
Design and Implementation of the HPCS Graph

Analysis Benchmark on Symmetric Multiprocessors

David A. Bader� Kamesh Madduri

College of Computing

Georgia Institute of Technology

February 25, 2006

Abstract

Graph theoretic problems are representative of fundamental computations in tra-

ditional and emerging scienti�c disciplines like scienti�c computing and computational

biology, as well as applications in national security. We present our design and im-

plementation of a graph theory application that supports the kernels from the Scal-

able Synthetic Compact Applications (SSCA) benchmark suite, developed under the

DARPA High Productivity Computing Systems (HPCS) program. This synthetic

benchmark consists of four kernels that require irregular access to a large, directed,

weighted multi-graph. We have developed a parallel implementation of this bench-

mark in C using the POSIX thread library for commodity symmetric multiprocessors

(SMPs). In this paper, we primarily discuss the data layout choices and algorithmic

design issues for each kernel, and also present execution time and benchmark validation

results.

1 Introduction

One of the main objectives of the DARPA High Productivity Computing Systems (HPCS)

program [6] is to reassess the way we de�ne and measure performance, programmability,

portability, robustness and ultimately productivity in the High Performance Computing

�This work was supported in part by DARPA Contract NBCH30390004; and NSF Grants CAREER
ACI-00-93039, NSF DBI-0420513, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity
DEB-01-20709, and ITR EF/BIO 03-31654.

1

(HPC) domain. An initiative in this direction is the formulation of the Scalable Synthetic

Compact Applications (SSCA) [13] benchmark suite. These synthetic benchmarks are en-

visioned to emerge as complements to current scalable micro-benchmarks and complex real

applications to measure high-end productivity and system performance. Each SSCA bench-

mark is composed of multiple related kernels which are chosen to represent workloads within

real HPC applications and is used to evaluate and analyze the ease of use of the system,

memory access patterns, communication and I/O characteristics. The benchmarks are rela-

tively small to permit productivity testing and programming in reasonable time; and scalable

in problem representation and size to allow simulating a run at small scale or executing on

a large system at large scale. They are also described in suÆcient detail to drive novel HPC

programming paradigms, as well as architecture development and testing.

SSCA#2 [14] is a graph theoretic problem which is representative of computations in

the �elds of national security, scienti�c computing, and computational biology. The HPC

community currently relies excessively on single-parameter microbenchmarks like LINPACK

[7], which look solely at the oating-point performance of the system, given a problem with

high degrees of spatial and temporal locality. Graph theoretic problems tend to exhibit

irregular memory accesses, which leads to diÆculty in partitioning data to processors and in

poor cache performance. The growing gap in performance between processor and memory

speeds, the memory wall, makes it challenging for the application programmer to attain high

performance on these codes. The onus is now on the programmer and the system architect

to come up with innovative designs.

Symmetric Multiprocessors (SMPs) with modest shared memory have emerged as a pop-

2

ular platform for the design of scienti�c and engineering applications. SMP clusters are now

ubiquitous in high-performance computing, consisting of clusters of multiprocessors nodes

(e.g., IBM pSeries, Sun Fire, Compaq AlphaServer, and SGI Altix) inter-connected with

high-speed networks (e.g., vendor-supplied, or third party such as Myricom, Quadrics, and

In�niBand). Current research has shown that it is possible to design algorithms for irregular

and discrete computations [4, 1, 2] that provide eÆcient and scalable performance on SMPs.

To analyze SMP performance, we use a complexity model similar to that of Helman and

J�aJ�a [8] which has been shown to provide a good cost model for shared memory algorithms

on current symmetric multiprocessors [4, 8, 9]. The model uses two parameters: the prob-

lems input size n, and the number p of processors. There are two parts to an algorithm's

complexity in this model: ME, the maximum number of non-contiguous memory accesses

required by any processor, and TC , the computation complexity. This model, unlike the ide-

alistic PRAM, is more realistic in that it penalizes algorithms with non-contiguous memory

accesses that often result in cache misses.

