement that has been developed in order to meet the requirements identified

in Section 7.1. Figure 7.2 shows the overall structure of this simulation environ-

ment for CPS design refinement. The proposed simulation environment extends a

state-of-the-art network simulator, ns-3, with a cyber-physical co-simulation library

and the support for simulating multi-mode feedback controller applications [57]. The

co-simulation library provides a generic interface API, based on the concepts of sen-

sor and actuator, that has been used to integrate two physical system simulators

(Simulink [51] and PowerWorld [60]) with ns-3. Figure 7.3 shows the overall organi-

zation of ns-3 software after the additions that have been made to ns-3 as a part of

the proposed simulation environment. This simulation environment also includes a

Simulink-based front-end that allows the user to provide a CPS design specification

(using the CPS-DSL presented in Chapter 6) under consideration and the various

communication network scenarios under which the performance of this CPS design

must be simulated for the sake of design refinement.

Figure 7.4 shows the UML class diagram that depicts the relationship between

the major classes involved in the design of proposed simulation environment. This

simulation environment has been implemented by adding three modules to the ns-3
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Figure 7.2: Structure of the proposed simulation environment for CPS design refine-
ment.

Figure 7.3: Additions to the standard structure of ns-3 network simulator.
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Figure 7.4: UML class diagram for proposed simulation environment.

code base: a physical system module, a cyber-system module, and a physical system

interface module. Physical system module provides two major classes: PhysicalSys-

tem and PhysicalSystemSimulatorWrapper. The PhysicalSyste class contains a list of

physical system parameters that are sensed or actuated upon in a CPS scenario and

therefore, need to be exchanged between the cyber and physical components of a CPS

co-simulator. The PhysicalSystemSimulatorWrapper class servers as a generic wrap-

per around the various physical system simulation environments such as Simulink [51]

and PowerWorld [60].

The cyber system module provides two major classes: CyberSystem andNS3Wrapper.

The CyberSystem class contains a list of cyber system entities such as computing

nodes, network links, and network routers. The NS3Wrapper class serves as a wrap-

per around the standard ns-3 code. The NS3Wrapper class sets up the ns-3 simulation

scenario based on the information that it receives through a CyberSystem object.
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Table 7.1: Co-Simulation Procedure
void PeriodicInteractionWithPhysicalSystem( )
{
LogAndSendControlActions( );

LogAndReceiveSensorValues( );

RunPhysicalSystemSimulationForTimeStep(TimeStep);

Schedule(TimeStep, &PeriodicInteractionWithPhysicalSystem);
}

The physical system interface module provides four major classes: Sensor, Ac-

tuator, PhysicalSystemParameter, and PhysicalSystemInterface. In the proposed co-

simulation infrastructure, feedback controller algorithms running at the ns-3 appli-

cation layer use these Sensor and Actuator objects to interact with the physical

system simulator. Sensor and Actuator classes hold an instance of the PhysicalSys-

temParameter class, which represents the physical system entity sensed by a sensor

or actuated upon by the actuator. In this co-simulation infrastructure, an attribute

can only be transferred between the two component simulators (ns-3 and physical

system simulator) if it is modeled as an instance of PhysicalSystemParameter class.

In the proposed CPS co-simulator, the interaction between the cyber and physical

system simulators is done on a periodic basis through the PhysicalSystemInterface

class. Table 7.1 shows the method of PhysicalSystemInterface class that achieves the

periodic interaction between cyber and physical system simulation components.

7.3 Case Study

This section shows the application of the proposed simulation environment for design

refinement of CPS applications, involved in the smart grid case study, presented in

Chapter 5.

For the analysis of demand response application through the proposed simulation

environment, a communication network scenario consisting of star topology of three
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Figure 7.5: Demand response application: power generation and consumption pro-
files for different link delays.

Time (seconds)
5 10 15 20 25 30

P
o
w

e
r(

M
W

)

4

6

8

10

12

14

   Wind Generator Profile @ Bus23

   Load Profile @ Bus20 (Link Delay = 100ms, Controller Update Period = 200ms)

   Load Profile @ Bus20 (Link Delay = 100ms, Controller Update  Period = 500ms)

Figure 7.6: Demand response application: power generation and consumption pro-
files for different controller update periods.
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Figure 7.7: Demand response application: power generation and consumption pro-
files under communication network congestion.

computing nodes (CompNodeA, CompNodeB, and CommandCenter) and a central

network router was specified. Furthermore, in this communication network scenario,

UDP sockets were used for communication between computing nodes. Figure 7.5

and Figure 7.6 show the performance of demand response application for different

communication link delays and different controller update periods respectively, under

this communication network scenario. Figure 7.7 shows the simulated performance of

demand response application under network router congestion, caused by the addition

of an external traffic source in the earlier communication network scenario. These

examples illustrate that through the simulation environment presented in this chapter,

the performance of a proposed demand response application design can be evaluated

under complex (but relevant) cyber system conditions and the design parameters

(such as controller update period, controller modes of operation, and mode transition

conditions) can be tweaked until satisfactory performance is seen in the simulation.

For the analysis of power agreement application through the proposed simulation

environment, a communication network scenario consisting of point-to-point com-

munication links between all the ProsumerCompNodes was specified. Furthermore,
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Figure 7.8: Power agreement application: convergence behavior under two different
combinations of communication link delay and controller update period (only 3 out
of 10 prosumers are depicted for readability).
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Figure 7.9: Power agreement application: convergence behavior under network con-
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(only 4 out of 10 prosumers are depicted for readability).
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in this communication network scenario, UDP sockets were used for communica-

tion between all the ProsumerCompNodes. Figure 7.8 shows the convergence behav-

ior of power agreement application for two different combinations of link delay and

controller update period, under this communication network scenario. Firgure 7.9

shows the convergence behavior when point-to-point communication links of Pro-

sumerCompNode for Prosumer1 have significantly less capacity as compared to other

point-to-point communication links in the system. This kind of analysis, through the

proposed simulation environment, can allow us to investigate whether power agree-

ment application will converge in the required time span of 30 seconds under some

complex (but relevant) cyber system scenarios. This information could be useful for

refining the different modes of operation and mode transition conditions, defined for

the power agreement application during the platform-aware feedback controller design

stage.
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CHAPTER VIII

SERVICE DESCRIPTION LANGUAGE

According to the proposed CPS reference model, a service description plays a cen-

tral role. Once a mature CPS design has been developed through the processes of

platform-aware feedback controller design and simulation-based design refinement,

this CPS design is decomposed into a set of interacting services, each with its own

service description. In order to develop these service descriptions, an appropriate

service description language (SDL) is required. Figure 8.1 shows the role played by a

CPS service description language in the context of the proposed service-oriented CPS

reference model.

8.1 Requirements

Any proposed service description language (SDL) must be capable of specifying the

following information about a service.

8.1.1 Service Interface

The service interface section of a service description describes the messages that

the service exchanges with other services and sensing and control actions that a

service takes on the co-located physical entities. This section also identifies the QoS

constraints on these messages and sensing and control actions.

8.1.2 Service Resources

The service resources section of a service description describes platform resource

requirements of a service in order to satisfy the QoS constraints identified in the

service interface section.
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Figure 8.1: Role of the CPS Service Description Language (presented in this chapter)
in the service-oriented CPS reference model.

8.1.3 Service Modes

Unlike traditional embedded control system domains (such as automotive and avionics

systems), some emerging CPS application domains (such as smart grid) are wide-

area systems. As a result, QoS constraints on message exchange among computing

nodes of a CPS scenario in these application domains cannot be guaranteed by the

communication subsystem. Therefore, service description for a service must contain a

section which defines different modes of operation of the service for different QoS-fault

scenarios.

8.2 Design

This section presents the design of a service description language (SDL) for CPS

that is capable of specifying all the elements of a service, as outlined in Section 8.1.

The syntax and semantics of the proposed SDL are heavily influenced by Giotto

language, which was originally proposed as a programming language for embedded

control systems [25].
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8.2.1 Giotto Programming Language

The typical development process for an embedded control system can be divided into

two steps: control design and software implementation. During the control design

phase, a control engineer models the plant behavior and disturbances, derives the

feedback control laws, and validates the performance of plant under the influence

of feedback controller through mathematical analysis and simulations. During the

software implementation phase, a software engineer breaks down the feedback con-

troller’s computational activities into tasks and associated timing constraints on the

completion of these tasks. Then, the software engineer develops code for these tasks

in a traditional programming language (such as C) and assigns priorities to these

tasks so that the tasks could meet their timing constraints while being scheduled on

a processor by the scheduler of a real-time operating system (RTOS).

Giotto programming language aims to bridge the communication gap between con-

trol engineer and software engineer by providing an intermediate level of abstraction

between control design and software implementation [25]. Giotto language syntax

can be used by a Giotto program to specify time-triggered sensor readings, actuator

updates, task invocations, and mode transitions. Then, a Giotto compiler must be

used to compile (an entirely platform independent) Giotto program onto a specific

computing platform. The compiler must preserve the functionality as well as the

timing behavior specified by the Giotto program. The Giotto compilation process

is aided by the use of E Machine [26], a virtual machine that serves as the target

for compilation of Giotto programs. Figure 8.2 shows the Giotto and E Machine

configuration for a typical networked embedded control system.

Figure 8.3 shows the major elements of Giotto syntax: task, mode, driver, port,

and guard. Task is the basic functional unit of Giotto language and represents a

periodically executable piece of code. Giotto tasks communicate with each other as

well as with sensors and actuators. However, in Giotto, all data communication occurs
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Figure 8.2: Typical configuration of Giotto and E Machine for embedded control
systems.

through ports. In a Giotto program, there are mutually disjoint sets of task ports,

sensor ports, and actuator ports. Task ports are further divided into task input ports,

task output ports, and task private ports. Each task also has an associated function

f (implemented in any sequential programming language) from its input ports and

private ports to its output ports and private ports. According to Giotto semantics,

sensor ports are updated by the environment while task ports and actuator ports are

updated by the Giotto program.

Driver represents a piece of code that transports values between two ports. A

driver can also have an associated guard, which is some boolean-valued function on

the current values of certain ports. The code associated with the driver only executes

if the guard of the driver evaluates to true. According to Giotto semantics, a task is an

application-level code that consumes non-negligible amount of CPU time, while driver

is a system-level code that can be executed instantaneously before the environment

changes its state.

At the highest level of abstraction, a Giotto program is essentially a set of modes.
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At a certain instant of time, Giotto program can only be in one of its modes. However,

during its execution, a Giotto program transitions from one mode to another based

on the values of different ports. These possible mode transitions are specified in

Giotto syntax through mode swithces. A mode switch specifies a target mode, switch

frequency, and a guarded driver. Formally, a Giotto mode is made up of several

concurrent tasks, a set of mode switches, a set of mode ports, a set of actuator updates,

and a period. Each task of a mode specifies its frequency of execution per mode

period. While Giotto program is in a certain mode, it repeats the same pattern of

task executions for each mode period.

Figure 8.3 shows a Giotto program with two modes, m1 and m2. Mode m1 has

two tasks, t1 and t2, while mode m2 has only one task, t3. Mode m1 has a period

of 10ms, while mode m2 has a period of 20ms. Task t1 has a frequency of 2, while

task t2 has a frequency of 1. This means that as long as Giotto program is in mode

m1, task t1 executes every 5ms while task t2 executes every 10ms. Moreover, in this

example, there is a mode switch from mode m1 to mode m2 with a switch frequency

of 2. This implies that the mode switch condition (provided by the guard of driver

d5) is tested every 5ms.

8.2.2 Extensions to Giotto Programming Language

Current syntax of Giotto, summarized in Section 8.2.1, is capable of describing all the

elements of a CPS service, except for the input and output messages of a service and

QoS constraints associated with these messages. In order to overcome this deficiency,

Giotto syntax has been extended with two new types of ports : input message port

and output message port. The input message port also has the following additional at-

tribute attached it: TimeSinceLastUpdate. This attribute could be used in the guard

conditions, present in mode switches. As a result, the proposed Giotto-based SDL
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Figure 8.3: Major programming elements of Giotto language. Proposed extensions
for a Giotto-based CPS service description language are shown in red with dotted
lines.

can be used to specify mode switches based on the violation of QoS constraints asso-

ciated with message exchanges among services. Figure 8.3 also shows these proposed

extensions that result in a Giotto-based CPS service description language.

8.3 Case Study

This section shows the application of the proposed Giotto-based service description

language (SDL) for describing CPS services, involved in the smart grid case study,

presented in Chapter 5.

Demand response application, involved in the smart grid case study of Chapter 5,

can be decomposed into three services: DemandResponseServiceA, DemandRespons-

eServiceB, and DemandResponseServiceCC. Table 8.1 shows the service description

of DemandResponseServiceB using the proposed Giotto-based service description lan-

guage, while Figure 8.4 shows the same service description graphically.

DemandResponseServiceB consists of two modes : m1 (representing the normal op-

erating mode) and m2 (representing the operating mode when the customer overrides

62



Figure 8.4: Graphical representation of service descriptions for DemandRespons-
eServiceB.

the operation of demand response application). Driver d4 and guard g4 combine

to describe the mode switch condition from m1 to m2, while driver d6 and guard

g6 describe the mode switch condition from m2 to m1. Mode transitions between

m1 and m2 occur based on the value of sensor port customerOverride, which repre-

sents the binary status of an application override user interface mechanism available

to the customer. According to the service description, shown in Table 8.1, mode

m1 has a period of 10000ms and it has a mode switch with the target mode of m2

and a frequency of 1, indicating that the mode switch condition is tested once every

mode period. Therefore, mode switch condition from m1 (normal mode) to m2 (user

override mode) is tested every 10 seconds.
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Table 8.1: Service Description of DemandResponseServiceB using the Proposed
Giotto-based Service Description Language

Sensor Ports function f1( ) {
port customerOverride type binary o1 = i1;

Actuator Ports o2 = true;
port genPower type double }

Input Message Ports function f2( ) {
port reqPower type double o2 = false;

Output Message Ports }
port status type binary function h1( ) {

Task Input Ports i1 = reqPower;
port i1 type double i2 = customerOverride;
port i2 type binary }

Task Output Ports function h2( ) {
port o1 type double genPower = o1;
port o2 type binary }

Task Private Ports ...
...

Tasks
task t1 input i1 output o1 o2 function f1 binary guard g1( ) {
task t2 input i2 output o2 function f2 return true;

}
Drivers ...

driver d1 source reqPower customerOverride ...
guard g1 destination i1 i2 function h1 binary guard g4( ) {

driver d2 source o1 guard g2 destination genPower return customerOverride;
function h2 }

driver d3 source o2 guard g3 destination status binary guard g5( ) {
function h3 return true;

driver d4 source o1 o2 guard g4 }
destination o2 function h4 binary guard g6( ) {

driver d5 source customerOverride guard g5 return !customerOverride;
destination i2 function h5 }

driver d6 source o2 guard g6
destination o1 o2 function h6

Modes
// Normal operating mode
mode m1 period 10000ms ports i1 i2 o1 o2

frequency 1 invoke task t1 driver d1
frequency 1 update d2
frequency 1 update d3
frequency 1 switch m2 driver d4

// User override mode
mode m2 period 1000ms ports i2 o2

frequency 1 invoke task t2 driver d5
frequency 1 update d3
frequency 2 switch m1 driver d6

Start m1
a Some guard and driver functions have been omitted to avoid unnecessary details.
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CHAPTER IX

SERVICE-BASED COMPUTING PLATFORM

According to the proposed CPS reference model, once a CPS design has been decom-

posed into a set of interacting services, each with its own service description, these

services are then deployed on various computing nodes that are involved in the CPS

application. To enable CPS development according to the proposed CPS reference

model, each CPS computing node must have an appropriate service-based computing

platform that can support resource-aware service deployment and QoS-aware service

operation. Figure 9.1 shows the role played by a service-based CPS computing plat-

form in the context of the proposed service-oriented CPS reference model.

