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This paper describes the design and flight test of a completely self-contained autonomous
indoor Miniature Unmanned Aerial System (M-UAS). Guidance, navigation, and control
algorithms are presented, enabling the M-UAS to autonomously explore cluttered indoor
areas without relying on any off-board computation or external navigation aids such as GPS.
The system uses a scanning laser rangefinder and a streamlined Simultaneous Localization
and Mapping (SLAM) algorithm to provide a position and heading estimate, which is com-
bined with other sensor data to form a six degree-of-freedom inertial navigation solution.
This enables an accurate estimate of the vehicle attitude, relative position, and velocity.
The state information, with a self-generated map, is used to implement a frontier-based
exhaustive search of an indoor environment. Improvements to existing guidance algorithms
balance exploration with the need to remain within sensor range of indoor structures such
that the SLAM algorithm has sufficient information to form a reliable position estimate. A
dilution of precision metric is developed to quantify the effect of environment geometry on
the SLAM pose covariance, which is then used to update the 2-D position and heading in
the navigation filter. Simulation and flight test results validate the presented algorithms.

I. Introduction

Autonomous indoor reconnaissance and surveillance can bring key capabilities in both civilian and mil-
itary applications. Soldiers can use Miniature Unmanned Aerial Systems (M-UAS) to negotiate cluttered
and confined areas without risking human life. This technology can also bring increased capabilities for
disaster management and monitoring in confined urban spaces. M-UAS are ideal candidates for such mis-
sions as they can use three dimensional maneuvers to overcome obstacles that prevent the use of ground
vehicles. Indoor area exploration with ground robots that combine vision or scanning range sensors with
Inertial Measurement Units (IMUs) has been previously studied (see e.g. Refs. 1, 2, 3). However, significant
technological challenges exist in order to ensure reliable operation of M-UAS in such environments. First,
the M-UAS must be sufficiently small in order to successfully maneuver in cluttered indoor environments,
consequently limiting the amount of computational and sensory power that can be carried onboard. This
constraint on onboard computational power is further exacerbated by the fact that the control of miniature
rotorcraft platforms requires fast and accurate angular rate and pose information (pose is defined here as
the combination of position and attitude). Particularly, unlike in the case of ground robots, the onboard
controller must always be active and the vehicle cannot operate slowly in a stop-and-go manner. Typical
odometry methods such as wheel rotation are also useless for flying vehicles. Further, it is well known that
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integrating forward in time the acceleration and angular rate measurements from strapdown accelerometers
and gyroscopes without correcting for initial misalignment errors and sensor biases is not feasible as the
attitude and velocity estimates tend to drift rapidly (see e.g. Ref. 4). Traditionally for UAS, this infor-
mation is obtained by fusing inertial measurements with GPS-based absolute position information (see e.g.
Refs. 5, 6). As a result, most current algorithms for UAS guidance, navigation, and control rely heavily on
GPS signals, and hence are not suitable for indoor navigation where GPS is normally not available. Finally,
the M-UAS should be designed as an expendable unit for operation in potentially dangerous environments;
hence low-cost, lightweight designs need to be explored. These restrictions pose significant technological chal-
lenges for the design of reliable M-UAS platforms capable of navigating in cluttered areas in a GPS-denied
environment.

This paper describes Guidance, Navigation, and Control (GNC) algorithms and their implementation
on an M-UAS capable of exploring cluttered indoor areas without relying on external navigational or com-
putational aids such as GPS. In this paper, vehicles that are human-portable with maximum dimensions
between 30 cm and 2 m are considered “miniature”, where smaller vehicles are considered “micro” UAS.7

As shown in Figure 1, the system consists of an air vehicle, a ground station, and a safety pilot interface
for manual flight. The vehicle, referred to as the GTQ, is capable of completely self-contained autonomous
indoor flight. A ground station computer is used only to monitor vehicle health and status, to view the
vehicle-generated map, and to interact with the GTQ; it does not perform any GNC-related computation.
An off-the-shelf quadrotor platform is equipped with a low-cost off-the-shelf avionics package, on which the
presented algorithms are implemented. The navigation algorithm described here uses a nonlinear process
model to fuse information from a scanning laser range sensor, an IMU, and a sonar altitude sensor to form
an accurate estimate of the vehicle attitude, velocity, and position relative to indoor structures through an
Extended Kalman Filter (EKF) framework while simultaneously mapping the environment. A streamlined
Simultaneous Localization and Mapping (SLAM) routine is implemented to provide position updates to the
navigation software. The SLAM position estimates rely on the presence of features in the environment,
and since good position estimates are required for accurate navigation and mapping, a compact exploration
strategy is developed to ensure the vehicle maintains a trajectory that keeps it within sensor range of indoor
features. As described below in more detail, the control architecture uses a linear cascaded inner-outerloop
structure with an integrator element.

An important aspect of incorporating any measurement into the navigation state estimate is the un-
certainty associated with the measurement. A typical SLAM algorithm, such as CoreSLAM, provides a
three-state pose measurement consisting of the 2-D position with respect to the environment and a heading
estimate.8 Similar routines can also usually provide the “fit quality” of the scan measurement compared to
the stored map. However, this and other similar algorithms fail to identify the pose uncertainty due to the
structure of the environment. For example, a vehicle in a long, straight hallway may have a good estimate
of its position with respect to the walls on each side, but have very little certainty of its position along the
length of the hallway. Similarly, a vehicle in the middle of a circular room might have a good position esti-
mate, but a poor estimate of its heading using only the scan data unless additional feature-tracking methods
are used. In these situations, a scan-matching algorithm may produce a fit that has very little error, while
at the same time providing very little information in certain directions. This Dilution of Precision (DOP)
problem results in a pose estimate that quickly becomes overconfident in directions where few features are
observed. To solve this problem, a metric is developed and described below to identify the uncertainty in
the relative 2-D position and heading (x, y, and ψ) based on the orientation and distance to line segments
extracted from the scan data.