This paper is organized as follows. Sections 3-7 discuss the scalable data generation stage

and each of the four kernels in detail: we present the kernel speci�cation, the design trade-

o�s involved in implementation, illustrations of our data layouts, and relevant algorithms.

Section 8 summarizes the execution time and memory usage results, primarily on the Sun

E4500 shared memory SMP. In the �nal section, we present our conclusions and plans for

future work.

3

2 Preliminaries

2.1 De�nitions

Let G = (V;E) be a directed, weighted multi-graph, where V = fv1; v2; :::; vng is the set

of vertices, and E = fe1; e2; :::; emg is the set of weighted, directed edges. An edge ei 2 E

is represented by the tuple hu; v; wii, where u; v 2 V , wi is either a positive integer from a

bounded universe or a character string of �xed length, and the edge ei is directed from u to

v. There are no self loops in the SSCA#2 graph, i.e., for any edge ei = hu; v; wii 2 E, we

have u 6= v. Two vertices u; v are said to be linked if there exists at least one directed edge

from u to v or v to u. We de�ne a set of vertices C � V to be a clique, if each pair of vertices

fu; vg 2 C is linked. This means that a clique has edges between each pair of vertices, but

not necessarily in both directions. A cluster S � C � V is loosely described as a maximal

set of highly inter-connected vertices.

2.2 Benchmark Input Parameters

Some user-de�ned constants are used for the data generation step and subsequent kernels.

1. totVertices : the number of vertices in the graph. We also use n to represent the

number of vertices, and m the number of directed edges in sections of the paper.

2. maxCliqueSize : the maximum size of a clique in the graph. Clique sizes are uniformly

distributed in the interval [1, maxCliqueSize].

3. maxParalEdges : the maximum number of parallel edges between two vertices. The

number of edges between any two vertices are uniformly distributed in the interval [1,

4

maxParalEdges]

4. probUnidirectional : probability that the connections between two vertices will be

unidirectional as opposed to bidirectional

5. probInterClEdges : the probability of inter-clique edges

6. percIntWeights : percentage of edges assigned integer weights

7. maxIntWeight : the maximum integer weight

8. maxStrLen : maximum number of characters in the string weight

9. subGrEdgeLength : maximum edge length in graphs generated by Kernel 3

10. maxClusterSize : maximum cluster size generated by the cuts in Kernel 4

3 Scalable Data Generation

The Scalable Data Generation stage takes user parameters as input and generates the graph

as tuples of vertex pairs and their corresponding weights. The intended graph has a hier-

archical nature, with random-sized cliques, and inter-clique edges assigned using a random

distribution. The edge weights can be integer values or randomly generated character strings.

The scalable data generator need not be parallelized, and is not timed.

3.1 Implementation

This step's output should be an edge list with each element of the form hu, v, wi, where the

edge is directed from u to v, and w is a positive integer weight or a character string. Our im-

5

plementation returns four one-dimensional array constructs: two arrays corresponding to the

start and end vertices, and the two other arrays representing the integer and string weights.

Although this stage is not timed, we parallelize the main steps for practical considerations.

Note that the SSCA#2 graph has some very speci�c properties. It is essentially a col-

lection of cliques (de�ned in the earlier section), with the inter-clique edges assigned using

a hierarchical distribution, based on the distance between the cliques. The fourth kernel

deals with extraction of highly inter-connected clusters from the graph, and we would like

the extracted clusters to be as close as possible to the original cliques. The implementation

details of the data generation stage are discussed in an extended version of this paper [3].

4 Kernel 1: Graph Generation

This kernel constructs the graph from the data generator output tuple list. The graph can

be represented in any manner, but cannot be modi�ed by subsequent kernels. The number

of vertices in the graph is not provided and needs to be determined in this kernel. It is also

suggested that statistics be collected on the graph to aid veri�cation of subsequent kernels.

