
Robustness To Visual Perturbations In
Pixel-Based Tasks

A Dissertation
Presented to

The Academic Faculty

by

Dylan Dexiong Yung

In Partial Fulfillment
of the requirements for the Degree

Master of Science in Computer Science
College of Computing

Georgia Institute of Technology

May 2023

COPYRIGHT © 2023 BY DYLAN DEXIONG YUNG



Robustness To Visual Perturbations In Pixel-Based Tasks

Approved by:

Dr. Zsolt Kira, Advisor
College of Interactive Computing
Georgia Institute of Technology

Dr. Judy Hoffman, Co-Advisor
College of Interactive Computing
Georgia Institute of Technology

Dr. Danfei Xu
College of Interactivate Computing
Georgia Institute of Technology

Date Approved: January 13, 2023



Acknowledgements

I would like to acknowledge my labmates Junjiao Tian, Andrew Szot and Prithvijit

Chattopadhyay for their contributions and efforts to help me improve as a researcher. A

special thanks to prof. Zsolt Kira for being a wonderful mentor and spending so much

time pushing the growth of his students. Other thanks to prof. Judy Hoffman for her

insights and expertise in helping make these works come to fruition.

iii



Table of Contents

Acknowledgements iii

List of Tables vii

List of Figures viii

Summary ix

1 Introduction 1

2 Preliminaries 3

2.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Images To 3D Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Feed Forward Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Fully Connected Neural Network . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . . . . . . . 6

2.7 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.8 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 Cross-Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.10 Resnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.11 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . 10

2.12 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.13 RL to MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.14 Bellman Optimality Equations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.15 Mathematical Derivation Of The Policy Gradient . . . . . . . . . . . . . . 13

2.16 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



3 Related Works 17

3.1 Calibration Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Angular Visual Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Introduction to Temperature Scaling . . . . . . . . . . . . . . . . . . . . 20

3.4 Augmentation in RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Benchmarks For Evaluating Robustness 22

4.1 Cifar Image Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Deep Mind Control Suite Generalization Benchmark . . . . . . . . . . . 23

5 Geometric Sensitivity Decomposition 25

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Norm and Similarity . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Geometric Sensitivity Decomposition of Norm and Angular Similarity 28

5.1.3 Disentangled Training . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.4 Disentangled Inference . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.5 Mathematical Derivation for Equation 5.4 . . . . . . . . . . . . . 33

5.1.6 Small Angle Assumption in Equation 5.5 . . . . . . . . . . . . . . 34

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Experiments on Calibration . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Reasons for Bad Calibration under Distribution Shift . . . . . . . 38

5.2.3 Empirical Support for the Disentangled Training . . . . . . . . . . 40

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Augmentation Curriculum Learning 44

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 AugCL: Curriculum Learning with Strong Augmentations . . . . . 48

6.1.3 Splice Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.4 More Details on Splice Augmentation . . . . . . . . . . . . . . . 51

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.2 DMC-GB Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



6.2.3 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.4 AugCL Train Environment Performance . . . . . . . . . . . . . . 57

6.2.5 Choice Of M On Performance . . . . . . . . . . . . . . . . . . . . 57

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusion 60

Bibliography 62

vi



List of Tables

4.1 Deep Mind Control Tasks Descriptions . . . . . . . . . . . . . . . . . . . 24

5.1 Average Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Cifar10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Cifar100 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 GSD Calibration Across Different Models . . . . . . . . . . . . . . . . . 36

5.5 Importance of Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Pearson Correlation of Cosine Similarity . . . . . . . . . . . . . . . . . . 38

5.7 OOD AUROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.8 Average Norm, Accuracy On Corruption . . . . . . . . . . . . . . . . . . 41

6.1 Color Hard Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Model Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Video Easy Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Video Hard Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 Train Environment Performance . . . . . . . . . . . . . . . . . . . . . . . 57

6.6 Non-naive RAD Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



List of Figures

2.1 RGB Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Fully Connected Linear Layer . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 ReLU Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 CNN Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Pooling Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Vision Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Resnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.9 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Reinforcement Learning Environment Interaction . . . . . . . . . . . . . 12

3.1 Data Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Cifar10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Hendrycks Corruption Samples . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Hendryks Corruption Severity . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Deep Mind Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 GSD Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 GSD Accuracy To Calibration Metrics . . . . . . . . . . . . . . . . . . . 39

5.3 Histogram of Norm Distribution . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Properties of Norms and Angle . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 AugCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Splice Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Pretrain Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Curriculum Step Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



Summary

Convolutional Neural Networks (CNNs) have been shown to provide great utility across

many vision tasks and have become the go-to model for problems involving video or

image input. Though they’ve shown promise across many problems they come with

inherent flaws. For example, in image classification, CNNs are known to output very

high confidence values even when their accuracy is low. This is exacerbated when

visual perturbations are introduced to inputs causing accuracy to drop, but confidence

to remain high. This is similarly problematic when models use visual inputs for decision-

making, such as through pixel-based Reinforcement Learning (RL) where an agent

must learn a policy leveraging images of the environment as input. RL agents under

these settings can perform well in training, but once deployed may face unseen visual

perturbation, causing an erroneous execution of their learned task. Poor robustness

to the previously mentioned examples is deadly in applied Machine Learning (ML) in

the medical field and autonomous vehicles. Thus ways to impart robustness on CNNs

for image classification and RL are of utmost importance. In this thesis, we explore

solutions to the problem of overconfident image classification models and embedding

robustness to visual perturbations in RL. We propose two distinct frameworks for doing

so in two contexts: Image-based classification (Geometric Sensitivity Decomposition

(GSD)) and decision-making (Augmentation Curriculum Learning (AugCL)).

CNNs utilized for image classification has been shown to be erroneously over-

confident. A large contributor to the overconfidence is attributed to a combination of

Cross-Entropy loss, the standard loss for classification, and the final linear layer typically

in vision models. GSD decomposes the norm of a sample feature embedding and the

angular similarity to a target classifier into an instance-dependent and an instance-

independent component. The instance-dependent component captures the sensitive

information about changes in the input while the instance-independent component rep-

resents the insensitive information serving solely to minimize the loss on the training

ix



dataset. Inspired by the decomposition, we analytically derive a simple extension to

current softmax-linear models, which learns to disentangle the two components during

training. On several common vision models, the disentangled model outperforms other

calibration methods on standard calibration metrics in the face of out-of-distribution

(OOD) data and corruption with significantly less complexity. Specifically, we surpass

the current state of the art by 30.8% relative improvement on corrupted CIFAR100 in

Expected Calibration Error.

Pixel-based RL has shown a lack of ability to identify and learn visual features when

things such as color have been changed. Image augmentation has been shown to add

to this, but is difficult to balance. AugCL is a novel curriculum learning approach that

schedules image augmentation into training into a weak augmentation phase and a

strong augmentation phase. We also introduce a novel visual augmentation strategy that

proves to aid in the benchmarks we evaluate on. Our method achieves state-of-the-art

performance on Deep Mind Control Generalization Benchmark when combined with

previous methods. Code available at

https://github.com/GT-RIPL/Geometric-Sensitivity-Decomposition.git

and

https://github.com/GT-RIPL/AugCL.git.

x



Chapter 1 Introduction

The importance of calibration in vision models is in situations where incorrect inference

can be costly such as in the medical field, users of vision models need an accurate sense

of how confident the model is in its prediction. On the other RL is typically deployed

in the real world which involves distribution shifts such as lighting and color changes,

which the agent must also be robust to as an erroneous execution of a policy can be

dangerous as well. Calibration and robustness are not inherently built into vision models

and thus require auxiliary methods which this thesis focuses on.

Image classification models are trained and validated on data from the same dis-

tribution. However, in the real world sensors degrade and weather conditions change.

Similarly, subtle changes in image acquisition and processing can also lead to a distribu-

tion shift of the input data, and will typically decrease the performance (e.g. classification

accuracy). However, it has been empirically found that the model’s confidence or

probability of prediction remains high even when accuracy has degraded (29). The

process of aligning confidence to accuracy is called Calibration. Calibrated probability

provides valuable uncertainty information for decision-making. For example, knowing

when a decision cannot be trusted and more data is needed is important for safety and

efficiency in real-world applications such as self-driving (10) and active learning (67).

Indeed, Reinforcement Learning (RL), which relies on raw observations (e.g.

images) to perform decision-making, has been shown to degrade in performance under

distribution shift as well. An example of distribution shift in RL would be autonomous

vehicles where an agent is expected to safely navigate from one point to another and

can do so under clear weather, which it was trained under, but unable to under cloud

weather (the distribution shift). Several existing approaches to training more robust

agents include Domain Randomization (54; 64) and Data Augmentation (26; 25; 17).

Domain randomization modifies the training environment simulator to create more varied

training data, whereas data augmentation deals with augmenting the image observations

1



representing states without modifying the training simulator itself.

We aim to tackle the confidence calibration problem by taking a geometric approach.

The final linear layer of vision models is disentangled into two components and the main

culprit for over-confidence is calibrated using Temperature Scaling (22). We call our

method Geometric Similarity Decomposition(GSD). Our method is backed by recent

theoretical intuitions discovered about CNNS (13).

We deal with robustness in RL with pixel-based augmentation. We disentangle aug-

mentations used for improving policy learning and augmentations used for robustness

to visual perturbations into two separate networks. We create a curriculum in order to

make this disentangled learning possible as networks trained under augmentations can

hinder policy learning if not delicately balanced.

We specifically aim to solve these issues in a zero-shot manner, i.e., where distribution-

shifted data is unavailable during training. We evaluate GSD’s calibration using a cor-

rupted version of the data it’s trained on with differing corruptions and severities. AugCL

is evaluated on the same task but with simulator modifications that change lighting, color,

and background.

2



Chapter 2 Preliminaries

The main contributions of this thesis are at the intersection of computer vision, RL, and

data augmentation. This section is to provide a necessary foundation for those unfamiliar

with these topics but assumes the reader has a basic understanding of probability theory,

machine learning, and statistics. Preliminaries are broken up into 2 sections: Computer

Vision 2.1 and Reinforcement Learning 2.11, which are designed to give the necessary

foundations for Ch. 5 and Ch. 6 respectively.

2.1 Computer Vision

For those familiar with Deep Learning and Convolutional Neural Networks this section

can be skipped. This section goes over the standard architecture for image classification

and pixel-based RL used for works mentioned later in this thesis. We assume a basic

understanding of Deep Learning and do not cover optimization for the sake of brevity.

2.2 Images To 3D Arrays

We first discuss the format that images must take in order to be processed by Deep

Learning methods. Typically an image is represented by a 3-dimensional array. The

depth dimension (channels) represents color saturation, with indexes 0, 1, and 2 rep-

resenting red, green, and blue respectively. The 2nd and 3rd dimensions of the array

represent the width and height of the image respectively. Each value in the array typically

ranges from 0 (no saturation of that color) and 255 (full saturation of the color), and an

example is shown in Fig. 2.1.

2.3 Feed Forward Network

In this section, we describe the standard Feed Forward Network, which is typically seen

at the end of vision models. We can see an example of an Artificial Neural Network

3



Figure 2.1: Image with 9 pixels, with width and height of 3. Each cell represents color
intensity for the respective channel. The ranges have been normalized to [0,1] by
dividing the initial values by 255. Image from (58).

Figure 2.2: Artificial neuron. Image from (20).

in Fig. 2.2. Input data is represented by xi, i ∈ [1, n] and weights are represented by

wi,j , i ∈ [1, n]. j represents the layer index. For simplicity, we’ll just assume there is

one layer, so j = 1. Weights indicate the importance of feature i for the function being

minimized. The Activation Function is a way to introduce non-linearity and can be

chosen from a wide variety of activation functions. Some of them require a threshold

value as a hyper-parameter represented by θj . An example of an activation function

is given in Sec. 2.5. The output of a neuron represents how much ”activation” this

neuron has achieved. This is inspired by how neurons in the human brain have electricity

(activation) running through a pathway of neurons and axons when the brain is recalling

information (46). A neuron’s activation can be represented as a vector function:

f(x⃗ · w⃗, θ) (2.1)

4



We represent the input as a vector x⃗ and the weights of the neuron as the vector w⃗ in

eq. 2.1. f() represents the chosen activation function with θ as the threshold parameter.

As we can see the dot product of x⃗ and w⃗ are taken and passed through the activation

function.

2.4 Fully Connected Neural Network

Figure 2.3: Each blue circle represents a neuron and lines signify the passing of
activation. Image is taken from (7).

Building upon Sec. 2.3 we define stacking multiple layers. A Fully Connected

Neural Network is multiple layers of neurons as seen in Fig. 2.3. Each blue circle

represents a neuron and we can see that in the second column of neurons, the outputs

of the previous layer of neurons are passed as inputs. The primary difference between

a single neuron and fully connected multiple layers of neurons is that each layer besides

the first applies weight to the output of the previous layer. This allows each neuron to

learn the importance of each feature from the previous layer in order to minimize the loss

function. Each node in the second layer utilizes Eq. 2.1 but represents all the previous

layer outputs as values of x⃗.

2.5 Rectified Linear Unit

As referenced in Sec. 2.3 we describe an activation function primarily used by all models

in this thesis. While there are many activation functions in the field of Machine Learning

we’ll look specifically at Rectified Linear Unit (ReLU) as it is the one primarily used in

the works presented in this thesis. As we can see in Fig. 2.4, ReLU forces the activation

5



Figure 2.4: ReLU function and graph. Image from (1).

to 0 if the output is less than or equal to 0, otherwise, it’ll output the sum of the weights

and the input. Due to how optimization of the neural network is performed, as there

are increasingly more layers of neurons the gradient can vanish to zero. This is due to

calculating the derivative of certain activation functions and how consecutive layers of

this cause the gradient to converge to values too close to 0 to calculate. Since ReLU

is linear for z > 0 it has some nice optimization properties as the gradient is easy to

calculate.

2.6 Convolutional Neural Networks (CNN)

Figure 2.5: Visual example of applying CNN kernel to image. Image from (4)

Now that we’ve established standard Neural Networks which act as the foundation

for Deep Learning, we now define the CNNs the most commonly used models for vision

based tasks. While flattening an image into a vector and passing it to a feed-forward

network is possible, these networks lack the ability to capture temporal and spatial

6



Figure 2.6: Different types of pooling applied to features represented by a 5× 5 matrix.
All pooling kernels are 3× 3. Image is taken from (3).

dependencies. This is where CNNs come into play. CNNs comprise of what is known

as a Filter, which is typically represented by a multi-dimensional matrix. Filter Size

determines the width and height of the filter matrix. Each cell of the filter represents a

weight similar to a feed-forward network mentioned in Sec. 2.3. An example can be

seen in Fig. 2.5. We see that if we have a filter with dimensions 3 × 3 it is applied to

3× 3 sections of the original image. Stride determines how many pixels the filter shifts

over the input matrix. We can see in Fig. 2.5 that the kernel is applied to a subset of the

image of matching size then the values of the kernel are multiplied by their respective

cell in the input image. Subsequently, all of these values are summed. Note that the

output matrix after applying a kernel is smaller than the original input image. The formula

for calculating the output width and height of a CNN kernel applied to an image is:

W −K + 2P

S
+ 1 (2.2)

where W represents the width and height of an image (typically in the shape of a

square). K represents the kernel size, and P is the padding applied to the image, which

is applying added pixels around the outer rim of an image. S represents the stride.