9.1 Requirements

Generally, a CPS scenario involves a set of heterogeneous computing nodes with

different processors, operating systems, and middleware technologies. Therefore, the

required service-based computing platform must be capable of being ported to these

heterogeneous computing nodes. Moreover, resource-aware deployment of a service

on a computing platform, as suggested by the proposed reference model, requires the

existence of an appropriate service compiler as a part of the service-based computing

platform. This service compiler must be capable of reading the service description

(specified using an appropriate service description language) and deciding whether a

certain computing nodes has enough resources to successfully deploy this service such

that the service can meet its QoS constraints.
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Figure 9.1: Role of the service-based computing platform (presented in this chapter)
in the service-oriented CPS reference model.

9.2 Design

This section presents the design of a service-based computing platform for CPS com-

puting nodes that is capable of supporting resource-aware deployment and QoS-aware

operation of services whose service descriptions have been developed using the service

description language (SDL), proposed in Chapter 8.

9.2.1 Embedded Machine (E Machine)

Section 8.2.1 had summarized various aspects of Giotto, a platform-independent pro-

gramming language for embedded control systems. In real-time systems literature, de-

velopment of Giotto compilers for various computing platforms has been reported [25].

However, while developing these Giotto compilers, researchers have found it useful

to have an intermediate language, which does not support the high-level concepts of

Giotto but still provides a lower level platform-independent semantics for mediating

between physical environment and software tasks [26]. The concept of such an in-

termediate language has evolved into E code. Moreover, in the literature, the term

Embedded Machine or E Machine has been used for a virtual machine that interprets
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Figure 9.2: Typical configuration of Giotto and E Machine for embedded control
systems.

the E code [26]. Figure 9.2 shows the Giotto and E Machine configuration for a typical

networked embedded control system.

The proposed E code essentially has the following three instructions:

1. Call driver

2. Release task

3. Future E code

In the E Code terminology, a task is a piece of application-level code, whose execu-

tion takes non-zero time. When invoked with its parameters, a task implements a

computational activity and writes the results to task ports. On the other hand, a

driver is a piece of system-level code that typically enables a communication activity.

For example, a driver can provide sensor readings as arguments to a task or load task

results from its ports to an actuator. It is assumed that the execution of a driver

takes logically zero time.
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Call driver instruction starts the execution of a driver. As the driver is supposed

to execute in logically zero time, the E Machine waits until the driver completes

execution before interpreting the next instruction of E code. Release task instruction

hands off a task to the operating system. Typically, the task is put into the ready

queue of the operating system. Scheduler of the operating system is not under the

control of the E Machine. The scheduler may or may not be able to satisfy the real-

time constraints of the E code. However, a compiler (which takes into account the

platform resources) checks the time safety of E code, generated from a higher level

language, such as Giotto. Such a compiler attempts to rule out any timing violations

by knowing the worst-case execution time (WCET) of all the tasks and by applying

the schedulability results available in the real-time systems literature [10].

Future E code instruction marks a block of E code for execution at some future

time. This instruction has two parameters: a trigger and the address of the block of

E code. The trigger is evaluated with every input event (such as clock, sensor, or task

output) and the block of E code is executed as soon as the trigger evaluates to true.

9.2.2 Combination of Embedded Machine (E Machine) and Compiler Ma-
chine (C Machine)

Since E Machine, summarized in the last section, supports resource-aware deployment

and QoS-aware execution of Giotto programs, and a Giotto-based service description

language has already been proposed in Chapter 8, it is natural to leverage E Machine

as the foundation of required service-based computing platform. However, as noted in

the last section, E code must be generated by an appropriate compiler to ensure time

safety. Therefore, the required service-based computing platform must combine the

E Machine with an appropriate service compiler that ensures resource-aware service

deployment on E Machine. However, the service compiler code itself is not hard

real-time in nature. Therefore, the proposed design of the service-based computing

platform is based on splitting the resources of host computing platform into two
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Figure 9.3: Proposed solution for the requirement of a service-based computing
platform.

"virtual machines": a hard real-time Embedded Machine (E Machine) and a soft real-

time Compiler Machine (C Machine). E Machine executes the hard real-time service

code and C Machine executes the soft real-time code for service compiler. Resources

of the host computing platform can be split into the hard real-time E Machine and

soft real-time C Machine using various resource reservation schemes, reported in real-

time systems literature [34] [35]. The resulting service-based computing platform is

shown in Figure 9.3.

9.3 Case Study

This section shows the role played by the proposed service-based computing platform

in the context of smart grid case study, presented in Chapter 5. Demand response

application, involved in the smart grid case study of Chapter 5, consists of three

computing nodes: CompNodeA, CompNodeB, and CommandCenter. Moreover, as

discussed in Chapter 8, demand response application design can be decomposed

into three services: DemandResponseServiceA, DemandResponseServiceB, and De-

mandResponseServiceCC. Figure 9.4 shows the cyber subsystem of demand response
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Figure 9.4: Case study: demand response application with proposed service-based
computing platform.

application from smart grid case study, where a service-based computing platform

(consisting of a combination of E Machine and C Machine) has been ported onto

each of the computing nodes and the appropriate service has been deployed on that

computing node through the service compiler component of the proposed computing

platform.
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CHAPTER X

FORMAL PERFORMANCE GUARANTEES

As discussed in Chapter 3, the proposed service-oriented CPS reference model requires

the existence of formal guarantees for the following aspects:

1. functional equivalence between a CPS design specification and the correspond-

ing service-based CPS deployment.

2. non-interference between the co-deployed CPS services from the perspective of

their timing performance.

Using state-of-the-art techniques from the field of formal methods for reactive com-

puter systems, this chapter shows how the technological solutions, presented in last

four chapters (Chapter 6, Chapter 7, Chapter 8, and Chapter 9), combine to provide

the above mentioned formal performance guarantees.

10.1 Formal Methods: A Short Introduction

The field of formal methods deals with techniques that guarantee the behavior of a

computing system using some rigorous approach. Figure 10.1 summarizes the basic

framework that is shared by various techniques, grouped under the umbrella of formal

methods [2]. Typically, a computer systems is represented in terms of a specification

formalism or an implementation construct (such as a programming language). A cor-

rectness property of this computer system is described as a formula of a mathematical

logic system (such as propositional logic, first-order logic or temporal logic) [5]. Then,

during the formal verification step, it is checked whether the correctness property

holds for this computer system. There are two main approaches to the formal verifi-

cation step: model checking and deductive verification. In model checking approach,
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Figure 10.1: Basic framework employed by the field of formal methods.

all the states of a computer systems are traversed and the existence of correctness

property is checked in each of the state. In deductive verification approach, a for-

mal proof is developed for the existence of correctness property in each state of the

computer system using a mathematical logic system (such as propositional logic) [2].

Computer systems can be classified into two main groups: sequential computer

systems and reactive computer systems. Sequential computer systems enter a com-

putation with a set of inputs, step through a set of instructions that represent the

computation, and exit this computation with a set of outputs. On the other hand,

reactive computer systems are characterized by an on-going interaction with their

environment. In the field of formal methods, vastly different techniques are employed

for these two different types of computer systems [5].

10.2 Formal Methods for Reactive Computer Systems: Manna-
Pnueli Approach

In their seminal work on the application of linear temporal logic (LTL) for formal ver-

ification of reactive computer systems, Manna and Pnueli [46] [47] presented a generic

model of a reactive computer system in the form of a transition system. (This transi-

tion system will be referred to as Manna-Pnueli Transition System in the rest of this
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Figure 10.2: Formal methods for reactive computer systems: Manna-Pnueli ap-
proach.

dissertation.) They showed that various existing programming languages and spec-

ification formalisms for reactive computer systems can be mapped into this generic

model. They also observed that their generic model of reactive computer systems is

designed to be capable of capturing any programming language or specification for-

malism for reactive computer system, proposed in the future. It must be noted that

Giotto-based CPS services descriptions (proposed in Chapter 8) and cyber system

elements of CPS-DSL (proposed in Chapter 6) are essentially two newly proposed

representations of reactive computer systems. Formal proofs, presented in this chap-

ter, leverage the decomposition of these newly proposed reactive computer system

representations into the generic model of a Manna-Pnueli Transition System.

10.2.1 Manna-Pnueli Transition System

Manna-Pneuli Transition System < Π,Σ, T,Θ >, intended to serve as a generic model

for reactive computer systems, consists of the following components:

• Π = {u1, . . . , un} — A finite set of state variables.
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Each state variable is a typed variable, whose type indicates the domain from

which the values of that variable can be assigned. Some of these state vari-

ables are data variables, which represent the data elements that are declared

and manipulated by the program of a reactive computer system. Other state

variables are control variables, which keep track of the progress in the execution

of a reactive computer system’s program.

• Σ — A set of states.

Each state s in Σ is an interpretation of Π. An interpretation of a set of

typed variables is a mapping that assigns to each variable a value in its domain.

Therefore, each state s in Σ assigns each variable u in Π a value over its domain,

which is denoted by s[u].

• T — A finite set of transitions.

Each transition τ in T represents a state-changing action of the reactive com-

puter system and is defined as a function τ : Σ→ 2Σ that maps a state s in Σ

into the (possibly empty) set of states τ(s) that can be obtained by applying

action τ to state s. Each state s′ in τ(s) is defined to be a τ -successor of s. A

transition τ is said to be enabled on s if τ(s) 6= φ, that is, s has a τ -successor.

It is required that one of the transitions, τI , called the idling transition, is an

identity transition, i.e., τI(s) = {s} for every state s. The transitions other

than the idling transition are called diligent transitions.

• Θ — An initial condition.

Initial condition is an assertion (boolean expression) that characterizes the

states at which the execution of reactive computer system’s program can begin.

A state s satisfying Θ is called an initial state.

Each transition τ can be characterized by an an assertion ρτ (Π,Π
′), called the
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transition relation, of the following form:

ρτ (Π,Π
′) : Cτ (Π) ∧ (y′1 = e1) ∧ · · · ∧ (y′k = ek)

This transition relation consists of the following elements:

• An enabling condition Cτ (Π), which is an assertion, describing the condition

under which the state s may have a τ -successor.

• A conjunction of modification statements

(y′1 = e1) ∧ · · · ∧ (y′k = ek),

which relate the values of the state variables in a state s to their values in a

successor state s′ obtained by applying τ to s. Each modification statement

yi = ei describes the value of a state variable in state s′ as an expression

consisting of the state variable values in state s.

As an example, for a transition system with Π = {x, y, z},

ρτ : (x > 0) ∧ (z′ = x− y)

describes a transition τ that is enabled only when x is positive and this transition

assigns the value of z in state s′ equal to the value of x− y in state s.

10.2.2 Computations

A computation of Manna-Pnueli Transition System < Π,Σ, T,Θ > is defined to be

an infinite sequence of states

σ : s0, s1, s2, . . .

satisfying the following requirements:

• Initiation: The first state s0 is an initial state, i.e., it satisfies the initial condi-

tion of the transition system.
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• Consecution: For each pair of consecutive states si, si+1 in σ, si+1 ∈ τ(si) for

some transition τ in T . The pair si, si+1 is referred to as a τ -step. It is possible

for a given pair to be both a τ -step and a τ ′-step for τ 6= τ ′.

• Diligence: Either the sequence contains infinitely many diligent steps or it con-

tains a terminal state (defined as a state to which only idling transitions can be

applied). This requirement excludes the sequences in which, even though some

diligent transition is enabled, only idling steps are taken beyond some point. A

computation that contains a terminal state is called a terminating computation.

Indices i of states in a computation σ are referred to as positions. If τ(si) 6= φ (τ

enabled on si), it is said that the transition τ is enabled at position i of computation σ.

If si+1 ∈ τ(si), it is said that transition τ is taken at position i. Several transitions may

be enabled at a single position. Moreover, one or more transitions may be considered

to be taken at the same position. A state s is called reachable in a transition system

if it appears in some computation of the system.

10.2.3 Behavioral Equivalence

In the study and analysis of reactive computer systems, an important concept is

the notion of behavioral equivalence between two different systems. Based on the

transition-system-based generic model of reactive computer systems, proposed by

Manna and Pnueli [46], one may try to define two transition systems P and P’ to be

equivalent if they generate precisely the same set of computations. However, as noted

by Manna and Pnueli [46], this definition of equivalence will be too discriminating.

There are many cases of reactive computer system programs that generate different

computations, but still have equivalent behavior with respect to the outputs of in-

terest. Motivated by this, Manna and Pnueli defined the following concepts about

behavioral equivalence of reactive computer systems in their seminal work:

• O — Observable Variables
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A subset of the state variables Π may be defined as observable variables, denoted

by O. So, by definition, O ⊆ Π.

• s�O — Observable State

Given a state s, observable state corresponding to s, denoted by s�O, is defined

as the restriction of s to just the observable variables O.

• σO — Observable Behavior

Given a computation

σ : s0, s1, . . . ,

the observable behavior σO corresponding to σ is defined to be the sequence

obtained from σ by replacing each state si with its corresponding observable

state si�O.

σO : s0 �O, s1 �O, . . .

• σr — Reduced Behavior

Given a computation

σ : s0, s1, . . . ,

the reduced behavior σr corresponding to σ is defined to be the sequence ob-

tained from σ by the following two transformations:

1. Replace each state si by its observable part si�O.

2. Omit from the sequence each observable state that is identical to its pre-

decessor but not identical to all of its successors.

• ∼ — Equivalence of Transition Systems

For a transition system P , R(P ) denotes the set of all reduced behaviors gen-

erated by P . Let P1 and P2 be two transition systems and O ⊆ Π1 ⊆ Π2

be a set of variables, specified to be the observable variables for both systems.
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The transition systems P1 and P2 are defined to be equivalent (relative to O),

denoted by

P1 ∼ P2

if R(P1) = R(P2).

10.3 Proposed Extensions to Manna-Pnueli Approach

In order to utilize Manna-Pnueli Transition System for formal proofs about the pro-

posed service-oriented CPS technologies, some new concepts must be defined:

• σtr — Temporally Reduced Behavior

If one of the observable variables is time, then given a computation

σ : s0, s1, . . . ,

the temporally reduced behavior σtr corresponding to σ is defined to be the

sequence obtained from σ by the following four transformations:

1. Replace each state si by its observable part si�O.

2. Omit from the sequence each observable state that is identical to its pre-

decessor but not identical to all of its successors.

3. Omit from the sequence each observable state that is identical to its pre-

decessor for all the observable variables except time.

4. Omit from the sequence each observable state which has the same value of

observable variable time as its successor.

Based on this definition, the temporally reduced behavior of transition system

P under the set of observable variables O (σtrP � O) is a sequence of tuples that

captures the value of time as well as every other observable state variable in O

at all the time instants at which the value of at least one non-time observable
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state variable from O changes. However, this sequence does not contain any

two entries with the same value of state variable time.

The relationship of the temporally reduced behavior of P under O (σtrP � O) and

the elements of transitions associated with P can also be represented as follows:

σtrP � O = f(∆T relevant
P �O, T imedTransitionSequenceT relevant

P �O)

where

T relevantP � O = {τi | (τi ∈ TP ) ∧ (modification statements of transition τi

change the value of non-time state variables in O)}

∆T relevant
P �O = {∆τi | τi ∈ T relevantP � O}

∆τi = {∆sτi | s is a non-time state variable in O}

∆sτi = s′τi − sτi = Change in the value of state variable s, caused

by transition τi

TimedTransitionSequenceT relevant
P �O = (t0, τ0), (t1, τ1), (t2, τ2), . . .

such that:

1) for each element (ti, τi), τi ∈ T relevantP � O and

system reaches time ti after transition τi is taken.

