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Chapter 1 – Introduction 

1.1 Importance of x-ray imaging in medical practice 

Since the discovery of x-rays by Röntgen in 1895, x-ray technology has played a pivotal role 

in the development of medical imaging. In diagnostic practice, plane radiographs have 

historically been used when high-contrast skeletal images were required. Due to the development 

of computed tomography (CT) by Hounsfield and Cormack, x-ray CT offers a number of 

advantages over plane radiography, including distinction of tissues on the basis of electron 

density, distinction of plane-superposed structures, and reformatting of volumetric images into 

different anatomical planar views. 

It is hard to understate the importance of CT imaging in modern medicine. As of 2009, the 

number of CT scans performed in the United States had increased by three times since 1993, to 

about 70 million annual scans (1). CT or MRI imaging were ordered in 15% of patients 

presenting with injuries in emergency rooms in 2007, increasing from only 6% in 1998 (2). In 

the 1980’s, medical procedures contributed only 15% to the average effective dose to the US 

population. Comparing this dose to the average effective dose to US population in 2006 (figure 

below), there is a dramatic increase in the percentage of dose due to medical procedures: about 

50% of all medical dose in 2007 was due to CT scans (3).  
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Figure 1. Contribution to average effective dose to US population, 2007. From (3). 

 

CT scans are relevant not only to diagnostic medical practice, but also to therapeutic 

radiation delivery. Cone-beam computed tomography (CBCT) is an increasingly utilized 

imaging modality, particularly in radiation oncology. On-board imaging systems, such as those 

included on linear accelerators developed by Varian Medical Systems, allow for precise 

verification of patient positioning during the course of radiotherapy. This technique is referred to 

as image-guided radiation therapy (IGRT), and often employs on-board CT. A widely used 

algorithm for reconstruction of a three-dimensional dataset from two-dimensional cone-beam 

projections was developed by Feldkamp, Davis, and Kress (4), as an extension of filtered 

backprojection reconstruction (FBP), discussed in detail later. 

There is, of course, a tradeoff between radiation dose and quality of image in x-ray imaging. 

Contrast-to-noise ratio as well as signal-to-noise ratio decrease with the number of photons 
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reaching the detector. With the number of photons and good signal characteristics of an image 

come imaging dose – an unavoidable side effect of photon interactions with matter. There is an 

increasing amount of concern over amount of imaging dose from routine and diagnostic medical 

procedures (5). Excess relative cancer risk is frequently quoted as being between 5% and 6% per 

Sievert (6) (7). Patient dose should be kept as low as reasonably achievable (ALARA), in order 

to minimize these risks. 

As an illustrative example from de Gonzalez et al (1), the number of CT scans conducted in 

the US in 2007 has been estimated at 72 million, with 57 million of these performed not in the 

last five years of life or attributable to a cancer diagnosis. With an average of 10 𝑚𝑆𝑣 per scan 

and excess relative risk of 5% per Sievert, the scans in 2007 might have induced a crop of up to 

about 29,000 cancers. With an estimate of 50% mortality, the authors guess that this 

corresponded to a total of 14,500 deaths due to CT scans alone – a mortality rate of roughly one 

in 4,000. Excess relative risk of cancer is dependent on several factors including the age at which 

a patient is exposed to radiation and patient sex. The authors of (8) estimated that the risk of 

cancer is as high as 1 cancer in 270 exposures for 40-year-old women receiving CTs for coronary 

angiography.  

Reduction of patient dose may in many cases be unachievable – diagnosis of certain 

conditions will necessarily require the higher contrast that is only afforded by CT imaging. In 

many cases, the only way to reduce dose will be to either not perform an imaging study at all or 

to reduce the amount of dose delivered during the study. 

Fortunately for the patient undergoing the scan, there is much work being done to ameliorate 

concerns over imaging dose. One of the most prominent approaches for reduction of imaging 

dose is to simply reduce the number of views taken about the object, a technique termed “sparse-
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data” or simply “sparse” tomography (9), with a wide range of techniques (10) (11) (12) (13) 

(14) (15) employed to accomplish the reconstruction. Unfortunately, implementation of new and 

improved algorithms which may lead to dose reduction has historically been slow, due to 

multivariate factors (16). 

1.2 Objectives 

One of the primary goals of this work is to implement a fully-functional CT reconstruction 

system, using available components. The system should be capable of fan-beam reconstruction, 

and MATLAB codes developed for parsing of detector datasets and reconstruction of imaged 

volumes. System geometry should be designed such that a range of objects may be imaged in 

industrial-like acquisition while maintaining good quality of reconstructions.  

The other primary goal of this work is to demonstrate a few methods for sparse-data x-ray 

CT regularization – namely, Tikhonov regularization and total variation (TV) regularization 

through iterative reconstruction modalities. One specific method, total variation regularization 

via projection onto convex sets, outlined by Sidky, Kao, and Pan in (17), has shown good results 

on test datasets including the Shepp-Logan head phantom (18). It has been updated (19) and 

shown to be noise-robust via an adaptive-weighting technique (13). A modification to the 

algorithm in (17) is presented, and reconstructions from this modification are compared against 

standard algebraic reconstruction, FBP, and Tikhonov-regularized results. 
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Chapter 2 – Background 

2.1 Principles of x-ray CT imaging and reconstruction 

The fundamental problem in x-ray CT reconstruction lies in recovering the distribution of the 

linear attenuation coefficient 𝜇 for an object from a measured set of line integrals obtained from 

transmitting x-rays through the object. According to the Beer-Lambert law governing attenuation 

of photons, 

𝐼 = 𝐼0 ∗ 𝑒−𝜇𝑥, (1) 

where I the intensity of the beam as it exits the object, 𝐼0 is the incident intensity, 𝜇 is the linear 

attenuation coefficient, and x is the thickness of the object. 

