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SUMMARY 

Smart city “Connected Corridor” initiatives are a reality taking place in cities across 

the world. A connected corridor is expected to be deployed with sensors and intelligent 

transportation systems that enable communication between infrastructure and vehicles. The 

presented research aims to advance the understanding of leveraging high frequency traffic 

data streams from connected corridors to provide meaningful insights on the traffic and 

environmental performance of the corridor. The overarching goals of this dissertation are 

1) to develop a connected corridor real-time data-driven simulation model capable of 

generating traffic and performance measures at a (near) real-time rate, 2) to investigate data 

gap patterns in the real-time volume data streams, 3) to measure sensitivity of volume data 

imputations on simulation model generated performance measures, and 4) to investigate a 

suitable volume data imputation methodology. Such a simulation tool can be used for 

testing and studying the traffic and environmental impacts of the connected technologies 

being deployed on a smart corridor. 

The built simulation model is driven using real-time high frequency volume count 

and signal state data streams from a connected corridor testbed. The model architecture 

performs three primary tasks dynamically: 1) Raw Data Stream Processing, 2) Dynamic 

Data-Driven Traffic Simulation, 3) Dynamic Performance Measures Estimation and 

Visualization, and 4) Data Request Management. The traffic simulation model is built in 

PTV Vissim 9.00-08 simulation software and is enabled to take the real-time data as inputs, 

emulate the input data information in simulation runtime, and produce results for the 
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simulated vehicles dynamically, using Vissim’s COM module and python programming 

language.  

In testing of the simulation architecture, the real-time data streams are investigated. 

Significant presence of data gaps are found in both volume and signal data streams. Thus, 

this effort also focused on studying the impact of volume data imputation on simulation 

generated performance measures. A sensitivity analysis of volume data imputation on 

simulation generated travel-time is conducted. The data imputation approach initially 

tested in this study is a simple replacement approach. The results suggest a higher 

sensitivity of the model to a subset of intersection approaches, revealing a methodology to 

prioritize approaches most critical to such real-time applications. In addition, the sensitivity 

analysis results indicated a need to develop a more accurate data imputation methodology. 

Thus, the final aspect of this dissertation included the development and 

performance investigation of an imputation model with Long Short Term Memory (LSTM) 

Recurrent Neural Network (RNN) layers. Univariate time series and multivariate time 

series LSTM RNN predictive traffic volume models are developed. Experiments are 

conducted to investigate the performance of the univariate and multivariate models to 

provide imputations for typical day traffic and atypical day traffic. Key results indicate 1) 

the potential advantages of using a multivariate model over an univariate model for 

predicting longer consecutive units, 2) the multivariate models superior performance over 

the univariate model in obtaining volume imputations for atypical traffic, and 3) the better 

performance of the multivariate model over the univariate model in providing accurate 

simulation generated travel times. 
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CHAPTER 1. INTRODUCTION 

During the last two decades, city populations have grown sharply across the world. 

The World Bank estimates that the world urban population has exceeded the rural 

population since 2007 [1]. In 2017, the total number of people living in urban areas 

exceeded that of rural areas by 21% [1]. The 2018 Revision of World Urbanization 

Prospects by United Nations Department of Economic and Social Affairs estimates an 

increase on the order of 28% in the global population by 2050 [2]. This rise is expected to 

contribute to the increase in the global urban population. By 2050 the urban population is 

projected to be double that of rural [2]. The primary reason for the rise in urbanization is 

migration from rural areas, from poor countries or from countries under military conflicts, 

to gain access to better job opportunities, education, healthcare, etc. [3] A well-managed 

city fosters an environment that encourages economic activity, enables innovation, creates 

employment, encourages social tolerance, and contributes to world GDP.  However, if not 

well managed, cities can contribute to economic and social problems such as environmental 

pollution, congestion, urban poverty, etc. [4]  To function, a city intakes resources and 

produces waste. To be able to cater to needs of rising urbanization it’s crucial to adapt 

resource-efficient, innovative, and sustainable city management practices [4-6]. One such 

innovative perspective – “Smart Cities” – focuses on the idea of leveraging technology to 

advance urban services to be more resource-efficient and sustainable [5, 7]. This thesis 1) 

focuses on development of a real-time data-driven simulation model of a Smart City 

Connected Corridor to provide performance evaluations, 2) explores the impact of data loss 
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on simulation results, and 3) investigates application of deep learning algorithm for 

connected corridor data imputations. 

 This includes development of methodology for real-time modeling and performance 

prediction of a smart corridor and as well as exploring the impact of data loss and methods 

of real-time imputations.  

1.1 Background 

At first, the term “Smart City” was used to encourage urban development for 

economic growth with a focus on technology, innovation, and globalization. However, in 

the last decade, the term has been applied under a wide variety of meanings. There is no 

longer ‘one’ definition, if there ever was, for Smart City, with the term evolving as per the 

city’s and country’s visions. Studying the different interpretations of this term, Greco et.al. 

categorized the concept of Smart City as: 1) a technology-centered approach – where the 

emphasis is on technological advances (hardware), 2) a human-centered approach – where 

the emphasis is on advancing social and human resources, and 3) an integrated approach 

– where the emphasis is on effective collaboration of technology, social, and human 

resources to grow and innovate [8]. In the Report of the European Smart Cities, a Smart 

City is defined as a city that performs well in terms of mobility, environment, people, 

living, and governance, using the “smart combination of the endowments and activities of 

self-decisive, independent and aware citizens” [9], Figure 1.  
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Figure 1 – The Smart City model [9]. 

Smart City initiatives are being carried out in cities across the world such as London, 

New York, Singapore, Hangzhou, Wolfsburg, etc. [10-14]. Smart city initiatives in 

transportation engineering consider providing solutions to transportation related issues 

such as congestion, fuel consumption, air pollution, crash occurrences, etc., using real-time 

traffic data available through advances in Intelligent Transportation System (ITS) 

technologies. In December 2015, USDOT’s Smart City Challenge called city mayors to 

provide their vision for solving city’s most crucial transportation problems [14]. The 

responses from 78 different cities across the U.S. outlined mobility challenges that included 

“Optimizing traffic flow on congested freeways and arterial streets” and “Limiting the 

impacts of climate change and reducing carbon emissions”. Several city’s demonstrated 

interest in implementing connected vehicles (CV) to study their potential for alleviating 

transportation challenges such as safety, congestion, and environmental pollution. Fifty-

three cities proposed using Dedicated Short-Range Communication (DSRC) to facilitate 

communication between CVs and infrastructure to counter mobility challenges. Challenge 

finalists, Denver and San Francisco, proposed to deploy and use connected vehicle 

technology to improve traffic mobility and safety [14]. Connected vehicle corridors are 

expected to connect infrastructure, vehicles, and traveler mobile devices to make travel 

safer, smarter, and greener [15]. The Smart City “Connected Corridors” transportation 
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initiative is being tested in several cities in the US [16-19]. Connected corridors will allow 

access to high frequency near real-time traffic data such as vehicle count, signal phasing 

and timing, vehicle speed, etc. This dissertation takes a plunge into exploring applicability 

of the connected corridor generated high frequency data to study traffic performance. 

1.2 Motivation and Problem Statement 

On-road CV technologies provide access to granular real-time infrastructure and 

vehicle data. In a connected corridor, along with detailed vehicle data, signal state data is 

also expected to be available. With this emerging high frequency traffic data availability, 

it is crucial to explore applications, advantages, and challenges of such data streams to meet 

transportation related objectives such as congestion reduction, improved signal 

coordination, reduced air pollution, etc. This motivated the development of the (near) real-

time connected infrastructure data-driven traffic simulation model, presented in this 

dissertation. In addition, an investigation of the real-time data streams that are inputs to the 

simulation model revealed the presence of data gaps, indicating a loss in data retrieval. 

Presence of data gaps in such real-time data streams can be expected in the complicated 

and environmentally harsh environment presented by field conditions. This motivated an 

investigative study to understand real-time data loss patterns, to find a suitable imputation 

methodology, and to measure the impact of data imputations on the real-time simulation 

model performance measures. 

1.2.1 Connected Infrastructure Data-Driven Real-Time Traffic Simulation Model 

The (near) real-time connected infrastructure data-driven traffic simulation model 

highlighted in this dissertation uses high frequency signal state data along with aggregate 
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volume count data as input, integrating infrastructure data into an online simulation. The 

developed architecture for the data-driven traffic simulation model enables near real-time 

visualization of the key performance indices of the connected corridor, such as travel time, 

queue lengths, emissions, energy consumption, etc. Such a dynamic data-driven simulation 

model can be crucial in testing the performance of different ITS technologies in varying 

traffic scenarios.  

1.2.2 Real-Time Streaming Data Losses 

High frequency data retrieval continuity from a connected corridor can be 

interrupted due to communication issues or other challenges. Such data gaps in the data 

streams can lead to erroneous simulation results. The error can be more pronounced for 

longer gap durations or when the loss occurs at a crucial corridor location. In the case of 

volume data loss this can result in the underestimate of true in-field demands. In case of 

signal state data, a data gap in the data stream can lead to a misinterpretation of signal phase 

timings, resulting in a significant deviation of the modeled vehicle behavior to that in the 

field. As seen, the presence of such gaps in the data streams that drive the simulation model 

can lead to a significantly different emulation of the traffic state in the simulation versus 

that in the real world. Thus, it is crucial to investigate the feasibility of using the developed 

connected corridor data-driven simulation model to derive insights from the simulated 

performance measures when data gaps are present. In addition, the development of 

imputation methodologies becomes crucial to the ability to utilize the deployed systems.   
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1.3 Research Objectives and Scope 

Considering the onset of connected corridor testbeds and initiatives across cities in 

the U.S. and the world, this research seeks to leverage the advanced ITS technologies 

in a connected corridor to drive real-time traffic simulations. That is, to develop a 

“Digital Twin” of the corridor. The digital twin utilizes emerging and traditional data 

sources.  For instance, connected corridors typically use wireless communications such as 

DSRC or Cellular V2V for connected vehicles and hardline (e.g. fiber) or cellular for 

connected infrastructure. In addition, such corridors often have traditional sensor 

technology, such as video, in-pavement detection, Bluetooth sensors, etc., and newer 

technologies, e.g. environmental sensors. To effectively maximize benefits from these 

existing and emerging technologies it is critical to develop the capability to simulate the 

connected infrastructure environment [20]. Consider, as of 2016, 74.6% of total Green 

House Gas (GHG) emissions produced by U.S. transportation system were from on-road 

vehicles [21]. Clearly, leveraging connected technology to aid in the reduction of GHG 

emissions on roads in the US is an important step to sustainability of future transportation 

systems. 

The presented research explores the feasibility of the application of a real-time data 

driven simulation model of a connected corridor to provide dynamic traffic and 

environmental performance measures. Such a simulation tool can be vital to progress 

towards the smart city vision of safe, efficient, and green arterials. The research in this 

thesis is conducted on the North Avenue Smart Corridor in Atlanta, US.  
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The key research objectives are: 1) to develop the architecture and test the 

workability and the feasibility of the connected infrastructure driven real-time traffic 

simulation model, 2) to understand data gap patterns in the real-time volume data streams, 

3) to measure and understand sensitivity of volume data imputations on simulation model 

generated performance measures such as travel time, energy consumption, and emissions, 

and 4) to investigate a suitable volume data imputation methodology. This research is 

funded by City of Atlanta and the National Center for Sustainable Transportation 

dissertation fund. 

1.4 Document Organization 

The research document contains an additional six chapters and appendices. Chapter 

2 – Literature Review, provides a literature review on Smart & Connected Corridor 

initiatives and tests ongoing across the world, real-time data-driven traffic simulation 

models to measure traffic performance, and traffic data imputation and prediction 

methodologies. Chapter 3 – Connected Corridor Digital Twin Model Architecture, 

provides details of the key components of the developed connected corridor data-driven 

simulation model architecture and describes the connected corridor data streams used to 

drive the near real-time simulation model. Chapter 4 – Data Issues and Model Performance 

Sensitivity to Volume Imputations Experiment, investigates real-time volume data streams 

for data loss and presents a sensitivity analysis study conducted to measure sensitivity of 

simulation model generated performance measures to volume imputation values. Chapter 

5 – Long Short Term Memory Recurrent Neural Network Layers for Connected Corridor 

Data Imputations, presents development of univariate and multivariate time series model 

for data imputations using Long Short Term Memory (LSTM) Recurrent Neural Network 
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(RNN) layers and experimental findings from comparing performance of multivariate and 

univariate models. Chapter 6 – Conclusions, Limitations, and Future Work, provides key 

takeaways from the studies conducted on development and performance of the real-time 

data-driven simulation model, Sensitivity Analysis Experiment, and LSTM RNN data 

imputation models, along with the challenges and limitations. It also presents a discussion 

on future research directions identified from the study needed to utilize connected corridor 

real-time data-streams to drive simulations and provide performance measures. Chapter 7 

– Contributions, lists the contributions made through this dissertation research.  
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CHAPTER 2. LITERATURE REVIEW 

 This chapter reviews the prior work in development and application of real-time 

data driven traffic simulation models. The review focuses on three main aspects: 1) 

connected corridor deployments and studies, 2) real-time traffic data driven simulations, 

and 3) traffic data imputation methodologies. Connected Corridor Deployments and 

Testbed Studies  

 Cities across the world are undertaking smart city initiatives to improve resident 

and visitor quality of life, increase sustainability, and efficiently utilize resources. While 

there is no one smart city definition [22], smart cities concepts generally focus on 

advancing urban services by leveraging technology [23, 24]. A common smart city 

transportation initiatives is the deployment of sensors and advanced technologies to create 

Smart Connected Corridors. For example, the Pennsylvania Department of Transportation 

aims to use a coordinated smart corridor system to reduce congestion and crashes, and to 

provide real-time traffic information [25]. The Tennessee Department of Transportation is 

focusing on upgrading signals to optimize intersection operations on the Interstate 24 smart 

corridor [26].  In London, the A2M2 connected corridor is being used as pilot testbed to 

learn aspects of information transference between vehicles and infrastructure. The corridor 

is expected to provide enhanced mobility services such as real-time traffic management, 

and incident response through real-time personalized connectivity with the drivers [27]. 

The Minneapolis Department on Transportation (MnDOT) has selected part of the 

Highway 55 corridor for connected vehicle technology deployment. Using this corridor as 

a testbed, MnDOT aims to test connected infrastructure and develop a data management 
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system to support information sharing across connected environment stakeholders. The 

MnDOT connected corridor project aims to aid traffic safety by providing real-time 

assistive information to drivers about work zones, lane merges, pedestrian conflicts, etc. 

[28] Similar connected corridor projects are in progress in several other U.S. states, such 

as New York, California, Virginia, Wyoming, and Georgia [29-34].  

To achieve the vision of leveraging information sharing between vehicles and the 

infrastructure, to enhance safety, mobility, and sustainability of transportation services, it 

is imperative to test different aspects of Connected Vehicle (CV) technologies in the real-

world. To better understand and prepare for the “technical, institutional, and financial 

challenges” that emerging CV technology deployment will bring, the United States 

Department of Transportation (USDOT) is supporting the on-road deployment and testing 

of these technologies [35]. As part of this program, sites in New York, Wyoming, and 

Tampa, are testing CV applications that cater to local transportation needs. Since fall 2018, 

the connected vehicle systems at these sites have been operational. The impact on key 

performance measures at these locations are to be studied at least until fall 2021. The New 

York City Department of Transportation pilot is using a selected number of vehicles fitted 

with CV technology and Roadside Units (RSUs) deployed at selected intersections to test 

Vehicle-to-Infrastructure (V2I) safety applications. In addition, at this site in-vehicle 

applications to avoid vehicle-pedestrian conflicts will also be tested. The Tampa site 

focuses on testing V2I and vehicle-to-vehicle (V2V) safety and mobility applications, such 

as an intelligent traffic signal system. The key focus of the Wyoming Department of 

Transportation (WYDOT) is to use V2I and V2V applications to address challenges 

associated with weather and freight movement. For this, WYDOT is developing advisories 



  

 11 

to provide safe transportation and efficient incident management systems, such as roadside 

alerts, parking notifications, and dynamic travel guidance [35]. Availability of high 

frequency data in such a smart corridor can be used to provide more accurate real-time 

dynamic information to road users and to transportation organizations. 

Research on developing the necessary tools to test connected applications to 

quantify the impacts of this new technology is ongoing. For example, to evaluate the 

performance of a connected application - cooperative adaptive cruise control (CACC), 

Zulkerfli et al. (2016) recognized the need for a tool to test connected applications in a safe 

environment. The study built a simulation model to conduct an experiment with 

hypothetical input values for a number of vehicles in a network. The experiment was 

designed considering a mixed fleet of connected and non-connected vehicles [36]. Virginia 

DOT derived an algorithm for real-time prediction of vehicle locations in a connected 

environment using a traffic simulation model. The algorithm estimated locations of non-

connected vehicles in the network using locations of the connected vehicles and other 

traffic parameters. The study also tested a connected application to optimize signal timing 

[37]. Doecke et al., studied a V2V safety application of market available connected vehicle 

technologies. In this study vehicle trajectory data from simulated crash scenarios are input 

to an On-Board Unit (OBU) that generated Basic Safety Messages [38].  

The use of such hardware-in-the-loop (HITL) simulation platforms, are expected to 

advance the modeling of complexity found in connected environment systems [39, 40]. 

Chowdhary et al., studied connected applications to provide insights on handling real-time 

connected data streams and big data management tools [41]. The USDOT program 

Applications for the Environment: Real-Time Information Synthesis (AERIS) studied 
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connected environmental applications. Applications such as eco-approach and departure at 

signalized intersections, eco-traffic signal timing, and eco-traffic signal priority, etc., are 

tested on a simulation model of a 27 intersection network. The study utilizes historic 

volumes and signal data and different penetration rate of connected vehicles in the fleet. In 

this study, connected technology data such as Signal Phasing and Timing (SPaT) data, 

distributed by the road side units (RSUs) and on-road vehicle information such as location, 

speed, etc., provided by Basic Safety Messages (BSM) are simulated assuming a 100% 

penetration rate of RSUs [42]. 

2.2 Real-Time Traffic Data-Driven Simulation Modelling 

The integration of smart technologies such as sensors, networked communications, 

and hardware and software computing with the physical infrastructure is central in creating 

a Smart City [43-45]. One area of significant focus is the integration of the new 

technologies enabling an improved estimation of the traffic state and real-time traveler and 

traffic information [46, 47]. Given the inherent challenges in field experimentation, traffic 

simulation models driven by real-time input data to emulate the real-world environment 

are utilized in numerous studies [43, 48]. Various traffic simulation tools have been used 

by researchers, depending on the modeling requirements. A University of Leeds report in 

2000 compared the capability of several macroscopic and microscopic simulation models 

in developing real-time traffic management solutions [49]. More recently, a similar study 

looked into 17 simulation software tools and noted “a lack of online traffic simulation 

software applications specially designed for heterogeneous road transportation networks” 

[50]. 

file://///ad.gatech.edu/gtfs/COE/CEE/Transpo/smartdata/Abhilasha/Dissertation/SMARTEST%23_ENREF_49
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The concept of using real-time data to drive a traffic simulation model is not new. 

Previous studies, such as Henclewood et al. (2010), injected real-time vehicle detection 

data into microscopic simulation models to simulate the current traffic state, which was 

then used to generate predictions of future traffic states [51]. An early example of real-time 

simulation includes Maroto et al., who developed a microscopic model that could simulate 

driving simulator traffic scenarios in real-time, where vehicle behavior model is based on 

car following theory [52]. An effort, tested in the Dutch City of Assen, built a real-time 

traffic model that used traffic flow and travel-time data from different sensor technologies 

such as cameras, highway loop detectors, and Bluetooth® sensors, to predict the short-term 

traffic state. The model architecture connected the real-time traffic measurements with the 

macroscopic dynamic traffic assignment model “StreamLine”. Traffic counts were used 

for model calibration and forecasting [53]. A study by Sturari, Catani et al. presented the 

use of in-field mobile and fixed sensor data to drive a real-time microscopic traffic 

simulation model built using the Simulation of Urban Mobility (SUMO) simulation 

package. Model input included the real-time traffic count and vehicle location data 

obtained from different sources such as induction loop, camera counter, radar counter, 

automatic vehicles location (AVL) systems, etc. [54]. In these studies, the real-time data 

comprised of vehicle detection or vehicle position data; however, infrastructure 

information such as the traffic signal state, state of ramp meters, information from variable 

speed limit signs, etc., were assumed to be pre-encoded in the simulation model based on 

known logic or field calibration. Today, with the richness of information in a Smart City 

CV environment, where the vehicle sensor data may result in real-time changes to the 
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signal control, ramp meter rates, etc., it is imperative that the state of the infrastructure is 

updated in the simulation to ensure the accuracy of the simulation results.  

Anthony et al. studied computational benefits of using parallel processing for 

simulating traffic flows in a real-time traffic simulation system and concluded that parallel 

system can be crucial for real-time traffic simulations [55]. USDOT FHWA is using the 

hardware in loop approach, where the connected infrastructure and connected vehicle data 

is fed as input to the simulation model, to study the application of CV technologies. The 

research is expected to provide engineers with a technology that will allow CV applications 

engineers to test various simulation scenarios and obtain meaningful results [56]. 

The availability of these various data streams also provide interesting challenges. 

The volume, velocity, and wide variety of these data streams naturally suggest the use of 

big data technologies for extracting useful information. Previous studies such as Amini et 

al. (2017) have used tools such as Kafka to address the issues of volume and variety of big 

data [57]. Lv et al. (2015) used deep learning techniques for predicting traffic flow [58]. 

The current study takes a hybrid approach, where the architecture allows for the use of big 

data concepts in the extract-transform-load (ETL) stages preceding the injection of the data 

into a simulation model. 

2.3 Traffic Data Imputation Methodologies 

The presence of data gaps in the traffic data collected is common and so, traffic 

data imputation methodologies have long been of interest to traffic engineers. Collected 

traffic data can be volume count data, vehicle speed data, or one of many other multitudes 

of data. Heuristic imputing methods such as replacing missing values by another day’s data 
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directly, or by using an average, moving average, or weighted moving average of historical 

data are used [59, 60]. In 2006, Zhong et al. applied a pattern matching based method which 

choose the day for replacement values based on the match of values obtained in previous 

selected stretch of hours [61]. Auto-regressive Integrated Moving Average (ARIMA) 

models where missing data is predicted based on available preceding values have been 

used and studied in several efforts [62, 63]. ARIMA based models have been frequently 

used with modifications to account for long-term seasonal variations, that is, Seasonal 

ARIMA [64-66], and to account for spatial variations, that is, Space-Time ARIMA [67]. 

In the learning methods, non-parametric learning algorithm K nearest neighbor (knn) 

algorithm for imputations has shown high accuracy [68-70]. A recent study by Zhuang et 

al. applied a convolutional neural-networks (CNN) based image inpainting approach to 

find values for missing volume data imputation. In comparison to two other methods 

(Bayesian Principal Component Analysis and Denoising Stacked Auto Encoder – a deep 

learning based approach), CNN-based approach performed better [71]. For sequence 

predictions, Recurrent Neural Networks (RNNs) have shown success in several fields such 

as speech recognition and language modelling, particularly because of its’ chain-like 

connected architecture [72]. While RNNs show success in predicting future values based 

on recent past values, they do not learn long term dependencies [72]. To address this, 

LSTM units in RNN architecture are preferred [72]. Detailed description of working of 

RNN, LSTM, and bidirectional LSTM along with literature review on its application for 

time series predictions is presented in Chapter 5.  

The review of literature in first subsection of this chapter “Connected Corridor 

Deployments and Testbed Studies” suggests an increasing focus in cities across the world 
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to deploy connected corridor testbeds to study their potential for improving traffic 

characteristics such as mobility, safety, and information connectivity.  The next subsection 

“Connected Corridor Deployments and Testbed Studies” presented a summary of previous 

work where transportation data from different data sources are leveraged to develop real-

time transportation simulation models. It is seen that with increasing deployments of 

connected corridors it is imperative to explore leveraging connected corridor data to 

improve traffic mobility, safety, etc.  

Leveraging what has been learned previously this research develops a real-time 

traffic simulation model of a connected corridor, i.e., Digital Twin, driven using data 

derived from the corridor. The developed model and data imputation methods are capable 

of providing traffic and environmental performance measures at a near real-time, which 

can be used to improve traffic mobility and reduce air quality impact.  
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CHAPTER 3. CONNECTED CORRIDOR DIGITAL TWIN 

MODEL ARCHITECTURE 

In a Smart City, equipped with connected infrastructure, traffic data, such as vehicle 

detections and intersection signal indications, are expected to be received in (near) real-

time. Utilizing such data the objective of this chapter is the creation of a connected 

infrastructure dynamic data-driven simulation that leverages high frequency connected 

data streams and may be used to derive meaningful insights about the current traffic state 

and real-time corridor environmental measures. An earlier version of the model that 

utilized hybrid data (a mix of real-time data and preset data) to simulate traffic and provide 

performance measure estimations at a near real-time rate is presented in the IEEE 

proceeding, proceeding of Winter Simulation Conference [73]. 

3.1 Background 

The Connected Corridor Digital Twin model developed and studied in this research 

simulates 2.3 miles of the North Avenue Smart Corridor in Atlanta, Georgia, USA. This 

simulated section of the corridor consists of fifteen signalized intersections (Figure 2). 
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Figure 2 – Study corridor-2.3 miles of North Avenue Smart Corridor, including 15 

signalized intersections. 

 The developed model is capable of being driven in near-real-time with high 

frequency connected infrastructure traffic volume and signal controller data streams. The 

model visualizes key traffic and environmental performance measures at near-real time, 

providing dynamic feedback to users and transportation stakeholders. Such a data driven 

simulation platform can be crucial in providing helpful insights on the effectiveness of new 

technology deployments. In this context, the built simulation model can be used to test 

impacts of smart/connected technologies, such as smart signal control or traveler 

information systems, in real-time. 

The simulation model architecture feasibility and robustness were initially explored 

by driving two intersections with near-real-time data streams and the remaining 

intersections using preset data. In this initial experiment the overall architecture was found 

to be capable of inserting the data into the simulation platform, maintaining the faster than 

real-time processing necessary for such a platform to maintain real-time capabilities, and 

able to provide meaningful traffic operations and vehicle emission estimates along the 

corridor [73]. For this chapter the ability to stream the volume and signal real-time has 

been expanded to all fifteen signalized intersections and the overall architecture has been 

improve to address deficiencies in the original effort. For instance, an investigation of the 
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data streams has revealed the presence of data gaps. Given the challenges of maintaining 

data streams in harsh field environments, such data loses should be expected. Such data 

gaps can impact the performance measure results and insights generated from the model. 

Thus, the model architecture has been enhanced to handle such data losses.  

However, development of an imputation methodology should be informed by an 

understanding of the impact of data loss, and errors in data imputation, on generated 

performance measures. This chapter provides an overview of the improved architecture, 

utilizing a simple data imputation methodology. Chapter 4 utilizes sensitivity analysis to 

explore the impact of the volume data gap imputations on the key performance measures 

produced by the real-time data-driven simulation and Chapter 5 will present an advance 

data imputation methodology.  

3.2 Digital Twin Model Architecture 

Figure 3 provides the real-time data-driven simulation architecture. The 

architecture is enabled to perform four primary tasks: 1) injection of real-time signal 

control and volume data streams into traffic simulation model through the Real-Time Raw 

Data Stream Processing Module, 2) model execution through the Dynamic Data-Driven 

Simulation Module, 3) the Dynamic Performance Metric Evaluation and Visualization 

Module, and finally 4) efficient handling of transactions between modules using a Data 

Request Management Module – Flask Web Server.  
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Figure 3 – Real-time data-driven simulation model architecture overview. 

3.2.1 Real-Time Raw Data Stream Processing Module  

For each intersection real-time vehicle per-lane counts are collected in the field 

using video detection and processing. Data is received (Real-Time Aggregate Volume 

Count Data Stream, Figure 3) as 6 minute, per-lane aggregate counts. The raw volume data 

stream, a sample shown in Figure 4, is reduced to include only the approaches of the fifteen 

studied intersections. Volume count data contains the timestamp of the start of interval and 

the distribution of volume count per lane, for each of three vehicle classes. The 3 classes 

are listed as c1, c2, c3 in Figure 4, where c1_1 refers to count of vehicle class 1 in lane 1 

and similarly c2_5 refers to count of vehicle class 2 on lane 5. The lane ID (1, 2, and 3 etc.) 

follows the serial order from rightmost lane to the median. In the Real-Time Raw Data 

Stream Processing Module lane level raw volume data counts are aggregated across classes 

and lanes to obtain approach level by movement aggregate counts, to be used as input for 

the traffic simulation model. 
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Figure 4 – Snapshot of raw real-time volume count data. 

The signal controller data streams are received (Real-Time Signal Data Stream, 

Figure 3) at a higher frequency than the volume data, ranging between 0.1 Hz to 10 Hz. 

The received data stream contains the signal color indication status of all signal heads for 

all intersections. Separate messages are sent for each intersection and each message 

contains the state of all signal indications for that intersection. A message is sent whenever 

any indication changes at the intersection. However, the raw signal data stream, may 

include repeated redundant messages. For several intersections update messages were sent 

approximately every 2.5 seconds to 5 second even when there was no change in indications. 

From this data stream, messages that reflect a change in the current state of the signal 

indications (i.e. a light changes on any signal head associated with the intersection) are 

identified to be used as dynamic input to the simulation model. Figure 5 provides a sample 

signal data, where each signal message record contains associate date, timestamp, 

intersection ID, position of the intersection in latitude longitude format, and Hexcode ID. 