4.1 Details

There are many �gures of merit for each kernel, including but not limited to memory use,

running time, ease of programming, ease of incrementally improving, and so forth. Thus,

a �gure of merit for any implementation would be the total space usage of the graph data

structure. Also, the graph data structure (or parts of it) cannot be modi�ed or deleted by

subsequent kernels. So we need to choose a data layout which can be created quickly and eas-

6

ily (since Kernel 1 is timed), is space eÆcient, and is optimized for eÆcient implementations

of Kernels 2, 3 and 4.

Kernels 2 and 3 operate on the directed graph, but for Kernel 4, the speci�cation states

that multiple edges, edge directions, and edges weights, are to be ignored. This complicates

the design and implementation { if we plan to use a separate graph layout for Kernel 4,

we need to construct it in Kernel 1, and it cannot be modi�ed in Kernels 2 and 3. The

developer now must design a data structure and layout which considers all these competing

optimization criteria, and this is the core challenge in the benchmark.

An adjacency matrix representation is easy to implement and well-suited for dense graphs.

In this case, however, the generated graph is sparse and a matrix representation would be

very ineÆcient in memory usage. Another common method of representing directed and

weighted graphs is the adjacency list representation. This is easy to implement and also

space eÆcient. However, repeated memory allocation calls while constructing large graphs,

and irregular memory accesses in the subsequent kernels will hurt performance. For our

current implementation, we follow an adjacency list representation, but using the more

cache-friendly adjacency arrays [17] with auxiliary arrays.

Since multiple edges between two vertices can be ignored for Kernels 3 and 4, we do not

store them explicitly, but have another array to keep track of these edges and to map an

edge to its corresponding weight. We �rst construct the part of the data structure to store

the directed graph information. We use two arrays of size totVertices to index and access

the adjacencies corresponding to each vertex. The adjacency list (without multiple edges)

is stored in a contiguous memory location, and so is the array storing the multiple edge

7

information. The data layout used is illustrated in Fig. 1.

Graph construction (for our adjacency array representation) is inherently sequential, but

since we have a sorted edge tuple list, we can extract some parallelism. First, the size of

the graph can be easily determined by �nding the maximum vertex number in the start

vertex or the end vertex list. Assuming the tuple list is sorted by start vertex, the value

can be determined in constant time by reading o� the last element in the startVertex array.

Otherwise we can determine the maximum value in parallel in TC = O(m=p + log p) time.

Processors then scan independent sections of the tuple list to determine the out-degree of

each vertex. We have a parallel time overhead of O(p) for bookkeeping purposes. In the

next pass, we allocate memory for the outVertexList and paralEdgeList arrays and �ll in

entries in parallel in O(m0=p+ log p) time, where m0 is the number of unique directed edges

(removing the parallel edges).

We construct the implied edge list by scanning the outVertexList in parallel. For each

edge hu; vi, we check if the outVertexList has the edge hv; ui. If not, we add u to the implied

edge list of v. This step has an asymptotic time complexity of TC = O(m0=p + log p) and

involves m0 + m=p non-contiguous memory accesses. We also need to use mutex locks to

prevent race conditions, which a�ects performance. The integer and string weight arrays

can be trivially constructed in constant time, since we retain the vertex ordering in the edge

tuples. In sum, the computational complexity for Kernel 1 is given by TC = O(m=p+ log p),

and ME = m0 +2m=p. The asymptotic space requirements for the storing the tuple list and

the graph data structure are both O(m). The memory requirements in both these cases are

further compared in Section 9.

8

paralEdgeIndex

i j

outVertexIndex

m

m

m

intWeightArray

outVertexList

strWeightArray

i i+j−1

i+j−1i

.

.

. . . .

. . . .

. . . .

. . . .

n n

outDegree

Figure 1: The data layout for representing the directed graph { Kernel 1

5 Kernel 2: Classify large sets

The intent of this kernel is to determine vertex pairs with the largest integer weight and the

speci�ed string weight. Two vertex pair lists, SI and SC , are generated in this step and serve

as start sets for graph extraction in Kernel 3. This kernel is timed.

