
Initial Evaluation: Dynamical Modelling of the 

Lockheed-Martin Phase Locker 

Kurt Wiesenfeld 

School of Physics 

Georgia Institute of Technology 

15 August 2007 

This report summarizes my findings on the current status of dynamical 

modelling of laser arrays of the type relevant to the Lockheed-Martin system. 
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Relevant Literature 

My goal in undertaking the literature search, my primary focus was to identify mathematical 

descriptions for the time evolution of laser arrays. I identified several useful papers; the main 

features of the most useful of these are cited in this section. A larger listing is provided at the 

end of this document. The mathematical descriptions fall into three categories: differential 

equations, delay differential equations, and discrete iterative maps. 

Braiman et al. theoretically investigate the phase locking properties of a set of lasers 

coupled via evanescent overlap of the electric fields additionally subject to a common in-

jected field. They report that the natural dephasing effects of evanescent coupling can be 

overcome by injecting the additional (common) field. The model used in this paper has 

several forerunners, most particularly those by Basov et al., Perel and Rogova, and Spencer 

and Lamb. 

Braiman et al. introduce a dynamical model consisting of a set of coupled ordinary 

differential equations, treating the complex electric field and gain for each laser as relevant 

dynamical variables, having adiabatically eliminated the polarization. For the purpose of 

analytic investigation they furthermore reduce the dynamical equations by considering a limit 

valid when the amplitude of the injected field is sufficiently small. The result is a pure phase 

model, i.e. a set of differential equations which directly and exclusively follow the phases of 

the electric fields; the remaining degrees of freedom (the electric field amplitudes and the 

laser gain variables) completely decouple. The resulting phase equations are analytically 

tractable, and comparisons with the full dynamical model are consistent in the appropriate 

limiting cases. 

The dynamical model developed by Wang and Winful to study coupled lasers also has 

the form of a set of ordinary differential equations. It follows the complex electric fields and 

the (real) gain fields continuously in time: 
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corresponding (real) phase, and Ac, is the scaled linear excess gain above threshold of the 

ith  laser; rn and Ts  are the photon and carrier lifetimes, and K is the coupling constant. In 

their studies, Wang and Winful had in mind the problem of coupled semiconductor lasers; 

however, their mathematical formulation is also appropriate (with minor changes) for solid 

state lasers and fiber lasers. They found that for two lasers which were coupled evanescently 

— the only case they consider — the antiphase state was stable over a fairly wide range of 

physically accessible parameters, while the inphase state was typically unstable. 

Williams et al. develop a theoretical model to compare against their experiments on an 

erbium-doped fiber ring laser. Their model is a stochastic delay differential equation. Nu-

merical simulations of the model appear to reproduce at a qualitative level a wide range of 

nonlinear dynamical behavior observed in the experiments. Even though many longitudinal 

modes are active inside the cavity, they find that a model limited to only two supermodes 

corresponding to two orthogonal polarization states gives a good description. Starting from 

the Maxwell-Bloch equations for a single fiber, they derive a set of coupled delay-differential 

equations by translating the spatial dependence on the propagation direction of the Maxwell-

Bloch partial differential equations into a purely temporal dependence on time-delayed quan-

tities. The resulting model equations are cumbersome (and for that reason I don't reproduce 

them here), and sufficiently complicated that only numerical simulations were reported. 

The above fiber ring laser model describes a single laser only. The work of Lewis et al. 

considers the problem of coupling together two such lasers. The type of synchronization 

they sought is somewhat different than the type envisioned for power combining. Specifi-

cally, Lewis et al. were pursuing the possibility of synchronized chaos for the purposes of 

secure communications. Therefore, the kind of coupling they studied was a one-way, feed-

forward coupling applicable to a transmitter-receiver pair. They find that synchronization is 

theoretically achieved for even very small levels of injected signal. Their model for coupled 

doped fiber ring lasers takes the form of coupled delay differential equations. As with the 

previously discussed model of Williams et al., the explicit equations are cumbersome; they 

can be found in Sections II and III of Lewis et al.. The general form of the equations can be 

represented in a reasonably compact form, by making use of the propagation map M which 

depends on the independent variables of the system: 

ET(T + TR) = m ( wT(T),ET (T) ) 

= Q — -y[wT(T) +1+ IET(T)I2 (eCWT(T) — 1)1 
dt 

dwT(T)  

3 



ER(T + TR) = M (wR (T), CET (T) + (1 — 	R (T)) 

dwR(T)  
= 	'Y wR(T) + 1 + lc-EAT) + (1 - C)ER( 7 )1 2  (eGwR (T)  — 1)1 

dt  

Here, E is the complex electric field and w is the gain; the subscripts T and R refer to the 

transmitter and receiver lasers, respectively. 

