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SUMMARY

Thanks to their increasing sophistication and popularity, mobile devices, in the form of

smartphones and tablets, have become the fastest growing contributors to Internet traffic.

Indeed, smartphones are projected to account for 50% of global Internet traffic by 2017,

with the share of mobile video increasing to about 40% of total Internet traffic. As users

embrace Internet streaming of video, several studies have found that a small decrease in

video quality leads to a substantial increase in viewer abandonment and disengagement

rates. To handle the explosive growth in video traffic, Adaptive HTTP streaming, which

exploits the prevalence of commodity web servers and content distribution networks, has

emerged as the key technology for delivering video to end users. Although a number of

systems have been proposed for HTTP video streaming in traditional environments and

for fixed clients, existing platforms for video streaming on mobile devices are still in their

infancy and do not address the additional challenges often experienced by mobile clients:

high fluctuations in network conditions, heterogeneous networking interfaces, multiple form-

factors, and limited battery life.

In this dissertation, we propose a number of solutions for improving the Quality of

Experience of HTTP video streaming on mobile devices. We begin by evaluating the per-

formance of several existing video quality adaptation schemes when deployed on mobile

platforms. Through experiments with smartphones in wide-area environments, we assem-

ble several key findings. First, we show that the high fluctuations in network throughput

on cellular and Wi-Fi networks impose significant challenges for efficiently architecting the

video adaptation scheme. Second, we find significant differences between the performance

of the current state-of-the-art schemes in controlled experimental settings and their perfor-

mance in mobile settings on key quality metrics such as inefficiency, instability, rebuffering

ratio, and startup latency. We also find noticeable differences in the behavior of the schemes

xiii



under Wi-Fi and cellular network access, with most of the schemes performing worse when

the network access is cellular. Given these observations, we hypothesize on the possible

causes of these inefficiencies. We also identify the best practices of existing schemes and

key insights from experimental results that can serve as foundations for addressing many

of the limitations.

Armed with these measurement-driven insights, we propose a novel video quality adap-

tation scheme, called MASS, which is more robust to the vagaries of the wireless networking

conditions. We implement and evaluate our solution on commodity Android smartphones,

and demonstrate significant performance gains over existing schemes. To further improve

the streaming experience, we introduce an extension to HTTP video streaming that lever-

ages the synergy between social network participation and video streaming to optimize

end-user Quality of Experience. Our system, called SDASH, integrates and applies well-

known concepts such as cooperative caching, prefetching, and P2P streaming for reducing

bitrate fluctuations and optimizing the viewing experience. Finally, we develop a general

infrastructure for constructing temporally and spatially localized P2P communities of mo-

bile devices sharing similar interests. The platform enables on-demand cooperation among

mobile clients based on device context and client preferences. We use a concrete implemen-

tation of the mobile P2P infrastructure for evaluating the performance of SDASH.

This dissertation addresses the challenges facing Adaptive HTTP Streaming under mo-

bile networking conditions. Through experimentation with commodity mobile devices, we

show that the proposed techniques for bitrate adaptation and cooperative streaming can

significantly improve the video viewing experience.

xiv



CHAPTER I

INTRODUCTION

1.1 Background

The market penetration of mobile devices has increased significantly in recent years with

more than 6 billion phones worldwide [43]. Mobile devices come in a number of form factors,

functionality, and computing complexity (e.g., cell phones, smartphones, tablets, netbook,

electronic readers, etc.). To enable local-area and wide-area communication, mobile de-

vices are often equipped with multiple network interfaces supporting competing wireless

standards and targeting various metrics such as price, performance, power, and range.

Examples of popular network interfaces include WLAN (e.g., Bluetooth and Wi-Fi) and

WWAN (e.g., GSM, UMTS, LTE, and WiMAX). Many smartphones and tablets are also

equipped with rich sensors including cameras, GPS, compass, accelerometers, and RFID.

These computing, networking and sensing technologies have fueled the wide adoption of

mobile devices and a rapidly enlarging mobile application ecosystem. Figure 1 shows the

increase in web traffic in recent years as well as predictions for the next several years, sug-

gesting that the share of Internet traffic generated by mobile devices will increase to about

50% of the total network traffic by 2017.

Among the range of functionalities and applications now available to mobile devices,

video streaming services are emerging as a significant fraction of total mobile usage. At-

tracted by the faster networks, ubiquitous smart devices and bigger phone screens, many

providers such as YouTube [22], Hulu [14] and Netflix [17] have deployed streaming appli-

cations on all the major mobile platforms. According to a recent Cisco’s Visual Networking

Index [42], video traffic accounted for more than 50% of total mobile data traffic in 2012,

and is expected to continue outpacing other forms of mobile traffic, rising up to 66% of

total mobile data usage and 40% of global Internet traffic by 2017.

A number of technologies have been developed to handle the explosive growth in Internet
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Figure 1: Laptops and Smartphones Lead Internet Traffic Growth [42].

video traffic. An example of such technologies is Adaptive HTTP Streaming or AHS. In

AHS, a given video file is divided into several segments, which are encoded into a number of

versions by adjusting the video bit rate, audio bit rate, video resolution, and/or frame rate.

An XML file that lists the segments of the video and the encoded versions is then provided

to clients interested in streaming the video. After the client fetches the initial video segment,

it can dynamically switch to a different version to match the current network condition. A

quality adaptation algorithm for AHS streaming can therefore adapt to changing conditions

to optimize the video viewing experience (Figure 2).

However, the task of delivering high quality video to mobile devices faces significant

challenges that are not experienced by traditional streaming on fixed devices: high fluctua-

tions in network conditions, heterogeneous networking interfaces, multiple form-factors, and

limited battery life. Many studies have documented wide variability in wireless and cellular

network characteristics [70, 66, 56, 72]. As a mobile device moves from one location to the

next, the network throughput, latency, round trip time, downlink and uplink bandwidth,

error rates, and other network metrics can change drastically. Many studies have found

significant differences in mean and standard deviation of these network conditions even
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Figure 2: Adaptive HTTP Streaming.

within a small difference in location or time [120, 71]. The observed variability in network-

ing conditions is due to a variety of factors intrinsic to the wireless medium (interference,

multipath fading, etc.). Furthermore, the observed throughput from cellular connectivity is

affected by spotty coverage and high service loss rate (which can be up to 50% [120]), lead-

ing to sudden drops in video quality and high frequency of rebufferings [24, 121, 63, 128].

Addressing these challenges is critical to improving the Quality of Experience for mobile

video streaming.

1.2 Problem Statement

Internet streaming of movies, YouTube clips, and other media have become a pervasive

activity enjoyed by users across computing platforms, geographical locations, and time of

the day. It is no wonder that video traffic accounts for a significant fraction of the bandwidth

on the Internet. The proliferation of 3G cellular access, the development of 4G networks,

and the deployment of Wi-Fi hot spots and access points have seen the promise of a new

mobile computing landscape capable of providing high quality video to users.

Because of their ubiquity, mobile devices are advertised as “always-on” devices, leading

3



to common expectation by users to be able to access online services with minimal perfor-

mance penalty wherever they are and whenever they desire. However, the promise of ubiq-

uitous high quality video streaming on mobile devices has been largely unmet [58, 92, 88].

Many previous works have found a strong correlation between video quality and viewer be-

havior in terms of abandonment, engagement, and repeat viewership [82, 30, 50, 44, 96, 97].

In a recent study of Akamai’s streaming network, the authors found that viewers start to

abandon a video if it takes more than 2 seconds to begin playback, with each incremental

delay of 1 second resulting in a 5.8% increase in the abandonment rate; and that a rebuffer-

ing delay of more than 1% of the video duration leading to 5% decrease in the length of

playback [82]. Similar studies have found that high picture quality and low frequency of

bitrate switching is essential for maximal user engagement and repeat viewership [30, 50].

Furthermore, mobile users have been found to be more sensitive to video quality than users

on fixed clients, watching only about a third of the length of video viewed by fixed clients

when facing similar degradation in video quality [58, 121]. Therefore, the video delivery

system needs to provide a robust scheme for adapting to the network conditions in order to

improve viewing experience and retain user engagement.

Also, video access on mobile devices differs from video consumption through traditional

computing devices (see Figure 3). Smartphones are often equipped with video cameras,

GPS, and other sensors, leading to the emergence of user-generated content and the in-

creasing use of mobile platforms as both the sources and destinations for video traffic.

Similarly, sharing and interactions of video links through “friends” in social networks is also

a key driver of video consumption on mobile devices. There is also increasing dissemination

of video content among mobile clients with shared interests in an ad hoc manner. This

pattern of mobile video consumption provides different opportunities from video access on

fixed computing devices. Unfortunately, existing video delivery technologies are designed

for traditional Internet users, ignoring the unique demands of mobile multimedia access.

This model ignores the cooperative nature of mobile video access, requiring all the devices

to fetch the complete video segments from the originating servers. Given the increasing shift

to mobile devices as the primary endpoints for consuming videos, we believe that there is a
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Figure 3: Ever Expanding Reach and Volume of Video Traffic: Increasing
growth in user generated content and device to device social media require
a rethink of the system infrastructure.

need to rethink the system infrastructure used for delivering video to end users.

1.3 Thesis Statement

Rapid advancements in computing and communication technologies is enabling the adoption

of mobile devices as the primary platform for consuming Internet video, but this trend

introduces new challenges arising from the need to support heterogeneous devices with

multiple networking interfaces, handle wide fluctuations in network coverage and quality of

service as well as efficiently manage limited device resources such as memory and battery

life. HTTP-based video streaming has emerged as a key technology for video delivery to

end users but current solutions do not address the unique requirements faced by mobile

clients.
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The thesis of this dissertation is: “Mechanisms that consider the characteristics of wire-

less and cellular traffic as well as exploit spatial and temporal adjacencies of client devices

can significantly improve the Quality of Experience for mobile video streaming with minimal

battery penalty.”

1.4 Contributions

In this dissertation, we consider the challenges facing adaptive video streaming on mobile

devices and propose new solutions for optimizing the streaming experience. The major

contributions of this dissertation are summarized as follows:

• We first empirically investigate the performance of several existing Adaptive HTTP

Streaming schemes on mobile devices using key quality metrics of efficiency, stability,

buffer size, deadline miss ratio, rebuffering ratio, and battery depletion. Although

many of the existing schemes have been evaluated under controlled network settings

and on fixed devices, little is known about the performance of these schemes un-

der the typical wide-area networking conditions faced by mobile devices. For each

of the schemes, we implement the quality adaptation logic as described in the rel-

evant literature. Using bandwidth data collected from real-world field trials over a

period of four weeks, we investigate how the adaptation schemes respond to frequent

fluctuations in network characteristics as experienced by mobile devices. We seek

answers to questions such as “Are there any significant differences in performance

results between fixed network and wireless network access?,” “How does each scheme

behave with cellular network access compared to Wi-Fi network access?,” and “Are

the observed streaming quality different across adaptation schemes and across net-

work access types?” The results show that many of the schemes do not efficiently

manage the often seemingly conflicting goals and the performance tradeoffs of bitrate

adaptation nor do they achieve the level of performance desired for maximal user en-

gagement and repeat viewership. Our measurement study provides key insights into

the limitations as well as best-practices of the state-of-the-art with regards to AHS

streaming on wireless and mobile clients.
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• From the lessons learned from our measurement-based study, we propose a novel qual-

ity adaptation scheme for AHS Streaming on mobile devices, called MASS. MASS in-

troduces new techniques in conjunction with the best practices of the existing schemes

for improving the video streaming experience while minimizing the depletion in bat-

tery level. We implement and evaluate the performance of MASS on commodity

Android smartphones, using the bandwidth trace obtained from the measurement

study. We also report our findings of the effects of underlying components on the

overall performance of MASS.