To determine SI , we �rst scan the integer weight list in parallel, determine local maxima,

and store the corresponding end vertex. Then, we do an eÆcient reduction operation on

the p values to determine the maximum weight in O(log p) time. The corresponding start

vertices for the elements in SI can be determined by a fast binary search in parallel on

the outVertexIndex array. The set SC can be similarly determined. As we have stored

the edge weights in a contiguous block, we have the work equally distributed among all

processors. Finding the maximum weighted edge is the dominant step in this stage and TC

= O(m=p+ log p) for this kernel.

9

6 Kernel 3: Extracting sub-graphs

Starting from each of the vertex pairs in the sets SI and SC , this kernel produces sub-graphs

which consist of the vertices and edges along all paths of length less than subGrEdgeLength.

The recommended algorithm for graph extraction in the speci�cation is Breadth First Search.

6.1 Implementation

We use a Breadth First Search (BFS) algorithm starting from the endVertex of each element

in SI and SC , up to a depth of subGrEdgeLength. Now subGrEdgeLength is typically chosen

to be a small number, a constant value in comparison to the number of graph vertices.

We also know that this graph is essentially a collection of cliques (whose maximum size is

bounded), and so a BFS up to a constant depth would yield a subgraph G0 = (V 0; E 0) such

that jV 0j � jV j. Even though the BFS computational complexity is of the same order as

the previous kernels (TC = O(m0)), we can expect this kernel to �nish much faster. We have

not implemented a �ne-grained parallel BFS yet. Currently, we just distribute the vertices

in SI to the available processors and run BFS in parallel on each of these, which limits the

concurrency to jSIj+ jSCj. The queue ADT we use in this algorithm is implemented using a

dynamic array, a linked list and a simple one-dimensional array. Since the extracted graph

is quite small, we �nd that all three representations give similar results. Note that linked

lists are easy to implement, space-eÆcient and could be used for small problem sizes, since

we will not be performing any further operations with the extracted graph.

10

7 Kernel 4: Graph Clustering

The intent of this kernel is to partition the graph into highly inter-connected clusters and

minimize the number of links between these clusters. Multiple edges, edge directions and

weights can be ignored. Since exact solutions to this problem are NP-hard, heuristics are

allowed, provided they satisfy the kernel validation criterion. This kernel should not utilize

any auxiliary information collected in the previous kernels or in the graph generation process.

7.1 Details

This kernel is based on the partitioning problem formulated by Kernighan and Lin [15], with

all the edge costs considered equal. Sangiovanni-Vincentelli, Chert, and Chua [18, 19] have

earlier applied this work for solving circuit problems. The maximal clique problem [5] is a

well-studied NP-complete problem, and several heuristics have been proposed to solve this

[11]. Our problem is not as diÆcult as the maximal clique problem, because of the manner

in which the graph is generated, and also due to the restriction on the maximum clique size.

We cannot apply popular multi-level graph partitioning tools like Chaco [10] and METIS

[12] to solve this kernel. These tools use a variety of heuristics and are highly re�ned,

but they are primarily used to partition nearly-regular graphs into equal-sized blocks, while

minimizing edge cut. Graph partitioning results using Chaco are presented in [3]. The

required partitioning in this problem, however, is highly irregular and cannot be found

accurately using these tools.

The speci�cation suggests an algorithm for solving this kernel, which is a variant of a

graph clustering algorithm given by Koester [16]. This sequential algorithm iteratively forms

11

a sequence of disjoint clusters, which are subgraphs no larger than maxClusterSize vertices.

As each cluster is selected, its vertices are removed from further consideration. To select

the vertices in a cluster, the algorithm starts with some remaining vertex (which forms the

initial one-element cluster), and its links to any remaining vertices (which form the initial

adjacent set). It then expands the cluster by repeatedly moving an adjacent set vertex to

the cluster, and adding that vertex's non-cluster links to the adjacent set. The new vertex

is chosen depending on how tightly it and its links are connected to the existing cluster,

and how many links it adds to the adjacent set. The cluster is complete if the adjacent set

is empty. Otherwise when the cluster reaches maxClusterSize vertices in size, the cluster

elements are marked used, the cluster is added to the cluster list, and size of the adjacent

set is added to the count of interclique links.