The Hexcode ID is converted to binary data string that contains signal status of all (max of 

8) phases of the intersection at the corresponding timestamp. 
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Figure 5 – Snapshot of raw real-time signal event data. 

3.2.2 Dynamic Data-Driven Traffic Simulation Module 

The dynamic data-driven traffic simulation model is developed in PTV’s Vissim 

9.00-08. Vissim’s Component Object Model (COM) interface is used to the feed real-time 

data into the simulation model during runtime and to send simulation output data to the 

performance measure evaluation and visualization module dynamically. Python 3.7 

programming language is used to access Vissim objects dynamically via its’ COM 

interface. The simulation resolution is 10 Hz. The dynamic-data driven traffic simulation 

module consist of the following components: Volume Update Logic, Signal Update Logic, 

Dynamic Switch between Actuated Signal Timing and Real-Time Signal Data, and 

Dynamic Simulation Output.  

3.2.2.1 Volume Update Logic 

The vehicle volume simulation inputs for all the boundary links of the fifteen 

signalized intersections are updated every aggregate count period to match the fluctuations 
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in real-time vehicle volume. The turn movement ratios for internal links are enabled to 

change dynamically in the architecture base on streaming detector data. Where turn 

movements and through movements share a lane, turn movement splits are set based on 

historic data. Currently the aggregate count period is six-minutes, i.e. the volume count bin 

size from the field equipment. This represents the minimum lag between the simulation 

model and the field. In earlier versions of the architecture, for a different volume aggregate  

data stream, the time interval of volume update has been tested to work successfully for 

one-minute and five-minute time intervals as well. 

The built architecture simulates the last interval for which data is obtained from the 

real-time data stream. The simulation resolution is 10 hz (although signal change events 

occur at a 1 hz rate as will be discussed in the next section). The volume at each entry point 

is entered according to a shifted Poisson inter-arrival headway distribution across the six-

minute period. For dynamic control of volume inputs Vissim COM objects container 

“IVehicleInputContainer” and “ITimeIntervalSetContainer” and “ItemByKeys” and 

“SetAttValue” methods are used to access and generate the next six minute time interval 

and add the corresponding volume value at each of the entry links simulated [74]. 

Similarly, to dynamically adjust turn movement ratios (distribution of vehicle across 

different route paths) in different time intervals, Vissim COM object container 

“IVehicleRoutingDecisionStaticContainer”, “ITimeIntervalSetContainer” and 

“IVehicleRouteStaticContainer”, with “ItemByKeys” and “SetAttValue” methods are used 

[74]. The ID for each of the individual object “IVehicleInput”, 

“IVehicleRoutingDecisionsStatic”, and “IVehicleRouteStatic” in object containers are 

taken as input by the “ItemByKeys”. For code brevity, dictionaries with list of the IDs for 
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these objects, for all intersection entry links in the network, are utilized to list each object 

item and update volume and turn movement split. Figure 6 provides sample code utilized 

to access Vissim objects “IVehicleInputs” to update volume count values and 

“IVehicleRoutingDecisionsStatic” and “IVehicleRouteStatic” to update turn movement 

ratio values dynamically.  

 

Figure 6 – Sample code to access Vissim objects dynamically via COM interface. 

3.2.2.2 Signal Update Logic 

The signal data stream is received in the form of hexcode ID that contains the signal 

indication status of all phases, for each of the fifteen intersections. The hexcode ID is 

compared with last received hexcode ID to check for any indication changes. The updated 

hexcode IDs for the fifteen intersections are identified and fed to Vissim every second. 

Thus, the signal update resolution to Vissim is 1 Hz. The hexcode IDs can be received at a 

0.1 Hz frequency. In that case, the most recent hexcode ID identified in the complete one 

second interval is fed to Vissim. Considering signal indication length for an given phase 

always exceeds one second a phase change indication will not be missed with the with the 

1 Hz signal update resolution utilized in updating Vissim. Through COM the updated 

hexcode IDs are decoded to identify the status of every phase at the intersection to 

implement the new status in the next simulation step in Vissim.  
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The signal data drives all signal changes in the VISSIM model unless a data gap is 

identified, in which case, the signal control will be switched to the inbuilt RBC controller 

to emulate actuated signal timing plan, as discussed in the next section. For dynamic 

control of signal indications at the fifteen signalized intersections, Vissim object container 

“ISignalControllerContainer” and “SignalGroupContainer”, are used to access intersection 

signal controller and the signal groups (i.e. phases) at each intersection utilizing the 

“ItemByKeys” method via COM interface. To switch signal indication control from COM 

to RBC the “ContrByCOM” attribute of the signal group object is set to “False.” Figure 7 

provides utilization of COM method to access Vissim signal head dynamically.  

 

Figure 7 – Sample code to access Vissim signal objects dynamically via COM 

interface. 

The signal (and volume) data preprocessing methodology before feeding into traffic 

simulation is subject to modification based on the received data format. In an earlier 

version, a different signal data stream - Maxtime Signal Controller output - was utilized. 

In this version, the data entry received included event ID number (indicating start of an 

event such as start of Green indication) for an associated phase. However, regardless of the 

data source, when implementing an operational real-time Digital Twin model, data storage 

and organization of data streams can be crucial to efficiency, for example if the data is 

polled in separate files for each intersection or data for a group of intersections is stored in 

one file. 

3.2.2.3 Dynamic Switch between Actuated Signal Timing and Real-Time Signal Data 
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The visualization enabled by the previous logic facilitated the inspection of 

signalized intersections, allowing for the ready recognition of errors in the simulated signal 

control, i.e., skipping or very long indications.  Errors could be due to manual error in 

decoding hexcode messages, a gap in signal data stream due to communication or field 

equipment failure, or other error sources. A more detailed study of data gaps in the real-

time connected corridor data streams is presented in Chapter 4. While application of 

advanced imputation models to infill volume data gaps is tested in this dissertation 

(presented in chapter 5), signal data imputation methodologies remains a future research 

topic. However, to address signal data gaps this effort utilizes COM’s capability to 

implement preset actuated signal timing data using its Ring Barrier Controller (RBC) 

module. The RBC is utilized to keep the real-time data-driven digital twin intersection 

running continuously, even in the absence of streaming signal data for one or more 

intersections. For this effort a signal data gap is defined as is when the hexcode ID for an 

intersection is not updated for more than 4 minutes. At such time the digital twin 

architecture switches signal control of that intersection to RBC mode. On receiving updates 

in hexcode the intersection control is switched back to the dynamic control, where in signal 

status emulates the status in the hexcode ID. While this could result in momentary 

unrealistic signal changes within the digital twin, validity of this methodology is reserved 

to be part of future real-time signal data imputation methodology development.  

It is highlighted that for the built simulation model of the real-time connected 

corridor data driven digital twin architecture the capability to dynamically switch between 

the RBC and external data stream to drive signal indications in simulation has been 

successfully implemented. However, the experiments conducted in following research do 
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not utilize this methodology. As the experiments were able to be run offline using historic 

data streams these streams were manually validated and updated to provide more realistic 

indication changes. This is a temporary measure to allow testing the robustness and 

efficiency of different configurations of the complete digital twin architecture without the 

confounding of signal control transition errors.  

3.2.2.4 Dynamic Simulation Output 

The dynamic link to transfer simulation output data from the Dynamic Data Driven 

Simulation Module to the Performance Measure Evaluation and Visualization Module is 

facilitated through COM utilizing Flask Web servers’ post requests. For energy 

consumption and emissions estimation, a detailed record of the simulated vehicles is sent 

as key-value pairs through these posts into JSON files. After each simulation step, a vehicle 

record set for all vehicles in the network is obtained. The record set includes: Record 

Simulation Second, Vehicle Network Entry Time, Vehicle ID, Vehicle Front Coordinate, 

Vehicle Rear Coordinate, Speed, Acceleration, Vehicle Type, Vehicle Width, Vehicle 

Length, Direction of Current Lane Change, and Headway. COM transfers the vehicle 

record information to Performance Measure Evaluation and Visualization Module at a 

resolution of 1 Hz.  

Additionally, for web visualization of the signal indication data, a separate Flask 

webserver post request is utilized. Similar to vehicle record transfer, the signal status 

information is sent as key-value pair (key: intersection id, value: signal status) to JSON 

files at a resolution of 1 Hz. Both signal status records and simulated vehicle records for 
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every 1 simulation second are stored in a separate JSON files. This allows a flush of the 

previous signal and vehicle record JSON files after they are utilized for visualization.   

3.2.2.5 Vissim COM Logic 

Figure 8 provides an overview of the dynamic data driven simulation initialization 

logic and Figure 9 provides an overview of the simulation runtime logic. Initial tests for 

robustness and feasibility of the built simulation model to run for 24 hour is tested for a 

selected day of 14 January 2019. 
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Figure 8 – Overview of dynamic data-driven traffic simulation initialization logic. 
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Figure 9 – Overview of dynamic data-driven traffic simulation runtime logic. 

3.2.3 Dynamic Performance Measures Visualization Module 

The Dynamic Performance Measures Visualization Module was completed by team 

members outside of the efforts reported in this dissertation [75]. However, for 

completeness the module may be described as “The simulation provides a record of 

position, speed, acceleration, etc. for each vehicle in the network, at a 1 Hz rate. These per-

second vehicle record data are used in runtime to estimate performance measures such as 

travel time on selected routes, queue lengths, energy consumed per vehicle, and emissions 

generated per vehicle. To estimate energy and CO2 emissions profile the Motor Vehicle 

Emission Simulator (MOVES) matrix is utilized. MOVES matrix is a computationally 

improved version of the energy estimation tool MOVES, developed and mandated by the 
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US Environmental Protection Agency (USEPA) [76]. It estimates energy and emissions 

for off-road and on-road vehicles based on the vehicle type, weather conditions and vehicle 

model, make, and year. The estimated performance measures are then visualized on 

Openstreet maps” [75]. 

3.2.4 Data Request Transactions Management Module – Flask Web Server 

During a run dynamic data requests between the three other modules are handled 

using python’s Flask webserver. A Flask webserver is used to generate urls that contain 

raw data fetched from the real-time raw data stream processing module requested by the 

traffic simulation module. Figure 10 includes the two primary functions used to fetch real-

time data dynamically by simulation using Flask webserver hosted urls. 
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Figure 10 – Flask webserver is used to fetch real-time data during simulation. 

Further, the flask webserver is used to process post requests in the Vissim 

simulation logic, creating a dynamic log of the simulation output data that contains a record 

of position, speed, acceleration, etc. for each vehicle in the network. Lastly, the flask 

webserver is also used to facilitate a similar dynamic data request link between the 

simulation output data log and the dynamic performance metric visualization module. 

While not presented for brevity an assessment of the feasibility aspects of using a 

real-time data-driven transportation simulation model to evaluate and visualize network 

performance indices to provide dynamic operational feedback in a real world environment 

was conducted using an earlier version of the architecture [75]. Within this early 
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experiment it was seen that not only was the method feasible but that it likely provided a 

prediction improvement over the simulation platform run offline with historical data. 

Results for the current architecture will be seen in Chapter 4 and Chapter 5.  

3.3 Conclusions and Limitations 

A real-time data-driven simulation model that drives signals and volumes of all 

fifteen signalized intersections utilizing real-time data is developed. The four primary 

components of the developed Digital Twin are 1) Real-Time Raw Data Stream Processing 

Module, 2) Dynamic Data-Driven Simulation Module, 3) Dynamic Performance Metric 

Evaluation and Visualization Module, and 4) Data Request Management Module – Flask 

Web Server. 

Vissim’s COM interface is utilized for dynamic control of simulation inputs and 

outputs. Inputs to the simulation model, i.e. volume, signal status, and turning movement 

ratios at the fifteen intersections, are provided dynamically utilizing the COM interface. 

Dynamic simulation updates are made to input volumes and turning movement ratios every 

six-simulation minutes and signal indications every one-simulation second. Further, 

simulation output, the vehicle record of all vehicles in the simulation network at a rate of 

10 Hz and signal record of signal status of all phases at the fifteen intersections are 

dynamically provided at a resolution of 1 Hz by COM to the Performance Metric 

Evaluation and Visualization Module. Flask webserver is utilized to 1) transfer the real-

time data from the raw data streams to the simulation COM interface, and 2) transfer 

simulation output data provided by COM to external JSON files for performance metric 

evaluation and visualization. Thus, the dynamic handle to Vissim simulation objects 
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provided by COM interface and Flask webserver requests are central to the dynamic 

operations of the built data-driven traffic simulation model. The dynamic attribute of the 

developed simulation model to update volume inputs, turning movement percentages, and 

signal status at different frequencies, can be changed depending on the real-time data 

stream granularity. 

The handling of real-time data streams to drive the developed Digital Twin 

addresses the seven big data attributes: 1) Volume – handles large volumes of data; 2) 

Velocity – data is streamed in real-time; 3) Variety – a number of data formats are 

integrated; 4) Veracity – addresses data quality (missing data); 5) Variability – data varies 

over time, following typical and atypical patterns; 6) Visualization – the architecture 

includes performance metric visualization; and 7) Value – critically the method converts 

the data into useful information that may be used to evaluate the corridor operations. 

Further, the developed real-time simulation platform can be integrated with different smart 

technologies as the model relies only on the data from smart technologies and not the 

imbedded logic of the smart technology to drive the simulation.  

One limitation of the current approach is runtime. While for initial test version, the 

traffic simulation model is observed to operate 1.3x rate compared to wall clock [77], for 

the current real-time data-driven traffic simulation model, the traffic simulation rate varies 

between 0.8x to 1.3x, depending on network traffic density. Thus, a network with 

continuous high traffic density can result in the simulation falling behind real-time. The 

Digital Twin with all fifteen intersections driven using real-time data and the dynamic 

simulation outputs sent at a high resolution, tends to lag real-time rate, particularly during 

peak periods. This may be partially addressed by reducing the output resolution, although 
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this is identified as a limitation and an area of future work. It is also noted that to keep up 

with the real-time rate for a larger network, the simulation will need to either incorporate 

distributed architecture or utilize multi-processing or multi-threading for efficient 

computing. Achieving a real-time simulation can lead to future research to devise a 

methodology to simulate the prediction state duplicating the current simulation state. 

In the current architecture, the real-time volume data is received with six-minute 

aggregate. The simulation model updates the volume for every six-minute interval. A more 

accurate version can be created with a lesser aggregate real-time volume data. For example, 

with one-minute aggregate volume data, the volume in simulation model could be updated 

every one-minute. This low level aggregation will also allow the simulation to perform 

more closer to real-time than the current version since it will simulate and provide 

performance measure of traffic state observed in last minute instead of last six-minute 

interval for which data is received. It is important to note that this will contribute to higher 

number of dynamic changes in the simulation model and could impact simulation rate. 

Hence, efficiency of the simulation model might need to be enhanced as well. Further, if 

instead of aggregate volume data, per vehicle record data is obtained, the lag of one-minute 

can also be reduced significantly to achieve a more accurate real-time Digital Twin. 

However, this change might increase the frequency of communications between the real-

time data stream database and the simulation model. Hence, the dynamic link between the 

two components will need to be tested for robustness.  

Another limitation of the model is that the traffic simulation model has not been 

calibrated for driving behavior and validated for the traffic and environmental performance 

measures. The model in future will need to be calibrated and validated. For a successful 
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calibration and validation of the simulation model, it is also crucial to investigate fidelity 

of the real-time data received in the connected corridor. As a first step, in this effort the 

real-time connected corridor data is investigated for presence of data gaps, which is 

presented in Chapter 4. However, a study to verify the accuracy of data received from 

sensors will also be needed to develop a validated and calibrated model.  

Further, in the built Digital Twin architecture, the dynamic turning movement ratios 

from historic turning movement counts are used. The connected corridor data received 

from the studied currently did not provide turning movement counts at approach before 

intersections. In addition, it also lacks information that could come from on exit detectors 

which could be used to estimate turn movement counts more accurately. Potential solutions 

to this could be to facilitate obtaining turn count data directly from the connected corridor 

sensors at approach detectors, or to leverage data from exit detectors as well if present or 

to develop a methodology to estimate turn movement count from the counts data and signal 

phase timing data of the neighboring intersections. It is noted that using an external turn 

movement count estimation methodology might cause additional delay in execution of the 

real-time aspect of the Digital Twin. Hence, it will be also important investigate the 

execution time of the developed estimation methodology after it is embedded in the 

architecture. A model that has learned from the turn count patterns from historic data could 

be used.  

It is also noted that to keep the Digital Twin running 24 x 7 for practical purposes, 

a robust and reliable network communication between raw data stream database, traffic 

simulation model, and simulation output storage database that is used for estimating 

performance measures is needed. The dynamic link between the three main components of 
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the architecture makes this crucial. In practice, interruptions have been observed due to 

network fluctuations and communication loss to Vissim license. The architecture in future 

can be enabled to provide a notification when simulation model does not run.  

A related challenge identified in building the real-time digital twin transportation 

simulation model is in integrating the multiple components underlying the complete model 

and ensuring they work in synchrony with real-time. However, through the architecture 

developed and test the performance results indicated that with the presented architecture it 

is plausible to work with the high velocity data while ensuring sufficient responsiveness of 

the model to input changes. However, ensuring synchronicity can impact the model 

efficiency contribution to runtime challenges. 

Investigation of raw data streams during model development revealed the presence 

of data gaps. This led to next research efforts: 1) to study sensitivity of the error in data 

imputations on Digital Twin generated performance measures, presented in Chapter 4, and 

2) to investigate potential benefits of deep RNN models for data imputations, presented in 

Chapter 5. A pseudo-real-time data-driven version of the Digital Twin is utilized to conduct 

experiments in Chapter 4 and Chapter 5, where the raw data for a fixed day is already 

available as opposed to real-time. The performance measure evaluation is conducted on the 

obtained result of multiple trials of the simulation as opposed to dynamically in the Digital 

Twin.  
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CHAPTER 4. DATA ISSUES AND MODEL PERFORMANCE 

SENSITIVITY TO VOLUME IMPUTATIONS EXPERIMENT 

4.1 Introduction 

While the architecture has been shown to be feasible an investigation of the real-time 

data streams used as input to the simulation revealed data loss in the data streams, which if 

left absent or incorrectly imputed may impact the simulation results. Investigation of the 

streams revealed data gaps are likely related to communications (dropped or highly latent 

messages), equipment failure, or data message processing. The volume and signal data 

were transmitted through separate systems, albeit both cellular based. Thus, data loss was 

not correlated between the two data streams. The key characteristics of the observed data 

loss events are presented in the next sections. 

4.2 Investigation of Real-Time Data Streams 

A description of raw data streams of volume count and signal indications is provided 

in Chapter 3 section 3.2.1 – Real-Time Raw Data Stream Processing Module. In this 

chapter, the real-time raw volume data streams are investigated. Investigation of volume 

data streams for 115 days across months of February, March, April, May, and June (2019) 

revealed presence of data gaps.  

4.2.1 Volume Data Streams 

The raw real-time volume data stream contains information such as the volume 

interval starting timestamp, volume count distribution per vehicle class per lane, speed, 
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occupancy, etc. for each record, where a record is created for each intersection approach. 

To study data gaps in the volume data stream, the raw data is reduced to contain only that 

information required for each record to clearly identify the presence and absence of volume 

data for each interval of the day, i.e. identify data gaps. 

4.2.1.1 Raw Volume Data Processing to Identify Missing Volume Intervals 

Using the four-step filter process shown in Figure 11, starting with the database 

table containing the raw volume data, a final Standardized Name Table is developed. This 

table implements a standardized data and lane number scheme (i.e. lane number ID 

increments from right most approach lane) allowing standardized input into the simulation 

model. This table filters unused data, converts all roadway naming and lane assignments 

to a standardized, consistent format, and modifies the timestamps, converting from 

Greenwich Mean Time (GMT) to Eastern Standard Time (EST). In generating the 

Standardized Name Table, Lane ID modification is completed for the approaches where 

incomplete or incorrect lane IDs are identified. For example, if an approach with three 

lanes (two through lanes and a right turn lane) has data for only 2 lanes, listed as c1_1 and 

c1_2, it is assumed that the detections are present on the through lanes. With this 

assumption and according to the lane ID numbering scheme, the IDs for these lane are 

converted to c1_2 and c1_3 with c1_1 being the right missing detector ID name. Every 

intersection was reviewed and manually verified for lane numbering.  
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Figure 11 – Four-steps of data processing to obtain the Standardized Name Table 

from Raw Volume Table. 

4.2.1.2 Volume Data Gaps Analysis Aided with Interactive 2D and 3D Visualizations 

Analysis of volume data streams received for 115 days across the months of 

February, March, April, May, and June (2019) revealed gaps in the volume data. On 

plotting the missing data intervals on 2-D and 3-D dynamic visualizations and heat maps, 

different missing volume patterns were observed. Three of 115 days were found to have 

incomplete retrieval of data for more than 50% of total hours, hence, for further 

investigation of characteristics of data gaps, remaining 112 days are used. Figure 12 show 

example 2-D representation of missing volume pattern for 112 days. The three days for 

which more than 50% of data was not received is not included, as it the large continuous 
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absence on these days might create an obstacle to view the missing volume patterns on the 

days data was received. Figure 12 shows the aggregation of data loss over 28 day periods. 

Within this figure it can be seem that data loss is not a completely random process, with 

volume outages more likely across certain detectors and times of day.  

 

Figure 12 – Interactive 2D visualizations showing intermittent missing data patterns 

for 112 days. (a) Aggregate data loss, days 1-28, (b) Aggregate data loss, days 29-56, 

(c) Aggregate data loss, days 56-84, and (d) Aggregate data loss, days 85-112. 

Figure 13 shows 3-D representation of missing volume pattern for 115 days. The 

3D plots, Figure 13, show the hours with (a) no missing data, (b) one missing six-minute 

intervals, (c) two-missing six minute intervals, etc. It is seen that there is a significant level 

of missing data, with one missing interval or all intervals missing within an hour the most 

frequently occurring. Figures (a-k) show the number of hours with 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, and 10 intervals, where each hour has a maximum of 10 intervals. 
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Figure 13 – 3D visualizations of number of missing data intervals, per hour, with 24 

hours of a day on X axis, 115 days of Y axis, and detectors on Z axis. 

Figure 14 is a heat map showing the presence (in light blue) and absence (in dark 

blue) of data availability for a typical day. The x-axis is divided into 240, 6-minute intervals 

(i.e. the number of 6-minute intervals in a 24 hour period), from midnight-to-midnight. The 

y-axis represents 147 detectors spread across the 15 intersections included in the model. 
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While at some detectors no data was obtained implying complete data loss, at other 

detectors intermittent data loss, with varying patterns from day-to-day was observed.  

 

Figure 14 – Missing volume pattern for 147 detectors over 24 hours on February 15 

2019. Missing data represents 20.46% of the total day’s detections. 

Inspection of the missing value patterns throughout the study period revealed that 

intermittent data loss nearly always includes all lanes of an approach, that is, data is rarely 

received from some lanes on an approach while not on others. However, where data loss 

was permanent (i.e. no data was collected over the entire 112 days), it may incorporate all 

lanes on an approach or be isolated to a single lane on an approach, likely indicating either 
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equipment failure or that the given lane was not detectorized. Figure 15 summarizes 

availability of detectors based on studying volume data gap patterns of the 112 days. 

 

Figure 15 – Volume detection availability at the study intersections, per lane, per 

movement. Permanently missing patterns are identified in bold and red. 

4.2.2 Signal Data Streams 

The current simulation architecture assumes that all messages are received and that 

the state of a signal does not change between messages. However, in reviewing the signal 

data stream message loss was observed. The lost or delayed messages lead to longer 

(potentially significantly longer) GREEN, AMBER, or RED indications than occurred in 

the field, as well as the skipping of indications. This effect resulted where messages to 

change to the next indication in the cycle were not received. The outages could be on the 

order of a few seconds to many hours. Dropped messages could also result in unrealistic 

timing pattern transitions as a missed change message could result in VISSIM transitioning 

between non-sequential signal states, i.e., going directly from the GREEN of one phase to 

the GREEN of the next. 
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4.3 Sensitivity Analysis Experiment Methodology 

Gaps in the data stream feeds to the simulation can result in underestimates in traffic 

volumes or unrealistic congested due to incorrect signal control. While imputations on data 

gaps can be used to emulate a more realistic traffic scenario, it is also crucial to understand 

the potential impact of imputation errors on the simulation results. While data imputations 

are needed in both volume and signal data streams, to begin with, this chapter focuses on 

understanding the impact of volume data imputations on model generated performance 

measures. For this effort signal messages were generated to infill missing data based on 

historic timings; however, future efforts will explore impacts in potential signal errors. 

4.3.1 Experiment Design 

4.3.1.1 Overview 

The current data imputation method assumes that imputed data is drawn from 

historic data, and as such, may differ from actual field conditions. As the current field data 

has no day with complete data, that is, all 112 days in the data set had both volume and 

signal timing outages, a composite typical day with complete data was generated. Monday, 

March 18th 2019, was chosen as the Base Day, with missing signal and volume gaps 

imputed based on historic data, existing signal timing plans, alternate data sources (e.g. 

count data from a corridor development report), and any other available data sources. This 

Base Day is then considered to be “accurate” field conditions for the sensitivity analysis. 

In addition, 24-hour data loss patterns are generated based on the 112 days of field data. A 

random selection of five of the data loss patterns are applied to the Base Day to create five 

Base Day with Data Gaps scenarios, inserting errors into the detection data streams for 



  

 46 

those detectors and times identified as having data loss in the given data loss pattern. For 

this effort, potential errors in imputed volumes of 20%, 50%, and 80% are considered.  

These values are representative of the difference observed in volumes, on the corridor in 

several locations, over the 112 days. Ten replicate trials are completed for each Base Day 

with Data Gaps gap pattern at each error level, resulting in 160 total simulation trials 

(including 10 replicate trials of the Base Day). Key performance measures are then 

generated from the simulation tool for a Base Day and the Base Day with Data Gaps, 

allowing for an evaluation of the impact of volume data imputation errors. As the data is 

prepared a priori for this experiment the simulation was run faster than real-time to allow 

reduced processing time.  

Figure 16 below schematically shows the design of volume data stream imputations 

and the logic position in the real-time simulation model architecture. In the real-time 

simulation model architecture, data imputations are applied at the data input level, prior to 

injecting the data into the simulation model. Thus, the imputed data will be formatted as 

the field data and the simulation model will have no dependency on the imputation method.  
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(a) 

 

(b) 

Figure 16 – (a) Base Day raw volume data stream, Base Day with Data Gaps pattern 

applied, Base Day with Data Gaps with imputed data, (b) Volume imputations made 

in the raw volume data streams in the Raw Data Streams Processing Module of the 

data-driven simulation model architecture shown in Figure 3.  

4.3.1.2 Modelling Likelihood of Missing Data on a Simulated Day Using Unsupervised 

Learning Method 

One of the key items in the experiment is the generation of data gap patterns. Data 

gap patterns are based on the 24 hour volume data streams received over 112 days spread 

across February, March, April, May, and June 2019, at 147 detector locations in the study 

corridor. As discussed, volume data for each detector is received in six-minute aggregate 

vehicle counts. Over the 112 days, 29 detectors failed to provide any detection data. The 

remaining 118 detectors experienced at least one an intermittent data loss, ranging from 

six-minutes (a single bin) to an entire day. To analyze the data loss patterns a binary 
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representation of the volume data was generated, where 0 represents volume data presence 

within a six-minute bin and one represents volume data absence. Each detector, per day, 

was considered a sample for the cluster analysis. Thus, for the detectors that received at 

least some data there are 13,216 detector samples (i.e. 118 detectors x 112 days). These 

samples are cluster into groups to allow for a determination of the likelihood of different 

failure patterns. K-means unsupervised learning is used to cluster the 13,216 samples into 

groups based on selected key characteristics of the data gap pattern. 

Missing Volume Pattern Grouping using K-means Clustering Algorithm: Each 

detector sample contains 240 binary values (number of six-minute intervals in a day) 

representing the presence or absence of detection per interval. To find clusters with 

different presence and absence patterns, features are extracted that describe the primary 

characteristics of potential patterns. This feature engineering reduces the dimension of each 

sample from 240 to 7. 

The following 7 features were selected based on multiple clustering trials:  

 Feature 1 – Total count of intervals without data over 24 hours: captures 

variation in number of absences 

 Feature 2 - Average separateness between intervals without data, i.e. average 

separateness between absences: captures variation in spread between absence 

occurrences  

 Feature 3 – Total number of clusters intervals (i.e. more than 1 consecutive 

interval without data) without data: captures number of groups with absence 

intervals  
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 Feature 4 – Maximum consecutive string of intervals without data in a 24-hour 

period: captures variation in maximum cluster of absences group size  

 Feature 5 – Median consecutive string of intervals without data in a 24-hour 

period: captures variation in median cluster of absences group size 

 Feature 6 – Sum of intervals without data included in a string with 24-hour 

period: captures variation in total number of intervals with a group 

 Feature 7 – Sum of positions of first interval with missing data point relative to 

start of day and last missing data point from end of day: captures variation in 

range in which absence occurrences are distributed within the 24 hr. period 

The 24 hour data samples with 0 absences (no data loss) and 240 absences 

(complete data loss) are separated from the data set based on the feature Total Count of 

absence occurrences. K-means clustering is applied on remaining instances. To reduce 

dimensions and to reduce correlation between variables, Principal Component Analysis 

(PCA) is performed on the clustering dataset. The dataset contains 13216 instances, where 

each instance has seven features. The dataset is standardized over each of the seven features 

before conducting PCA by applying Equation 1 on each data point of the seven features. 

Thus, each feature in the standardized data set has mean 0 and variance 1. 

 𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =  
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −  µ𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝜎𝑓𝑒𝑎𝑡𝑢𝑟𝑒
 (1) 

PCA can provide a low dimension orthogonal subspace in which the variance of the 

projected data is maximized [78]. To find this subspace, PCA involves eigen-

decomposition of the covariance matrix of the data. The eigenvalues provide variance of 

the projected data on the principal component along the corresponding eigenvector. Thus, 
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the projected data has highest variance along the eigenvectors that corresponds to highest 

eigenvalues. Results from PCA conducted on the dataset are summarized next [79]. 

Eigenvalues from PCA 

[𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 ] = [ 4.39 1.66 0.67 0.21 0.04 0.01 0.001 ] 

Percent of variance explained by the 7 eigenvectors 

[0.6271 0.2372 0.0960 0.0304 0.0061 0.0026 0.0002] 

The percent of variance explained by first three eigenvalues are approximately 

63%, 24%, and 10%. PCA results show that ~ 97% of variance in data is captured by the 

first three eigenvectors space, that is, the first three Principal Components (PCs). 

Eigenvector matrix provides vector representation of the three principal components along 

with weights of each feature on respective principal components. Table 1 lists the weights.  

Table 1 – Weights on the seven feature for the 3 principal components. 

W1 W2 W3 W4 W5 W6 W7 

0.47 -0.33 0.25 0.44 0.42 0.46 -0.18 

0.04 0.48 -0.44 0.29 0.34 0.18 0.59 

0.06 0.14 0.77 -0.08 -0.20 0.10 0.58 

The clustering dataset is transformed into the three PCs space, thus, each data 

instance has only three features, its value on PC1, PC2, and PC3. Each PC is a weighted 

linear combination of features. Thus, projecting data points in feature space of the three 

principal components the contribution of variation in data point by all features will be 

captured. It can be observed that some features that are highly weighted on principal 
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component 1 have a lower weight value contribution to the other two principal components, 

such as feature 1, feature 4, and feature 6. The clusters primary reflect the number of 

intervals without data, indicating the first principle component is reflecting a general 

likelihood of missing data. Feature 1, 4, 5, and 6 contribute highly to principal component 

1, which explains 63% of variance in data. Principle component 2, with significant 

weighting on feature 2, 3, and 7, appears to reflect the spread of the intervals missing data. 

And finally, principle component 3 appears to reflect the size of the cluster of intervals 

missing data. By transforming standardized data points into feature space of the three 

principal components, the contribution to variation in data points by all features is captured 

to a total of 97%. 

The K-means clustering algorithm is applied on the transformed dataset, excluding 

detectors that always failed or never failed, as these will a priori be treated as standalone 

clusters. In this algorithm, the value of K, the number of clusters is set a priori. First, K 

random data points are chosen as the centers of the K clusters. Next, each remaining data 

points is allotted to the cluster with the nearest chosen cluster center. After all data points 

are allotted to a cluster, new cluster centers are calculated. Based on the new cluster centers 

the data assignment process is then repeated, with all data points newly assigned to the 

nearest new cluster center. This process is repeated until the cluster centers stabilize, not 

changing between repetitions. The objective function being minimized through this 

iterative algorithm is presented in Equation 2, where, 𝑛 = 1, 2, 3, … , 𝑁, N is the total 

number of data points, 𝑥𝑛 represents the 𝑛th data point, 𝑘 = 1, 2, 3, … , 𝐾, where 𝐾 is the 

number of clusters, µ𝑘 represents center (mean) of cluster 𝑘, and 𝑟𝑛𝑘 =

 {
1            𝑖𝑓 𝑥𝑛  ∈ 𝑘
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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This value is the sum of within cluster sum of squared distances. That is, the 

objective function is the sum of squared Euclidean distances of data points from the cluster 

center to which they are assigned. 

 

𝐽𝑚𝑖𝑛 =  𝑚𝑖𝑛 (∑ ∑ 𝑟𝑛𝑘||𝑥𝑛 − µ𝑘||2

𝐾

𝑘=1

𝑁

𝑛=1

) 
(2) 

 The two steps in the iterative process to minimize the objective function are 1) to 

find cluster assignment for each data point with fixed cluster centers that minimizes J, and 

2) to find cluster center that minimizes J keeping the assignment of data points to clusters 

fixed. The K-means algorithm converges to local minimum for the objective function [79]. 

This procedure is repeated for increasing values of K to select number of clusters 

K based on elbow method. The sum of squared distances of data points to their closest 

cluster center (inertia) is evaluated for varying values of the number of clusters (K). The 

point of inflection suggests a value for K. Figure 17 shows the graph obtained from the 

elbow method. The K value after which the sum of squared distance values does not drop 

significantly is chosen in the graph to be six or seven. After looking at cluster results, seven 

is chosen. 
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Figure 17 – Elbow method to determine K value. Sum of squared distances versus 

number of clusters. 

Seven clusters are initialized and formed based on the K-means clustering 

algorithm. Similarity in two of the 7 clusters is noticed and hence, they are merged into 

one single cluster. Thus, a total of 8 clusters are created, where one cluster includes detector 

samples with no data loss, another cluster includes detector samples with permanent data 

loss pattern, and the remaining 6 clusters, formed using clustering analysis. Figure 18 

shows two of the clusters. 



  

 54 

 

Figure 18 – Two clusters of 24 hour data gap patterns with dark blue blocks as data 

loss intervals. 

Figure 19 shows the K-means cluster assignment on the data points projected in the 3 PC 

space. 

 

Figure 19 – Clusters of data points projected in the three PC space. 

Missing Volume Pattern Generation: The missing volume pattern for a 24 hour day is 

generated by assigning each of the 147 detectors to a cluster, sampling a data loss pattern 
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from the assigned cluster, and assigning that pattern to the detector. Detectors are randomly 

assigned to clusters with a likelihood based on the percentage of the 13,216 samples within 

each cluster. In addition, when assigning detectors to an intermittent data loss pattern all 

detectors on an approach are consider together, as observations from the field data showed 

that in nearly all cases detectors on an approach would exhibit the same intermittent data 

loss pattern. It was further observed that permanent data loss could be observed at a single 

detector or at the intersection approach level. To implement assignment of detectors to a 

data loss pattern (Figure 20), first, a set of approaches with complete data loss are randomly 

assigned from all available approaches in the corridor, based on the likelihood of an 

approach having complete data loss, observed to be 0.13 in the 112 day sample. Then, from 

the remaining approaches, the approaches with complete data loss at a turn lane are 

randomly assigned, again based on field observation of 0.23 in the 112 day sample. Finally, 

all remaining detectors are randomly assigned a cluster and a missing volume pattern.  
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Figure 20 – Missing volume data pattern generation methodology. 

4.3.1.3 Simulation Experiment Implementation  

The simulation experiment involves three primary steps: 1) generate missing 

volume pattern, 2) generate Base Day with Data Gaps using the missing volume pattern 

generated in the previous step, and 3) generate Base Day with Data Gaps with imputed 

data.  

Simulation runs are conducted for a 3 hour PM peak period (3 PM to 6 PM). For 

five different missing volume patterns, the average travel time of a vehicle on a route for 

three values of error in data imputation, i.e., 20%, 50%, and 80%, is compared with that of 

0% error in data imputation, i.e., complete data availability. Thus, for each of five missing 
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value patterns, runs are conducted for 0%, 20%, 50%, and 80% data imputation errors, for 

10 random seeds. 

4.3.1.4 Data Collection Routes and Detector Outages  

The effect of 20%, 50%, 80% error in data imputation (base day with data gaps) vs 

the base day on travel time is studied by conducting ten different replicate trials for five 

different data loss patterns. Six routes along the mainline of the study corridor are selected 

for travel time comparison. These are: 

1. Route 57: Eastbound State St. NW to Ponce City Mkt. (full corridor length) 

2. Route 58: Westbound Ponce City Mkt. to State St NW (full corridor length) 

3. Route 59: Eastbound State St. NW to Spring St. NW 

4. Route 60: Eastbound West Peachtree St. to Hunt St. NW 

5. Route 61: Westbound Hunt St. NW to West Peachtree St. NW 

6. Route 62: Westbound Spring St. NW to State St. NW 

Along with these selected six routes, the effect of data loss on network entry approaches 

is also studied. For example, missing volume Pattern 1, shown in Figure 21, has three 

boundary intersection approaches and six internal intersection approaches with permanent 

data loss on all lanes, and six boundary approaches and seven internal approaches with 

intermittent data loss on all lanes. The approaches with detector outages for Pattern 1 are 

shown in Figure 21. 
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Figure 21 – Missing volume Pattern 1 generated for the sensitivity experiment. 

 In these experiments, potential error in volume imputation values for the data loss 

on boundary approach lanes is inserted by adjusting the base volume by 20%, 50%, or 

80%. As the simulation is providing vehicle movement once a vehicle enters a boundary 

link, similar errors may not be applied directly to internal links with detection outages. 

However, to reflect the potential impact of volume imputation values on internal links the 

turn movement percentages for the missing lane configurations are increased by 5%, 10%, 

and 15% for the data imputation error scenarios of 20%, 50%, and 80%, respectively. This 

reflects that while internal detector data outages do not directly impact the absolute volume 

through an intersection, they may impact the assigned “volume splits”. For example, if the 
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left only turn lane is missing at an internal approach, the left turn percentage at this 

approach is increased by 5%, 10%, or 15% for the respective error in volume data 

imputation scenario of 20%, 50%, and 80%. Table 2 lists the boundary and internal 

approaches with permanent or intermittent data loss for each of the five patterns.  
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Table 2 – Summary of Boundary and Internal Approach Lanes with Permanent or Intermittent Data Loss for the Five Detector 

Outage Patterns. 

  

Permanent Data Loss Intermittent Data Loss 

  Boundary Approach/lane Internal Approach/ Lane Boundary Approach/Lane Internal Approach/Lane 

Pattern Boundary  

Approaches  

with 

Permanent 

Data Loss on 

All Lanes   

Boundary 

Approaches  

with 

Permanent 

Data Loss on 

at least One 

Lane  

Internal 

Approaches 

with 

Permanent 

Data Loss on 

All Lanes 

Internal Lane 

Approaches 

with 

Permanent 

Data Loss on 

at least One 

Lane  

Complete 

Entry 

Approaches  

with 

Intermittent 

Data Loss on 

All Lanes 

Entry Lane 

Approaches  

with 

Intermittent 

Data Loss on 

at least One 

Lane 

Complete 

Internal 

Approaches 

with 

Intermittent 

Data Loss on 

All Lanes 

Internal Lane 

Approaches 

with 

Intermittent 

Data Loss on at 

least One Lane 

Pattern 1 PTST (NB), 

PWDR (SB), 

GIDR (NB), 

HNST (SB) 

LKST (NB), 

LKST (SB),  

LKST (WB), 

TWDR (WB), 

SPST (WB), 

PTST (EB), 

CPPL (EB), 

GIDR (EB) 

TWDR (EB), 

PWDR (WB), 

GIDR (WB) 

TWDR (SB), 

BLVD (NB), 

BLVD (SB), 

GIDR (SB), 

PCM (NB), 

CPPL (SB) 

LKST (NB) LKST (EB), 

JNST (EB), 

CPPL (WB), 

HNST (WB), 

PWDR (WB), 

BLVD (WB), 

PCM (EB) 

PWDR (WB) 

Pattern 2 CPPL (SB), 

HNST (NB), 

HNST (SB), 

PWDR (NB), 

PWDR (SB), 

GIDR (NB) 

PTST (SB), 

PCM (SB) 

SPST (WB), 

PDAV (WB), 

CPPL (EB), 

BLVD (EB), 

BLVD (WB) 

LKST (EB), 

JNST (EB), 

PWDR (WB) 

 

 

  

LKST (NB), 

LKST (SB), 

PDAV (NB), 

BLVD (SB) 

PTST (SB), 

PCM (SB) 

STST (EB), 

STST (WB), 

LKST (WB), 

TWDR (WB), 

OFRP (SB), 

SPST (EB), 

GIDR (WB), 

PCM (EB) 

JNST (EB) 
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Table 2 continued. 

Pattern 3 SPST (SB), 

CPPL (NB), 

GIDR (SB),  

PCM (SB) 

STST (SB), 

TWDR (NB), 

OFRP (SB), 

PTST (NB), 

JNST (SB), 

CPPL (SB) 

STST (EB) 

PTST (EB) LKST (EB), 

TWDR (EB), 

CPPL (EB), 

PWDR (EB), 

GIDR (WB) 

TWDR (SB), 

PTST (SB), 

PDAV (NB),  

HNST (NB), 

HNST (SB), 

BLVD (SB), 

PCM (NB) 

STST (SB), 

TWDR (NB),  

JNST (SB)  

SPST (WB), 

PDAV (WB), 

PWDR (EB), 

BLVD (EB), 

GIDR (EB)  

CPPL (EB), 

GIDR (WB) 

Pattern 4 SPST (SB), 

PWDR (NB), 

GIDR (SB) 

STST (EB) 

TWDR (SB), 

WPTST (NB), 

PTST (NB), 

PCM (SB) 

PDAV (WB), 

CPPL (EB), 

CPPL (WB) 

PCM (WB) 

SPST (EB), 

JNST (WB), 

HNST (WB), 

PCM (EB),  

STST (SB), 

TWDR (NB), 

PTST (SB), 

CPPL (SB), 

BLVD (NB), 

BLVD (SB), 

GIDR (NB), 

TWDR (SB), 

PTST (NB) 

OFRP (WB), 

PTST (WB), 

PWDR (WB), 

BLVD (WB), 

GIDR (WB)  

JNST (WB), 

HNST (WB), 

PCM (WB) 

Pattern 5 LKST (NB), 

LKST (SB), 

BLVD (SB), 

PCM (NB), 

HNST (NB),  

HNST (SB) 

OFRP (SB), 

PTST (SB), 

JNST (SB), 

SPST (SB) 

STST (EB) 

SPST (EB), 

JNST (WB)  

STST (WB), 

LKST (EB), 

TWDR (EB), 

TWDR (WB), 

WPTST 

(WB), HNST 

(WB) 

STST (SB), 

PTST (NB), 

PDAV (NB), 

BLVD (NB), 

PCM (SB) 

_ OFRP (EB), 

OFRP (WB), 

WPTST (EB), 

PTST (EB), 

PWDR (WB), 

BLVD (EB), 

GIDR (EB), 

GIDR (SB), 

PCM (EB) 

TWDR (EB), 

WPTST (WB) 
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Table 2 continued. 

Key for Intersection 

Abbreviations Used in this 

Table 

1. State St. NW @ Northe Avenue NW STST 

2. Luckie St. NW @ North Avenue NW LKST 

3. Techwood Dr. NW @ North Avenue NW TWDR 

4. I 75/85 Off Ramp @ North Avenue NW OFRP 

5. Spring St. NW @ North Avenue NW SPST 

6. West Peachtree St. NW @ North Avenue NW WPTST 

7. Peachtree St. NE @ North Avenue NW PTST 

8. Juniper St. NE @ North Avenue NW JNST 

9. Piedmont Ave NE @ North Avenue NW PDAV 

10. Central Park Pl. NE @ North Avenue NW CPPL 

11. Hunt St. NE @ North Avenue NW HNST 

12. Parkway Dr. NE @ North Avenue NW PWDR 

13. Boulevard NE @ North Avenue NW BLVD 

14. Glen Iris Dr. NE @ North Avenue NW GIDR 

15. Ponce City Mkt. @ North Avenue NW PCM 
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In Figure 22, the mainline and side street routes studied for all patterns are shown 

on a network schematic. For all patterns, side street through vehicle routes associated with 

the boundary approaches that observe permanent volume data loss for one or all lanes are 

shown in Figure 22. (For Pattern 1, Hunt St. NE (SB), which experiences detector outage, 

has no through vehicles, hence a side street route is not included). The side street route 

numbers associated with Pattern 1 are:  

1. Route 43: Luckie St. NW SB (left turn only) 

2. Route 78: Luckie St. NW NB (shared thru-right) 

3. Route 86: Peachtree St. NE NB (all approach lanes) 

4. Route 67: Parkway Dr. NE SB (all approach lanes) 

5. Route 65: Glen Iris Dr. NE NB (all approach lanes) 

 

Figure 22 – Routes on which vehicle travel times are studied for Pattern 1 detector 

outages. 

4.4 Results 

For missing volume Pattern 1, the variation in mean vehicle travel times for the ten 

replicate simulation runs for the base case (0%), and the base case with gaps (20%, 50%, 
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and 80%), are presented in the Figure 23 boxplot. For each of the six mainline routes, the 

boxplot presents the variation in the mean travel times of all vehicles that complete the 

given route, for each of the 10 replicate runs. An upward trend in travel times is observed 

from 0% to 20%, 50%, and 80% error, on most routes studied. The effect of error in data 

imputation on travel time is greater on the Eastbound end-to-end route than the Westbound 

end-to-end route. Route 59 and 60 are subparts of the eastbound end-to-end route 57. Both 

the western half (Route 59) and eastern half (Route 60) contribute to the over increase from 

west-to-east (Route 57). An upward trend in the mean travel time is observed on the side 

street routes 67, 78, 86. While Routes 43 and 65 do not have an increasing travel time with 

increasing errors. The lack of impact on Route 43 (Luckie St. NW (SB)) is likely as result 

of base traffic volumes close to saturated condition, thus additional travel time was 

experienced outside the travel time trap (vehicles were not able to enter the link), while 

Route 65 (Glen Iris Dr. NE (NB)) observed a very low hourly volume (approximately 110 

vph) for the base case, resulting in a minimal travel time increase even given the increase 

percentage. Figure 24 visualizes the mean simulation vehicle input count at the side streets 

for the error in data imputation cases – 20%, 50%, and 80% in comparison to the base case. 

Except for Luckie St. NW (SB) which is at near-saturation state in base case, the volume 

input counts at other approaches show an increase. 
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Figure 23 – Boxplot of mean vehicle travel times for data imputation error cases, for 

the six mainline routes and the side street routes in Pattern 1. 

 

Figure 24 – Mean simulation vehicle input count for data imputation error cases in 

comparison to the base case on the side street routes that observed permanent data 

loss in Pattern 1. 

The results obtained for 5 different missing volume patterns are summarized in Figure 25. 
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Figure 25 – Variation in 85th percentile travel time values at the mainline and side 

street routes for the five missing volume patterns. 

Figure 25 shows the travel time impact of imputed volume data on approaches that 

observe permanent data loss as well as the mainline routes. 

4.4.1 Intermittent Data Loss 
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The impact of intermittent data loss on travel time is studied using a statistical test 

for a selected case. Among the five missing volume patterns simulated, for the PM peak 

hour period (3 PM to 6 PM), Pattern 3 contained three entry approaches with intermittent 

volume data loss: Techwood Dr. NW (SB), Piedmont Ave NE (NB), and Boulevard (SB), 

making this a good scenario to investigate the impact of intermittent data loss. Techwood 

Dr. NW (SB) volume data loss pattern had more frequent distributed data gaps, hence was 

selected for studying the impact of intermittent data gap imputations on side street travel 

time.  

4.4.1.1 Case Study: Impact of Intermittent Volume Data Gap Imputations at Techwood 

Dr. NW 

To study the impact of intermittent volume data gap imputations on travel time, 

result from two simulation scenarios are compared: 1) Pattern 3 with intermittent and 

permanent data loss - with intermittent loss scenario, and 2) Pattern 3 with only permanent 

data loss - without intermittent loss scenario. Pattern 3 with only permanent data loss 

comprises an additional 10 simulation runs (10 replicates of the permanent detection loss 

only pattern) in addition to the 160 already discussed. The comparison of these two 

scenarios allows for an isolation of the impact of intermittent data loss. Results from ten 

random seed simulation runs for the two scenarios are compared for the three imputations 

error cases: 20%, 50%, and 80%.  

A simulation time of three hours (3 PM to 6 PM) is binned into six-minute intervals. 

For each detector error scenario, for each replicated run, for each time bin, the 85th 

percentile travel time for is calculated. This results in a series of 30 (i.e. the number of bins) 
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85th percentile differences across the three hours, for each replicate trial. These 30 values 

are then averaged, resulting in a single 85th percentile value for each replicate. Finally, the 

difference between the replicate value for with intermittent loss scenario and without 

intermittent loss scenario is calculated, where the paired replicates have the same seed. 

Equation 3 provides the described 85th percentile difference between paired replicated 

trials. The results for all scenarios are shown in Figure 26 and Table 3. 

 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑒𝑡 𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 20% 𝑐𝑎𝑠𝑒 =  

∑ (85𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑡𝑠𝑒𝑒𝑑,𝑖𝑛𝑡,20% 
𝑡𝑖𝑚𝑒𝑏𝑖𝑛 )∀𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑠

𝑁𝑜.  𝑜𝑓 𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑠

−  
∑ (85𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑡𝑠𝑒𝑒𝑑,𝑤𝑜𝑖𝑛𝑡,20%

𝑡𝑖𝑚𝑒𝑏𝑖𝑛 )∀𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑠

𝑁𝑜.  𝑜𝑓 𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑠
∀ 𝑠𝑒𝑒𝑑𝑠 

(3) 

Here, tt = travel time, timebin = simulation time bin such as (0, 360), (360, 720), etc., seed= 

simulation trail seed, such as seed 21, seed 22, seed 23, etc., int = result from with 

intermittent loss scenario run, and woint = result from without intermittent loss scenario 

run. 

A t-statistics hypothesis test is conducted for each error adjustment in volume data 

imputation case to test if imputations on intermittent data loss statistically increase the 

travel time. A one-sample t-test for the mean is conducted to test the alternate hypothesis 

that the mean 85th percentile travel time difference for ten samples will be greater than 0, 

with the null hypothesis that the mean 85th percentile difference is 0. In this test, the sample 

set includes values of all 30 time bins. 
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Table 3 – Average 85th percentile difference of all time bins for 10 random seed runs 

for the three error imputation scenarios. 

Seed Error adjustment-20 Error adjustment-50 Error adjustment-80 

Seed 1 24.22 20.01 7.05 

Seed 2 27.50 61.82 24.78 

Seed 3 17.08 44.46 3.90 

Seed 4 -33.71 13.14 32.67 

Seed 5 0.54 14.22 11.49 

Seed 6 14.95 -3.75 27.34 

Seed 7 -23.24 -0.53 10.49 

Seed 8 -21.13 8.84 24.27 

Seed 9 10.47 17.76 60.35 

Seed 10 2.82 32.67 75.22 

Mean 1.95 20.86 27.75 

t-test P-value 0.291 0.005 0.002 

Significant 

level:0.05 

P value > 0.05 P value < 0.05 P value < 0.05 

 Fails to reject null 

hypothesis 

Reject null 

hypothesis 

Reject null 

hypothesis 
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Figure 26 – Variation in average 85 percentile travel time differences with 

intermittent loss scenario and without intermittent loss scenario of all time bins for 

different error in data imputation cases. 

For an error adjustment of 20%, for a 0.05 significance level, the t-test fails to reject 

the null hypothesis that there is no effect on travel times due to imputations in intermittent 

data loss. While for the higher error adjustment, 50% and 80%, the t-test results reject the 

null hypothesis in favor of the alternate hypothesis that travel times for the with intermittent 

loss scenario is higher than that of the without intermittent loss scenario. The hypothesis 

test results indicate that higher error in data imputation values can impact the simulation 

generated travel time results at approaches with intermittent data loss patterns when the 

sample difference values for all time bins are considered. The data plotted in Figure 26 

provides a visual confirmation of this finding. 

A similar hypothesis test is conducted to test if the travel times are significantly 

higher for time bins that that follow the time bins with imputed values for with intermittent 
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loss scenario in comparison to that of without intermittent loss scenario, that is, does the 

intermittent error potentially increase as the number of consecutive intervals with missing 

data increases. For this hypothesis test the average 85th percentile difference in travel time 

is evaluated only for the 6 time bins that follow the time bins with intermittent data loss. 

Similar to the prior results the hypothesis test t-test fails to reject the null hypothesis for 

error adjustment 20% case while for error adjustment 50% and 80% case rejects the null 

hypothesis in favor of alternate hypothesis that higher travel times are observed in time 

bins that follow after the imputed time bins. Unfortunately, the small sample size (6 

samples) likely limits the ability to statistically distinguish different.  Future analysis will 

expand the study period to all for additional data samples. 

4.5 Discussion 

The results plotted in Figure 25 for the five missing volume patterns indicate higher 

sensitivity of travel time on the eastbound routes in comparison to that of the westbound 

routes, likely an indication of the eastbound direction of travel operating closer to capacity. 

This is seen in the simulation where at several intersections the simulation is unable to 

process the full traffic load created by the imputations errors. Mainline eastbound travel 

time increases are spread throughout the corridor as seen by increases on both sub routes 

59 (EB, west of Spring St.) and 60 (EB, east of Spring St.). Although, one section of 

roadway may be more impacted, for instance, the western portion of North Ave. (Route 

59) is the source of most of the eastbound increases in Patterns 3, 4, and 5. Further, it is 

seen that the travel time increases on eastbound end-to-end (Route 57) and westbound end-

to-end (Route 58) differ substantially across patterns, with Patterns 1 and 2 having less 

impact than Patterns 3, 4, and 5. The pattern travel time differences are due to the 
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underlying data gaps and turn movement errors specific to each pattern. For Patterns 1 and 

2, the less dramatic eastbound travel time increases indicate that approaches experiencing 

data gaps within these patterns have a lesser impact relative to the missing data in Patterns 

3, 4, and 5. For example, the higher impacts seen with Pattern 3 is hypothesized to be a 

result of data imputation on the Spring St. NW (SB) and 75/85 Off-ramp/Connector 

approaches. While other approaches in the approach set for Pattern 3 (Central Park Pl. 

(NB), Glen Iris Dr. (SB), and Ponce City Mkt. (SB)) may contribute towards higher traffic 

in the eastbound direction, their contribution to the total higher traffic entering the 

simulation network is substantially less. It is not only total volumes that impacts 

performance but also position of the intersection. For instance, while Ponce City Mkt. (SB) 

does contribute traffic, its position as the east most intersection on the corridor lessens its 

impact on eastbound traffic flow. Figure 27 shows significantly higher increases in entering 

volumes at 75/85 Off-ramp (SB), Ponce City Mkt. (SB), and State St. (SB) approaches in 

comparison with that of other missing volume value approaches, for Pattern 3, for the ten 

different simulation seed runs. The vehicle volume entering at Spring St. NW SB for base 

case is 4,344 (avg. for all seeds) as opposed to 4,861 (avg. for all seeds) of 80% error 

imputation case, indicating that much of the increase in demand was not even able to enter 

the network. If the time period had been extended this traffic queued outside the model 

would have increase as underlying demand decreased, resulting in even more severe impact 

due to the imputation error. For the 75/85 Off-ramp SB, for the base case the entering 

volume is 2,461 in comparison to 3,672 for 80% base case with data gaps. Similarity an 

increase in vehicle volume input is observed at Ponce City Mkt. (SB). At State St. (SB), 

although an increase is observed, it is limited from 50% to 80% error adjustment, indicating 
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a near-saturation state close to 50% error adjustment scenario. It is likely that that routes 

that did not process the full increase were already operating close to saturation 

performance, or that the increase exceed the amount necessary to exceed approach 

capacity. This leads to the hypothesis that Ponce City Mkt. (SB), State St. (SB), and 75/85 

Off-ramp (SB) right turning vehicles contributed primarily to the increase in travel time 

values on the Eastbound mainline routes. 

 

Figure 27 – Mean simulation vehicle input count for data imputation error cases in 

comparison to the base case on the side street routes that observed permanent data 

loss in Pattern 3. 

In addition, the impact of travel times on most of the side street routes is not as 

magnified as on the mainline routes. A more sensitive increasing travel time trend for 

higher error adjustment in data imputation cases is observed on Routes 69, 70, 77, 81, and 

86 (Spring St. (SB), Central Park Pl. (NB), State St. (SB), Techwood Dr. (NB), and 

Peachtree St. (NB)). While this trend is seen for Routes 63 and 39 (Ponce City Mkt. (SB) 

and 75/85 Off-ramp (SB) turning right), they are less sensitive in comparison. For Route 

71 (Glen Iris Dr. (SB)), this trend is not seen. As seen in Figure 27, the average entering 
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volume value for all random seeds did not show an increase from the base case to the full 

80% error adjustment case, although the simulation input volume is increased at Glen Iris 

Dr. (SB). While for Routes 63 and 39, although the increasing effect exists it is not 

significant because of very low base case volumes, thus even an 80% increase in traffic is 

a relatively limited number of new vehicles. However, for Routes 69, 81, and 86 (Spring 

St. (SB), Techwood Dr. (NB), and Peachtree St. (NB), respectively) increasing trends are 

seen. For Route 70 (Central Park Pl. (NB)), despite the saturated condition at base case, 

the sensitivity in through vehicle travel times could be due to the variation in left turn 

operations over the 10 seeds. Thus, in Pattern 3 it is observed that some side street route 

travel times are more sensitive to data loss than other side streets and some side street 

approaches contribute to increase in total number of vehicles in network with increasing 

error in data imputation cases in comparison to others. 

For Pattern 4, both Glen Iris Dr. NE (SB) and Techwood Dr. NW (SB) are close to 

saturated condition for the base case and hence, do not directly contribute in terms of 

increased vehicle volume. Here, Ponce City Mkt. (SB), Ponce City Mkt. (WB), Parkway 

Dr. (NB), West Peachtree St. (NB), and State St. (EB) contribute to the increased entering 

traffic consistently in the simulation network for different cases of data imputation error. 