• To further improve the streaming experience, we introduce SDASH, a novel system

for AHS video streaming on mobile clients which leverages the synergy between social

network participation and video streaming. Given that friends in a social network

have similar interests and share knowledge and experience with one another, the

effectiveness of P2P sharing can be greatly enhanced by exploiting this knowledge.

By caching video segments and servicing requests for the cached segments, social

peers who are sharers of the video can help to improve the fidelity of the video quality

during a streaming session and across multiple streaming sessions. SDASH extends

existing AHS quality adaptation mechanisms by augmenting AHS streaming with P2P

communication among the sharers of a given video.

• We develop a middleware infrastructure, called Micrograph, for establishing coop-

erative communities or transient social networks (TSNs) among mobile clients [136].

TSNs offer the opportunity for users to leverage both the physical and virtual world to

opportunistically achieve a common purpose. The participants (via their mobile de-

vices) can form a peer-to-peer (P2P) overlay network for exchanging information and

activities of mutual interest in a decentralized fashion. TSNs may then be lever-

aged for the generation, dissemination and consumption of user-generated videos

through P2P communication techniques augmenting the client-server communication

paradigm. Micrograph implements routines for managing the membership of TSNs
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based on the spatial and temporal locality of the devices. We use Micrograph in-

frastructure as a concrete implementation of a social P2P community of mobile peers

for video sharing and in the implementation and evaluation of SDASH adaptation

scheme.

1.5 Roadmap

The remainder of this dissertation is organized as follows. Chapter 2 summarizes the state-

of-the-art in AHS streaming and presents results of our investigation into the performance

characteristics of several video quality adaptation schemes when deployed on mobile plat-

forms. In the following two chapters, we present our solutions for improving the perfor-

mance of adaptive mobile video streaming: Mobile Adaptation Scheme for Adaptive HTTP

Streaming or MASS (Chapter 3) and Cooperative Extensions to Adaptive HTTP Streaming

or SDASH (Chapter 4). Then, in Chapter 5, we introduce Micrograph, a generic infrastruc-

ture for constructing mobile P2P communities based on fundamental primitives of location,

time, and interests. Finally, in Chapter 6, we summarize the dissertation and conclude with

future work.
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CHAPTER II

EVALUATING ADAPTIVE HTTP STREAMING ON MOBILE

DEVICES

In this chapter, we characterize the structure of AHS Streaming (Section 2.1), introduce

our measurement infrastructure (Section 2.2) and evaluate the performance of several AHS

systems on mobile devices (Section 2.3). We conclude our discussion with a review of

related work (Section 2.4) and a short summary (Section 2.5). The research undertaken in

this chapter lays the groundwork for exploring and understanding the technical challenges,

system requirements, and design principles essential to architecting efficient systems for

AHS Streaming on mobile devices.

2.1 Adaptive HTTP Video Streaming

We begin this section with a high-level overview of HTTP-based adaptive video stream-

ing and the system model used in many state-of-the-art AHS implementations. Then, we

present brief descriptions of five quality adaptation schemes that were studied in this chap-

ter.

2.1.1 Overview

Adaptive HTTP Streaming (AHS) is a paradigm for video streaming on the web. Rather

than rely on the dedicated video servers of yesteryears, AHS exploits off-the-shelf web

servers. The protocol works as follows: A video file is divided into multiple small segment

files that have the same play-out duration, typically a few seconds long. Each of the

segments from the same video object are also encoded into different bitrates and quality

levels. Along with an XML file called a media presentation description file (MPD) that

describes the video segments and quality levels, the files are stored on web servers on the

Internet. A video player can then request different segments at different bitrates depending

on the state of the underlying network (Figure 2). This greatly simplifies the server design,
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Figure 4: Sample AHS Streaming Scenario. The mobile client downloads seg-
ments from the CDN which are placed in the playback buffer. An adaptation
algorithm is invoked to determine the appropriate segment representation to
fetch as each segment is requested.

and allows the use of existing web servers and content distribution networks (CDN) systems

without modification.

In addition to readily exploiting the widely deployed HTTP infrastructure for scalable

video streaming, AHS can greatly simplify the firewall and NAT traversal problems en-

countered by other video streaming paradigms. On the other hand, the AHS paradigm

relies exclusively on the client’s ability to efficiently and reliably infer the available network

throughput for high-quality and smooth video playback. Thus, the development of optimal

client-driven approaches is essential for AHS meeting its optimization goals.

Several popular, commercial multimedia vendors have adopted AHS streaming. Netflix

(which accounts for more than 20% of Internet video) currently leads the industry in this

direction [23]. Similar efforts from rival media companies have seen the introduction of

several AHS-based products. These products include Microsoft’s Smooth Streaming [19],

Apple’s HTTP Live Streaming [13], Adobe’s HTTP Dynamic Streaming [1], and Akamai’s
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HD Adaptive Streaming [2]. A standardization process sponsored by the Motion Pictures

Experts Group (MPEG) resulted in a new ISO/IEC 23009-1:2012 standard called Dynamic

Adaptive Streaming over HTTP, or DASH [119].

2.1.2 System Model

The client-driven mechanisms used in a functional AHS streaming can be divided into four

key steps [75, 89]. These four steps encapsulate the series of operations used by the majority

of existing commercial video players for AHS and other proposed AHS systems (Figure 5).

We recap the four key steps in AHS streaming below:

Figure 5: Four step model for AHS Streaming.

1. Estimating step. The AHS scheme begins by estimating the network bandwidth at a

particular time t that can legitimately be used for fetching the segment i. Typically,

the network bandwidth is estimated by dividing the segment size for the most recent

segment i with the time taken to fetch the segment.

2. Smoothing step. In the smoothing step, the estimated bandwidth is then noise-filtered

to yield a new version that helps to remove outlying values and accounts for oscillations

in measured values. Many of the schemes use a time window between 10-20 seconds.
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3. Quantizing step. Given the smoothed bandwidth values, the adaptation scheme then

selects a suitable bitrate for the next segment request by mapping the smoothed

bandwidth to the set of available bitrates.

4. Scheduling step. In the scheduling step, the adaptation scheme schedules when the

next segment will be requested by considering the current conditions such as playback

time and buffer size.

In addition, the adaptation scheme may introduces intermediate steps that are used to

reduce bandwidth undersubscription, and bitrate oscillations.

2.1.3 Quality Adaptation Schemes

We now present brief descriptions of the adaptation schemes we studied in this paper.

While there are many more adaptation schemes published in literature, we focused on those

schemes where the adaptation logic was fully-performed at the media client (i.e., video

player). Furthermore, our selection of the evaluated schemes was also motivated by the

four step model and the evolution of proposals. In the descriptions below, we focus on the

key features of the adaptation schemes. Full details of the schemes are available in their

respective published works [91, 98, 75, 89, 95].

LIU: In this paper, we refer to the adaptation scheme proposed by Liu et al. [91] as the

LIU scheme. The LIU scheme is one of the earliest proposed schemes for AHS adaptation

by the research community. In LUI, the authors proposed using smoothed measurements of

the segment fetch time to detect the changes in available HTTP throughput. By combining

other metrics, such as media segment duration, the lowest bitrate, highest bitrate, and the

ratio of differences between the available bitrates, the scheme deploys a step-wise technique

for switching-up/switching-down between the available bitrate representations.

OSMF: We implemented the adaptation scheme used in Adobe’s Open Source Media

Framework (OSMF) [18] as listed in the work by Mok et al. [98]. The scheme invokes

its adaptation routine before each segment is fetched from the server. Similar to the LIU

scheme, it uses the download time of the last segment to infer the network throughput. It

then implements a set of heuristics for determining whether to switch-up or to switch-down
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to a different quality level. A key characteristics of the OSMF scheme is that it may skip

multiple quality levels and may switch to lower or higher representation in a single epoch

depending on the rate of download.

MILLER: We refer to the adaptation scheme proposed by MILLER et al. [95] as

the MILLER scheme. The MILLER scheme uses the size and position of the playback

buffer as a key factor for quantizing the estimated throughput to the reference bitrate

and for determining how aggressive it should switch up or switch down given the changing

conditions. To reduce the startup latency, the algorithm operates in two phases: a fast start

phase and a regular streaming phase. In the fast start phase, each subsequent download

quickly switches to the next higher representation as long as its bitrate is below a certain

percentage of the throughput measured over the last t seconds. The regular streaming phase

is more conservative in its switch up operations; it uses the Bopt, the optimal buffer level,

to determine when to switch up or switch down to a different representation.

FESTIVE: This is an AHS adaptation scheme proposed by Jiang et al. [75]. In FES-

TIVE, the authors analyzed the four steps of video adaptation and recommended techniques

that can systematically guide the tradeoffs between stability, fairness, and efficiency and

thus lead to a general framework for robust video adaptation. FESTIVE is geared towards

optimizing performance in the presence of interactions across multiple adaptive streaming

players that compete at bottleneck links. FESTIVE uses harmonic mean to smooth out

measured throughput values, and uses a stateful technique for determining how to quantize

the smoothed values to the bitrates. To reduce bitrate oscillation, FESTIVE implements

routines for determining when recently measured bandwidth is computed with the rest of

the smoothed values and used in bitrate quantization. FESTIVE also uses a randomized

scheduler for determining when to request the next segment to reduce repeated sub-optimal

views of the network conditions.

PANDA: Similar to FESTIVE, the PANDA AHS adaptation scheme [89] is geared

towards optimal video adaptation in the presence of multiple players sharing a bottleneck

link. The PANDA scheme models the adaptation routine after the TCP congestion control

AIMD operations. It uses the exponential weighted moving average (EWMA) for smoothing
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the estimated bandwidths and a dead-zone quantizer for quantizing the smoothed estimates

to the reference bitrate. PANDA also includes routines to reduce the effect of bandwidth

over-estimation on the performance of the adaptation algorithm by probing the network

subscription with small increases in its segment request rate.

2.2 Measurement Infrastructure

In this section, we present our measurement environment i.e., the test data, network trace,

measurement testbed and quality metrics.