2.7 Pooling Layers

Similar to the Fully Connected Neural Network described in Sec. 2.4, stacking CNNs

has been shown to improve performance. An issue with the feature map output of a

CNN layer is that they record precise positions of features in the input. So small shifts in

the position of features can result in a different output. A common solution to deal with

this is Pooling. Unlike CNN layers, pooling layers apply a fixed transformation rather

than a learned one. Pooling is typically applied to the feature map produced by a CNN

7



kernel. Examples of different types of pooling and the outputs from applying each can

be seen in Fig. 2.6.

2.8 CNN Architecture

Figure 2.7: Full vision model architecture. Image is taken from (5).

We include Fig. 2.7 which shows a standard vision model architecture. As we

can see Fig. 2.7 is the culmination of all previous sections. All of the methods in this

thesis use architectures that usually include modules of CNNs, pooling, and then ReLU.

Multiple of these CNN, ReLU, and pooling modules are stacked and the output of the

final module is flattened and put through a fully connected neural network. The final

layer of the neural network is represented by a matrix that is K×M , where K represents

the number of classification classes and M is the information vector length, which is

predefined.

2.9 Cross-Entropy Loss

Now that we’ve established the architecture of our models we now define the function

we optimize. Typically for image classification in computer vision, the goal is for the

model to output a probability that the image is a certain class. For example, if you train a

model to classify dogs and cats it will output a probability of being a cat or dog for each

image. Typically to train a vision model you require an annotated data set, which is a

data set of images where each image’s class is given. The standard objective function

for image classification is Cross-Entropy, which can be defined as:

L = −
m∑
i=1

yilog(ŷi) (2.3)

8



where m represents the number of classes and yi is typically an identity function. yi is

set to 1 if i is the correct class label and 0 otherwise. ŷi represents the probability of

class i that the model has predicted. Since the final layer of vision models are typically

a Fully Connected Neural Network we can rewrite Eq. 2.3 as:

L = −
m∑
i=1

yilog(f(x,w)) (2.4)

where x is the feature mapping from the CNNs and w is the weights of the fully

connected neural network. Typically the final output of the Fully Connected Neural

Network has a Softmax applied, which is defined as:

eŷi∑K
j=1 e

ŷj
(2.5)

where ŷi is the output from the Fully Connected Neural Network for class i. The Softmax

function ensures that the outputs of the neural network obey the fundamental law of

probability, which is that the sum of the probabilities within an event space equals 1.

2.10 Resnet

Figure 2.8: Flow of data through Resnet module represented by black arrows. x is put
through a weighted layer and then summed with the output if F (x). Image is taken from
(59).

As mentioned in Sec. 2.5, deep neural architectures typically lead to improved

performance but suffer from the Vanishing Gradient problem. Since the gradient values

9



are calculated by taking the product of each layer’s gradient, multiplying many small

values can lead to small gradients ineffective for learning or in extreme cases values

too small to calculate, thus making learning impossible. Introduced in (28), Resnets

was designed to circumvent this problem specifically for large vision models. As we

can see in Fig. 2.8 the value x from the previous layers is added with the output of the

current layer F (x) and put through the next layer after being put through a ReLU layer.

All methods in chapter 5 use Resnet for their backbone.

2.11 Reinforcement Learning (RL)

RL is a sub-field of Machine Learning where an Agent learns a Policy - a mapping

from states to executable actions - that maximizes a numerical Reward Signal when

interacting with an environment. Observations denote the current environment state. An

example would be a robot (agent) learning how to play soccer. The environment typically

encapsulates what the agent can observe, in this case, a soccer field, goals posts, and

ball, (observations) and may include executable actions (pass, dribble, shoot, move) and

the reward signal would be how many points the agent has scored. Reward signals may

be hand-crafted in order to encourage the agent to learn desirable behaviors by giving a

positive numerical value when an action leads to a desirable result is performed and

punish it for performing undesired behaviors (the opposing agent scoring) where the

agent is penalized with a negative reward, hence the term ”reinforcement.”

2.12 Markov Decision Process

A nice way to present RL problems is in Markov Decision Process (MDP) form. MDP

is a discrete-time stochastic control process. Environment states are represented as

discrete ”points of time” where an agent affects state variables with each action sending

the agent to the same or new state with some probability. A key property of MDPs is the

Markov Property, which imposes that all relevant information for taking the next action

is encapsulated into the current state and hence does not depend on knowledge of

previous states or actions. We primarily consider finite time horizon MDPs in this work,

which are tasks with a finite number of discrete time steps. A sequence of interactions

that end in termination is typically referred to as an Episode. The sequence of state-

action pairs observed via exploration using a policy is called a Trajectory. An example

10



of a basic MDP can be seen in Fig. 2.9. Fig. 2.9 represents a person’s state and what

action they can take. We see the three actions are: sleep, ice cream, and run. The

red lines represent the probability of taking an action and ending up in that state. For

example, after having ice cream there is a 10% chance the agent has ice cream again.

Notice the numbers of all arrows going outward from a node in Fig. 2.9 sum to 1, this is

to satisfy the Law Of Total Probability, which is the sum of possible events should sum

to 1.

Figure 2.9: Example of an MDP. Three states are represented by purple circles: Sleep,
Ice Cream, and Run. Transition probabilities are represented with a red line and an
arrow from the previous state to the next state with a number representing the probability
of transition. Image taken from (9)

2.13 RL to MDP

MDPs serve as a nice formulation for RL and offers useful theoretical benefits. Let S and

A denote the state and action space. We can define p(st+1|st, at), st+1, st ∈ S, at ∈ A

as the probability of getting to state st+1 from state st after taking action at, where t ∈ T

denotes the time step and T is a discrete range of integers. p(st+1|st, at) is assumed

to maintain the Markov Property mentioned in the previous section. We can define

R(st, at) as the reward function, which is the reward you receive at t+ 1 for taking an

action at a state. The reward function may be deterministic or stochastic and can be

dense or sparse.

Image-based RL is more reflective of a Partially Observable MDP(POMDP) (74)

as we are only given images of the agent’s current state as an RGB image. In order

to shape it closer to a typical MDP a technique called Frame Stacking is employed.

Multiple RGB observations are stacked representing the current state and the previous

11



k where k represents the number of frames to stack and is usually a predetermined

hyper-parameter thus making st ∈ R3k×h×w. The first dimension represents RGB image

multiplied by a number of stacks then the second dimension is the image height h and

the third is the image width w.

2.14 Bellman Optimality Equations

Figure 2.10: Image of agent and environment interaction. t represents a discrete time
step. Image is taken from (8).

In RL the goal is to maximize Expected Rewards, which can be defined as:

Gt =
∞∑
k=0

γkRt+k+1 (2.6)

γ ∈ [0, 1] represents a discount applied to future rewards as typically immediate rewards

are more valuable. k represents a discrete time step between the present and future. t

represents the current time step. Ri, i ∈ [t,∞] represents the amount of reward received

at time i.

The Q-Value Function(62) or ”quality value function” determines how good an action

is taken from a state s under a policy π.

qπ(s, a) = Eπ[Gt|St = s,At = a] =
∑
s′∈S

P (s′|s, a)[r(s, a, s′) + γvπ(s
′)] (2.7)

where Gt is defined in Eq. 2.6. At is action and St represents the state at time t.

r(s, a, s′) is the reward received for taking action a at state s and arriving at state s′. As

we can see the Q-value function is recursive by nature as it requires the value function,

which is defined in Eq. 2.8 of the next state s′. The Q-Value function outputs how good

it is to take an action a in state s, following the policy π.

Next, we define Value Function(62), which is a measure of how good it is for the

12



agent to be in a state. Which we define as.

vπ(s) = Eπ[Gt|St = s] =
∑
a∈A

qπ(s, a)π(a|s) (2.8)

As we can see the value function relies on the Q-value function. What the value function

calculates is how valuable it is to be in state s, under policy πθ. Since π is typically a

distribution over actions it’s the probability of taking action a multiplied by the Q-value.

The Optimal Policy is defined as:

π ≥ π′ if and only if vπ(s) ≥ vπ′(s),∀s ∈ S (2.9)

Eq. 2.9 is essentially saying that a policy π is relationally better than or equal to another

π′ on the condition that the value for every state under the policy is better. This leads

to the Optimal State-Value Function and is shown in Eq. 2.10 and the Optimal

Action-Value Function as shown in Eq. 2.11.

v∗(s) = max
a∈A

q∗(s, a) (2.10)

q∗(s, a) =
∑
s′∈S

r(s, a, s′) + γ
∑
s′∈S

P (s′|s, a)V∗(s′) (2.11)

Eq. 2.11 and Eq. 2.10 make up the Bellman Optimality Equations

2.15 Mathematical Derivation Of The Policy Gradient

We will leverage the definitions in Sec. 2.14 to learn how to find the optimal policy. An

agent is trying to maximize Returns, which is the cumulative reward by a Trajectory

which is a combination of states and actions taken to get to those states under a policy.

Environments may be stochastic; therefore to account for this, the policies are learned

to maximize the Expected Reward during an episode, which is a finite number of steps

T . This can be written as:

T−1∑
t=0

Eτ∼πθ [rt+1] (2.12)

Where π represents the policy function, θ represents learned parameters of the

13



policy function, rt is the reward given at time t, and τ is the trajectory. An important

question then is how do we learn πθ to maximize returns?

To learn a policy that maximizes rewards, methods in this thesis leverage what is

known as Off-policy Policy Gradient methods, which involve storing previous interac-

tions with the environment into a Replay Buffer, typically a state, action, reward, and

next state are stored. Off-policy RL methods can in theory learn from experiences stored

using any policy. Experience Replay is a memory storage technique for storing the

previous episodes. We also introduce β(a|s), which is the Behavior Policy or the policy

used to collect samples, versus the aforementioned πθ which represents the agent’s

policy. Thus the objective function of off-policy methods becomes:

J (θ) =
∑
s∈S

dβ(s)
∑
a∈A

qπθ(s, a)πθ(a|s)

= Es∼dβ [
∑
a∈A

qπθ(s, a)πθ(a|s)]
(2.13)

Where dβ(s) represents the stationary distribution of the behavior policy β. As we can

see Eq. 2.13 stems from 2.8. s ∼ dβ simply means that the states are sampled by

following the stationary distribution of the behavior policy. The gradient can be derived

as:

∆θJ (θ) = ∆θEs∼dβ [
∑
a∈A

qπθ(s, a)πθ(a|s)]

= Es∼dβ [
∑
a∈A

(qπθ(s, a)∆θπθ(a|s) + πθ(a|s)∆θqπθ(s, a))]

≈ Es∼dβ [
∑
a∈A

(qπθ(s, a)∆θπθ(a|s)]

= Es∼dβ [
∑
a∈A

β(a|s)πθ(a|s)
β(a|s)

qπθ(s, a)
∆θπθ(a|s)
πθ(a|s)

]

= Eβ[
∑
a∈A

πθ(a|s)
β(a|s)

qπθ(s, a)∆θlnπθ(a|s)]

(2.14)

πθ(a|s)
β(a|s) in Eq. 2.14 represents the importance weight. ∆θqπθ is very hard to calculate

in reality. That is why we ignore it in Eq. 2.14 and get an approximation. This has been

shown to be sufficient for improving the policy (15).

14



2.16 Soft Actor-Critic

We will begin by defining Actor-Critic methods (35). As noted in Sec. 2.14 two equations

rely on each other’s definitions for calculating how good a policy is: There is the Value

function Eq. 2.8 and the Q-value function Eq. 2.7. Actor-Critic methods disentangle the

responsibility of learning the value of a policy and the policy itself between an Actor

and a Critic respectively. The Critic estimates the value of the current policy, while the

Actor updates the policy based on what the Critic assesses as the expected reward.

This is what is known as Policy Iteration, a 2-step process alternating between policy

evaluation and policy improvement. To understand this 2-step process we define the

Bellman Operator, which is:

[Tπvπ](s) = Ea∼π(·|s)[r(s, a) + γEs′|s,a[vπ(s
′)]] (2.15)

r(s, a) is the reward received by taking action a at state s. What the Bellman operator is

calculating is the expected reward from sampling from a policy.

Soft Actor-Critic (23) introduces Soft Policy Iteration(23), is similar to Policy

Iteration but leverages slightly modified versions of the 2-step Policy Iteration equations.

Soft Bellman Operator(69) which is defined as:

qsoftπ (s, a) = r(s, a) + γEa′∼π[q
soft
π (s′, a′)− αlogπ(a′|s)] (2.16)

α denotes a scaling factor. The key thing to note in the Eq. 2.16 is Ea′∼π[−logπ(a′|s)],

which follows from the definition of Entropy:

H(x) = E[−logp(x)] (2.17)

where p(x) is a distribution. Entropy is defined as the average amount of information

on a random variable. It has been used in Information Theory to quantify uncertainty.

If the agent converges too quickly to a policy (being confident), there may be other

unexplored policies that are superior. On the other hand, too much exploration (being

uncertain) means not improving upon the best policy currently found. By adding entropy

to the Q-value function we reward the agent for uncertainty. α determines how important

15



exploration should be. This is how Soft Policy Evaluation is done.

Now we examine Soft Policy Iteration(23), which is done using Kullback-Leibler

Divergence, denoted by KL(f ||g). We define the policy iteration formula as:

E[KL(π(·|s)|| exp(qπ(s, ·))∑
a exp(qπ(s, a))

)] (2.18)

Where KL(f ||g) =
∑

x∈X f(x)log(
f(x)
g(x) ), which calculates the weighted difference in

information between two distributions f and g at each point x. Eq. 2.18 improves the

policy by adjusting the policy distribution for a state s to be more confident or more

peaked around the action that gives the best state-action value. Typically the critic

and actor networks are neural networks as described in section 2.1. This thesis only

concerns itself with image-based RL so it leverages the model described in Sec. 2.8.

Typically the agent is represented by a Gaussian distribution when the action space is

continuous and a Categorical distribution when the action space is discrete.

16



Chapter 3 Related Works

In this chapter, we described the related works required to understand chapters 5 and

6. Sec. 3.1 defines calibration and methods to evaluate it, 3.2 and 3.3 describe the

theoretical intuitions motivating the disentangled training and norm regularization used

in methods described in Ch. 5. Sec. 3.4 gives a brief overview of augmentations and

their effects on RL as a preface for Ch. 6.

3.1 Calibration Metrics

Calibration focuses on improving the predictive probability distribution such that it’s

similar to the distribution of classes in the data. For example, if we have a positive and

negative class in our training data and 7 out of 10 are positive. We would expect the

average predicted probability of the positive class to be 70%. Calibration methods aim

to improve this with a held-out data set as typically models have good calibration to the

data they are trained on, which may not be reflective of its calibration to unseen data.

We Assume a data point Xi ∈ X, i ∈ [1, N ] each associated with a label Y ∈ Y =

{1, ...,K}. We would like our model M where M(Xi) = (Ŷi, P̂i) where Ŷi is the class

prediction and P̂ is the probability/confidence given by the model to be close to the

ground truth distribution P (Yi|Xi). Ideally, P̂i is well calibrated which means that it

represents the likelihood of the true event Ŷi = Yi. Perfect calibration (22) can be

defined as:

P(Ŷi = Yi|P̂i = Pi) = Pi,∀Pi ∈ [0, 1] (3.1)

Ways of evaluating Calibration are as follows:

17



Expected Calibration Error (ECE)

Expected Calibration Error (50) evaluates calibration by calculating the difference in

expectation between the confidence and accuracy or:

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (3.2)

P̂ is the confidence estimate, Ŷ is the class prediction and p is the percent correctly

classified as class Ŷ . This can also be computed as the weighted average of bins’

accuracy/confidence difference:

ECE =
M∑
m=1

|Bm|
n
|accuracy(Bm)− confidence(Bm)| (3.3)

where n is the total number of samples. Perfect calibration is achieved when bins Bm

confidence equals accuracy and ECE = 0. ”Bins” in the context of ECE is the set of

classes and each data point predicted on by the model is put into the respective bin

representing the class predicted by the model.