2) ti+1 ≥ ti

• ∼ — Equivalence of Transition Systems

For a transition system P with time as an observable variable, RT (P ) denotes

the set of all temporally reduced behaviors generated by P . Let P1 and P2 be

two transition systems and O ⊆ Π1 ⊆ Π2 be a set of variables, specified to be

the observable variables for both systems. The transition systems P1 and P2

are defined to be equivalent (relative to O), denoted by

P1 ∼ P2
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if RT (P1) = RT (P2).

10.4 Manna-Pnueli Transition System Representation: CPS
Computing Node in CPS-DSL

According to the CPS design specification language (CPS-DSL), proposed in Chap-

ter 6, a ComputingNode block contains a ConrolApp block and a set of SensorPort, Ac-

tuatorPort, InputMsgPort, and OutputMsgPort blocks. Furthermore, the ControlApp

block contains a set of Mode blocks and a ModeSwitchLogic block. Based on these

constituent blocks, a ComputingNode block, CompNode1, of CPS-DSL can be repre-

sented as the Manna-Pnueli Transition System, PCompNode < ΠPCompNode
,ΣPCompNode

,

TPCompNode
,ΘPCompNode

>, outlined in Appendix A, where:

• ΠPCompNode
— Set of state variables of PCompNode.

• ΣPCompNode
— Set of states of PCompNode.

• TPCompNode
— Set of transitions of PCompNode.

• ΘPCompNode
— Initial condition of PCompNode.

10.5 Manna-Pnueli Transition System Representation: CPS
Computing Node with 1 CPS Service

A Giotto-based service description language (SDL) and a service-based CPS comput-

ing platform have been proposed in Chapter 8 and Chapter 9 respectively. Based

on these proposed technologies, a CPS computing node with one successfully de-

ployed Giotto-based CPS service, Service1, can be represented as the Manna-Pnueli

Transition System, P1Service < ΠP1Service
,ΣP1Service

, TP1Service
,ΘP1Service

>, outlined in

Appendix B, where:

• ΠP1Service
— Set of state variables of P1Service.

• ΣP1Service
— Set of states of P1Service.
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• TP1Service
— Set of transitions of P1Service.

• ΘP1Service
— Initial condition of P1Service.

10.6 Manna-Pnueli Transition System Representation: CPS
Computing Node with k CPS Services

A Giotto-based service description language (SDL) and a service-based CPS comput-

ing platform have been proposed in Chapter 8 and Chapter 9 respectively. Based

on these proposed technologies, a CPS computing node with k successfully deployed

Giotto-based CPS services (Service1, Service2, . . . , ServiceK) can be represented as

the Manna-Pnueli Transition System, PkServices < ΠPkServices
,ΣPkServices

, TPkServices
,

ΘPkServices
>, outlined in Appendix C, where:

• ΠPkServices
— Set of state variables of PkServices.

• ΣPkServices
— Set of states of PkServices.

• TPkServices
— Set of transitions of PkServices.

• ΘPkServices
— Initial condition of PkServices.

10.7 Functional Equivalence of CPS Design Specification and
Service-based CPS Deployment

First formal guarantee, required by the proposed CPS reference model, is the func-

tional equivalence between a CPS design specification and the corresponding service-

based CPS deployment. This dissertation has presented a CPS Design Specification

Language (CPS-DSL) and a Giotto-based Service Description Language (SDL) in

Chapter 6 and Chapter 8 respectively. Since ComputingNode block of CPS-DSL

(proposed in Chapter 6) and a CPS computing node with a successfully deployed

Giotto-based CPS service (proposed in Chapter 8) are essentially two newly proposed

representations of reactive computer systems, these newly proposed representations
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can be translated into corresponding Manna-Pnueli Transition Systems (which was

designed as a generic model of reactive computer systems). Appendix A and Ap-

pendix B provide the Manna-Pnueli Transition System representation for a Com-

putingNode block (CompNode1) of CPS-DSL and a CPS computing node with one

Giotto-based service (Service1) respectively. Furthermore, using the notation from

Appendix A and Appendix B, following properties must hold by design between a

ComputingNode block of CPS-DSL (CompNode1) and the service description of the

corresponding Giotto-based CPS service (Service1).

1. fModesMap is a bijective function,

where fModesMap : ModesCompNode1 →ModesService1 is defined as:

modeiService1 = fModesMap(mode
i
CompNode1)

2. fModeSwitchesMap is a bijective function,

where fModeSwitchesMap : ModeSwitchesCompNode1 →ModeSwitchesService1 is de-

fined as:

modeSwitchijService1 = fModeSwitchesMap(modeSwitch
ij
CompNode1)

3. fSenosrPortsMap is a bijective function,

where fSensorPortsMap : SensorPortsCompNode1 → SensorPortsService1 is defined

as:

sensePortiService1 = fSensorPortsMap(sensePort
i
CompNode1)

Similarly defined functions fInMsgPortsMap, fActuatorPortsMap, and fOutMsgPortsMap

are also bijective functions.

4. fControllerTasksMap is a bijective function,

where fControllerTasksMap : ControllerFunctionsCompNode1 → TasksService1 is de-

fined as:
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taskiService1 = fControllerTasksMap(controllerFunction
i
CompNode1)

5. fmodeiSenosrPortsMap is a bijective function,

where fmodeiSensorPortsMap : SensorPortsmodeiCompNode1 → SensorPortsmodeiService1 is defined

as:

sensePortiService1 = fmodeiSensorPortsMap(sensePort
i
CompNode1)

Similarly defined functions fmodeiInMsgPortsMap, f
modei
ActuatorPortsMap, and f

modei
OutMsgPortsMap

are also bijective functions.

6. fmodeiControllerTasksMap is a bijective function,

where fmodeiControllerTasksMap : ControllerFunctionsmodeiCompNode1 → TasksmodeiService1 is de-

fined as:

taskiService1 = fmodeiControllerTasksMap(controllerFunction
i
CompNode1)

7. ∀ modei ∈ModesCompNode1

Periodmodej = Periodmodei

where modej = fModesMap(modei)

8. ∀ modeSwitchi ∈ModesSwitchesCompNode1

SwitchFreqmodeSwitchj = SwitchFreqmodeSwitchi

where modeSwitchj = fModeSwitchesMap(modeSwitchi)

9. ∀ controllerFunctioni ∈ ControllerFunctionsCompNode1

TaskFreqtaskj = ControllreFunctionFreqcontrollerFunctioni

where taskj = fControllerTasksMap(controllerFunctioni)

10. ∀ controllerFunctioni ∈ ControllerFunctionsCompNode1

ftaskj = fcontrollerFunctioni
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where taskj = fControllerTasksMap(controllerFunctioni)

f controllerFunctioni = The function implemented by the internal

components (Simulink blocks) of ControllerFunction block

controllerFucntioni

f taskj = The function implemented in taskj of CPS service Service1

11. ControllerOutsToActsmodeiCompNode1 = TaskOutsToActsmodeiService1

where

ControllerOutsToActsmodeiCompNode1 :

PeriodicControllerOutputV aluesmodeiCompNode1 → ActPortV aluesmodeiCompNode1

= A function that captures the input-output relationship (produced by the

combined effect) of all the connections between PeriodicControllerOutput

blocks and ActuatorPort blocks in modei of CompNode1.

TaskOutsToActsmodeiService1 :

TaskOutputPortV aluesmodeiService1 → ActPortV aluesmodeiService1

= A function that captures the input-output relationship (produced by

the combined effect) of all the drivers, updating the actuator ports in

modei of CPS service Service1.

12. ControllerOutsToOutMsgsmodeiCompNode1 = TaskOutsToOutMsgsmodeiService1

where

ControllerOutsToOutMsgsmodeiCompNode1 :

PeriodicControllerOutputV aluesmodeiCompNode1 → OutMsgPortV aluesmodeiCompNode1

= A function that captures the input-output relationship (produced by
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the combined effect) of all the connections between PeriodicControllerOutput

blocks and OutputMsgPort blocks in modei of CompNode1.

TaskOutsToOutMsgsmodeiService1 :

TaskOutputPortV aluesmodeiService1 → OutputMsgPortV aluesmodeiService1

= A function that captures the input-output relationship (produced by

the combined effect) of all the drivers, updating the output message ports

in modei of CPS service Service1.

13. ∀ controllerFunctionj ∈ modeiCompNode1, and

when taskj = fControllerTasksMap(controllerFunctionj)

LoadControllerInputsmodeicontrollerFunctionj
= LoadTaskInputsmodeitaskj

where

LoadContrllerInputsmodeicontrollerFunctionj
:

{SensorPortV aluesmodeiCompNode1 ∪ InputMsgPortV aluesmodeiCompNode1

∪ PeriodicControllerOutputV aluesmodeiCompNode1}

→ PeriodicControllerInputV aluescontrollerFunctionj

= A function that captures the input-output relationship (produced by the

combined effect) of all the connections from SensorPort, InMsgPort, and

PeriodicControllerOutput blocks in modei of CompNode1 to the

PeriodicControllerInput blocks, associated with ControllerFunction block

controllerFunctionj in modei of CompNode1.

LoadTaskInputsmodeitaskj
:

{SensorPortV aluesmodeiService1 ∪ InputMsgPortV aluesmodeiService1

∪ TaskOutputPortV aluesmodeiService1} → TaskInputPortV aluestaskj
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= A function that captures the input-output relationship (produced by the

combined effect) of all the drivers, updating the task input ports of taskj in

modei of CPS service Service1.

14. ModeSwitchFunction
modeimodej
CompNode1 = ModeSwitchFunction

modeimodej
Service1

where

ModeSwitchFunction
modeimodej
CompNode1 : PeriodicControllerOutputV aluesmodeiCompNode1

→ PeriodicControllerOutputV alues
modej
CompNode1

= A function that takes as input the values of periodicControllerOutput

blocks in modei and produces the values to which periodicControllerOutput

blocks in modej are initialized after the mode switch from modei to modej of

ControlApp, associated with CompNode1.

ModeSwitchFunction
modeimodej
Service1 : TaskOutputV aluesmodeiService1

→ TaskOutputV alues
modej
Service1

= The function used in the definition of the driver associated with the

mode switch from modei to modej of CPS service Service1

The formal guarantee of equivalence between a CPS design specification and the

corresponding service-based CPS deployment can be stated in terms of Manna-Pnueli

Transition System for reactive computer systems by the following theorem:

Theorem 10.1. Let CompNode1 be a ComputingNode block in a CPS design speci-

fication, and let Service1 be the corresponding CPS service in the service-based CPS

deployment. Given

PCompNode = Manna-Pnueli Transition System representation of

ComputingNode block, CompNode1, in a CPS design specification
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P1Service = Manna-Pnueli Transition System representation of a CPS

computing node with one successfully deployed Giotto-based

CPS service, Service1,

OCompNode
in = Time ∪ {Set of SensorPort blocks, contained in CompNode1}

∪ {Set of InputMsgPort blocks, contained in CompNode1},

OService
in = Time ∪ {Set of Sensor Ports for Service1}

∪ {Set of Input Message Ports for Service1},

OCompNode
out = Time ∪ {Set of ActuatorPort blocks, contained in CompNode1}

∪ {Set of OutputMsgPort blocks, contained in CompNode1},

and

OService
out = Time ∪ {Set of Actuator Ports for Service1}

∪ {Set of Output Message Ports for Service1}.

For arbitrary computations σPCompNode
and σPService

, if

σtrPCompNode
under OCompNode

in = σtrP1Service
under OService

in

then

σtrPCompNode
under OCompNode

out = σtrP1Service
under OService

out

Proof. As outlined in Section 10.3, the temporally reduced behavior of transition

system P under observable variables O (σtrP � O) can also be represented as follows:

σtrP � O = f(∆T relevant
P �O, T imedTransitionSequenceT relevant

P �O) (A)

where

T relevantP � O = {τi | (τi ∈ TP ) ∧ (modification statements of transition τi

change the value of non-time state variables in O)}

∆T relevant
P �O = {∆τi | τi ∈ T relevantP � O}

∆τi = {∆sτi | s is a non-time state variable in O}

∆sτi = s′τi − sτi = Change in the value of state variable s, caused

by transition τi
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TimedTransitionSequenceT relevant
P �O = (t0, τ0), (t1, τ1), (t2, τ2), . . .

such that:

1) for each element (ti, τi), τi ∈ T relevantP � O and

system reaches time ti after transition τi is taken.

2) ti+1 ≥ ti

Specializing (A) for transition system PCompNode and observable variables

OCompNode
out :

σtrPCompNode
� OCompNode

out = f1(∆T relevant
PCompNode

�OCompNode
out

,

T imedTransitionSequenceT relevant
PCompNode

�OCompNode
out

) (A1)

Specializing (A) for transition system P1Service and observable variables OService
out :

σtrP1Service
� OService

out = f1(∆T relevant
P1Service

�OService
out

,

T imedTransitionSequenceT relevant
P1Service

�OService
out

) (A2)

From the Manna-Pnueli Transition System representation PCompNode, presented in

Appendix A, it can be seen that

T relevantPCompNode
� OCompNode

out = TModeSwitches
CompNode1 |PCompNode

∪ T T imeIncrementCompNode1 |PCompNode
(B1)

where

TModeSwitches
CompNode1 |PCompNode

= Set of transitions TModeSwitches
CompNode1 , as defined in PCompNode

T T imeIncrementCompNode1 |PCompNode
= Set of transitions T T imeIncrementCompNode1 , as defined in PCompNode

From the modification statements of transitions TModeSwitches
CompNode1 |PCompNode

and

T T imeIncrementCompNode1 |PCompNode
, outlined in Appendix A, it can be seen that for x > 0 and

y ≥ 0:(
actPortsCompNode1(t), outMsgPortsCompNode1(t)

)
=

fa
(
periodicControllerOutsCompNode1(t)

)
,

periodicControllerOutsCompNode1(t) =

fb
(
periodicControllerInsCompNode1(t− x)

)
,

and
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periodicControllerInsCompNode1(t) = fc
(
sensePortsCompNode1(t− y),

inMsgPortsCompNode1(t− y)
)
.

Therefore,(
actPortsCompNode1(t), outMsgPortsCompNode1(t)

)
=

fd
(
sensePortsCompNode1(t− x), inMsgPortsCompNode1(t− x)

)
,

As a result,

∆T relevant
PCompNode

�OCompNode
out

= f2

(
t, sensePortsCompNode1(t− x),

inMsgPortsCompNode1(t− x)
)

Now, by definition, the temporally reduced behavior of PCompNode under the set

of observable variables OCompNode
in (σtrPCompNode

� OCompNode
in ) captures the the time and

new value of sensor ports (sensePortsCompNode1) and input message ports

(inMsgPortsCompNode1) of CompNode1 at every change in the sensor port values and

input message port value. Therefore,

∆T relevant
PCompNode

�OCompNode
out

= f3

(
σtrPCompNode

� OCompNode
in

)
(C1)

From the Manna-Pnueli Transition System representation P1Service, outlined in

Appendix B, it can be seen that

T relevantP1Service
� OService

out = TModeSwitches
Service1 |P1Service

∪ T T imeIncrementService1 |P1Service
(B2)

where

TModeSwitches
Service1 |P1Service

= Set of transitions TModeSwitches
Service1 , as defined in P1Service

T T imeIncrementService1 |P1Service
= Set of transitions T T imeIncrementService1 , as defined in P1Service

From the modification statements of transitions TModeSwitches
Service1 |P1Service

and

T T imeIncrementService1 |P1Service
, outlined in Appendix B, it can be seen that for x > 0 and

y ≥ 0:(
actPortsService1(t), outMsgPortsService1(t)

)
= f ′a

(
taskOutPortsService1(t)

)
,

taskOutPortsService1(t) = f ′b
(
taskInPortsService1(t− x)

)
,

and

taskInPortsService1(t) = f ′c
(
sensePortsService1(t− y), inMsgPortsService1(t− y)

)
.
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Therefore,(
actPortsService1(t), outMsgPortsService1(t)

)
=

f ′d
(
sensePortsService1(t− x), inMsgPortsService1(t− x)

)
,

As a result,

∆T relevant
P1Service

�OService
out

= f ′2
(
t, sensePortsService1(t− x),

inMsgPortsService1(t− x)
)

Now, by definition, the temporally reduced behavior of P1Service under the set of

observable variables OService
in (σtrP1Service

� OService
in ) captures the the time and new value

of sensor ports (sensePortsService1) and input message ports (inMsgPortsService1) of

Service1 at every change in the sensor port values and input message port value.