2.2.1 Test data and Video Formats

We use the dataset derived from a previous work into mobile AHS experimentation [84].

The dataset consists of segments from the Big Buck Bunny video [5]. The segments are

encoded using x264 encoder at 14 different bitrates (Table 1). The segment duration is 2

seconds and the Group of Pictures size is 48 frames. We used two versions of the dataset,

a version with playout duration of five minutes and a second version with playout duration

of ten minutes.

Table 1: Average and maximum sizes of the video segments used in the mea-
surement dataset. The segment duration is 2 seconds and the frame rate is 48
fps.

Representation Bitrate Average Segment Size Maximum Segment Size

100 Kbps 24 KB 46 KB
200 Kbps 47 KB 88 KB
350 Kbps 79 KB 160 KB
500 Kbps 110 KB 238 KB
700 Kbps 149 KB 382 KB
900 Kbps 189 KB 549 KB
1100 Kbps 229 KB 746 KB
1300 Kbps 268 KB 910 KB
1600 Kbps 329 KB 1138 KB
1900 Kbps 392 KB 1445 KB
2300 Kbps 479 KB 1747 KB
2800 Kbps 594 KB 2213 KB
3400 Kbps 737 KB 2716 KB
4500 Kbps 1025 KB 3511 KB
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(a) CDF of network throughput.
(b) Mean of network throughput across
playback duration of 300 seconds.

Figure 6: CDF and mean of the network throughput in the collected mobile
network trace. The network trace was collected over a period of one month
using 8 smartphones, over 4G cellular connectivity and Wi-Fi. The throughput
corresponds to streaming a random video from our dataset.

2.2.2 Mobile Bandwidth Trace

To ensure the repeatability of the experiments and a fair comparison of the results across the

different adaptation schemes as well as to capture typical scenarios faced by users, there is

a need to simulate network conditions that match observed bandwidths in realistic wireless

and cellular networks.

We gathered network traces by providing volunteer users with an experimental mobile

application installed on eight different Android smartphones. The volunteer users carry the

phones with them as they move about their daily routine, i.e., the traces capture network

conditions typical of stationary, pedestrian, and vehicular speeds. The smartphones include

four Google Nexus 4 smartphones equipped with Wi-Fi 802.11 a/b/g/n and 4G network

radios and four Samsung Galaxy S III smartphones equipped with Wi-Fi 802.11 a/b/g/n

and 4G network radios. We utilize T-Mobile 4G LTE network for cellular connectivity and

802.11g for Wi-Fi connectivity. At regular intervals, the Android application randomly

selects a video from our test dataset and streams the selected video to completion. It

then uploads network statistics recorded during the video playback to our test server. We

collected the estimated uplink and download bandwidth and latency across the streaming
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sessions over a month period. We also recorded the GPS coordinates and time for each

session. We used a fixed chunk size of 900 Kbps with a segment duration of 2 seconds, i.e.,

during a single session, the uplink and downlink throughput and latency is sampled every

two seconds and uploaded to our test server.

Figure 6 shows the distribution of measured throughput obtained from our network trace

collection setup. While the median cellular 4G LTE throughput (6.6 Mbps) is higher than

the Wi-Fi throughput (5.6 Mbps), the cellular throughput experiences a lot more variability

than Wi-Fi; even with the same user at the same location across different viewing sessions.

Also, the median RTT for cellular in the bandwidth trace is 88ms while the median RTT for

Wi-Fi is 69ms (Figure 7). The RTT and throughput values are similar to reported values

from other mobile network measurement studies [71, 118].

Figure 7: Mean of RTT across the playback duration of 300 seconds in the
collected mobile network trace.

2.2.3 Measurement Testbed

We implemented an AHS library on Android that reads, parses, and progressively downloads

an AHS file. Our implementation is a port of the open source libDASH [15] onto the Android

operating system. The library includes all the functionality of libdash as well additional

implementation for collecting performance metrics. We then implemented the adaptation

logic for each scheme as described in their relevant publications.

Our implementation also includes a logging facility that records each segment request
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and additional details about the state of the playback at a granularity of 1-second. The ad-

ditional details include the type of network, instantaneous throughput, size of the playback

buffer, segment deadline misses, playback rebufferings, and the segment representation. At

the end of each session, the logging facility uploads the results to our measurement server.

We verify that the software could download and stream all of the test data and all of the

quality levels without errors.

On the server side, we use Microsoft’s IIS web server for serving the video segments

via HTTP GET. The server is configured to support the .mpd and .m4s file formats used

by the dataset for representing the AHS mime type. The web server runs on a dedicated

Windows PC with 2 GB RAM and an Athlon 64 3200+ CPU.

When running the experiments, we use the bandwidth controller (Figure 8) to replay the

network conditions recorded in our traces. We start by selecting from one of the recorded

traces at random, and loading the selected trace on the bandwidth controller, which then

throttles the bandwidth and delays network packets based on the conditions observed in

the previously collected trace. For each selected network trace, we sequentially stream a

video from the dataset with all of the five different adaptation schemes. This ensures that

all of the adaptation schemes were ran using the same networking conditions. We repeated

the experiments 100 times.

Figure 8: The measurement test bed. The Video Server hosts the video segment
files. The Bandwidth Controller is used to replay mobile network traces. Local
indicates the bandwidth between the client and bandwidth controller which is
significantly larger than the bandwidth needs of the segment requests from the
client.
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2.2.4 Quality Metrics

We adopt a number of industry-standard metrics [75, 92, 89] for our evaluation study. Given

a video file with maximum bitrate bmax, and a media client playing a segment of bitrate bi,t

at time t over the video length, we define the following metrics.

1. Inefficiency : Extending the definitions given in [75, 89], we define the inefficiency of

bitrate adaptation as follows. Let the available bandwidth be Wi,t at time t just as

the segment bi,t is requested by the client. The inefficiency of the adaptation scheme

is defined as
∑

t
|bi,t−min(bmax,Wi,t)|

Wi,t
, giving a value between the 0 and 1. The lower the

value, the more efficiently the scheme is utilizing the network throughput to deliver

the best quality of experience for the client.

2. Instability : Previous studies have shown that the number and frequency of bitrate

switches during playback has significant impact on user experience [44]. The insta-

bility metric
∑k−1

d=0 |bt−d−bt−d−1|·w(d)∑k
d=1 bt−d·w(d)

captures the smoothness of bitrate adaptation by

each scheme by computing a weighted sum of all the switch steps observed within a

recent time window k divided by the sum of the bitrates within the last k period. The

weight function, w(d) = k − d, adds more penalty to the more recent switches. In

our calculations, we use k = 20 seconds. The lower the value (i.e., close to zero), the

smoother the video quality adaptation to changing network conditions.

3. Deadline miss ratio: The deadline miss ratio is the number of requested segments

which missed their download deadline divided by the total number of segments. The

download deadline is dynamically calculated based on the remaining period of play-

back and the segment duration. The segment download is terminated when the down-

load deadline elapses. The adaptation scheme will then progress to requesting the next

segment (typically at a lower bitrate).

4. Buffer level : The buffer level is the number of segments in the video buffer at a given

time t measured in seconds of playback. The buffer level is an indicator of how well

the adaptation scheme responds to changes in the available bandwidth.
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5. Buffer undershoot : Let Btarget be the target buffer level (set as 30 seconds in our

implementation). The buffer undershoot
max(0,Btarget−Bt)

Btarget
at time t captures the ability

of the scheme to meet its target buffer level [89]. Lower values of the buffer undershoot

indicate smaller possibility of buffer underruns due to sudden bandwidth drops.

6. Rebuffering ratio: This is computed as the number of times the segments have to be re-

buffered because of playback deadline misses divided by the total playback duration.

We exclude the initial buffering at video start from the calculation. The rebuffering

ratio is an indicator of how smoothly the adaptation scheme proceeds under varying

networking conditions.

7. Startup delay : According to studies on the behavior of commercial players [26, 111],

many of the existing players and proposed adaptation schemes divide the playback

duration into two states: a buffering state and a steady state. The buffering state

is the period from when the first segment request is made to when the playback

buffer has reached its target size while the steady state is the period from the end of

the buffering state to the completion of playback. Furthermore, many players begin

playback as soon as a fraction of the target buffer size has been downloaded (about 10

seconds in the SmoothStreaming player [26]). In our evaluation, we define the startup

latency as the time between the first segment request and when the buffer level is

higher than a minimum buffer threshold Bmin. We use a minimum buffer level of 10

seconds.

8. Battery depletion: The battery depletion is the amount of the device battery con-

sumed during playback given as a percentage of the maximum battery level when

fully charged. A value close to zero implies the adaptation scheme uses minimal

device energy for streaming the video.

Except for buffer level, for all the other metrics, the lower the value the better the

adaptation scheme.
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2.3 Experimental Results

In this section, we present detailed measurement results for each of the adaptation schemes

listed in Section 2.1. Using network traces collected as described in Section 2.2.2, we eval-

uated the performance of the five schemes. In the experiments, we used the default config-

uration parameters specified by the authors in the original evaluations and as described in

Section 2.1.3.

2.3.1 Comparison Strategies

For each metric, we compare the performance of the five video adaptation schemes according

to behavior when utilizing the mobile bandwidth trace and to the behavior when utilizing

a fixed bottleneck link of 8 Mbps. In the fixed scenario, the bandwidth controller sets

the bandwidth to the server to a fixed value of 8 Mbps throughout the duration of the

experiments. For each quality metric, we compute the mean of the results across all the

experimental measurements. We then compare each of the five bitrate adaptation schemes

according to the behavior under cellular network access, the behavior under Wi-Fi access

and the behavior under the fixed bottleneck access.

2.3.2 Inefficiency

Figure 9 shows the breakdown of the inefficiency metric for the five adaptation schemes.

The inefficiency is calculated as defined in Section 2.2.4. For each scheme, we recorded the

requested segment bitrate, and the available throughput in a given playback session and

calculated the inefficiency for a single playback session. We then computed a simple average

of the calculated inefficiency across all the streaming sessions. The lower values illustrate a

lower inefficiency and/or a better utilization of the available throughput by the adaptation

scheme.

From the results in Figure 9, we make a number of observations. First, the inefficiency of

the schemes under mobile networking scenarios is worse than the inefficiency when utilizing

a fixed bottleneck of 8 Mbps. The increase is more pronounced for the LIU and OSMF

schemes, increasing by as much as 134% on Wi-Fi and 143% on cellular. Second, the

20



Figure 9: Inefficiency Results: Fixed bottleneck link versus variable network
conditions using the collected network traces.

inefficiency of all the adaptation schemes is worse when streaming with cellular network

access versus when streaming with Wi-Fi access. Since lower inefficiency translates to

higher average bitrates, this implies that the schemes deliver consistently lower picture

quality under mobile networking conditions (especially on cellular connectivty) than under

controlled settings. Third, the OSMF scheme outperforms the other schemes on both

cellular and Wi-Fi network access. We speculate that the reason for the difference in

deviations between the adaptation schemes is because of the estimating strategy used by

the different schemes. The two schemes that use the rate of download (LIU and OSMF)

for quantizing and are more aggressive during the switch-up process, give better efficiency

than the other schemes.