The reference implementation uses this algorithm for solving Kernel 4 and reports good

results. The speci�cation suggests statistical validation for assessing the quality of the clus-

tering algorithm. One recommended empirical measure is to check if interClusterLinkNum <

refcutLinksNum, where refcutLinksNum is given by
intercliqueLinkNump

(maxClusterSize=maxCliqueSize)
and

interCliqueLinkNum refers to the number of inter-clique vertex pairs connected by at least

one directed edge. Algorithms with interClusterLinkNum within 5% of the value refCut-

LinksNum are acceptable. It is also suggested that for small problem sizes, the algorithm

correctness be checked rigorously, and parallel results be veri�ed against serial results.

This algorithm is however inherently sequential. Cliques of size less than maxClusterSize

with inter-clique edges may not be extracted correctly. We propose a new parallel greedy al-

gorithm (pseudo-code is given in [3]) to extract clusters. The quality of results is comparable

12

to the reference algorithm, and some results are presented in the next section.

Our parallel algorithm works as follows. We �rst sort the vertices in parallel in the

decreasing order of their degree. The parallel radix sort uses a linear-time counting sort

for a constant number of iterations. A shared array vStatus of size n is maintained to keep

track of the status of each vertex { whether it is unassigned yet, or assigned to a unique

cluster. Each processor chooses a vertex from the top of the queue, colors the vertex and its

adjacencies (both the out-vertices and the implied edges) with a unique number, given by

i�current iteration number , where i is the processor index. The adjacencies of each vertex in

the cluster are inspected, and if more than a certain threshold of them are similarly colored,

it is accepted. Otherwise it is rejected and the vertex is unmarked. We also update the

edgeCut simultaneously | if we decide that an originally colored vertex does not belong to

the cluster, we add all the inter-clique edges to the cut-set. The vertex degree is bounded by

O(maxClusterSize). The clustering algorithm runs in linear time in the worst case (a single

clique of size O(n)), withME given by O(n=p). If maxClusterSize is chosen to be a constant

value, TC = ME = O(n=p).

The heuristic correctly extracts nearly all cliques, except for those of very small sizes

(with 3-4 elements), as it is tough to de�ne acceptance thresholds. We have two choices

in such cases: either classify these vertices as clusters of smaller sizes (say 1 or 2), or add

these vertices to existing clusters. The former approach is a more conservative method of

forming clusters and false positives (vertices wrongly assigned to a cluster) are avoided,

but it would also lead to an inated number of extracted clusters and inter-cluster edges.

We thus have a trade-o� between graph clustering speci�city (corresponds to exact clique

13

extraction) and sensitivity (correlates to minimization of intra-cluster links) in this case. We

can de�ne the threshold values for accepting a vertex into a cluster according to what our

primary optimization criterion is | retaining speci�city, or minimizing inter-clique edges

and increasing sensitivity. The suggested validation scheme for this kernel is to compare the

inter-clique links with the inter-cluster links, and so we optimize for the inter-cluster edges

when reporting the results in Section 9.

8 Experimental Results

This section summarizes the experimental results of our SSCA#2 implementation, tested on

the Sun E4500, a uniform-memory-access (UMA) shared memory parallel machine with 14

UltraSPARC II 400MHz processors and 14 GB of memory. Each processor has 16 Kbytes of

direct-mapped data (L1) cache and 4 Mbytes of external (L2) cache.

We use a binary scaling heuristic SCALE to uniformly express the input parameter values.

The following values have been used for reporting results in this section: totVertices =

2SCALE , maxCliqueSize = 2(SCALE =3), maxParalEdges = 3, probUnidirectional = 0:3,

probInterClEdges = 0:5, percIntWeights = 70, maxIntWeight = 2SCALE , maxStrLen =

SCALE , subGrEdgeLength = SCALE , and maxClusterSize = 2(SCALE =3).