Thus, indicating volume increases at these approach dominate the traffic performance in 

the network in comparison to other approaches for Pattern 4. Figure 28 shows average 

increase or decrease in entering volume count for these approaches for 20%, 50%, and 80% 

error in data imputation levels in comparison to base for Pattern 4. 
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Figure 28 – Mean simulation vehicle input count for data imputation error cases in 

comparison to the base case on the side street routes that observed permanent data 

loss in Pattern 4. 

Similar analysis of Pattern 5 shows that approaches Spring St. (SB) and Peachtree 

St. (NB) are not expected to significantly contribute to increased demand in the eastbound 

traffic or travel, due to their initial low vehicle volume values for the base case. While, 

others show consistent increase in total vehicle volumes entered in the simulation network 

for the three error levels. Among this, 75/85 Off Ramp (SB) and Juniper St. (SB) add 

highest number of vehicles in network in comparison to base level. For Pattern 1, the 

approaches that contribute highest increase in vehicles in the network are Peachtree St. 

(NB), Luckie St. (NB) and Glen Iris Dr. (NB), while that for Pattern 2 these approaches 

are Peachtree St. (SB) and Ponce City Mkt. (NB). Table 4 summarizes the group of 

intersection approaches that when imputed are most likely to impact the travel times on the 

eastbound routes in the PM peak hour for the five missing volume patterns studied. In 

addition, the sensitivity of volume imputation on eastbound routes is categorized as High, 

Medium, or Low. For patterns where the difference between median of 85% percentile 



  

 76 

values for base case, 20%, 50%, and 80% error adjustment cases are greater than 300s the 

sensitivity is categorized as High. For pattern where these values are less than 200s, the 

sensitivity is categorized as Low and for patterns where these values are in between 200s 

to 300s, the sensitivity is categorized as Medium. 
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Table 4 – Summary of key complete missing lane intersection approaches identified 

to cause higher impact to travel times on the eastbound routes. 

Pattern Boundary 

Approaches with 

Permanent Data 

Loss at All Lanes   

Boundary 

Approaches with 

Permanent Data 

Loss at At least One 

Lane  

Highest Volume 

Contributing 

Dominant 

Approaches That 

Showed Consistent 

Increase in Volumes 

in Simulation 

Sensitivity 

to Travel 

Time on 

Eastbound 

Routes 

Pattern 1 Peachtree St. NB,  

Parkway Dr. SB,  

Glen Iris Dr. NB 

Luckie St. NB,  

Luckie St. SB,  

Hunt St. SB 

Peachtree St. NB, 

Hunt St. SB,  

Luckie St. NB,  

Glen Iris Dr. NB 

Low 

Pattern 2 Central Park Pl. 

SB, 

Hunt St. NB, 

 Hunt St. SB,  

Parkway Dr. NB, 

Parkway Dr. SB, 

Glen Iris Dr. NB 

Peachtree St. SB,  

Ponce City Mkt. SB 

Peachtree St. SB,  

Ponce City Mkt. SB,  

Glen Iris Dr. NB 

Low 

Pattern 3 Spring St SB, 

Central Park Pl. 

NB,  

Glen Iris Dr. SB,  

Ponce City Mkt. 

SB 

State St. SB,  

Techwood Dr. NB,  

75/85 Off Ramp SB,  

Peachtree St. NB,  

Juniper St. SB,  

Central Park Pl. SB, 

State St. EB 

75/85 Off Ramp SB,  

Ponce City Mkt. SB 

High 

Pattern 4 Spring St.SB,  

Parkway Dr. NB,  

Glen Iris Dr. SB, 

State St. EB 

Techwood Dr. SB,  

West Peachtree NB, 

Peachtree St. NB,  

Ponce City Mkt. SB, 

Ponce City Mkt. 

WB 

West Peachtree WB, 

Ponce City Mkt. NB, 

Ponce City Mkt. WB, 

State St. EB 

Medium 

Pattern 5 Luckie St. NB, 

Luckie St. SB,  

Boulevard SB,  

Ponce City Mkt. 

NB, 

Hunt St. NB,  

Hunt St. SB 

75/85 Off Ramp SB, 

Peachtree St. SB,  

Juniper St. SB,  

Spring St. SB, 

State St. EB 

75/85 Off Ramp SB, 

Juniper St. SB, 

Ponce City Mkt. NB, 

State St. EB 

High 
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For Pattern 1 although the combination of Peachtree St. (NB), Luckie St. (NB), and 

Glen Iris Dr. (NB) together increase the entering volume this value is lower in comparison 

to that contributed due to the combination of Spring St. (SB), Connector (SB), and Ponce 

City Mkt. (SB) of Pattern 3 or similarly to that of Pattern 5. This is also because Luckie St. 

(NB) in Pattern 1 observed permanent data loss on one turning lane as opposed to all lanes. 

However, it can be deduced that among the studied intersection approaches, Spring St. 

(SB), Connecter (SB), and Luckie St. (NB) are some of the crucial approaches that impact 

travel time sensitivities on main line routes. 

4.6 Conclusions 

This chapter investigates sensitivity of data imputations in volume data streams on 

the travel times generated from the data-driven simulation model. The experiment reveals 

the feasibility of the approach and provides insight on the imputation methodology of using 

historic volume data (represented by the base day) to impute another day’s missing data 

streams to drive the simulation model to generate meaningful performance measures. It is 

readily recognized that this historic approach is simplified and with increasing data more 

robust historic data approaches could be developed. 

From the study, it is noted that the different combinations of the intersection 

approaches can affect travel times differently. Applying an understanding of missing value 

patterns to the volume detection data streams of a connected corridor is crucial in 

understanding the impact of data imputation errors in the generated traffic performance 

measures. This combination effect can be an attribute of vehicle volumes observed at these 

approaches in the base case and the capacity of these approaches to process additional 
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vehicles. The effect of different approach combinations is also a result of the location of 

intersections on the corridor. For instance, in Patterns 3 and 5, the close proximity of Spring 

St. (SB) and Connector (SB) is expected to have contributed the higher traffic impacts in 

that roadway section. 

The experiment also revealed that imputations at certain intersection approaches 

are more crucial in affecting travel times of selected routes. For example, from the results 

obtained, it is interpreted that the combination or individual effect of imputations in volume 

data streams of intersection approaches such as State St. (EB), Connector (SB), Juniper St. 

(SB) have higher effect on travel time values on the end-to-end eastbound travel (Route 

57) and the eastbound western half of the corridor (Route 59). While it is found that the 

travel times are more sensitive to data imputations at few selected intersection approaches, 

it is also seen that data imputation at some intersection approaches do not significantly 

impact travel times. For example, Parkway Dr. (NB), Central Park Pl. (NB), Central Park 

Pl. (SB), Hunt St. (SB) etc. 

This difference in impacts among intersections and approaches may be used to 

identify selected intersection approaches to prioritize maintenance and monitoring, 

particularly were resources are limited. This identification and prioritization of data 

streams in a corridor can help provide a more robust system and a more efficient application 

and usage of Smart technologies.  

The impact of intermittent data gap imputations on travel times is studied for the 

test case of Pattern 3, Techwood Dr. (SB). A t-test is conducted on 85th percentile travel 

time difference of “with intermittent loss scenario” and “without intermittent loss 
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scenario” for 10 replicate trials, for the three error in data imputation cases: 20%, 50%, 

and 80%. The results indicated no significant difference in travel times at the Techwood 

Dr. (SB) approach for the 20% error in data imputation case. For the 50% and 80% error 

cases, the t-test results rejected the null hypothesis in favor of alternate hypothesis that 

travel times for “with intermittent loss scenario” is higher than that of “without intermittent 

loss scenario”. Similar results were obtained for a t-test conducted for the three error 

adjustment cases on six time bins that immediately follow the imputed time bins. The test 

results indicated that a higher error in data imputation values (50% and 80%) can increase 

travel times of vehicles in time bins that follow the imputed time bins. 

Investigation of the real-time volume data streams in this effort highlights potential 

challenges of using connected corridor data. As seen intermittent data gaps and data 

aggregation are significant issues. Clearly, as an initial step a successful, i.e., reliable, 

digital twin requires an investigation and understanding of the connected corridor real-time 

data stream quality so that potential data issue may be addressed. Future research identified 

is to develop data imputation methodologies and to investigate reasons for data gaps to 

mitigate presence of such data gaps. The next efforts in the research will begin the 

development of methods to address these issues.   

 

4.7 Future Work and Limitations 

A primary limitation of this study is that the results obtained may only be directly applied 

to the North Avenue Smart Corridor, Atlanta, GA, case study, although some 

generalizations are possible. Further understanding may be gained by investigative studies 



  

 81 

at other connected corridor locations. Results from this study indicate that different pattern 

of intermittent data losses can affect travel times differently. This implies that not all 

detectors, or detector outages, are likely to have equivalent impacts on the digital twin 

performance. In additional, while the data streams are investigated for outages they 

accuracy of the received data has not been thoroughly explored. Similarly, the simulation 

model has not been field verified.  

The study highlights that high frequency connected corridor data streams can have 

discontinuities. For smart, real-time applications of these data streams it is imperative to 

develop imputation techniques and understand their effectiveness. The data imputation 

methodology tested in this chapter is simple. From this study, it is observed that higher 

errors in the data imputations may impact the travel time performance measures generated 

by the simulation model. Thus, predictive data imputation methodologies considering 

weekday and seasonal variations should be developed. In this direction, the development 

and performance of a methodology that uses LSTM RNN layers to learn from historic 

traffic volume patterns to impute missing data is studied and presented in Chapter 5. Future 

work in this direction also entails measuring the reliability of travel time values provided 

by an imputation enabled simulation model.  
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CHAPTER 5. DEEP RECURRENT NEURAL NETWORKS FOR 

CONNECTED CORRIDOR TIME SERIES DATA IMPUTATIONS 

5.1 Introduction  

Across the world, Smart Cities seek to improve the quality of life for city residents 

and visitors. A key component of many smart cities is a focus on the transportation system, 

including connectivity, mobility, safety, air quality, sustainability, etc. Often smart cities 

utilize smart corridor test beds to explore technology implementations. For example, active 

studies are ongoing in cities such as New York City, New York; Tampa, Florida; Singapore 

City, Singapore; Palo Alto, California; Austin, Texas; and London, England; to name a few 

[80-84]. Typically, a smart corridor is equipped with ‘vehicle-to-infrastructure’ 

communications technologies [82], enabling the transfer of significant data between 

vehicles and the infrastructure. Critical to the success of smart corridor applications are 

data reliability and the ability to convert the data into actionable information. However, as 

seen in Chapter 4, a challenge in the use of smart corridor applications can be data streams 

outages, resulting in data loss ranging from seconds to days. Thus, to successfully 

implement smart corridor applications it is imperative to find imputation methodologies to 

fill these data gaps and to understand the application’s sensitivity to the imputed data. 

Given this challenge, the two primary objectives of the research in this chapter are 1) to 

investigate data imputation through Long Short Term Memory (LSTM) Recurrent Neural 

Networks (RNNs), and 2) to measure the sensitivity of a given application, a digital twin 

of a smart corridor in this case, to data imputations error. 
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The effort reported in this chapter leverages the smart corridor implementation 

previously described, i.e., the North Avenue Smart Corridor in Atlanta, Georgia, and the 

developed real-time, data driven, corridor traffic simulation model, subsequently referred 

to as the North Avenue digital twin. The North Avenue digital twin provides traffic and 

environmental performance measures, at a near real-time rate [77, 85]. However, 

investigation of the real-time volume and signal indication data streams obtained from the 

North Avenue Smart Corridor revealed the presence of losses in some data streams, as seen 

in Chapter 4. The data losses in volume data streams were observed to range from a few 

minutes to multiple days. The effort reported in this chapter will focus on the imputation 

for data loss in the vehicle detector data streams. 

Thus, the first research objective, performance of LSTM RNNs to infill data gaps, 

considers data loss imputation at selected corridor vehicle detectors. For this effort LSTM 

RNN is investigated using univariate and multivariate time series models. A univariate 

time series model generates predictions for the data gaps based on parameters estimated 

using historic time series patterns of the data stream. A multivariate time series model 

estimates model parameters based on historic time series patterns of the given data stream 

as well as similar data streams. In this research, bivariate time series models are developed, 

where the model is trained on two detector data streams from the corridor with similar time 

series data patterns. Similarity in the time series data in the corridor is measured using 

Dynamic Time Warping and Hierarchical Clustering algorithms. In the multivariate time 

series approach predictions to infill instances of data loss use the most recent data available 

from similar time series. Of specific interest is exploring if utilizing the most recent data 

from similar data streams provides superior predications over historic data from the data 
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stream experiencing loss. For the second research objective a simulation experiment is 

conducted using the North Avenue digital twin corridor to investigate the impact of the 

univariate and multivariate models data imputation on select generated corridor travel 

times. 

The remainder of this chapter is organized as follows: first, a Literature Review 

provides a survey of time series similarity measurement techniques and time series data 

prediction and imputation methodologies; this is followed by the Methodology which 

describes, 1) Time Series Clustering which is utilized to identify similar detection data 

streams, and 2) Time Series Imputation which is used to develop the LSTM RNN models 

used for imputation; next in Model Development and Experimental Design the model 

development process and three subsequent experiments are described; and, finally 

presented are the Results and Discussion, Conclusion, and Future Work.  

5.2 Literature Review 

5.2.1 Time Series Similarity Measures 

Time series data, i.e. observations for a variable collected over a period of time, is 

a common type of empirical data in numerous fields, such as, meteorology, geophysics, 

astrophysics, financial data, motion data, etc. [86-88]. Time series data is most often 

processed for one or more of several potential purposes, to: 1) index, i.e., to find the most 

similar time series to a given time series based on a similarity measure; 2) cluster, i.e., to 

find groupings of similar time series; 3) classify, i.e., to identify the time series group to 

which a given time series belongs; or 4) segment, i.e., to use time series segments to create 

a new similar time series [89]. Underling each of these is the ability to identify similarity 
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characteristics that may be used to describe time series. However, finding a time series 

similarity measure is considered a complex task, primarily due to the high-dimensional 

nature of time series data [90], as well as the need to perform efficient and accurate 

computations. [86, 89]. To evaluate and compare the performance of different time series 

similarity measures, Serrà et al. grouped similarity measures into four basic categories, 

namely: 1) lock-step measures, where the ith point on one time series is compared with ith 

point of another time series, e.g., Euclidean distance measure; 2) feature-based measures, 

where a few features (or characteristics) from raw time series are selected for similarity 

measurement, e.g., Fourier coefficients; 3) model-based measures, where similarity in 

parameters of the time series models are used; and 4) elastic measures, where a comparison 

of one-to-many points between two time series is used [91],e.g., Dynamic Time Warp 

(DTW) [86].  

Lock step measures can include different Minkowski distances (Lp-norm), e.g., 

Euclidean distance for p = 2, Manhattan distance for p = 1, and Chebyshev or Maximum 

distance for p = ∞ [91, 92]. Several studies mention lock step distance measures such as 

the Euclidean distance as being least complex time series similarity measure [86, 91, 93] 

and common [92]. Wang et al. states that the Euclidean distance similarity measure 

performs at par with complex similarity measures when the dataset is large [91]. However, 

Serrà et al. expressed a need for a more quantitative experimental proof on performance of 

Euclidean distance for measuring time series similarity [86]. With Euclidean distance’s 

computational simplicity considered as its primary advantage as a time series similarity 

measure [86] the most commonly mentioned drawbacks are its’ inflexibility to handle 

different sequence lengths, varying data frequency, or series data shifted in time [91, 94]. 
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In addition, the Euclidean distance measure does not consider linear correlation, as its value 

remains the same if the data order is changed [95].   

Lock step measures may also include correlation based distance measures, for 

example, Pearson’s correlation distance measures the similarity in linear association 

between two sequences [92] and is not impacted by data shift in time or scaling [96]. Some 

other correlation based similarity measure include Spearman’s Rank and Kendall’s Tau 

correlation coefficients, that are more flexible to accommodate data noise [97]; however, 

they have a higher time complexity in comparison to Pearson’s coefficient distance [98].  

Another approach to time series similarity measure is to extract features from the 

time series and measure the similarity in the extracted feature of the two time series using 

lock step measures, for example, using Fourier coefficients [86]. A similar approach is to 

obtain time series models, for example, auto regressive models, for the two time series and 

measure similarity in the model parameters [86].  

Elastic measures allow for one-to-one or one-to-many point comparisons, making 

them more flexible than lock-step measures; however, increasing the time complexity of 

algorithm implementation [92]. An example is Dynamic Time Warping (DTW) [91]. With 

DTW [99, 100] it is possible to a perform a non-linear comparison of time series with 

differences in lengths, data shifts in time, data frequency differences, etc. [92]. DTW has 

been used in several studies [86, 101-103] for similarity measurements and is considered 

as a definitive approach to measure the dissimilarity in time series [86]. Figure 29 visually 

highlights the advantage of DTW over a Euclidean distance measure in accommodating 

time shifts when measuring time series similarities [104]. In the figure, different time series 
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segments are shown in blue, green, yellow, and red colors. Time series segments with 

similar patterns warped in time have same color.  

 

Figure 29 – DTW versus Euclidean measure for determining time series similarity 

[104]. 

For example, time series segments with red color have similar pattern and time 

series segments with blue color have similar pattern. The figure shows the results for 

grouping similar time series pattern using Euclidean distance measure (left side of figure) 

and Dynamic Time Warp distance measure (right side of figure). Euclidean distance 

measure is not able to differentiate between the red and yellow time series segments 

(bottom left in figure); however, DTW is able to group the time series in red differently 

than the yellow (bottom right in figure). Similarly, for time series segments in blue and 

green, the Euclidean distance measure isn’t able to capture the similarity in green time 

series segments and blue time series segments that are shifted in time (mixed grouping seen 
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at top left in figure) despite their similarities in pattern. This similarity in pattern shifted in 

time is captured by DTW distance measure (top left in figure). 

This is because Euclidean distance measure matches time series one-to-one point 

comparison while DTW distance measure uses one-to-many comparison, shown visually 

in Figure 30, allowing for more accurate pattern matching. 

 

Figure 30 – Euclidean distance measure (one-to-one matching) and DTW distance 

measure (one-to-many matching) to estimate similarity in time series segments [105]. 

Several studies have found that DTW often outperforms other similarity measures 

[86]. For instance, for measuring similarity it was seen that DTW was superior to feature 

vector in a number of different time series data types [104]. Similarly, studies show that 

Nearest neighbor DTW time series classification exceeds most other similarity 
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classification techniques [104, 106]. However, a potential drawback to DTW is that a naïve 

implementation has quadratic time complexity - 𝑂(𝑛2), making its efficiency a concern. 

To address this, several modified DTW algorithms have been proposed and tested [100, 

107-111]. For example, FastDTW [112] states DTW with time complexity  𝑂(max{𝑛, 𝑚}), 

where 𝑛 and 𝑚 are the time series lengths. However, the approximation used to reduce 

complexity in FastDTW comes at the cost of computational efficiency, thus this 

implementation remains less efficient than Euclidean distance measures [92].  

5.2.2 DTW in Transportation  

One of the earliest applications of DTW in a transportation study was by 

Chandrashekar et al. in 2011 [113] to estimate the speed of a test vehicle utilizing DTW 

optimal path alignment between received signal strengths from a moving cell phone 

handset for the test vehicle and training vehicle traveling the same path. Hi-ri-o-tappa et 

al. leveraged DTW for pattern classification based automatic incident detection [114]. In 

this study, DTW is utilized to detect an incident given the upstream and downstream traffic 

patterns. The study concluded that the DTW based incident detection algorithm performed 

better than the combined detector evaluation (CODE) [115] incident detection algorithm. 

In a subsequent study Hi-ri-o-tappa et al. utilized DTW distance measures to study the 

variance pattern in microscopic traffic state variables such as headway, speed, and flow to 

predict traffic congestion [116]. In 2014, an incident detection study [117] compared the 

performance of DTW and the Support Vector Machine (SVM) algorithm, where the SVM 

algorithm is also used as pattern classifier for incident detection [118-120]. While the study 

stated both DTW and SVM to be applicable for real-time incident detections DTW was 

seen to be a simpler concept; however, it was stated that more exhaustive testing of these 
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algorithms is needed. Taylor et al. used DTW to calibrate car following model parameters 

by monitoring heterogeneity in driving behavior [121]. More recently, in 2018, Sun et al. 

applied DTW to identify and analyze pedestrian shockwaves in a bottleneck by studying 

crowd trajectory data [122]. In 2019, He et al. used DTW to classify time series Unique 

Cellular Counts (UCC) data obtained from several links of a study area and to investigate 

the relationship between the UCC time series and traffic volume count data obtained at 

nearby links [123].  

In the present study are utilized the DTW distance measures (FastDTW algorithm) 

and agglomerative hierarchical clustering to identify groups of similar volume time series 

data obtained across detectors in the corridor. The results are utilized to obtain multivariate 

time series LSTM RNNs models. Details of DTW algorithm, the modification in FastDTW, 

the hierarchical algorithm, and the overall implementation procedure is found in the 

methodology section.  

5.2.3 Traffic Data Imputation Methodologies 

In Intelligent Transportation Systems missing data is a common prevailing problem 

[124]. There are numerous potential causes for detector or transmission network failures 

[125, 126] such as weather conditions, detector malfunction, machine error, [127], 

restricted power supply, scheduled maintenance [128], etc. The problem of missing data 

has been seen across the world [129-131]. Researchers often need accurate and complete 

traffic information [126] to create successful control mechanisms [130, 132], to predict 

traffic flows [133], or to estimate travel time [134]. When traffic data is missing data 

imputation may be a preferred solution over deletion of the entire data stream [135]. Based 
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on the study objective, missing data on a site can become an obstacle either in 

understanding characteristics of a certain site that is important for study analysis or in 

deriving statistical generalizations from the sample data obtained over multiple sites in the 

study [136]. Several imputation methodologies have been proposed [126, 137]. Most 

imputation methodologies fall in one of the three categories: prediction based methods, 

interpolation based methods, and statistical learning based methods [137, 138].  

The first category, prediction based methods, seek to utilize potential relationships 

between historical and future data [71]. Examples of prediction based methods include: 

auto-regressive integrated moving average method (ARIMA) [139], support vector 

regression (SVR) [140], and Feed Forward Neural Network (FFNN) [141]. ARIMA,  a 

parametric time-series prediction model, is the most commonly used methodology [142]. 

ARIMA model performance accuracy depends on three parameters: AR (Auto-regressive 

order; p), I (difference order; d), and MA (moving-average order; q) [143]. Difference 

order, d (0, 1, 2, 3 etc.) represents the number of times time series consecutive points are 

differenced. The three parameters are determined by conducting stationarity tests for 

different order (d) of the differenced time series (i.e. transformation of the times series into 

a time series of the difference between consecutive points), and utilizing the Partial Auto-

Correlation Function (PACF) and Auto-correlation Function (ACF) of the time series to 

determine model values of p and q [143]. The model assumes stationarity in the time series 

data [142]. Several modified versions of ARIMA have been proposed for use in traffic 

prediction, such as Seasonal ARIMA [144], Vector Auto Regressive Moving Average 

(VARMA), and Space-Time ARIMA (STARIMA) [145]. While ARIMA is univariate 

time-series model, STARIMA and VARMA are multivariate models that can utilize 
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multiple input variables [145]. Kang et al. indicated that parametric models may not capture 

the underlying relationship in traffic time-series data, where the data is non-linear and 

stochastic [142]. Three drawbacks noted in the application of prediction based methods for 

traffic imputation are: 1) prediction methods do not use data after the gap for making 

estimated imputations [137], 2) in case of longer consecutive missing data, lack of data 

availability in last window may impact prediction accuracy [137], and 3) most prediction 

methods only consider temporal information for making predictions while spatial 

information can also be utilized [71]. Where the traffic volume imputation method is 

applied to fill gaps in real-time data stream (such as the present study) the first is not 

applicable.  

The second category of imputation methods, interpolation based methods, may be 

subdivided into two types: 1) temporal-neighboring methods [146] where data from 

neighboring days for same time period or neighboring time periods of same day, from the 

same detector, is used for imputation, and 2) pattern-similar methods where data from 

historical data with a similar pattern, from the same detector, is used [71]. An example of 

temporal-neighboring interpolation is the historical average model [63] and of pattern-

similar interpolation is the non-parametric K-Nearest Neighbor (KNN) model [142, 147]. 

A drawback of using interpolation-based imputation is its’ reliance on traffic pattern 

similarity at neighboring days or sensors, which may or may not be available [137]. 

Interpolation based methods also include spline/linear interpolation where mathematical 

interpolation algorithms are used to infill the missing data using the available neighboring 

data. This method however does not accommodate the stochastic variation in traffic data 

[130].  
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The third category of imputation methods, statistical learning based methods, 

assume that the observed traffic data can be explained by a probability distribution. Thus, 

the missing data can be interpreted using the underlying distribution [137]. The methods 

assume that missing data occurs randomly [148]. Examples of statistical learning based 

imputation methods are Markov Chain Monto Carlo (MCMC) methods [149], Probabilistic 

Principal Component Analysis (PPCA) [130], Bayesian Principal Component Analysis 

(BPCA) [150], and Functional Principal Component Analysis (FPCA) [151]. Statistical 

learning based imputation methods often perform better than other traditional methods 

[137]. However, the high reliance on an accurate underlying probability distribution model 

can be a disadvantage [71].  

Given the non-linear and stochastic nature of traffic flow significant effort has been 

placed in the development of non-parametric prediction methods [142]. Motivated by the 

success of deep learning (DL) data imputations methods in fields such as natural language 

processing, image classification, and object identification, researchers are applying DL 

methods to traffic flow predictions [71] [142, 152-156].  In a recent study, Zhuang et al. 

used convolutional neural networks (CNN) on traffic image representations where volumes 

correspond to the pixel values. CNN is then utilized to paint any missing portion of image 

[71]. Another deep learning method is Long Short Term Memory (LSTM) Recurrent 

Neural Networks (RNN) [142, 157]. LSTM RNNs are a neural network architecture that 

learn long-term time dependencies and find optimal time-lags in a sequence, such as a time-

series [142]. This LSTM RNN property of maintaining long-term historical data in memory 

can allow it to effectively capture the non-linear and random nature of traffic flow data 

[157]. For example, in 2017, Kang et al. investigated the ability of LSTM RNNs to predict 
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traffic flow at upstream and downstream detector stations for given various combinations 

of input variables, including: traffic flow, speed, and occupancy [142]. This study found 

that traffic flow predictions improved with the use these of additional variables. Tian et al. 

applied LSTM RNN for traffic flow prediction and observed that it performed better than 

other non-parametric models such as random walk, support vector machines, and  stacked 

auto encoder [157].  

5.3 Methodology  

From the connected-corridor real-time volume data investigation it was seen that data 

loss, or gaps, often occurred. Thus, this effort is seeking to fill these gaps, allowing for the 

execution of the digital twin. As the digital twin operates in (near) real-time the imputation 

methodology must also operate in (near) real-time. To accomplish this the study utilized 

prediction based methodologies that utilize recent and/or historic data to inform the 

prediction model. A challenge of performing real-time prediction based imputation is that 

data after the gap cannot be used, as would be possible in a post-hoc analysis. In this study, 

the performance of a bidirectional LSTM RNN layer architecture is tested to model 

univariate and multivariate volume time series predication models for selected detectors. 

The multivariate approach considers spatial and temporal correlation by leveraging the 

time series similarity in detectors at different locations to develop the multivariate LSTM 

RNN model for the detector missing data (i.e., subject detector). 

The methodology includes two primary steps. First, a Dynamic Time Warp similarity 

measure and hierarchical clustering are used to identify detectors across the corridor with 

time series patterns similar to that of the subject detector. Second, the subject detector and 
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those detectors identified in the first step are utilized as input variables to the univariate 

(uses subject only detector) and multivariate LSTM RNN models. The performance of the 

univariate and multivariate LSTM RNN prediction models are tested for different 

consecutive missing data time periods. It is expected that multivariate model will provide 

superior performance over the univariate model as the length of the detection failure 

increases, increasing the importance data from similar detectors. 

LSTM RNN model performance tests are conducted to address three research 

questions.  

 Research Question 1: How does multivariate model perform in comparison to 

univariate model for long consecutive data gap predictions? 

 Research Question 2: How does multivariate model perform in comparison to 

univariate model when an unusual traffic pattern is observed? 

 Research Question 3: How does multivariate and univariate imputed data 

impact the digital twin generated travel time for selected routes? 

In the next sections of the Methodology, a detailed description of the DTW algorithm, the 

LSTM RNN, and the experimental design are provided. 

5.3.1 Dynamic Time Warp (DTW) - Time Series Clustering 

For this study, the DTW distance measure with Hierarchical clustering is used to 

find similar time series data. The main advantages of DTW over Euclidean distance 

similarity measures is that DTW accommodates time shifts and different sampling rates 

between the time series being compared. [92]. A review of this method is presented in the 

following. 
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5.3.1.1 Review of Algorithm: Dynamic Time Warp - How it works? (the following 

explanation is based on [92] 

To find the DTW distance between two time series, 𝑥 and 𝑦, with sequence lengths, 

𝑛 and 𝑚, respectively, first, a local cost matrix (LCM) is computed. The elements of LCM 

(𝑖, 𝑗) represent the distance between data points of sequence 𝑥𝑖 and  𝑦𝑗 where 𝑖 varies from 

1 to 𝑚 and 𝑗 varies from 1 to 𝑛. Generally, this distance is squared Euclidean distance 

described in Equation 4. 