2.3.3 Instability

In Figure 10, we present results for the instability metric. Similar to the inefficiency met-

ric, we computed the instability for each playback session and then computed a simple

average across all sessions to derive the instability metric. The lower the value, the lower

the instability for the given adaptation scheme and the better the smoothness of bitrate
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Figure 10: Instability Results: Fixed bottleneck link versus variable network
conditions using the collected network traces.

switching.

Similar to Figure 9, the results in Figure 10 show that the instability under the fixed

scenario is better than the instability under the mobile bandwidth conditions for all the

schemes. For example, the instability of PANDA increases by 236% when streaming with

cellular network access and by 389% when streaming with Wi-Fi access. The buffer-aware

schemes (i.e., the schemes that utilize the buffer level for quantizing and scheduling segments

such as PANDA, FESTIVE, and MILLER) yield better stability than the other schemes.

2.3.4 Startup Latency

Figure 11 shows the startup latency for the five adaptation schemes. As explained in

Section 2.2.4, the startup latency is the time taken to download the first 10 seconds length

of segments upon initialization of playback. For each scheme, we calculated a simple average

of the startup latency across all the playback sessions. The results show that the OSMF

scheme incurs very high latency (about 10 seconds on Cellular and Wi-Fi), followed by

the LIU schemes (about 8 seconds on Cellular and Wi-Fi). The FESTIVE, MILLER, and

22



Figure 11: Startup Latency Results: Fixed bottleneck link versus variable net-
work conditions using the collected network traces.

PANDA schemes incur similar latency of about 3 seconds. Given that the segment duration

is 2 seconds, the results show that the OSMF scheme exhausts the download duration at

startup while the other schemes utilizes only a fraction of the download deadline for the

first 5 segments. Comparing the result in Figure 11 to the results in Figure 9, we observe

that the startup latency reflects the aggressiveness with which the bitrate is switched-up by

the scheme. The OSMF scheme quickly switches to higher quality within a single epoch,

thereby downloading the highest quality segments and incurring the longest startup latency

than the other schemes.

2.3.5 Deadline Miss Ratio

In Figure 15, we show a breakdown of the deadline miss ratio. As explained in Section 2.2,

the deadline miss ratio is the fraction of segment requests that miss their segment download

deadline given the current buffer level and playback position. The deadline miss ratio serves

as an indicator of how well the adaptation scheme predicts the future network conditions

and how well it responds to sudden drops in network bandwidth. The figure shows that the
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Figure 12: Deadline Miss Ratio Results: Fixed bottleneck link versus variable
network conditions using the collected network traces.

LIU and OSMF schemes experience higher deadline misses than the other schemes when

streaming under the mobile networking conditions, with the fraction of segment requests

that miss their download deadline as high as 50% when streaming with cellular connectiv-

ity. This implies that the LIU and OSMF schemes are the least robust to the transient

fluctuations in available bandwidth.

2.3.6 Buffer Size

The buffer undershoot experienced by each of the five schemes is shown in Figure 13.

The figure shows significant differences between the performance under mobile networking

conditions and the performance when utilizing a fixed bottleneck of 8 Mbps for the PANDA,

OSMF, and LIU schemes. On the other hand, FESTIVE and MILLER seem to be unaffected

by the mobile network conditions. This result can be attributed to the fact that both

MILLER and FESTIVE delay raising the quality level until a more accurate picture of the

network condition is known. MILLER uses the buffer depletion level while FESTIVE uses

a stateful technique to infer the network conditions.
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Figure 13: Buffer Undershoot Results: Fixed bottleneck link versus variable
network conditions using the collected network traces.

Figure 14: Buffer Level Results: Fixed bottleneck link versus variable network
conditions using the collected network traces.

Figure 14 shows the buffer level for the various schemes under fixed and mobile condi-

tions. For the same reason as in the buffer undershoot results, PANDA, OSMF, and LIU

schemes show poor performance under mobile networking conditions. The mean buffer level

for these schemes are well below the target buffer level of 30 seconds. The buffer levels in
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Figure 15: Rebuffering Ratio Results: Fixed bottleneck link versus variable
network conditions using the collected network traces.

seconds for PANDA, LIU, and OSMF are 20.6, 13.1, and 9.9 (cellular), and 21.2, 19.8, and

17.1 (Wi-Fi), respectively.

In Figure 15, we show a breakdown of the rebuffering ratio. Similar to the deadline

miss ratio, the rebuffering ratio serves as an indicator of how well the adaptation scheme

predicts the future network conditions and how well it responds to sudden drops in network

bandwidth. The figure shows that the PANDA scheme has the best rebuffering ratio when

streaming under the mobile networking conditions. On the other hand, the OSMF scheme

experiences a higher-rate of rebuffering than the other schemes. We speculate that the

OSMF and the LIU schemes suffer from higher rebuffering than the other schemes under

mobile networking conditions because they use only the rate of download as a quantizing

factor which is very sensitive to the transient fluctuations in throughput estimation.

2.3.7 Battery Depletion

We measure the battery depletion for each adaptation scheme by recording the remaining

percentage of battery as reported by the Android system every 1 second. We filter out

the results for when the smartphone was concurrently charged and results for when the
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Figure 16: Battery Depletion Results: Fixed bottleneck link versus variable
network conditions using the collected network traces.

remaining percent was less than 50%. We then computed a simple average of the depletion

over the lifetime of our experimentation.

Figure 16 shows the results for the battery depletion for streaming a 5-minute video

from the dataset. For each scheme, the battery depletion on Wi-Fi is generally less than

that for cellular. Comparing the battery depletion to the average requested bitrate, we

observe that the schemes with higher requested bitrates also use more of the device battery.

The FESTIVE and MILLER schemes provided the best performance of all the evaluated

schemes.

2.3.8 Summary of main results

By using realistic mobile networking conditions, we are able to tease out the innate dif-

ferences in the adaptation schemes. Overall, the performance of all the schemes leave

something to be desired under mobile networking conditions than when tested under con-

trolled settings (such as a fixed bottleneck link). We summarize the main results from the

study below.

• First, the inefficiency metric is worse by as much as 143% than the inefficiency under

controlled settings. Since lower inefficiency translates to higher average bitrates, this
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implies that all the schemes deliver consistently lower picture quality under mobile

networking conditions than under controlled settings.

• There are noticeable differences between the performance of the AHS adaptation

schemes on cellular network and Wi-Fi access networks. As a gross generalization,

most of the schemes perform better on Wi-Fi connectivity than on cellular connectiv-

ity.

• There is no single adaptation scheme that performs outstandingly well on all the

quality metrics. However, the FESTIVE, MILLER, and PANDA adaptation schemes

outperform the LIU and OSMF schemes on the startup latency, rebuffering ratio, and

buffer undershoot metrics. The LIU and OSMF schemes outperform the remaining

schemes on the inefficiency metric. The FESTIVE and PANDA schemes result in the

fewest number of playback rebufferings.

• The LIU and OSMF schemes are the least robust to short-time fluctuations in network

bandwidth. This is due to their aggressive nature in making frequent requests for

segments of higher bitrates leading to higher rate of rebufferings (8% - 11%).

• The MILLER scheme (which heuristically combines the value and rate of increase

in the buffer level with the estimated network throughput in the quantizing step)

experiences the least startup latency and the least buffer undershoot. However, it ex-

periences higher inefficiency and higher rebuffering ratio than FESTIVE and PANDA

schemes i.e., it is not as robust as the FESTIVE and PANDA schemes in the face of

sudden drop in network bandwidth.

2.3.9 Lessons Learned

The study also allows us to reflect on attributes of the individual schemes that lend them-

selves to good design principles for mobile networking conditions.

• The schemes that are more aggressive in their switching decisions by switching between

multiple quality levels within a single epoch (OSMF and LIU) achieve better efficiency
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than the schemes that are conservative in their switching decisions. However, this

leads to higher increase in instability, startup latency, and rate of rebufferings.

• The schemes that utilize buffer-aware strategies in quantizing the reference bitrate

and/or making scheduling decisions achieve lower startup latency, lower buffer under-

shoot, and higher mean buffer level than the other schemes.

• The schemes that smooth the estimated bandwidth using a harmonic mean and expo-

nential weighted moving average (FESTIVE and PANDA) experience lower difference

in the mean buffer level and rebuffering ratio in the presence of network fluctuations.

2.4 Related Work

The related work consists of prior and ongoing research into quality adaptation schemes for

HTTP streaming, measurement studies of Internet and mobile video, and the design and

characterization of quality metrics for AHS streaming.

Measurement of Video Streaming. Various qualitative and quantitative studies

[26, 75, 98, 47, 25] have examined the performance of AHS streaming in commercial systems

such as Netflix [17], Microsoft’s Smooth Streaming [19], Apple’s HTTP Live Streaming

[13], and Adobe’s Dynamic Streaming [2]. Through experiments in controlled settings,

these studies characterize the behavior of AHS streaming when one or more video players

share a bottleneck link to the video server. Our study focuses on the performance of bitrate

adaptation for smartphone clients faced with mobility-related constraints, irregular network

connectivity and resource constraints.

Another category of research studies looks at networking characteristics of video traffic

by measuring client interactions with the CDN servers and CDN selection strategies [92, 23,

112]. By analyzing collected HTTP video dataset, these studies then infer key insights into

the effects of competing TCP flows and CDN selection on the Quality of Experience (QoE)

[97], rebuffering rates, and user engagement. A number of studies have also examined the

characteristics of video traffic in cellular networks [53, 65, 93].

AHS Adaptation Schemes. Many research studies have proposed quality adaptation

schemes for AHS streaming [75, 89, 91, 95, 98]. These systems analyze metrics such as
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fairness, efficiency, stability, and average bitrate. The majority of the proposed schemes

follow a four-step model for AHS streaming described in Section 2.2. Other systems have

also proposed control-theoretic approaches and Markov-Decision Process techniques for im-

proving the overall performance of the bitrate adaptation [122, 140]. Our study has been a

careful comparative study of a select number of such adaptation schemes.

Another set of studies has examined video streaming in mobile environments. The

design and implementation of AHS streaming for mobile clients is an active research area

[114, 133, 60, 40, 32, 123, 69]. Muller et al. [101] studied the performance of commercial

AHS systems in vehicular networking environments. Seo et al. [117] proposed techniques

for optimizing the uploading of live video segments to AHS servers from mobile end devices.

Ransburg et al., [111] evaluated AHS streaming using a local testbed. They measured the

impact of packet delay and packet loss on video streaming using either Apple’s HTTP

Live Streaming or traditional Real Time Streaming protocols. While these systems also

address some of the challenges with AHS streaming on mobile devices, they do not provide

quantitative comparisons with existing quality adaptation schemes. More importantly, in

our work, we conducted detailed evaluations of select adaptation schemes using industry-

standard quality metrics.