Negative Log Likelihood (NLL)

A way to measure a model’s probabilistic quality is to use Negative Log Likelihood (27).

Given a probabilistic model P (Y |X) and N samples it is defined as:

L = −
N∑
i=1

log(P̂ (Yi|Xi)) (3.4)

where P̂ is the predicted distribution of the ground truth P and Yi is the true label for

input Xi. NLL belongs to a class of strictly proper scoring rules (21). A scoring rule is

strictly proper if it is uniquely optimized by only the true distribution. NLL is the negative

of the logarithm of the probability of the true outcome. If the true class is assigned a

probability of 1, NLL will be minimum with value 0.

18



Brier

The Brier score (11) measures the accuracy of probabilistic predictions. Across all

predicted items N in a set of predictions, the Brier score measures the mean squared

difference between the predicted probability assigned to the possible outcome for

i ∈ [1, N ] and the actual outcome.

BS = (1/N)
N∑
t=1

R∑
i=1

(fti − oti)2 (3.5)

where R is the number of possible classes, N is the overall number of instances of all

classes. fti is the approximated probability of the forecast oti in one hot encoding. Brier

score can be intuitively decomposed into three components: uncertainty, reliability, and

resolution (49), and it is also a proper scoring rule.

3.2 Angular Visual Hardness

Prior works(13) have explored where most of the predictive power of CNNs stems from,

this section elaborates on key points in that work related to this thesis as intuition derived

from (13) are leveraged in Ch. 5. In Sec. 2.8 we described a standard CNN model. An

image is passed through a CNN g and outputs a vector. That vector is passed to a linear

layer represented as a matrix where each row represents a class vector as described in

Sec. 2.8. For brevity, we’ll assume it’s a single linear layer. We can define each row in

the final linear layer as w⃗i, i ∈ [1,K]. To calculate the probability that the input x is class

i, we use Eq. 5.1 and can be written as:

e
⃗g(x)·w⃗i∑K

i=1 e
⃗g(x)·w⃗i

(3.6)

The key thing to note is that ⃗g(x) and w⃗i are vectors therefore the dot product is

taken. The dot product from a Euclidean perspective can be derived as w⃗i · ⃗g(x) =

∥w⃗i∥∥ ⃗g(x)∥cos(θ).

(13) introduced Angular Visual Hardness(AVH), which is defined as:

AVH(x) = A(g(x), wy)∑K
i=1A(g(x), wi)

(3.7)

19



where A(u, v) = arccos( u·v
∥u∥∥v∥). What A() calculates is the angle between the class

vector and the embedded vector of the input. AVH represents a score of the angular

similarity of the information vector of the input and a class vector about its angular

similarity with all other class vectors. (13) make the following observations about AVH:

• The primary determinant of class assignment is AVH

• Norm of input embedding determines the confidence

• The norm of the input embedding is not bounded and therefore increases to infinity

during training

3.3 Introduction to Temperature Scaling

Methods in Ch. 5 leverage a form of Temperature Scaling for improving the calibration

of models. Temperature scaling is a simple form of Platt scaling (55). Temperature

scaling uses a scalar T to adjust the confidence of the softmax probability in a classifi-

cation model. Following the notation from the main paper, let l denote the logits. The

temperature scalar is applied to all classes as follows:

P (y|x) =
exp 1

T ly∑c
j=1 exp

1
T lj

=
exp (∥wy∥2 1

T ∥x∥2 cosϕy)∑c
j=1 exp (∥wj∥2 1

T ∥x∥2 cosϕj)
(3.8)

As described in Fig. 5.1a, the temperature effectively changes the slope of ∥x∥2 from

1 to 1
T . The temperature parameter is optimized by minimizing negative log-likelihood

on a validation set while freezing all the other model parameters (22). Temperature

scaling calibrates a model’s confidence on in-distribution (IND) data and does not

change accuracy. However, it does not provide any mechanism to improve calibration

on shifted distribution and is inferior to other uncertainty estimation methods in terms of

calibration (52).

20



3.4 Augmentation in RL

Figure 3.1: Examples of different augmentations applied to Deep Mind Control Suite
images(63). Image is taken from (38).

Now that we’ve established the necessary foundations in the previous sections for

calibration in CV, we now establish the necessary background of what is known about the

effects of image augmentation in RL. Image augmentation has been shown to help the

CV model learn more robust representations (53; 47). The same philosophy has been

applied to pixel-based RL with interesting results (38; 68). What was interesting was

that, unlike CV where a set of augmentations tends to help models have a more robust

representation of different classes, RL seemed to benefit from specific augmentations

and applying only one throughout training (38). The utility of such augmentations is

improved sample efficiency or convergence to the best achievable policy faster. There

is no universal augmentation that helps sample efficiency across all problem domains,

but there do exist generally applicable ones, namely: shift and crop. An example of a

crop can be seen in fig. 3.1. Shift (68) applies padding to an image and then crops

back to the original dimensions. It has been shown that augmentations counter-act

the inherent high-frequency bias that CNNs have (19) and allow agents to learn visual

features relevant to the task (12).

The dangers of using augmentations are that some augmentations termed Strong

Augmentations have shown to be detrimental to policy learning (38). The utility of strong

augmentation is their visual similarity to common visual perturbations such as color

change. The main issue is leveraging strong augmentations without impeding policy

learning. In Ch. 6 we focus on how to strike a good balance between policy learning

with augmentations that are known to regularize networks and strong augmentations

which are visually reflective of distribution shift.

21



Chapter 4 Benchmarks For Evaluating Robustness

4.1 Cifar Image Dataset

Figure 4.1: Example images from the Cifar 10 dataset. Image is taken from (2).

For CV-related tasks, we train our models on Cifar 10 and 100, both containing 60000

annotated images with 10 classes comprising animals and vehicles in Cifar 10 and 100

for Cifar 100. (29) offers code to apply corruptions to images of differing levels of severity

from 1 to 5 an example of the different types of noises is shown in fig. 4.2. In order

to test CV model calibration in the face of noise we use Cifar 10 and 100 Corrupt(29).

Examples of images corrupted by (29) can be seen in Fig. 4.2 and 4.3. A standard

method to evaluate calibration is to train on Cifar 10 and 100 and evaluate the confidence

and accuracy correlation using Cifar 10 and 100 Corrupt.

22



Figure 4.2: Example images of different types of noises applied to images from (29).
Image is taken from (29).

Figure 4.3: Example differing severity of noise application using (29). Image is taken
from (29).

4.2 Deep Mind Control Suite Generalization Benchmark

Figure 4.4: Samples of a single frame from tasks in Deep Mind Control Suite. Image is
taken from (63).

We assess all RL models on Deep Mind Control Suite (DMC) (63). DMC consists of a

large set of robotics tasks where the action is vectors representing continuous values

that control different parts of the agent. As seen in fig. 4.4 the agents take on varying

forms and DMC also offers a large variety of tasks from making the agent walk to

catching a ball in a cup. Typically an agent’s performance is evaluated on the cumulative

reward it earned, based on the task. To evaluate generalization ability we benchmark on

DMC Generalization Benchmark (DMC-GB). DMC-GB offers 4 modes: color easy, color

23



hard, video easy and video hard. The color modes randomly change the color of the

agent, flooring, and background. The video settings randomly change the background

to another image. We have a table containing task descriptions used to benchmark

methods in this paper in Tab. 4.1

Table 4.1: Table containing: action space dimension, a brief description of the task, and
if rewards are dense. Descriptions are taken from (25).

Domain, Task Description Action Vector Size Dense Rewards

Walker,
Walk

A planar walker that is rewarded for walking forward at a target velocity. 6 Yes

Walker,
Stand

A planar walker that is rewarded for standing with an upright torso at a constant minimum height. 6 Yes

Cartpole,
Swingup

Swing up and balance a pole by applying forces to a cart at its base.
The agent is rewarded for balancing the pole within a fixed threshold angle.

1 Yes

Ball In Cup,
Catch

An actuated planar receptacle is to swing and catch a ball attached by a string to its bottom 2 No

Finger,
Spin

A manipulation problem with a planar 3 DoF finger. The task is to continually spin a free body 2 No

24



Chapter 5 Geometric Sensitivity Decomposition

During development, deep learning models are trained and validated on data from the

same distribution. However, in the real world sensors degrade and weather conditions

change. Similarly, subtle changes in image acquisition and processing can also lead

to a distribution shift of the input data. This is often known as covariate shift, and

will typically decrease the performance (e.g. classification accuracy). However, it has

been empirically found that the model’s confidence remains high even when accuracy

has degraded (29). The process of aligning confidence to empirical accuracy is called

model calibration. Calibrated probability provides valuable uncertainty information for

decision-making. For example, knowing when a decision cannot be trusted and more

data is needed is important for safety and efficiency in real-world applications such as

self-driving (10) and active learning (67).

A comprehensive comparison of calibration methods has been studied for in-distribution

(IND) data (22), However, these methods lead to unsatisfactory performance under

distribution shift (52). To resolve the problem, high-quality uncertainty estimation (34; 52)

is required. Principled Bayesian methods (18) model uncertainty directly but are compu-

tationally heavy. Recent deterministic methods (65; 43) propose to improve a model’s

sensitivity to input changes by regularizing the model’s intermediate layers. In this

context, sensitivity is defined as preserving distance between two different input sam-

ples through layers of the model. We would like to utilize the improved sensitivity to

better detect Out-of-Distribution (OOD) data. However, these methods introduce added

architecture changes and large combinatorics of hyperparameters.

Unlike existing works, we propose to study sensitivity from a geometric perspective.

The last linear layer in a softmax-linear model can be decomposed into the multiplication

of a norm and a cosine similarity term (44; 13; 33; 45). Geometrically, the angular

similarity dictates the membership of input, and the norm only affects the confidence in

a softmax-linear model. Counter-intuitively, the norm of a sample’s feature embedding

25



exhibits little correlation to the hardness of the input (13). Based on this observation, we

explore two questions: 1) why is a model’s confidence insensitive to distribution shift? 2)

how do we improve model sensitivity and calibration?

We hypothesize that in part an insensitive norm is responsible for bad calibration,

especially on shifted data. We observe that the sensitivity of the angular similarity

increases with training whereas the sensitivity of the norm remains low. More importantly,

calibration worsens during the period when the norm increases while the angular

similarity changes slowly. This shows a concrete example of the inability of the norm to

adapt when accuracy has dropped. Intuitively, training on clean datasets encourages

neural networks to always output increasingly large feature norms to continuously

minimize the training loss. Because the probability of the prevalent class of input is

proportional to its norm, larger norms lead to smaller training loss when most training

data have been classified correctly (See Sec. 5.1.1). This renders the norm insensitive

to input differences because the model is trained to always output features with the large

norm on clean data. While we have put forth that the norm is poorly calibrated, we must

emphasize that it can still play an important role in model calibration (See Sec. 5.2.1).

To encourage sensitivity, we propose to decompose the norm of a sample’s feature

embedding and the angular similarity into two components: instance-dependent and

instance-independent. The instance-dependent component captures the sensitive in-

formation about the input while the instance-independent component represents the

insensitive information serving solely to minimize the loss on the training dataset. In-

spired by the decomposition, we analytically derive a simple extension to the current

softmax-linear model, which learns to disentangle the two components during train-

ing. We show that our model outperforms other deterministic methods (despite their

significant complexity) and is comparable to multi-pass methods with fewer training

hyperparameters in Sec. 5.2.1.

In summary, our contributions are fourfold:

• We study the problem of calibration geometrically and identify that the insensitive

norm is responsible for bad calibration under distribution shift.

• We derive a principled but simple geometric decomposition that decomposes the

norm into an instance-dependent and instance-independent component.

26



• Based on the decomposition, we propose a simple training and inference scheme

to encourage the norm to reflect distribution changes.

• We achieve state-of-the-art results in calibration metrics in the face of corruption

while having arguably the simplest calibration method to implement.

This work was done in collaboration with Junjiao Tian and Yen-Chang Hsu and was

accepted into Neurips 2021 and won the Spotlight Paper award.

5.1 Method

Following our hypothesis that the insensitivity of the norm is responsible for bad cal-

ibration on distribution-shifted data, we propose geometric sensitivity decomposition

(GSD) for the norm. We first introduce the geometric perspective of the last linear layer

in Sec. 5.1.1 and then derive GSD in Sec. 5.1.2. To improve the sensitivity of the norm

and model calibration on shifted data, we propose a GSD-inspired training and inference

procedure in Sec. 5.1.3 and Sec. 5.1.4.

5.1.1 Norm and Similarity

The output layer of a neural network can be written as a dot-product < x,wy >, where

x is the embedded input and wy is the weight vector associated with class y. Though

seemingly simple there are strongly geometric and calibration-related intuitions drawn

from this. Several prior works (44; 33; 13) have studied the effects decomposition of the

last linear layer in a softmax model can have on classification. The output layer can be

decomposed into angular similarity cosϕy and norm ∥x∥2.

P (y|x) = exp ly∑c
j=1 exp lj

=
exp (∥wy∥2∥x∥2 cosϕy)∑c
j=1 exp (∥wj∥2∥x∥2 cosϕj)

(5.1)

where ∥wy∥2 is the norm of a specific classifier in the linear layer. We’ll use this

geometric view of the linear layer instead of the dot-product representation.

Based on this perspective, we base the foundation of our work on the following

observations from prior works (44; 33; 13): 1) The probability/confidence of the prevalent

class of input is proportional to its norm (33). 2) While the norm of a feature strongly

scales the predictive probability, due to its unregularized nature the norm is not sensitive

to the hardness of the input (13). In other words, the norm could be the reason for the

27



bad sensitivity of the confidence to input distribution shift. Consequently, the insensitive

norm can be causally related to bad calibration. We will examine a strong correlation

between the quality of calibration and the magnitude of the norm in Sec. 5.2.2.

5.1.2 Geometric Sensitivity Decomposition of Norm and Angular Similarity

To motivate the subsequent geometric decomposition, we can revisit the softmax model,

P (y|x) ∝ exp (∥wy∥2∥x∥2 cosϕy). Three terms are contributing to the magnitude of the

exponential function, ∥wy∥2, ∥x∥2 and cosϕy. Due to weight regularizations, ∥wy∥2 is

most likely very small, while cosϕy ∈ [−1, 1]. Therefore, the only way to obtain a high

probability/confidence on training data and minimize cross-entropy loss is to 1) push the

norm ∥x∥2 to a large value and 2) keep cos |ϕy| of the ground truth class close to one,

i.e., |ϕy| close to zero. This is further supported by (60), where it was shown that logits

of the ground truth class must diverge to infinity to minimize cross-entropy loss under

gradient descent. In this process, models tend towards large norms and small angles

for all training samples.

Therefore, we propose to decompose the norms of features into two components: an

instance-independent scalar offset and an instance-dependent variance factor, which

we define in Eq. 5.2. The role of the instance-independent offset Cx is to minimize the

loss on the entire training set and the instance-dependent component ∆x accounts

for differences in samples. Therefore, if we can disentangle the instance-independent

component from the instance-dependent component, we can obtain a norm that is

sensitive to the hardness of data. Following this logic, we decompose the norm into two

components.