The attenuation coefficient is usually expressed in 𝑐𝑚−1 or 𝑚𝑚−1, and is an expression 

of the probability of removal of a photon from the incident beam per unit of distance traveled 

inside the material. Of the three primary interactions by which photons interact with matter – pair 

production, Compton scatter, and the photoelectric effect, those most important in energy 

regimes typical to diagnostic imaging are Compton scattering and the photoelectric effect. 

Typically, 𝜇 is expressed as a mass attenuation coefficient, 𝜇/𝜌, in units of 𝑐𝑚2/𝑔, from sources 

such as NIST (20) in the US. Thus, the distribution of 𝜇 recovered in CT imaging is a product of 

the mass attenuation coefficient and the material density. Because 𝜇 is a function of density, 

material distinction from reconstructed images is often a difficult to impossible task without 

recourse to other methods such as dual-energy or spectral CT (21). 

Narrowing the energy window on the x-ray source provides some recourse, as does 

knowledge of the subject of the imaging study (i.e. usually a human patient). In the diagnostic 
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energy range (that is, 20~150 𝑘𝑒𝑉), mass attenuation coefficients are very close for a range of 

organic materials and elements which compose human tissue (see Figure 2), especially as voltage 

increases. Due to this effect, it may be said that 𝜇 is nearly proportional to density 𝜌, and with 

scaling, a recovered map is roughly a density map. This is a progressively worse approximation 

in lower energy regions for materials with k-edge absorption effects, including common contrast 

agents such as barium and iodine. Interaction cross sections for photoelectric and Compton 

scatter are shown for barium and water in Figure 3. 
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Figure 2. Mass attenuation coefficients for various tissues and materials. Data from (19). 
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The form of the Beer-Lambert law in Equation (1) is only relevant for objects of uniform 

composition, and therefore uniform 𝜇. A more relevant expression which accounts for 

inhomogeneities of composition is: 

𝐼 = 𝐼0 ∗ 𝑒− ∫ 𝜇 𝑑𝑥, 
 

∴    
𝐼

𝐼0
= 𝑒− ∫ 𝜇 𝑑𝑥, (2) 

where 𝜇 varies in x.  

 For the problem to be computable, the image must take on a finite element form 

(consisting of pixels or voxels, in the three-dimensional case), as a reconstruction of the 
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Figure 3. Interaction cross-sections for barium and water (19) 
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attenuation coefficient distribution with arbitrary precision would require arbitrary physical 

storage. The integral in equation (2) is replaced by a summation of the products 𝜇𝑖𝑥𝑖 – that is, 

any ray crossing the volume of interest traverses through i pixels, each with attenuation 

coefficient 𝜇𝑖 and an associated ray path length in pixel i of 𝑥𝑖.  

   
𝐼

𝐼0
= 𝑒− ∑ 𝜇𝑖𝑥𝑖𝑖  

(3) 

Following from this, it is readily evident that 

− log (
𝐼

𝐼0
) = ∑ 𝜇𝑖𝑥𝑖

𝑖

 (4) 

where the function log() represents the natural logarithm. From this expression, the problem of 

CT reconstruction is clear – the distribution of the attenuation coefficients 𝜇𝑖 is to be recovered 

from the measured intensity 𝐼0 at the detector and the incident intensity I. In order to recover 

information concerning the 𝜇 distribution, the set of ray path lengths through pixels in the 

volume of interest 𝑥𝑖 is also necessary. 

 Figure 4 shows a typical CT system, where the source and detector are situated along a 

line of response and the rays from the source pass through the volume to the detector. In this type 

of acquisition, the trajectories of the source and detector cover linear distance about the 

circumference of the FOV – a “patient”-type acquisition, ubiquitously employed by commercial 

medical scanners. Via a coordinate transform, however, the same geometry may be replicated by 

rotation of the imaged object on a stage while the source and imager remain stationary – an 

“industrial”-type acquisition, used, e.g., for nondestructive assays of manufactured parts and 

microtomography, where the system’s spatial resolution is on the order of microns. A system 
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with industrial-like acquisition characteristics is designed in this work, though as stated the two 

schemes function analogously to one another. 

 

 

The ray-crossing path length coefficients 𝑥𝑖 must be tabulated for each individual ray 

traversing from source to each detector. As the source and detector rotate about their respective 

trajectories (or as the object itself is rotated), p projections are taken of the ROI.  Each of the r 

rays in each of the p projections has a crossing distance for each of the i pixels in the image – 

though for the majority of the pixels in the image, the crossing distance is 0 for any given ray. If 

detector array source 

source trajectory 

detector trajectory 

ray path length 𝑥𝑖 

ith pixel 

pixel attenuation coefficient 𝜇𝑖 

Figure 4. X-ray CT acquisition system 
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the source-to-imager distance is large enough in fan-beam geometries with respect to the source-

to-axis distance, some rays may not cross the ROI at all. 

 The ray path length coefficients typically take the form of a system matrix, denoted by A. 

This matrix is effectively a full description of the geometry under which a set of data are 

acquired, and is directly applicable to the inverse problem of image reconstruction. It consists of 

the ray path lengths in all pixels corresponding to all rays in all projections – that is, x now 

carries three indices, for projection, ray, and pixel, as shown in Figure 5. 

 

 

 

A is typically a very large matrix. For the purpose of this work, an imaged array of 256 

pixels on a side is considered, with 360 projections each involving 1024 detectors – that is, 

detectors are binned 4𝑥4 and photon counts are summed. A system matrix associated with this 

acquisition scheme contains ~24.2 ∗ 109 elements, and if stored with 16-bit precision comprises 

48.3 gigabytes of physical memory. Fortunately, it is also highly sparse, as most elements are 
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zero – with the source geometry used here (see Figure 15), the density of the sparse matrix A is 

only 0.12%. Reduction of strain on computational resources is thus possible via storage as a 

sparse data structure.  