 𝑑(𝑥𝑖 , 𝑦𝑗) = (𝑥𝑖 − 𝑦𝑗)2 (4) 

Next, to find the warping path, 𝑊 =  𝑤1, 𝑤2, 𝑤3, … , 𝑤𝐾 across the LCM, a (𝑛 × 𝑚) 

matrix, where 𝐾 is the length of the warping path, which follows max(𝑛, 𝑚) ≤ 𝐾 ≤ 𝑚 +

𝑛 − 1. There are three constraints for the warping path computation: 

1. Boundary Condition: The end points of the warping path are fixed 𝑤1 = (1,1) 

and 𝑤𝐾 = (𝑛, 𝑚)  

2. Continuity: A step from a point 𝑤𝑞 = (𝑖, 𝑗) in the LCM can go to only adjacent 

cells (right, up, or up-right). That is, 𝑤𝑞+1 can be (𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1), 𝑜𝑟 (𝑖 +

1, 𝑗 + 1) where 𝑞 = 1, … , 𝐾 − 1 and 𝑖 = 1, … 𝑛 − 1 and  𝑗 = 1, … 𝑚 − 1 

3. Monotonicity: Each step in the warping path that is moving forward in time in 

LCM must be monotonically spaced, that is either rightward, upward, or 

diagonally upward (up-right). This is also seen in constraint 2.  

The constraints are visualized on an example LCM in Figure 31.  



  

 97 

                   
(a)                                                    (b) 

Figure 31 – Constraints for DTW path visualized on an example LCM matrix, (a) end 

point constraint (boundary conditions), (b) next allowable step (continuity and 

monotonicity) 

Among many possible 𝑊 paths that satisfy above constraints, warping path 𝑊 has the 

minimum cumulative distance cost between the start and end points in the LCM. Dynamic 

programming is utilized to find the minimum cumulative distance path in the LCM, or the 

warping path, using the recursive computation in Equation 5.  

 𝑑𝑐𝑢𝑚(𝑖, 𝑗) = 𝑑 (𝑥𝑖, 𝑦𝑗) + 

𝑚𝑖𝑛 {𝑑𝑐𝑢𝑚(𝑖 − 1, 𝑗 − 1),   𝑑𝑐𝑢𝑚(𝑖 − 1, 𝑗),   𝑑𝑐𝑢𝑚(𝑖, 𝑗 − 1)} 

(5) 

The cumulative total distance cost of the warping path 𝑊 is the 𝐷𝑇𝑊 distance between the 

two time series 𝑥 and 𝑦 presented in Equation 6, where, 𝑤𝑘 is the distance of 𝑘th element 

in the warping path.  

 

𝐷𝑇𝑊(𝑥, 𝑦) = 𝑚𝑖𝑛 {√∑ 𝑤𝑘

𝐾

𝑘=1
 (6) 
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Example: For example [158], consider 𝑥 and 𝑦 two time series. 

𝑥 = {1,1,2,3,2,0} 

𝑦 = {0,1,1,2,3,2,1} 

The LCM matrix for the two time series is obtained by computing the pairwise data point 

distances, in this case: 𝑑(𝑥𝑖, 𝑦𝑗) =  (𝑥𝑖 − 𝑦𝑗)
2

   

The LCM Matrix obtained for this examples is shown in Figure 32. 

 

Figure 32 – Local cost matrix (LCM) for the example. 

In the next step, “for each cell in the matrix, calculate the cost of arriving from a) 

below, b) left, and c) below-left, by adding the cell value to the lowest-cost way of arriving 

at the cell below, left, or below-left, respectively.” (Roelofsen 2018) For example, the 

possible values for 𝑤(2,1) it will be 1 (from down) with no other potential value, for 

𝑤(1,2) it will be 2 (from left) with no other potential value, and for 𝑤(2,2) will be 1 (from 

left), 2 (from down), and 1 (from left down). With the potential distances, the warping path 
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is likely to move from 𝑤(1,1) to 𝑤(2,1) or 𝑤(2,2), as these have the same cost and are 

both lower than moving from 𝑤(1,2). This process is visually seen in Figure 33.  

 

Figure 33 – Distance computation for cells – (2, 1), (1, 2), (2, 2), and (1, 3), where cost 

to move to the cell from bottom, left, and left bottom is shown in Orange, Blue and 

Green color arrow and values. 

Similarly, for all cells potential values for 𝑤(𝑖, 𝑗) are computed. Then, the least cost 

warping path is obtained as the path that has the total minimum cost of travel from the fixed 

start point to the fixed end point. Figure 34(a) shows the LCM matrix with cost 

computation for each cell. Cost of each cell from adjacent bottom cell, adjacent left cell, 

and adjacent bottom left cell is shown in parenthesis in orange, blue, and green color 

respectively. For each cell, the minimum cost of the three costs from adjacent bottom cell, 

adjacent left cell, and adjacent bottom left cell is marked with an asterisk. Figure 34(b) 

shows the two possible DTW path alternates with same lowest cost.  
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                                     (a)                                                                    (b) 

Figure 34 – (a) LCM matrix with cost computations for each cell, and (b) DTW path 

alternatives with minimum cost. 

Figure 35 shows one such possible warping path for the example (DTW for this 

example visualized using Python, the smaller X and Y graphs represent the starting data). 

 

Figure 35 – DTW path between the two time series in the example. 

Note that DTW has quadratic time complexity 𝑂(𝑁2) when |𝑋| = |𝑌| = 𝑁 where, 

|𝑋| denotes length of time series 𝑋 and |𝑌| denotes length of time series 𝑌, due to the need 

to compute cost for all cells in the low cost matrix of size N by N. To increase the efficiency 
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of DTW most proposed modifications can broadly be categorized as: 1) adding constraints 

[100, 108], 2) abstracting the data [107, 110], and 3) indexing [109]. The modification of 

adding constraint in DTW algorithm includes constraining the boundary of the DTW path 

in the LCM. This reduces the algorithm time complexity by a large factor. Two variants of 

constraint modified DTW algorithm are – Sakoe and Chiba Band and Itakura 

parallelogram. Figure 36 below shows these two constraints. 

 

(a)                                                    (b) 

Figure 36 – Shaded portion showing the types of constraints used in (a) Sakoe-Chiba 

Band (left), and (b) Ikatura Parallelogram (right) to reduce computations needed to 

find the DTW path [100, 108, 112] 

In the second modification of DTW – abstracting the data, to increase the efficiency 

DTW is conducted on reduced time series representations. In the third modification 

“indexing”, is reducing the number of times DTW is to be run for time series classification 

or clustering process. Salvador et al. proposed FastDTW that utilizes “adding constraints” 

and “abstracting the data” to achieve a linear time complexity of 𝑂(𝑁) [112]. The 

approximations used in FastDTW does not assure finding the optimal warping path; 

however, it is stated to estimate a path quite near to the optimal path. FastDTW algorithm 

includes three steps: 1) Coarsening – reduce the size of the time series being compared, 2) 
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Projection – find the minimum cost DTW path for the reduced time series representation 

(low resolution) obtained in step 1 and project it on a higher resolution, and 3) Refinement 

– make local changes to refine the projected DTW path to find minimum cost path in high 

resolution. These steps are used iteratively to find the DTW for highest resolution. Figure 

37 [112] explains working of the iterative process in FastDTW visually. The figure shows 

use of both constraints and data abstractions in FastDTW. 

 

Figure 37 – FastDTW implementation to find optimal DTW path includes – 

coarsening, projection, and refinement iteratively. The number of cell costs computed 

in complete process are of the order 𝑵 relative to 𝑵𝟐
 in DTW algorithm [112]. 

Salvador et al. found FastDTW to perform better in accuracy in comparison to 

Sakoe and Chiba Band and Data Abstraction modified algorithms of DTW. In this study, 

FastDTW [159] is used to estimate DTW distances between time series.  

5.3.1.2 Application to Study Data 

In this study, volume time series data obtained as six minute aggregate counts from 

118 detectors across the corridor are clustered based on DTW distances. This effort focuses 

only on data from Mondays, under the assumption that the same day of the week across 

multiple weeks should generally have consistent data. This assumption was supported 

through visual inspection of the data. A 24-hour volume time series, for each detector, was 

obtained for 15 Mondays over the study period: 4 Feb 2019, 18 Feb 2019, 25 Feb 2019, 4 



  

 103 

Mar 2019, 11 Mar 2019, 18 Mar 2019, 25 Mar 2019, 1 Apr 2019, 8 Apr 2019, 15 Apr 2019, 

22 Apr 2019, 6 May 2019, 13 May 2019, 20 May 2019, and 27 May 2019. As an example, 

Figure 38 shows the raw volume time series for two detectors – detector L_3 (lane 3) at 

Spring St. NW Westbound (WB) approach (Spring-WB-L_3) and detector L_1 (lane 1) at 

State St. Eastbound (EB) approach (State-EB-L-1) across 15 Mondays. Each Monday 

comprises of 240 six-minute bins. A similar volume pattern is observed across the different 

Mondays. Also, it is seen that that the daily patterns are different for the two time series.  

 

Figure 38 – Volume time series for 15 Mondays at detectors: Spring-WB-L_3 (Spring 

St., West Bound, Lane 3) and State-EB-L_1 (State Street, East Bound, Lane 1). 

The clustering objective in this study is to determine which detectors volume time 

series data are correlated. Those detectors that are correlated with the subject detector (i.e. 
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detector with data gaps) will be used to create the multivariate LSTM RNN imputation 

model. To cluster the detectors, DTW distance based clustering is utilized to indicate 

correlation between detectors. Mueen et al. suggests z-normalizing the entire sequence as 

well as z-normalizing every subsequence of the time series sequences. [104]. This allows 

for a focus on correlated pattern, while significant differences may exist in the absolute 

values. 

For this study, each subsequence is considered as each Monday. However, it is 

noted that z-normalizing every subsequence of 118 detector time series data adds to the 

computational expense needed to obtain the DTW measures. In addition, as the 15 

Mondays fall within the same general season it is not expected to have significant variation 

between Mondays within a detector. Thus, z-normalization for every subsequence is not 

conducted in the pilot experiment, instead, the entire time series sequence is z-normalized.  

DTW distance based clustering results of the z-normalized times series sequences 

were obtained and visualized to evaluate the clustering performance. Figure 39 shows the 

z-normalized time series for the Spring-WB-L_3 and State-EB-L_1 detectors shown in 

Figure 38.  
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Figure 39 – Z-normalized volume time series for 15 Mondays at Spring-WB-L_3 and 

State-EB-L_1. 

For clustering the z-normalized time series sequences, hierarchical agglomerative 

clustering is utilized. A short review of hierarchical clustering is provided in the next 

subsection.  

5.3.2 Review of Algorithm: Hierarchical Agglomerative Clustering 

Agglomerative Hierarchical Clustering aims to fuse clusters based on the distance 

between two clusters. When starting a hierarchical agglomerative clustering (hac) each data 

point is considered as a cluster. A distance matrix is obtained of the distance between every 

pair of the data points. The two clusters closest in distance are combined. The combined 

cluster is then considered as a single cluster and the pairwise distances between all clusters 

are updated in distance matrix. Then, the updated pairwise cluster distances are evaluated 

to find the closest cluster pair and fused into a single new cluster, which is again followed 
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by updating the pair wise distances between all clusters. This process is iterated until a 

single cluster including all data point remains. Thus, the iterative process includes two 

steps – 1) pairwise cluster distance computation, and 2) merging the clusters with minimum 

distance. At the end, a tree of the all cluster fusions executed during the process is created 

that is used to select the number of clusters. This tree displaying the hierarchical clustering 

analysis process is referred as “dendrogram”. Several types of agglomerative hierarchical 

clustering algorithm exist based on the methodology to compute distance between two 

clusters such as single linkage, complete linkage, and average linkage [160, 161]. In this 

study, average linkage criteria is used to find distance between two clusters.  

In this algorithm [123], at first, each starting data point is a detector time series, and 

thus is considered to be an individual cluster. Therefore, the starting distance matrix 

contains the DTW distance between every detector pair, creating a matrix of 118 by 118 

(where 118 is the number of detectors with intermittent data loss). Next, the clusters with 

minimum pairwise DTW distance are grouped together. The similarity measure of the 

newly formed cluster is obtained as the average similarity measure between each point in 

the two original clusters.  For example, assume a cluster with one time series (1) and 

another cluster with one time series (3) have been grouped to become a new cluster X (1, 

3). Then, in the next step, the pairwise distance (similarity measure) of a cluster with one 

time series (9) from the new cluster X (1, 3) is evaluated as in Equation 7. 

 
𝐷𝑇𝑊(1 ∪ 3, 9) =

1

2
 [𝐷𝑇𝑊(1,9) + 𝐷𝑇𝑊(3,9)] 

 

(7) 
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The formula for the similarity measure between clusters for average linkage, derived from 

the generalized from Lance-Williams dissimilarity update formula [160, 162] is described 

in Equation 8, where, 𝐶𝑖, 𝐶𝑗, and 𝐶𝑘 are cluster 𝑖, 𝑗, and 𝑘; 𝛼𝑖 =  
|𝑖|

|𝑖|+|𝑗|
 , and |𝑗| is the number 

of data points in a cluster 𝐶𝑗. 

 𝑑(𝐶𝑖 ∪ 𝐶𝑗 , 𝐶𝑘) =  𝛼𝑖𝑑(𝐶𝑖, 𝐶𝑘) + 𝛼𝑗𝑑(𝐶𝑗 , 𝐶𝑘) (8) 

A simplified representation of methodology to estimate similarity between clusters 

(cluster 𝐺 and cluster 𝐻 with 𝑛𝐺 and 𝑛𝐻 data points) using average linkage criteria for 

hierarchical clustering is shown in Equation 9 [163].   

 
𝑑(𝐺, 𝐻) =  

1

𝑛𝐺 ∗ 𝑛𝐻
∑ ∑ 𝑑𝑚𝑛

𝑛∈𝐻𝑚∈𝐺

 (9) 

Results of the hierarchical analysis is obtained as a dendrogram diagram, which 

shows the hierarchical relationship between the clusters [164]. Complete dendrogram 

obtained for average linkage hierarchical clustering is shown in Figure 40. On Y-axis is 

the distance measure (DTW) and the X-axis is the detectors. The height of the bars of two 

points that are joined together provides the similarity measure.  

To choose optimal number of clusters or to evaluate validity of clustering results, 

two visual methods commonly used are the elbow method and silhouette analysis [165, 

166]. The elbow method involves performing clustering analysis for several choices of 

number of clusters and plotting total within sum of squares distance of the data points in 
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all clusters against the chosen number of clusters. The cluster number (𝑘) that observes a 

bend in the plot is chosen as the number of clusters [165, 166].  

Silhouette analysis includes computing the average silhouette coefficient for 

clusters for clustering results with different values of k and choosing the k that gives 

maximum average silhouette coefficient. Silhouette coefficient for a sample is obtained by 

calculating mean intra-cluster distance that is mean distance of the sample with all data 

points in the cluster (𝑎) and nearest-cluster distance (𝑏) that is mean distance of the sample 

with all data points in the next nearest cluster. Silhouette coefficient (𝑠) for the sample is 

evaluated using Equation 10 [167]. 

 
𝑠 =  

𝑏 − 𝑎

𝑚𝑎𝑥 (𝑎, 𝑏) 
 (10) 

For this study, with a large dataset, the computational load to obtain clustering 

results for the different number of clusters required to conduct elbow method and silhouette 

analysis was high. In this pilot study, an approximate rule of thumb to cut the dendrogram 

to obtain clusters with longest branches is applied [166]. However, to automate clustering 

process silhouette analysis or elbow method would be preferred if computational efficiency 

is not an obstacle. The dotted line in Figure 40 shows the threshold cut off used in this 

study to obtain 11 clusters. Through visual observation it is seen in Figure 40 that 11 

clusters are created over this section by cutting the dendrogram at the shown position with 

dotted line.  
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Figure 40 – Dendrogram of average linkage hierarchical agglomerative clustering 

result on 118 detectors with DTW similarity measure. 

The next sub-section presents clustering results and its’ implementation for building LSTM 

RNN imputation model.  

5.3.3 Time Series Clustering Analysis and Results  

The cluster analysis identified similar detector patterns across fifteen Mondays. 

This method helped in efficiently filtering the detectors with similar traffic. Observing the 

Dendrogram, when considering all 118 detectors, 11 clusters are chosen when cutting 

dendrogram tree. Figure 41 visualizes four of the obtained clusters. The pattern difference 

between cluster 3, 4, 5, and 6 is visible. Cluster 6 has the largest cluster size among all 11 

clusters.  
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Figure 41 – Z-normalized time series cluster of detectors obtained from hierarchical 

clustering using DTW. 
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The similarity in detectors identified is utilized to develop the multivariate LSTM 

RNN model. The next section provides a review of the LSTM RNN algorithm and 

describes the experimental design implemented to compare the univariate and multivariate 

LSTM RNN model performance.  

5.3.4 Time Series Imputation 

For time series imputation, a type of deep learning algorithm, Long Short Term 

Memory (LSTM) Recurrent Neural Networks (RNN), is utilized in this effort. Deep 

learning refers to training Neural Networks to predict a value based on inputs provided 

[168]. RNNs fall under the category of Neural Networks (NN) [169] with LSTM RNN as 

a special type of RNN. The next sections include a brief review of Neural Networks, RNN, 

and LSTM RNN.  

5.3.4.1 What are Neural Networks?  

Neural networks assist in machine learning of a process by studying several training 

examples [170]. A neural network architecture includes multiple layers. Typically these 

are the Input, Hidden, and Output Layers, as shown in Figure 42. Each layer consists of 

interconnected neurons or ‘nodes’. The input layer provides the initial variable information 

(for example - 𝑥1, 𝑥2, 𝑥3, 𝑥4 in Figure 42) which is then processed by the hidden layer 

utilizing connections. The hidden layer is connected to the output layer that provides the 

output values (𝑦) [169].  

 



  

 112 

 

Figure 42 – Standard neural network architecture [171].  

Each connection has a weight and each node has a bias value and weight. Each node 

is composed of a summation and an activation function. The summation function provides 

a linear combination of the input variables based on the weights and bias value. The 

activation function is then applied to this linear combination. The Activation function 

regulates the output behavior of the neuron [172]. Figure 43 shows the working of a single 

neuron where, 𝑤1, 𝑤2, 𝑤3 are weights for input features 𝑥1, 𝑥2, 𝑥3 and 𝑏 is the bias for the 

single neuron or node shown in the figure, 𝑧 is the linear combination of weighted input 

values and bias, and a is the output from activation function. The Activation function here 

is the sigmoid function (𝜎).  
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Figure 43 – Neuron consists of a summation function (linear combiner) and an 

activation function [173].  

The Activation function is crucial to neural networks as it adds a non-linear 

component to the neuron output [174]. A sigmoid activation function is shown in Figure 

43. In Figure 42 the NN architecture has one hidden layer. In practice, several NN layers 

can be used to increase the accuracy of the mapping of the input values with the output 

value.  

5.3.4.2 Cost Function, Gradient Descent, Forward Propagation, and Backward 

Propagation [168]1 

Notations: Consider a neural network with 𝑛 nodes and 𝑙 layers that have sigmoid 

activation function and is trained using training sample of size 𝑚. A parameter, for example 

weight 𝑤 associated with node 𝑛 and layer 𝑙 for training sample 𝑚 is represented as 𝑤𝑛
[𝑙](𝑚)

.  

Cost Function: When all weights of nodes are stored in matrix 𝑤 and vector 𝑏, 

output �̂� can be represented as in Equation 11.  

                                                 
1 *Theory interpretation and equations presented in this section are drawn from the Coursera course Neural 

Networks and Deep Learning – instructed by Andrew Ng. 
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 �̂� =  𝜎(𝑤𝑇𝑥 + 𝑏) (11) 

Where, sigmoid function is 𝜎(𝑧) =  
1

1+𝑒−𝑧 

The convex loss function to measure error for logistic regression is in Equation 12. This 

provides the error for a single training sample.    

 𝐿(�̂�, 𝑦) =  −(𝑦𝑙𝑜𝑔�̂� + (1 − 𝑦) log(1 − �̂�)) (12) 

For a neural network training optimization, the objective is to find parameters 𝑤 and 𝑏 that 

minimize the cost function  𝐽 (Equation 13), the average total loss for all the training 

samples.  

 𝐽(𝑤, 𝑏) =  
1

𝑚
 ∑ 𝐿(�̂�(𝑖), 𝑦(𝑖))𝑚

𝑖=1   

= - 
1

𝑚
 ∑ ( 𝑦(𝑖)𝑙𝑜𝑔�̂�(𝑖) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − �̂�(𝑖)))𝑚

𝑖=1  

(13) 

The Gradient Descent algorithm is used to conduct the optimization to find parameters 𝑤 

and 𝑏 for the cost function 𝐽.  

Gradient Descent in NN: To find 𝑤 and 𝑏 that minimizes 𝐽(𝑤, 𝑏) gradient descent 

is used to find an approximate value of global optimum for 𝐽 (𝑤, 𝑏). In the gradient descent 

algorithm, at first, 𝑤 and 𝑏 are assigned initial values. Then, the value of the parameters 𝑤 

and 𝑏 are updated iteratively until the global minimum for 𝐽(𝑤, 𝑏) is reached (algorithm 

converges). Each update step for the parameter value is shown in Equation 14 and 15. The 
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measure or update size (step size) in the parameter values depend on the learning rate 

represented by 𝛼.  

 
𝑤 ≔ 𝑤− ∝

𝜕𝐽(𝑤, 𝑏)

𝜕𝑤
 

(14) 

 
𝑏 ≔ 𝑏− ∝

𝜕𝐽(𝑤, 𝑏)

𝜕𝑏
 

(15) 

Figure 44 shows the gradient descent step visually.  

 

Figure 44 – A step in gradient descent to find w corresponding to global minimum 

(modified from diagram in Coursera course by Andrew Ng) [168]. 

Computation of derivatives of the cost function, 𝐽(𝑤, 𝑏) with respect to weights 𝑤 

and biases 𝑏 is required for every step of gradient descent to update the parameter values 

and to decide the direction of the descent. Computations of neural network gradient descent 

process include two primary components: 1) forward propagation, where output value  is 

computed based on current parameter values of 𝑤 and 𝑏, and 2) backward propagation, 
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where the derivatives of cost function  with respect to the parameters are computed to 

update parameter values 𝑤 and 𝑏 for next step of gradient descent.  

A brief example of a gradient descent update using forward and backward 

propagation is presented using for a simple neural network that has one input layer – layer 

0, one hidden layer – layer 1, and one output layer – layer 2. Representation for the number 

of nodes (𝑛) in each layer is 𝑛[0], 𝑛[1], and 𝑛[2]. A single output node is assumed, that is, 

𝑛[2] = 1. The parameters for this neural network are 𝑊[1], 𝑏[1], 𝑊[2], 𝑎𝑛𝑑 𝑏[2], where  

𝑊[1], 𝑊[2] represent matrix that contains weights for layer 1 and 2 for 𝑚 samples and 𝑏[1], 

𝑏[2] represent matrix that contains biases for layer 1 and 2 for 𝑚 samples. Gradient descent 

for cost function 𝐽(𝑊[1], 𝑏[1], 𝑊[2], 𝑏[2] ) includes iteration of following steps: 

1. Step 1 – Compute prediction/output using forward propagation: 𝑦 ̂  

2. Step 2 – Compute derivatives using backward propagation  - 

𝜕𝐽

𝜕𝑊[1]  ,
𝜕𝐽

𝜕𝑊[2] ,
𝜕𝐽

𝜕𝑏[1] ,
𝜕𝐽

𝜕𝑏[2]  

3. Step 3 – Update parameters using Equations 16, 17, 18, and 19. 

 
𝑊[1] =  𝑊[1] −  𝛼 

𝜕𝐽

𝜕𝑊[1]
 

(16) 

 
𝑊[2] =  𝑊[2] −  𝛼 

𝜕𝐽

𝜕𝑊[2]
 

(17) 

 
𝑏[1] =  𝑏[1] −  𝛼 

𝜕𝐽

𝜕𝑏[1]
 

(18) 

 
𝑏[2] =  𝑏[2] −  𝛼 

𝜕𝐽

𝜕𝑏[2]
 

(19) 
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Step 1: Forward propagation computation formulas for this example are described in 

Equations 20, 21, 22, and 23. 

 𝑍[1] =  𝑊[1]𝑋 + 𝑏[1] (20) 

 𝐴[1] =  𝑔[1](𝑍[1]) (21) 

 𝑍[2] =  𝑊[2]𝐴[1] + 𝑏[2] (22) 

 𝐴[2] = 𝑔[2](𝑍[2]) =  𝜎(𝑍[2]) =  𝑦 ̂ (23) 

Here, 𝑔[1] and 𝑔[2] are the activation functions for layer 1 and layer 2. Output layer 

activation function 𝑔[2] in this example is sigmoid function.  

Step 2: Backward propagation computation for this example 

Backward propagation includes computation of derivatives of the cost function with 

respect to the parameters. For this the chain rule is utilized. Figure 45 provides the 

computational graph for forward and backward propagation for the example neural 

network for a single training sample inspired from Andrew Ng’s Coursera course lectures 

[168]. Backward propagation derivative computation is shown in orange color and red 

arrows. The variables 𝑥 represents the single training example, 𝑦 represents the label for 

the single training sample, 𝑧[1] and 𝑧[2] represent linear combination computation output 

for the single training sample for layer 1 and layer 2,  𝑎[1] and 𝑎[2]  represent the output 
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(activation output) for the single training sample from layer 1 and layer 2, and 𝐿(𝑎[2], 𝑦) 

represents the logistic regression loss value for the single training sample.  

 

Figure 45 – Forward and backward propagation computation graph for the example 

neural network on a single training sample (modified from diagram in Coursera 

course by Andrew Ng) [168]. 

Note that for computation of  
𝜕𝐿(𝑎[2], 𝑦) 

𝜕𝑧[1] , chain rule is utilized (Equation 24), that 

consists of derivative of activation functions.  

 
𝜕𝐿(𝑎[2], 𝑦) 

𝜕𝑧[1]  = 
𝜕𝐿(𝑎[2], 𝑦) 

𝜕(𝑎[2]   
𝑑𝑎[2] 

𝑑𝑧[2]

𝑑𝑧[2] 

𝑑𝑎[1]
 
𝑑𝑎[1]

𝑑𝑧[1]
 (24) 

When large number of hidden layers are utilized the product of many partial derivatives of 

activation functions can lead to a very small value of the final partial derivative w.r.t 

parameters. This leads to very slow rate of update in parameters. This issue is called as the 

problem of Vanishing Gradient [175]. On the other hand, if an activation function is 

utilized that can take higher values, then when number of layer are high, product of multiple 

high value derivatives can lead to final derivative values that are very high. This will lead 

to very large step sizes and can miss the global optimum. This is called as the problem of 

exploding gradients [176]. Deep layer neural network architectures are more 

conventionally used in supervised learning to map output label 𝑦 with input variables 𝑥1, 
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𝑥2 etc. For sequences, mainly where dependency can exist between a previous data point 

back in time and current data (output), a “memory” of previous data is needed, thus a 

Recurrent Neural Network (RNN) is utilized. Another reason RNN is preferable to model 

sequences is that it allows for different lengths of input and output data mapping which is 

often the case in several areas, such as speech recognition, text translation, and music 

generation etc. [177]. Working of RNN and LSTM RNN is briefed next.  

5.3.4.3 What are RNN and how do they work?[177]2  

Recurrent Neural Network (RNN) is a variant of Neural Network that is capable of 

utilizing “memory” of previous event data to predict the next values for sequence [178]. 

The notations used in this sub section to describe the architecture, forward, and backward 

propagation for RNN are: 1) Input data of the sequence 𝑥 is represented based on its 

position in the sequence as 𝑥<𝑖>, 2) Output data of the RNN is represented as �̂�<𝑖>, where 

𝑖 is the position of the output data in the sequence, 3) 𝑇𝑥 and 𝑇𝑦 are lengths on the input 

and output sequence respectively, 4) Activation values for data in sequence with position 

𝑖 are represented as 𝑎<𝑖>, 5) the weights and biases associated with computation of 

activation value 𝑎<𝑖> and predicted value �̂�<𝑖> are represented as 𝑊𝑎𝑎, 𝑊𝑎𝑥, 𝑊𝑦𝑎, 𝑏𝑎, and 

𝑏𝑦. Figure 46 shows the RNN architecture unrolled and rolled to show the connectivity of 

previous data to current data prediction.  

                                                 
2 *Theory interpretation and equations presented in this sub section draw from Coursera Course – Sequence 

Learning, instructed by Andrew Ng 
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Figure 46 – RNN architecture unrolled and rolled schematic, when 𝑻𝒙 = 𝑻𝒚 (modified 

from diagram in Coursera course by Andrew Ng) [177] 

The following formulas represent forward propagation computations for RNN (Equation 

25 and Equation 26), where, 𝑔𝑎 and 𝑔𝑦 are activation functions.  

 𝑎<𝑡> = 𝑔𝑎(𝑊𝑎𝑎𝑎<𝑡−1> + 𝑊𝑎𝑥𝑥<𝑡>+𝑏𝑎) (25) 

 �̂�<𝑡> = 𝑔𝑦(𝑊𝑦𝑎𝑎<𝑡> + 𝑏𝑦) (26) 

Note in equations, the dependence of predicted value �̂�<𝑡> on previous input value 𝑥<𝑡−1>  

through previous activation value computation 𝑎<𝑡−1>. This is also shown in Equation 27. 

 𝑎<𝑡−1> =  𝑔𝑎(𝑊𝑎𝑎𝑎<𝑡−2> + 𝑊𝑎𝑥𝑥<𝑡−1> + 𝑏𝑎 (27) 

This allows RNN to update weights and biases based on previous input values. 

While Figure 46 shows RNN architecture when 𝑇𝑥 = 𝑇𝑦, RNN architecture is flexible to 

accommodate different input and output lengths. These are categorized in four types: 1) 
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one-to-one, 2) many-to-one, 3) many-to-many, and 4) one-to-many. Figure 47 shows the 

generalized architecture for the four categories. Many-to-many architecture with different 

input and output lengths is shown last.  