∥x∥2 = ∥∆x∥2 + Cx (5.2)

Similarly, we relax the angles such that the predicted angular similarity does not need

to be close to one on the training data, i.e., making the angles larger. To achieve this, we

introduce an instance-independent relaxation angle Cϕ and an instance-dependent angle

∆ϕy. Analogous to the norm decomposition, the scalar Cϕ serves solely to minimize

the training loss while the instance-dependent ∆ϕy accounts for differences in samples.

28



Because we need to account for the sign of the angle, we put an absolute value on it.

|ϕy| = |∆ϕy| − |Cϕ| (5.3)

The ∥∆x∥2, |∆ϕy| are the instance-dependent components and Cx, |Cϕ| are the

instance-independent components. We can rewrite the pre-softmax logits in Eq. 5.1 with

the decomposed norm and angular similarity. (Detailed derivation in Sec. 5.1.5 in the

Appendix.)

∥x∥2 cosϕy = ∥x∥2 cos |ϕy| = (∥∆x∥2 + Cx) cos (|∆ϕy| − |Cϕ|) (5.4)

= (∥∆x∥2 + Cx)
1

cos |Cϕ|
cos |∆ϕy| ×

(
1− sin |Cϕ|2

(
1−

cos |Cϕ| sin |∆ϕy|
sin |Cϕ| cos |∆ϕy|

))

We can simplify the equation by assuming cos |ϕy| is close to one, which means

|ϕy| is small. This is because |ϕy| is the angle between the correct class weight and x,

which means as training ensues, the angle converges to 0 and thus the cosine similarity

converges to 1. (Please see Sec. 5.1.6 for empirical support.)

cos |Cϕ| sin |∆ϕy|
sin |Cϕ| cos |∆ϕy|

=
sin (|∆ϕy|+ |Cϕ|) + sin |ϕy|
sin (|∆ϕy|+ |Cϕ|)− sin |ϕy|

≈ 1 (5.5)

Therefore, Eq. 5.4, omitting the absolute value on angles because cos is an even function,

simplifies:

∥x∥2 cosϕy ≈ (∥∆x∥2 + Cx)
1

cos Cϕ
cos∆ϕy (5.6)

=

(
1

cos Cϕ
∥∆x∥2 +

1

cos Cϕ
Cx

)
cos∆ϕy

=

(
1

α
∥∆x∥2 +

β

α

)
cos∆ϕy

Because cos Cϕ and Cx are instance-independent, we denote them as α and β

respectively. This geometric decomposition of norm and cosine similarity inspires

us to include α and β as free trainable parameters in a new network and the

network can learn to predict the more input-sensitive ∥∆x∥2 and ∆ϕy instead of

29



the original ∥x∥2 and ϕy. While both the angle and norm can be decomposed we direct

the focus to the norm as the angle is already calibrated to accuracy (13). In other words,

angles have been shown to be sensitive to input changes in (13).

5.1.3 Disentangled Training

Following the derivation in Eq 5.6, we replace the norm, ∥x∥2, in Eq. 5.1 by
(

1
α∥∆x∥2 + β

α

)
and ϕy by ∆ϕy. ∥∆x∥2 and ∆ϕy are now learned outputs from a new network instead

as shown in Eq. 5.6:

P (y|x) = exp ly∑c
j=1 exp lj

=
exp (∥wy∥2

(
1
α∥∆x∥2 + β

α

)
cos∆ϕy)∑c

j=1 exp (∥wj∥2
(

1
α∥∆x∥2 + β

α

)
cos∆ϕj)

(5.7)

The new model can be trained using the same training procedures as the vanilla

network without additional hyperparameter tuning, changing the architecture or extended

training time. Even though the outputs of the new network, ∥∆x∥2 and ∆ϕy, only

approximate the original geometric relationships with Eq. 5.6, the effect of α and β

reflects the decomposition in Eq. 5.3 and Eq. 5.2.

• β encodes an instance-independent scalar Cx of the norm. A larger β corresponds

to a smaller instance-dependent component ∥∆x∥2.

• α encodes the cosine of a relaxation angle Cϕ. A larger arccosα corresponds to a

larger Cϕ and therefore a larger ∆ϕj .

Because β encodes the independent component, the new feature norm ∥∆x∥2

becomes sensitive to input changes and maps OOD data to lower norms than IND data

as we can see in Fig. 5.3a, 5.3b. We regularize α such that the instance-independent

component Cϕ is small. Specifically, we penalize ∥α − 1∥22 because α = cos Cϕ, i.e.,

if α ≈ 1, Cϕ ≈ 0. We empirically found that a larger relaxation angle Cϕ deteriorates

performance because the angular similarity already correlates well with difficulty of

data (13) and we do not need to encourage a large relaxation. Sec. 5.2.3 will empirically

verify this.

5.1.4 Disentangled Inference

The decomposition theory in Sec. 5.1.2 provides a geometric perspective on the sen-

sitivity of the norm and the angular similarity to input changes and inspires a disen-

30



(a) Temperature Scaling

(b) Ours: calibration Step 1 (c) Ours: Calibration Step 2

Figure 5.1: Calibration Procedure (a): Temperature Scaling (22) changes the slope of
the effective norm based on in-distribution (IND) data (See 3.3)

31



tangled model in Sec. 5.1.3. The new model uses a learnable affine transformation

on the norm ∥∆x∥2. Let’s denote the affine transformed norm as the effective norm

N (∆x)
.
= 1

α∥∆x∥2 + β
α . However, the training only separates the sensitive components

of the norm and angular similarity, the model can still be overconfident due to the exis-

tence of insensitive components. Therefore, we can improve calibration by modifying

insensitive components, e.g., β in our case. We propose a two-step calibration pro-

cedure that combines in-distribution calibration (Fig. 5.1b) and out-of-distribution

detection (Fig. 5.1c) based on two observations: 1) overconfident IND data can be

easily calibrated on a validation set, similar to temperature scaling (22). 2) for OOD data,

without access to a calibration set for OOD data, the best strategy is to map them far

away from the IND data given that the model clearly distinguishes them.

The first step is calibrating the model on IND validation set (note our method does

not rely on OOD validation data), similar to temperature calibration (22). However, in-

stead of tuning a temperature parameter as shown in Fig. 5.1a, we simply tune the offset

parameter β on the validation set in one of two ways: 1) grid-search based on minimizing

Expected Calibration Error (see Sec. 5.2) 2) SGD optimization based on Negative Log

Likelihood (22). Because these are post-training procedure, both methods are very

efficient. We denote the new parameter as β′. As shown in Fig. 5.1b, by changing the

offset, we decrease the magnitude of the norms after the affine transformation. Formally,

N (∆x) =
1

α
∥∆x∥2 +

β

α
→ N (∆x) =

1

α
∥∆x∥2 +

β′

α
(5.8)

The second step approximates the calibrated affine mapping in Eq. 5.8 by a non-

linear function which covers a wider range of the effective norm as shown in Eq. 5.9 and

maps OOD data further away from IND data. Intuitively, when a sample is more likely

IND, the non-linear function maps it closer to the calibrated transformation. When a

sample is OOD, the non-linear function maps it more aggressively to a smaller magnitude,

exponentially away from the IND samples.

N (∆x) =
1

α
∥∆x∥2 +

β′

α
(1− e−c∥∆x∥2) (5.9)

where c is a hyperparameter which can be calculated as in Eq. 5.10. The non-linear

function grows exponentially close to the calibrated affine mapping in Eq. 5.8 dictated by

32



1− e−c∥∆x∥2 as shown in 5.1c. Therefore, e−c∥∆x∥2 can be viewed as an error term that

quantifies how close the non-linear function is to the calibrated affine function in Eq. 5.8.

Let µx and σx denote the mean and standard deviation of the distribution of the norm of

IND sample embedding calculated on the validation set. We use the heuristic that when

evaluated at one standard deviation below the mean, ∥∆x∥2 = µx−σx, the approximation

error e−c(µx−σx) = 0.1. Even though the error threshold is a hyperparameter, using an

error of 0.1 leads to state-of-the-art results across all models applied.

c =
−ln(1− error)

µx − σx
=
−ln(0.9)
µx − σx

(5.10)

In summary, the sensitive norm ∥∆x∥2 is used both as a soft threshold for OOD

detection and as a criterion for calibration. While similar post-processing calibration

procedure exists, such as temperature scaling (22) (illustrated in Fig. 5.1a and further

introduced in 3.3) it only provides good calibration on IND data and does not provide any

mechanism to improve calibration on shifted data (52). Our calibration procedure can

improve calibration on both IND and OOD data, without access to OOD data, because

the training method extracts the sensitive component in a principled manner. Just as

temperature scaling, the non-linear mapping needs only to be calculated once and adds

no computation at inference.

5.1.5 Mathematical Derivation for Equation 5.4

We proposed to decompose the norm and angular similarity into instance-independent

and dependent components.

∥x∥2 = ∥∆x∥2 + Cx (5.11)

|ϕy| = |∆ϕy| − |Cϕ| (5.12)

The ∥∆x∥2, |∆ϕy| are the instance-dependent components and Cx, |Cϕ| are the instance-

independent components. We can rewrite the pre-softmax logits in Eq. 5.1 with the

33



decomposed norm and angular similarity.

∥x∥2 cosϕy = ∥x∥2 cos |ϕy| = (∥∆x∥2 + Cx) cos (|∆ϕy| − |Cϕ|) (5.13)

= (∥∆x∥2 + Cx) (cos |∆ϕy| cos |Cϕ|+ sin |∆ϕy| sin |Cϕ|)

= (∥∆x∥2 + Cx)
1

cos |Cϕ|

(
cos |∆ϕy| cos |Cϕ|2 + sin |∆ϕy| cos |Cϕ| sin |Cϕ|

)
= (∥∆x∥2 + Cx)

1

cos |Cϕ|
cos |∆ϕy|

(
cos |Cϕ|2 + cos |Cϕ| sin |Cϕ|

sin |∆ϕy|
cos |∆ϕy|

)
= (∥∆x∥2 + Cx)

1

cos |Cϕ|
cos |∆ϕy|

((
1− sin |Cϕ|2

)
+ cos |Cϕ| sin |Cϕ|

sin |∆ϕy|
cos |∆ϕy|

)

= (∥∆x∥2 + Cx)
1

cos |Cϕ|
cos |∆ϕy|

1− sin |Cϕ|2

1−
cos |Cϕ| sin |∆ϕy|
sin |Cϕ| cos |∆ϕy|︸ ︷︷ ︸

≈1 Eq. 5.14




≈
(

1

cos |Cϕ|
∥∆x∥2 +

Cx
cos |Cϕ|

)
cos |∆ϕy|

We can simplify the equation by assuming cos |ϕy| is close to one, which means |ϕy|

is small. This is because |ϕy| is the angle between the correct class weight and x,

which means as training ensues, the angle converges to 0 and thus the cosine similarity

converges to 1. (Please see Sec. 5.1.6 for empirical support.)

cos |Cϕ| sin |∆ϕy|
sin |Cϕ| cos |∆ϕy|

=
sin (|∆ϕy|+ |Cϕ|) + sin |ϕy|
sin (|∆ϕy|+ |Cϕ|)− sin |ϕy|

≈ 1 (5.14)

5.1.6 Small Angle Assumption in Equation 5.5

Table 5.1: Average cosine similarity to the ground truth class on the training data set
after training for 200 epochs

CIFAR10 CIFAR100

ResNet-18 ResNet-34 ResNet-101 ResNet-18 ResNet-34 ResNet-101
cosϕ 0.81 0.79 0.76 0.75 0.78 0.74

One reason for the small angle assumption in Eq. 5.5 is the observation that high-

capacity models tend to be more miscalibrated (22) and our method is especially more

effective in this case. When a model is sufficiently high-capacity compared to the

diversity of the dataset, the assumption of small-angle is empirically more valid and the

method can provide more significant improvement. All ResNet models are high-capacity

deep models and the corresponding cosine similarity to the true class is close to one

34



during training as assumed in Sec. 5.1.2. Tab. 5.1 shows the average cosine similarity

to the ground truth class on the training data.

5.2 Experiments

5.2.1 Experiments on Calibration

Table 5.2: ResNet-28-10 on CIFAR10 averaged over 10 seed. † denotes results
from (43). Our method outperforms other single-pass methods and is comparable to
Deep Ensemble (37) on corrupted data. While the ensembled version of our model
beats all multi-pass models.

Method Accuracy ↑ ECE ↓ NLL ↓
Clean Corrupted Clean Corrupted Clean Corrupted

5*Single-Pass Vanilla† 96.0±0.01 72.9±0.01 0.023±0.002 0.153±0.011 0.158±0.01 1.059±0.02
DUQ† 94.7±0.02 71.6±0.02 0.034±0.002 0.183±0.011 0.239±0.02 1.348±0.01

SNGP† 95.9±0.01 74.6±0.01 0.018±0.001 0.090±0.012 0.138±0.01 0.935±0.01
Ours β′ Grid-Searched 95.9±0.01 74.9±0.05 0.018±0.003 0.067±0.010 0.148±0.003 0.826±0.03

Ours β′ Optimized 95.9±0.01 74.9±0.05 0.008±0.002 0.085±0.012 0.140±0.004 0.853±0.04

3* Multi-Pass Deep Ensembles† 96.6±0.01 77.9±0.01 0.010±0.001 0.087±0.004 0.114±0.01 0.815±0.01
MC Dropout† 96.0±0.01 70.0±0.02 0.021±0.002 0.116±0.009 0.173±0.001 1.152±0.01

Ours β′Grid-Searched 96.62 77.9 0.007 0.069 0.108 0.773

Table 5.3: ResNet-28-10 on CIFAR100 averaged over 10 seeds. † denotes results
from (43). Our method outperforms other single-pass methods and Deep Ensemble (37)
on corrupted data. While the ensembled version of our model beats all multi-pass
models

Method† Accuracy↑ ECE ↓ NLL ↓
Clean Corrupted Clean Corrupted Clean Corrupted

5*Single-Pass Vanilla† 79.8±0.02 50.5±0.04 0.085±0.004 0.239±0.020 0.872±0.01 2.756±0.03
DUQ† 78.5±0.02 50.4±0.02 0.119±0.001 0.281±0.012 0.980±0.02 2.841±0.01

SNGP† 79.9±0.03 49.0±0.02 0.025±0.012 0.117±0.014 0.847±0.01 2.626±0.01
Ours β′ Grid-Searched 79.8±0.03 49.8 ± 0.003 0.027±0.003 0.081 ± 0.007 0.787±0.009 2.23±0.02

Ours β′ Optimized 79.8±0.03 49.8±0.03 0.027±0.003 0.088±0.007 0.784±0.011 2.236±0.021

3* Multi-Pass Deep Ensembles† 80.2±0.01 54.1±0.04 0.021±0.004 0.138±0.013 0.666±0.02 2.281±0.03
MC Dropout† 79.6±0.02 42.6±0.08 0.050±0.003 0.202±0.010 0.825±0.01 2.881±0.01

Ours β′ Grid-Searched 83.09 54.1 0.018 0.086 0.614 2.042

The ultimate goal of the thesis is to improve model calibration under distribution shift

by improving sensitivity. Popular metrics for measuring calibration include: Negative

Log-Likelihood (NLL (27)), Brier (11) and Expected Calibration Error (ECE (50)). Our

goal is for our model is to produce values close to 0 in these metrics, which maximizes

calibration. Please refer to Sec. 3.1 for more detailed discussion on these metrics.