Fig. 2 compares memory utilization of the data generator and our graph layout (described

in Section 5). Note that we explicitly store implied edge information in Kernel 1, causing

the graph data structure to use slightly more memory than the data generator output. One

of the �gures of merit of the implementation is the largest problem size that can be solved

on a given architecture. On the Sun E4500, memory proves to be the bottleneck to scaling.

14

The largest problem size that can be handled with these parameters is 221 vertices, which

generates 156M edges for the above input parameters. We could further solve a problem size

of 222 vertices, by writing the data generator output to disk.

The running times for multi-processor runs are also given in Fig. 2. The execution time

is dominated by graph generation, which scales reasonably with the number of processors for

various problem sizes. We use a locking scheme to construct the implied edge list in parallel,

which leads to a moderate slowdown of Kernel 1. There is also limited parallelism in Kernel

3 dependent on the size of the Kernel 2 start sets.

Fig. 3 gives the running times of the four kernels for various problem scales, on four and

eight processors respectively. Note that the number of non-contiguous memory accesses ME

= O(m0) and TC = O(n=p + log p) for Kernel 1, and so the benchmark execution time is

dominanted by graph construction. Since maxClusterSize = 2SCALE =3, we �nd a sharp rise

in Kernel 1 execution time for SCALE = 9, 12, 15, and 18, as the number of edges generated

in these cases is comparatively higher than the previous value. The dominant step in Kernel

1 is construction of the implied edge list. Kernel 3 takes the least time, as the search depth

value is very small.

Rigorous veri�cation of full-scale runs is prohibitive, and so the benchmark speci�cation

suggests a statistical validation scheme. Table 1 summarizes validation results for Kernel

4. The number of clusters extracted and the number of inter-cluster links are reported

for three di�erent problem sizes (for a four-processor run). The quality of the results is

chiey dependent on two input parameters: probUnidirectional and probInterClEdges. We

have tested the correctness of our implementation on small graph sizes. We also �nd the

15

clustering results to be consistent across multi-processor runs, as we do not use locking in

this kernel. Note that in cases when the graph has a high percentage of inter-clique edges,

we have a trade-o� between exact clique extraction and minimization of inter-cluster edges,

as discussed in the previous section.

Figure 2: Memory Usage (left) and Execution Time (right)

Figure 3: Execution time of Kernels 1, 2, 3, and 4, on four and eight processors, in the left

and right plots, respectively.

16

SCALE 12 16 20

No. of Vertices 4096 65536 1048576

No. of intra-clique edges 40850 361114 39511513

No. of inter-clique edges 8472 72365 645787

No. of cliques 486 3990 32167

Avg. clique size 8.42 16.42 32.6

No. of extracted clusters 383 3142 25201

Avg. cluster size 10.69 20.85 41.6

No. of inter-clique links 5230 49907 422292

No. of inter-cluster links 1968 18892 185250

Table 1: Kernel 4 { Graph Clustering Results. (intra and inter-clique edges include parallel

edges; a link is de�ned as a vertex pair connected by at least one directed edge)

9 Conclusions

In this paper, we present the design and implementation of the SSCA#2 graph theory

benchmark. This benchmark consists of four kernels with irregular memory access patterns

that chiey test a system's memory bandwidth and latency. Our parallel implementation

uses C and POSIX threads and has been tested on the Sun Enterprise E4500 SMP system.

The dominant step in the benchmark is the construction of the graph data structure, which

limits scaling on the Sun E4500. We are currently working on implementations of SSCA#2

on other shared-memory systems such as the Cray MTA-2 and the Cray XD1.

Acknowledgments

We thank Bill Mann, Jeremy Kepner, John Feo, David Koester, John Gilbert, Ram Raja-

mony, and other members of the HPCS working group for trying out early versions of our

implementation, discussions of the benchmark speci�cations, and their valuable suggestions.