 

 

Figure 47 – Different type of RNN architectures (modified from diagram in Coursera 

course by Andrew Ng) [177]. 

The loss function for RNN is sum of loss for all input predictions. Equation 28 show the 

total loss computation formula, where, 𝐿<𝑡>(�̂�<𝑡>, 𝑦<𝑡>) is the loss in prediction at time 

step t. 
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𝐿(�̂�, 𝑦) =  ∑  𝐿<𝑡>(�̂�<𝑡>, 𝑦<𝑡>)

𝑇𝑦

𝑡=1

 
(28) 

Backpropagation flow in RNN to find parameters 𝑊𝑎𝑎, 𝑏𝑎, 𝑊𝑦𝑎, and 𝑏𝑦 is shown using red 

arrows in Figure 48. This is also called backpropagation through time.  

 

Figure 48 – Backpropagation through time for RNN (modified from diagram in 

Coursera course by Andrew Ng) [177]. 

RNN can suffer from vanishing gradient problem due to product of many small 

activation values in the chain rule in backpropagation implementation [179]. This leads to 

updates in weights and biases of the model based on nearby losses. In other words, the 

model parameters don’t get well trained based on far away data prediction performance 
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[179]. This is a drawback of RNN especially when accounting for long-term dependency 

in a sequence is crucial to predictions. To tackle the issue of vanishing gradient in RNN, 

LSTM RNN [180] is utilized.  

5.3.4.4 What are LSTM RNN?[177] 

The architecture of LSTM RNN differs from traditional RNN mainly because of 

addition of a ‘memory’ component and gates to regulate the memory – forget gate, update 

gate, and output gate. A memory cell variable is added to LSTM to retain previous 

information. The components, notations and Equations (29 to 34) of LSTM computations 

are provided next. For simplicity, in these equations the weights associated with activations 

𝑎<𝑡−1> and input variables 𝑥<𝑡> are combined together, for example in Equation 29, 𝑊𝑐 

represents weights matrix that contains weights for 𝑎<𝑡−1> and 𝑥<𝑡> for computation 

of �̃�<𝑡>. In LSTM, at every time step: 

1. A candidate for memory cell (�̃�<𝑡>) is computed (Equation 29) that is 

dependent on previous time step activation value (𝑎<𝑡−1>) and current input 

value (𝑥<𝑡>).  

 Candidate memory cell value, (�̃�<𝑡>)  

 �̃�<𝑡> = 𝑡𝑎𝑛ℎ (𝑊𝑐[𝑎<𝑡−1> + 𝑥<𝑡>] + 𝑏𝑐 ) (29) 

2. Candidate memory cell value (�̃�<𝑡>) for current time step and previous time 

step memory cell value (𝑐<𝑡−1>) are regulated as per update gate (Γ𝑢) and 

forget gate (Γ𝑓) respectively to obtain memory cell value for the current time 

step (𝑐<𝑡>) , shown in Equation 30.   
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 Memory cell value, (𝑐<𝑡>)  

 𝑐<𝑡> =  Γ𝑢 ∗  �̃�<𝑡> + Γ𝑓 ∗  𝑐<𝑡−1> (30) 

Thus, forget and update gates are used to retain previous memory cell value 

and update memory cell value to candidate value.   

3. Forget gate (Γ𝑓) and update gate (Γ𝑢) utilized for candidate memory cell 

computation in previous bullet are obtained using Equation 31 and Equation 

32. 

 Forget gate, (Γ𝑓): 

 Γ𝑓 = 𝜎(𝑊𝑓[𝑎<𝑡−1> + 𝑥<𝑡>] + 𝑏𝑓) (31) 

 Update gate, (Γ𝑢): 

 Γ𝑢 = 𝜎(𝑊𝑢[𝑎<𝑡−1> + 𝑥<𝑡>] + 𝑏𝑢) (32) 

4. Activation value for the time step (𝑎<𝑡>) is computed using Output gate 

(Γ𝑜) value as shown in Equation 33 and Equation 34. 

 𝑎<𝑡> =  Γ𝑜 ∗ tanh 𝑐<𝑡> (33) 

 Output gate (Γ𝑜): 

 Γ𝑜 = 𝜎(𝑊𝑜[𝑎<𝑡−1> + 𝑥<𝑡>] + 𝑏𝑜) (34) 

 



  

 125 

This process is visualized in schematically in Figure 49.  

 

Figure 49 – LSTM cell architecture (modified from diagram in Coursera course by 

Andrew Ng [177] and Chris Olah’s blogpost [72]. 

The value of gates and candidate memory cell value are regulated based on current 

input (𝑥<𝑡> and previous step activation value (𝑎<𝑡−1>). This allows the LSTM to regulate 

the derivative values from getting too low to too high to prevent vanishing gradient and 

exploding gradient issues [181].  

A variant of LSTM RNN, the bidirectional LSTM RNN (BLSTM) has an 

architecture that allows it to learn output mapping both from past and future information 

[182]. BLSTM has two layers to propagate in both forward and backward directions. The 

BLSTM RNN architecture is shown in Figure 50. The prediction values are computed 

utilizing both forward activation and backward activation values [177].  
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Figure 50 – Simplified representation of Bidirectional RNN architecture (modified 

from diagram in Coursera course by Andrew Ng) [177].  

Deep RNN models include multiple RNN layers that can be traditional RNN, LSTM RNN, 

or LSTM layers. The architecture for deep RNNs is presented in Figure 51. 

 

Figure 51 – Simplified representation of deep RNN architecture (modified from 

diagram in Coursera course by Andrew Ng) [177].  

In this study, Deep RNN with BLSTM layers are utilized to develop univariate and 

multivariate prediction models. Experiment design and model parameters utilized to test 

the effectiveness of univariate and multivariate Deep RNN models is presented next.  
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5.3.5 Model Development and Experiment Design 

Three set of experiments are designed to investigate the three research questions in this 

study:  

 How does the multivariate model perform in comparison to univariate model 

for consecutive data gap predictions for typical day traffic?  

 How does the multivariate model perform in comparison to univariate model 

when a non-typical traffic pattern is observed? 

 How does multivariate and univariate imputed data impact the digital twin 

generated travel time at selected routes?  

5.3.5.1 Model Development 

The objective of first two experiments are: 1) to compare the accuracy of 

multivariate and univariate LSTM RNN model predictions, and 2) to compare ability of 

multivariate and univariate LSTM RNN models data gap predictions when a non-typical 

traffic pattern is observed, i.e., a special event, crash, holiday, etc. Three corridor 

approaches are selected for the study based, representing varied traffic demand conditions: 

State St. NW EB, Connector SB, and Peachtree St. NE SB. Data loss will be created for 

these approaches, the imputation algorithms applied, and then the results of the algorithms 

compared to the actual collected data. 

The approach locations on the North Avenue Smart Corridor are shown in Figure 

52. Each of these approaches has two lanes. Twenty-four hour 6-minute aggregate historic 

time series detector data for Mondays, for each lane, (State-EB-L_1, State-EB-L_2, 
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Connector-SB-L_1, Connector-SB-L_2, Peachtree-SB-L_1, and Peachtree-SB-L_2) are 

utilized for the first two sets of experiments.  

 

Figure 52 – Experiment 1 and 2 North Ave. corridor approach locations. 

For the developed models, time series data for 10 or 11 Mondays are utilized for 

model training, while the remaining Mondays are utilized for model validation. Monday 

March 18th is not utilized in the training set as it is utilized as the base day with typical 

traffic to study impact of univariate and multivariate model imputations on typical traffic 

on simulation model generated results.  

The training data consists of a 24-hour time series for each Monday, synchronously 

placed, creating a 264 hour (240 for a 10 day training period) data set. If a day has more 

than 10 hours with missing data at a detector it is not included in the training set for that 

detector. The potential 11 Mondays available for training are February 4th, 18th, and 25th; 

March 4th, 11th, and 25th; April 1st, 8th, 15th, and 22nd; and May 6th; all in 2019. The 

validation set utilized in this experiment consists of 24-hour time series data for May 13th, 

20th, and 27th, 2019, again arranged synchronously. For State-EB-L_1, State-EB-L_2, 

Connector-SB-L_1, and Connector-SB-L_2 the training set comprises of all 11 Mondays 

and validation set comprises of the three Mondays. For Peachtree-SB-L_1 and Peachtree-

SB-L_2, the training set consists of 10 Mondays (February, 25th is excluded due to data 

loss).  
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Each data series is considered in six-minute bins, the fidelity of the data provided 

by the field collection equipment. Thus, a training data set contains a time-series of 2640 

(or 2400) data points in length, i.e. the six-minute increments in 264 (or 240) hours. Table 

5 lists the training data and validation data length used for the univariate and multivariate 

model development for the six detectors in this study.  

Table 5 – Training set and validation set data description used for model 

development. 

 

Detector Training Set  Missing 

Data 

Points in 

Training 

Set 

Validation 

Set  

Missing Data Point 

Count in 

Validation Set 

Days  Data 

points 

Typical 

Day 

Atypical 

Day 

1 State-EB-L_1 11 2640 11 Same for 

all 

 

2 Typical 

Days 

13 May 

2019 

20 May 

2019 

 

1 Atypical 

Day 

27 May 

2019 

1 0  
Luckie-EB-L_1 11 2640 7 NA NA 

2 State-EB-L_2 11 2640 11 

1 0  
Spring-WB-L_1 11 2640 16 NA NA 

3 Connector-SB-L_1 11 2640 12 2 1  
Juniper-WB-L_1 11 2640 11 NA NA 

4 Connector-SB-L_2 11 2640 12 2 1  
Luckie-EB-L_2 11 2640 7 NA NA 

5 Peachtree-SB-L_1 10 2400 8 0 0  
Luckie-WB-L_1 10 2400 10 NA NA 

6 Peachtree-SB-L_2 10 2400 8 0 0  
State-WB-L_3 10 2400 8 NA NA 

Detectors at Peachtree St. SB observed 120 missing data points on 25 February 

2019. Hence, this day was not included in the training data set. The total missing data points 

in the training set studied at the detectors at State St. NW EB, Connector SB, and Peachtree 

St. SB are 11 out of 2640, 12 out of 2640, and 8 out of 2400, respectively (less than 0.005% 
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of the training set data series). Given the relatively small number of missing data points in 

the training set a [-10] is inserted at each point in the series to handle NaN (not a number) 

values and to mark the presence of an unexpected data point in series, as no data point is 

below 0 otherwise. Other methods for infilling training data such as replacing data gaps 

with the median or mean of the surrounding values or removing them could also be 

implemented [183]. However, in this study, the handful of missing values in training set 

are replaced by -10 assuming that the RNN deep layers will determine these as outliers. 

Although, this hypothesis has not been tested in this study and remains a future study area.  

For the univariate time series model training, the historical data for the given 

detector is utilized. For multivariate time series model training, two time series are utilized, 

the given detector and a second detector with a similar time series. The results of the time 

series clustering using the DTW time similarity measure is utilized to select a detector with 

a similar time series at each of the six detectors under study. That is, for the multivariate 

time series models a similar detector is chosen from the same cluster (of the 11 clusters 

created) as the given detector. The selected time series for the multivariate time series 

models for the six detectors are: 

1. State-EB-L_1: State-EB-L_1 and Luckie-EB-L_1 

2. State-EB-L_2: State-EB-L_2 and Spring-WB-L_1 

3. Connector-SB-L_1: Connector-SB-L_1 and Juniper-WB-L_1 

4. Connector-SB-L_2: Connector-SB-L_2 and Luckie-EB-L_2 

5. Peachtree-SB-L_1: Peachtree-SB-L_1 and Luckie-WB-L_1 

6. Peachtree-SB-L_2: Peachtree-SB-L_2 and State_WB_L_3 
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The similar time series detectors chosen were also checked to ensure a low level of 

data gaps. Figure 53, Figure 54, and Figure 55 show the training and validation data for the 

univariate and multivariate time series model development for the three approaches under 

study and the identified similar detector. Here, the Y-axis is the volume count value and 

the X-axis is the time bin count, when all Mondays are arranged in synchronous manner. 

In these plots, the time series data for the detector for which model is trained is shown in 

blue and the detector with similar time series is shown in orange.  
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Figure 53 – Time series data utilized for modelling State-EB-L_1 and State-EB-L_2. 
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Figure 54 – Time series data utilized for modelling Connector-SB-L_1 and 

Connector-SB-L_2. 
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Figure 55 – Time series data utilized for modelling Peachtree-SB-L_1 and Peachtree-

SB-L_2. 

Data preparation [184]3: For time series modeling, feature sets and feature set labels 

are created from the series where feature sets are sequences of values from the series and 

feature set labels are the next value in the series after the feature set. The feature set label 

represents the value to be predicted in the training. The length of sequence taken as a 

feature set is the window size. For example, for a model with window size ten, the feature 

set will be first ten data points and feature set label will be the eleventh data point. The 

order of these pairs of feature sets and set labels are shuffled to avoid sequence bias in 

selection of the pairs. Next, batching is used to create batches of feature sets and labels that 

                                                 
3 Methodology of data preparation is drawn from video lectures in Coursera course “Sequences, Time Series 

and Prediction” instructed by Laurence Moroney. 
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are fed into RNN layers for training. Figure 56 shows the process of preparing data to feed 

into deep RNN layer model for an example series of length 10, window size 4, and batch 

size 2.  

 

Figure 56 – Creating batches of features and labels from the time series for training 

the deep RNN model. 

In a multivariate time series model it is recalled that multiple time series are utilized 

as input. In this case, the feature set includes sequences of the selected window size length 

for all of the input time series and the corresponding feature set label. After creating pairs 

of feature sets and feature set labels, the process of shuffling and batching is same as 

described previously. The dimension of features in this case is greater than 1. Figure 57 

shows an example of feature and label set for window size 4 to train the model for 

predicting series A using inputs as series A and B.  
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Figure 57 – Preparing feature and label sets to train deep RNN multivariate time 

series model. 

Model training and validation [184]4: To program deep RNN models Python 

version 3.7.2 [185] programming language, Keras [186] python library, and TensorFlow 

[187] python library are utilized. Deep RNN models trained for multivariate and univariate 

models for the six lanes consists of four BLSTM layers and a dense layer. The crucial step 

for univariate time series and multivariate time series modeling is to adjust the 

dimensionality using the parameter input_shape in the first keras BLSTM layer, which is 

fed with batches containing feature sets and feature set label pairs. The expected input to 

the RNN layers is 3 dimensional: batch size, window size, and series dimensionality. Series 

dimensionality is 1 for univariate time series modeling and greater than one for multivariate 

time series modelling. In this study, the multivariate models are tested with 2 time series 

inputs, hence the series dimensionality is 2 for the developed multivariate models. Figure 

                                                 
4 Methodology of data preparation is drawn from video lectures in Coursera course “Sequences, Time Series 

and Prediction” instructed by Laurence Moroney. 
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58 shows shape of input to be fed to deep RNN model trained using Keras and TensorFlow 

library.  

 

 

Figure 58 – Shape of input data for training deep RNN model [187]. 

To train the model, the loss function is set to the mean squared error value and the 

Stochastic Gradient Descent (SGD) optimizer is utilized. Lastly, the number of iterations 

(epochs) to train is also set. Note that there are several hyper parameters (i.e. pre-set 

parameters) of the deep RNN model, such as number of layers, nodes per layer, learning 

rate, number of epochs, window size, batch size, etc. The hyper parameter values for all 

the developed models are kept similar to facilitate comparison. The hyper parameter value 

utilized are:  window size of 80 or 100, batch size of 30, SGD learning rate of 1𝑒−5, 1𝑒−6,

2𝑒−6, and 5𝑒−6, and number of epochs of 500. To optimize model training and 

performance the various hyper parameters such as window size, batch size, and learning 

rate could be tuned. For this initial effort of exploring the advantage of using multivariate 
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deep RNN versus univariate deep RNN modeling, the model parameters were selected (as 

explained in the following) and only slightly tuned for improved performance; however, 

future research will further explore the impact of these parameters. Most hyperparameters 

such as number of epochs, model layer configuration parameters (i.e., the number of layers 

and nodes in each layer), number of epochs, batch size, optimizer (SGD) are same for all 

models trained. Initial model performance tests with window sizes of 30, 60, and 80 were 

conducted, with 80 chosen to train the univariate models for State St. EB detectors. For the 

remaining detectors, both for univariate and multivariate models, a larger window size of 

100 is used, further expanding the window size utilized to make predictions to 10 hours. 

Such a window size is expected to provide sufficient information about the historic traffic 

volume trend. The four learning rates used are all of the order 1𝑒−6. In a previous study, 

for practical purposes, Yoshua suggested a learning rate range of 0.1 to 10−6 [188]. In 

model development process, the learning rates are tuned only slightly to avoid vanishing 

and exploding gradient issues and to improve model accuracy. For model validation 

(testing), the developed models are utilized to perform next step predictions on the 

validation length. The accuracy of model predictions is measured as closeness of predicted 

values with actual values in the validation set.  

5.3.5.2 Experiment Designs 

Experiment Design 1: The experiment design compares the performance of the 

univariate and multivariate time series prediction models to infill data gaps tests five 

prediction scenarios on the typical traffic pattern validation data set. The validation set 

includes two Mondays with typical traffic patterns. Univariate and multivariate model 

performance is tested on four prediction scenarios. The four scenarios vary in the number 
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of consecutive data units predicted by the model: Scenario 1 – 30 missing units, Scenario 

2 – 80 missing units, Scenario 3 – 120 missing units, Scenario 4 – 380 missing units. The 

performance of models to predict the 4 scenarios starting at 100 units or 10 AM on the 

validation set is compared. Since the models require a window size of 100 to make new 

prediction, this time is selected for comparison. To obtain more evidence on the univariate 

and multivariate model performance to predict consecutive missing units, prediction 

accuracy results for Scenario 1, Scenario 2, and Scenario 3, starting at hours after 10 AM 

such as 11 AM, noon, 1 PM, 2 PM etc. are also compared using statistical test.  

Experiment Design 2: For the second objective, testing the univariate and 

multivariate model prediction performance when traffic demand pattern differs from the 

typical traffic pattern, the prediction accuracy is measured for May 27th, 2019. The atypical 

traffic pattern is hypothesized to be a result of Federal holiday (Memorial Day). This can 

be observed in the complete time series plots shown previously in Figure 53, Figure 54, 

and Figure 55.  

Experiment Design 3: The third objective, explores the impact simulation generated 

performance measures of univariate and multivariate time series predictions, for a regular 

day and a day with unexpected traffic conditions. The PM peak hours (3 PM to 6 PM) for 

two traffic day scenarios are simulated: typical Monday (March 18th, 2019) and holiday 

Monday (May 27th, 2019, Memorial Day). For each of the two traffic scenarios three sets 

of simulation runs are conducted, where at three approaches (State St. NW EB, Connector 

SB, and Peachtree St. SB) three different sets of traffic volume values are utilized: 1) base 

traffic condition – non-imputed/original traffic volume data, 2) univariate model 

imputations, and 3) multivariate model imputations traffic data. For each of the three traffic 
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data scenarios at the six detectors, for each of the traffic day scenarios (regular Monday 

and holiday Monday) ten replicate simulation trials are run. The impact of utilizing a 

multivariate model over univariate model for imputations on a regular Monday and holiday 

Monday on travel times at selected routes in the corridor is evaluated. The next section 

presents results of the three experiments.   

5.4 Results and Discussion 

Prior to showing the results for the three experiments, the behavior of the models 

is shown when predicting only the next step. This is done by executing the model to predict 

next volume data at every time step of the validation data set using actual historic data of 

window size length as inputs. For example, the first prediction is made at midnight (start 

of validation set) using last window size length of data observed on previous Monday. The 

process of using previous actual historic data as input is applied at every step of the 

validation set.  

5.4.1 Model Validation - One- Step Prediction Accuracy Results 

One-step prediction results for the developed multivariate and univariate time series 

models at the six detectors are obtained. Results for three detectors are presented in Figure 

59. Predictions are plotted in Green and actual detector data in Blue. For multivariate 

prediction plots, the time series data from the similar detector is shown in Orange. 
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Figure 59 – Univariate and multivariate one-step prediction results for State-EB-L_1, 

State_EB-L_2, and Connector-SB-L_1. (mae refers to mean absolute error) 

It is observed in the plots that both univariate and multivariate deep RNN models 

provide one-step predictions that captures the traffic volume pattern on typical days much 

more accurately than on atypical day. Three different measure of errors of the multivariate 

and univariate time series imputation predictions with respect to actual data are evaluated. 

These are: mean absolute error (mae), root mean squared error (rmse), and standard 

deviation of error (std. dev of errors). Table 6 summarizes the time series prediction 
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accuracy errors of univariate and multivariate model performance for the six detectors on 

typical day and atypical day.  

Table 6 – Model Validation Results: One-step prediction accuracy measures. 

Model Type Approach Lane Typical Days Atypical Day  

  
mae rmse Std. 

dev 
mae rmse Std. 

dev  

Univariate State-EB-L_1 *3.82 *5.20 *5.18 7.86 11.04 9.48 

Multivariate State-EB-L_1 4.93 7.06 6.82 *4.50 *5.65 *4.76 

Univariate State-EB-L_2 *3.94 *5.47 *5.44 *6.24 *8.47 *7.26 

Multivariate State-EB-L_2 5.83 7.83 7.77 9.18 11.74 8.42 

Univariate Connector-SB-L_1 *6.95 *9.70 *9.60 *7.51 *9.96 *9.80 

Multivariate Connector-SB-L_1 8.66 11.40 11.39 17.86 24.61 20.76 

Univariate Connector-SB-L_2 *7.24 *10.20 *10.05 *7.26 *9.39 *9.36 

Multivariate Connector-SB-L_2 8.53 11.58 11.56 9.60 11.97 11.73 

Univariate Peachtree-SB-L_1 *5.25 *6.78 *6.78 *6.71 *8.08 *7.16 

Multivariate Peachtree-SB-L_1 6.02 7.88 7.81 7.22 9.51 9.28 

Univariate Peachtree-SB-L_2 *4.87 *6.25 *6.24 *3.98 *5.22 *4.96 

Multivariate Peachtree-SB-L_2 5.47 7.08 7.08 5.77 7.21 5.67 

In Table 6, the lower accuracy measures among univariate and multivariate model 

one step prediction performance on typical days and atypical day is marked with an asterisk 

(*). Results obtained indicate more accurate predictions by trained univariate model than 

multivariate model on typical day traffic pattern and atypical day traffic pattern for all cases 

except for State-EB-L_1 where multivariate model provides more accurate predictions than 

univariate on atypical day. Univariate models are trained to predict next-step volumes using 

historic traffic volume data at the detector that is modeled while multivariate models are 

trained to predict volumes using historic data at the modeled detector and at another 

detector that has similar traffic pattern. Better performance of univariate model could be 
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due to its’ closeness in mapping next step data with historic data at the detector. The 

additional input of historic data from another detector with similar pattern in multivariate 

model seems to be weakening the mapping. This could be because although the time series 

are similar they might not be as well matched to enhance the multivariate model 

performance over the univariate model for such a short gap. The lower prediction accuracy 

of the multivariate models may also be an indication of a weak correlation or noise between 

the given detector and selected similar detector. In particular, it is plausible on the atypical 

day the two detectors are not well correlated, while the correlation is stronger on a typical 

day. A need to inspect the relationship between the similarities between the inputs to the 

multivariate models and the model performance is noted for future investigation. Among 

model performances for all detectors on typical and atypical days, multivariate model 

performance at Connector-SB-L_1 on atypical day observes a much higher error than 

univariate model. Multivariate model performance at Connector-SB-L_1 is investigated 

further as part of Experiment 1 in the next subsection. However, it is also noted that the 

maximum difference in error measures for univariate and multivariate model performance 

for all detectors except Connector-SB-L_1 is 2.94 for mae and 3.27 for rmse, indicating 

the difference between univariate and multivariate model performances is practically 

minimal.  

5.4.2 Experiment 1 

The performance of the multivariate and univariate model predictions for four set 

of consecutive data gaps on typical day validation data set starting at 100th time step (i.e., 

10 AM) are tested at the six detectors. Figure 60, Figure 61, and Figure 62 show the five 

prediction sets for detector State-EB-L_1, Connector-SB-L_1, and Peachtree-SB-L_2.   
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Figure 60 – Univariate and multivariate model predictions at State-EB-L_1 for five 

missing unit scenarios where, multivariate model inputs are State-EB-L_1 and 

Luckie-EB-L_1. 
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Figure 61 – Univariate and multivariate model predictions at Connector-SB-L_1 for 

five missing unit scenarios where, multivariate model inputs are Connector-SB-L_1 

and Juniper-WB-L_1. 
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Figure 62 – Univariate and multivariate model predictions at Peachtree-SB-L_2 for 

five missing unit scenarios where multivariate model inputs are Peachtree-SB-L_2 

and State-WB-L_3. 
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It is observed from the error measures for State-EB-L_1, Connector-SB-L_1 and 

Peachtree-SB-L_2 (in Figures 60, 61, and 62) that the multivariate model provides higher 

prediction accuracy for the longer missing units scenario of 380 (38 hours) of data gap in 

comparison to univariate model predictions. For shorter missing data period, i.e., 30, 80, 

and 120 (3, 8, and 12 hours), the univariate and multivariate models have similar 

performance. Similar results were also observed for models at other detectors. Table 7, 

Table 8, and Table 9 present a summary of the univariate and multivariate model prediction 

performance results for the four missing unit prediction scenarios at these same locations: 

State-EB-L_1, Connector-SB-L_1, and Peachtree-SB-L_2. In Tables 7, 8 and 9, the model 

with higher accuracy results is italicized and marked with an asterisk symbol (*). 

Table 7 – Performance measures of multivariate and univariate model for State-EB-

L_1. Model with higher accuracy results is italicized and marked with an asterisk 

symbol (*) 

State-EB-L_1 Prediction Units mae rmse std. dev 

*Univariate 30 4.13 5.18 4.83 

Multivariate 30 4.90 6.30 6.13 

*Univariate 80 4.46 5.61 5.46 

Multivariate 80 5.09 6.50 6.48 

*Univariate 120 4.31 5.30 5.30 

Multivariate 120 4.38 5.73 5.72 

Univariate 380 5.56 7.79 7.76 

*Multivariate 380 5.10 6.91 6.67 
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Table 8 – Performance measures of multivariate and univariate model for Connector-

SB-L_1. Model with higher accuracy results is italicized and marked with an asterisk 

symbol (*) 

Connector-SB-L_1 Prediction Units mae rmse std. dev 

Univariate 30 7.92 9.63 8.28 

*Multivariate 30 7.29 9.27 7.75 

Univariate 80 7.53 9.23 8.43 

*Multivariate 80 7.12 8.87 8.85 

Univariate 120 9.15 11.55 10.21 

*Multivariate 120 7.67 10.01 9.76 

Univariate 380 13.41 17.54 17.05 

*Multivariate 380 7.96 10.68 10.65 

 

Table 9 – Performance measures of multivariate and univariate model for Peachtree-

SB-L_2. Model with higher accuracy results is italicized and marked with an asterisk 

symbol (*) 

Peachtree-SB-L_2 Prediction Units mae rmse std. dev 

*Univariate 30 5.78 6.82 6.82 

Multivariate 30 6.05 7.23 7.18 

*Univariate 80 5.73 7.22 7.01 

Multivariate 80 6.10 8.00 7.77 

*Univariate 120 5.67 7.12 7.07 

Multivariate 120 5.76 7.51 7.36 

Univariate 380 13.62 16.92 16.76 

*Multivariate 380 7.53 9.82 9.16 

Table 7, 8 and 9 confirm the results from the visual inspection of the figures. Similar 

findings were obtained for univariate and multivariate model performances at State-EB-

L_2 and Connector-SB-L_2. At Peachtree-SB-L_1 although a high difference in 

multivariate and univariate model prediction performance is not observed in the error 

measures of mae, rmse, and std. dev, the multivariate model prediction are visually 
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observed to capture the traffic trend better than univariate model predictions, shown in 

Figure 63.  

 

Figure 63 – Performance of univariate and multivariate model at Peachtree-SB-L_1 

to predict 380 consecutive data units at 10 AM. 

For longer consecutive data predictions (more than 80 or 100 units missing) the 

univariate model uses relies more, and then entirely, on predicted values as input, as the 

window size is less than the gap. Whereas in comparison, the multivariate model also relies 

on predicted values for the detector with missing data; however, it also receives field values 

from the additional detector input. The difference in the univariate and multivariate model 

prediction errors is less for shorter consecutive data loss scenarios as some field data will 

always be included in both. Thus, as seen, for typical traffic, for all six detectors, 

multivariate model predictions outperform univariate model predictions for the 380 

missing units but neither approach is clearly dominate for shorter data gaps.  

5.4.2.1 Univariate and Multivariate Model Performance Dependency on Data Gap Start 

Time  

To obtain more evidence on univariate and multivariate model performance the 

models are run for different start times of the data gap. That is, all results thus far have 
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assumed the data gap started at 10AM. Performance is now observed for start times 

incremented over a 24 hour period, i.e., 10 AM, 11 AM, Noon, 1 PM, 2 PM etc. Error 

accuracy measures mae, rmse, and std. deviation of errors, are obtained for data gap 

scenarios of 30, 80, and 120. With two typical days (480 data points) in validation set, a 

similar set of values could not be obtained for the 380 missing data scenario as at 10 AM 

(100th unit) only one set of prediction can be performed, obtaining values from the 100th to 

479th unit. With more typical day validation data, a similar test for longer consecutive data 

prediction scenarios can be performed in future research to confirm the findings under 

longer data gap scenarios. Figure 64 shows the mae values obtained for the three prediction 

scenarios by the multivariate and univariate models, starting at different time unit of the 

typical day validation data for State-EB-L_2.  
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Figure 64 – Mean absolute error measures of univariate and multivariate prediction 

performance at State-EB-L_2 for 30, 80, and 120 data gaps, starting at different times 

of typical day validation set. 