Therefore,

∆T relevant
P1Service

�OService
out

= f ′3
(
σtrP1Service

� OService
in

)
Based on the properties that must hold by design between the ComputingN-

ode block CompNode1 and the corresponding CPS service Service1 (listed ear-

lier in this section), functions employed in the corresponding modification state-

ments of T relevantPCompNode
and T relevantP1Service

are equal to each other. Therefore, functions

f ′a, f
′
b, f
′
c, f
′
d, f

′
d, f

′
2, and f ′3 are equal to functions fa, fb, fc, fd, f2, and f3 respectively.

Hence,

∆T relevant
P1Service

�OService
out

= f3

(
σtrP1Service

� OService
in

)
(C2)

Furthermore, by the definition of TimedTransitionSequence presented earlier in

the proof:

TimedTransitionSequenceT relevant
P �O = f4

(
t, EnablingConditionsT relevant

P �O(t),

NextT imesT relevant
P �O(t)

)
(D)

where

EnablingConditionsT relevant
P �O = {EnablingConditionτi | τi ∈ T relevantP � O}

EnablingConditionτ (t) = status (true/false) of the enabling condition

of transition τ at time instant t
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NextT imesT relevant
P �O = {NextT imeτi | τi ∈ T relevantP � O}

NextT imeτ (t) = The value of state variable time after transition τ is taken

at time t

Specializing (D) for transition system PCompNode and observable variables

OCompNode
out :

TimedTransitionSequenceT relevant
PCompNode

�OCompNode
out

= f4

(
t,

EnablingConditionsT relevant
PCompNode

�OCompNode
out

(t),

NextT imesT relevant
PCompNode

�OCompNode
out

(t)
)

(D1)

Specializing (D) for transition system P1Service and observable variables OService
out :

TimedTransitionSequenceT relevant
P1Service

�OService
out

= f4

(
t,

EnablingConditionsT relevant
P1Service

�OService
out

(t),

NextT imesT relevant
P1Service

�OService
out

(t)
)

(D2)

From the enabling conditions (outlined in Appendix A) of set of transitions de-

scribed in (B1) , it can be seen that for y ≥ 0

EnablingConditionsT relevant
PCompNode

�OCompNode
out

(t) =

f5

(
ModeSwitchCheckT imesCompNode1,

ModeSwitchConditionsCompNode1(t− y)
)

(E1)

where

ModeSwitchCheckT imesCompNode1 = {Set of time instants (relative to last

mode switch time) at which mode switch conditions are checked

according to the ModeSwitchLogic block, contained in the

ComputingNode block CompNode1}.

ModeSwitchConditionsCompNode1(t) = {Set that contains the status at time t

of all the mode switch assertions associated with ModeSwitchLogic

block, contained in the ComputingNode block CompNode1}.

From the definition of ModeSwitchCheckT imeCompNode1(t, tswitchCompNode1,modei,

modej), presented in Appendix A:
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ModeSwithCheckT imesCompNode1 = fe(ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1) (F1)

where

ModePeriodsCompNode1 = {Periodmodei | modei ∈ModesCompNode1}

ModeSwitchFreqsCompNode1 = {SwitchFreqmodeimodej | ∃ a mode switch

from modei to modej of CompNode1}

Since mode switch decisions of a ModeSwitchLogic block, contained in a Comput-

ingNode block, are made based on the values of sensor ports, actuator ports, input

message ports, and output message ports associated with a ComputingNode block,

ModeSwithConditionsCompNode1(t) = fg
(
sensePortsCompNode1(t),

inMsgPortsCompNode1(t), actPortsCompNode1(t), outMsgPortsCompNode1(t)
)
,

According to the modification statements of transitions of PCompNode, for x > 0:(
actPortsCompNode1(t), outMsgPortsCompNode1(t)

)
=

fh
(
sensePortsCompNode1(t− x), inMsgPortsCompNode1(t− x)

)
Therefore,

ModeSwithConditionsCompNode1(t) = fi
(
sensePortsCompNode1(t),

inMsgPortsCompNode1(t), sensePortsCompNode1(t− x),

inMsgPortsCompNode1(t− x)
)

Now, by definition, the temporally reduced behavior of PCompNode under the set

of observable variables OCompNode
in (σtrPCompNode

� OCompNode
in ) captures the the time and

new value of sensor ports (sensePortsCompNode1) and input message ports

(inMsgPortsCompNode1) of CompNode1 at every change in the sensor port values and

input message port value. Therefore,

ModeSwithConditionsCompNode1(t) = fj(σ
tr
PCompNode

� OCompNode
in ) (G1)

Combining (E1), (F1), and (G1):

EnablingConditionsT relevant
PCompNode

�OCompNode
out

(t) = f6

(
ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1, σ
tr
PCompNode

� OCompNode
in

)
(H1)
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From the definition of tjump used in the modification statements (outlined in Ap-

pendix A) of set of transitions described in (B1) , it can be seen that:

NextT imesT relevant
PCompNode

�OCompNode
out

(t) = f7

(
tswitchCompNode1(t),ModePeriodsCompNode1,

ControllerFunctionFreqsCompNode1
)

(J1)

where

tswitchCompNode1(t) = Time of the last mode switch of CompNode1 when the system

is at time t

ControllerFunctionFreqsCompNode1 = {ControllerFucntionFreqfunctioni
|

fucntioni ∈ ContollerFucntionsCompNode1}

For y ≥ 0

tswitchCompNode1(t) = fk
(
ModeSwitchCheckT imesCompNode1,

ModeSwitchConditionsCompNode1(t− y)
)

(K1)

Combining (F1), (G1), (J1), and (K1):

NextT imesT relevant
PCompNode

�OCompNode
out

(t) = f8

(
ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1, ControllerFunctionFreqsCompNode1,

σtrPCompNode
� OCompNode

in

)
(L1)

Combining (D1), (H1), and (L1):

TimedTransitionSequenceT relevant
PCompNode

�OCompNode
out

= f8

(
ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1, ControllerFunctionFreqsCompNode1,

σtrPCompNode
� OCompNode

in

)
(M1)

In the next segment of the proof, the process of conversion between the two repre-

sentations of TimedTransitionSequenceT relevant
PCompNode

�OCompNode
out

, shown in (D1) and (M1),

will be repeated for TimedTransitionSequenceT relevant
P1Service

�OService
out

.

From the enabling conditions (outlined in Appendix B) of set of transitions de-

scribed in (B2) , it can be seen that for y ≥ 0

EnablingConditionsT relevant
P1Service

�OService
out

(t) = f5

(
ModeSwitchCheckT imesService1,

ModeSwitchConditionsService1(t− y)
)

(E2)
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where

ModeSwitchCheckT imesService1 = {Set of time instants (relative to last

mode switch time) at which mode switch conditions are checked

according to the service description of CPS service Service1}.

ModeSwitchConditionsService1(t) = {Set that contains the status at time t

of all the mode switch assertions associated with CPS service Service1}.

From the definition of ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej),

presented in Appendix B:

ModeSwithCheckT imesService1 = fe(ModePeriodsService1,

ModeSwitchFreqsService1) (F2)

where

ModePeriodsService1 = {Periodmodei | modei ∈ModesService1}

ModeSwitchFreqsService1 = {SwitchFreqmodeimodej | ∃ a mode switch from

modei to modej of Service1}

Since mode switch decisions of a CPS service are made based on the values of

sensor ports, actuator ports, input message ports, and output message ports of CPS

service,

ModeSwithConditionsService1(t) = f ′g
(
sensePortsService1(t),

inMsgPortsService1(t), actPortsService1(t), outMsgPortsService1(t)
)
,

According to the modification statements of transitions of P1Service, for x > 0:(
actPortsService1(t), outMsgPortsService1(t)

)
=

f ′h
(
sensePortsService1(t− x), inMsgPortsService1(t− x)

)
Therefore,

ModeSwithConditionsService1(t) = f ′i
(
sensePortsService1(t),

inMsgPortsService1(t), sensePortsService1(t− x),

inMsgPortsService1(t− x)
)

Now, by definition, the temporally reduced behavior of P1Service under the set of
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observable variables OService
in (σtrP1Service

� OService
in ) captures the the time and new value

of sensor ports (sensePortsService1) and input message ports (inMsgPortsService1) of

Service1 at every change in the sensor port values and input message port value.

Therefore,

ModeSwithConditionsService1(t) = f ′j(σ
tr
P1Service

� OService
in ) (G2)

Based on the properties that must hold by design between the ComputingNode

block CompNode1 and the corresponding CPS service Service1 (listed earlier in

this section), functions employed in the corresponding modification statements of

T relevantPCompNode
and T relevantP1Service

are equal to each other. Therefore, functions f ′g, f ′h, f ′i , and

f ′j are equal to functions fg, fh, fi, and fj respectively. Hence, combining (E2), (F2),

and (G2):

EnablingConditionsT relevant
P1Service

�OService
out

(t) = f6

(
ModePeriodsService1,

ModeSwitchFreqsService1, σ
tr
P1Service

� OService
in

)
(H2)

From the definition of tjump used in the modification statements (outlined in Ap-

pendix B) of set of transitions described in (B2) , it can be seen that:

NextT imesT relevant
P1Service

�OService
out

(t) = f7

(
tswitchService1(t),ModePeriodsService1,

TaskFreqsService1
)

(J2)

where

tswitchService1(t) = Time of the last mode switch of Service1 when the system

is at time t

TaskFreqsService1 = {TaskFreqtaski | taski ∈ TasksService1}

For y ≥ 0

tswitchService1(t) = fk
(
ModeSwitchCheckT imesService1,

ModeSwitchConditionsService1(t− y)
)

(K2)

Combining (F2), (G2), (J2), and (K2):

NextT imesT relevant
P1Service

�OService
out

(t) = f8

(
ModePeriodsService1,

ModeSwitchFreqsService1, TaskFreqsService1,
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σtrP1Service
� OService

in

)
(L2)

Combining (D2), (H2), and (L2):

TimedTransitionSequenceT relevant
P1Service

�OService
out

= f8

(
ModePeriodsService1,

ModeSwitchFreqsService1, TaskFreqsService1,

σtrP1Service
� OService

in

)
(M2)

Combining (A1), (C1), and (M1):

σtrPCompNode
� OCompNode

out = f9(ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1, ControllerFunctionFreqsCompNode1,

σtrPCompNode
� OCompNode

in ) (N1)

Combining (A2), (C2), and (M2):

σtrP1Service
� OService

out = f9(ModePeriodsService1,

ModeSwitchFreqsService1, TaskFreqsService1,

σtrP1Service
� OService

in ) (N2)

Based on the properties that must hold by design between the

ComputingNode block CompNode1 and the corresponding CPS service Service1:

ModePeriodsService1 = ModePeriodsCompNode1

ModeSwitchFreqsService1 = ModeSwitchFreqsCompNode1

TaskFreqsService1 = ControllerFunctionFreqsCompNode1

Substituting these value in (N2)

σtrP1Service
� OService

out = f9(ModePeriodsCompNode1,

ModeSwitchFreqsCompNode1, ControllerFunctionFreqsCompNode1,

σtrP1Service
� OService

in ) (N3)

By comparison of (N1) and (N3), it follows that if

σtrPCompNode
� OCompNode

in = σtrP1Service
� OService

in

then

σtrPCompNode
� OCompNode

out = σtrP1Service
� OService

out
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10.8 Non-interference between Co-deployed CPS Services

Another formal guarantee, required by the proposed CPS reference model, is the

non-interference between the co-deployed CPS services from the perspective of their

timing performance. Since a CPS computing node with one or more successfully

deployed Giotto-based CPS services is an example of a reactive computer system,

it can be represented as a Manna-Pnueli Transition System (which was designed as

a generic model for reactive computer systems). As a result, the formal guarantee

of non-interference between co-deployed CPS services (from the perspective of their

timing performance) can be stated in terms of Manna-Pnueli Transition System for

reactive computer systems by the following theorem:

Theorem 10.2. Given

P1Service = Manna-Pnueli Transition System representation of a CPS

computing node with one successfully deployed Giotto-based

CPS service, Service1,

PkServices = Manna-Pnueli Transition System representation of a CPS

computing node with k successfully deployed Giotto-based

CPS services that include Service1 and k − 1 additional services,

Oin = {Set of observable variables}

= Time ∪ {Set of Sensor Ports for Service1}

∪ {Set of Input Message Ports for Service1},

and

Oout = {Set of observable variables}

= Time ∪ {Set of Actuator Ports for Service1}

∪ {Set of Output Message Ports for Service1}.

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then
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σtrP1Service
under Oout = σtrPkServices

under Oout

Proof. From the Manna-Pnueli Transition System Representation PkServices, outlined

in Appendix C, it can be seen that transitions of PkServices can be divided into the

following disjoint subsets: T Service1PkServices
, T Service2PkServices

, . . . , T ServiceKPkServices
. Therefore,

TPkServices
= T Service1PkServices

∪ T Service2PkServices
∪ · · · ∪ T ServiceKPkServices

where

T Service1PkServices
= TModeSwitches

Service1 |PkServices
∪ T T imeIncrementService1 |PkServices

= Set of transitions of PkServices that deal with CPS service Service1

T Service2PkServices
= TModeSwitches

Service2 |PkServices
∪ T T imeIncrementService2 |PkServices

= Set of transitions of PkServices that deal with CPS service Service2

T ServiceKPkServices
= TModeSwitches

ServiceK |PkServices
∪ T T imeIncrementServiceK |PkServices

= Set of transitions of PkServices that deal with CPS service ServiceK

Moreover, based on the comparison of P1Service and PkServices (presented in Ap-

pendix B and Appendix C respectively), fMapService1 is a bijective function, when

fMapService1 : T Service1P1Service
→ T Service1PkServices

is defined as:

fMapService1(n) =


τmodeiService1|PkServices

if n = τmodeiService1|P1Service

τ
modeimodej
Service1 |PkServices

if n = τ
modeimodej
Service1 |P1Service

where

τmodeiService1|P1Service
= Transition τmodeiService1, as defined in P1Service

τmodeiService1|PkServices
= Transition τmodeiService1, as defined in PkServices

Before pursuing the proof of Theorem 10.2, proofs for some required lemmas are

presented below:

From the enabling conditions of all the time-advancing transitions of PkServices

(τmodeiService1|PkServices
, τmodeiService2|PkServices

, . . . , τmodeiServiceK |PkServices
), it can be noticed that in a

computation of PkServices, a time-advancing transition τmodeiServiceB|PkServices
is only taken

at time t if
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tnextServiceB(t) = min
{
tnextService1(t), tnextService2(t), . . . , tnextServiceK(t)

}
Furthermore, once the transition τmodeiServiceB|PkServices

is taken at time t, its modifica-

tion statements move the state variable time from t to t′ = tnextServiceB(t) and state vari-

able tnextServiceB to tnextServiceB
′(
> tnextServiceB(t)

)
. Therefore, in any computation of PkServices,

the following property always holds:

t ≤ min
{
tnextService1(t), tnextService2(t), . . . , tnextServiceK(t)

}
From this property, it follows that.