The descriptions given above represent time-continuous dynamical models. That is to say, 

time is always continuous but these models attempt to represent the evolution as it unfolds 

at each instant of time. A different kind of dynamical description is sometimes employed to 

great effect in the study of nonlinear systems. In the particular context of laser arrays, such 

a model has been developed (and only recently published) for coupled laser arrays by Rogers 

et al.. The model follows the evolution of dynamical variables in finite time steps equal to 

the roundtrip time of the propagating electromagnetic wave. The model is derived under 

conditions which allow that the system may he operating in the high gain regime, so that 

the laser output may be time dependent and even erratically pulsing. This in turn implies 

that the field variables can varying significantly on a rather short time scale, perhaps even 

comparable to the roundtrip time itself. Under these circumstances, a discrete-time iterative 

map approach is indicated, and in any event passage to a time-continuous set of differential 

equations by way of the slowly varying wave amplitude (SVWA) approximation is not valid. 

The resulting equations are 

En (t + T) E A nm Em (t) 
rn=i. 

Gn (t + T) = Gn (t) + E [G1', - an (t)] — 
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where A is the propagation matrix which includes the effects of coupling, e is the ratio of 

the round trip time to the fluorescence time, Isat  is the saturation intensity and in  is the 

electric field intensity in the nth fiber. The derivation of this model consists of two parts: one 

traces the propagating electromagnetic waves through one complete round trip from some 

conveniently chosen reference plane and the other is a Rigrod analysis for the (relatively 

slow) gain dynamics. 

The propagation matrix elements A nn  depend on the details of the system architec-

ture. In the 2005 JQE paper, the coupling is presumed to be due to evanescent overlap of 

the electric fields occurring between neighboring ports within the physical coupling regime. 

This assumption has to be reconsidered in the case of injection coupling. That said, the 
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mathematical structure of the displayed equations is general enough to include injection 

coupling of the type embodied by the Lockheed-Martin Phase Locker; however, the details 

are sufficiently different in a number of respects, and a simple adoption of the model isn't 

possible. On the other hand, the Lockheed-Martin system dynamics can be derived in close 

correspondence, using the JQE derivation as a blueprint. 

Physical and Mathematical Considerations in Formulat-

ing the Problem 

This section lays out the basic physics problem and the relevant considerations required to 

develop a quantitative dynamical description of the Lockheed-Martin Phase Locker system. 

A convenient characteristic of the Lockheed-Martin system is that its architecture admits 

a modular description. That is, the Phase Locker can be viewed as one stand-alone com-

ponent and similarly the set of lasers in the region outside the Phase Locker. This physical 

property of the composite system will be reflected in the mathematical structure of the dy-

namical model. It follows that, for example, alterations in the Phase Locker properties (such 

as different degrees of rotation and/or percentage of incident transmission) can be separately 

developed and refined, and the resulting mathematical description can be "plugged in" to 

the integrated system model. 

The basic structure of the physical system is a set of lasers which evolve independently 

over some spatial region and are coupled over another, spatially distinct, region of space. 

Depending on the type of lasers employed, the number of independent variables (per laser) 

needed to describe the system may be as large as five. Under most circumstances, it is likely 

that variations within the cavity itself can be ignored over the time scale of a single round 

trip. This is strictly true only for the case of single-mode operation, but the bulk of the 

published literature uses this level of approximation even when a large number of modes are 

active, as happens for example in typical fiber laser systems. Mathematically, this allows a 

reduction in complexity which obviates the need for partial differential equations and instead 

allows either ordinary differential equations — either with or without time-delay — or iterative 

maps. 

For either semiconductor lasers or (most) fiber lasers, it is possible to adiabatically elim-

inate the polarization degrees of freedom, and to capture the relevant dynamics using three 

degrees of freedom, namely the complex electric field and gain variables. These variables 
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typically evolve on widely different time scales. The ratio of the corresponding time scales 

(round trip time and fluorescence time) then arises as a natural small parameter. In physical 

terms, this means that the gain evolves on a much slower time scale than the electric field. In 

practical terms, from a modelling standpoint, it becomes important to develop at least some 

analytic understanding of the problem; otherwise, numerical simulations have to be carried 

out with very small time steps corresponding to the fastest evolving variable. In contrast, 

making direct use of the natural small parameter can increase simulation times by three or 

four orders of magnitude. 

At the present time, there remains a significant gap between physically comprehensive 

models of laser arrays and models which have been carefully vetted against laboratory ex-

periments. I expect this gap to remain reasonably wide in the near term. On the other hand, 

some piecemeal progress that would yield useful levels of physical insight is possible. Two 

areas that are particularly important when it comes to guiding laboratory realizations are 

(i) the role of noise (both quenched disorder and dynamical noise) and (ii) the consequences 

of multiple active modes. 