17

References

[1] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmetric mul-

tiprocessors (SMPs). In Proc. Int'l Parallel and Distributed Processing Symp. (IPDPS

2004), Santa Fe, NM, April 2004.

[2] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the minimum

spanning forest of sparse graphs. In Proc. Int'l Parallel and Distributed Processing

Symp. (IPDPS 2004), Santa Fe, NM, April 2004.

[3] D. A. Bader and K. Madduri. Design and implementation of the HPCS graph anal-

ysis benchmark on symmetric multiprocessors. Technical report, Georgia Instutite of

Technology, May 2005.

[4] D.A. Bader, S. Sreshta, and N. Weisse-Bernstein. Evaluating arithmetic expressions

using tree contraction: A fast and scalable parallel implementation for symmetric mul-

tiprocessors (SMPs). In S. Sahni, V.K. Prasanna, and U. Shukla, editors, Proc. 9th Int'l

Conf. on High Performance Computing (HiPC 2002), volume 2552 of Lecture Notes in

Computer Science, pages 63{75, Bangalore, India, December 2002. Springer-Verlag.

[5] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem.

In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,

volume 4. Kluwer Academic Publishers, Boston, MA, 1999.

[6] DARPA Information Processing Technology OÆce. High productivity computing sys-

tems project, 2004. http://www.darpa.mil/ipto/programs/hpcs/.

[7] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart. LINPACK Users' Guide.

SIAM, Philadelphia, PA, 1979.

[8] D. R. Helman and J. J�aJ�a. Designing practical eÆcient algorithms for symmetric mul-

tiprocessors. In Algorithm Engineering and Experimentation (ALENEX'99), volume

1619 of Lecture Notes in Computer Science, pages 37{56, Baltimore, MD, January

1999. Springer-Verlag.

[9] D. R. Helman and J. J�aJ�a. Pre�x computations on symmetric multiprocessors. Journal

of Parallel and Distributed Computing, 61(2):265{278, 2001.

[10] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proc.

Supercomputing '95, San Diego, CA, December 1995.

[11] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satis�ability: Second

DIMACS Implementation Challenge, October 11-13, 1993, volume 26 of DIMACS Series

in Discrete Mathematics and Theoretical Computer Science. American Mathematical

Society, 1996.

18

[12] G. Karypis and V. Kumar. MeTiS: A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Ma-

trices. Department of Computer Science, University of Minnesota, version 4.0 edition,

September 1998.

[13] J. Kepner, D. P. Koester, and et al. HPCS Scalable Synthetic Compact Application

(SSCA) Benchmarks, 2004. http://www.highproductivity.org/SSCABmks.htm.

[14] J. Kepner, D. P. Koester, and et al. HPCS SSCA#2 Graph Analysis Benchmark Spec-

i�cations v1.0, April 2005.

[15] B.W. Kernighan and S. Lin. An eÆcient heuristic procedure for partitioning graphs.

The Bell System Technical Journal, 49(2):291{307, 1970.

[16] D. P. Koester. Parallel Block-Diagonal-Bordered Sparse Linear Solvers for Power Sys-

tems Applications. PhD thesis, Syracuse University, Syracuse, NY, October 1995.

[17] J. Park, M. Penner, and V.K. Prasanna. Optimizing graph algorithms for improved

cache performance. In Proc. Int'l Parallel and Distributed Processing Symp. (IPDPS

2002), Fort Lauderdale, FL, April 2002.

[18] A. Sangiovanni-Vincentelli, L.K. Chert, and L.O. Chua. A new tearing approach: Node

tearing nodal analysis. In Proc. IEEE Int'l Symp. on Circ. and Syst., pages 143{147,

Phoenix, AZ, April 1975.

[19] A. Sangiovanni-Vincentelli, L.K. Chert, and L.O. Chua. An eÆcient heuristic cluster

algorithm for tearing large-scale networks. IEEE Trans. Circuits and Systems, pages

709{717, 1977.

19