In any computation of PkServices, t ≤ tnextService1(t). (Lemma I)

From the transitions of P1Service (outlined in Appendix B), it can be seen that

state variable tswitchService1|P1Service
is only modified by transitions τmodeimodejService1 |P1Service

∈

TModeSwitches
Service1 |P1Service

. Furthermore, tswitchService1|P1Service
is assigned the value of time at

which these transitions are taken. Therefore, based on the enabling conditions of

τ
modeimodej
Service1 |P1Service

, for an arbitrary computation of P1Service:

For y ≥ 0

tswitchService1|P1Service
(t) = fa

(
ModeSwitchCheckT imesService1,

ModeSwitchConditionsService1(t− y)
)

(A1)

where

ModeSwitchCheckT imesService1 = {Set of time instants (relative to last

mode switch time) at which mode switch conditions are checked

according to the service description of CPS service Service1}.

ModeSwitchConditionsService1(t) = {Set that contains the status at time t

of all the mode switch assertions associated with CPS service Service1}.

From the definition of ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej),

presented in Appendix B:

ModeSwithCheckT imesService1 = fb(ModePeriodsService1,

ModeSwitchFreqsService1) (B1)

Repeating the argument presented in the proof of Theorem 10.1,
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ModeSwithConditionsService1(t) = fc(σ
tr
P1Service

� Oin) (C1)

Combining (A1), (B1), and (C1):

tswitchService1|P1Service
(t) = fd

(
ModePeriodsService1,ModeSwitchFreqsService1

σtrP1Service
� Oin

)
(D1)

From the transitions of PkServices (outlined in Appendix C), it can be seen that

state variable tswitchService1|PkServices
is again only modified by transitions τmodeimodejService1 |PkServices

∈ TModeSwitches
Service1 |PkServices

. Since enabling conditions and modification statements of

tswitchService1 in TModeSwitches
Service1 |PkServices

and TModeSwitches
Service1 |P1Service

are identical, behavior of

state variables tswitchService1|PkServices
and tswitchService1|P1Service

is identical. ( Furthermore, based

on Lemma I, a computation of PkServices cannot keep advancing time without tak-

ing the transitions associated with Service1.) Therefore, from (D1), in an arbitrary

computation of PkServices:

tswitchService1|PkServices
(t) = fd

(
ModePeriodsService1,ModeSwitchFreqsService1

σtrPkServices
� Oin

)
(E1)

From (D1) and (E1), it follows that

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then ∀ t ≥ 0

tswitchService1|P1Service
(t) = tswitchService1|PkServices

(t) (Lemma II)

From the definition of tjump used in the modification statements of state variable

tnextService1|P1Service
in transitions T Service1P1Service

(outlined in Appendix B), it can be seen that

during an arbitrary computation of P1Service:

tnextService1|P1Service
(t) = fe

(
tswitchService1|P1Service

(t),ModePeriodsService1,

TaskFreqsService1
)

(A2)

From the transitions of PkServices (outlined in Appendix C), it can be seen that

transitions T Service1PkServices
and T Service1P1Service

are identical in terms of modification statements

of state variable tnextService1|PkServices
and tnextService1|P1Service

as well as the definition of tjump
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used in these modification statements. Therefore, from (A2), in an arbitrary compu-

tation of PkServices:

tnextService1|PkServices
(t) = fe

(
tswitchService1|PkServices

(t),ModePeriodsService1,

TaskFreqsService1
)

(B2)

From the combination of Lemma II, (A2), and (B2), it follows that

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then ∀ t ≥ 0

tnextService1|P1Service
(t) = tnextService1|PkServices

(t) (Lemma III)

Let

TransitionSequenceTService1
P1Service

= τ0, τ1, τ2, . . .

such that: 1) τi ∈ T Service1P1Service

2) In a computation of P1Service, no transition τj ∈ T Service1P1Service
is

taken after transition τi but before transition τi+1

TransitionSequenceTService1
PkServices

= τ0, τ1, τ2, . . .

such that: 1) τi ∈ T Service1PkServices

2) In a computation of PkServices, no transition τj ∈ T Service1PkServices
is

taken after transition τi but before transition τi+1

From the description of P1Service, presented in Appendix B, it can be seen that

system starts in an initial state where modeService1 = mode1. Then, system keeps

taking transition τmode1Service1 until the time tswitch1
Service1 when system takes the transition

τ
mode1modej
Service1 . (modej depends on the status of mode switch assertions at time tswitch1

Service1.)

Then, system keeps taking transition τmodejService1 until the time tswitch2
Service1 when system takes

the transition τmodejmodekService1 and so on. Based on this description, it can be argued that

TransitionSequenceTService1
P1Service

= fh(ModeSwitchInstantsService1P1Service
,

ModeSwitchConditionsSetService1P1Service
) (A3)

where
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ModeSwitchInstantsService1P1Service
= {Set of all values that are assigned to state

variable tswitch1
Service1|P1Service

during a computation of P1Service}

= {tswitch1
Service1|P1Service

, tswitch2
Service1|P1Service

, . . . , }

ModeSwitchConditionsSetService1P1Service
=

{ModeSwitchConditionsService1(tswitch1
Service1|P1Service

),

ModeSwitchConditionsService1(tswitch2
Service1|P1Service

), . . . }

From the description of PkServices, presented in Appendix C, it can be seen that

system starts in an initial state where modeService1 = mode1. Then, from the set of

transitions T Service1PkServices
, system keeps on taking only the transition τmode1Service1 until the

time tswitch1
Service1 when system takes the transition τ

mode1modej
Service1 from T Service1PkServices

. (modej

depends on the status of mode switch assertions of Service1 at time tswitch1
Service1.) Then,

from the set of transitions T Service1PkServices
, system again keeps taking only the transition

τ
modej
Service1 until the time tswitch2

Service1 when system takes the transition τ
modejmodek
Service1 from

T Service1PkServices
and so on. Based on this description, it can be argued that

TransitionSequenceTService1
PkServices

= fh(ModeSwitchInstantsService1PkServices
,

ModeSwitchConditionsSetService1PkServices
) (B3)

where

ModeSwitchInstantsService1PkServices
= {Set of all values that are assigned to state

variable tswitch1
Service1|PkServices

during a computation of PkServices}

= {tswitch1
Service1|PkServices

, tswitch2
Service1|PkServices

, . . . , }

ModeSwitchConditionsSetService1PkServices
=

{ModeSwitchConditionsService1(tswitch1
Service1|PkServices

),

ModeSwitchConditionsService1(tswitch2
Service1|PkServices

), . . . }

if σtrP1Service
under Oin = σtrPkServices

under Oin, then from Lemma II,

ModeSwitchInstantsService1PkServices
= ModeSwitchInstantsService1P1Service

(C3)

Moreover, given that σtrP1Service
under Oin = σtrPkServices

under Oin, from the combi-

nation of (C1) and Lemma II:
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ModeSwitchConditionsSetService1PkServices
=

ModeSwitchConditionsSetService1P1Service
(D3)

Therefore, by combination of (A3), (B3), (C3), and (D3), it follows that:

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then

TransitionSequenceTService1
PkServices

=

TransitionSequenceTService1
P1Service

|fMapService1 (Lemma IV)

where

TransitionSequenceTService1
P1Service

|fMapService1 = A TransitionSequence obtained by

replacing each transition τ in TransitionSequenceTService1
P1Service

with fMapService1(τ)

Equipped with Lemmas I-IV, presented above, the proof of Theorem 10.2 can now

be pursued as follows:

As outlined in Section 10.3, the temporally reduced behavior of a transition system

P under observable variables O (σtrP � O) can also be represented as follows:

σtrP � O = f(∆T relevant
P �O, T imedTransitionSequenceT relevant

P �O) (A)

where

T relevantP � O = {τi | (τi ∈ TP ) ∧ (modification statements of transition τi

change the value of non-time state variables in O)}

∆T relevant
P �O = {∆τi | τi ∈ T relevantP � O}

∆τi = {∆sτi | s is a non-time state variable in O}

∆sτi = s′τi − sτi = Change in the value of state variable s, caused

by transition τi

TimedTransitionSequenceT relevant
P �O = (t0, τ0), (t1, τ1), (t2, τ2), . . .

such that:

1) for each element (ti, τi), τi ∈ T relevantP � O and
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system reaches time ti after transition τi is taken.

2) ti+1 ≥ ti

Specializing (A) for transition system P1Service and observable variables Oout:

σtrP1Service
� Oout = f1(∆T relevant

P1Service
�Oout

,

T imedTransitionSequenceT relevant
P1Service

�Oout
) (B)

Specializing (A) for transition system PkServices and observable variables Oout:

σtrPkServices
� Oout = f1(∆T relevant

PkServices
�Oout

,

T imedTransitionSequenceT relevant
PkServices

�Oout
) (C)

From the Manna-Pnueli Transition System Representation P1Service, outlined in

Appendix B, it can be seen that

T relevantP1Service
� Oout = TModeSwitches

Service1 |P1Service
∪ T T imeIncrementService1 |P1Service

(D)

where

TModeSwitches
Service1 |P1Service

= Set of transitions TModeSwitches
Service1 , as defined in P1Service

T T imeIncrementService1 |P1Service
= Set of transitions T T imeIncrementService1 , as defined in P1Service

From the Manna-Pnueli Transition System Representation PkServices, outlined in

Appendix C, it can be seen that only the transitions associated with CPS service

Service1 modify the observable state variables in Oout. Therefore,

T relevantPkServices
� Oout = TModeSwitches

Service1 |PkServices
∪ T T imeIncrementService1 |PkServices

(E)

where

TModeSwitches
Service1 |PkServices

= Set of transitions TModeSwitches
Service1 , as defined in PkServices

T T imeIncrementService1 |PkServices
= Set of transitions T T imeIncrementService1 , as defined in PkServices

Since definitions of transitions TModeSwitches
Service1 and T T imeIncrementService1 in both P1Service

(Appendix B) and PkServices (Appendix C) have exaclty the same modification state-

ments for observable variables Oout, the following can be inferred from (D) and (E):

∆T relevant
P1Service

�Oout
= ∆T relevant

PkServices
�Oout

(F )

Combining Lemma III, Lemma IV, and definition of

TimedTransitionSequence, it follows that:
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For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then

TimedTransitionSequenceTService1
PkServices

=

TimedTransitionSequenceTService1
P1Service

|fMapService1 (G)

where

TimedTransitionSequenceTService1
P1Service

|fMapService1 = A TimedTransitionSequence

obtained by replacing each transition τ in TimedTransitionSequenceTService1
P1Service

with fMapService1(τ)

Combining (G) with information about relevant transitions in (D) and (E), it

follows that

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
under Oin = σtrPkServices

under Oin

then

TimedTransitionSequenceT relevant
PkServices

�Oout
=

TimedTransitionSequenceT relevant
P1Service

�Oout
(H)

Combining (B), (C), (F), and (H), it follows:

For arbitrary computations σP1Service
and σPkServices

, if

σtrP1Service
� Oin = σtrPkServices

� Oin

then

σtrP1Service
� Oout = σtrPkServices

� Oout
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CHAPTER XI

SIMULATION-BASED SMART GRID TESTBEDS:

DEMONSTRATING THE ADVANTAGES OF

SERVICE-ORIENTED CPS REFERENCE MODEL

This dissertation has presented a service-oriented CPS reference model and associated

technologies that can address the unique challenges posed by the emerging CPS ap-

plication areas that are characterized by their larger scale and "always online" nature.

Smart grid [75] provides a prime example of the above mentioned large scale and "al-

ways online" CPS application domain. Due to the safety-critical nature of the smart

grid infrastructure, simulation-based smart grid testbeds play a central role for re-

search efforts in this area. This chapter presents simulation-based smart grid testbeds

that can be used to demonstrate the advantages of applying the proposed service-

oriented CPS approach (as compared to the traditional task-based computing model

or enterprise-domain service-oriented computing model) to smart grid applications in

a virtual environment before future steps are taken towards the implementation of

this service-oriented CPS approach on live smart grid infrastructure.

11.1 Smart Grid Testbed: Traditional Service-Oriented Com-
puting

This section presents the design of a simulation-based smart grid testbed that as-

sumes the application of enterprise-domain service-oriented computing technologies

(Web Services) for implementing smart grid applications. As shown in Figure 11.1,

this smart grid testbed combines a state-of-the-art network simulator, ns-3 [57], and
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Figure 11.1: Structure of the simulation-based smart grid testbed with traditional
enterprise-domain, service-oriented computing paradigm.

Figure 11.2: Additions to the standard structure of ns-3 network simulator as a
component of smart grid testbed with traditional SOC paradigm.
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a state-of-the-art power system simulator, PowerWorld [60]. The proposed simula-

tion environment also extends ns-3 with a cyber-physical co-simulation library [73],

model of an operating system’s task scheduler, model of inter-node message transport

using Web Services middleware, and Web Services based smart grid applications. Fig-

ure 11.2 shows the overall organization of ns-3 software after the additions that have

been made to ns-3 as a part of this simulation-based smart grid tested environment.

As shown later in this chapter, this smart grid testbed environment can be used

to explore the pitfalls of applying the enterprise-domain service-oriented computing

technologies (Web Services) for implementing smart grid applications in a virtual

environment.

11.2 Smart Grid Testbed: Proposed Service-Oriented CPS
Approach

This section presents the design of a simulation-based smart grid testbed that assumes

the application of service-oriented CPS reference model and associated technologies

(proposed in this dissertation) for implementing smart grid applications. As shown in

Figure 11.3, this smart grid testbed [73] combines a state-of-the-art network simulator,

ns-3 [57], and a state-of-the-art power system simulator, PowerWorld [60]. The pro-

posed simulation environment also extends ns-3 with a cyber-physical co-simulation

library [73], model of the proposed Giotto-based service deployment platform, and

CPS Services based smart grid applications. Figure 11.4 shows the overall organiza-

tion of ns-3 software after the additions that have been made to ns-3 as a part of this

simulation-based smart grid tested environment.

Since the smart grid infrastructure is a safety-critical system, any new ideas about

its operation must first be demonstrated in a virtual environment. Therefore, this

simulation-based smart grid testbed can be extremely useful in demonstrating the

application of the service-oriented CPS reference model and associated technologies,

proposed in this dissertation, to existing as well as future smart grid applications in
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Figure 11.3: Structure of the simulation-based smart grid testbed with proposed
CPS-enabled, service-oriented computing paradigm.

Figure 11.4: Additions to the standard structure of ns-3 network simulator as a
component of smart grid testbed with the proposed CPS-enabled SOC paradigm.

109



a virtual environment before further steps are taken towards the implementation of

this service-oriented CPS approach on live smart grid infrastructure.

11.3 Smart Grid Case Study: Demonstration of the Advan-
tages of Proposed Service-Oriented CPS Approach

This section uses the smart grid case study of Chapter 5 to compare the performance

of three implementation options: 1) task-based embedded control systems approach,

2) traditional enterprise-domain, service-oriented computing approach, and 3) service-

oriented CPS approach (proposed in this dissertation).