Following prior works (43; 65; 52), we will use CIFAR10 and CIFAR100 as the in-

distribution training and testing dataset, and apply the image corruption library provided

by (29) to benchmark calibration performance under distribution shift. The library

provides 16 types of noises with 5 severity scales. In this section, we show that our

model outperforms other deterministic methods (despite their significant complexity

35



Table 5.4: Generalizability Experiments Our method is effective with different feature
backbones.

Clean Corrupt/Rotate

model dataset accuracy↑ ECE↓ NLL↓ Brier↓ accuracy↑ ECE↓ NLL↓ Brier↓

ResNet34 CIFAR10 95.63% 0.026 0.186 0.007 81.96% 0.164 1.114 0.039
GSD ResNet34 CIFAR10 95.9% 0.005 0.148 0.006 76.54% 0.088 0.882 0.037

ResNet50 CIFAR10 95.32% 0.03 0.203 0.008 76.32% 0.17 1.23 0.039
GSD ResNet50 CIFAR10 95.82% 0.008 0.147 0.007 76.23% 0.057 0.766 0.033

ResNet101 CIFAR10 95.61% 0.028 0.197 0.007 77.59% 0.154 1.118 0.037
GSD ResNet101 CIFAR10 95.62% 0.007 0.158 0.007 77.21% 0.075 0.852 0.036

ResNet152 CIFAR10 95.7% 0.028 0.196 0.007 75.2% 0.179 1.337 0.041
GSD ResNet152 CIFAR10 95.63% 0.007 0.151 0.007 76.58% 0.058 0.765 0.033

ResNet34 CIFAR100 78.81% 0.071 0.868 0.003 51.16% 0.19 2.387 0.007
GSD ResNet34 CIFAR100 78.02% 0.037 0.938 0.003 49.27% 0.098 2.361 0.007

ResNet50 CIFAR100 79.28% 0.075 0.861 0.003 49.71% 0.213 2.477 0.007
GSD ResNet50 CIFAR100 78.97% 0.033 0.879 0.003 50.12% 0.08 2.264 0.006

ResNet101 CIFAR100 80.17% 0.092 0.846 0.003 58.19% 0.253 2.575 0.007
GSD ResNet101 CIFAR100 79.82% 0.034 0.834 0.003 53.14% 0.082 2.11 0.006

ResNet152 CIFAR100 80.71% 0.090 0.815 0.003 54.2% 0.233 2.45 0.007
GSD ResNet152 CIFAR100 79.85% 0.036 0.827 0.003 53% 0.078 2.12 0.006

Table 5.5: Importance of Norm While norm is poorly calibrated, it is important for
calibration.

ECE NLL Brier Entropy Accuracy

Vanilla (∥wy∥∥x∥ cosϕy) 0.025±0.001 0.186±0.006 0.001±0.0 0.082±0.002 95.4±0.1%
No Weight Norm (w/o ∥wy∥) 0.061±0.0003 0.206±0.006 0.001±0.0 0.527±0.014 95.4±0.1%

No x Norm (w/o ∥x∥) 0.893±0.002 2.837±0.005 0.009±0.0 4.537±0.001 95.4±0.1%
Only Cosine (w/o ∥wy∥,∥x∥) 0.914±0.001 3.235±0.001 0.009±0.0 4.546±0.000 95.3±0.1%

36



Compared Methods We compare to several popular state-of-the-art models includ-

ing stochastic Bayesian methods (multi-pass): Deep Ensemble (37) and MC dropout (18),

and recent deterministic methods (single pass): SNGP (43) and DUQ (65).

Results In Tab. 5.2 and 5.3, we compare our model to the most recent state of

art deterministic methods SNGP and DUQ using Wide ResNet 28-10 (70) as the

model backbone and each model evaluated using the average of 10 seeds. We report

accuracy, ECE and NLL on clean and corrupted CIFAR10/100 datasets (29). Our

method outperforms all single-pass methods on calibration when data is corrupted, and

even surpass ensembles on error metrics for corrupted data. We had 2 versions of

our model: Grid Searched: grid search β′ on the validation set to minimize ECE and

Optimized: optimize β′ on the validation set via gradient decent to minimize NLL for 10

epochs, similar to temperature scaling.

Generalizability We explored how generalizable our method (Grid Searched) is

by applying it to 12 different models and 4 different datasets in Tab. 5.4. We can see

consistently that our model had stronger calibration across all models and metrics,

including models known to be well calibrated like LeNet (39). All models were tested on

CIFAR10C and CIFAR100C datasets offered by (29) where the original CIFAR10 and

CIFAR100 were pre-corrupted; these were used for consistent corruption benchmarking

across all models. All non-CIFAR datasets were corrupted via rotation from angles

[0,350] with 10 step angles in between and the average calibration and accuracy were

taken across all degrees of rotation. Our models included: DenseNet (30), LeNet (39),

and 6 varying sizes of ResNet, which are described in (28). The datasets we experi-

mented on CIFAR10 (36), CIFAR100 (36), MNIST (40) and SVHN (51), CIFAR10C (29),

CIFAR100C (29).

Qualitative Comparison The current state-of-the-art single pass models for in-

ference on OOD data, without training on OOD data, are SNGP (43) and DUQ (65).

The primary disadvantages of these models are: 1) Hyperparameter Combinatorics:

Both DUQ and SNGP require many hyperparameters. Our model only has one hyper-

parameter that is tuned post-training, which is quicker and less costly than the other

methods that require pre-training tuning. 2) Extended Training Time: DUQ requires a

centroid embedding update every epoch, while SNGP requires sampling potentially high

dimensional embeddings of training points, thus increasing training time while our model

37



Table 5.6: Pearson Correlation of Cosine Similarity and Norm vs. ECE during
training on CIFAR100. Norm is consistently positively correlated with ECE whereas the
similarity is either negatively or not correlated with ECE.

ResNet18 ResNet34 ResNet101 ResNet152
shot Gaussian Defocus shot Gaussian Defocus shot Gaussian Defocus shot Gaussian Defocus

Cosine Sim 0.09 0.03 0.73 0.09 0.03 0.32 -0.03 -0.04 -0.88 -0.97 0.04 -0.81
Norm 0.82 0.82 0.78 0.82 0.81 0.78 0.87 0.87 0.85 0.86 0.85 0.81

trains in the same amount of time as the model it is applied to. Bayesian MCDO (18) and

Deep Ensemble (37) are considered the current state-of-the-art methods for multi-pass

calibration. Bayesian MCDO requires multiple passes with dropout during inference.

Deep Ensembles requires N times the number of parameters as the single model it

is ensembling where N is the number of models ensembled. The main disadvantage

of multi-pass models is high inference complexity while our model adds no overhead

computation at inference.

Importance of the Norm While we have shown and conjectured that the norm of x is

uncalibrated to OOD data and not always well calibrated to IND data, one might suggest

simply removing the norm. We show in Tab. 5.5 though the norm is uncalibrated it is

still important for inference. We trained ResNet18 on CIFAR10 and then ran inference

with ResNet18 modified in the following: dividing out the norms of the weights for each

class, dividing out the norm of the input, and then dividing out both. As we can see the

weight norm contributes minimally to inference as accuracy decreased by 0.03% without

it and as previous work has shown the angle dominates classification. We can see with

||x|| removed the entropy is at its highest while calibration is very poor, implying the

distribution is much more uniform when it should be peaked, as a larger entropy implies

a more uniform distribution. Thus the root of the issue does not lie in the existence of

the norm, but in’s lack of sensitivity.

5.2.2 Reasons for Bad Calibration under Distribution Shift

To identify the cause of bad calibration, we record the accuracy, ECE, norm, and cosine

similarity of a model during the training of a vanilla ResNet model. Specifically, we record

the evaluation statistics on clean data and also on data corrupted with Gaussian noise

on CIFAR100. Fig. 5.2a and 5.2b show the accuracy and ECE respectively. We observe

that evaluation on Gaussian noise corrupted data yields lower accuracy and higher ECE

compared to evaluation on clean data. This demonstrates that the model’s confidence

38



(a) Accuracy (b) ECE

(c) Norm (d) Cosine

Figure 5.2: Accuracy, ECE, norm, and cosine similarity on CIFAR100 validation
set with clean and Gaussian noise trained on vanilla ResNet. In the shaded region,
an increase in norm is responsible for the increase in ECE because cosine similarity is
relatively flat. Throughout training, sensitivity of the cosine similarity improves while that
of the norm remains insensitive.

39



fails to adapt to the decreasing accuracy. Fig. 5.2c and 5.2d show the change of

average norm and average cosine similarity throughout training. The difference between

Gaussian noised data and clean data is also reported. We observe that the norm of

clean data and the norm of Gaussian noised data are close and the difference remains

constantly low whereas the cosine similarity of the two diverges with training. This

indicates that the sensitivity of cosine similarity increases whereas the sensitivity of

the norm remains low with training. In the shaded region of Fig. 5.2b-5.2d where ECE

increases the most, we observe that the norm also increases but the cosine similarity

only increases slowly. The observation also holds for other noises and architectures.

We further present Pearson correlation between ECE and cosine similarity or norm on 4

models and 3 noises in Tab. 5.6. A large correlation coefficient indicates a higher positive

correlation. Norm is consistently positively correlated with ECE whereas the similarity

is either negatively or not correlated with ECE. This shows that the worsening of ECE

(large ECE) is correlated with the increasing norm. Based on supporting literature (33),

(13) and this correlation, the observation supports the conjecture that the insensitivity of

the norm is responsible for bad calibration.

5.2.3 Empirical Support for the Disentangled Training

Table 5.7: OOD AUROC↑ using Norm and Similarity We show OOD detection results
using norm and cosine similarity. SVHN (51) is used as the OOD dataset. Our method
(α-regularized) significantly increases the sensitivity of feature norm.

ResNet18 Criterion CIFAR10 CIFAR10 (Incorrect)

2*Vanilla Norm 90.48 67.23
Similarity 93.87 56.98

2*α- regularized Norm 99.05 93.16
Similarity 97.09 74.82

2*α- unregularized Norm 98.20 88.29
Similarity 94.72 60.63

(a) CIFAR10 vs. SVHN AUROC

ResNet18 Criterion CIFAR100 CIFAR100 (Incorrect)

2*vanilla Norm 79.38 62.66
Similarity 82.26 55.54

2* α- regularized Norm 94.46 86.67
Similarity 85.68 63.24

2*α- unregularized Norm 84.78 73.11
Similarity 72.61 42.90

(b) CIFAR100 vs. SVHN AUROC

40



(a) CIFAR10 vs. SVHN (b) CIFAR100 vs. SVHN

Figure 5.3: Histogram of Norm Distribution Our model (α-regularized) improves the
separation of norm between IND and OOD data.

(a) α = 1 (b) α = 1.5 (c) α = 2.0 (d) α = 2.5

(e) β = 0 (f) β = 2 (g) β = 2 (h) β = 3

Figure 5.4: Properties of ∥∆x∥2 and ∆ϕ. (a) - (b): ∥∆x∥2 decreases linearly with β
for fixed α reflecting Eq. 5.2 and 5.6. (e) - (h) ∆ϕ increases linearly with arccos(α) for
fixed β reflecting Eq. 5.3 and 5.6. All plots include R-squared values to indicate the
goodness-of-fit of the linear relationship.

In the first set of experiments, we show that α and β reflect the effects of the

geometric decomposition as claimed in Sec. 5.1.2 with different α − β configurations.

From Fig. 5.4a - 5.4d, we observe that the norm decreases linearly with β for fixed

α. From Fig. 5.4e - 5.4h, we observe that the angle increases linearly with arccos(α).

The observations are consistent with the original geometric motivation. β encodes

an instance-independent portion, Cx, of the norm. As β increases, Cx increases and

therefore the magnitude of the dependent component, ∥∆x∥2 decreases linearly. α

Table 5.8: Average norm and accuracy across different corruptions on GSD
ResNet18. The table is organized in decreasing accuracy order.

ResNet GSD clean brightness fog elastic snow defocus frost motion blur jpeg zoom blur pixelate contrast shot glass blur impulse Gaussian

accuracy 95.33 93.82 88.75 85.09 83.87 82.95 80.41 79.71 79.31 78.48 76.4 75.29 59.46 59.29 57.26 47.33
norm 0.73 0.66 0.52 0.42 0.46 0.46 0.44 0.37 0.39 0.35 0.5 0.39 0.34 0.27 0.3 0.28

41



encodes the inverse of the cosine of a relaxation angle, Cϕ. As arccos(α) increases, the

resulting angle, ∆ϕ increases linearly due to the increased relaxation angle encoded by

α.

In the second set of experiments, we show that the new model effectively increases

the sensitivity of both the norm and the angle to input distribution shift as claimed in

Sec. 5.1.3. Specifically, we measure OOD detection performance of the models using

both the norm and the cosine similarity with the Area Under the Receiver Operating

Characteristic (AUROC) curve metric. We use CIFAR10/100 as the IND data and

SVHN (51) as the OOD data. In Tab. 5.7a and 5.7b we show two configurations of

models in addition to vanilla ResNet18: (α-regularized) we regularize α such that it

stays close to one as described in Sec. 5.1.3; (α-unregularzed) we optimize both α

and β freely without constraints. Compared to vanilla ResNet, the norms predicted by

our models achieve significant improvement in separating IND data from OOD data.

Additionally, we visualize the distribution of norms in Fig. 5.3a and 5.3b. The separation

between IND and OOD data increases significantly compared to vanilla ResNet18.

However, a large α (see α-unregularzed in Tab. 5.7a and 5.7b) leads to marginal cosine

similarity sensitivity improvement on CIFAR10 and CIFAR100. This indirectly confirms

our observations in Sec. 5.2.2 and prior works (13) that cosine similarity correlates well

with distribution shift. Introducing further angle relaxation might not be always beneficial.

While we mainly focus on calibration, our method also strengthens its base model’s

ability for OOD detection.

The assumption that OOD data have smaller norms is based on the expectation

that a model should be less confident in OOD data. Practically, the norm acts as a

temperature in softmax as shown in Eq. 5.1. Intuitively, larger always yields more

peaked/confident predictions, and smaller always yield flatter predictive distributions.

Therefore, we expect less confident data such as OOD data to have smaller because we

expect the output distribution to be flatter. The assumption is supported by the following

empirical evidence. In Tab. 5.8 we show the norm of in-distribution and out-of-distribution

data on CIFAR10 using ResNet50-GSD (ours). The OOD data is produced by the 15

corruptions used in (29). OOD data have consistently smaller norms and the accuracy

decreases with decreasing norms with a Pearson correlation of 0.9 as an indicator of

more out-of-distribution.

42



5.3 Summary

We studied the geometry of the last linear decision layer and identified the insensitivity

of the norm as the culprit of bad calibration under distribution shift. To encourage

sensitivity, we derived a general theory to decompose the norm and angular similarity.

Inspired by the theory, we proposed a simple yet very effective training and inference

scheme that encourages the norm to reflect distribution changes. The model outper-

forms other deterministic single-pass methods in calibration metrics with much fewer

hyperparameters. We also demonstrated its superior generalizability on a variety of

popular neural networks. Note that our problem and method have a positive societal

impact, as calibration under shift improves the overall confidence and robustness of

these models. In the next chapter we examine another inherent issue with CNNs, which

is their bias toward high-frequency features (19). The effects of this when CNNs are

applied to RL are that the agent doesn’t learn task-relevant features.