SLAM algorithms that combine IMU and vision sensors have been previously implemented for outdoor
aerial vehicles (see e.g. Refs. 9, 10), however the position estimate obtained using these methods was not
suitably accurate for indoor operation. Algorithms that use a laser scanner to implement SLAM have also
been previously implemented for indoor air vehicles (see e.g. Refs. 11, 12, 13). In those implementations,
information was transmitted to ground computers which performed the required SLAM computations and
relevant GNC computations. The key difference here is that the developed GNC algorithms, along with
SLAM, are specifically designed to be implemented entirely using the limited computational resources of
onboard embedded computers, without requiring any off-board computation. A fully onboard approach was
demonstrated by Shen et al in 2011, however that system uses a simple scan matching routine for pose
estimation, and no details are provided on how pose estimation error is determined.14 The GTQ, which first
flew autonomously in August 2010, is unique in that it requires no external navigational or computational aids
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to accomplish indoor exploration, and it uses SLAM-based pose estimation, with statistically appropriate
covariance, as a position update to the navigation filter. The reliance on onboard computation makes
the presented approach resilient to loss of data link, which can be unreliable in cluttered environments.
Furthermore, it avoids information bottlenecks, thereby making the approach scalable to multiple vehicles by
reducing the ground support equipment necessary for operation. The guidance algorithm described here and
a preliminary description of the system has appeared in conference papers.15,16,17 The new contributions in
this paper include detailed descriptions of the guidance, navigation and control system, and a discussion of the
DOP metric for characterizing the influence of environment topology on SLAM-based pose estimates. Finally,
this paper also presents and discusses flight test results of the integrated GNC algorithms implemented on
the GTQ.

A discussion of the vehicle platform and the avionics suite employed is presented in Section II. The details
of the guidance, navigation, and control algorithms are presented in Sections III, IV, and V respectively.
Simulation and flight test results are presented in Section VI, and the paper is concluded in Section VII.

GNC Software (Gumstix 
Overo Fire) 

- SLAM Navigation Solution 
- Wall Following Guidance 
- Attitude/Position Controller 

Stability Augmentation 
System (Atmel ATmega 128) 

Motors 

WiFi 
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Analog 
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IMU 
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Laser Scanner 

Quadrotor 
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Ground Station 
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Figure 1. The GTQ system architecture is designed to fuse information onboard from a scanning laser, sonar
altimeter, and an Inertial Measurement Unit (IMU). The IMU and the sonar altimeter sensors are read by the
Atmel ATmega microcontroller, which also serves as a rate-damping stability augmentation system. The scan-
ning laser rangefinder is directly read by the Gumstix Overo Fire onboard processor, which fuses information
from all sensors to form a six degree-of-freedom navigation solution onboard. This information is used along
with a frontier guidance exploration technique and a dynamic inversion controller to autonomously explore
cluttered GPS denied indoor areas. The ground station and safety pilot are not required for autonomous flight.

II. Description of Vehicle and Avionics

The AscTec Pelican quadrotor, made by Ascending Technologies GmbH, was selected as the base airframe
for the GTQ (see Figure 2(a)). The vehicle structure, motors, and rotors of the AscTec Pelican were used
without modification. The vehicle generates lift using four fixed-pitch propellers driven by electric motors.
Control is achieved by creating a relative thrust and torque difference between the propellers to effect pitching,
rolling, and yawing motion. Quadrotors can either be flown in a diamond configuration (one motor in the
front, right, back, and left corners) or a square configuration (two motors in the front, and two motors in the
back). Although many quadrotors in the aerial robotics community fly with a diamond configuration (see
e.g. Refs. 18, 19,20), the square configuration (shown in Figure 2(b)) was selected for this research to allow
the vehicle to go through smaller openings without changing orientation during flight. A detailed simulation
model of the GTQ was developed (see Ref. 17) using rigid body dynamics, accounting for aerodynamic forces,
and approximating motor dynamics with a second order system, in a manner similar to the implementation
found in Refs. 21,20,18,19.

The GTQ uses three primary measurement sensors for navigation, stability and control: a laser range
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(a) AscTec Pelican Platform (b) Quadrotor Flying in Square Configuration

Figure 2. The GTQ uses the Ascending Technologies Pelican for the aerial platform.

finder, a sonar altimeter, and an IMU. The laser range finder used is the Hokuyo URG-04LX-UG01. It
is capable of measuring distances up to 4 m over a 240-degree field of view, with a resolution of 1 mm
and 0.36 degrees respectively. The sonar altimeter used is the MB1040 LV MaxSonar EZ4 ultrasonic range
finder. It is capable of measuring distances up to 6.45 m away with resolution of 25.4 mm. The IMU is the
ADIS-16365-BMLZ built by Analog Devices Inc. It consists of a three-axis digital gyroscope and a three-
axis accelerometer that can measure forces up to ±18 g. These sensors are integrated with the Gumstix
Overo Fire onboard computer, which is a small and cost-effective ARM Cortex-A8 OMAP3530 computer-on-
module, by using the Atmel ATmega microcontroller as an interface (see Figure 1). The Gumstix computer
is equipped with 256 MB Flash RAM, and it can communicate using UART, SPI, and I2C interfaces as well
as 802.11g and Bluetooth wireless links. Two three-cell lithium polymer battery packs are used: one drives
the motors to provide lift, and the other powers the onboard computer.

III. Guidance Algorithm

Indoor navigation employing SLAM is by its nature based on measurements of local features. As a result,
any guidance system reliant on SLAM for navigation must use information found in the local environment.
This section describes a compact guidance strategy for exploration that performs an exhaustive search along
a path that stays close to walls in an effort to keep the scanning laser rangefinder within range of the features
needed for the SLAM algorithm to work. The implementation of SLAM and path-planning algorithms on
ground robots is a well-studied problem.22,23,24 However, in extending these methods to M-UASs, new
challenges are encountered. Hovering aircraft have more stringent power and weight constraints; vehicle
dynamics are faster and often unstable; and motion spans six degrees of freedom. In fact, many well-known
optimal guidance and path planning techniques are not currently feasible for onboard implementation on M-
UASs because of limited computational power. As a result, in contrast to many published works on guidance
and path planning, the following approach does not focus on optimal solutions for exploration. Instead, it
emphasizes an efficient algorithm that can quickly determine the location of unexplored areas while keeping
the vehicle within sensor range of geographic features.