Quality Metrics. There are also research studies on measurement metrics for AHS

streaming. Given that a key objective of AHS streaming is to optimize user-perceived

Quality of Experience, a number of previous works have proposed metrics and adaptation

schemes for evaluating AHS streaming systems. Mok et al. [97] studied the degree of cor-

relation between the physical network quality of service and the user-perceived application

quality. In QDASH [98], the authors conducted a user study to evaluate the QoE of a pro-

posed buffer-aware rate selection scheme. Similarly, a related study by Balachandran et al.

[30] enumerated multiple metrics that can jointly determine how the quality of AHS stream-

ing correlates with user-engagement. In this paper, we focus on performance evaluations of

individual metrics, with a view of achieving a more QoE-aware system.
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2.5 Summary

In this chapter, we have presented foundational details about the state-of-the-art in adaptive

HTTP video streaming including an overview of the system model used in multiple exist-

ing implementations and brief descriptions of several state-of-the-art adaptation schemes.

Then we explain the architecture and the implementation details of our measurement infras-

tructure which we used in the experiments evaluating the performance of AHS on mobile

devices. Finally, we present detailed experimental results quantifying the performance of

the state-of-the-art AHS schemes using our measurement infrastructure. In our experimen-

tal results, we find significant differences between the performance of the evaluated schemes

in controlled experimental settings and their performance in mobile settings. We also find

major differences in the behavior of the schemes under Wi-Fi and cellular network access

types, with most of the schemes performing worse when the network access type is cellular.

Given these observations, we provide an understanding of the possible causes of these ineffi-

ciencies. The experimental results show that existing approaches for bitrate adaptation do

not effectively provide consistent Quality of Experience under mobile networking conditions

nor do they achieve the level of performance desired for maximal user engagement and re-

peat viewership. In the next chapter, we will present a novel scheme for bitrate adaptation

that shows improved performance under mobile networking conditions.
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CHAPTER III

MOBILE ADAPTATION SCHEME FOR HTTP VIDEO STREAMING

In this chapter, we introduce our proposed Mobile Adaptation Scheme for AHS (MASS).

Armed with the key observations from our experimental evaluations, MASS addresses the

limitations of the existing adaptation schemes. We begin by describing the system context

and design goals. We then provide key details of the algorithms and routines used by

the MASS scheme. Finally, we present performance evaluation of MASS using the same

experimental setup as the schemes studied in Chapter 2.

3.1 Context and Design Goals

We are witnessing a paradigm shift to mobile devices as the primary platform for consuming

videos. The accessibility of mobile devices as well as the penetration of high-speed 3G and

4G networks offer the potential for high-quality video experience. However, as observed in

the previous chapters, the task of architecting a system for adaptive mobile video streaming

poses significant challenges unaddressed by existing schemes. It also requires tradeoffs be-

tween multiple, conflicting optimization goals represented by key quality metrics described

in Chapter 2 (Section 2.2.4). From these performance metrics and analysis of existing sys-

tems, we identify the following design goals for a mobile video quality adaptation scheme:

1. Avoid playback rebufferings due to buffer underruns: Because of the severe impact of

buffer underuns on user experience, the adaptation scheme must be very robust in the

face of sudden drops in network bandwidth. In our proposed scheme, we incorporate

buffer-aware strategies with stateful bandwidth update to improve the responsiveness

of the adaptation scheme to bandwidth changes.

2. Maximize the average bitrate quality and minimize the inefficiency and instability met-

rics: Achieving efficient utilization of the available network bandwidth will yield high
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picture quality and improved streaming experience. Similarly, achieving a low insta-

bility metric translates to a smooth streaming experience by reducing the oscillations

in bitrate levels. In our proposed scheme, we extend techniques from the FESTIVE

and the PANDA adaptation schemes to maintain high-efficiency and low-instability.

3. Provide uniform performance under Wi-Fi and cellular connectivity : Because of the

divergence in the behavior of existing schemes on Wi-Fi and cellular network access,

users may experience non-uniform streaming quality depending on the type of connec-

tivity at the time of streaming. By reducing the variability in key performance metrics

(e.g., instability, inefficiency, and rebuffering ratio), the streaming experience can be

greatly enhanced. In our proposed scheme, we introduce a number of techniques

for handling the high variability of network throughput. This includes heuristics for

smoothing measured bandwidth values to reduce the jitter on cellular connectivity

and using a two-phase model to improve the bitrate quality at the start of streaming.

4. Minimize battery consumption: Because of limited battery life, it is essential for the

adaptation scheme to minimize its impact on battery usage.

The first two optimization goals have been identified by previous work on AHS stream-

ing. The last two optimization goals in the above list are specific to MASS and the mobile

AHS streaming scenario. We do not claim that this list is exhaustive. Other optimization

goals such as minimal playout startup latency, and ensuring fairness among competing video

players sharing a bottleneck link have also been shown to impact the streaming experience.

3.2 MASS: Measurement-Driven Design

As we have shown in the previous chapter, existing adaptation schemes do not satisfy the

goals of efficiency, stability, low frequency of rebufferings, and high average quality. They

also do not offer uniform performance under multiple forms of mobile networking access. In

this chapter, we introduce a novel scheme that satisfies these properties. Based on insights

from experimental results in Chapter 2 (Section 2.3), our design approach examines the
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performance of existing schemes and considers the features of each element of the four-

step model (i.e., bandwidth estimation, bandwidth smoothing, bitrate quantization, and

chunk scheduling) that translate to improved performance. Through careful measurements,

we then evaluated the impact of these features and their configuration parameters on the

overall streaming quality.

From the results in Chapter 2, we make a number of observations. First, the schemes

which perform multiple switches within a single interval (LIU & OSMF) achieve higher effi-

ciency than schemes which perform at most one switch within a single interval. On the other

hand, the schemes with multiple switches per interval are more unstable than schemes with

at most one switch per interval. Second, the FESTIVE and PANDA schemes outperform

the other schemes on key metrics of startup latency, buffer undershoot, buffer level, and

rebuffering ratio. Furthermore, the FESTIVE and PANDA schemes show the least variabil-

ity on both Cellular and Wi-Fi network access on a number of key metrics. Quantitative

results in FESTIVE [75] as well in Chapter 2 (Section 2.3) showed that using harmonic

mean reduces the impact of sudden drops or increases in bandwidth estimates compared

to other smoothing techniques. Third, the MILLER scheme has the lowest frequency of

buffer undershoot. This implies buffer-aware strategies can be beneficial for reducing buffer

underruns. We base our design of MASS on these key observations.

Figure 17 shows an overview of techniques used by the MASS scheme. MASS combines

techniques from existing schemes as well as observations about the networking conditions

(type of network connectivity, and available bandwidth), position and state of video play-

back and the recent history of bitrate switches to optimize the streaming quality. In the

next two sections (Section 3.3 and Section 3.4), we explain the rationale behind our selec-

tion of these techniques, describe key steps in the MASS scheme and empirically validate

the impact of each technique on overall streaming quality.

3.3 Heuristic Algorithm

We now proceed with describing the details of the MASS adaptation scheme. First, we

summarize the notation used in our explanation, followed by a brief overview of the system
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Figure 17: Components of the MASS Quality Adaptation Scheme.

model. Lastly, we discuss the intuition behind the techniques and options used in each

element of the four-step model.

3.3.1 Notation

Given a video file with media segment duration τ , the parameters i = (1, 2, ..., N) denotes

the segment indices (playback position), at a specific time t during streaming. Let the

reference bitrate encoded by the video provider and available in the media description file

be denoted by br,i ∈ <f where <f is the set of all available bitrates. The lowest bitrate

is represented by br(min) and the highest bitrate by br(max). We denote the estimated

bandwidth at time t as xi,t and the smoothed bandwidth that is quantized to the reference

bitrate by bs(t). The size of the playback buffer at time t is represented by β(t). Additionally,

we use the configuration parameters β(min), β(target) and β(high) to represent safety

margins for the size of the playback buffer and ε to represent the maximum number of

bitrate switches in a single epoch.
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3.3.2 Model

The MASS adaptation scheme closely follows the four-step model in making decisions of

whether to switch-up or switch-down based on recent measurements of available throughput.

After downloading a new segment, the quality adaptation routine is invoked to determine

the reference bitrate for the next segment. Furthermore, the MASS adaptation scheme

divides the playback duration into two phases: the ramp-up phase (ηramp) and the steady-

state phase (ηsteady). This distinction allows the system to make more flexible decisions

at the beginning of playback until a more reliable and representative measurement of the

network bandwidth can be inferred. Based on the results from Chapter 2 (Section 2.3),

the ramp-up phase corresponds roughly to the first 30-60 seconds of playback, while the

steady-state phase corresponds to the remaining duration of playback.

3.3.3 Algorithm Description

The high-level code for the MASS adaptation scheme is shown in Figure 18. Details of the

key steps used by the MASS scheme are as follows:

Estimating step: After a segment is downloaded, we derive an estimate of the network

bandwidth xi,t at time t. xi,t is computed from the segment fetch time Ti, the segment

duration, τ and the segment bitrate br,i as xi,t =
br,i·τ
Ti

.

The estimated bandwidth gives a snapshot of the network conditions. The computed

value is then further refined by the smoothing module to reduce the effect of oscillations in

the measurements.

Smoothing step: Borrowing from the FESTIVE scheme, MASS uses a harmonic mean [12]

to smooth out the instantaneous estimates. In MASS, the harmonic mean of the estimated

bandwidth xi,t is smoothed over a time windows of k = 20 seconds to obtain the smoothed

bandwidth bs(t) at time t.

Quantizing step: After smoothing out the throughput values, a reference estimated bitrate

is computed. MASS then uses a quantizing factor to map the smoothed bitrate to the

estimated bitrate. The quantizing factor εbr,i for switching-up to the next bitrate br,i is
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Input:
β(t), /* buffer level at time t */

bs(t), /* smoothed bw estimate */

ηsteady/* is steady state? */

Output:
br(t)+1, /* bitrate of next segment */

Br(t)+1/* next request time */

1 Br(t)+1 := 0 ;

2 br(t)+1 := br(t) ;

3 if bs(t) < br(t) and b↓r(t) ≥ br(min) then

4 br(t)+1 := b↓r(t) ;

if β(t) >= β(target) then
5 Br(t)+1 := Brand ;

6 end

7 else
8 if t 6= ηsteady and β(t) > β(min) then

9 br(t)+1 := b↑r(t) ;

10 end
11 else
12 count = 1 ;
13 repeat

14 if bs(t) > b↑r(t) then

15 br(t)+1 := b↑r(t);

16 end
17 count = count+ 1 ;

18 until count ≤ ε and br(t)+1 ≤ br(max);

19 if β(t) > β(high) then
20 Br(t)+1 := Brand ;

21 end
22 else
23 Br(t)+1 := max(0, β(t)− β(target)) ;

24 end

25 end

26 end

Figure 18: Algorithm: MASS Quality Adaptation.
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calculated from the encoded media bitrates from the video media description file as

εbr,i = 1−
∑i+1

i−1
br,i+1−br,i

br,i
,

i.e., we take the average of the difference between the values of reference bitrate, the

previous bitrate and the next bitrate to determine the quantizing factor for that bitrate.