43



Chapter 6 Augmentation Curriculum Learning

Reinforcement Learning (RL) has shown great success in a large variety of problems

from video-games (48), navigation (66), and manipulation (41; 32) even while operating

from high-dimensional pixel inputs. Despite this success, the policies produced by RL

are only well suited for the same environment they were trained for and fail to generalize

to new environments. Instead, agents overfit to task-irrelevant visual features, resulting

in even simple visual distortions degrading policy performance. A key objective of image-

based RL is building robust agents that can generalize beyond the training environment.

Unlike Ch. 5 where we explored a method that imbued calibration via increasing the

sensitivity of the final output layer and regularizing the norm, the methods in this chapter

aim to regularize the CNN using image augmentation in order to achieve the current

best policy, while leveraging semantically similar augmentations as an approximation to

the distribution shift we’d see in deployment.

Several existing approaches to training more robust agents include domain random-

ization (54; 64) and data augmentation (26; 25; 17). Domain randomization modifies

the training environment simulator to create more varied training data, whereas data

augmentation deals with augmenting the image observations representing states without

modifying the simulator itself. Prior work shows pixel-based augmentation improves

sample efficiency and helps agents achieve performance matching state-based RL

(38; 68). Therefore, in this work, we focus on data augmented generalization to visual

distribution shift while the semantics remain unchanged. We specifically aim to do this

in a zero-shot manner, i.e., where shifted data is unavailable during training.

Unlike for supervised and self-supervised image classification tasks, augmenta-

tion for pixel-based RL has demonstrated mixed levels of success. Prior work cat-

egorized augmentations into weak and strong ones based on downstream training

performance (17). Specifically, works define weak augmentations as those allowing

the agent to learn a policy with higher episodic rewards in the training environment than

44



training without augmentation. Strong augmentations refers to augmentations that

lead to empirically worse performance than training with no augmentations. Classifying

augmentations according to this definition is dependent on the task. For example, cut-out

color has empirically been shown to be detrimental (“strong augmentation”) for all tasks

in Deep Mind Control Suite (DMC) (63), but is a effective (“weak augmentation”) for Star

Pilot in Procgen (14) as shown in (38). Methods exist that attempt to automate finding

the optimal weak augmentation on a per-task basis (56), but these still do not expand

the effectiveness of many augmentations.

Many RL generalization methods leverage weak augmentation for better policy

learning training and add strong augmentations in training for generalization to visual

distribution shift (26; 25; 17). However, these methods suffer from strong augmentation

making training harder due to the difficulty of learning from such diverse visual observa-

tions, destabilizing training. This results in strong augmentations causing the agent to

not learn a policy with as strong performance as using weak augmentations alone. In this

work, we introduce a new training method that avoids the training instabilities caused by

strong augmentations through a curriculum that separates augmented training into weak

and strong training phases. Once the network has been sufficiently regularized in the

weak augmentation phase, it is cloned to create a policy network that is trained on strong

augmentations. This disentangles the responsibilities of the networks into accurately

approximation the Q-value (network trained on weak augmentations) of the agent and

generalization (doing well on shifted test distributions). Crucially we separate the two

networks to avoid the destabilizing effect of strong augmentations. We also demonstrate

the power of the method under even more severe augmentation, namely a new splicing

augmentation that pastes relevant visual features into an irrelevant background. We

show that our curriculum learning approach can effectively leverage strong augmenta-

tions, and the combination of our method with this new augmentation technique achieves

state-of-the-art generalization performance.

Our main contributions are summarized as follows:

• We introduce Augmentation Curriculum Learning (AugCL), a new method for learn-

ing with strong visual augmentations for generalization to unseen environments in

pixel-based RL.

45



Figure 6.1: Neural architecture and tensor flow across different phases for AugCL.

• A new visual augmentation named Splice, which by simulating distracting back-

grounds helps prevent overfitting to task irrelevant features.

• We demonstrate AugCL achieves state-of-the-art results across a suite of pixel-

based RL generalization benchmarks.

This work was done in collaboration with Andrew Szot, Prithvijit Chattopadhyay and

will be submitted to ICML 2023.

6.1 Method

6.1.1 Agent Architecture

The key differences between AugCL and previous works are 1) We train a weak and

strong augmented network in parallel. 2) We train only on weak augmentation for the

early phases of training. 3) We bootstrap the strong augmented network from a weakly

augmented Q target network. The driving intuition behind this is strong augmentations

incur non-zero degradation to policy learning but help with generalization. Hence to

mitigate this issue, we have a separate network trained only on strong augmentation

and update the target network using EMA from the weak augmented network. This duo

circumvents the policy degradation by allowing the weak critic and Q target network to

learn a state and action value approximation without being impeded by strong augmen-

tation. Then by bootstrapping this Q target network with an accurate approximation of

46



the value function, the strong augmented network learns to generalize under strong

augmentation. The weak augmented pre-training is required to regularize the CNN from

biasing itself to high-frequency features. We show both are necessary to achieve SOTA

performance in 6.2.3.

AugCL builds off of SAC, learning a critic and policy network as shown in Fig. 6.1.

The critic network Qϕ(st, at) takes as input a stacked sequence of image observations,

and an action produces the expected return for taking action at in state st. We also

learn a parameterized policy πψ(st) that outputs a normal distribution parameterized by

a learned mean and variance which then samples an action for the current state. Qϕ

and πψ share a visual encoder hµ(st) which takes as input the high-dimensional image

observations and produces a low-dimensional state encoding. The parameters of ψ and

ϕ both include the encoder parameters µ, which are updated as a part of both the policy

and critic losses.

AugCL trains Qϕ and πψ through the standard SAC losses with random image

augmentations. We sample augmentations f from a distribution over augmentations F .

We then use f to augment the states st in the SAC losses from Sec. 2.16. We augment

only the current state st in the SAC loss similar to (25). The resulting losses for the critic

and policy with the augmentations are respectively:

LQ(ϕ;ϕtarget,F) =τ∼D,f∼F [(Qϕ(f(st), at)− (rt + γV (st+1;ϕ
target)))2] (6.1)

Lπ(ψ;ϕ,F) = −a∼π,f∼F [Qϕ(f(st), a)− α log πψ(a|f(st))] (6.2)

Notice that the losses are defined relative to a distribution over augmentations F . The

choice of this augmentation distribution is an important consideration in the algorithm’s

stability and robustness to new MDPs. Prior work breaks up augmentations for pixel-

based control into two classes: weak augmentations and strong augmentations.

Weak Augmentations (denoted as FW ) are augmentations that help stabilize and

improve training performance in the source MDPM, but are insufficient for generalization

to new MDPs M. (12) shows that training with weak augmentations is important to

prevent overfitting to high-frequency features in the image space when learning from

bootstrapped targets in actor-critic methods. The consequences of this overfitting have

been shown to cause the critic network to overfit to its own predictions, and a decrease in

47



correlation to Monte Carlo returns as training ensues. Training with weak augmentations

is therefore an important part of any actor-critic control-from-pixels method, such as

AugCL. Known weak augmentations for all DMC tasks are: crop, translate (38) and

shift (68).

Strong Augmentations (denoted as FS) are augmentations that help improve policy

performance in new MDPsM. Visual perturbations such as random color changes of the

environment can be simulated with strong augmentations such as: random convolution

and random color jitter. While distracting backgrounds can be simulated with mix-up

(71), these augmentations are difficult to train with, as they increase the difficulty of the

learning problem due to the duo of stochastic parameter sampling for FS and high visual

variance between samples. AugCL addresses how to effectively incorporate strong

augmentations such as: random convolution, overlay (variation of mix-up), and our novel

augmentation into training.

6.1.2 AugCL: Curriculum Learning with Strong Augmentations

As mentioned, strong augmentations are detrimental to learning but important to train

with for generalization performance. The key idea of our method is therefore to leverage

curriculum learning (6) to avoid this destabilization. Specifically, AugCL defines a cur-

riculum over augmentations to enable better training and generalization. It is well known

that CNNs are inherently biased to high-frequency features (19; 31), the consequences

of this in RL is a lower average episodic reward in the train environment. AugCL uses

weak augmentations early in training to regularize the CNN. Then later in training AugCL

introduces strong augmentations to improve the robustness of the policy. We train two

separate networks in parallel as we believe that strong augmentation incurs a non-zero

degradation to policy learning, as shown in 6.2.3.

AugCL is described in Alg. 1. AugCL begins by acting in the environment with πψ

and then adding the observed transition to the replay buffer (lines 5-7). We then sample

data batches from the replay buffer for updating the policy and critic. Our curriculum

learning schedule breaks the updates into two phases. For the first M policy updates,

AugCL is in the weak augmentation phase and updates the critic and policy from weak

augmentations alone (lines 11,16). Target critic parameters ϕtarget are updated as

exponential moving averages of the learned critic parameters ϕ (line 17), and used in

the bootstrap term of the critic loss. The purpose of the weak augmentation phase

48



Algorithm 1 AugCL

1: ϕW , ψ, ϕtarget : critic parameters, policy parameters and Q-target parameters
2: α, β, ζ: actor learning rate, critic learning weight and momentum encoder weight
3: M : Update step to switch to strong augmentation
4: for timestep t = 1, ..., T do
5: at ∼ πψ(·|st) ▷ Sample action
6: st+1 ∼ P(·|st, at) ▷ Step environment
7: B ← B

⋃
(st, at, r(st, at), st+1) ▷ Add transition to replay buffer

8: if t =M then
9: ϕS = ϕW ▷ Clone critic

10: end if
11: {si, ai, ri, si+1|i = 1, ..., N} ∼ B ▷ Sample transition
12: ϕW ← ϕW − β∇ϕLQ(ϕW ;FW , ϕtarget) ▷ Weak Critic loss
13: if t ≥M then
14: ψ ← ψ − α∇ψLπ(ψ;FS) ▷ Strong Actor loss
15: ϕS ← ϕS − β∇ϕLQ(ϕS ;FS , ϕtarget) ▷ Strong Critic loss
16: else
17: ψ ← ψ − α∆ψLπ(ψ;FW ) ▷ Weak Actor loss
18: end if
19: ϕtarget ← (1− ζ)ϕtarget + ζϕW ▷ Q-target EMA update
20: end for

is to stabilize policy learning. Prior work shows that it is easy for the critic to overfit

in image-based RL and weak augmentations are important to achieve strong training

performance (12). However, the weak augmentations do not make the policy robust to

new visuals. Improving generalization performance is the purpose of the next strong

augmentation phase.

Then, after M policy updates, AugCL switches to the strong augmentation phase and

incorporates strong augmentations into training (lines 12-14). A new strong critic network

ϕS is copied from the weak critic network ϕW (line 9). Now, the weak critic network is

updated like in the previous phase by training with weak augmentations. However, the

separate strong augmentation network with parameters ϕS is now trained with strong

augmentations (line 14). The policy is also updated with the strong augmentations (line

1) . Separating the strong and weak augmentations into two networks is important for

stability. The weak critic helps stabilize bootstrap targets by leveraging weak augmenta-

tion to better approximate the state, action value function while the strong critic focuses

on generalization performance. Previous methods have attempted this parallel training

of the weak and strong augmented network, but with little success (17). We show that

this is due to not regularizing the CNN encoder first in Sec. subsec:ablations. A figure

of the architecture and the flow of tensors representing input and output of each neural

49



layer can be seen in Fig. 6.1.

The advantage of AugCL separating strong augmentations into a later phase of

learning is it does not require a delicate balance between potentially conflicting losses

from strong and weak augmentations. SODA and SVEA incorporate strong augmenta-

tions as an auxiliary learning signal that is always applied in conjunction with learning

an accurate approximation of the state, action value from weakly augmented data. By

learning from both data at the same time, the networks must contend with the trade off

between stronger augmentations improving generalization yet harming training perfor-

mance. The auxiliary objective in SODA may suffer from gradient interference from the

conflicting losses as the critic network is optimized to learn an accurate state, action

value approximation, and a contrastive loss in parallel. SVEA suffers from a similar issue

in that it requires a hyperparameter to balance the combination of losses from strong

and weak augmented data. On the other hand, AugCL disentangles the responsibilities

of state, action value approximation, and generalization between the weak augmented

critic and the strong augmented critic respectively. We empirically demonstrate this

by showing AugCL performs better than SVEA and SODA on a variety of benchmarks

and has minimal train environment performance degradation, as shown in 6.2.4. Also

note SODA and SVEA only pass weakly augmented observations to the policy network

during training, the issue with this is that πϕ(FW (st)) ̸= πϕ(FS(st)). AugCL does not

suffer from this issue as we pass FS(st) through the policy network at train time, and

interestingly we find train performance still improves and converges to a marginally

worse performance on the train environment than training with weak augmentation alone

as shown in 6.2.4.

6.1.3 Splice Augmentation

Since AugCL is well suited to train with challenging strong augmentations, we introduce

a novel augmentation called “Splice” to improve generalization in visual RL. RL general-

ization benchmarks that incorporate background distractions (26; 61) are challenging for

state-of-the-art visual RL approaches. The standard solution is to introduce a variation

of mix-up augmentation (71) to RL training (26; 17; 25). (26) theorized that previous

strategies failed to adapt to severe background distractions because task-relevant visual

features such as the agent’s shadow were removed.

Our new augmentation Splice solves this issue by pasting relevant visual features

50



into an irrelevant background. This explicit separation of task-relevant versus task-

irrelevant features helps generalization. Specifically, we mask out all non-relevant parts

of the visual observation through a segmentation mask which is available in the simu-

lation. We then replace all the non-task parts of the image with a random background

image. We use COCO (42) for our experiments as the background replacement images.

6.1.4 More Details on Splice Augmentation

The inspiration for Splice came when we noticed that in many robotics task the relevant

visual features had higher brightness. We noticed that DMC fit this criteria well as the

ground and background tended to be a dark blue, while the agent is a combination

of bright colors (typically yellow and a bright blue). Splice converts an RGB image to

HSV color space then sets a threshold for hue, saturation and value. We use kornia

[(57)] for color space conversion. Hue represents color, saturation represents chromatic

intensity and value represents brightness. If all values in a cell in the HSV converted

image exceed the preset thresholds then they are imparted on a new image. In our

case we splice out the agent and paste it onto a randomized background. (38; 12) show

weak augmentation leads to a better spatial attention mapping of features the agent

can control like the robot over high frequency features like the background and flooring.

Splice has the ability to impart human prior knowledge about the tasks through tuning the

thresholds. By tuning the thresholds accordingly the user can parse out only the relevant

visual features in the task. This allows us to circumvent the high frequency feature bias

that CNNs inherently have by pasting the relevant features on random backgrounds,

thus the high frequency features between frames becomes the task relevant features.

Example code is given below an a comparative example is shown in Fig. 6.2.

impor t to rch

impor t ko rn ia

def s p l i c e ( x , hue t , s a t u r a t i o n t , v a l u e t ) :

b , , h , w = x . shape

x HSV = korn ia . co l o r . rgb to hsv ( x )

over lay = sample background ( ba tch s ize=b )

th resho lds = to rch . FloatTensor ( [ hue t , s a t u r a t i o n t , v a l u e t ] )

51



(a) Video Hard (b) Splice

Figure 6.2: Value threshold of 0.6, with threshold of 0 set for hue and saturation for
splice augmentation shown in 6.2b. 6.2a taken from DMC-GB.

th resho lds = th resho lds . view (1 , −1 , 1 , 1 ) . repeat ( b , 1 , h , w)

mask = x HSV > t h resho lds

mask = to rch . a l l (mask , dim=1)

over lay [ mask ] = x [ mask ]

r e t u r n over lay

6.2 Experiments

We now evaluate AugCL and baselines on how well they can generalize to visual

distribution shifts in the DMControl Generalization Benchmark (DMC-GB). In Sec. 6.2.1,

we describe the experimental setup for how our method and baselines are configured.