SLAM with autonomous exploration using an M-UAS has been demonstrated by Achtelik et al.12 Achtelik
et al. use frontier-based exploration with goal-driven dynamic programming trajectory generation. However,
such navigation and guidance algorithms are computationally expensive. Sobers et al. have previously
developed a totally self-contained M-UAS architecture with a very compact SLAM algorithm and a simple
wall following guidance strategy.15 However, wall-following guidance alone does not place higher weight on
unexplored areas. In some cases, the method may only track the outer walls of a building and may leave
inner rooms completely unexplored. In other cases, unfavorable geometry may cause the vehicle to stay
in the same room or avoid certain rooms altogether. The guidance algorithm described here is designed
to improve upon simple wall-following logic by introducing an efficient global book-keeping feature, while
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keeping the algorithm simple enough to run alongside the SLAM algorithm without over-taxing the onboard
flight computer.

Frontier-based exploration can provide a way to “remember” what parts of the map have been previously
visited. The method was first introduced by Yamauchi25 as an effective way for a mobile robot to explore
an unknown environment. Without frontier-based exploration, a robot may have to explore an unknown
environment randomly with some form of obstacle avoidance logic. The principle of frontier-based exploration
can be simply stated: “try to get as much new information as possible by going to a boundary between explored
and unexplored territory”. Various forms of frontier-based exploration have been developed, most of which
require some form of global map in order to find frontiers and plan trajectories.25,26,27 A global map can
be grid-based, feature-based, or polygonal-based. Unlike the SLAM problem, which stores a global map
but does scan-matching only against local features, a map-based guidance system often requires nonlinear
optimization of multiple degrees of freedom. As a result, guidance algorithms utilizing such a global map
are typically not computationally practical onboard an M-UAS.

Rather than using a global map, Freda and Oriolo applied the guidance principle of frontier-based ex-
ploration to a data structure called a Sensor-Based Random Tree (SRT).28,29 This guidance system uses an
SRT method called SRT-Star to store frontiers and safe-regions, and to sequence new waypoints.28 In this
research, the SRT-Star method is improved by the addition of a wall-following algorithm to ensure that the
vehicle keeps close to walls, thereby increasing the chance of being in a geometry that is favorable for the
SLAM navigation routine.

Assuming near-hover dynamics and a semi-structured environment, first note that the three-dimensional
guidance problem can be simplified by decoupling level flight guidance from altitude guidance. Here, the
altitude guidance algorithm is simply a command to maintain a constant altitude above ground level. In-
dependent from altitude, the level flight guidance algorithm commands horizontal velocity and heading.
While the heading command (ψcmd) is generated solely from the location of frontiers, the horizontal velocity
command (vcmd) is composed of a contribution from the wall-following guidance algorithm (vwf ) and the
frontier guidance algorithm (vfr). Thus, the total commanded velocity is expressed by the relationship
vcmd = vwf + vfr. The commanded velocity and heading are determined by using data from the laser
rangefinder to determine exploration waypoints, which are stored in an SRT that is updated upon receipt of
new scan data at a rate of 10 Hz.

Algorithm 1 illustrates the sequence of commands that are executed at each update time step. The main
algorithm requires the vehicle’s current position (x), the position of the commanded waypoint (xwaypoint),
laser scan data (scan), the sensor based random tree structure (SRT ), and a threshold distance (d).

Algorithm 1 Compute Velocity Command (vcmd) and Heading Command (ψcmd)

Require: x, xwaypoint, scan, SRT , and d
1: vwf ⇐ getWallFollowingV elocity(scan)
2: if ||x− xwaypoint|| < d then
3: newFrontier ⇐ frontierSearch(scan)
4: SRT ⇐ updateSRT (SRT, newFrontier)
5: if frontierExist(SRT ) then
6: xwaypoint = newWaypoint(SRT )
7: else
8: xwaypoint = previousWaypoint(SRT )
9: end if

10: end if
11: vfr ⇐ getFrontierV elocity(x,xwaypoint)
12: ψcmd ⇐ getHeading(x,xwaypoint)
13: vcmd ⇐ vwf + vfr

The algorithm begins by computing the wall-following velocity component (vwf ) directly from the scan
data. The purpose of the wall-following velocity is to create an obstacle avoidance potential field while keeping
within sensor range of observable features in the environment. Let ri denote the ith range measurement shown
in Figure 3. The incremental velocity command (vri) in the radial direction for each scan point is obtained
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from:

vri =

{
Kwf (ri − rt) if ri ≥ rsafe;
Ksafe(ri − rt) if ri < rsafe;

(1)

where Kwf and Ksafe are gains that are chosen to be used for nominal flight and obstacle avoidance (safe)
flight as determined by a chosen safe radius rsafe. Furthermore, rt is a user-specified parameter representing
distance from walls that the vehicle tries to maintain.15

In this paper, two standard aerospace right-handed coordinate systems are defined: the inertial frame
(denoted by the preceding superscript i) is a local frame that is aligned to the local north, east, and down
directions; the body frame (denoted by the preceding superscript b) is aligned such that the x axis points
forward and the z axis points downward.4 The orthonormal rotation matrix operator Lb→i transports vectors
from the body to the inertial frame.10

Let θi shown in Figure 3 denote the angle of the ith range measurement with respect to body frame
(x,y), and let n denote the number of in-range scans points. The wall-following velocity command in the
body frame is calculated by projecting each vri into the body frame and summing over n as shown in (2).

bvxwf
=

n∑
i=1

vri cos(θi)
bvywf

=

n∑
i=1

vri sin(θi) (2)

Figure 3. Reference frame description of vehicle and scan points

Let ψ be the heading angle referenced from an arbitrary inertial frame (X,Y). The velocity command
in the body frame can be converted to the inertial frame using (3).

vwf =

[
ivxwf

ivywf

]
=

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

][
bvxwf

bvywf

]
(3)

The overall effect is attraction to a wall if the vehicle is too far away, and repulsion from a wall if the
vehicle is too close. In cases where multiple walls are in sensor range, the resultant velocity depends on wall
geometry and range. For instance, the vehicle will be attracted towards a wall further away compared to a
closer wall of the same length. Note that this implicitly promotes exploration.