Calculation of the system matrix elements in A is a nontrivial matter – one commonly 

used algorithm for generation of A is Siddon’s ray-tracing method (22). Instead of treating pixels 

or voxels directly, this method treats image elements as intersection areas of a constructed set of 

parallel parametric planes which are mutually orthogonal. A parametric index 𝛼 is determined 

for the intersection of a given ray with the planes, and evaluation of the parametric function of 

the ray at tabulated values of 𝛼 gives the coordinates of intersections. The ℓ2-norm of the 

difference between successive intersection coordinates yields the desired path-lengths, and the 

norms are pixel-associated via determination of the midpoints of the intervening line segments. 

 A data structure containing the (linearized) measured intensity ratios, m, must also be 

incorporated into a reconstruction modality. This structure is called the sinogram, and is 

determinable from the measured intensities I for the detector channels at the imaging plane. By 

taking a bright field image before data acquisition, a baseline maximum intensity can be 

measured for 𝐼0. The intensity ratio may be calculated directly and linearized. 
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Figure 6. Single row of sinogram for a green pepper. Left: single two-dimensional projection from first projection angle, with 
horizontal centerline highlighted. Display window [min max]. Right: Signal level from highlighted detector channels, truncated to 

center 330 channels. Maximum detector signal: 65535. 
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Figure 6 and Figure 7 above show how a sinogram may be constructed from a set of two-

dimensional projections of an object. In construction of the sinogram, the data is transformed 

from an image 𝑓(𝑥, 𝑦) into a set of line integrals characterized by radial distance from the origin 

and angular displacement from center of rotation, or 𝑝(𝑟, 𝜙). 

… 

1° 360° 

rotation angle 

1 360 

projection 

detector 

element 

index 

1 

330 

Figure 7. Construction of entire sinogram. Top: Successive two-dimensional projections are taken as 
object rotates – for simplicity, one projection is shown per rotational degree. Display window [min 
max]. Bottom: Signals from centerline detector channels as in Figure 6 are used from each of the 

rotational projection views to construct the sinogram. Display window [min max]. 
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To reconstruct an image, the task is then to recover the image data in f, where elements of 

f represent the attenuation coefficients – or roughly speaking, material density – of each pixel in 

the image. The relevant equation to be solved is 

𝑚 = 𝐴𝑓 . (5) 

Computed tomographic reconstruction is therefore an inverse problem – a problem in which the 

factors producing a given result are recovered from the observations to which they have led. The 

problem is (ostensibly) linear as well, where the measurement obtained depends on a linear 

transform of the image. In practice, the assumption of linearity fails, due to noise on the 

measured data. 

2.2 Reconstruction algorithms 

X-ray tomographic reconstruction is a well-studied problem. Some of the very earliest work 

in inverse problems was pioneered by Ambartsumian (23), and  Hadamard introduced the 

concept of posedness, where a well-posed problem is defined by three conditions: 1) that the 

solution exists, 2) that it is unique, and 3) that its behavior is continuous with respect to the input  

(24).  The inverse of the Radon transform (25), the integral transform which generates a 

sinogram in two dimensions, is an example of an ill-posed problem. Condition 1 is usually met 

for x-ray tomography – the solution is the image to be recovered. Uniqueness is a more difficult 

condition to meet, as line integrals generated by rays crossing an image volume may take on the 

same values as those traversing the same volume without noise. It is readily evident that 

condition 3 is difficult to impossible to meet for x-ray tomography as well, when considering the 

methodologies used to recover image data. 
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2.2.1 Filtered backprojection 

Backprojection refers to the process by which the path length-weighted linearized sinogram 

values are used to reconstruct an image. With appropriate projection normalization, this is a 

simple way to reconstruct an image from its line integrals. It is the most commonly employed 

analytical inverse of the Radon transform.  

 

 

 

Direct backprojection yields images with blurring and lowered contrast, as shown in Figure 

9. This phenomenon can be explained via Fourier analysis – Bracewell’s central slice theorem 

(26) states that the lines of a two-dimensional Fourier transform of an image 𝑓(𝑥, 𝑦) may be 

filled by the one-dimensional Fourier transforms of the parallel projections of that object. That is, 

      

      

      

      

      

      

Figure 8. Backprojection of collected line integrals. Left: Line integral sets collected about many rotational 
angles. Right: Backprojection of a single signal peak along its ray path. 
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𝑓(𝑥, 𝑦) = ℱ−1{𝐹(𝑘𝑥, 𝑘𝑦)} , (6) 

where the Fourier-domain image F is filled by the one-dimensional transforms 

𝑃(𝑘𝑟 , 𝜙) = ℱ{𝑝(𝑟, 𝜙)} . (7) 

 

 

 

In the frequency domain, the reason for appearance of artifacts on the reconstructed image 𝑓 

is apparent – sampling frequency is nonuniform, with oversampling near the image center, and 

undersampling increasing with radial displacement from the center. A common solution to this 

problem is to apply a filter weighting the amplitude of the frequency-domain signal by the radial 

sampling frequency 𝑘𝑟. The simplest of these is the ramp filter, 𝐻(𝑘) = |𝑘|. Other popular filters 

include the Hanning filter (27) and the Hamming filter (28). Frequency-domain filtering gives 

rise to the name “filtered backprojection.”  

Figure 9. Backprojection of Shepp-Logan head phantom. Left: ground-truth image of phantom. 
Right: Image obtained by backprojection shows contrast loss and blurring. From ref (41). 
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Frequency-domain analysis also gives minimal sampling criteria for filtered backprojection – 

source trajectories with small-angle coverage will not fill the image’s Fourier transform. For 

parallel-beam geometries, at least 180° of beam coverage is necessary. For fan-beam acquisition, 

the trajectory must cover at least 180° + 𝜑, where 𝜑 represents the central fan beam angle. 