While there is some variability in absolute values of mae seen in the previously 

discussed 10AM scenarios, lesser or similar values are generally observed for the 

multivariate compared to the univariate model for 80 and 120 consecutive unit prediction 

scenarios, with some limited exceptions. The mae values are also mostly comparable for 

different start times for 30 consecutive unit prediction scenario. Figure 65 shows mae 

values obtained for Peachtree-SB-L_1. The highest error values are observed from the 

univariate model for prediction scenarios 80 and 120. For prediction scenario of 30 units 

the highest error value is from multivariate model at starting time 220 units or 8 PM. Except 

for this point, visually error measures for both univariate and multivariate seem comparable 

for 30 missing unit prediction scenarios. 
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Figure 65 – Mean absolute error measures of univariate and multivariate prediction 

performance at Peachtree-SB-L_1 for 30, 80, and 120 data gaps, starting at different 

times of typical day validation set. 

As seen above, and for those detectors not shown, except State-EB-L_1 (Figure 

66), the mae values obtained using multivariate and univariate are mostly comparable with 

some limited exceptions. (A non-parametric hypothesis test is conducted in the next 

subsection that explores the significance of the differences between the approaches.) 

However, at State-EB-L_1 the values are also similar, except for two somewhat extended 

periods (in the 80 and 120 scenarios) where the univariate model mae is consistently lower 

than that from multivariate model, as shown in Figure 66. It is believed that this may result 

from a lack of similarity in pattern of the additional input time series to the actual detector, 

resulting in weaker performance than univariate model. In addition, other issues, such as 

enhanced by tuning hyper parameters, may be a contributing factor. These potential will 

be further explored as part of future research.  
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Figure 66 – Mean absolute error measures of univariate and multivariate prediction 

performance at State-EB-L_1 for 30, 80, and 120 data gaps, starting at different times 

of typical day validation set. 

5.4.2.2 Wilcoxon’s Signed Rank Sum Test Results 

Wilcoxon’s Signed Rank Sum Test is non-parametric test for paired samples [189]. 

Two sets of the Wilcoxon’s Signed Rank Sum Test are conducted. First, a two-tailed 

Wilcoxon’s Signed Rank Sum test of the hypothesis that the multivariate model predictions 

and univariate model predictions are comparable. Second a one-sided Wilcoxon’s Signed 

Rank Sum test to further explore the hypotheses that the multivariate prediction errors are 

less than univariate prediction errors. The two tests are conducted for the six detectors for 

the three error measures (mae, rmse, and std. dev. of errors) for three scenarios – 30, 80, 

and 120, where the error value from univariate prediction and multivariate prediction for 

same starting unit are considered as the paired sample. Thus, a total of 54 tests (6x3x3) are 

conducted for each of the two hypothesis tests.  
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For first test (two-sided), the null hypothesis is that the median difference between 

pairs of observations (univariate and multivariate model prediction errors) is zero and 

alternate hypothesis is that the median difference between pairs of observation is not zero. 

The test is conducted for significance level 0.05. Hence, a p value less than 0.05 will imply 

sufficient evidence to reject null hypothesis. For second test (one-sided), alternate 

hypothesis is that the median difference between two samples (univariate model prediction 

error – multivariate model prediction error) is greater than 0 implying multivariate models 

performs better than univariate models. The null hypothesis for this test is that the median 

difference between the two samples is not greater than 0. Similar to first test, the 

significance level used for this test is also 0.05. Table 10 provides summary of p-values 

obtained on conducting the two tests.  
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Table 10 – P value from two-sided and one-sided Wilcoxon’s Signed Rank Sum Test. 

P values less than 0.05 are marked using  asterisk (*). (RN – Reject Null Hypothesis) 

Detector missing 

units 

Two-sided test  One-sided test (greater) 
 

mae rmse std. 

dev 

 mae rmse std. 

dev 

 

State-EB-L_1 30 *0.01 *0.00 *0.00 RN 1.00 1.00 1.00  

State-EB-L_1 80 *0.01 *0.00 *0.00 RN 0.99 1.00 1.00  

State-EB-L_1 120 *0.00 *0.00 *0.01 RN 1.00 1.00 1.00  

State-EB-L_2 30 0.71 0.47 0.01  0.64 0.76 0.99  

State-EB-L_2 80 0.09 0.11 0.57  0.05 **0.01 0.71 RN 

State-EB-L_2 120 *0.01 *0.01 0.25 RN **0.00 **0.00 0.12 RN 

Connector-SB-L_1 30 0.39 0.77 0.52  0.80 0.62 0.74  

Connector-SB-L_1 80 0.14 *0.00 0.05 RN 0.07 **0.00 **0.03 RN 

Connector-SB-L_1 120 0.37 *0.00 0.08 RN 0.18 **0.00 **0.04 RN 

Connector-SB-L_2 30 0.36 0.53 0.07  0.82  0.73 0.97  

Connector-SB-L_2 80 0.15 0.14 0.42  0.08 0.07 0.21  

Connector-SB-L_2 120 *0.02 *0.01 *0.03 RN 0.01 **0.01 **0.04 RN 

Peachtree-SB-L_1 30 1.00 0.87 0.57  0.50 0.43 0.28  

Peachtree-SB-L_1 80 0.25 0.48 0.36  0.88 0.76 0.18  

Peachtree-SB-L_1 120 0.77 0.55 0.65  0.39 0.28 0.33  

Peachtree-SB-L_2 30 0.59 0.45 0.77  0.71 0.77 0.62  

Peachtree-SB-L_2 80 0.73 0.49 0.13  0.63 0.75 0.06  

Peachtree-SB-L_2 120 0.39 0.32 *0.03 RN 0.20 0.16 **0.01 RN 

The two-sided test indicates the rejection of null hypothesis for the three scenarios 

of State-EB-L_1. This was expected as the univariate model prediction errors were 

observed similar or lower than multivariate (shown in Figure 66). For remaining five 

detectors, the null hypothesis is rejected for State-EB-L_2 (120 unit only), Connector-SB-

L_1 (80 and 120 units), Connector-SB-L_2 (120 unit only), and Peachtree-SB-L_2 (120 
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unit only). Rejection of null hypothesis favors the alternate hypothesis that for these cases, 

the median difference between univariate and multivariate errors are not 0. For the all 

remaining cases, the results show the mean difference between univariate and multivariate 

prediction errors are comparable. It is noted that, the statistical test results indicate a 

significant median differences in univariate and multivariate prediction errors for 80 or 120 

unit prediction scenario and not the 30 unit prediction scenario (except State-EB-L_1). This 

supports that for shorter data gaps (i.e., 30), and many of the medium (i.e., 80 and 120), 

that the univariate and multivariate model performances are comparable.  

Where the one-sided test results rejects the null hypothesis in favor of alternate 

hypothesis it implies a higher error measure from univariate model predictions compared 

to multivariate model predictions, indicating better performance of multivariate model for 

predictions. The null hypothesis is rejected for State-EB-L_2 (i.e., 80 and 120), Connector-

SB-L_1 (i.e., 80 and 120), Connector-SB-L_2 (i.e., 120) unit prediction, and Peachtree-

SB-L_2 (i.e. 120). The results confirm the hypothesis that multivariate model is often 

observed to perform better than univariate model for longer unit predictions.  

5.4.3 Experiment 2 

The performance of the multivariate and univariate model predictions to predict 

missing data when the traffic pattern is atypical is tested in this experiment. Multivariate 

and univariate model prediction results are given for May 27th, 2019. Table 11 presents a 

summary of the findings for all 6 detectors. Figure 67 and Figure 68 present plots for 

multivariate and univariate model predictions obtained for the entire day of 27th May 2019 

at the six detectors. The blue data points show the actual detector data for the Monday, 
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May 27th atypical traffic pattern. Predictions are made for this day using both multivariate 

and univariate models.  

 

Figure 67 – Multivariate and univariate model prediction performance for a Monday 

with non-regular traffic pattern for the detectors at Peachtree St. SB approach. 
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Figure 68 – Multivariate and univariate model prediction performance for a Monday 

with non-regular traffic pattern for the detectors at State St. NW EB and Connector 

SB approach. 
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Table 11 – Performance measures of multivariate and univariate model on atypical 

day for six approaches 

Model Type Approach mae rmse Std. dev 

Univariate State-EB-L_1 11.41 15.70 11.88 

*Multivariate State-EB-L_1 4.62 5.92 5.19 

Univariate State-EB-L_2 13.08 17.89 12.94 

*Multivariate State-EB-L_2 9.20 11.71 8.73 

*Univariate Connector-SB-L_1 14.26 22.38 20.72 

Multivariate Connector-SB-L_1 17.83 23.85 19.38 

Univariate Connector-SB-L_2 17.26 23.74 23.21 

*Multivariate Connector-SB-L_2 12.47 14.78 14.49 

Univariate Peachtree-SB-L_1 16.84 20.46 16.12 

*Multivariate Peachtree-SB-L_1 7.06 8.89 8.86 

Univariate Peachtree-SB-L_2 13.84 17.79 14.32 

*Multivariate Peachtree-SB-L_2 10.74 15.12 11.75 

Comparing the performance measures of prediction accuracies, it is observed that 

multivariate model provides better predictions than the univariate model at five of six 

studied detectors – State-EB-L_1, State-EB-L_2, Peachtree-SB-L_1, Peachtree-SB-L_2, 

and Connector-SB-L_2. At Connector-SB-L1 univariate model provides better prediction 

accuracy measure. Although based on observation of Connector-SB-L_1 plots in Figure 

68, the predictions of univariate model doesn’t seem significantly more accurate than 

multivariate model predictions. The margin by which error values for multivariate model 

predictions are greater than univariate model predictions are 3.57 (mae), 1.47 (rmse), and 

-1.34 (Std. dev.). It is hypothesized that the weak performance of multivariate model could 

be because of over fitting on typical day patterns. Another set of univariate and multivariate 

models are trained for this detector with a less deep RNN model (2 layers are reduced from 

original) with an aim to reduce overfitting. Figure 69 shows the results obtained for the 

new set of multivariate and univariate model performance on atypical day consecutive 

missing unit predictions.  
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Figure 69 – Multivariate and univariate model prediction on atypical day for 

Connector-SB-L_1 when trained on less deep network. 

The new multivariate model for Connector-SB-L_1 provides improved 

performance for predictions on the atypical day compared to the original multivariate 

model. The performance is also better compared to the new and old univariate model 

prediction results indicating that hyper parameter tuning can improve multivariate model 

performance. A better predication performance of multivariate model over univariate 

model at other five detectors could be due to the additional information input model obtains 

from the other active detector.  

5.4.4 Experiment 3 

This experiment is conducted to investigate the impact of utilizing multivariate and 

univariate volume imputations input on vehicle travel times generated by the North Avenue 

Digital Twin on a regular Monday and on a holiday Monday with an atypical traffic pattern. 

Nine routes in the simulated corridor are selected to evaluate the impact on vehicle travel 

times. Figure 70 shows the nine routes along with their assigned route numbers. Six of the 

nine routes are on mainline, three in eastbound direction (Routes: 59, 60, and 57) and three 

in westbound direction (Routes: 61, 62, and 58).  The remaining three routes are on entry 
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points in the model: Route no. 75 at State St. NW EB, Route no. 84 at Connector SB, and 

Route no. 19 at Peachtree St. NE EB. 

 

Figure 70 – Corridor Travel time routes. 

For the two traffic scenarios, Monday, March 18th, 2019 (typical), and Monday, 

May 27th 2019 (atypical, i.e. holiday), the impact of data gap imputations during the three-

hour PM peak (3PM to 6PM) are evaluated for the nine selected routes. The scenarios are 

run on the developed Digital Twin model. A three hour data gap is assumed at the three 

approach entry points listed above. A base day is also run with original data inputs for both 

days. The only difference between the base day and the multivariate and univariate 

imputation scenarios is the traffic imputation at the three selected approaches.  

5.4.4.1 Base traffic data  

The base day data for March 18th and May 27th, 2019 include volume data received 

from the 147 detectors and signal stream data received from the fifteen intersections. 
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However, as there were no days with 100% data the base data did require some infill prior 

to running the experiments. As previously discussed, 29 detectors are found to be inactive 

(Figure 15 in Chapter 4). Gaps in signal data streams were also observed. For March 18th, 

2019, volume estimations at the 29 detectors were based on online traffic data sources: the 

Automated Traffic Signal Performance Measures (ATSPM) system and available field 

collected counts. Signal imputations were made to replicate the phase timings of previous 

available signal cycles. Additional details of the data gaps observed and estimation 

methodology to create the complete March 18th base day can be found in Chapter 4. To 

create the May 27th base day similar volume estimation methodologies were utilized. Due 

to unavailability of the signal data streams on the chosen study day of holiday Monday – 

27th May 2019, actuated signal control data for PM peak is emulated in the simulation 

model utilizing PTV’s Vissim 9.00-08 Ring Barrier Controller feature.  

5.4.4.2 Data imputation 

For the univariate and multivariate model imputed data scenarios the volume input 

data is predicted at the six detectors associated with the three approaches as discussed in 

section Experimental Design. For multivariate and univariate model imputed data 

scenarios, a data gap for the entire simulation period of three hours is assumed at the three 

approaches. Ten replicate trials are run for each of the three scenarios, for each of the two 

Mondays.  

5.4.4.3 Results 

Deep RNN univariate and multivariate models developed for each of the six 

detectors are used to predict volume values for 30 consecutive missing units starting at 3 
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PM for the typical Monday (March 18th) and atypical Monday (May 27th). Table 12 

presents the summary of performance error measures for the univariate and multivariate 

model predictions on both Mondays.  

Table 12 – Error measures for univariate and multivariate model predictions for 30 

consecutive units on March 18th and May 27th starting at 3 PM. (An asterisk 

indicates lower error values among the two model types on typical day predictions 

and two asterisk indicate lower values among the two model types on atypical day 

predictions.) 

Detector Model Type March 18th 

(Typical Day) 

May 27th (Atypical 

Day) 

mae rmse Std. 

dev 

mae rmse Std. 

dev 

State-EB-L_1 Univariate 5.2 6.3 6.3 20.6 22.7 9.6 

State-EB-L_1 *Multivariate** 5.0 6.1 6.1 5.2 6.1 4.0 

State-EB-L_2 *Univariate 4.8 6.0 6.0 32.0 33.1 8.4 

State-EB-L_2 Multivariate** 5.4 7.24 7.2 16.4 18.2 7.8 

Connector-SB-L_1 Univariate 32.1 38.3 21.5 40.5 42.9 16.1 

Connector-SB-L_1 *Multivariate** 19.4 26.2 20.7 7.0 8.2 8.0 

Connector-SB-L_2 *Univariate** 8.7 11.1 10.7 12.2 15.0 13.0 

Connector-SB-L_2 Multivariate 10.0 12.8 12.8 23.1 25.1 9.8 

Peachtree-SB-L_1 *Univariate** 6.4 8.6 7.4 9.2 11.1 8.1 

Peachtree-SB-L_1 Multivariate 7.2 8.6 7.8 9.8 11.3 7.9 

Peachtree-SB-L_2 *Univariate** 6.9 8.4 7.5 4.6 6.0 5.6 

Peachtree-SB-L_2 Multivariate 8.3 10.6 8.0 12.5 13.3 5.1 

From experiment 1, it is observed that that multivariate and univariate predictions 

tend to be similar on typical day, especially for short 30 consecutive units predictions. This 

observation is seen with March 18th 30 unit prediction performance in Table 12.  

For the atypical day, on State-EB-L_1, State-EB_L_2 and Connector-SB_L_1, the 

multivariate model errors are clearly lower than univariate model prediction errors, as 

expected from experiment 2. At Peachtree-SB-L_1, the error values of univariate and 
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multivariate model predictions on the atypical day are comparable. Figure 71 and Figure 

72 show the predictions by univariate and multivariate models of the typical and atypical 

day for 30 consecutive units starting at 3 PM for Connector-SB-L_1 and Connector-SB-

L_2.  

 

Figure 71 – Univariate and multivariate model predictions for Connector-SB-L_1 for 

30 consecutive units starting at 3 PM on a typical Monday (March 18th) and an 

atypical Monday (May 27th). 
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Figure 72 – Univariate and multivariate model predictions for Connector-SB-L_2 for 

30 consecutive units starting at 3 PM on a typical Monday (March 18th) and an 

atypical Monday (May 27th). 

At Connector-SB-L_2 and Peachtree-SB-L_2, for the atypical day univariate model 

prediction errors are observed to be lower than multivariate model prediction errors. This 

is partially due to the shorter data gap.  For instance, for longer gaps, such as 90 units (i.e. 

9 hours) the multivariate model would outperform the univariate model at Peachtree-SB-

L-2.  However, as seen in Figure 73, one reason for the weaker performance of the 

multivariate model in comparison to the univariate model is a poor correlation between the 

traffic pattern on the additional detector and the Connector-SB-L-2 detector. This raises an 

interesting possibility that detectors that are reasonably correlated under typical conditions 

may not be well correlated under atypical conditions. Future investigations will include, 

additional atypical training data, tuning hyper parameters to avoid overfitting and to 
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achieve better optimization, and performing tests on more atypical day validation data to 

obtain robust results.  

 

Figure 73 – Univariate and multivariate model predictions for Connector-SB-L_2 for 

90 consecutive units (i.e., 9 hours) starting 3 PM on atypical Monday (27th May). 

The implemented Vissim vehicle input allows for vehicle volume input at the 

approach rather than per lane level. Hence, to feed the detector volume data into the 

simulation model, the volume data at the lane level is aggregated to obtain bin wise volume 

input data for the three approaches: State St. EB, Connector SB, and Peachtree St. SB. 

Approach level volume input for 3-6 PM for the base case (actual data), multivariate model 

predictions case, and univariate model predictions case for the typical and atypical days for 

Connector SB and Peachtree St. SB are shown in Figure 74 and Figure 75.  
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Figure 74 – Approach volume for base case, multivariate model, and univariate model 

for 3-6 PM on typical day and atypical day at Connector SB. 

 

Figure 75 – Approach volume for base case, multivariate model, and univariate model 

for 3-6 PM on typical day and atypical day at Peachtree St. SB. 

Figure 76 shows plots for the volumes generated in simulation model at Connector 

SB for the 10 replicate base case, multivariate, and univariate trials, for the typical and 

atypical scenarios. In the Vissim implementation, binned volumes (six minute bins) are 

provided as input at six minute intervals. Vissim generates the assigned count of vehicle 

input in the six minute interval, unless the link is oversaturated. The replicate trials differ 

in the generated distribution of vehicle arrival times over the six minute intervals. A very 

low difference between the number of vehicles generated and assigned vehicle inputs per 

six minute interval suggests under-saturated traffic conditions at this entry approach on the 



  

 168 

typical and atypical days. Vehicle input volume for most six minute bins in multivariate 

and univariate predictions case for the atypical day is higher than the base case, as seen in 

Figure 74. However, this volume is processed in the simulation network as seen in Figure 

76, suggesting under-saturated condition at this approach for multivariate and univariate 

predictions cases as well. Figure 74 and Figure 76 also highlight the smoothing effect of 

the univariate and multivariate models, with the base data having much more variability 

between six-minute intervals. Figure 76 also verifies the execution of the simulation 

scenarios to some extent. A similar trend is observed at the State St. EB approach 

suggesting under saturated conditions at this approach for all three cases of the two 

scenarios.  
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Figure 76 – Typical and atypical day volume count for each of 30 six-minute bins in 

the simulation period of three hours for 10 replicate trials at Connector SB on base 

case, model, and multivariate model scenarios. 

At the Peachtree St. SB approach, this trend of a very low difference in vehicle 

volumes generated in Vissim and vehicle volume input assigned in all 10 replicate trials is 

observed in the atypical day scenario. However, for the typical day scenario volume counts 

generated in Vissim vary from the assigned input volume for most of the bins, as shown in 

Figure 77. Variation in six-minute bin volumes between different replicate trials in base 

case scenario suggests that this approach operates near saturation state in the PM peak 

period of the typical day. This trend is not observed on the atypical day due to lower 
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volumes (refer Figure 75). The near saturated condition on the side street approach of 

Peachtree St. SB could be due to high traffic volume on the mainline during the PM peak 

period. In Figure 75 it can also be seen that the multivariate predictions for volumes are 

higher than the base case on typical day. This leads to variations in volumes generated in 

Vissim for the multivariate predictions case (Figure 77). Much less variation in the 

generation of traffic volumes is observed in the univariate predictions scenario (Figure 77). 

This is likely due to lower volume predictions from the univariate model relative to the 

multivariate model and base case (Figure 75).  
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Figure 77 – Variation in simulation generated Peachtree St. SB approach typical day 

volumes in the six-minute bins between different replicate trails for the three cases: 

base, univariate model, and multivariate model. 

Figure 78 presents box plots of the 85th percentile travel times obtained from the 

replicate trials at the nine routes for the three data input scenarios for Monday, March 18th 

(typical) and Monday, March 27th (atypical, holiday).  
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(a)  

 

(b) 

Figure 78 – Boxplots showing variation in 85th percentile travel time at the nine study 

routes for base data and univariate and multivariate model imputed data for (a) 

Monday March 18th (typical) and (b) Monday, March 27th (atypical, holiday). 

 



  

 173 

It is observed that for both the typical and atypical scenarios, vehicle travel times 

generated at the studied routes for the multivariate imputed data scenario is closer to that 

of the base day data than the univariate imputed data scenario. A lesser variation in the 

travel time values is observed at the routes for the data input scenarios for the atypical 

holiday traffic than the typical traffic. Lesser overall traffic volume on base day of holiday 

Monday in comparison to regular Monday could have contributed to this lack of variation. 

On the atypical day, the univariate model prediction case has a higher volume for most six 

minute bins than base case and the multivariate prediction case at both State St. SB (Figure 

79) and Connector SB (Figure 74). The increased volumes at Connector SB for the atypical 

univariate prediction scenario are comparable to the base case volumes on the typical 

Monday and the increased volume at State St. EB for the atypical univariate prediction 

scenario is higher than the typical Monday scenarios. However, this increase of volume at 

only two approaches on the atypical day might not be sufficient to create traffic volume 

that leads to as much traffic flow and travel time on mainline approach as it is observed for 

typical Monday.  
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Figure 79 – Approach volume for base case, multivariate model predicted case, and 

univariate model predicted case for 3-6 PM on typical day and atypical day at State 

St. EB. 

With increased volumes for univariate volume predictions on the atypical day it is 

expected to see more variation in the travel time or higher travel times on the State St. EB 

and Connector SB approach routes (Routes 75 and 84). However, only minor differences 

in travel time values or variation is observed (Figure 78). This could be because the 

increased vehicle volumes are processed on these side street routes, as suggested from the 

simulation volume plot for State St. EB in Figure 80 and for Connector SB in Figure 76. 

However, this increase might be a factor in the increased travel time for the univariate 

model prediction scenario compared to base volume on Eastbound and Westbound 

mainline Routes of 57, 58, 59, and 60 for the atypical day scenario (different from trend 

observed for the typical day case where the base case and multivariate travel time are more 

than the univariate prediction scenario travel times).  
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Figure 80 – State St. EB approach atypical holiday traffic variation in simulation 

generated volumes in the six minute bins between different replicate trails for the 

three cases: base, univariate model, and multivariate model. 

For several routes the variation in travel time is low relative to the other routes. 

This is likely a result of demands sufficiently below capacity that errors in volume 

imputation have minimal impact on travel time. This implies that the likelihood of 

multivariate imputations resulting in more accurate travel time estimates that univariate 

imputations is more significant for some routes than others. For example, for Routes 57, 

59, 60 (Eastbound routes) and 58 (Westbound) route, for both the typical and atypical 

traffic, the travel time differences are obvious through visual inspection. Here, the vehicle 

travel times for the multivariate model imputed data scenario are closer to the base day 

scenario than the univariate model imputed data scenario. While for Westbound routes (61, 

62) and entry routes Connector SB (84) and State St. NW EB (75) the differences in vehicle 
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travel times appear quite small. At Route 19, Peachtree St. NE SB side-street, there are 

observable travel time differences for the three scenarios under typical conditions; 

however, minimal differences under the atypical holiday conditions. Investigation of the 

simulation volume counts at Peachtree St. NE SB for a typical Monday show that this street 

observes a saturated traffic state (operates at over capacity conditions) for the base day PM 

peak hour while under the atypical holiday conditions this approach is under capacity. 

While on the other entry approaches (Connector SB and State St. NW EB) both typical and 

atypical holiday traffic was under capacity. As expected, it is seen that as demand 

approaches or exceed capacity the impact of errors in volume imputations are magnified.  

A higher variation in vehicle travel times for the base day on a typical Monday could 

also be due to higher fluctuations in volume counts across 6-minute bins compared to 

multivariate imputed and univariate imputed bin values which were smoothed, as shown 

in Figures 74, 75, and 79. The variation in volume across bins on base day is common for 

the typical and atypical day scenarios; however, higher values on typical day can make the 

model more sensitive to travel times on congested mainline routes.  

The results indicate that the impact of error in volume predictions is more focused 

on congested routes, with travel time estimates on the atypical day is greater for the 

univariate predictions scenario compared to multivariate predictions. While the impact is 

not significant on the routes that are less congested and possess the capacity to process the 

increased volumes. However, the additional volume could impact travel time estimates for 

a downstream congested portion.  
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5.5 Conclusion  

Multivariate models can use information from more than one detector time series 

to provide predictions, thus, indicating a potential of providing accurate estimations even 

when there are changes in traffic pattern. Towards this, this effort investigates two research 

objectives: 1) development of multivariate and univariate deep LSTM RNN models to 

impute data gaps in volume time series data and 2) impact of the multivariate and univariate 

model imputations on Digital Twin generated travel time values.  

Univariate and multivariate predictive models are developed using deep Bi-

directional LSTM RNN layers for the six studied detectors. In experiment 1, the ability of 

the developed multivariate and univariate deep RNN models to impute typical day volumes 

for four data gap scenarios is tested: 30 intervals (3 hours), 80 (8 hours), 120 intervals (12 

hours), and 380 intervals (38 hours). Through visual inspection of the results it was seen 

that for the shorter gap scenarios (i.e., 30 and 80 intervals) neither model proved 

consistently superior; however, the multivariate model did provide generally better 

performance than the univariate model in the long gap scenarios (i.e., 120 and 380 

intervals). The hypothesis that deep RNN multivariate model can provide more accurate 

predictions over the univariate model, under typical conditions, is tested using Wilcoxon’s 

Signed Rank Sum non-parametric statistical test. The test is conducted for three 

consecutive prediction scenarios: 30, 80, and 120 intervals. A two-tailed test is conducted 

to test the null hypothesis that there is no significant difference in the median prediction 

errors provided by multivariate and univariate model and a one-sided test is conducted with 

the alternate hypothesis that median prediction errors provided by univariate model is 

greater than that provided by multivariate model. Results from the two-sided and one-sided 
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tests indicated no significant difference between median univariate and multivariate 

prediction errors for the 30 unit consecutive prediction scenario. However, the results 

indicated that the median univariate prediction errors were statistically greater than that of 

the multivariate model for the 80 and 120 interval consecutive prediction scenario at 

several detectors. Thus, implying an advantage by the multivariate deep RNN models in 

utilizing additional information from another detector over univariate deep RNN model to 

perform imputations of long consecutive data gaps. However, it was also seen that the 

multivariate model performance would be degraded if the second detector did not correlate 

well with the primary detector. As well, it is believe additional benefits could be achieve 

though fine tuning of model parameters. Further, a dependency of model performance on 

the prediction starting time is also observed from experiment 1, which will need to be 

investigated to increase robustness of model performance. Finally, additional tests on other 

corridors should be conducted to further confirm and define the benefit of utilizing 

multivariate deep RNN model over univariate deep RNN model for time series 

imputations.  

The performance of the developed multivariate and univariate deep RNN models to 

impute data gap were further explored in experiment 2, focusing on an atypical day of 

traffic (holiday Monday, May 27th 2019). At five of the six detectors the multivariate model 

imputations are found to have higher accuracy measures than the univariate model 

imputations. The additional information from the other detector in the multivariate model 

likely enabling better imputation accuracy under atypical traffic conditions. Experiment 2 

results further indicate the potential benefits of a multivariate over a univariate modeling 

approach to impute volumes during unprecedented traffic conditions. However, a need for 
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increased training and validation data for atypical traffic is identified to increase robustness 

of model performance. In addition, the correlation between the detector with the data gaps 

and the second detector is again a potential issue. In particular, it is possible that while the 

two detector are well correlated during typical traffic conditions that the correlation may 

not hold under atypical traffic. Further exploration of the selection correlated detectors, 

under varying conditions, is needed. It is also observed that one of the studied detector 

model’s performance on atypical day improved when trained with lesser number of layers 

to avoid potential overfitting, thus, indicating, hyper parameter tuning can improve model 

performance, which needs to be studied in future. 

In Experiment 3, the impact of multivariate and univariate model imputed data 

streams on the Digital Twin generated travel times at nine selected routes across the North 

Ave. Smart Corridor for a typical Monday (March 18th 2019) and holiday Monday (May 

27th 2019) is evaluated. For the typical and holiday Monday ten replicate trails are run on 

the digital twin for three data input scenarios: base day, multivariate model, and univariate 

model. The results indicate that for both regular Monday and holiday Monday scenarios 

that the vehicle travel time values for multivariate model imputed data are closer to that of 

the base day data than the univariate model imputed data travel time values. In addition, 

during the holiday Monday the univariate model imputations result increased travel times 

over that of the base and multivariate data, for several of the studied routes. This is likely 

a result of the higher prediction values by the univariate model. This further indicates the 

potential benefits of utilizing multivariate imputations, particularly for atypical conditions. 