Using a quantizing factor to reduce over-estimation of available bandwidth was proposed

in earlier schemes (LIU, MILLER, and PANDA). However, these schemes use a fixed factor

for quantization. The fixed quantizing factor does not address the gaps between the elements

of the reference bitrates <f . The dynamic quantizing factor in MASS helps to account for

the gaps between the reference bitrates as well as approximate a stateful quantization as

used in FESTIVE to handle high variability in the estimated bandwidth.

After applying the quantizing factor to the smoothed estimated bandwidth, MASS pro-

ceeds with selecting the reference bitrate for the next segment. MASS switches up to the

next quality if the smoothed bandwidth is greater than reference bitrate and switches down

to the previous quality level if the smoothed bandwidth is less than the current bitrate.

Based on insights from the experimental results in Chapter 2 (Section 2.3.2 and Section

2.3.6), MASS uses additional techniques for optimizing the efficiency and stability of the

quality adaptation. The techniques include fast switching during the ramp-up phase, and

limited multi-level switching.

From the results in Chapter 2 (Section 2.3), the OSMF scheme which uses multi-level

switching outperforms the other schemes on the inefficiency metric and average bitrate.

However, it performs poorly on the instability metric and rebuffering ratio. Similar to the

OSMF and LIU schemes, MASS uses multi-level switching to quickly match the network

conditions and improve the bandwidth utilization.

In the ramp-up phase, as long as there are no re-bufferings and the estimated through-

put yields a new reference bitrate, MASS continues to switch-up to the next quality level

provided the buffer size is greater than the minimum buffer size β(min).

The intuition behind the approach is to reduce the impact of the fluctuations in the

network conditions by examining the size of the buffer. Also, by using limited multi-level

switching, the MASS scheme can remain reactive to the progressive increases in available
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bandwidth while at the same time reducing the possibility of bandwidth over-estimation.

Scheduling step: The scheduling step borrows ideas from the approach used by the

FESTIVE and the MILLER schemes. It extends those approaches by considering the buffer

size. If the current buffer size β(t) is less than the target buffer size β(target), MASS

immediately schedules the next segment to be downloaded. On the other hand, if the buffer

size is greater than β(target), MASS uses a randomized scheduler similar to FESTIVE,

i.e., it schedules the next segment for download by selecting a random buffer size Brand

from the range β(target) − δ, β(target) + δ. The next segment is then downloaded once

the current buffer size is less than the selected random buffer size Brand. MASS only uses

the randomized scheduler when switching up if the buffer size is greater than β(high), i.e.,

MASS maintains the current periodic download schedule in the switching-up phase if it

is detects increasing network throughput. It only probes the network with a randomized

scheduler if the buffer size is greater than β(high).

These mechanisms allow MASS to reduce the likelihood of playback rebufferings by

maintaining the buffer level within the target interval. They also help to reduce the impact

of short-time spikes in available throughput, which is more commonly experienced when

streaming with cellular connectivity.

In designing MASS, we adopted the best practices of existing schemes (i.e., randomized

scheduling, harmonic mean smoothing, and using a quantizing factor) and added modifi-

cations to improve the utilization of available bandwidth (the inefficiency metric) and the

smoothness of quality switching (the instability metric). The key differences between MASS

and existing schemes are in its use of limited multi-level switching, the playback buffer size,

and the dynamic quantizing factor for deriving the reference bitrate from smoothed esti-

mates of the network bandwidth (Figure 17).

3.4 Evaluation: Component-wise Performance Tradeoffs

In this section, we perform several measurements with the MASS scheme using the ex-

perimental setup described in Chapter 2 (Section 2.2). We then analyze the tradeoffs of
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configuring different components using the mobile bandwidth trace for the four metrics of in-

efficiency, instability, buffer undershoot, and rebuffering ratio. Each individual experiment

uses a different value or one of the specific parameters of the component being configured,

while the remaining parameters use the default values as shown in Table 2. In computing

our results, we average the values for each metric over 40 trials.

Table 2: MASS Configuration Parameters for Performance Tradeoffs

Parameter Default Value Configuration Values

Target Buffer Level (β(target)) 30 25, 30, 35, 40, 45
Minimum Buffer Level (β(min)) 10 5, 10, 12, 15, 18, 20
Max Switches Per Epoch (ε) 2 1, 2, 3, 4, 5, 6, 7
Random Buffer Offset (δ) 10 3, 4, 5, 6, 7, 8, 9 , 10

(a) (b)

(c) (d)

Figure 19: Impact of Target Buffer Level.
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3.4.1 Impact of Target Buffer Level

Figure 19 shows the tradeoffs of setting the target buffer level β(target). As can be seen,

the buffer undershoot decreases rapidly as the β(target) is slowly increased from 20 seconds

to 45 seconds. Similarly, two additional metrics (instability and rebuffering ratio) decrease

progressively as the β(target) is slowly increased from 20 seconds to 45 seconds. For the

inefficiency metric, β(target) gradually decreases up to an optimal value of 40 seconds. This

result implies that higher values of the buffer size helps to reduce the possibility of playback

stalls since we see gradual reductions in the buffer undershoot and rebuffering ratio metrics

as well as increased stability of the bitrate adaptation. At the same time, the inefficiency

metric also benefits from larger values of target buffer level up to an optimal value of 40

seconds. The results in Figure 19 indicate that β(target) is a very important parameter for

optimizing the bitrate adaptation.

(a) (b)

(c) (d)

Figure 20: Impact of Minimum Buffer Level.
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3.4.2 Impact of Minimum Buffer Level

In this experiment, we vary the minimum buffer level β(min) while keeping the default

values for the other parameters. As explained in Section 3.3.3, the minimum buffer level

helps to safeguard MASS from over-quantization of the reference bitrate and to respond to

sharp drops in network bandwidth.

Figure 20 shows the impact of the varying minimum buffer level from 5 seconds to 20

seconds on the inefficiency, instability, buffer undershoot, and rebuffering ratio. Notice that

the minimum buffer level has moderate impact on the inefficiency metric and uneven effect

on the instability metric. We speculate that the reason for the moderate impact is because

each additional increase in β(min) yields more aggressive bitrate switching until the value

of minimum buffer level gets close to the value of the target buffer level β(target). On the

other hand, the minimum buffer level has a slight impact on the buffer undershoot and

rebuffering ratio metrics. The results in Figure 20 imply that choosing the appropriate

minimum buffer level will help to reduce the rate of buffer underruns and rebufferings.

3.4.3 Impact of Number of Switches Per Epoch

In this experiment, we consider the effect of increasing the maximum number of switches

that can be made within one epoch (ε) on the performance of the quality adaptation. The

motivation for this experiment is to determine the effectiveness of our limited multi-level

switching versus the single-switching approach (as used in the MILLER and the PANDA

schemes) and the full multi-switching approach (as used in the OSMF and the LIU schemes).

As can be seen in Figure 21, increasing the maximum number of switches per epoch has

significant effect on all the quality metrics. Specifically, each additional increase in the value

of the maximum number of switches leads to considerable improvements in the inefficiency

of the adaptation up to the threshold value of 4 switches per epoch before a reversal in

the quality gains. Additionally, as we would expect, the increases also results in higher

instability, higher buffer undershoot, and more frequent rebufferings. The result in Figure

21 implies that limited multi-level switching is more effective than single-switching and full

multi-level switching for optimizing key performance tradeoffs. Therefore, a careful choice
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(a) (b)

(c) (d)

Figure 21: Impact of Number of Switches Per Epoch.

of the maximum number of switches per epoch is a key decision for improving the bitrate

adaptation.

3.4.4 Impact of Random Buffer Size

For this experiment, we look at the impact of configuring the range of values for the random

buffer level Brand. Recall that Brand is used as a factor to determine when to schedule

the next segment, i.e., to assist in minimizing the effect of segment request times on the

estimation of the network bandwidth. For each value of the random buffer offset δ, we

choose a value between the range β(target)− δ, β(target)+ δ to wait before sending out the

request for the next segment whenever the current buffer level is above the target buffer

level β(target). The results are shown in Figure 22.

The figure shows that an offset value has minimal impact on the inefficiency and insta-

bility and uneven impact on the buffer undershoot and rebuffering ratio. From the results,

we choose a default offset value of 8.
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(a) (b)

(c) (d)

Figure 22: Impact of Rand Buffer Offset.

3.5 Evaluation: Comparison with Existing Schemes

Table 3: Parameters Used in Evaluating MASS versus Existing Schemes

Parameter Cellular Value Wi-Fi Value

Target Buffer Level (β(target)) 35 40
Minimum Buffer Level (β(min)) 15 18
Max Switches Per Epoch (ε) 3 4
Random Buffer Offset (δ) 8 8

In this section, we conduct a set of experiments to evaluate the performance of MASS

against other quality adaptation schemes. We have implemented the MASS scheme on

the Android system using the measurement infrastructure described in Chapter 2 (Section

2.2). We use optimal parameters derived from our measurements in Section 3.4 in the

experiments. The parameters are summarized in Table 3.

Figure 23 shows the average video startup time and rebuffering ratio experienced across

all the playback sessions by the MASS algorithm. The results show that MASS experiences
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(a) Startup Latency
(b) Rebuffering Ratio

Figure 23: Startup Latency and Rebuffering Ratio of the MASS scheme.

(a) Inefficiency (b) Instability

Figure 24: Inefficiency and Instability of the MASS scheme.

a startup delay of less than 2 seconds on Wi-Fi and less than 2.3 seconds on cellular (Figure

23a). MASS also experiences very little rebuffering (less than 2%) on both Wi-Fi and

cellular connectivity (Figure 23b).

In Figure 24a, we show the inefficiency metric for MASS, i.e., its ability to efficiently

utilize the available bandwidth. From the results in 24a, we see that the MASS scheme

outperforms the existing schemes. The efficiency of quality adaptation increases to more

than 89% from up to 78% achieved by the OSMF scheme on Wi-Fi network access, and

increases to more than 83% from up to 74% achieved by the OSMF scheme on cellular

network access.

Figure 24b shows the smoothness of the quality adaptation as defined by the instability
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metric. We observe that MASS is able to follow the dynamics of the average available

bandwidth in a robust manner with both Wi-Fi and cellular networks.

(a) Buffer Undershoot (b) Buffer Level

Figure 25: Buffer Undershoot and Buffer Level of the MASS scheme.