Phase Locker 

The essential role of the Phase Locker is to take an input beam (or a set of input beams) and 

re-inject a modified profile back into the beam line. Consider first the case of a single laser 

beam incident, and call the incident electric field amplitude Ein . As the wave propagates 

around the Phase Locker, it is modified and eventually re-injected as Fout . The distinction 

between the variable names keeps straight the fact that they represent waves advancing in 

counter-propagating directions. A complete characterization of the Phase Locker may be 

represented by an expression of the form 

Fout (t) = f {Ein (t — Tp L )} 

where TPA, is the time it takes for light to propagate through the Phase Locker. 

For an array of input beams, a similar characterization can be made. As a particular 

example, consider the following characterization of the Phase Locker as described in the 

Lockheed-Martin white paper dated 30 March 2007. The incident ring of four beams impinge 

on a 50/50 splitter; one part propagates clockwise and the other counterclockwise around the 

Phase Locker in a time TpL, with each beam cyclically shifted to the position of its nearest 

neighbor. If I denote the complex electric field amplitude of the nth  incident beam as En., 

and the corresponding re-injected field as Fn , then after a single pass 
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/ F1 (t) / 0 1 0 1\ f Ei(t — TPL) 

F2(t) 
=e

to 1 0 1 0 E2(t 	TPL) 

F3(t) 2 0 1 0 1 E4(t 	TPL) 

F4 (t) j \ 1 0 1 0/ \ E4 (t - TpL ) J 

where 0 is the free-propagation phase shift acquired in going around the Phase Locker: 0 

LOTpi, if w is the laser frequency. What happens next depends on the particular architecture 

of the full system: for example, some fraction of the emerging beams may suffer additional 

passes through the Phase Locker; in any event at least some of the power is re-injected into 

the laser cavity in the opposite direction as the incident beams, and these propagate through 

the amplifier, to be reflected (for example) at one end of the cavity. 

Example 

I now present a specific theoretical realization of an explicit mathematical model which 

embodies the above considerations. It is (of course!) unknown the degree to which these 

equations might accurately capture the behavior of the Lockheed-Martin system. Compar-

isons with laboratory measurements presumably will lead to at least some modifications of 
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Consider the arrangement depicted in the figure. A set of otherwise independent beams 

created in the cavity AB is directed through the Phase Locker configuration CDEF. Four of 

the mirrors are perfectly reflecting; mirror B is partially reflecting (and the transmitted por-

tion represents the systems output); mirror C is a 50-50 splitter. To deduce a corresponding 

set of dynamical equations, one follows the beams through one complete round trip. The 

reference plane can be chosen for convenience, and in the following I choose a point just 

inside mirror A. 

The sequence of events is the (1) propagation with gain through arm AB; (2) partial 

reflection into arm BC and partial transmission out of the system; (3) splitting into counter-

propagating beams at point C; (4) free propagation around the Phase Locker with corre-

sponding cyclic rotation of the beams; (5) recombination of the counter-propagating beams 

at C; (6) reflection of the backward-propagating beams at mirror B; (7) re-injection into the 

gain arm BA; (8) reflection at A. 

Denote by Eri (x,t) the complex electric field amplitude of the nth  fiber at position x and 

time t, for the forward (n the diagram, the path ABC) propagating beam; similarly, denote 

by Fri (x, t) the amplitude for the reverse beam (path CBA). The gain of the n th  fiber is 

and depending on the situation may be modelled as a parameter or as an independent 

dynamical variable. 

Tracking through the event sequence, we have in the first step amplitude amplification 

and a phase shift 

E„,(13-  , t i ) = e Gr'el& E,,,(A,t 0 ) 

If R is the field reflection coefficient of mirror B, 

E7,(13±, ti ) = RE,(13-  ,t 1 ) 

Each (still independent) beam acquires an additional phase shift in arm BC: 

Eri (C-  ,t2 ) = e42 E,,(13±t i ) 

One half of each beam propagates around the Phase Locker and is shifted into the beam 

line of its neighbor; counter-propagating halves are taken to have opposite shifts; all beams 

acquire the same free-propagation phase shift: 

1 	 1 
(C-  t3 ) = 2 

 e
hl'3 	, t2 ) + 2e453 En+i(C , t2) 

8 



where the subscript labelling is taken modulo N. There is another phase shift in traversing 

path CB: 

F7,(.13 +, t4 ) = eI4'2 F„(C- , t 3 ) 

Finally, the (independent) beams pass through the gain region a second time: 

Fn (A, t5 ) = eG- ei°1 Fri(B±,t4) 

The complete round trip ends with a final reflection off of the mirror (or grating) at point 

A, which generates a final phase advance of 7r radians. Combining the full sequence of 

expressions over one round trip yields an equation of the form Eq.(1), with an explicit 

realization for the propagation matrix elements A nm . 