Next, it was seen that the difference in simulation generated travel times based on the 

univariate and multivariate model and univariate model imputations could vary widely by 
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route. That is, at some routes, the vehicle travel times were similar for both typical and 

atypical conditions; while on other routes (e.g., 57, 58, 59, and 60) the differences in 

vehicle travel times are higher. It is hypothesized that the input data variation impacts on 

performance, due to multivariate and univariate imputations, is greater on comparatively 

congested routes, as there is less leeway to absorb the additional volume into the traffic 

stream. Similarly, a higher variation in travel time is also observed when the path is 

operating at a near saturated traffic scenario. Finally, the observed variation in base day 

travel times under typical conditions is hypothesized to result from input volumes 

fluctuations between consecutive intervals; whereas, the multivariate and univariate 

imputed intervals have a tendency to smooth the input volume variation. This hypothesis 

is not fully studied in this research effort and remains to be investigated in future.  

It is noted that for implementation, if there is a shift in traffic pattern due to an 

event, infrastructural changes, or travel behavior changes, then the deep RNN model will 

need to be re-trained on the recent data pattern to adapt to the changes. Re-training of the 

model might need some amount of hyperparameter tuning, it might still be faster than 

developing an accurate model using a traditional approach. This is not investigated 

however, a potential for such findings is identified as needed future work.  

5.6 Discussion and Future Work  

In this chapter, the ability of univariate and multivariate deep RNN models to impute 

volume time series data is evaluated under different conditions. However, additional 

similar comparative analysis is needed at other detectors and on other corridors to derive 

more generalized conclusions. Further, the developed multivariate deep RNN model 
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performance in this research utilized two input time series. Experiments to evaluate the 

performance of multivariate deep RNN models that utilize more than two detector time 

series data will provide additional insights on the potential benefits of multivariate models. 

In addition, for the multivariate model development the second detector is chosen based on 

hierarchical clustering using DTW distance measures. Several detector time series are 

classified in a cluster and a detector from this cluster is randomly chosen as the second 

input time series to the multivariate model. For future research, this selection of the second 

(or more) detectors should be further explored. This could include conditions under which 

detector correlation is considered (e.g., typical vs atypical traffic), key characteristics of 

the data (e.g. peak hour demand, relative rate of change of volume, etc.) and so on.  

Further, the performance evaluation used to compare univariate and multivariate 

models in this study are performance error measures for different prediction scenarios. 

However, it is noted that for imputation implementation of deep RNN model, a model that 

provides less performance error more often on different typical and atypical traffic 

conditions, will be a resilient and preferred imputation model. Thus, in future, a 

performance evaluation parameter that measures the sensitivity of model performance error 

measures to different traffic conditions will need to be identified. Furthermore, to better 

evaluate the benefits of utilizing deep RNN based models for time series imputations a 

comparative study with other traditional time series model imputation methods should be 

undertaken.  

In this study, the model performance is tested on one atypical day traffic pattern, 

which was holiday Monday. The atypical traffic pattern on the holiday is evident due to 

significantly less traffic volumes in comparison to the regular Monday traffic patterns. 
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However, it is also possible to see atypical traffic patterns due to changes in signal timing 

plans or shifts in route choice impacting traffic demand patterns. The different types of 24 

hour time series patterns on regular days can be identified by performing a time series 

clustering on 24 hour time series of several days. If different groups of such traffic patterns 

are found, it will be important to include sufficient days from each traffic pattern group to 

train the model and to test model performance on different identified traffic patterns. 

Another approach could be to train different models for different identified traffic pattern 

groups and build an algorithm to choose the appropriate model based on the previous 

hour(s) traffic pattern window. In this study, the connected corridor studied was deployed 

with adaptive traffic signal control. Although the traffic signal timing plan is not preset, 

the volume pattern remains similar on most regular days. This might be due similar traffic 

demand patterns. However, there are a few days that observed changes in traffic pattern 

under “regular” conditions, for example in Figure 41 – Cluster 5. It is noted that availability 

of sufficient historical data is crucial to identify different traffic patterns. Availability of 

sufficient reliable data can be used to gain insight in understanding different traffic data 

patterns that could be due to changes in signal timing plans, seasonality, events, or 

holidays. Further, representative data with different traffic patterns can be used to train the 

model to provide predictions for different traffic pattern scenarios and to test model 

performance to develop roust models.  

The time series data modeled in this effort was not long enough to observe seasonal 

variation, however, availability of long term historic data will provide seasonal time series 

data. The effectiveness of deep RNN over SARIMA to model seasonal time series data will 

need to be investigated. While LSTM RNN can perform better over ARIMA for time series 
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forecasting of financial and economic data [190], its’ capability to model seasonal traffic 

volume time series data to provide forecasts needs to be investigated. Liu et al. in a study 

in 2019 compared ARIMA and LSTM for highway traffic flow prediction and found that 

LSTM better adjusted to sharp changes in time series patterns compared to ARIMA [191]. 

Results from an effort by Muzaffar et al. indicate that LSTM RNN can provide improved 

results in comparison to SARIMA on seasonal time series data for short term electric load 

forecasts [192]; however, a robust comparative analysis to study LSTM RNN univariate 

and multivariate models ability to provide forecasts for seasonal traffic time series data in 

comparison to SARIMA needs to be investigated. While for ARIMA models stationary 

time series data is required LSTM RNNs do not have this requirement and can learn from 

the historical fluctuations [191]. However, use of smoothened time series data with lesser 

deviations in time series data for training univariate and multivariate LSTM RNNs can 

have potential benefits, which can be evaluated in future.  

In addition, to increase robustness of the multivariate time series model performance 

under atypical traffic, the following should be undertaken: 1) include atypical traffic data 

in time series similarity measure to choose the input time series for the model, 2) increase 

training data for the atypical day traffic pattern, and 3) use a systematic approach for 

hyperparameter tuning to enhance model performance. Finally, to improve the digital twin 

performance a methodology to impute data gaps in signal time series should be developed 

and the developed imputation models should be integrated with the built real-time data-

driven Digital Twin model architecture.  

In near future, increased numbers of high frequency data streams are expected. This 

study provides findings on using deep learning on such high frequency data to provide 
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accurate imputation values. Similar deep learning based model may also be useful in 

learning patterns in other types of traffic data, such as signal indication data.  
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CHAPTER 6. CONCLUSIONS, LIMITATIONS, AND FUTURE 

WORK 

This chapter summarizes the key conclusions, limitations, and future research areas 

identified from the studies presented in previous chapters. Three studies are conducted with 

an overarching goal to investigate leveraging of high frequency data received from a 

connected corridor to drive a real-time traffic simulation model and generate corridor 

performance measures to provide dynamic feedback to users.  

6.1 Research Study 1 

Research Study 1, presented in Chapter 3, included development of a real-time 

connected corridor data-driven traffic simulation model.  

6.1.1 Conclusions 

The developed simulation model architecture consists of four primary components: 

1) Raw Data Stream Processing Module, 2) Dynamic Data-Driven Traffic Simulation 

Module, 3) Dynamic Performance Measures Estimation and Visualization Module, and 4) 

Data Request Management Module. The dynamic link between modules 1, 2, and 3 is 

facilitated by module 4. This dynamically linked architecture allows the traffic simulation 

model to use connected corridor volume and signal indication data to drive the simulation 

and to provide simulated vehicle information (e.g., position, speed, acceleration, etc.) to 

the performance measure estimation and visualization module. The built framework can 

also be used to develop an understanding of the impact of data imputations performance 
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estimations generated from the model. The model architecture performance was found to 

be maintain the near real-time rate for the corridor. The conclusions from this study are:  

6.1.1.1 On Model Architecture 

The initial pilot study investigates the feasibility of driving the traffic simulation 

model with hybrid data, a mix of preset and real-time data is investigated. Performance 

measures obtained from simulation runs driven using only preset data and driven using a 

mix of preset and real-time data are found to be comparable and to follow similar trends 

with simulation time. However, there were some differences in performance measures 

calculated, potentially indicating the importance of using real-time data where real-time 

feedback is desired. Thus, using a hybrid data approach to drive a simulation model was 

found to be feasible. This implied the possibility of using hybrid data when real-time data 

is not available for all intersections.  

Next, the model architecture is updated to drive fifteen intersections of the modeled 

network with the real-time data streams. Vissim COM code is used to enable all 

intersection entry volumes and signal timings, driven using the real-time data streams. The 

COM logic to update the signal status performs signal state changes by creating flag 

variables. Initial, to conduct long duration runs the architecture, the Vissim traffic 

simulation generated readable-only “.fzp” output file that contained all vehicle record 

information. However, this was found to create a memory obstacle. The COM logic was 

then modified to post vehicle record data for every simulation second in a separate 

lightweight JSON. This modification allowed for deletion of previous files for which 

performance measures were previously processed.  
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Initial investigation of the real-time volume and signal data obtained revealed the 

presence of data gaps. In this dissertation, an investigation of data gaps and the impact of 

imputations on the simulation model generated travel time measures is conducted for the 

volume data streams (Chapters 4 and 5). However, prior to this the feasibility of the 

simulation model using Vissim actuated signal timing control to address outages in the 

signal data stream is investigated. Vissim’s COM and RBC (Ring-Barrier-Control) 

modules are used to create a fallback when a signal data gap is detected. This allows 

comparatively more reasonable performance measures from simulation model. The built 

architecture is found to perform at a near real-time rate. Thus, this study demonstrates the 

feasibility and potential of using connected corridor data to drive a real-time traffic 

simulation model to provide and visualize traffic and environmental performance measures 

at a near real-time rate.  

Overall, the key challenges for the smooth functioning of a real-time data-driven 

traffic simulation model architecture are in maintaining synchronicity and efficiency in 1) 

the real-time raw data processing and the processed data injection process, 2) assimilating 

newly added data in the next simulation step of running the simulation model, and 3) using 

high frequency simulation output data to generate performance measures. Usage of 

database queries to access and process raw data, and the usage of an external data request 

manager (Flask micro web framework) to handle data requests were found to be crucial in 

ensuring (near) real-time rate of the architecture. However, additional architectural 

challenges that need to be address to further increase the model speed remains for future 

work.  

6.1.1.2 On Vissim Traffic Simulation Model:  
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Vissim COM module’s capabilities are successfully utilized to dynamically change 

the input volumes and signal states. The computational time required by Vissim each time 

step depends on number of changes being made in the model. For example, implementation 

of each signal change requires additional CPU time to reflect addition signal state change 

requests. Hence, the traffic simulation speed fluctuates. In addition, suspending the 

graphical user interface and activating Vissim’s quick mode increased Vissim’s simulation 

performance rate. The Vissim COM module is also used to create the fallback to preset 

actuated signal timing in the simulation model when data gap in signal data stream is 

observed.  

6.1.1.3 Model Performance 

The speed of built simulation model with fifteen intersections driven using real-time 

data ranges from 0.8x to 1.3x. Over time the simulation model is observed to lag real-time 

due to slower than wall clock rate. It is hypothesized that one of the reasons that the 

simulation might be slowing down is the increased number of volume and signal indication 

assignment operations executed in a simulation second.  

6.1.2 Limitations and Future Research Direction 

1. The architecture developed so far uses a single instance on a simulation model. 

In general, traffic microscopic simulation models do not inherently use a 

parallel architecture; hence, they do not scale well with increases in the size of 

the network. As the size of the network increases, the model will run slower 

and slower until a point is reached where the simulation clock will be slower 

than the wall clock. If wide area simulation is required, then the architecture 
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will need to integrate a distributed simulation structure. Alternately, the 

advantages of using multithreading and multiprocesssing to execute dynamic 

changes in the simulation model should be explored. Further, in future, a 

methodology to simulate the prediction state by creating a clone of current 

simulation state can be explored. 

2. The Vissim traffic simulation model is not field validated and calibrated for 

Atlanta driving behavior. In future, it is imperative to validate the simulation 

model to increase the credibility of the environmental and traffic performance 

measures generated from it.   

3. Currently the simulation model uses the last six minute volume aggregate and 

signal indication aggregate data to simulate, thus, operating at least six minutes 

behind real-time. One minute aggregate volume data would allow the 

simulation to run at a lag of at least one minute from wall clock.  This lag can 

be further reduced if the real-time data available from connected corridor is 

per-vehicle-record (PVR) data. PVR data can allow for a real-time simulation 

and can potentially improve the accuracy of the simulation generated 

performance measures. Future research will seek to explore the use of PVR 

data to enhance simulation performance and accuracy. 

4. As discussed, a fallback using Vissim’s RBC module is created to address 

signal outages. This allows simulation to impute the signal data stream gap with 

preset actuated signal timing plan. However, impact of this imputation 

approach on traffic and environmental performance measures has not yet been 

investigated. Future research on measuring impact of this data imputation 

approach on simulation generated performance measures is suggested.  

In this study the real-time data investigation during model development process 

revealed presence of data gaps. Deriving from this insight Research Study 2 focused on 
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investigating volume data streams for the presence of data gaps and measuring the 

sensitivity of volume data imputations on simulation generated travel time measures. The 

main conclusions from second study are in following subsections. 

6.2 Research Study 2 

A sensitivity analysis experiment is conducted to measure the impact of volume 

data imputations on simulation generated travel time measures (presented in Chapter 4). 

The main conclusions from this second study are in following subsections. 

6.2.1 Conclusions  

6.2.1.1 On Real-Time Data Streams 

Investigation of the real-time volume and signal status data streams revealed data 

gaps. Two types of data gaps are identified in the volume data stream: permanent data loss 

and intermittent data loss. Similar data gaps are found in signal data streams.  

6.2.1.2 On Sensitivity Analysis 

The sensitivity analysis experiment is performed to study the impact of errors in 

the volume data imputation values on the simulation generated travel times. Results were 

obtained for three error percentage values in volume imputations (i.e., 20%, 50%, and 80%) 

for five missing volume patterns. The patterns were generated based on probability of 

observing a missing volume pattern in the studied 112 days. The results revealed that some 

routes are more sensitive to volume imputations in comparison to others. Also, the severity 

of the impact to mainline travel times was dependent on the approach that contained the 
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missing volume data. Study results from the experiment identified the set of approaches 

with the highest impact on the mainline route travel times, for the patterns studied. 

In addition, the impact of volume imputations on intermittent data loss patterns is 

studied for one selected approach, Pattern 3, Techwood Dr. (SB). A hypothesis test (one-

sided t-test for mean 0) is conducted on the differences in the 85th percentile travel time 

values, at the Techwood Dr. (SB) route for “with intermittent data loss” and “without 

intermittent data loss” volume data, for the three data imputation error cases: 20%, 50%, 

and 80%. For the 20% data imputation error case, the test result failed to reject the null 

hypothesis that there is no impact of intermittent loss data imputations on travel times. 

While for higher data imputation error cases of 50% and 80%, the test result rejected the 

null hypothesis in favor of the alternate hypothesis that the volume imputations for 

intermittent data loss increased the travel times on the Techwood Dr. (SB) route. This 

demonstrated that for approaches with intermittent data loss patterns higher errors in data 

imputation values can impact simulation generated travel times. The incorporation of 

historical detector data for improved imputation with intermittent data loss can be used to 

better predict the missing volume data. 

6.2.2 Limitations and Future Work 

1. First, it is recognized that the approach based results are limited to the studied 

corridor. However, this effort revealed the need to study the real-time data 

characteristics of any corridor, to understand and account for issues such as 

data gaps, data fidelity, etc. Future research is needed to better understand and 

generalize issues related to the accuracy and usability of connected corridor 

real-time data.  
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2. To improve the generalization of the experiment results, similar sensitivity 

experiments should be conducted on real-time data-driven simulation models 

of other connected corridors.  

3. Another limitation of the results from the built model architecture performance 

is that the real-time data used to drive the simulation model has not been field 

verified. Hence, future work includes the verification of the data accuracy in 

the connected corridor real-time data stream. Overall, there exists a need to 

determine parameters that measure the integrity of connected corridor data.  

4. While investigation of the studied real-time data streams revealed the presence 

of data gaps in both volume and signal indications data streams, this 

dissertation focused on researching aspects of volume data streams. Future 

efforts will investigate imputation methodologies for the signal indication data.  

5. To improve the feasibility of using the developed model to obtain insights on 

environmental performance measures, the impact of data imputations on these 

measures also needs to be investigated in the future.  

6. Lastly, realizing a need for data imputation in the volume data stream gaps to 

drive the real-time data-driven simulation model, the model architecture will 

need to include a real-time imputations component in future.  

The sensitivity experiment conducted measured the impact of error in data 

imputations on simulation generated travel time measures. However, the data imputation 

algorithm tested is simple. A need to develop a more accurate data imputation methodology 

is identified. Towards this end an LSTM RNN model is developed and its’ performance is 

investigated in Research Study 3 (Chapter 5).  

 



  

 193 

6.3 Research Study 3 

Deep RNN models using bidirectional LSTM RNN layers for univariate and 

multivariate time series are developed for six detectors in the third research study presented 

in Chapter 5. Three experiments are conducted that aim to investigate: 1) development of 

multivariate and univariate deep RNN models to impute consecutive data gaps in volume 

times series data, 2) performance of the developed multivariate and univariate deep RNN 

models under typical and atypical traffic conditions, and 3) impact of the multivariate and 

univariate model imputations on Digital Twin generated travel time values..  

6.3.1 Conclusions 

6.3.1.1 Experiment 1 

Univariate and multivariate predictive models are developed using deep Bi-

directional LSTM RNN layers for the six studied detectors. In experiment 1, the ability of 

the developed multivariate and univariate deep RNN models to impute typical day volumes 

for four data gap scenarios is tested. Through visual inspection of the results it was seen 

that for the shorter gap scenarios neither model proved consistently superior; however, the 

multivariate model did provide generally better performance than the univariate model in 

the long gap scenarios. The hypothesis that deep RNN multivariate model can provide 

more accurate predictions over the univariate model, under typical conditions, is tested 

using Wilcoxon’s Rank Sum non-parametric statistical test. It is seen that there is no 

significant difference between median univariate and multivariate prediction errors for the 

shorter prediction scenario while the median univariate prediction errors were statistically 

greater at several detectors for the longer scenarios. Thus, an advantage is seen by the 
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multivariate deep RNN models in utilizing additional information from another detector to 

perform imputations of long consecutive data gaps. However, it was also seen that the 

multivariate model performance would be degraded if the second detector did not correlate 

well with the primary detector. As well, it is believe additional benefits could be achieve 

though fine tuning of model parameters. Finally, additional tests on other corridors should 

be conducted to further confirm and define the benefit of utilizing multivariate deep RNN 

model over univariate deep RNN model for time series imputations. 

6.3.1.2 Experiment 2 

The performance of the developed multivariate and univariate deep RNN models 

to impute data gap were further explored in experiment 2, focusing on atypical traffic. At 

five of the six detectors the multivariate model imputations are found to have higher 

accuracy measures than the univariate model imputations. The additional information from 

the other detector in the multivariate model likely enabling better imputation accuracy 

under atypical traffic conditions. Experiment 2 results further indicate the potential benefits 

of a multivariate over a univariate modelling approach to impute volumes during 

unprecedented traffic conditions. However, a need for increased training and validation 

data for atypical traffic is identified to increase robustness of model performance. In 

addition, the correlation between the detector with the data gaps and the second detector is 

again a potential issue.  In particular, it is possible that while the two detector are well 

correlated during typical traffic conditions that the correlation may not hold under atypical 

traffic. Further exploration of the selection correlated detectors, under varying conditions, 

is needed.  
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6.3.1.3 Experiment 3  

In Experiment 3, the impact of multivariate and univariate model imputed data 

streams on the Digital Twin generated travel times at nine selected routes across the North 

Ave. Smart Corridor for a typical and atypical day is evaluated. The results indicate that 

for both traffic conditions that the vehicle travel time values for multivariate model imputed 

data are closer to that of the base day data than the univariate model imputed data travel 

time values. In addition, during the atypical day the univariate model imputations result in 

increased travel times over that of the base and multivariate data, for several of the studied 

routes. This is likely a result of the higher prediction values by the univariate model. This 

further indicates the potential benefits of utilizing multivariate imputations, particularly for 

atypical conditions.  

Next, it was seen that the difference in simulation generated travel times based on 

the univariate and multivariate model and univariate model imputations could vary widely 

by route. That is, at some routes, the vehicle travel times were similar for both typical and 

atypical conditions; while on other routes the differences in vehicle travel times are higher. 

It is hypothesized that the input data variation impacts on performance, due to multivariate 

and univariate imputations. Similarly, a higher variation in travel time is also observed 

when the path is operating at a near saturated traffic scenario. Finally, the observed 

variation in base day travel times under typical conditions is hypothesized to result from 

input volumes fluctuations between consecutive intervals; whereas, the multivariate and 

univariate imputed intervals have a tendency to smooth the input volume variation. This 

hypothesis is not fully studied in this research effort and remains to be investigated in 

future.   
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6.3.2 Limitations and Future Work 

Conducting the three experiments, potential advantages of the multivariate model 

over the univariate model are identified. However, the results are limited. Presented next 

are the limitations of these results and future work identified to develop a robust 

understanding of multivariate deep RNN model development and performance.  

1. Firstly, the results obtained are for models developed on six detectors of the 

one study corridor. In future, to increase generalizability of using deep RNN 

models a similar investigative study should be conducted for more detectors 

from other connected corridors. Further, the model in this study is developed 

using the connected corridor data that has not been field verified. Before 

imputing volume data values to drive Digital Twin field data should be verified.  

2. Secondly, the results on potential advantages of using a multivariate model over 

a univariate model on a typical day and atypical traffic day are based on a pilot 

model architecture configuration. The model development and performance of 

the deep RNN multivariate and univariate models need to be further 

investigated by tuning model hyperparameters to develop a roust understanding 

of the comparative performances.  

3. Thirdly, the studied deep RNN models are trained on typical days only. 

Advantages of training models on some atypical days is yet to be explored to 

improve model performance on atypical days. Further, to improve model 

robustness to impute traffic on atypical days, more atypical day patterns should 

be used. Next, the dependence of model performance on prediction start time 

on atypical day needs to be investigated in the future to improve the 

understanding of model performance and robustness.  
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4. Fourth, all the multivariate models developed and investigated in the study use 

two similar time series from the cluster created by hierarchical clustering using 

DTW.  Research is needed to identify parameters to choose similar (correlated) 

time series and to measure the impact of correlation in multivariate input time 

series on multivariate model performance. Further, to improve generalizability 

of the model, exploring the performance of using more than two time series for 

multivariate models is suggested.  

5. Lastly, while the simulation study results imply benefits and potential of using 

deep RNN based models for connected corridor volume data imputation to 

drive the Digital Twin, the imputation model is not plugged into the real-time 

architecture. In the future, the model will need to be plugged into the Digital 

twin architecture to operate at near real-time rate.  Further, the impact of 

univariate and multivariate imputations on simulation generated environmental 

performance measures also needs to be studied. 
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CHAPTER 7. CONTRIBUTIONS 

7.1 Development of Dynamic Real-Time Data-Driven Traffic Simulation Model – 

Digital Twin 

Developed and implemented a methodology for a dynamically driven traffic 

simulation model, using PTV Vissim 9.00’s COM module and programming language 

Python 3.7. This contribution involves a number of aspects. 

1. The methodology involved linking the real-time aggregate volume and signal 

status data to a traffic simulation model, during run time.  

2. The methodology creates a time interval approach for processing network input 

values. The current time bin interval is six-minutes, however this is changeable 

based on the data stream aggregation level.  

3. The methodology also reflects the variability of real-time field data by 

dynamically routing vehicles through intersections based on current field 

conditions.  

4. The methodology is capable of dynamically updating of signal status at the 

signal heads for all approaches, every one-simulation second, based on the real 

time data streams.  

5. Critically, the approach is dynamic, responding to traffic in near-real time, and 

capable of handling volume inputs and signal status at different frequencies, 

which can be changed depending of granularity of the real-time data streams. 

It is highlighted that these contributions cover the range of big data attributes: 1) 

Volume – handles large volumes of data; 2) Velocity – data is streamed in real-time; 3) 

Variety – a number of data format are integrated; 4) Veracity – addresses data quality 
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(missing data); 5) Variability – data varies over time, following typical and atypical 

patterns; 6) Visualization – the architecture includes performance metric visualization; and 

7) Value – critically the method converts the data into useful information that may be used 

to evaluate the corridor operations. 

7.1.1 Development of Platform for Testing Smart Connected Technology 

A key feature of the developed real-time simulation platform is that additional 

smart technologies, implemented in the field, may be integrated into the model. For 

instance, during one period of the study the City of Atlanta was operating an adaptive 

control system on the corridor. Using this platform it is possible to simulate the adaptive 

signal control system without having the adaptive logic imbedded in the simulation.  In 

many instances, this may be the only means to collect data on such smart technologies 

within a simulation environment. 

7.2 Identification of Key Challenges in Utilizing Real-Time Connected Data 

Streams 

Studying the real-time volume data streams revealed several challenges posed by 

real-time high-frequency data from connected infrastructure, such as intermittent data gaps, 

filtering requirements, aggregation of differing formats, etc. These are challenges that need 

to be tackled by the transportation researcher and engineering community to fully leverage 

the benefits of connected corridor data. The study also provided insight on the necessity of 

connected corridor real-time data stream investigation as one of the initial steps in the 

utilization of the data streams for driving a simulation model. 
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7.3 Identification of Key Limitations as Next Research Steps in the Development of 

a Connected Corridor Data-Driven Traffic Simulation Model – Digital Twin  

This effort highlighted the key limitations in real-time connected corridor 

modeling. The key next research focus areas identified are: 1) Development of intermittent 

data imputation methodologies that leverage the presence of high frequency historical data, 

2) Investigate the reasons for gaps in data stream and identify methods to minimize data 

loss, 3) Apply parallel computing techniques to distribute the simulation load and improve 

model architecture runtime, allowing for the simulation of a larger network at (near) real-

time pace, and to 4) Devise a methodology to simulate the prediction state by creating a 

clone of current simulation state. 

7.4 Developed a Methodology to Prioritize Locations that Need Data Imputation 

The sensitivity analysis study conducted to measure the impact of imputed volume 

data on simulation generated travel time revealed that a subset of approaches are mainly 

responsible for the majority of impacts. The results also showed certain routes in the 

network to be more sensitive to volume imputations. Applying such an analysis allows for 

the prioritization of implementation and maintenance of smart technologies, which is 

particularly critical in today’s resource constrained environments. This methodology can 

be utilized to prioritize connectivity of the volume data streams or developing more robust 

and accurate methodology for imputations. 

7.5 Development and Performance Investigation of Deep RNN Univariate and 

Multivariate Time Series Models for Data Imputations 
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The presence of data gaps in connected corridor volume data streams can impact 

traffic and environmental performance measures produced from a Digital Twin. To 

facilitate meaningful insights from the simulation generated performance measures a need 

to develop a data imputation methodology is identified. Bidirectional RNN LSTM layers 

are used to model univariate and multivariate time series to provide imputation estimates 

for missing data. The performance of developed univariate and multivariate model to 

provide imputations from missing consecutive data is investigated on a typical traffic day 

and on an atypical traffic day. Experiment results indicated potential advantages of using 

information from additional input time series in the multivariate model to obtain more 

accurate estimates when imputing longer consecutive missing data and when traffic is 

atypical compared to imputation estimates by the univariate model. Further, the impact of 

the using imputations from the developed univariate and multivariate model on model 

generated travel time measures of nine selected routes is evaluated for typical day traffic 

and atypical day traffic. Results indicated more accurate travel times with multivariate 

model imputations versus univariate model imputations, on an atypical traffic pattern day.  

The developed deep RNN models can be used to learn from previous traffic patterns 

and provide imputations for real-time data gaps. Further, the study demonstrates how 

developed multivariate deep RNN model leverages information from another detector of 

the corridor to provide better estimates for predicting atypical day traffic patterns. Thus, 

the developed methodology reveals a potential of providing more accurate estimations even 

when there are dynamic changes in the traffic pattern. If due to an event or infrastructural 

changes, there is a shift in traffic pattern, then the model can be re-trained on the most 

recent data to adapt to the changes. While re-training of the model when the traffic pattern 
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changes might need some amount of hyperparameter tuning, it might still be faster than 

developing a model using a traditional approach. While this is not investigated, this study 

reveals a potential for such findings, thus identifying needed future work. Such deep 

learning based model could be also used to learn patterns in other types of traffic data such 

as signal indication data. Considering the high likelihood of increasing numbers of high 

frequency data streams in near future, this study provides findings on leveraging high 

frequency data to learn patterns and provide accurate imputation values. 

7.6 Identification of Future Work for Applying Deep RNNs to Model Traffic Time 

Series Data 

Results obtained from the experiments conducted in the Deep RNN study (Chapter 

5) revealed future work needed to improve performance of deep RNN models that can be 

used to model traffic time series data. For example, a dependency of model performance 

on the prediction starting time is observed, thus, revealing a need to investigate this 

dependency to increase robustness of model performance. A need to include more atypical 

traffic pattern data to improve model development and model testing is also identified. 

Further, the impact of hyperparameter tuning to improve model performance by increasing 

model generalizability and reducing model overfitting is also identified. Lastly, the impact 

of correlation in input time series data used to develop multivariate model on performance 

needs to be investigated. With rise in traffic data received, future research to investigate 

the application of deep RNNs to model traffic data is crucial. 
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