In Figure 25, we show the buffer undershoot and buffer level metrics. The results show

that the MASS scheme performs worse than the state-of-the-art in its ability to meet its

target buffer level on both cellular and Wi-Fi connectivity. We note that MASS performance

is higher than that of PANDA, LIU, and OSMF schemes (see Figure 13 and Figure 14).

The results in Figure 25 reflect the impact of multi-level bitrate switching on the overall

performance of MASS. Recall that multi-level bitrate switching enables MASS to efficiently

utilize the available network bandwidth. However, switching between multiple bitrates

in one epoch also reduces MASS’s ability to meet its target buffer level in the event of

sudden decrease in the available bandwidth since the requested segments will take longer

to download than predicted by the MASS scheme. We note that the effect of the buffer

undershoot metric on the overall performance of MASS is minimal because its average buffer

level of 26.8 seconds on cellular and 29.5 seconds on Wi-Fi is close to the target value of 30

seconds used by the existing schemes. Also, MASS experiences lower rate of rebufferings

than the existing schemes.

The battery depletion due to MASS is shown in Figure 26. The figure shows that MASS

does not incur significant battery depletion. The results of MASS are comparable to the

performance of existing schemes.
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Figure 26: Battery Depletion of the MASS scheme.

In summary, MASS outperforms the existing schemes on key metrics of rebuffering ratio,

inefficiency, instability, and battery life. On the startup latency metric, MASS outperforms

the state-of-the-art by more than 12% on Wi-Fi network access. The startup latency of

MASS on cellular network access is slightly worse than the that of the MILLER scheme by

less than 4% (from 2.22 seconds to 2.31 seconds) but smaller than that of the remaining

schemes. Also, MASS performs slightly worse than the state-of-the-art on the buffer level

and the buffer undershoot metrics. The decrease in MASS’s ability to meet its target buffer

level is mainly due to its use of multi-level bitrate switching during a single epoch. However,

the impact of the buffer undershoot metric on the overall performance of MASS is minimal

since the average buffer level of MASS is close to the target value of 30 seconds used by

the existing schemes. Also, by carefully determining the number of bitrate switches in a

given epoch, MASS is able to achieve significant improvements in efficiency at no costs

to its stability and responsiveness. Furthermore, by incorporating buffer-aware strategies,

MASS is able to achieve lower rate of rebufferings than the existing schemes. The results

show that through our extensions to AHS quality adaptation, we can reduce the impact of

network fluctuations and improve overall streaming experience.

47



3.6 Summary

In this chapter, we have presented a new scheme for AHS quality adaptation to changes

in the network throughput experienced by mobile devices. Based on analysis of previous

research and a measurement-study of the performance of existing schemes on mobile de-

vices, we identify key optimization goals for our Mobile Adaptation AHS Scheme (MASS):

avoiding interruptions of playback due to buffer underruns, maximizing the average video

quality, minimizing the number of bitrate shifts, maximizing the use of available network

bandwidth, and providing uniform performance across multiple forms of mobile Internet

connectivity. To handle the challenge of meeting these optimization goals, we leveraged

the best-practices of existing schemes and also introduced new techniques for tuning the

robustness of the rate adaptation scheme. These techniques include limited multi-bitrate

switching, dynamic quantizing safety margin, and fast ramp up. We then conducted ex-

periments into the performance tradeoffs for key quality metrics when varying the values

of multiple underlying components. Using the derived optimal values of the configuration

parameters, we compared the performance of MASS with existing schemes. The results

show that MASS outperforms existing schemes on key metrics.
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CHAPTER IV

COOPERATIVE EXTENSIONS TO ADAPTIVE MOBILE

STREAMING

4.1 Introduction

In the preceding chapters, we have studied the performance of several AHS schemes on

mobile devices and have proposed a novel scheme, MASS, which leverages key-insights from

our evaluation of existing schemes and best practices of the state-of-the-art to improve the

streaming quality. In this chapter, we build on the research presented in earlier chapters

by presenting a system for improving the Quality of Experience for mobile video streaming

through social participation.

Video access on mobile devices differs from video consumption through fixed computing

devices. Smartphones are often equipped with video cameras, GPS and other sensors, lead-

ing to the emergence of user-generated content and the increasing use of mobile platforms

as both the sources and destinations for video traffic. Similarly, sharing and interactions of

video links through “friends” in social networks and location-based news spreading are two

key drivers of mobile video traffic: 71% of users (mostly the adult population) in the US

use video-sharing sites [107]; there are more than 70 million re-shares of video on Facebook

per month [52, 125]; and content sharing on mobile devices grew by more than a factor of

eleven in 2011 alone [107]. There is also increasing dissemination of video content among

users of mobile devices with shared interests in an ad hoc manner. This pattern of mobile

video consumption provides different opportunities from video access on fixed computing

devices. Unfortunately, existing video delivery technologies are designed for traditional In-

ternet users, ignoring the unique demands of mobile multimedia access. This model ignores

the cooperative nature of mobile video access, requiring all the devices to fetch the complete

video segments from the originating servers. Given the increasing shift to mobile devices as

the primary endpoints for consuming videos, we believe that there is a need to rethink the
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system infrastructure used for delivering video to end users.

In this chapter, we propose to augment the client-server communication used by existing

video adaptation schemes with cooperative techniques that exploit the synergy between

video sharing on social networks and streaming of videos by mobile users in order to further

optimize the viewing experience. Given that “friends” in a social network have similar

interests and share knowledge and experience with one another, the effectiveness of P2P

sharing can be greatly enhanced by exploiting this knowledge. By caching video segments

and servicing requests for the cached segments, social peers who are sharers of the video

(or sharer network) can help to improve the Quality of Experience (QoE) across multiple

streaming sessions (Figure 27). Furthermore, SDASH takes advantage of the increasing

sophistication of mobile devices in terms of computing power and the availability of mobile

devices in a range of form factors (smartphones, tablets, phablets, etc.), suitable for video

consumption and P2P communication. The optimization objective of SDASH is obtaining

higher segment bitrates and picture quality across time and location for a given user by using

information available in both the sharer network (spatially and/or temporally co-located

users) and the origin video server. In SDASH, we use local peer caching and a P2P-based

adaptation algorithm to meet the optimization objective. Each peer caches only a single

version (video representation or bitrate) per video segment for a subset of the video. The

peer-assisted component determines the optimal source for the next segment request based

on the dynamic network conditions.

The technical challenges addressed in this chapter, namely, caching, prefetching, and

segment scheduling using cooperation among the members of the sharer network are not

unique to SDASH and have been studied by other related work. However, the application

of these concepts to mobile devices and AHS video streaming presents unique challenges.

Mobile devices are resource-constrained, therefore, there is a pressing need to exploit the

device context when making prefetching and scheduling decisions. We also need new tech-

niques for quality adaptation that minimizes frequent bitrate fluctuations by leveraging the

caches in the sharer network.
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Figure 27: Cooperative Streaming with SDASH.

The unique contributions of our work are as follows: (a) study of cooperation opportuni-

ties and the potential costs and benefits of exploiting cooperative caching, prefetching, and

P2P streaming, (b) systemic approach for exploiting cooperation among sharers of video for

improving the quality of experience, (c) novel prefetching and bitrate adaptation techniques

that are sensitive to device context and are resource-aware, and (d) design, implementation,

and evaluation of the SDASH system.

In the rest of the chapter, we first motivate SDASH in Section 4.2 with sample scenarios

and studies on the potential benefits and costs of cooperative streaming. We present the

design of SDASH in Section 4.3 and the key mechanisms underlying the SDASH system in

Section 4.4. Section 4.5 describes the implementation of core components. The experimental

setup and results using smart phones are covered in Section 4.6. We review related work in

Section 4.7 and present concluding remarks in Section 4.8.
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4.2 Opportunity for Cooperative Streaming

In this section, we present preliminary evidence that cooperative techniques can indeed

provide significant benefits to mobile video streaming. Towards this goal, we answer three

specific questions. 1) How interested are users in videos shared with them on social net-

works? 2) How does the average network throughput from cooperative techniques (caching

and P2P networking) compare to the network throughput from regular client-server commu-

nication experienced by mobile devices?, and 3) What would be the impact of cooperative

techniques in terms of resource usage? Our results provide insights that shape the design

of a cooperative video streaming system. The performance gains of cooperative streaming

are further elaborated through comprehensive experiments in Section 4.6.

4.2.1 Diffusion of Video Sharing and Co-location Opportunities

Video sharing sites such as YouTube, Facebook, and Vimeo are increasingly popular. In

this section, we investigate the video viewing relationships between friends in the Facebook

social network. Because we do not have access to the full social graph, we collected a

simple sharing dataset that gives insights into the participation of users for videos that

were shared by their “friends” by crawling the profiles of twelve volunteer users (seeds)

and their friends on Facebook. We use the Facebook Graph API to access the lists of

“friends”, “posts”, “links”, and “newfeeds” of the users. We then identified videos from

other posts on user profiles by checking for the “video” tag and searching for video domain

names such as “youtube.com” and “vimeo.com” in the url of the posted links. We also

recorded friendship information, and the “likes”, “comments”, and “targets” of the videos

when available. Because of privacy and user settings, we found only 1966 videos from 2743

users between the period of July 2008 and May 2013. We aggregated the number of “likes”

and “comments” on each posted video. We found an average of 5.7 video postings per user

and 9.4 “likes” and “comments” on each posted video (Table 4). Since there are likely to

be more viewers of a video than only the users who “liked” or “commented” on the video,

the results suggest a significant engagement of “friends” with the videos shared by users on

social networks. In Section 4.4, we describe prefetching algorithms that exploits the sharing
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ties between users for improving the video viewing experience.

Table 4: Facebook Sharing Dataset. The number of likes/comments per video
(9.4) suggests high-degree of participation by “friends” in social networks.

Item Value

Seeds 12 Users
Dates Videos Posted 7/2008 - 5/2013
Total Number of Users 3120
Total Number of Videos 1996
Average Video Per User 5.7
Average Likes/Comments Per Video 9.4

In CoMon [85], the authors analyzed the American Time Use Survey (ATUS) dataset

[35] to quantify the amount of time people spend together within a 24-hour period. For

each individual, the average meeting time with one or more acquaintances is 8.5 hours; with

78% of the participants spending more than 4 hours and 50% of the participants spending

more than 9.3 hours of co-located time with acquaintances. Furthermore, each individual

is co-located with more than one acquaintance 42% of the time, while 65% of co-located

meetings last for more than 30 minutes and 47% of the meetings last for more than one

hour. Coupled with results from recent studies [100, 124, 45] which show a high-degree of

correlation between membership of social networks and co-located networks, this implies

that there are multiple opportunities for “friends” in the same social network to augment

their video streaming activities by exchanging information virtually through their mobile

devices.

4.2.2 Network Throughput of Cooperative Techniques

We investigate the throughput characteristics from cooperative techniques versus the through-

put from downloading segments from the video server. We use the same dataset presented

in Chapter 2 (Section 2.2.1) in our evaluation of existing schemes and the MASS scheme.