The algorithm then checks the distance to the commanded waypoint (xwaypoint). If the vehicle has
not arrived at the commanded waypoint, the waypoint is not modified. If the vehicle has arrived at the
commanded waypoint, a new waypoint is generated by the frontier planner (Algorithm 1, lines 3 through
8). The vehicle is considered to have arrived at the commanded waypoint when it is within distance d of
the commanded waypoint. Finally, the commanded waypoint and vehicle’s 2-D pose are used to generate
the heading command (ψcmd) and frontier velocity component (vfr). Notice that although the commanded
waypoint may not change at a particular time step, the frontier velocity and heading change at every time
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step due to changes in the vehicle’s position.
SRT-Star, as outlined in lines 2 through 10 of Algorithm 1, uses the 2-D laser scanner measurements for

its frontier search.28 Upon arriving at a waypoint, SRT-Star divides the laser scan data into sectors. Each
sector can have up to three frontiers: a left-point, a mid-point, and a right-point. The mid-point of a sector
is marked as a frontier when there is absolutely no scan return from all scan points in that sector. The
left-point of a sector is marked as a frontier if there is a large difference between the smallest scan value of
the sector and the smallest scan value of the left adjacent sector. The right-point of a sector is marked as
a frontier if there is a large difference between the smallest scan value of the sector and the smallest scan
value of the right adjacent sector. A sector containing at least one frontier is considered unexplored. Sectors
and frontier points are illustrated in Figure 4. If at least one frontier exists, a new commanded waypoint
is generated by randomly picking a point in the middle of an unexplored sector. If no frontiers exist, the
vehicle backtracks to the previous waypoint. Further details of SRT-Star are discussed in Ref. 28.

Figure 4. SRT-Star divides laser a scan into sectors. Here, the sectors are visualized by displaying the minimum
range detected in each sector. The dots are frontiers marked by the algorithm. Sectors with frontiers, colored
light gray, are considered unexplored. The frontiers are stored in the SRT, and a commanded waypoint is
chosen randomly near the center of an unexplored sector.

One difference between SRT-Star as discussed by Freda et al.28 and the method described here is that the
original SRT-Star algorithm feeds the commanded waypoint directly to the controller. The method outlined
in Algorithm 1 calculates a frontier velocity command and a heading command based on the commanded
waypoint. It then blends the frontier velocity command with the wall-following velocity command, with the
resultant velocity and heading commands passed to the controller.

While the wall-following velocity command is described in (1-3) above, the frontier velocity command is
calculated using the simple proportional feedback law shown in (4). Here, Kfr is the frontier velocity gain
specified by user, the commanded waypoint in the inertial frame is given by xwaypoint and ywaypoint, and the
vehicle’s current position in the local inertial frame is given by x and y.

vfr =

[
ivxfr

ivyfr

]
=

[
Kfr(xwaypoint − x)

Kfr(ywaypoint − y)

]
(4)

The heading controller is a simple proportional law that points the vehicle toward the commanded way-
point. Note that this helps complete the map by steering the scanner field of view toward the neighborhood
of the frontier containing the waypoint. In addition, the wall-following velocity component will command
attraction to any walls in the vicinity, which also implicitly brings the vehicle towards the commanded
waypoint.

To improve flight safety, the total commanded velocity and the yaw rate are limited by the onboard
software. Furthermore, a time-out is implemented between any two waypoints. This is particularly useful
to counter drift of the inertial frame due to imperfections in the SLAM-based navigation solution, which
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can result in waypoints being placed in areas that are inaccessible without violating safe wall-distance
parameters. The following constant values were used for algorithms in this section to achieve the flight test
results presented below in Section VI: Kwf = 0.001 s−1, Ksafe = 0.3 s−1, rt = 1.22 m, rsafe = 0.61 m,
Kfr = 0.1 s−1.

IV. Navigation Algorithm

This section describes a navigation system that fuses IMU measurements, sonar altimeter measurements,
and SLAM-based pose estimates using an EKF-based navigation algorithm to produce accurate vehicle state
estimates in GPS denied environments. A novel method for determining the uncertainty of laser range
measurements relative to the topology of the environment is also presented.

A. Dilution of Precision

A typical scanning laser rangefinder performs its measurements by panning a laser across the environment
and sampling the return at fixed angular increments. The result is a series of 1-D range readings recorded
at consecutive, known angles. Although the error associated with an individual laser range measurement is
a function of many parameters, such as target color and surface finish, only the effect of range to target is
readily known during real-time operation. As a result, it is common practice to estimate the range error as
a function of the measured range, neglecting all other sources of error.30,31 However, if the local topology is
also considered, more information about the measurement uncertainty can be determined.

The topology of the local environment measured by the scanning laser affects the accuracy of the pose
estimate created when matching scans against a reference scan or a map. In essence, the vehicle position
estimate is most accurate when range is measured perpendicular to the local environment. As such, a long
featureless wall or hallway only provides position information perpendicular to the walls, and no information
parallel to the walls. Thus, any position estimate using scans in this environment will have a strong error
correlation in the x and y directions. This correlation is not detected by scan matching routines–the shape
of the environment must be considered. Likewise, a good heading estimate requires that range readings be
different in different directions such that slight changes in heading can be detected. Hence, straight walls
provide a good basis for measuring heading, while concave curved surfaces do not. Any pose estimation
routine that uses an error metric based on scan match quality rather than instrument accuracy and environ-
ment topology ignores this phenomenon. In order to produce a pose estimate with statistically appropriate
confidence, DOP must be considered.

The information contained in a laser scan can be calculated by combining the information provided by
each range measurement to form the information matrix. An inverse form of the Kalman filter, called the
information filter, utilizes the information matrix as defined in (5).32 In this formulation, the information
contained in each measurement is the inverse of the variance of the measurement, transformed by a measure-
ment matrix, H. When using SLAM pose estimation in-the-loop, the measurement provided to the EKF
navigation algorithm is the pose estimate (x, y, ψ), not the individual laser range measurements. The mea-
surement matrix thus describes the statistically proper way to incorporate the laser scanner range variance
into the pose estimate covariance matrix.

The measurement matrix, given in (6), is created by considering the geometry shown in Figure 5, while
Σ2
r is a diagonal matrix containing the error in the individual range measurements (7). First, the laser

scan is processed using the Polar Recursive Line Segmentation (PRLS) method described by Sobers.15 The
PRLS algorithm is an efficient way to calculate local normals, its primary purpose here, but it also provides
a segmented-line model of the environment in normal form, where ρi is the perpendicular distance from the
origin to each segment and φi is the angle to the normal direction. The PRLS algorithm uses the variable
substitution shown in (8) to enable a linear regression via Kalman filter sequential processing of the laser
scan points. Since the intent of this research is to demonstrate a very streamlined approach to SLAM, the
navigation algorithm did not perform feature tracking on the extracted line segments, although this is a
well-studied technique that could be incorporated to improve map accuracy if desired and the computational
expense is warranted. Here, the emphasis is on accurately modeling the error associated with each range
measurement to improve pose estimation.