11.3.1 Smart Grid Case Study: Task-based Embedded Control Systems
Approach

Smart grid case study of Chapter 5 implements the power agreement application

on the same real-time computing platform after it has successfully supported the

operation of a demand response application for a period of time. According to the

task-based embedded control systems approach, used in the domain of automotive

and avionics, if the same real-time computing platform is to be used for implementing

another feedback controller at any time after the initial system development, the

system must be taken out of operation so that the task-based real-time control code

could be changed and tested. However, taking the smart grid infrastructure out

of operation for installing a new application is not practical. Therefore, task-based

approach used in the automotive and avionics domain cannot be used for smart grid

domain, because this approach cannot support the "always online" nature of smart

grid infrastructure.
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Figure 11.5: Demand response application from case study in Chapter 5: perfor-
mance comparison before and after the deployment of the power agreement appli-
cation (resource overloading on ProsumerCompNode computing platforms for prous-
mer1 and prosumer10).
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Figure 11.6: Power agreement application from case study in Chapter 5: convergence
behavior under resource overloading on ProsumerCompNode computing platforms for
prousmer1 and prosumer10 (only 4 out of 10 prosumers are depicted for readability).
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11.3.2 Smart Grid Case Study: Traditional Enterprise-Domain Service-
Oriented Computing Approach

Through the service description, service publication to a service repository, and ser-

vice discovery mechanisms of traditional enterprise-domain, service-oriented comput-

ing paradigm, it is possible to deploy power agreement application (of case study in

Chapter 5) on the smart grid infrastructure without taking the system out of op-

eration. However, traditional Web Services based SOC technologies do not support

"resource-aware" service deployment. As a result, the deployment of new services

associated with power agreement application might result in resource overloading of

the underlying computing platform, adversely affecting the timing performance of old

as well as the new services.

Using the case study of Chapter 5 and the smart grid testbed of Section 11.1, Fig-

ure 11.5 compares the performance of demand response application before and after

the deployment of power agreement application, when the deployment of new services

associated with power agreement application overloads some computing nodes. Fur-

thermore, in this scenario, the performance (convergence behavior) of newly deployed

power agreement application is also not satisfactory as shown in Figure 11.6, because

the power agreement application fails to converge in the allotted 30 seconds.

11.3.3 Smart Grid Case Study: Proposed Service-Oriented CPS Ap-
proach

Through the CPS Service Description Languages (presented in Chapter 8) and CPS

service deployment platform (presented in Chapter 9), the service-oriented CPS ap-

proach, proposed in this dissertation, can support "resource-aware" deployment of a

CPS service on a computing node in the field. As a result, power agreement appli-

cation (of case study in Chapter 5) can be deployed on the smart grid infrastructure

without taking the system out of operation and any resource overloading conditions

are detected at the deployment time. Therefore, the proposed CPS approach allows
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Figure 11.7: Demand response application from case study in Chapter 5: perfor-
mance after the successful deployment of CPS services associated with power agree-
ment application.
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Figure 11.8: Power agreement application from case study in Chapter 5: conver-
gence behavior after successful field deployment through CPS services on a computing
infrastructure that was already supporting a demand response application (only 4 out
of 10 prosumers are depicted for readability).
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system reconfiguration while avoiding any surprise runtime timing constraint failures

that might create unsafe conditions for the smart grid system. Using the smart grid

testbed of Section 11.2, Figure 11.7 and Figure 11.8 show the results from implement-

ing the case study of Chapter 5 through the proposed service-oriented CPS approach.
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CHAPTER XII

CONCLUSION

Availability of cost-effective communication and computation technologies has enabled

the development of a new breed of embedded control systems that are characterized

by their larger scale, longer life-cycles, and "always-online" nature. Some prime ex-

amples of such systems are smart grid, vehicular networks, and automated irrigation

networks. The development of this new breed of systems through traditional embed-

ded control system development techniques (employed in the fields of automotive and

avionics) will result in prohibitively high development and maintenance costs, because

these traditional techniques are unable to support disruption-free incremental system

deployment and reconfiguration that are fundamental requirements for handling the

larger scale and "always-online" nature of this new breed of systems.

Emerging research area of cyber-physical sytems (CPS) aims to address the limita-

tions of traditional embedded control system techniques by developing an integrated

theory as well as an integrated development toolset for controller design and controller

implementation phases of embedded control system development process. Although

CPS research has resulted in a set of isolated theoretical results and development tech-

nologies, it lacks a holistic framework that can enable the development of a consistent

set of theoretical results and development toolset for the emerging CPS application

domains of smart grid and vehicular networks, characterized by their larger scale and

"always-online" nature. In the past, various engineering domains have successfully

employed the concept of a "reference model" to enable clear communication among

stakeholders and to serve as the underlying framework for development of a consistent

set of standards and technologies for that domain.
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12.1 Summary of Contributions

This dissertation has formalized a service-oriented computing (SOC) based approach

to cyber-physical systems (CPS) in the form of a service-oriented CPS reference

model. The proposed reference model extends the traditional SOC paradigm for

handling hard real-time aspects of the domain of cyber-physical systems by intro-

ducing resource-aware service deployment and quality-of-service (QoS)-aware service

operation phases with certain formal performance guarantees. The proposed refer-

ence model also requires the existence of formal guarantees for the following aspects:

(1) functional equivalence between a CPS design specification and the corresponding

service-based CPS field deployment and (2) non-interference between the co-deployed

CPS services from the perspective of their timing performance. The existence of these

formal guarantees will provide a provably-correct process for converting a new CPS

application from a CPS design specification to a service-based CPS deployment in

the field without affecting the performance of already deployed CPS applications. As

a result, unlike the task-based reference model from the domains of automotive and

avionics, the proposed service-oriented CPS reference model will enable disruption-

free incremental system deployment and reconfiguration that are fundamental re-

quirements of the emerging safety-critical but large scale and "always-online" CPS

application domains such as smart grid and vehicular networks.

Although the development of suitable technologies for a domain according to the

requirements of a reference model for that domain is intended to be an on-going

effort by a research community, this dissertation has made significant contributions

to this effort by proposing solutions for the following technological requirements of

service-oriented CPS reference model:

• CPS design specification language.

• simulation environment for CPS design refinement.
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• service description language.

• service-based computing platform for CPS computing nodes with support for

resource-aware service deployment and QoS-aware service interaction.

By extending and applying the Manna-Pnueli Approach of formal methods for

reactive computer systems, this dissertation has also shown how the aforementioned

technological solutions combine to provide the formal performance guarantees, man-

dated by the proposed reference model. Finally, this dissertation has also presented

simulation-based smart grid testbeds that can be used to demonstrate the advan-

tages of the proposed service-oriented CPS approach in a virtual environment before

its implementation on safety-critical, live smart grid infrastructure.

12.2 Future Directions

This dissertation has presented a set of solutions for the technological requirements

of the proposed service-oriented CPS reference model that are based on Giotto pro-

gramming language. Giotto is a research-grade programming language that has been

demonstrated on the embedded computing platform for robotics and avionics [26].

For transitioning the proposed technologies to live smart grid infrastructure, devel-

opment of Giotto compilers for embedded computing platforms used in the domain

of power systems will be an important step.

It must be emphasized that the concept of a reference model and associated techno-

logical requirements allows a research community to investigate and compare multiple

solution approaches for meeting these technological requirements [58] [71]. Therefore,

in future, there could be multiple candidate solutions for meeting each of the tech-

nological requirements of the service-oriented CPS reference model, proposed in this

dissertation. However, in order to achieve the goals of disruption-free evolution and

reconfiguration of safety critical but large scale and "always-online" CPS application

domains (such as smart grid), any candidate set of solutions must ensure the existence
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of formal guarantees for the following aspects: (1) functional equivalence between a

CPS design specification and the corresponding service-based CPS field deployment

and (2) non-interference between the co-deployed services from the perspective of

their timing performance.
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APPENDIX A

MANNA-PNUELI TRANSITION SYSTEM

REPRESENTATION: CPS COMPUTING NODE IN

CPS-DSL

A ComputingNode block, CompNode1, of CPS-DSL can be represented as the fol-

lowing Manna-Pnueli Transition System, PCompNode < ΠPCompNode
,ΣPCompNode

,

TPCompNode
,ΘPCompNode

>:

• ΠPCompNode
— A finite set of state variables.

ΠPCompNode1
= {t, tswitchCompNode1,modeCompNode1, t

next
CompNode1,

sensePort1CompNode1, sensePort
2
CompNode1, . . . , sensePort

p
CompNode1,

inMsgPort1CompNode1, inMsgPort2CompNode1, . . . , inMsgPortrCompNode1,

actPort1CompNode1, actPort
2
CompNode1, . . . , actPort

q
CompNode1,

outMsgPort1CompNode1, outMsgPort2CompNode1,

, . . . , outMsgPortlCompNode1,

periodicControllerIn1
CompNode1, periodicControllerIn

2
CompNode1,

, . . . , periodicControllerInaCompNode1,

periodicControllerOut1CompNode1, periodicControllerOut
2
CompNode1,

, . . . , periodicControllerOutbCompNode1,

controllerFunctionMemory1
CompNode1,

controllerFunctionMemory2
CompNode1,

, . . . , controllerFunctionMemorycCompNode1}
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where

t = time,

tswitchCompNode1 = latest mode switch time of ControlApp block, associated

with ComputingNode block CompNode1,

modeCompNode1 = current mode of ControlApp block, associated with

ComputingNode block CompNode1,

tnextCompNode1 = next relevant time instant (actuator update, output

message update) during the current mode of operation of

ControlApp block, associated with ComputingNode block

CompNode1,

sensePortiCompNode1 = A SensorPort block, contained in the

ComputingNode block CompNode1,

inMsgPortiCompNode1 = An InputMsgPort block, contained in the

ComputingNode block CompNode1,

actPortiCompNode1 = An ActuatorPort block, contained in the

ComputingNode block CompNode1„

outMsgPortiCompNode1 = An OutputMsgPort block, contained in the

ComputingNode block CompNode1,

peridoicControllerIniCompNode1 = A PeriodicControllerInput block that

is contained in a mode of the ControlApp block,

associated with ComputingNode block CompNode1,

peridoicControllerOutiCompNode1 = A PeriodicControllerOutput block

that is contained in a mode of the ControlApp block,
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associated with ComputingNode block CompNode1,

controllerFunctionMemoryiCompNode1 = A ControllerFunctionMemory

block that is contained in the ControllerFuction block

of a mode of the ControlApp block, associated

with ComputingNode block CompNode1,

• ΣPCompNode
— A set of states.

Each state s in Σ is an interpretation of Π. An interpretation of a set of typed

variables is a mapping that assigns to each variable a value in its domain. The

domain of state variables t, tswitchCompNode1, and tnextCompNode1 is R≥0. The domain of

state variable modeCompNode1 is ModesCompNode1 = {Set of modes of Contro-

lApp block, contained in the ComputingNode block CompNode1}. Given the

following definitions of Πα and D, all the state variables in Πα have the domain

D:

Πα = {sensePortiCompNode1, actPortiCompNode1, outMsgPortiCompNode1,

periodicControllerIniCompNode1, periodicControllerOut
i
CompNode1,

controllerFunctionMemoryiCompNode1}

D = {x | (x ∈ R)

∧ (x can be represented by type double of computer system)}

The state variable inMsgPortiCompNode1 has the following domain:

P = {(x, y) | (x ∈ R) ∧ (y ∈ D)}

• TPCompNode
— A finite set of transitions.

TPCompNode1
= τI ∪ TModeSwitches

CompNode1 ∪ T T imeIncrementCompNode1

where
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τI = Idling Transition

TModeSwitches
CompNode1 = {τmodeimodejCompNode1 | ∃ a mode switch from modei to modej

in the ModeSwitchLogic block of ControlApp block,

associated with ComputingNode block CompNode1}

T T imeIncrementCompNode1 = {τmode1CompNode1, τ
mode2
CompNode1, . . . , τ

modeM
CompNode1}

As outlined in the summary of Manna-Pnueli Transition System approach, pre-

sented in Chapter 10, each transition τ can be characterized by an enabling

condition and a set of modification statements. Based on the above mentioned

set of transitions TPCompNode
of PCompNode, all the diligent transitions of PCompNode

can be completely described through the enabling conditions and modification

statements of the following generic transitions: τmodeimodejCompNode1 and τmodeiCompNode1.

a) τmodeimodejCompNode1 : Enabling Condition

C
τ
modeimodej
CompNode1

= (modeCompNode1 == modei)

∧ ModeSwitchConditionCompNode1(t,modei,modej)

∧ ModeSwitchCheckT imeCompNode1(t, tswitchCompNode1,modei,modej)

where

ModeSwitchConditionCompNode1(t,modei,modej) = An assertion that

returns true if the mode switch condition associated with mode switch

from modei to modej in the ModeSwitchLogic block, contained in

the ComputingNode block CompNode1, is true at time t.

ModeSwitchCheckT imeCompNode1(t, tswitchService1,modei,modej) = An assertion

that returns true if t− tswitchCompNode1 = a{ Periodmodei

SwitchFreqmodeimodej
},

for some a ∈ {1, 2, . . . , SwitchFreqmodeimodej}.
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b) τmodeimodejCompNode1 : Modification Statements

1. modeCompNode1
′ = modej

2. tswitchCompNode1
′
= t

3. tnextCompNode1
′
= t+ tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t+ tj = tswitchCompNode1

′

+ a{
Periodmodej

ControllerFunctionFreqcontrollerFucntiond

}),

for some

a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and for some

controllerFunctiond ∈ ControllerFunctions
modej
CompNode1

}
4. periodicControllerOuts

modej
CompNode1

′
=

ModeSwitchFunction
modeimodej
CompNode1(periodicControllerOutsmodeiCompNode1)

where

ModeSwitchFunction
modeimodej
CompNode1 = A function that produces the

values to which periodicControllerOutsmodejCompNode1 are initialized

after the mode switch from modei to modej of ControlApp,

associated with CompNode1

5. actPorts
modej
CompNode1

′
=

ControllerOutsToActs
modej
CompNode1(periodicControllerOuts

modej
CompNode1

′
)

where

ControllerOutsToActs
modej
CompNode1 = A function that captures the

input-output relationship (produced by the combined effect)

of all the connections between PeriodicControllerOutput blocks
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and ActuatorPort blocks in modej of CompNode1.

6. outMsgPorts
modej
CompNode1

′
=

ControllerOutsToOutMsgs
modej
CompNode1

(periodicControllerOuts
modej
CompNode1

′
)

where

ControllerOutsToOutMsgs
modej
CompNode1 = A function that captures

the input-output relationship (produced by the combined effect)

of all the connections between PeriodicControllerOutput blocks

and ActuatorPort blocks in modej of CompNode1.

7. periodicControllerInscontrollerFucntionb

′ =

LoadControllerInputs
modej
controllerFunctionb

(sensePorts
modej
CompNode1

′
,

inMsgPorts
modej
CompNode1

′
, periodicControllerOuts

modej
CompNode1

′
)

for every controllerFunctionb ∈ ControllerFunctions
modej
CompNode1

where

LoadControllerInputs
modej
controllerFunctionb

= A function that captures

the input-output relationship (produced by the combined effect)

of all the connections between PeriodicControllerInput blocks,

associated with ControllerFunction block controllerFunctionb

in modej, and SensorPorts, InputMsgPorts, and

PeriodicControllerOutput blocks in modej of CompNode1.

c) τmodeiCompNode1: Enabling Condition

C
τ
modei
CompNode1

= (modeCompNode1 == modei)

∧ ¬(ModeSwitchConditionCompNode1(t,modei,modec) ∧

124



ModeSwitchCheckT imeCompNode1(t, tswitchCompNode1,modei,modec))

∀ modec ∈ {modec | ∃ a mode switch from modei to modec of ControlApp

associated with ComputingNode block CompNode1 }

d) τmodeiCompNode1: Modification Statements

1. t′ = tnextCompNode1

2. tnextCompNode1
′
= t′ + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t′ + tj = tswitchService1+

a{ Periodmodei

ControllerFucntionFreqcontrollerFunctiond

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
}

and

for some controllerFunctiond ∈ ControllerFunctionsmodeiCompNode1

}
3. (periodicControllerOutscontrollerFunctione

′,

controllerFunctionMemorycontrollerFunctione

′) =

f controllerFunctione(periodicControllerInscontrollerFunctione ,

controllerFuctionMemorycontrollerFunctione)

∀ controllerFunctione ∈
{
controllerFunctione |

(controllerFunctione ∈ ControllerFunctionsmodeiCompNode1)

∧ (t′ = tswitchCompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctione
})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctione}
}

where

f controllerFunctione = The function implemented by the internal

components (Simulink blocks) of ControllerFunction block

controllerFucntione.
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4. periodicControllerInscontrollerFunctionf

′ =

LoadControllerInputsmodeicontrollerFunctionf
(sensePortsmodeiCompNode1

′
,

inMsgPortsmodeiCompNode1

′
, periodicControllerOutsmodeiCompNode1

′
)

∀ controllerFunctionf ∈
{
controllerFunctionf |

(controllerFunctionf ∈ ControllerFunctionsmodeiCompNode1)

∧ (t′ = tswitchCompNode1 + a{ Periodmodei

ControllerFunctionFreqcontrollerFunctionf

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctionf
}
}

5. actPortsmodeiCompNode1

′
=

ControllerOutsToActsmodeiCompNode1(periodicControllerOutsmodeiCompNode1

′
)

6. outMsgPortsmodeiCompNode1

′
=

ControllerOutsToOutMsgsmodeiCompNode1

(periodicControllerOutsmodeiCompNode1

′
)

• ΘPCompNode
— An initial condition.