Filtered backprojection is subject to constraints which make it unattractive when considering 

sparse-data reconstruction. Due to the nature of sampling of signal frequency, the Nyquist 

criterion must be met – that is, 

Δ𝑟 ≤
1

2𝑘𝑚𝑎𝑥
 , (8) 

where Δ𝑟 is the angular sampling distance about the trajectory and 𝑘𝑚𝑎𝑥 is the maximum 

frequency of the output signal. Ideally 𝑘𝑚𝑎𝑥 = (𝑖𝑚𝑎𝑔𝑒𝑟 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)−1, but in practice the 

actual maximum resolution is the full width of the output signal at half the maximum response – 

or, full-width half-max, FWHM, characterized by the point- or line-spread function (PSF or LSF) 

of the system. The line-spread function, for example, is the FWHM of the detector’s response 

function to a one-dimensional linelike object. The imaging spatial resolution is affected by 

factors including detector-level electronic noise, photon scatter, and focal spot size. 

 Filtered backprojection and its variants, including the Feldkamp-Davis-Kress algorithm 

for cone-beam reconstruction (4), are widely studied (29) (30) (31) and have seen widespread 

use in commercial systems employed by hospitals for the last 30 years, despite major progress 

being made in the field of inverse problems (see: the journal simply titled Inverse Problems 

published by IOP). Pan et al suggest that a significant issue preventing implementation of novel 

algorithms is lack of communication between engineers working on CT and mathematicians 

(16). One of the goals of this work is to show that iterative and other techniques used for sparse-
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data reconstruction (and toward lower overall medical dose) can be implemented even on 

consumer-grade hardware, thus helping to bridge the gap between the theory and application of 

inverse solution techniques. 

2.2.2 Other analytical techniques 

Because the problem in CT is to solve Equation 5 for f, it may seem that the simplest way to 

solve the system is to simply obtain the matrix inverse for the easy solution 𝐴−1𝑚. If the matrix 

A is invertible, the relative residual 

‖𝑚 − 𝐴 𝑓0‖2

‖𝑚‖2
 , (9) 

 where 𝑓0 is the obtained approximation to the image, will ostensibly be zero. A is typically not 

square and therefore not invertible, so the Hadamard conditions are not met. To find a unique 

solution analytically, the matrix pseudoinverse 𝐴† may be employed. The pseudoinverse may be 

constructed using the singular value decomposition (SVD), 𝐴 = 𝑈 𝐷 𝑉𝑇. As A will ostensibly 

not be full-rank, a range of least-squares solutions exist, and the pseudoinverse gives the 

minimum-norm least-squares solution (32). 

The pseudoinverse is usually far too large in practical imaging circumstances to store, 

and instead its components 𝑉, 𝐷†, and 𝑈𝑇 are applied piecewise to data. Further, the condition 

number of the matrix A is typically very large, implying high sensitivity of reconstructions to 

measured data perturbations. Real datasets used in tomography always contain perturbations as 

noise – one method for data regularization using the SVD is truncated singular value 

decomposition (TSVD), discussed in (32). Though the TSVD solution may fit the data well 

algebraically, it will likely also carry obvious errors due to amplification of data noise through 

the pseudo-inversion. A thorough discussion of linear algebra and matrix analysis is well beyond 
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the scope of this work, but TSVD is mentioned as illustrative of the tradeoff between a solution 

carrying low residual and being apparently “smooth” or well-regularized (see Results). Useful 

discussion can be found in (33), (34) and (35). 

2.2.3 Iterative approaches 

Iterative methods in linear system solutions are widely used – a method discovered by 

Kaczmarz (36) was later adapted to iterative reconstruction (37) by Gordon et al as an algebraic 

reconstruction technique (ART). ART shares with FBP that measured signals are back-projected 

into the image domain. While FBP backprojects all line integrals at once and remedies artifacts 

of nonuniform sampling frequency with a filter, ART schema employ intensive computation 

methods to update approximations to the image, which ideally converge to the actual image after 

a finite number of iterations. 

An example of ART can be used in solving the following simple puzzle: given the sums of 

the rows and columns of a matrix, can the individual elements of the matrix be determined? As 

shown in Figure 10, this can be accomplished by weighted averaging of the sums, assignment of 

the averages to the “pixels,” and then adjustment of the approximations by weighted distribution 

of the row- or column-wise residual errors along the appropriate directions. 
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Figure 10. Simple ART algorithm for 3x3 grid 
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This leads intuitively to the expression  

𝑓𝑖
𝑘+1 = 𝑓𝑖

𝑘 − ℓ ∗ ((𝒫𝑟,𝑖
𝑘 )𝑇 ∗

(𝒫𝑟,𝑖
𝑘 − 𝒬𝑟

𝑘)

∑ (𝒫𝑟,𝑖
𝑘 )2

𝑖

) , (10) 

which is a statement of an ART algorithm similar to that used in the figure. Here 𝑓𝑖
𝑘 represents 

one iterative approximation to the image, where k is the iterator and i the number of pixels in the 

image, 𝒫𝑟,𝑖
𝑘  is the kth projection in the system matrix A, containing the ray-path intersection 

lengths for all r rays in one projection,  𝒬𝑟
𝑘 is the linearized projection data, and the superscript T 

denotes the matrix transpose as usual. The parameter ℓ is a relaxation parameter dictating the 

weight of the update to the approximations. 

 Iterative reconstruction offers a few advantages over filtered backprojection. It is 

comparatively easier to incorporate prior knowledge concerning the output – as above in 

Equation 9, a solution will generally converge in fewer iteration loops if an appropriately chosen 

“guess” image 𝑓𝑖
0 is provided. Iterative techniques are generally superior to FBP when 

considering sparsely sampled data, as the function of the matrix geometry is to appropriately 

assign weights to line profiles of varying intensity. It is comparatively easier to manage the 

projection model, and regularization can be incorporated into the iterative reconstruction process. 