This description is sufficient to quantitatively determine the temporal evolution of the 

laser array provided the corresponding gain factors an  are treated as parameters rather 

than dynamical variables. This simple view is quite common in the existing literature. On 

the other hand, the dynamical character of the gain can be crucial to understanding (and 

correctly predicting) the output behavior, a fact pointed out by many researchers. The recent 

theory paper by Bochove provides a recent discussion of this issue: he presents examples 

where neglecting the gain dynamics leads to incorrect predictions of which supermode is 

selected in simple array configurations. 

The gain dynamics can be derived using standard methods such as the Rigrod analysis. 

A typical result is given by Eq.(2) (see the discussion of the paper by Rogers et al.). To 

derive this result, one starts with the partial differential equations (plus boundary conditions) 

for the population inversion and intensities of the two counter-propagating electromagnetic 

fields can be solved subject to the condition that the latter evolve on a much more rapid 

time scale than the former. The result is an ordinary differential equation for the gain, and 

Eq.(2) has the typical form. The details of the equation, however, will depend on the physics 

of the laser used, for example three-level vs. four-level schemes. 

Integration with Laboratory Measurements 

Any claims of reliability for a theoretical model rest on direct comparisons with laboratory 

measurements. In this section, I identify specific quantities that would allow for such direct 

comparisons. Ultimately, these could serve to validate the dynamical model at which point 
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the model itself would be useful for testing and even guiding modifications of the hardware 

system. Before reaching that stage, however, I expect that side-by-side comparisons between 

theory and experiment will lead to refinements of the model that will increase its accuracy 

and reliability. 

The most valuable diagnostic is to tune across a transition. This requires a control parameter 

on the one hand and an output quantity which suffers a radical (ideally, discontinuous) 

change at one or more critical values of the control parameter. In dynamical systems crossing 

such a critical point is called a bifurcation. 

One obvious and accessible control parameter is the pump strength (or, equivalently in the 

case of a pure amplifier, the gain factor). A less obvious but potentially important control 

parameter is the percentage of incident light which is directed into the Phase Locker. It 

is an open and interesting question as to how large the feedback needs to be in order to 

achieve the desired locking behavior. Creating this control parameter would also serve to 

demonstrate at least one of the stated advantages of the Lockheed-Martin system as detailed 

in the White Paper dated 30 March 07, namely that a Phase Locker which "operates with 

relatively low circulating power". 

With either of these control parameters, the most natural and accessible output quantity is 

the total output power, or a normalized version of this to yield the output power efficiency. 

Also useful would be a measurement of fringe contrast (as a primary indicator that directly 

demonstrates that the output beam is truly phase coherent). The same output can be 

measured as a function of pump power, for a fixed coupling percentage, and also as a function 

of coupling percentage for fixed pump strength. 

More exotic measurements are possible, for example blocking one or more of the beams 

either prior to entering — or once inside — the Phase Locker. 

Possible Next Steps 

Proof of Concept. It is well-known that lasers can be injection-locked by even a weak master 

signal, i.e. a laser which is not itself subject to feedback from the target laser. It has also 

been established that arrays of lasers can display coherent behavior when they mutually 

interact without the benefit of a master signal. The Lockheed-Martin Phase Locker is based 

on an interesting idea that might be called mutual injection locking. That said, it is not 

obvious that the Lockheed-Martin Phase Locker will generate the desired coherent behavior, 
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even in principle. Instead, the lasers might dynamically pull and push one another's phases 

in an endless meandering without ever settling down to a single globally coherent stable 

phase profile. A dynamical model of the array could be used to establish proof of concept 

for the Phase Locker scheme, while eliminating all the various disordering sources that might 

mask the effect in the laboratory. 

Sensitivity Analysis. Once the proof of concept is established, a sensitivity analysis could 

be carried out to determine which disordering influences are most likely to quench the effect 

and which are relatively benign. Similarly, it would be very useful to map out transition 

points at which the system behavior changes suddenly, for example the transition between 

cw and pulsing output. 

Experimental Tests. It would be most useful to have a model which accurately predicts 

the behavior of the actual laboratory system. The model should be as simple as possible, 

capturing the essential physics but also ignoring inessential details. The best way to arrive 

at such a model is through direct comparisons testing the theoretical predictions against 

experimental measurements. It is likely that this would lead to modifications of whatever 

model one uses at the start, but presumably the process of refinement and testing would 

eventually converge to a good (and useful) model. 
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