Any initial state s of transition system PCompNode must satisfy the following

initial conditions:

t = 0

tswitchCompNode1 = 0

modeCompNode1 = mode1

tnextCompNode1 = min
{
tj | (tj > 0) ∧ (tj = a{ Periodmode1

ControllerFunctionFreqcontrollerFunctiond

})

for some a ∈ {1, 2, . . . , ControllerFunctionFreqcontrollerFunctiond
} and

for some controllerFunctiond ∈ ControllerFunctionsmode1CompNode1

}
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APPENDIX B

MANNA-PNUELI TRANSITION SYSTEM

REPRESENTATION: CPS COMPUTING NODE WITH 1

CPS SERVICE

A CPS computing node with one successfully deployed Giotto-based CPS service,

Service1, can be represented as the following Manna-Pnueli Transition System,

P1Service < ΠP1Service
,ΣP1Service

, TP1Service
,ΘP1Service

>:

• ΠP1Service
— A finite set of state variables.

ΠP1Service
= {t, tswitchService1,modeService1, t

next
Service1,

sensePort1Service1, sensePort
2
Service1, . . . , sensePort

p
Service1,

inMsgPort1Service1, inMsgPort2Service1, . . . , inMsgPortrService1,

actPort1Service1, actPort
2
Service1, . . . , actPort

q
Service1,

outMsgPort1Service1, outMsgPort2Service1, . . . , outMsgPortlService1,

taskInPort1Service1, taskInPort
2
Service1, . . . , taskInPort

a
Service1,

taskOutPort1Service1, taskOutPort
2
Service1, . . . , taskOutPort

b
Service1,

taskPvtPort1Service1, taskPvtPort
2
Service1, . . . , taskPvtPort

c
Service1}

where

t = time,

tswitchService1 = latest mode switch time of CPS service, Service1,

modeService1 = current mode of CPS service, Service1,

tnextService1 = next relevant time instant (task update, actuator update,
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output message update) during the operation of CPS

service Service1 in its current mode,

sensePortiService1 = sensor port of CPS service Service1,

inMsgPortiService1 = input message port of CPS service Service1,

actPortiService1 = actuator port of CPS service Service1,

outMsgPortiService1 = output message port of CPS service Service1,

taksInPortiService1 = input port of a task in CPS service Service1,

taskOutPortiService1 = output port of a task in CPS service Service1,

taskPvtPortiService1 = private port of a task in CPS service Service1,

• ΣP1Service
— A set of states.

Each state s in Σ is an interpretation of Π. An interpretation of a set of typed

variables is a mapping that assigns to each variable a value in its domain. The

domain of state variables t, tswitchService1, and tnextService1 is R≥0. The domain of state

variable modeService1 is MService1 = {Set of modes of CPS service Service1}.

Given the following definitions of Πα and D, all the state variables in Πα have

the domain D:

Πα = {sensePortiService1, actPortiService1, outMsgPortiService1,

taskInPortiService1, taskOutPort
i
Service1, taskPvtPort

i
Service1}

D = {x | (x ∈ R)

∧ (x can be represented by type double of computer system)}

The state variable inMsgPortiService1 has the following domain:

P = {(x, y) | (x ∈ R) ∧ (y ∈ D)}

• TP1Service
— A finite set of transitions.
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TP1Service
= τI ∪ TModeSwitches

Service1 ∪ T T imeIncrementService1

where τI = Idling Transition

TModeSwitches
Service1 = {τmodeimodejService1 | ∃ a mode switch from modei to modej

in CPS service Service1}

T T imeIncrementService1 = {τmode1Service1, τ
mode2
Service1, . . . , τ

modeM
Service1}

As outlined in the summary of Manna-Pnueli Transition System approach (Chap-

ter 10), each transition τ can be characterized by an enabling condition and a

set of modification statements. Based on the above mentioned set of transitions

TP1Service
of P1Service, all the diligent transitions of P1Service can be completely

described through the enabling conditions and modification statements of the

following generic transitions: τmodeimodejService1 and τmodeiService1.

a) τmodeimodejService1 : Enabling Condition

C
τ
modeimodej
Service1

= (modeService1 == modei)

∧ ModeSwitchConditionService1(t,modei,modej)

∧ ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej)

where

ModeSwitchConditionService1(t,modei,modej) = An assertion that returns

true if the guard condition associated with the driver of mode switch

from modei to modej of CPS service Service1 is true at time t.

ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej) = An assertion

that returns true if t− tswitchService1 = a{ Periodmodei

SwitchFreqmodeimodej
},

for some a ∈ {1, 2, . . . , SwitchFreqmodeimodej}.

b) τmodeimodejService1 : Modification Statements
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1. modeService1
′ = modej

2. tswitchService1
′
= t

3. tnextService1
′
= t+ tjump

where

tjump = min{tj | (tj > 0) ∧ (t+ tj = tswitchService1
′
+ a{

Periodmodej

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasks
modej
Service1) }

4. taskOutPorts
modej
Service1

′
=

ModeSwitchFunction
modeimodej
Service1 (taskOutPortsmodeiService1)

where

ModeSwitchFunction
modeimodej
Service1 = The function used in the

definition of the driver associated with the mode switch

from modei to modej of CPS service Service1

5. actPorts
modej
Service1

′
= TaskOutsToActs

modej
Service1(taskOutPorts

modej
Service1

′
)

where

TaskOutsToActs
modej
Service1 = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the actuator ports

in modej of CPS service Service1.

6. outMsgPorts
modej
Service1

′
=

TaskOutsToOutMsgs
modej
Service1(taskOutPorts

modej
Service1

′
)

where

TaskOutsToOutMsgs
modej
Service1 = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the output message
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ports in modej of CPS service Service1.

7. taskInPortstaskb
′ = LoadTaskInputs

modej
taskb

(sensePorts
modej
Service1

′
,

inMsgPorts
modej
Service1

′
, taskOutPortstaskb

′)

for every taskb ∈ Tasks
modej
Service1

where

LoadTaskInputs
modej
taskb

= A function that captures input-output

relationship (produced by the combined effect) of all the

drivers, updating the task input ports of taskb in modej

of CPS service Service1.

c) τmodeiService1: Enabling Condition

C
τ
modei
Service1

= (modeService1 == modei)

∧ ¬(ModeSwitchConditionService1(t,modei,modec) ∧

ModeSwitchCheckT imeService1(t, tswitchService1,modei,modec))

∀ modec ∈ {modec | ∃ a mode switch from modei to modec of CPS

service Service1 }

d) τmodeiService1: Modification Statements

1. t′ = tnextService1

2. tnextService1
′
= t′ + tjump

where

tjump = min
{
tj | (tj > 0) ∧ (t′ + tj = tswitchService1 + a{ Periodmodei

TaskFreqtaskd
})

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ TasksmodeiService1

}
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3. (taskOutPortstaske
′, taskPvtPortstaske

′) =

f taske(taskInPortstaske , taskPvtPortstaske)

∀ taske ∈
{
taske | (taske ∈ TasksmodeiService1)

∧ (t′ = tswitchService1 + a{ Periodmodei

TaskFreqtaske
})

for some a ∈ {1, 2, . . . , TaskFreqtaske}
}

where

f taske = The function used in the definition for taske of CPS

service Service1

4. taskInPortstaskf
′ = LoadTaskInputsmodeitaskf

(sensePortsmodeiService1

′
,

inMsgPortsmodeiService1

′
, taskOutPortsmodeiService1

′
)

∀ taskf ∈ {taskf | (taskf ∈ TasksmodeiService1)

∧ (t′ = tswitchService1 + a{ Periodmodei

TaskFreqtaskf
}

for some a ∈ {1, 2, . . . , TaskFreqtaskf})}

5. actPortsmodeiService1

′
= TaskOutsToActsmodeiService1(taskOutPortsmodeiService1

′
)

6. outMsgPortsmodeiService1

′
=

TaskOutsToOutMsgsmodeiService1(taskOutPortsmodeiService1

′
)

• ΘP1Service
— An initial condition.

Any initial state s of transition system P1Service must satisfy the following initial

conditions:

t = 0, tswitchService1 = 0

modeService1 = mode1

tnextService1 = min{tj | (tj > 0) ∧ (tj = a{ Periodmode1

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasksmode1Service1) }

132



APPENDIX C

MANNA-PNUELI TRANSITION SYSTEM

REPRESENTATION: CPS COMPUTING NODE WITH K

CPS SERVICES

A CPS computing node with k successfully deployed Giotto-based CPS services

(Service1, Service2, . . . , ServiceK) can be represented as the following Manna-Pnueli

Transition System, PkServices < ΠPkServices
,ΣPkServices

, TPkServices
,ΘPkServices

>:

• ΠPkServices
— A finite set of state variables.

ΠPkServices
= {t, tswitchService1,modeService1, t

next
Service1

sensePort1Service1, sensePort
2
Service1, . . . , sensePort

p
Service1,

inMsgPort1Service1, inMsgPort2Service1, . . . , inMsgPortrService1,

actPort1Service1, actPort
2
Service1, . . . , actPort

q
Service1,

outMsgPort1Service1, outMsgPort2Service1, . . . , outMsgPortlService1,

taskInPort1Service1, taskInPort
2
Service1, . . . , taskInPort

a
Service1,

taskoutPort1Service1, taskOutPort
2
Service1, . . . , taskOutPort

b
Service1,

taskPvtPort1Service1, taskPvtPort
2
Service1, . . . , taskPvtPort

c
Service1,

tswitchService2,modeService2, t
next
Service1

sensePort1Service2, sensePort
2
Service2, . . . , sensePort

p
Service2,

inMsgPort1Service2, inMsgPort2Service2, . . . , inMsgPortrService2,

actPort1Service2, actPort
2
Service2, . . . , actPort

q
Service2,

outMsgPort1Service2, outMsgPort2Service2, . . . , outMsgPortlService2,
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taskInPort1Service2, taskInPort
2
Service2, . . . , taskInPort

a
Service2,

taskoutPort1Service2, taskOutPort
2
Service2, . . . , taskOutPort

b
Service2,

taskPvtPort1Service2, taskPvtPort
2
Service2, . . . , taskPvtPort

c
Service2}

. . .

. . .

tswitchServiceK ,modeServiceK , t
next
ServiceK

sensePort1ServiceK , sensePort
2
ServiceK , . . . , sensePort

p
ServiceK ,

inMsgPort1ServiceK , inMsgPort2ServiceK , . . . , inMsgPortrServiceK ,

actPort1ServiceK , actPort
2
ServiceK , . . . , actPort

q
ServiceK ,

outMsgPort1ServiceK , outMsgPort2ServiceK , . . . , outMsgPortlServiceK ,

taskInPort1ServiceK , taskInPort
2
ServiceK , . . . , taskInPort

a
ServiceK ,

taskoutPort1ServiceK , taskOutPort
2
ServiceK , . . . , taskOutPort

b
ServiceK ,

taskPvtPort1ServiceK , taskPvtPort
2
ServiceK , . . . , taskPvtPort

c
ServiceK}

where

t = time,

tswitchService1 = latest mode switch time of CPS service, Service1,

modeService1 = current mode of CPS service, Service1,

tnextService1 = next relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service Service1 in its current mode,

tprevService1 = previous relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service Service1 in its current mode,
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sensePortiService1 = sensor port of CPS service Service1,

inMsgPortiService1 = input message port of CPS service Service1,

actPortiService1 = actuator port of CPS service Service1,

outMsgPortiService1 = output message port of CPS service Service1,

taksInPortiService1 = input port of a task in CPS service Service1,

taskOutPortiService1 = output port of a task in CPS service Service1,

taskPvtPortiService1 = private port of a task in CPS service Service1,

tswitchService2 = latest mode switch time of CPS service, Service2,

modeService2 = current mode of CPS service, Service2,

tnextService2 = next relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service Service2 in its current mode,

tprevService2 = previous relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service Service2 in its current mode,

sensePortiService2 = sensor port of CPS service Service2,

inMsgPortiService2 = input message port of CPS service Service2,

actPortiService2 = actuator port of CPS service Service2,

outMsgPortiService2 = output message port of CPS service Service2,

taksInPortiService2 = input port of a task in CPS service Service2,

taskOutPortiService2 = output port of a task in CPS service Service2,

taskPvtPortiService2 = private port of a task in CPS service Service2,

tswitchServiceK = latest mode switch time of CPS service, ServiceK,
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modeServiceK = current mode of CPS service, ServiceK,

tnextServiceK = next relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service ServiceK in its current mode,

tprevServiceK = previous relevant time instant (task update, actuator update,

output message update) during the operation of CPS

service ServiceK in its current mode,

sensePortiServiceK = sensor port of CPS service ServiceK,

inMsgPortiServiceK = input message port of CPS service ServiceK,

actPortiServiceK = actuator port of CPS service ServiceK,

outMsgPortiServiceK = output message port of CPS service ServiceK,

taksInPortiServiceK = input port of a task in CPS service ServiceK,

taskOutPortiServiceK = output port of a task in CPS service ServiceK,

taskPvtPortiServiceK = private port of a task in CPS service ServiceK.

• ΣPkServices
— A set of states.

Each state s in Σ is an interpretation of Π. An interpretation of a set of typed

variables is a mapping that assigns to each variable a value in its domain. The

domain of state variables t, tswitchService1, tnextService1, t
prev
Service1, t

switch
Service2, tnextService2, t

prev
Service2,

. . . , tswitchServiceK , tnextServiceK , and tprevServiceK is R≥0. The domains of state variables

modeService1, modeService2, . . . , and modeServiceK are MService1 = {Set of modes

of CPS service Service1}, MService2 = {Set of modes of CPS service Service2},

. . . , and MServiceK = {Set of modes of CPS service ServiceK} respectively.

Given the following definitions of Πα and D, all the state variables in Πα have

the domain D:
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Πα = {sensePortiService1, actPortiService1, outMsgPortiService1,

taskInPortiService1, taskOutPort
i
Service1, taskPvtPort

i
Service1,

sensePortiService2, actPort
i
Service2, outMsgPortiService2,

taskInPortiService2, taskOutPort
i
Service2, taskPvtPort

i
Service2,

. . .

. . .

sensePortiServiceK , actPort
i
ServiceK , outMsgPortiServiceK ,

taskInPortiServiceK , taskOutPort
i
ServiceK , taskPvtPort

i
ServiceK}

D = {x | (x ∈ R)

∧ (x can be represented by type double of computer system)}

The state variables inMsgPortiService1, inMsgPortiService2, . . . , and

inMsgPortiServiceK have the following domain:

P = {(x, y) | (x ∈ R) ∧ (y ∈ D)}

• TPkServices
— A finite set of transitions.