 However, convergence is not guaranteed, and stopping criteria must often be chosen 

empirically, with noise as an important concern, as well as spatial resolution. Further, iterative 

techniques are usually incredibly taxing on physical computational resources, though much work 

is being done in GPU acceleration of these algorithms (38) (39) (40) (41), as well as in 

parallelization, exploiting the advent of affordable processors with multiple-core architecture 

(42). 
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Chapter 3 – Design of x-ray ct system 

3.1 Equipment and materials 

Any system employing tomographic reconstruction of x-ray data will include, at minimum: 

an x-ray source or sources, detectors with associated electronics for determination of transmitted 

beam intensity, some positioning system capable of providing views of the imaged object from 

the several projection angles, and the nominal computed reconstruction system itself, with 

associated software and algorithms. 

For this work, a 100 kV microfocus x-ray machine from Hamamatsu Photonics was the 

available source. Device specifications are shown in Table 1. 

 

Table 1. Characteristics of Hamamatsu L9631 x-ray source 

maximum power output 50 W 

voltage setting range 40 to 110 kV 

current setting range 10 to 800 𝜇𝐴 

focal spot size 15 𝜇𝑚 (at 6W output) 

80 𝜇𝑚 (at 50W output) 

x-ray emission angle 62° maximum 

 

The detector array used was a PerkinElmer XRD 1611 flat-panel photodiode array. This 

detector is attractive for a number of reasons, including sensitivity to high-energy x- and gamma 

rays, with possible application toward future work on reconstruction of integrity flaws in nuclear 

fuel rods. Characteristics for the XRD are shown in Table 2. 
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Table 2. Characteristics of PerkinElmer XRD 1611 

total pixel number 𝟒𝟎𝟗𝟔 𝒙 𝟒𝟎𝟗𝟔 

dot pitch 100 𝜇𝑚 (no pixel binning) 

200 𝜇𝑚 at 2𝑥2 binning 

400 𝜇𝑚 at 4𝑥4 binning 

total active area 409.6 𝑚𝑚 𝑥 409.6 𝑚𝑚 

dynamic range > 84 𝑑𝐵 

framerate 3.75 fps nominal 

7.5 fps at 2𝑥2 binning 

15 fps at 4𝑥4 binning 

scintillator 𝐺𝑑2𝑂2𝑆: 𝑇𝑏 (gadox) 

sensitive radiation energy 20 keV – 15 MeV 

 

The detector’s associated software contains tools for basic image processing and acquisition, but 

holds all projections for a dataset in memory at once. ROI selection is not supported, so full-

datastream acquisition is necessitated. These factors and physical memory limit number of 

projections which may be included in a complete output dataset from the software. 

3.2 Practical considerations of system design 

3.2.1 Focal spot penumbra effect 

In imaging under a fan- or cone-beam geometry using an x-ray source with a nonzero 

focal spot size 𝒻, the resolving power is limited by the geometric unsharpness of the system (43). 

This effect is most readily apparent near the interfaces of piecewise-constant 𝜇 distributions and 

object edges. It may appear as an outlying border to structures, where it is termed the geometric 

penumbra, P. Penumbra depends on SID and SAD as well as on focal spot size, as shown in 

Figure 11. 
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By exploiting similar triangular geometries, it is apparent that 

𝑃 = 𝒻 ∗
(𝑆𝐼𝐷 − 𝑆𝐴𝐷)

𝑆𝐴𝐷
 , (11) 

where 𝒻, SID, and SAD are as defined above. Therefore, an imaged object should be situated as 

close as reasonably possible to the imaging plane, in order to decrease geometric penumbra and 

image blurring. 

3.2.2 Signal-to-noise ratio 

Signal-to-noise ratio (SNR) is a general metric for image quality, and is applied in 

computed tomography as well as in optical imaging, MRI, ultrasound, plane radiography, and 

nuclear medicine imaging. It is defined as 

𝑆𝑁𝑅 =
𝐼�̅�𝑂𝐼

𝜎
 , (12) 

penumbra, P 

𝒻 

object 

detector 

SAD 

SID - SAD 

Figure 11. Illustration of geometric penumbra effect. Left: Source-to-axis and object-to-imager distances are nearly equivalent. 
Middle: Object close to detector, smaller penumbra. Right: Object close to source, larger penumbra. 
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where 𝐼�̅�𝑂𝐼 denotes the mean signal intensity in a given ROI in the image and 𝜎 the standard 

deviation of the image noise (43). The SNR of a reconstructed image scales with the square root 

of the number photons reaching individual detector elements – and therefore by kVp setting of 

the source (i.e. x-ray output energy), mA setting (i.e. areal intensity of radiation at detector), and 

exposure time. 

Reconstruction schema affects SNR as well – one well-known example of reconstruction-

associated noise is the “salt-and-pepper” noise pattern typical to algebraic reconstruction 

techniques (ART). Other factors contributing to SNR include detector efficiency, source-to-axis 

distance (i.e. beam intensity), and thickness of the reconstructed slice. 

3.3 Measurement and construction 

Design of source-stage-detector geometry proceeded as follows: 

1. Create mounts for imaging plate and x-ray source, with horizontal imager centerline and 

source focal spot some height h along above optical table. 

Vertical coordinate of radiation isocenter is limited by size of components – e.g., if stage 

height is significantly greater than focal spot height, no rays will pass through the imaging FOV. 

Horizontal centerline of imager and focal spot of x-ray source should be situated at identical 

vertical coordinate. This maintains ideal fan-beam geometry, avoiding introduction of an angular 

correction factor for the beam plane in reconstruction. Framing for imaging plate and source 

should also be designed and oriented such that mechanical isocenter (rotation stage), x-ray focal 

spot, and imager vertical centerline all have 𝑦 = 0. 