I , HTΣ2
r
−1

H = R−1 (5)
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qi 
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line segment (ri, fi) 
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Figure 5. The information available from a single laser range measurement ri at measurement angle θi is in
the direction perpendicular to the local topology. Here, φi is the angle between the body x axis and the local
normal for each measurement, and θi is the angle from the body x axis to the measurement point. Hence, γi
is the angle (in the body frame) between the measurement direction and the local normal.

H =


cos(φ1) cos(γ1) sin(φ1) cos(γ1) r1 sin(γ1)

...
...

...

cos(φn) cos(γn) sin(φn) cos(γn) rn sin(γn)

 (6)

Σ2
r = diag(σ2

r1 , σ
2
r1 , σ

2
r1 , . . . , σ

2
ri , σ

2
ri , σ

2
ri , . . . , σ

2
rn , σ

2
rn , σ

2
rn) (7)

Ai ,
cosφi
ρi

, Bi ,
sinφi
ρi

(8)

To estimate DOP, the measurement matrix projects the range information (1/σ2
ri), which is in the range

direction, through angle γi onto the vector normal to the surface at each scan point. This captures the
effect that no information from the laser range measurement and scan matching routine is available parallel
to a surface. Then, the (x, y)body components of the information projection are calculated using angle φi
to get the information in each body direction. Thus, H is constructed, and the information matrix can
be calculated by summing over the entire set of scan points as shown in (9), where the summation terms
are defined in (10). Inverting the 3 × 3 information matrix produces the pose estimate covariance matrix,
Rpose, which is used to update the EKF full state estimate. Note from (10) that more position information
is present in range measurements when the surface is close to perpendicular (γi small), while measurements
have more heading information when the surface is close to parallel and farther away from the laser source
(ri large, γi ≈ ±π2 ).

I =

 Σxx Σxy Σxψ

Σxy Σyy Σyψ

Σxψ Σyψ Σψψ

 (9)
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Σxx ,
n∑
i=1

cos2(φi) cos2(γi)

σ2
ri

Σxy ,
n∑
i=1

cos(φi) sin(φi) cos2(γi)

σ2
ri

Σyy ,
n∑
i=1

sin2(φi) cos2(γi)

σ2
ri

Σxψ ,
n∑
i=1

ri cos(φi) cos(γi) sin(γi)

σ2
ri

Σψψ ,
n∑
i=1

r2i sin2(γi)

σ2
ri

Σyψ ,
n∑
i=1

ri sin(φi) cos(γi) sin(γi)

σ2
ri

(10)

While the above form preserves at least some geometric insight into the problem, the speed of the al-
gorithm can be significantly improved in implementation by avoiding excessive trigonometric evaluations
where possible. Although the scan points are measured directly in (r, θ) body coordinates, maps stored in
memory are generally in local inertial cartesian coordinates. Hence, transformation from polar to cartesian
coordinates is required regardless of the pose estimation algorithm used. Once that transformation is accom-
plished, avoiding further trigonometric calculations where possible improves performance. In this algorithm,
significant reductions in computational burden were achieved by leveraging the parameters A and B provided
directly by the PRLS algorithm (8), the fact that ρ2i = (A2

i + B2
i ), and the trigonometric identities shown

in (11). The resulting formulation shown in (12) requires no trigonometric evaluation other than the initial
conversion from polar to cartesian coordinates.

Figures 6-8 show the error ellipses associated with the pose measurement covariance calculated by the
algorithm presented here using scan data collected during experimental testing. In the figures, the error
is normalized using the sensor standard deviation σr and scaled up as indicated in the plots to improve
visualization of the shape and relative size of the measurement uncertainty. The 1-σ 2-D position uncertainty
is shown by an ellipse, while the 1-σ heading uncertainty is shown by a circle. In comparing the different
scenarios, the relative size of the circle indicates the relative uncertainty in the heading estimates, while the
size and shape of the error ellipse indicates the relative position uncertainty in the position estimation.

cos θi = xi

ri
cos(γi) = cos(φi − θi) = cosφi cos θi + sinφi sin θi

sin θi = yi
ri

sin(γi) = sin(φi − θi) = sinφi cos θi − cosφi sin θi

(11)

Σxx ,
n∑
i=1

A2
i [A

2
ix

2
i + 2AiBixiyi +B2

i y
2
i ]

(A2
i +B2

i )2r2i σ
2
ri

Σxy ,
n∑
i=1

AiBi[A
2
ix

2
i + 2AiBixiyi +B2

i y
2
i ]

(A2
i +B2

i )2r2i σ
2
ri

Σyy ,
n∑
i=1

B2
i [A2

ix
2
i + 2AiBixiyi +B2

i y
2
i ]

(A2
i +B2

i )2r2i σ
2
ri

Σxψ ,
n∑
i=1

Ai[AiBi(x
2
i − y2i )− xiyi(A2

i −B2
i )]

(A2
i +B2

i )2r2i σ
2
ri

Σψψ ,
n∑
i=1

[B2
i x

2
i − 2AiBixiyi +A2

i y
2
i ]

(A2
i +B2

i )2r2i σ
2
ri

Σyψ ,
n∑
i=1

Bi[AiBi(x
2
i − y2i )− xiyi(A2

i −B2
i )]

(A2
i +B2

i )2r2i σ
2
ri

(12)

B. CoreSLAM Implementation

A variety of SLAM algorithm implementations are available for free use at the web site OpenSLAM.org.
The algorithm used for this research, called CoreSLAM, was chosen primarily because it is simple, easy to
implement, and it uses integer math where possible to improve computational speed.33,8 There are two
main parts to a SLAM routine. The first task is to measure the distance to obstacles or landmarks in the
environment and map them given the vehicle’s position and orientation (i.e. mapping). The second task is
to determine the best estimate of the vehicle’s position and orientation based on the latest scan (or series of
scans) given a stored map (i.e. localization). The mapping and localization tasks are performed together to
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Figure 6. In a hallway, uncertainty is greater in the direction of the hallway. Note, the position and heading
error information has been nondimensionalized and scaled to enable visualization on the same graph.
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Figure 8. An environment with walls on several sides reduces uncertainty in the pose measurement. Note,
the position and heading error information has been nondimensionalized and scaled to enable visualization on
the same graph.

maintain the most current map and position estimate. As discussed in Ref. 15, the robotics and computer
science communities place considerable emphasis on keeping track of vehicle motion and solving chains of
pose constraints between different locations to make corrections to a global map. For basic indoor navigation
of flying vehicles a tradeoff exists between the desired level of accuracy in a global map and the computational
power available onboard. Therefore, in the presented results, localization and pose estimation with respect
to the immediate environment has been prioritized over building and maintaining a highly accurate global
map. Particularly, the implemented CoreSLAM mapping routine does not detect or correct errors in past
observations by performing loop closure.