Next, in Sec. 6.2.2, we show that AugCL achieves state-of-the-art performance in the

majority of settings in DMC-GB. Finally, in Sec. 6.2.3, we analyze what hyperparameters

are necessary for the benefits of AugCL.

6.2.1 Experimental Setup

Environments and Evaluation: The purpose of our experiments is to evaluate how

well policies trained with various methods can generalize to new visual disturbances. All

methods are first trained in a source environment without any visual disturbances. We

then evaluate the trained policy in the same environment but with random visual distur-

bances. DMC-GB tests how methods can generalize to random colors, backgrounds,

and camera poses. All methods are trained for 500,000 frames and evaluated on 5

52



Table 6.1: Results from DMC-GB benchmark color hard. All methods are evaluated
on 5 seeds over 30 episodes. The mean and standard deviation are provided. AugCL
outperforms baseline in 4 out the 5 tasks.

Domain, Task CURL RAD DrQ PAD
SODA
(conv)

SVEA
(conv)

AugCL
(conv)

Walker,
Walk

445± 99 400± 61 520± 91 468± 47 697± 66 760± 145 890± 36

Walker,
Stand

662± 54 644± 88 770± 71 797± 46 930± 12 942± 26 956± 17

Cartpole,
Swingup

454± 110 590± 53 586± 52 630± 63 831± 21 837± 23 852± 9

Ball In Cup,
Catch

231± 92 541± 29 365± 210 563± 50 892± 37 961± 7 957± 18

Finger,
Spin

691± 12 667± 154 776± 134 803± 72 901± 51 977± 5 980± 9

Table 6.2: Hyperparameters used for all experiments

Hyperparameter Value
Frame Rendering 3 × 84 × 84
Frames Stacked 3

Random Shift 4 pixels
M 200,000

Action Repeat 2 (finger), 8 (cartpole), 4 (otherwise)
Discount Factor γ 0.99
Episode Length 1000

Learning Algorithm SAC
Number Of Frames 500,000
Replay Buffer Size 500,000

Optimizer (β) Adam(β1=0.9, β2=0.999)
Optimizer (α) Adam(β1=0.5, β2=0.999)

Learning Rate (θ) 1e-3
Learning Rate (α of SAC) 1e-4

Batch Size 128
ϕ̂ Update Frequency 2

ϕ̂ Momentum Coefficient 0.05(encoder), 0.01(critic)
Seeds [0,4]

tasks from DMC-GB in three different evaluation settings from DMC-GB (color-hard,

video-easy, and video-hard). The 5 tasks from DMC-GB used in this paper are described

in Tab. 4.1. We report the mean and standard deviation across 5 seeds per method,

where each seed is evaluated by taking the average episode return across 30 episodes.

For Tab. 6.3 and 6.4 we added training with SVEA during the weak augmentation phase.

Baselines: We compare AugCL against other recent pixel-based RL methods, some

of which were explicitly designed for learning robust policies that can generalize to

unseen environments. Specifically, we compare against CURL, RAD, SVEA, SODA,

DrQ as well as PAD (24), which adapts to the test environment using self-supervision.

53



Hyperparameters and baseline results are taken from (25). We don’t compare to

SECANT as it requires double the training frames to all other baselines and requires

training 2 models sequentially. Also note that SVEA and SODA augment each batch

twice, thus doubling the data the agent trains on whereas AugCL only uses a single

batch.

Data Augmentation Setup: We apply random shift (68) as our weak augmentation

for AugCL. For all experiments, we selected M = 200, 000 for AugCL, meaning we first

perform 200k updates in the weak augmentation phase before switching to the strong

augmentation phase. All hyperparameters shared between AugCL and baselines are

kept the same. Random convolution produced the best results in prior works on color

hard and overlay for video DMC-GB benchmarks (25), and we therefore use those

augmentations for their respective benchmarks. Note that DrQ, AugCL and SVEA

all use shift as their weak augmentation and CURL, PAD, RAD and SODA use crop.

This is important to note as shift has been shown to give stronger empirical results

than crop in DMC tasks (68). ”Overlay” in Tab. 6.3, 6.4 refers to (26) version of mix-

up. The original SVEA and SODA paper use the Places dataset (72) for Overlay, but

during the time this paper was written Places was unavailable due to maintenance, so

instead, we used COCO for AugCL. We felt this was a fair comparison as long as both

datasets were different from RealEstate10k (73), which is used by DMC-GB. A full list

of hyperparameters can be found in Tab. 6.2. We apply random shift (68) as our weak

augmentation for AugCL and set M = 200, 000, which we determined empirically. All

overlapping hyper-parameters between methods are kept the same.

We also include results using Splice on the DMC-GB video easy and video hard

benchmarks. In the DMControl tasks, we segment out the agent by filtering, converting

the RGB image to HSV, and then taking pixels with HSV values only greater than a

threshold. We set a consistent value threshold of 0.6 for all tasks to remove all aspects

of the image, including the shadow, leaving only the agent. The hue threshold was 0 for

all tasks except “Cartpole, Swingup” which required the hue threshold to be set to 3.5

due to the background being a mix of lighter and darker blues in these environments.

The saturation threshold was set to 0 for all tasks. The full list of hyperparameters can

be found in Tab. 6.2.

54



Table 6.3: Results from DMC-GB benchmark video easy generalization benchmark.

Domain, Task CURL RAD DrQ PAD
SODA
(splice)

SVEA
(splice)

AugCL
(splice)

AugCL
+ SVEA
(splice)

Walker,
Walk

556± 133 600± 63 682± 89 717± 79 625± 29 882 ±63 879 ±35 904± 29

Walker,
Stand

852± 75 745± 146 873± 83 935± 20 955± 13 969 ±4 958± 7 972± 6

Cartpole,
Swingup

404± 67 373± 72 485± 105 521± 76 764± 49 850± 32 840 ±27 854± 9

Ball In Cup,
Catch

316± 119 481± 26 318± 157 436± 55 907 ±30 963 ± 11 959± 8 967± 3

Finger,
Spin

502± 19 400± 64 533± 119 691± 80 888± 160 975± 20 983± 5 975± 17

Table 6.4: Results from DMC-GB benchmark video hard.

Domain, Task CURL RAD DrQ PAD
SODA
(splice)

SVEA
(splice)

AugCL
(splice)

AugCL
+ SVEA
(splice)

Walker,
Walk

58± 18 56± 9 104± 22 93± 29 619± 25 861± 59 864± 34 888± 30

Walker,
Stand

45± 5 231± 39 289± 49 278± 72 872± 71 960± 6 959± 5 962± 7

Cartpole,
Swingup

114± 15 110± 16 138± 9 123± 24 429± 64 776± 28 742± 35 784± 16

Ball In Cup,
Catch

115± 33 97± 29 92± 23 66± 61 327± 100 895± 21 916± 21 905± 35

Finger,
Spin

27± 21 32± 11 71± 45 56± 18 873± 163 948± 20 952± 24 960± 17

6.2.2 DMC-GB Results

Firstly, Tab. 6.1 shows that AugCL outperforms all baselines in 4 out of 5 tasks in DMC-

GB color-hard environments. This further closes the gap between the performance of

the policy from training and its generalization performance on the test environment. Ball

In Cup, Catch and Finger, Spin under color hard are close to matching the current SOTA

in the train environment thanks to SVEA and AugCL as shown in Tab. 6.6. Despite

SODA and SVEA using the same augmentations as AugCL and also being designed for

generalization in pixel-based RL, AugCL outperforms them in evaluation return.

Next, in the DMC-GB video easy and video hard environments AugCL again out-

performs baselines in almost all of the settings. AugCL outperforms baselines in 4 out

of 5 tasks in video-easy (Tab. 6.3) and in 5 out of 5 tasks in video hard (Tab. 6.4). A

combination of the splice augmentation and AugCL performs best. Splice combined

with AugCL does well on “Finger, Spin” under video easy as it’s only 1 average episodic

55



200000 250000 300000 350000 400000 450000 500000
Step

0

200

400

600

800

Ep
iso

de
 R

ew
ar

d
Walker Walk

No Pretrain
Single Critic
AugCL

(a) Train

200000 250000 300000 350000 400000 450000 500000
Step

0

200

400

600

800

Ep
iso

de
 R

ew
ar

d

Walker Walk

No Pretrain
Single Critic
AugCL

(b) DMC-GB color hard

Figure 6.3: No Pretrain: No weak augmented pre-training on the strong network. Single
Critic: A single critic is used for training under weak and strong augmentation. The
line represents the mean over 3 seeds, and the shadow represents variance. Fig. 6.3a
shows performance on the train environment, and Fig. 6.3b shows performance during
training on DMC-GB color hard. The lines represent averages and the shaded regions
the standard deviation of the results across 5 seeds.

reward off from the train environment SOTA as seen in Tab. 6.6. We theorize that Splice

performs better than Overlay because Overlay is a weighted sum of pixels from the state

image and an irrelevant image. (38; 12) showed the utility of weak augmentation was

that a regularized CNN improved spatial attention mapping to task relevant features.

Overlay may impede this process by making task relevant features less visible.

6.2.3 Ablations

We analyze two design choices of AugCL: the curriculum and using separate critic

networks for weak and strong augmentations. We use Random Convolution as the

strong augmentation for all variations of AugCL in this section. No Pretrain in Fig. 6.3

represents AugCL, but without the copying of weights to the strongly augmented network

at step M (omitting line 9 in Alg. 1). Single Critic: represents having a single critic

network for both strong and weak augmentation (omitting line 11 and line 17 becomes

ϕtarget ← (1− ζ)ϕtarget + ζϕS in Alg. 1).

As we can see without the pre-training even while bootstrapping from a Q-target

network updated using a weakly augmented network. No Pretrain is much higher

variance across the seeds and not able to match AugCL’s performance on the walker walk

task, thus showing the importance of first regularizing the CNN on weak augmentation,

which motivates the curriculum. While Single Critic performs much better than No

Pretrain, we can see it’s much less sample efficient and converges to a lower solution

56



than AugCL on both the train environment and the test environment. We can see that

while Single Critic is improving the policy it is learning it is does not perform as well

as distributing learning the state, action value to the weakly augmented network, thus

showing the non-zero destabilization strong augmentation incurs.

We also experimented with setting M = 0 and found it was unable to learn as the

strong critic couldn’t learn a useful representation and could not bootstrap the target

network’s predictions to improve learning. We include further exploration of selecting M

in Sec. 6.2.5. This was indicated to us by the episodic reward not improving as training

continued. We believe this also points towards the importance of weak augmentation

regularization early in training. We believe that these experiments are clear evidence

that strong augmentations do indeed incur a non-zero degradation to policy learning

and that the key to getting good generalization performance is to disentangle the strong

and weak augmentation as AugCL does, which is not possible without the curriculum as

an unregularized CNN has difficulty learning task-relevant representations.

6.2.4 AugCL Train Environment Performance

We believe a key aspect of generalization includes maintaining the best policy possible

on the train environment as well. We include in Tab. 6.5 train environment performance

of AugCL across different strong augmentations we benchmarked on. We also include

results for non-naive shift on the train environment as well as an upper bound to what all

the generalized methods can achieve in Tab. 6.6.

Table 6.5: Train environment performance at the end of 500,000 train steps of AugCL
with varying strong augmentations. The mean and standard deviation over 5 seeds
where each seed is evaluated using the mean of 30 episodes done for each seed.

Strong Aug Walker, Walk Walker, Stand Ball in Cup, Catch Cartpole Swingup Finger, Spin

Conv 894± 36 958± 13 965± 6 853± 6 979± 9
Overlay 903± 26 969± 7 964± 5 869± 10 967± 9
Splice 878± 38 958± 7 962± 6 865± 13 976± 15

6.2.5 Choice Of M On Performance

We explored how different M selections effect AugCL in figure 6.4. We found a parabolic

relationship between M and average episodic reward. We see on the test environment

the relationship between M and test environment performance is parabolic, with per-

formance peaking at M=100k or 200k on the test environment. While it seemed that

57



Table 6.6: Shift augmentation evaluation results on the train environment across 5 seeds
with the mean and standard deviation across 30 episodes for each seed. This table
serves as an upper bound to what can be achieved in generalized benchmarks.

Walker, Walk Walker, Stand Ball in Cup, Catch Cartpole Swingup Finger, Spin

916± 25 975± 2 971± 5 869± 11 984± 2

100k and 200k for M gave the same performance higher and lower values of M had

much lower average performance. We theorize this is due to striking a good balance

between regularizing the CNN with weak augmentation and then training it to adapt to

the strongly augmented version of the environment, which requires a lot of frames to

approximate.

(a) Train (b) DMC-GB color hard

Figure 6.4: We show the effects of M selection on AugCL by choosing [0, 100k, 200k,
300k, 400k, 500k]. AugCL is trained with random convolution as the strong augmentation
on Walker, Walk for a total of 500k frames. Blue circles represent the performance of
different seeds using the average episodic reward over 50 runs and the red x represents
the mean across all 3 seeds.

6.3 Summary

AugCL shows improvements in generalized environments by disentangling strong and

weak augmentations into their respective networks. The combination of AugCL and

Splice has substantially improved performance on DMC-GB, giving a new SOTA. We

also effectively show the importance of weak augmented pre-training for parallel weak

and strong augmented network training, highlighting the missing ingredients to previous

attempts. An issue with our method is selecting the optimal M is still an open question.

M = 100, 000 yielded much worse results and we theorized that the CNN was not

58



regularized enough. This tricky balance can lead to significant changes in results and

we hope to find a more developed method for selecting M .

59



Chapter 7 Conclusion

We have identified three issues with CNN architectures. 1) When optimized using Cross-

Entropy, ∥x∥2 is unbounded. 2) ∥x∥2 has no correlation to accuracy. 3) High-frequency

feature bias of CNNs inherently causes RL agents to converge to lesser policies than

when combined with weak augmentation. Both Ch. 5 and Ch. 6 use regularization

in differing ways where Geometric Similarity Decomposition relies on a Temperature

Scaling (22) form of regularization to resolve ∥x∥2 and a decomposed Cross-Entropy

loss to increase sensitivity and Augmentation Curriculum Learning using shift as a weak

augmentation to regularize the CNN to reduce bias towards high-frequency features.

An issue with Geometric Similarity Decomposition is that it decreases accuracy

while increasing sensitivity, we found this is because it lowers the sensitivity of the class

weights and therefore increases entropy. Increased entropy means more uncertainty

which is in line to achieve better sensitivity, but also causes classification to be less

accurate. For future works, it’d be important to achieve calibration and classification

purely on the cosine similarity as it was shown to have a strong correlation to accuracy

as shown in (13).

RL generalization methods using augmentation including Augmentation Curriculum

Learning lack robustness to a set of visual perturbations. As shown in Ch. 6, it seems

training under one augmentation only creates robustness to visually similar perturbations.

This is not sufficient for robotics tasks such as autonomous vehicles, where differing

weather and lighting situations can be seen as different visual perturbations (snow, rain,

sunny day, evening). An investigation into the effects of augmentation on CNNs and how

that improves robustness would greatly contribute to a more general approach to this

problem. (17) showed a combination of augmentation can help with generalization, but

the limits of this are still unexplored and real-world deployment tends to be might higher

visual variance than simulation.