In practice, this would have been very difficult to accomplish. Mounting holes for x-ray 

source are 𝑀6𝑥1 with 100 mm separation. Thorlabs optical table in use is based on United States 
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customary units and as such has mounting holes at 1-inch separation. One side of x-ray mounting 

base was fastened at two points, such that focal spot-to-mechanical isocenter separation is 

0.8 𝑚𝑚. 

 

 

 

2. Determine the minimum source-to-imager distance (SID), such that the x-ray cone 

homogeneously irradiates the entire active detector area. 

For a cone beam with emission angle 𝜃, the minimum SID for homogeneous irradiation is a 

function of the radius 𝑟𝑑 of the imaging array – the projected beam cone at the imager plane 

Figure 12. Side view of x-ray CT system (parallel to y axis) 
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should minimally circumscribe the entire active area (see Figure 13). For a square array of side 

𝑠𝑑, it is evident that 𝑟𝑑 = 𝑠𝑑√2, and that 

𝑆𝐼𝐷 ≥
𝑠𝑑√2

2 tan (
𝜃
2

)
 , (13) 

per Figure 13 below. 

 

 

 

Homogeneous irradiation from minimal SID helps to keep SNR high, as described in (3.2.2). 

3. Rotation stage was mounted on Thorlabs lab jacks, allowing height adjustment of imaged 

objects to imager channel centerline. 

Jacks are situated between rails of 80/20 extruded aluminum, such that source-to-axis 

distance (SAD) is adjustable and a wider range of objects may be imaged while still maintaining 

acceptable signal-to-noise ratio and minimizing penumbra where possible. 

4. Determine imager vertical centerline offset via projection. 

source 

𝑟𝑑 

𝜃

2
 

SID 

𝑠𝑑 

Figure 13. Source-imager geometry for determination of SID. 
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This is a crucial step for software correction and ensures accuracy of matrices characterizing 

the system’s geometry. Detector centerline could not be localized to y axis mechanically due to 

dimensional constraints. Projection coordinate determination was accomplished via a simple 

gradient-based method: objects were placed on rotation stage and a full 360° scan was acquired. 

The image gradient of the center-channel sinogram was determined, and summed along the 

projection indices. An iterative method was used to locate the channels corresponding to the first 

values exceeding half the maximum value of the aggregate gradient sum – the centerline between 

these channels was used to determine the offset. This method works well for a properly 

functioning detector and objects not sharply inhomogeneous, but fails if, for example, a metal-

water equivalent interface is present, or if some detector channels are unresponsive. 

 

 

g
rad

ien
t su

m
 

Figure 14. Gradient-based projection offset method. Top left: original sinogram. Bottom left: image gradient of sinogram, 
showing direction of summation. Right: Gradient sum 

half max 
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Reconstruction software used in this work was written in MATLAB r2014a and earlier 

versions. The filtered backprojection functions from Fessler and group (44) are used, which 

worked sans modification with the CT system. Functions created during this work include: 

▪ readxis, which parses headers and contents of .his and .xis output files from the 

PerkinElmer XIS software to usable matrix data 

▪ sinobuild, which constructs a sinogram from a set of two-dimensional projections 

taken at angular steps, with options for downsampling and truncation 

▪ fssc, which corrects for the (very small) virtual-source displacement effect on SID and 

SAD 

▪ lart, which implements in a straightforward manner the iterative step in Equation (10) 

▪ sof, which returns the sinogram offset from the imager channel centerline, in detector 

units 

▪ weightmat, which implements Siddon’s ray tracing parametric method for 

construction of the system matrix A. 

3.3.1 System geometry 

Figure 15 below shows full geometric characteristics of the CT system. The imager’s active 

area is square, and its dimensions are omitted as redundant in the side view, which principally 

serves to show the small horizontal offsets of component centers from one another. 
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𝐴 =  13.4 ± .7 𝑚𝑚 

𝐵 = 0.8 𝑚𝑚 

𝐶 = 0.9 𝑚𝑚 

rot. axis 

Figure 15. Side- and top-down views of system and associated geometry 

SID = 482.3 mm (typ.) 

rotational axis 

SAD = 523.8 mm 

focal 

spot 

cone angle 

𝜑 = 62° 

120.1 mm 

204.8 mm 

204.8 mm 
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Chapter 4 – Results 

Initial setup of the system was a lengthy process due to the need to machine parts for use 

in framing and mounting. The first planar images obtained on the new x-ray system prior to 

geometry finalization were of a bike pump and a set of keys. Initial reconstruction tests yielded 

generally poor results, until such factors as y axis offsets and sinogram offsets were determined 

precisely. 

 

 

 

4.1 Dataset acquisition 

Several datasets have been acquired using this x-ray system, and are available for example 

exercises and illustration of reconstruction techniques via the MATLAB functions developed for 

this work or through other methods. Datasets acquired include a green Capsicum pepper, a 

peach, a starfruit (carambola), a solo papaya, a dragonfruit, and an apple. 

Figure 16. First planar images from system 
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All datasets were acquired with full-angular coverage scans, at one projection per angular 

degree of object rotation. Datasets for pepper, peach, and starfruit were acquired at the typical 

geometry as shown in Figure 15. Other datasets were acquired at nominal SAD minus one inch. 

All “sparsely sampled” data in this work is obtained via retrospective downsampling, and is 

sampled at uniformly spaced intervals about the object’s rotation. 

4.1.1 FBP and ART reconstructions 

Figure 17 shows the FBP- and ART- reconstructed images of a green pepper, using 360, 

75, and 20 projections. Of particular note is the heavy aliasing from undersampling evident in the 

few-view FBP reconstructions. Table 3 shows the signal-to-noise ratio calculated for each of the 

images in Figure 17. ROI’s used for signal and noise calculation on all images are shown in 

figure. 