In CoreSLAM, the estimated vehicle pose is used to align each new scan with the generated map. Core-
SLAM maintains a map that consists of a two-dimensional array containing integer values ranging from 0
to 65535. The map is initialized to a middle value of 32768, and values are adjusted as each new scan is
processed to reflect the evolving map. In order to easily visualize the map, the values are scaled to the
range 0-255 and displayed as a one-to-one scale 8-bit grayscale image. As observations are made, areas
where obstacles are detected are darkened, and areas that are clear of obstacles increase in brightness. The
map image thus represents an occupancy grid similar to that developed by Thrun et al, with color value
representing the probability that a square is occupied.34 As more areas are explored, the observed obstacles
are shown by darkened areas on the map, while clear areas are displayed by lighter colored pixels. In order
to reduce skew in the map caused by pitch and roll of the aircraft, the scans are projected into the 2-D
plane of the SLAM map using the vehicle attitude estimates from the EKF navigation filter. In addition,
occasional ceiling or floor measurements or other out-of-plane observations during flight have little temporal
persistence and as such have low probabilities of occupation on the map. Hence these do not adversely affect
the scan registration algorithm or resulting pose estimation.

Once the map is initialized, the algorithm incorporates new scan data into the map after each scan. The
scanning laser returns scan data as a vector of range measurements corresponding to a counterclockwise
increasing angle. CoreSLAM converts the data from polar to Cartesian coordinates before it is processed.
For this CoreSLAM implementation, the pose estimation algorithm was improved by initializing it using the
full EKF navigation solution rather than simply using the previous CoreSLAM pose estimate. The pose
estimation routine uses a Monte Carlo search of nearby poses to find a good estimate for the new pose,
based on user-defined parameters (see Ref. 8). During the Monte Carlo search, the current scan information
is evaluated at the predicted new pose to see how closely it matches the current map. If the scan matching
routine can find a better pose to match the current scan with the current map, the current pose is updated
to the new pose. In Ref. 8, the measure of how well a particular scan matches the current map is described
as the “distance” between the scan and the map. The Monte Carlo routine calculates the distance between
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the scan and the map and returns the pose that minimizes this distance. Next, the scan data is incorporated
into the map using the updated pose. Figure 9(a) shows a simulated building interior being explored by the
GTQ with a scanning laser rangefinder. Figure 9(b) shows the map generated during a simulated flight.

(a) Mapping a simulated environment (b) Map generated during simulation

Figure 9. The map maintained by the onboard mapping routine represents an occupancy grid, where the value
of each pixel in the image represents the likelihood that a particular grid square is occupied. Here, lighter
colors represent free space, while darker colors represent obstacles and medium gray areas are unexplored.
Areas with higher contrast represent greater certainty due to longer observation periods during the flight. The
green triangle represents the vehicle’s estimated position and heading.

For this research, the CoreSLAM algorithm was modified and improved in two important ways.15 First,
the position covariance matrix of the navigation solution was used as an input to the map update function. In
the original algorithm, a user-defined constant value was used to create the Gaussian uncertainty on obstacle
locations. To prevent unrealistic confidence in the map, the actual sensor range uncertainty (which is a
function of range detected) was added to the vehicle’s position uncertainty. The map update algorithm was
then modified to use this total uncertainty when assimilating scan data into the map. A second improvement
made to the CoreSLAM algorithm was to use the vehicle’s state estimate and covariance as inputs to the
Monte Carlo search. Thus, the random search initial conditions and search scope were significantly improved
over the original algorithm by providing statistically appropriate search parameters.

C. Extended Kalman Filter State Estimation

The presented navigation algorithm for vehicle state estimation is an extension of an EKF-based navigation
architecture developed previously.5,10 The major nontrivial modification here is that it is augmented to use
the SLAM pose estimate and sonar altitude measurements, with updates at 10 Hz and 20 Hz respectively,
in lieu of GPS position measurements and magnetometer heading measurements. The resulting nonlinear
filtering problem that is solved here is to correct for the drift biases of the inertial sensors and estimate the
position and attitude accurately by combining measurements. The EKF is a widely-used tool for obtaining
suboptimal solutions to nonlinear filtering problems (see e.g. Refs. 4,34). The architecture presented here is
of the mixed continuous-discrete type. The navigation filter is used to estimate the following vehicle states:
the position ix = [x1, x2, x3]T , velocity iv = [v1, v2, v3]T , and the attitude quaternion q = [q1, q2, q3, q4]T .
It is beneficial to use a minimal representation of the attitude quaternion for describing the orientation
of the aircraft.35 This is achieved by defining an error quaternion as δq ≈ [1, s]T such that δq ⊗ q̂ = q,
where ⊗ is the quaternion product operator. The error quaternion is propagated during EKF updates,
and is used to correct the attitude estimates after each measurement update. Note that in practice the
error quaternion takes on very small values, therefore, the update equation for error quaternions can be
approximated by ˙̂s = 0. The vector s ∈ <3 to be tracked is the minimal representation of the attitude
error. The accelerometer measurements ba = [ax, ay, az]

T and the gyroscope measurements bω = [p, q, r]
from the IMU (which updates at 100 Hz) are modeled to account for sensor biases as follows: ba = araw−ba
and bω = ωraw − bg. The navigation filter is designed to estimate the biases ba ∈ <3 and bg ∈ <3 of
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the accelerometer and gyroscope respectively. This is important, as measurements from low-cost off-the-
shelf IMUs are often subject to an unknown bias. In combination, the state vector to be estimated by the
navigation filter is x̂(t) ∈ <15 and is given as

x̂(t) =
[
ŝ,i x̂,i v̂, b̂a, b̂g

]T
, (13)

where .̂ represents estimated values. The following nonlinear process model is used for predicting state
estimates:

˙̂
ba = 0, (14)

˙̂
bg = 0, (15)

˙̂s = 0, (16)

i ˙̂x = v̂, (17)

i ˙̂v = L̂b→i
ba. (18)

The following equation is used to predict the quaternion estimate using bias-corrected measurements from
the gyroscopes:

˙̂q =
1

2


0 −p −q −r
p 0 r −q
q −r 0 p

r q −p 0

 (19)

The error covariance P is propagated using the following equation

Ṗ = AP + PAT + Q, (20)

where A is the Jacobian of the process model with respect to the states, and Q is the process covariance
matrix. Let the superscripts − and + denote predicted and corrected variables, respectively. The process
model is propagated using (14)-(19) to yield x̂−. The navigation EKF then corrects the predicted states and

covariance using a measurement model h(x̂
−

k ) as follows:

x̂
+

k = x̂
−

k + Kk

(
zk − h(x̂

−

k )
)

(21)

P
+

k =
(
I−KkHk(x̂

−

k )
)
P

−

k (22)

Kk = P
−

k HT
k (x̂

−

k )
(
Hk(x̂

−

k )P
−

k HT
k (x̂

−

k ) + Rk

)−1
(23)

where Rk denotes the measurement covariance matrix and Hk denotes the Jacobian of the measurement
model (the information matrix). The updates are performed sequentially. That is, whenever a sensor
measurement is available, the state and error covariances are updated for that measurement.10 This handles
the real-world situation where sensor measurements arrive at different update rates. The sonar measurement
is uncorrelated to other measurements, hence its measurement model is given by zsonar = x3 + ωsonar,
where ωsonar is white noise with experimentally determined variance. The covariance of the SLAM pose
measurement, Rpose, is calculated by inverting the information matrix as shown in (5). Rpose is in the body
frame, and is transformed to the inertial frame using Lb→i. Note that the quaternion is normalized and the
error quaternion ŝ is reset to 0 after every measurement update.

V. Control Algorithm

A. Stability Augmentation System

The quadrotor platform is inherently unstable, and without control inputs the platform would enter an
uncontrolled drift in velocity and angular rates eventually colliding with the ground or nearby obstacles.
Quadrotors are also known to be notoriously hard to control even for human pilots, particularly because
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the relationship between thrust and stick deflection is nonlinear and the attitude is coupled heavily with
velocity. Hence, it is desirable to incorporate rate damping on all the angular rate axes to aid the pilot in
controlling the quadrotor. Let p̂, q̂, and r̂ denote the gyroscope measurements of the quadrotor roll, pitch,
and yaw rates, and δpp, δqp, and δrp denote the pilot roll, pitch, and yaw stick deflections. Then, the actual
rate commands are assigned using the following proportional control logic:

δp = δpp −Kpp̂ (24)

δq = δqp −Kq q̂ (25)

δr = δrp −Kr r̂ (26)

In the above equations, Kp, Kq, and Kr denote the linear gains chosen to provide appropriate rate damping.

B. Attitude and Position Controller

The complexity of a control system depends not only on the quantities being controlled, but also on the
dynamics of the system itself. Unlike ground vehicles, unstable air vehicles are susceptible to oscillation
and divergent flight when the control system is not properly tuned. Even for stable flying vehicles, coupling
between lateral and longitudinal motion, as well as aerodynamic interaction with the environment, must
be considered. The control architecture used here leverages a proven model reference control architecture
developed for control of a VTOL UAS.36,37,38 In this architecture, a position control loop generates a velocity
command, a velocity control loop generates an attitude command, and an attitude control loop generates
servo commands to stabilize the vehicle by controlling the angular rates. Kannan has shown that such a
nested and cascaded control loop architecture with actuator saturation can indeed be used to control VTOL
UAS.37

Outer loop 
Position 
control 

Inner loop 
Attitude 
control 

Motor control 
and stability 

augmentation 

Simultaneous 
6 DOF 

navigation and 
mapping 

Frontier 
Guidance 

Throttle 
command 

Attitude 
command 

Position 
command 

Laser 
Scanner 

Sonar IMU 

Sensor output 

Figure 10. A representation of the GTQ control architecture. Sensor information is fused to simultaneously
estimate the vehicle velocity, attitude, and position as well as for mapping the environment. This information
is used by the frontier guidance algorithm to command position-based waypoints. A cascaded outer-loop
position and inner-loop attitude controller is used to track the desired waypoints.

This system of nested control loops (see Figure 10) requires that the vehicle maintain an estimate of its
position, velocity, attitude, and angular rate, with the addition of an external inertial position reference if
position control is to be ultimately achieved. Following is a brief description of the implemented dynamic
inversion based model reference control architecture (see references Refs. 39,36,37,38 for further details).

Let the state of the system for controls purposes be represented by x = [x1,x2]T , where x1 = [u, v, w]T

denotes the outerloop state vector representing the body velocity in the x, y, and z axes respectively, and
x2 = [p, q, r]T denotes the innerloop state vector representing the body angular rate around x, y, and z axes
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respectively. Let δ = [δp, δq, δr]
T denote the roll, pitch, and yaw commands. Next follows a discussion of

the innerloop design; the outerloop design follows similarly. Begin by assuming that the rotorcraft dynamics
around a trim point can be represented by the following linear equation:

ẋ2 = A1x1 + A2x2 + Bδ + Bδtrim , (27)

where A1 ∈ <3×3 and A2 ∈ <3×3 denote the matrices containing the linearized estimates of the translational
and attitude aerodynamic derivatives and B ∈ <3×3 represents the matrix containing the control effectiveness
derivatives. Note that with nonzero control effectiveness derivatives B is an invertible matrix. Let αdes
denote the desired angular acceleration. Then, the required control input δ can be found by inverting an
approximation of (27) by ignoring the unknown trim input:

δ = B−1(αdes −A1x1 −A2x2). (28)

A linear reference model is selected to characterize the desired response of the system

ẋ2rm = Armx2rm + Brmr. (29)

This results in a tracking error e = x2rm − x2. The desired angular acceleration is calculated as