TPkServices
= τI ∪ TModeSwitches

Service1 ∪ T T imeIncrementService1 ∪ TModeSwitches
Service2

∪T T imeIncrementService2 ∪ · · · ∪ TModeSwitches
ServiceK ∪ T T imeIncrementServiceK

where

τI = Idling Transition

TModeSwitches
Service1 = {τmodeimodejService1 | ∃ a mode switch from modei to modej

in CPS service Service1}

T T imeIncrementService1 = {τmode1Service1, τ
mode2
Service1, . . . , τ

modeM
Service1}

TModeSwitches
Service2 = {τmodeimodejService2 | ∃ a mode switch from modei to modej

in CPS service Service2}
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T T imeIncrementService2 = {τmode1Service2, τ
mode2
Service2, . . . , τ

modeM
Service2}

TModeSwitches
ServiceK = {τmodeimodejServiceK | ∃ a mode switch from modei to modej

in CPS service ServiceK}

T T imeIncrementServiceK = {τmode1ServiceK , τ
mode2
ServiceK , . . . , τ

modeM
ServiceK}

As outlined earlier in the summary of Manna-Pnueli Transition System ap-

proach, each transition τ can be characterized by an enabling condition and a

set of modification statements. Based on the above mentioned set of transitions

T of PkServices, all the diligent transitions of PkServices can be completely de-

scribed through the enabling conditions and modification statements of the fol-

lowing generic transitions: τmodeimodejService1 , τmodeiService1, τ
modeimodej
Service2 , τmodeiService2, τ

modeimodej
ServiceK

and τmodeiServiceK .

a) τmodeimodejService1 : Enabling Condition

C
τ
modeimodej
Service1

= (modeService1 == modei)

∧ ModeSwitchConditionService1(t,modei,modej)

∧ ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej)

where

ModeSwitchConditionService1(t,modei,modej) = An assertion that

returns true if the guard condition associated with the driver of

mode switch from modei to modej of CPS service Service1 is true.

ModeSwitchCheckT imeService1(t, tswitchService1,modei,modej) = An assertion

that returns true if t− tswitchService1 = a{ Periodmodei

SwitchFreqmodeimodej
},

for some a ∈ {1, 2, . . . , SwitchFreqmodeimodej}.

b) τmodeimodejService1 : Modification Statements
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1. modeService1
′ = modej

2. tswitchService1
′
= t

3. tprevService1
′ = t

4. tnextService1
′
= t+ tjump

where

tjump = min{tj | (tj > 0) ∧ (t+ tj = tswitchService1
′
+ a{

Periodmodej

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasks
modej
Service1) }

5. taskOutPorts
modej
Service1

′
=

ModeSwitchFunction
modeimodej
Service1 (taskOutPortsmodeiService1)

where

ModeSwitchFunction
modeimodej
Service1 = The function used in the

definition of the driver associated with the mode switch

from modei to modej of CPS service Service1

6. actPorts
modej
Service1

′
= TaskOutsToActs

modej
Service1(taskOutPorts

modej
Service1

′
)

where

TaskOutsToActs
modej
Service1 = A function that captures the

input-output relationship (produced by the combined effect)

of all the drivers, updating the actuator ports in modej

of CPS service Service1.

7. outMsgPorts
modej
Service1

′
=

TaskOutsToOutMsgs
modej
Service1(taskOutPorts

modej
Service1

′
)

where

TaskOutsToOutMsgs
modej
Service1 = A function that captures the
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input-output relationship (produced by the combined

effect) of all the drivers, updating the output message

ports in modej of CPS service Service1.

8. taskInPortstaskb
′ = LoadTaskInputs

modej
taskb

(sensePorts
modej
Service1

′
,

inMsgPorts
modej
Service1

′
, taskOutPortstaskb

′)

for every taskb ∈ Tasks
modej
Service1

where

LoadTaskInputs
modej
taskb

= A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the task input ports

of taskb in modej of CPS service Service1.

c) τmodeiService1: Enabling Condition

C
τ
modei
Service1

= (modeService1 == modei)

∧ (∀A ∈ {1, 2, . . . , K}, tnextService1 ≤ tnextServiceA)

∧ ¬
(
ModeSwitchConditionService1(tprevService1,modei,modec) ∧

ModeSwitchCheckT imeService1(tprevService1, t
switch
Service1,modei,modec)

)
∀ modec ∈ {modec | ∃ a mode switch from modei to modec of

CPS service Service1 }

d) τmodeiService1: Modification Statements

1. t′ = tnextService1

2. tprevService1
′ = t′

140



3. tnextService1
′
= t′ + tjump

where

tjump = min{tj | (tj > 0) ∧ (t′ + tj = tswitchService1 + a{ Periodmodei

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ TasksmodeiService1) }

4. (taskOutPortstaske
′, taskPvtPortstaske

′) =

f taske(taskInPortstaske , taskPvtPortstaske)

∀ taske ∈ {taske | (taske ∈ TasksmodeiService1)

∧ (t′ = tswitchService1 + a{ Periodmodei

TaskFreqtaske
}

for some a ∈ {1, 2, . . . , TaskFreqtaske})}

where

f taske = The function used in the definition for taske of CPS

service Service1

5. taskInPortstaskf
′ = LoadTaskInputsmodeitaskf

(sensePortsmodeiService1

′
,

inMsgPortsmodeiService1

′
, taskOutPortsmodeiService1

′
)

∀ taskf ∈ {taskf | (taskf ∈ TasksmodeiService1)

∧ (t′ = tswitchService1 + a{ Periodmodei

TaskFreqtaskf
}

for some a ∈ {1, 2, . . . , TaskFreqtaskf})}

6. actPortsmodeiService1

′
= TaskOutsToActsmodeiService1(taskOutPortsmodeiService1

′
)

7. outMsgPortsmodeiService1

′
=

TaskOutsToOutMsgsmodeiService1(taskOutPortsmodeiService1

′
)

e) τmodeimodejService2 : Enabling Condition

C
τ
modeimodej
Service2

= (modeService2 == modei)

141



∧ ModeSwitchConditionService2(t,modei,modej)

∧ ModeSwitchCheckT imeService2(t, tswitchService2,modei,modej)

where

ModeSwitchConditionService2(t,modei,modej) = An assertion that returns

true if the guard condition associated with the driver of mode switch

from modei to modej of CPS service Service2 is true at time t.

ModeSwitchCheckT imeService2(t, tswitchService2,modei,modej) = An assertion

that returns true if t− tswitchService2 = a{ Periodmodei

SwitchFreqmodeimodej
},

for some a ∈ {1, 2, . . . , SwitchFreqmodeimodej}.

f) τmodeimodejService2 : Modification Statements

1. modeService2
′ = modej

2. tswitchService2
′
= t

3. tprevService2
′ = t

4. tnextService2
′
= t+ tjump

where

tjump = min{tj | (tj > 0) ∧ (t+ tj = tswitchService2
′
+ a{

Periodmodej

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasks
modej
Service2) }

5. taskOutPorts
modej
Service2

′
=

ModeSwitchFunction
modeimodej
Service2 (taskOutPortsmodeiService2)

where

ModeSwitchFunction
modeimodej
Service2 = The function used in the
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definition of the driver associated with the mode switch

from modei to modej of CPS service Service2

6. actPorts
modej
Service2

′
= TaskOutsToActs

modej
Service2(taskOutPorts

modej
Service2

′
)

where

TaskOutsToActs
modej
Service2 = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the actuator ports

in modej of CPS service Service2.

7. outMsgPorts
modej
Service2

′
=

TaskOutsToOutMsgs
modej
Service2(taskOutPorts

modej
Service2

′
)

where

TaskOutsToOutMsgs
modej
Service2 = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the output message

ports in modej of CPS service Service2.

8. taskInPortstaskb
′ = LoadTaskInputs

modej
taskb

(sensePorts
modej
Service2

′
,

inMsgPorts
modej
Service2

′
, taskOutPortstaskb

′)

for every taskb ∈ Tasks
modej
Service2

where

LoadTaskInputs
modej
taskb

= A function that captures input-output

relationship (produced by the combined effect) of all

the drivers, updating the task input ports of taskb

in modej of CPS service Service2.

g) τmodeiService2: Enabling Condition
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C
τ
modei
Service2

= (modeService2 == modei)

∧ (∀A ∈ {1, 2, . . . , K}, tnextService2 ≤ tnextServiceA)

∧ ¬
(
ModeSwitchConditionService2(tprevService2,modei,modec) ∧

ModeSwitchCheckT imeService2(tprevService2, t
switch
Service2,modei,modec)

)
∀ modec ∈ {modec | ∃ a mode switch from modei to modec of CPS

service Service2 }

h) τmodeiService2: Modification Statements

1. t′ = tnextService2

2. tprevService2
′ = t′

3. tnextService2
′
= t′ + tjump

where

tjump = min{tj | (tj > 0) ∧ (t′ + tj = tswitchService2 + a{ Periodmodei

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ TasksmodeiService2) }

4. (taskOutPortstaske
′, taskPvtPortstaske

′) = f taske(taskInPortstaske ,

taskPvtPortstaske)

∀ taske ∈ {taske | (taske ∈ TasksmodeiService2)

∧ (t′ = tswitchService2 + a{ Periodmodei

TaskFreqtaske
}

for some a ∈ {1, 2, . . . , TaskFreqtaske})}

where

f taske = The function used in the definition for taske of

CPS service Service2
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5. taskInPortstaskf
′ = LoadTaskInputsmodeitaskf

(sensePortsmodeiService2

′
,

inMsgPortsmodeiService2

′
, taskOutPortsmodeiService2

′
)

∀ taskf ∈ {taskf | (taskf ∈ TasksmodeiService2)

∧ (t′ = tswitchService2 + a{ Periodmodei

TaskFreqtaskf
}

for some a ∈ {1, 2, . . . , TaskFreqtaskf})}

6. actPortsmodeiService2

′
= TaskOutsToActsmodeiService2(taskOutPortsmodeiService2

′
)

7. outMsgPortsmodeiService2

′
=

TaskOutsToOutMsgsmodeiService2(taskOutPortsmodeiService2

′
)

i) τmodeimodejServiceK : Enabling Condition

C
τ
modeimodej
ServiceK

= (modeServiceK == modei)

∧ ModeSwitchConditionServiceK(t,modei,modej)

∧ ModeSwitchCheckT imeServiceK(t, tswitchServiceK ,modei,modej)

where

ModeSwitchConditionServiceK(t,modei,modej) = An assertion that returns

true if the guard condition associated with the driver of mode switch

from modei to modej of CPS service ServiceK is true at time t.

ModeSwitchCheckT imeServiceK(t, tswitchServiceK ,modei,modej) = An assertion

that returns true if t− tswitchServiceK = a{ Periodmodei

SwitchFreqmodeimodej
},

for some a ∈ {1, 2, . . . , SwitchFreqmodeimodej}.

j) τmodeimodejServiceK : Modification Statements

1. modeServiceK
′ = modej
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2. tswitchServiceK
′
= t

3. tprevServiceK
′ = t

4. tnextServiceK
′
= t+ tjump

where

tjump = min{tj | (tj > 0) ∧ (t+ tj = tswitchServiceK
′
+ a{

Periodmodej

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasks
modej
ServiceK) }

5. taskOutPorts
modej
ServiceK

′
=

ModeSwitchFunction
modeimodej
ServiceK (taskOutPortsmodeiServiceK)

where

ModeSwitchFunction
modeimodej
ServiceK = The function used in the

definition of the driver associated with the mode switch

from modei to modej of CPS service ServiceK

6. actPorts
modej
ServiceK

′
= TaskOutsToActs

modej
ServiceK(taskOutPorts

modej
ServiceK

′
)

where

TaskOutsToActs
modej
ServiceK = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the actuator

ports in modej of CPS service ServiceK.

7. outMsgPorts
modej
ServiceK

′
=

TaskOutsToOutMsgs
modej
ServiceK(taskOutPorts

modej
ServiceK

′
)

where

TaskOutsToOutMsgs
modej
ServiceK = A function that captures the

input-output relationship (produced by the combined

effect) of all the drivers, updating the output message
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ports in modej of CPS service ServiceK.

8. taskInPortstaskb
′ = LoadTaskInputs

modej
taskb

(sensePorts
modej
ServiceK

′
,

inMsgPorts
modej
ServiceK

′
, taskOutPortstaskb

′)

for every taskb ∈ Tasks
modej
ServiceK

where

LoadTaskInputs
modej
taskb

= A function that captures input-output

relationship (produced by the combined effect) of all the

drivers, updating the task input ports of taskb in

modej of CPS service ServiceK.

k) τmodeiServiceK: Enabling Condition

C
τ
modei
ServiceK

= (modeServiceK == modei)

∧ (∀A ∈ {1, 2, . . . , K}, tnextServiceK ≤ tnextServiceA)

∧ ¬
(
ModeSwitchConditionServiceK(tprevServiceK ,modei,modec) ∧

ModeSwitchCheckT imeServiceK(tprevServiceK , t
switch
ServiceK ,modei,modec)

)
∀ modec ∈ {modec | ∃ a mode switch from modei to modec of CPS

service ServiceK }

l) τmodeiServiceK: Modification Statements

1. t′ = tnextServiceK

2. tprevServiceK
′ = t′

3. tnextServiceK
′
= t′ + tjump

where
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tjump = min{tj | (tj > 0) ∧ (t′ + tj = tswitchServiceK + a{ Periodmodei

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ TasksmodeiServiceK) }

4. (taskOutPortstaske
′, taskPvtPortstaske

′) = f taske(taskInPortstaske ,

taskPvtPortstaske)

∀ taske ∈ {taske | (taske ∈ TasksmodeiServiceK)

∧ (t′ = tswitchServiceK + a{ Periodmodei

TaskFreqtaske
}

for some a ∈ {1, 2, . . . , TaskFreqtaske})}

where

f taske = The function used in the definition for taske of CPS

service ServiceK

5. taskInPortstaskf
′ = LoadTaskInputsmodeitaskf

(sensePortsmodeiServiceK

′
,

inMsgPortsmodeiServiceK

′
, taskOutPortsmodeiServiceK

′
)

∀ taskf ∈ {taskf | (taskf ∈ TasksmodeiServiceK)

∧ (t′ = tswitchServiceK + a{ Periodmodei

TaskFreqtaskf
}

for some a ∈ {1, 2, . . . , TaskFreqtaskf})}

6. actPortsmodeiServiceK

′
= TaskOutsToActsmodeiServiceK(taskOutPortsmodeiServiceK

′
)

7. outMsgPortsmodeiServiceK

′
=

TaskOutsToOutMsgsmodeiServiceK(taskOutPortsmodeiServiceK

′
)

• ΘPkServices
— An initial condition.

Any initial state s of transition system PkServices must satisfy the following initial

conditions:

t = 0

tswitchService1 = 0
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tswitchService2 = 0

. . .

. . .

tswitchServiceK = 0

modeService1 = mode1

modeService2 = mode1

. . .

. . .

modeServiceK = mode1

tnextService1 = min{tj | (tj > 0) ∧ (tj = a{ Periodmode1

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasksmode1Service1) }

tnextService2 = min{tj | (tj > 0) ∧ (tj = a{ Periodmode1

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasksmode1Service2) }

. . .

. . .

tnextServiceK = min{tj | (tj > 0) ∧ (tj = a{ Periodmode1

TaskFreqtaskd
}

for some a ∈ {1, 2, . . . , TaskFreqtaskd}

and for some taskd ∈ Tasksmode1ServiceK) }
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