 

32 

 

 

 

filtered backprojection algebraic reconstruction 

36
0 

vi
ew

s 
75

 v
ie

w
s 

20
 v

ie
w

s 

Figure 17. FBP vs ART for a green pepper, varying views. Display windows: [0 0.325] 𝑚𝑚−1 
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Table 3. Signal-to-noise ratio for images in Figure 17. 

 FBP ART 

360 views 14.52 dB 17.30 dB 

75 views 8.01 12.22 

20 views 3.92 12.03 

 

The ART algorithm employed here is a modification of the simple update scheme seen in 

Equation 10. Specifically, residual weighting of projections is employed to construct the output 

image, with a loop-wise evaluation of fractional drift in residual as a stop criterion – instead of 

performing iterations through the entire set of data and then evaluating residual, the residual is 

constantly tracked with the updates to the image approximation. If the residual remains the 

lowest for a set number of iterations (i.e. the hold parameter), then the algorithm tabulates the 

residual-weighted sum image over the next complete set of views, and then normalizes this sum 

by the weights as the output image. The while loop (lines 5 – 29) in the following pseudocode 

is used in place of the usual for loop in the TV-POCS algorithm from (17), to create the 

residual-weighted total variation POCS (RWTV-POCS) method. 

The TV-POCS algorithm is indicated to work well for images with largely sparse 

corresponding gradient images. It is expected that since the RWTV-POCS incorporates an extra 

loop to create an image following the gradient descent step in TV-POCS, that the RWTV variant 

will have typically lower residual, but higher total variation. 
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Table 4. Pseudocode for residual-weighted total variation minimizing POCS algorithm 

1:  initialize f = uniform(0) or f = input guess 

2:   init rres = norm(m-Af) / norm(f) 

3:   init ticker = 0, n = 1, low = rres, viewnum 

4:   init hold,restol  [user defined] 

5:  while (n < maxiters) 

6:   update f (see eqn 10) 

7:   f (f < 0) = 0 

8:   rres = norm(m-Af) / norm(f) 

9:   if 0 <= ticker < hold 

10:    if rres < restol * low 

11:     low = rres 

12:     ticker = 0 

13:    elseif rres >= restol * low 

14:     ticker = ticker + 1 

15:    end if 

16:   else 

17:    if ticker == hold 

18:     imgtally = f *(1/rres) 

19:     rrtot = 1/rres 

20:     ticker = -1 

21:    else 

22:     imgtally = tally + f *(1/rres) 

23:     rrtot = rrtot + (1/rres) 

24:    end if 

25:   end if 

26:   if ticker == -viewnum 

27:    break while 

28:   end if 

29:  end while 

30:  f = imgtally / rrtot 

 

This type of stopping criterion was chosen because solutions took a long time to converge (more 

than 10000 iterations) to small residuals, and often did not converge to a relative residual within 

1% error. The parameters hold and restol are user-set for computing time, allowance of 

error, etc. Values used in this work are hold = ⌈1.5 ∗ 𝑣𝑖𝑒𝑤𝑛𝑢𝑚⌉, where ⌈ ∙ ⌉ represents the 

ceiling function, and restol = 0.995, unless otherwise specified. 

Careful inspection of the edges and corners of the ART images reveals high signal levels 

at the periphery. This shunting of large error margins to the edges of the image is an undesirable 
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feature of ART. An image windowed to [min max] is shown in Figure 18, with a magnified 

corner. Regularization can be used to help smooth these regions of apparently large error. 

 

 

 

4.1.2 TSVD method and characteristics 

Figure 19 below shows a truncated singular value decomposition (TSVD) reconstruction, 

using the first 1000 singular values (due to memory constraints). The condition number 𝑑1/𝑑𝑚𝑖𝑛, 

where 𝑑𝑛 are the n singular values cannot be exactly calculated from the truncated SVD, but is 

clearly large. 

Figure 18. Rewindowed 360-view ART image showing corner error. Window 
[min max]. 
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Pseudoinversion and other reconstruction modalities may yield negative pixel values in 

the image domain. Remediation of negative attenuation coefficients obtained are subject in 

reconstruction to a positivity constraint, where all 𝑓𝑖 < 0 are assigned 0, a nonlinear operation 

which ostensibly removes the property that 𝐴†𝑚 is a least-squares solution to the system. Small 

relative residuals from the space of solutions 𝑓 ∈ ℝ+may still be obtained by exploiting the 

similarity of TSVD to Tikhonov regularization (32), where 𝛼 is the spectral filtering parameter 

for the singular values of A in D: 

𝑑𝑖
𝑇𝑖𝑘ℎ𝑜𝑛𝑜𝑣 =

𝑑𝑖

𝑑𝑖
2 + 𝛼

 . (14) 

The “best fit” solution is then given by 

Figure 19. Positive-constrained TSVD image of a pepper slice. Left: image shows severe blurring and ring artifacts. Display 
window [min max] Right: First 1000 singular values of system matrix 
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𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
(𝑉 𝐷𝑓𝑖𝑙𝑡

†  𝑈𝑇) 𝑚
{

‖𝑚 −  𝐴 ∗ [(𝑉 𝐷𝑓𝑖𝑙𝑡
†  𝑈𝑇) 𝑚]‖

2

‖𝑚‖2
} , (15) 

where V and U are components of the SVD and 𝐷𝑓𝑖𝑙𝑡
†

 has components given by Equation 14. The 

tradeoff between data smoothness and quality of fit can be seen in Figure 20. 