αdes = urm + upd − uI , (30)

where urm denotes a feedforward command set to be equal to ẋ2rm , upd = Ke denotes a feedback command
with K ∈ <3×3 a positive definite matrix containing the linear feedback gains, and uI denotes the output of
an integrator. Differentiating the tracking error with respect to time, we obtain

ė = ẋ2rm − ẋ2 (31)

= urm − (A1x1 + A2x2 + B(B−1(αdes −A1x1 −A2x2)) + Bδtrim) (32)

= −upd + uI −Bδtrim (33)

= −Ke + uI −Bδtrim. (34)

Therefore, if uI − Bδtrim = 0, the tracking dynamics are exponentially stable. The integral control input
uI is updated using the following differential equation

u̇I = −eTPB1, (35)

where P is the positive definite solution to the Lyapunov equation 0 = KTP + PK + Q for a nonnegative
definite matrix Q, and 1 = [1, 1, 1]T . The stability of the control law in (30) can be established using
Lyapunov techniques.36 Note that in the presented control architecture the dynamics of the quadrotor are
assumed to be linear. For the purpose of the flight tests results reported in this paper, this approximation
was found to be sufficient. This assumption however, can be removed by using an adaptive controller with
a neural network adaptive element.36,38

VI. Results

A. Simulation Results

The Georgia Tech UAV Simulation Tool (GUST) framework was utilized for developing a simulation of the
vehicle, sensors, and environment.40 The simulation is designed to reduce development time through risk-
free testing of GNC routines. The simulation includes modeling of uncertainties such as gusts, modeling of
indoor environments, simulation of complex vehicle dynamics, and elaborate emulation of all sensors and
their noise characteristics. The key feature of this simulation environment is that onboard flight code can be
directly tested in the simulation, allowing seamless integration of guidance and control laws refined through
software-in-the-loop and hardware-in-the-loop testing.

Figure 11 shows a sequence of screen-captures from a simulated flight of the developed integrated guidance
navigation and control strategy. The vehicle, its trajectory, commanded waypoint, laser scan, active SRT,
and the building are shown in Figure 11. The results confirm that the vehicle is able to sense its surroundings,
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form a feasible six degree of freedom navigation solution, and autonomously avoid obstacles while creating
the SRT and exploring the building. In Figure 11(c), the quadrotor is able to pass through a small gap
on the northwest corner without collision. The quadrotor then explores towards the east of the building,
attempting to do an exhaustive search of the building.

(a) (b) (c)

Figure 11. Simulated of exploration of an unknown indoor environment.

B. Flight Test Results

This section presents flight test results of the GTQ during fully autonomous exploration of an indoor cluttered
environment without any external sensing aids (such as GPS). The onboard GNC algorithm does not assume
any a priori knowledge of the indoor environment. Navigation is performed by solving the SLAM problem
online using techniques presented in Section IV. Guidance is achieved by a frontier-guidance method coupled
with wall-following guidance as described in Section III, and control is achieved using the control architecture
described in Section V. The flight test begins with the aircraft hovering autonomously about 0.85 meters
above the ground. The onboard guidance logic then commands waypoints that take the aircraft towards
unexplored frontiers, and the onboard navigation routine provides the aircraft with pose estimates and
simultaneously builds a map of the environment in real-time. The map information is fed back into the
guidance logic so that new frontiers can be found and explored. Note that all computation, including SLAM,
is performed onboard using measurements from the sensors described in Section II. The GNC algorithms were
optimized for execution completely onboard the embedded computer (Gumstix Overo Fire) by trading map
accuracy for reliable, rapid convergence of the pose estimate. This trade-off results in a slight skewing of the
onboard generated map. However, the position accuracy was found acceptable for the reliable exploration
of indoor areas.

Figure 13 shows the position tracking performance of the GTQ. The figure shows that the onboard control
algorithm accurately tracks the commanded position. Note that the standard aerospace North-East-Down
coordinate system is used, this results in the z direction being negative up.

VII. Conclusion

This paper presented the details of a quadrotor miniature unmanned aerial system, the GTQ, designed for
autonomous exploration of indoor areas. The GTQ uses an off-the-shelf platform equipped with off-the-shelf
avionics and sensor packages, with custom flight software. Information from a scanning laser range sensor,
inertial measurement unit, and an altitude measurement sonar are fused to form an elaborate navigation
solution using Simultaneous Localization and Mapping methods. Two important features of this navigation
architecture are that it does not rely on any external navigational aid, such as GPS, and that all SLAM
and GNC computations are performed entirely onboard. A frontier-based exhaustive search is used for
exploring unknown indoor environments using the laser scan data by placing command waypoints on the
map generated by the SLAM routine. Since observable features in the environment are necessary for an
accurate SLAM solution, the guidance algorithm is coupled with the navigation algorithm to ensure the
vehicle approaches the frontier-based waypoints through a trajectory that is close to walls and other indoor
structures, while maintaining a safe operating distance. A cascaded inner-outer loop control architecture is
utilized, which relates stick commands to attitude commands and attitude commands to velocity commands.
The control system also uses a linear stability augmentation system that uses rate feedback to dampen the
vehicle angular rate response.
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(a) Time = 19 s (b) Time = 40 s (c) Time = 61 s

(d) Time = 92 s (e) Time = 124 s

Figure 12. These snapshots of the onboard map were generated in a flight test, showing that the GTQ can
autonomously explore an unknown cluttered indoor environment without any external sensing or computa-
tional aids. Stars mark the waypoints commanded by the guidance strategy which ensures the GTQ explores
unexplored areas of the indoor environment while staying close to navigable features. The pictured area is
approximately 15 by 24 meters. Note that all computation, including solving the SLAM problem, is performed
onboard.
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Figure 13. Position tracking performance of the GTQ while autonomously exploring an unknown cluttered
indoor environment without any external sensing or computational aids. The dotted line represents the
commanded position as extrapolated from the waypoints generated by the guidance algorithm of Section III.

An elaborate simulation model of the vehicle has been developed and the guidance, navigation, and
control algorithms have been validated in simulation and several times in flight. Flight test results of the
GTQ exploring unknown indoor environments without relying on any external sensing or computational
aids were presented. These results establish the feasibility of the proposed approach to develop a completely
self-contained miniature unmanned aerial system capable of autonomously exploring indoor areas.
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