While our works here are a step forward towards better calibration CNNs and

60



generalization in RL. CNNs have lost favor since the release of Vision Transformers (16).

These attention-based models still require much more exploration in terms of calibration

and robustness, but they have been shown to overfit to the training environment in RL

and do require strong augmentation as a way to mitigate this overfitting (25). Since

GSD is applied to the final linear layer which still exists in Vision Transformers, it’ll

be interesting to see if Vision Transformers still suffer from calibration errors and if

GSD is applicable as well as if AugCL improves performance on distribution-shifted

environments.

61



Bibliography

[1] Activation functions in neural networks — by sagar sharma

— towards data science. https://towardsdatascience.com/

activation-functions-neural-networks-1cbd9f8d91d6. (Accessed on

11/30/2022).

[2] Cifar-10 and cifar-100 datasets. https://www.cs.toronto.edu/~kriz/cifar.

html. (Accessed on 12/19/2022).

[3] Pooling (cnn) — epynn 1.0 documentation. https://epynn.net/Pooling.html.

(Accessed on 12/02/2022).

[4] What are convolutional neural networks? — ibm. https://www.ibm.com/cloud/

learn/convolutional-neural-networks. (Accessed on 11/30/2022).

[5] BALAJI, S. Binary image classifier cnn using tensorflow — by sai

balaji — techiepedia — medium. https://medium.com/techiepedia/

binary-image-classifier-cnn-using-tensorflow-a3f5d6746697. (Accessed

on 12/02/2022).

[6] BENGIO, Y., LOURADOUR, J., COLLOBERT, R., AND WESTON, J. Curriculum

learning. In Proceedings of the 26th Annual International Conference on Ma-

chine Learning (New York, NY, USA, 2009), ICML ’09, Association for Computing

Machinery, p. 41–48.

[7] BHARATH RAMSUNDAR, R. B. Z. 4. fully connected deep networks - ten-

sorflow for deep learning [book]. https://www.oreilly.com/library/view/

tensorflow-for-deep/9781491980446/ch04.html. (Accessed on 11/30/2022).

[8] BHATT, S. 5 things you need to know about reinforcement learning - kdnuggets.

62



https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.

html. (Accessed on 12/16/2022).

[9] BLACKBURN. Introduction to reinforcement learningnbsp;: Markov-decision process,

May 2022.

[10] BRECHTEL, S., GINDELE, T., AND DILLMANN, R. Probabilistic decision-making

under uncertainty for autonomous driving using continuous pomdps. In 17th

international IEEE conference on intelligent transportation systems (ITSC) (2014),

IEEE, pp. 392–399.

[11] BRIER, G. W. Verification of forecasts expressed in terms of probability. Monthly

weather review 78, 1 (1950), 1–3.

[12] CETIN, E., BALL, P. J., ROBERTS, S., AND CELIKTUTAN, O. Stabilizing off-policy

deep reinforcement learning from pixels. In International Conference on Machine

Learning (2022), PMLR, pp. 2784–2810.

[13] CHEN, B., LIU, W., YU, Z., KAUTZ, J., SHRIVASTAVA, A., GARG, A., AND ANAND-

KUMAR, A. Angular visual hardness. In International Conference on Machine

Learning (2020), PMLR, pp. 1637–1648.

[14] COBBE, K., HESSE, C., HILTON, J., AND SCHULMAN, J. Leveraging procedural

generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588

(2019).

[15] DEGRIS, T., WHITE, M., AND SUTTON, R. S. Off-policy actor-critic, 2012.

[16] DOSOVITSKIY, A., BEYER, L., KOLESNIKOV, A., WEISSENBORN, D., ZHAI, X.,

UNTERTHINER, T., DEHGHANI, M., MINDERER, M., HEIGOLD, G., GELLY, S.,

USZKOREIT, J., AND HOULSBY, N. An image is worth 16x16 words: Transformers

for image recognition at scale, 2020.

[17] FAN, L., WANG, G., HUANG, D.-A., YU, Z., FEI-FEI, L., ZHU, Y., AND ANANDKU-

MAR, A. Secant: Self-expert cloning for zero-shot generalization of visual policies.

In Proceedings of the 38th International Conference on Machine Learning (18–

24 Jul 2021), M. Meila and T. Zhang, Eds., vol. 139 of Proceedings of Machine

Learning Research, PMLR, pp. 3088–3099.

63



[18] GAL, Y., AND GHAHRAMANI, Z. Dropout as a bayesian approximation: Represent-

ing model uncertainty in deep learning. In international conference on machine

learning (2016), PMLR, pp. 1050–1059.

[19] GEIRHOS, R., RUBISCH, P., MICHAELIS, C., BETHGE, M., WICHMANN, F. A., AND

BRENDEL, W. Imagenet-trained cnns are biased towards texture; increasing shape

bias improves accuracy and robustness, 2018.

[20] GERSHENSON, C. Artificial neural networks for beginners, 2003.

[21] GNEITING, T., AND RAFTERY, A. E. Strictly proper scoring rules, prediction, and

estimation. Journal of the American statistical Association 102, 477 (2007), 359–

378.

[22] GUO, C., PLEISS, G., SUN, Y., AND WEINBERGER, K. Q. On calibration of modern

neural networks. In International Conference on Machine Learning (2017), PMLR,

pp. 1321–1330.

[23] HAARNOJA, T., ZHOU, A., ABBEEL, P., AND LEVINE, S. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor.

[24] HANSEN, N., JANGIR, R., SUN, Y., ALENYÀ, G., ABBEEL, P., EFROS, A. A.,

PINTO, L., AND WANG, X. Self-supervised policy adaptation during deployment. In

International Conference on Learning Representations (2021).

[25] HANSEN, N., SU, H., AND WANG, X. Stabilizing deep q-learning with convnets and

vision transformers under data augmentation. In Conference on Neural Information

Processing Systems (2021).

[26] HANSEN, N., AND WANG, X. Generalization in reinforcement learning by soft data

augmentation. In International Conference on Robotics and Automation (2021).

[27] HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. The Elements of Statistical

Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,

2001.

[28] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for image

recognition. CoRR abs/1512.03385 (2015).

64



[29] HENDRYCKS, D., AND DIETTERICH, T. Benchmarking neural network robustness

to common corruptions and perturbations. Proceedings of the International Confer-

ence on Learning Representations (2019).

[30] HUANG, G., LIU, Z., VAN DER MAATEN, L., AND WEINBERGER, K. Q. Densely

connected convolutional networks. In CVPR (2017), IEEE Computer Society,

pp. 2261–2269.

[31] JO, J., AND BENGIO, Y. Measuring the tendency of cnns to learn surface statistical

regularities, 2017.

[32] KALASHNIKOV, D., IRPAN, A., PASTOR, P., IBARZ, J., HERZOG, A., JANG, E.,

QUILLEN, D., HOLLY, E., KALAKRISHNAN, M., VANHOUCKE, V., AND LEVINE, S.

Scalable deep reinforcement learning for vision-based robotic manipulation. In 2nd

Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31

October 2018, Proceedings (2018), vol. 87 of Proceedings of Machine Learning

Research, PMLR, pp. 651–673.

[33] KANSIZOGLOU, I., BAMPIS, L., AND GASTERATOS, A. Deep feature space: A

geometrical perspective. arXiv preprint arXiv:2007.00062 (2020).

[34] KENDALL, A., AND GAL, Y. What uncertainties do we need in bayesian deep

learning for computer vision? arXiv preprint arXiv:1703.04977 (2017).

[35] KONDA, V., AND TSITSIKLIS, J. Actor-critic algorithms. In Advances in Neural

Information Processing Systems (1999), S. Solla, T. Leen, and K. Müller, Eds.,

vol. 12, MIT Press.

[36] KRIZHEVSKY, A., HINTON, G., ET AL. Learning multiple layers of features from tiny

images.

[37] LAKSHMINARAYANAN, B., PRITZEL, A., AND BLUNDELL, C. Simple and scal-

able predictive uncertainty estimation using deep ensembles. arXiv preprint

arXiv:1612.01474 (2016).

[38] LASKIN, M., LEE, K., STOOKE, A., PINTO, L., ABBEEL, P., AND SRINIVAS, A.

Reinforcement learming with augmented data. arXiv:2004.14990.

65



[39] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE (1998), pp. 2278–

2324.

[40] LECUN, Y., AND CORTES, C. MNIST handwritten digit database.

[41] LEVINE, S., FINN, C., DARRELL, T., AND ABBEEL, P. End-to-end training of deep

visuomotor policies. Journal of Machine Learning Research 17, 39 (2016), 1–40.

[42] LIN, T.-Y., MAIRE, M., BELONGIE, S., BOURDEV, L., GIRSHICK, R., HAYS, J.,

PERONA, P., RAMANAN, D., ZITNICK, C. L., AND DOLLÁR, P. Microsoft coco:

Common objects in context, 2014.

[43] LIU, J. Z., LIN, Z., PADHY, S., TRAN, D., BEDRAX-WEISS, T., AND LAKSHMI-

NARAYANAN, B. Simple and principled uncertainty estimation with deterministic

deep learning via distance awareness. arXiv preprint arXiv:2006.10108 (2020).

[44] LIU, W., LIU, Z., YU, Z., DAI, B., LIN, R., WANG, Y., REHG, J. M., AND SONG, L.

Decoupled networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (2018), pp. 2771–2779.

[45] LIU, W., WEN, Y., YU, Z., AND YANG, M. Large-margin softmax loss for convolu-

tional neural networks. In ICML (2016).

[46] MCCULLOCH, W. S., AND PITTS, W. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics 5, 4 (1943), 115–133.

[47] MIKOŁAJCZYK, A., AND GROCHOWSKI, M. Data augmentation for improving deep

learning in image classification problem. In 2018 International Interdisciplinary PhD

Workshop (IIPhDW) (2018), pp. 117–122.

[48] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIER-

STRA, D., AND RIEDMILLER, M. Playing atari with deep reinforcement learning,

2013.

[49] MURPHY, A. H. A new vector partition of the probability score. Journal of Applied

Meteorology and Climatology 12, 4 (1973), 595–600.

66



[50] NAEINI, M. P., COOPER, G., AND HAUSKRECHT, M. Obtaining well calibrated

probabilities using bayesian binning. In Proceedings of the AAAI Conference on

Artificial Intelligence (2015).

[51] NETZER, Y., WANG, T., COATES, A., BISSACCO, A., WU, B., AND NG, A. Y.

Reading digits in natural images with unsupervised feature learning. In Advances

in Neural Information Processing Systems (2011).

[52] OVADIA, Y., FERTIG, E., REN, J., NADO, Z., SCULLEY, D., NOWOZIN, S., DILLON,

J. V., LAKSHMINARAYANAN, B., AND SNOEK, J. Can you trust your model’s

uncertainty? evaluating predictive uncertainty under dataset shift. arXiv preprint

arXiv:1906.02530 (2019).

[53] PEREZ, L., AND WANG, J. The effectiveness of data augmentation in image

classification using deep learning, 2017.

[54] PINTO, L., ANDRYCHOWICZ, M., WELINDER, P., ZAREMBA, W., AND ABBEEL, P.

Asymmetric actor critic for image-based robot learning, 2017.

[55] PLATT, J., ET AL. Probabilistic outputs for support vector machines and compar-

isons to regularized likelihood methods. Advances in large margin classifiers 10, 3

(1999), 61–74.

[56] RAILEANU, R., GOLDSTEIN, M., YARATS, D., KOSTRIKOV, I., AND FERGUS, R.

Automatic data augmentation for generalization in deep reinforcement learning.

arXiv preprint arXiv:2006.12862 (2020).

[57] RIBA, E., MISHKIN, D., PONSA, D., RUBLEE, E., AND BRADSKI, G. Kornia: an

open source differentiable computer vision library for pytorch. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision (2020),

pp. 3674–3683.

[58] ROHRER, B. How to convert an rgb image to grayscale. https://e2eml.school/

convert_rgb_to_grayscale.html. (Accessed on 11/30/2022).

[59] SACHAN, A. Detailed guide to understand and implement resnets – cv-

tricks.com. https://cv-tricks.com/keras/understand-implement-resnets/#:

67



~:text=ResNet%20uses%20Batch%20Normalization%20at,network%20from%

20vanishing%20gradient%20problem. (Accessed on 12/08/2022).

[60] SOUDRY, D., HOFFER, E., NACSON, M. S., GUNASEKAR, S., AND SREBRO, N.

The implicit bias of gradient descent on separable data. In The Journal of Machine

Learning Research (2018), p. 2822–2878.

[61] STONE, A., RAMIREZ, O., KONOLIGE, K., AND JONSCHKOWSKI, R. The distracting

control suite – a challenging benchmark for reinforcement learning from pixels.

arXiv preprint arXiv:2101.02722 (2021).

[62] SUTTON, R. S., AND BARTO, A. G. Reinforcement Learning: An Introduction. A

Bradford Book, Cambridge, MA, USA, 2018.

[63] TASSA, Y., DORON, Y., MULDAL, A., EREZ, T., LI, Y., CASAS, D. D. L., BUDDEN,

D., ABDOLMALEKI, A., MEREL, J., LEFRANCQ, A., ET AL. Deepmind control suite.

arXiv preprint arXiv:1801.00690 (2018).

[64] TOBIN, J., FONG, R., RAY, A., SCHNEIDER, J., ZAREMBA, W., AND ABBEEL, P.

Domain randomization for transferring deep neural networks from simulation to the

real world, 2017.

[65] VAN AMERSFOORT, J., SMITH, L., TEH, Y. W., AND GAL, Y. Uncertainty estimation

using a single deep deterministic neural network. In International Conference on

Machine Learning (2020), PMLR, pp. 9690–9700.

[66] WIJMANS, E., KADIAN, A., MORCOS, A., LEE, S., ESSA, I., PARIKH, D., SAVVA,

M., AND BATRA, D. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5

billion frames. arXiv preprint arXiv:1911.00357 (2019).

[67] YANG, Y., MA, Z., NIE, F., CHANG, X., AND HAUPTMANN, A. G. Multi-class active

learning by uncertainty sampling with diversity maximization. International Journal

of Computer Vision 113, 2 (2015), 113–127.

[68] YARATS, D., KOSTRIKOV, I., AND FERGUS, R. Image augmentation is all you need:

Regularizing deep reinforcement learning from pixels. In International Conference

on Learning Representations (2021).

68



[69] YOON, C. In-depth review of soft actor-critic — by chris yoon

— towards data science. https://towardsdatascience.com/

in-depth-review-of-soft-actor-critic-91448aba63d4. (Accessed on

01/05/2023).

[70] ZAGORUYKO, S., AND KOMODAKIS, N. Wide residual networks. CoRR

abs/1605.07146 (2016).

[71] ZHANG, H., CISSE, M., DAUPHIN, Y. N., AND LOPEZ-PAZ, D. mixup: Beyond

empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).

[72] ZHOU, B., LAPEDRIZA, A., KHOSLA, A., OLIVA, A., AND TORRALBA, A. Places:

A 10 million image database for scene recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence 40, 6 (2018), 1452–1464.

[73] ZHOU, T., TUCKER, R., FLYNN, J., FYFFE, G., AND SNAVELY, N. Stereo magnifica-

tion: Learning view synthesis using multiplane images. In SIGGRAPH (2018).

[74] ÅSTRÖM, K. J. Optimal control of markov processes with incomplete state informa-

tion i. In ISSN 0022247X, vol. 10. p. 174–205.

69