 

 
Figure 20. Effect of filtration on TSVD reconstruction of pepper. 
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4.1.3 Tikhonov and TV regularization 

The images in Figure 21 below show images of the same pepper reconstructed via a 

nonnegative iterative conjugate gradients (ICG) method (45). Tikhonov regularization is 

accomplished via the penalty functional in 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓{‖𝐴𝑓 − 𝑚‖2 + 𝛼‖𝑓‖2}, 𝑓𝜖ℝ+ (16) 

where 𝛼 again represents the regularization parameter. 
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Figure 21. Unregularized vs. Tikhonov-regularized images obtained by ICG. Display windows: [0 0.325] 𝑚𝑚−1 
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 Figure 22 shows images obtained with a total variation (TV) minimization constraint (46) 

instead. Since first being proposed by Rudin et al, TV methods for regularization have been the 

subject of much research (47). TV minimization has edge- and piecewise-constant distribution-

preserving properties (48). An image’s total variation is defined as 

𝑉(𝑓) =  ∑ √|𝑓𝑖+1,𝑗 − 𝑓𝑖,𝑗|
2

+ |𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗|
2

𝑖,𝑗

  (17) 

for an image of 𝑖 𝑥 𝑗 pixels, with “relative variation” normalized by the total image gray values. 

The relevant minimization becomes 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛{|𝐴𝑓 − 𝑚| + 𝜉𝑉(𝑓)}, 𝑓𝜖ℝ+ . (18) 

Total variation as an image metric loosely characterizes the “smoothness” of a solution – indeed 

the expressions for TV and noise are superficially similar. Noise standard deviation characterizes 

the variation between pixels across the image, while TV tracks deviation between individual 

pixels. 

The TV minimization problem is a difficult one to solve, with solution methods taking on 

various forms (49) (50). Images displayed in Figure 22 are obtained through total variation 

minimization via a projection onto convex sets (TV-POCS) algorithm (17).  
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Figure 22. Unregularized vs. TV-regularized images obtained by ART. Display windows: [0 0.325] 𝑚𝑚−1 
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4.2 Comparison of algorithms 

 

 

 

ref image: 
360-view TV-POCS Tikhonov TV-POCS RWTV-POCS 
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Figure 23. Comparison of algorithms for pepper dataset. Top: 20-view reconstructions using different techniques. 
Display window [[0 0.345] 𝑚𝑚−1. Middle: Horizontal profiles across center of image. Bottom: Vertical profiles. 
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Figure 24. Comparison of algorithms for peach dataset. Top: 20-view reconstructions using different techniques. 
Display window [[0 0.2] 𝑚𝑚−1. Middle: Horizontal profiles across center of image. Bottom: Vertical profiles. 
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Figure 23 and Figure 24 above show a slice through a pepper and a peach, with 20-view 

sparse angle reconstruction through various algorithms. The reference images are 360-view 

images obtained via TV-POCS. Image characteristics are shown below. 

 

 

Table 5. Image characteristics for Figure 23 

pepper, 20 views ref image Tikhonov TV-POCS RWTV-POCS 

SNR 25.8 dB 14.0 22.0 20.0 

relative residual .0573 .0572 .0349 .0338 

TV 24.5 𝒎𝒎−𝟏 97.6 12.6 20.9 

 

 

Table 6. Image characteristics for Figure 24 

peach, 20 views ref image Tikhonov TV-POCS RWTV-POCS 

SNR 18.4 dB 9.09 14.8 14.1 

relative residual .0724 .1265 .0647 .0611 

TV 71.5 𝒎𝒎−𝟏 227 51.0 70.5 
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Tikhonov regularization displays high variance on reconstructed data, leading to low 

SNR and erratic appearance of crossline profiles across images. The TV-POCS and RWTV-

POCS reconstructions are very similar, but the extra loop and selection process for the image in 

RWTV leads as expected to a lower data error than in TV-POCS.  
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Chapter 5 – Discussion 

In this work, previously-known methods for sparse-data reconstruction have been 

demonstrated on real, noisy datasets acquired on a CT acquisition system which was also 

designed and constructed as described previously. This system utilizes commercially available 

components, a rotating object stage, a flat-panel detector, and a microfocus x-ray source, and is 

capable of acquisition of datasets which, through associated software, may be readily 

reconstructed to recognizable images. These reconstructions show acceptable image quality 

parameters including signal-to-noise ratio, and good specificity.   

An alternative method for total variation regularization is presented, which is derived 

from work in (17) (the TV-POCS algorithm) and proposes that in order to maintain a reasonably 

well-regularized solution to a measurement space which contains detector and radiation random 

noise, that successive image estimates should be tabulated and their residuals weighted to form 

the aggregate image, the residual-weighted TV-POCS implementation. As expected, this method 

underperforms the typical TV-POCS with respect to image signal-to-noise ratio, as well as total 

variation. It does, however, provide solutions of good fit to the measured data as measured by the 

relative residual. The residual weighting method nearly matches profiles across the image with 

reference to a “ground-truth” reconstruction.  

The 20-view sampling prevalent in Results (after downsampling) reduces virtual dose to 

the object by a factor of 18 compared with the 360-view acquisition. In clinical medical practice, 

the number of views collected about the trajectory of the source and detector may be as high as 

1,000 or even higher (51), meaning that higher dose reduction factors may be possible. The 

amount of dose reduction will naturally be limited by image quality constraints. Even if imaging 

dose had been reduced by a factor of 5 for half of all patients undergoing necessary CT scans in 
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2007, the number of potential deaths due to new induced cancers could have been reduced from 

14,500 to 5,800 (1).  
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Chapter 6 – Conclusion 

The applicability of regularizing algorithms in sparse-data x-ray CT is promising, with 

many results suggesting that reconstruction from sparsely sampled data sets is possible while 

maintaining passable image quality. Sparse-data CT offers advantages over conventional full-

data CT reconstruction, with the draw of a lowered collective effective dose to hospital patient 

populations of particular note. Many methods have been developed for solution of linear inverse 

problems like that seen in x-ray CT. A few of these methods, demonstrated here, have been 

shown to be effective at reconstruction of real datasets in addition to having good mathematical 

foundations as described in the literature. Widespread adoption of sparse-data systems seems 

unlikely to occur in the near future, but growing concerns over routine imaging dose should 

eventually lead to a shift toward lowered risk to patients. 
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