The dataset consists of segments from the Big Buck Bunny video [5]. The segments were

encoded using x264 encoder at 14 different bitrates (100, 200, 350, 500, 700, 900, 1100,

1300, 1600, 1900, 2300, 2800, 3400, and 4500 kbit/s). The segment duration was 2 sec-

onds and the Group of Pictures (GOP) size was 48 frames. Table 5 shows the average
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throughput, maximum throughput and the standard error obtained from fetching segments

from the following sources: local SD Card, video server with 4G connectivity, video server

with 3G connectivity, video server with Wi-Fi, and nearby peers with Wi-Fi using a Google

Android’s Nexus IV smartphone.

Table 5: Average Throughput from Different Sources in SDASH. Although
median 4G throughput is higher than that of P2P and Wi-Fi, cooperation-
assisted streaming with P2P and caching can help improve end-user QoE by
reducing the impact of frequent fluctuations in observed throughput when using
wide-area Internet.

Source Avg. T’put Max. T’put Std. Error

Cache (SD Card) 113 Mbps 153 Mbps 3.66 Mbps
Server (3G) 634 Kbps 1.9 Mbps 42.1 Kbps
Server (4G) 4.7 Mbps 11.3 Mbps 91 Kbps
Server (Wi-Fi) 3.3 Mbps 11.9 Mbps 53.5 Kbps
P2P (Wi-Fi) 3.98 Mbps 8.7 Mbps 85.3 Kbps

The values show the potential benefits of P2P streaming and cooperative caching. Al-

though the throughput values of P2P is less than the values for 4G, the average throughput

from P2P is higher than that of 3G and Wi-Fi. Also, because of the vagaries of the Internet

due to congestion and cross-traffic, video streaming with cellular and Wi-Fi connectivity

faces frequent fluctuations in data rates, end-to-end delay, and packet loss [63, 71]. Fur-

thermore, the observed throughput from cellular connectivity is affected by spotty coverage

and high service loss rate (which can be up to 50% [120]), leading to sudden drops in video

quality and high frequency of rebufferings. Therefore, combining P2P with server-based

network access types offers the potential of mitigating the vagaries in network conditions

and improving end-user QoE. In Section 4.6, through extensive experimentation, we validate

this potential for P2P and cooperative caching.

4.2.3 Resource Usage of Cooperative Techniques

Next, we investigate the potential resource consumption of cooperative mobile streaming.

Recent studies indicate that the 40% of videos watched on mobile devices are of length

of less than 10 minutes [104, 121], with typical encoding bitrate of 500 Kbps (SD) and 2

Mbps (HD) [28]. We base our analysis on the results from these studies by considering
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the costs of streaming the Big Buck Bunny video of 5 minutes duration. Table 6 shows a

simple back-of-the-envelope calculation of the amount of SD Card storage space required for

caching 30 seconds to 4.5 minutes length of video at three different bitrates using the same

video dataset presented in the previous section. The table shows that caching 30-seconds

length of the video at 4500 Kbps will require 15 MB storage space on average and at least

15 MB data transfer through the network while caching 1-minute length of the video at

2300 Kbps will require 14 MB storage space and data transfer. Given that today’s mobile

devices are equipped with SD cards of sizeable capacity (8 GB to 64 GB on an average

[64], with additional expansion slots), we argue that caching files on the local SD Card will

have only minimal impact on consuming space on the storage device. However, for users

with limited cellular data quotas, prefetching files from the sharer network through cellular

connectivity may consume scarce network bandwidth. In such cases, it will be prudent to

only prefetch files when the device is connected to the Internet via a Wi-Fi access point.

Table 6: Estimated Storage Space Needed for Caching.

Video Bitrate Video Length Cache Size

500 Kbps (SD) 4.5 minutes 14.5 MB
2300 Kbps (HD) 1 minute 14 MB
4500 Kbps (HD 1080p) 30 seconds 15 MB

We measure the power consumption of cooperative prefetching by using an implemen-

tation of a video prefetcher that queries Facebook for newly shared content. Full details

of the prefetching component is provided in Section 4.4.2. Table 7 shows the energy costs

of prefetching 1-minute length of the video at 500 Kbps, 2300 Kbps and 4500 Kbps mea-

sured in terms of battery level. The results show that the battery depletion due to segment

prefetching is minimal (less than 0.5%). In Section 4.3 and Section 4.4, we describe the

context-aware techniques used by SDASH in managing resource usage in detail.

Table 7: Battery Depletion due to prefetching 60-seconds length of segments.

Video Bitrate Checking for Videos Downloading Segments Total Usage

500 Kbps 0.11% 0.22% 0.33%
2300 Kbps 0.11% 0.29% 0.40%
4500 Kbps 0.11% 0.34% 0.45%
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4.3 SDASH System Design

4.3.1 Cooperation-assisted Approach

SDASH introduces three additional operations to a traditional on-demand video streaming:

(1) caching of the video segments locally after streaming, (2) prefetching segments of shared

videos ahead of the actual time of streaming, (3) retrieving segments from either the mobile

peers or from the originating video servers at the point of streaming. SDASH augments

the client-server communication with these cooperative techniques to provide an improved

streaming experience. To reduce the impact of dynamic join and leave of peers and minimize

the startup latency (Section 4.6.2), SDASH uses the server as the default source for fetching

segments.

4.3.2 Architecture Overview

For a given mobile device utilizing SDASH for video sharing and streaming, the SDASH

service coordinates the interaction between the device, the other devices in its sharer net-

work, and the web of video servers where the shared video originated from (Figure 27).

The user’s sharer network consists of the subset of its social network’s membership graph

that is utilizing the SDASH system for video streaming. SDASH manages communication

among these three entities, and determines where to send the next segment request that

will best help optimize the streaming quality. The overall design of SDASH is guided by

three goals. The first goal is to minimize the startup latency while streaming a given video.

The second goal is to maximize the average picture quality of the streamed video across

space (i.e., as the user moves around with his mobile device) and time. The third goal is

to minimize the energy and data costs incurred by a sharer device commensurate with its

chosen degree of participation in the network. SDASH accomplishes these goals by com-

bining the information specified in the video XML file with the information available in the

overlay sharer network, the current device context, and the current network conditions at

the mobile client.

Figure 28 illustrates the components of the SDASH system and their interactions. The
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Figure 28: SDASH Architecture: Elements of the software architecture con-
tained in a smartphone to support SDASH.

Cooperation Service is responsible for the cooperative features of SDASH via five sub-

components: the Membership Manager, Caching Manager, Prefetching Manager, Context

Manager, and the Connection Manager. The logic for managing the data streams and the

quality adaptation is handled by the Stream Service.

The membership manager handles updating the current lists of friends that a mobile

client has. It is responsible for updating changes in the membership as the participant

adds or removes friends in his/her friends’ list. It also interacts with the social network

to dynamically discovers new friends and nearby devices. The sharing manager publishes

streamed videos which are shared by the participant with its social network.

The prefetching manager is responsible for syncing changes in its sharer network with

the tracker. It implements content prefetching and communication with the tracker. It

determines whether to prefetch each of the newly shared video based on the device context
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using the techniques described in Section 4.4.2. The received segments are cached on the

device’s SD Card. The cached files include the digest of the segments that are streamed, and

the raw video (m4s) files that corresponds to the cached segments. The caching manager

implements the cache replacement policy for evicting video files as the storage size becomes

full. The caching manager uses the Android SQLite database for managing the metadata

of the cached files.

The context manager manages the device context i.e., it implements methods for re-

trieving the device location, its battery-level, and its connectivity status. These pieces of

information are obtained by implementing Android’s broadcast receiver (battery level, con-

nectivity status), location manager (location) and traffic stats (mobile data usage) classes.

The interaction between the sharer network and the segment scheduler happens in the

connection manager, which determines a group of active peers (seeders) for sending and

receiving data. It also handles connection initiation and setup between the devices and its

selected peers during a streaming session.

The data stream manager implements the routines for parsing the video XML file,

iterating through the available segment representations. The segment scheduler downloads

the segments of a video that is currently streamed by the user based on the descriptions of

the XML file supplied by the data stream manager. It implements the quality adaptation

algorithm described in Section 4.4.3. The downloaded segments are placed in the playout

buffer. The playout buffer contains the current segments that have been downloaded but

have not be consumed by the video player.

4.3.3 Design Considerations and Choices

Client-driven Design: In order to exploit strong ties and interests between members of

the sharer network, we follow a client-driven approach in our design of SDASH, i.e., the

user is in control of the prefetching, caching and segment requests operations based on its

current device context and its view of its social network and peer set. In this manner, the

user can tailor his/her degree of participation and manage SDASH’s use of resources such

as memory and battery life. This design approach is in contrast with many P2P systems
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where random peers and/or geographically distributed nodes form an overlay network.

Context-aware Resource Management: The quality of the video consumed as well

as the ability and willingness of a smartphone to serve others in the sharer network depends

on the device context. The device context is a vector of several pieces of information about

the device: location, battery level, connectivity, etc. A number of heuristics based on

the device context and user preferences is used to make key decisions in SDASH, e.g.,

determining when to prefetch segments, determining whether to respond to a given segment

request from peers in the sharer network or to admit a new peer device into the device’s

upload list. By carefully considering the device context and user configurations, SDASH

can efficiently manage resource budgets such as the cellular bandwidth quota and available

battery life.

Centralized Tracking of Shared Video Segments: The locally-cached segments

are described by the bitrate associated with the downloaded segment, and the original URL

through which it was retrieved from the video server. We use a tracker server to manage

indexing of video segment files and to coordinate connectivity and membership changes in

the sharer network. The tracker is a well-known entity in P2P networks that serves as a

rendezvous point for joining peers. A newly joined peer contacts the tracker to retrieve

connection information about members of its sharer network. Each peer also synchronizes

data (connection information, indexes of the shared video files and cached video segments

descriptions, and location information) with the tracker. Each mobile peer communicates

with the tracker server to retrieve basic information about the overlay network. The tracker

consists of four database indexes: participants, friendshiplist, videolists, and location. The

participants index consists of all the users who have registered with the tracker server.

The participants also sync their social network friends list with the tracker. Those friends

information are kept in the friendship list index.

4.4 Cooperative Streaming Mechanisms

We now turn to the mechanics of utilizing the sharer network for cooperative streaming.

We discuss the following components: the heuristics for cooperative caching and prefetching
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among the mobile devices, and a scheme for peer-assisted streaming which coordinates

fetching segments from servers and available peers in the sharer network.

4.4.1 Video Representations

We hereby briefly describe how shared and cached videos are represented in SDASH. Each

video file that is shared or streamed on SDASH is represented in a manifest file called the

Media Presentation Description (MPD) file (Figure 29a). A MPD file consists of a sequence

of one or more playback periods. Each period is non-overlapping and of constant duration.

A given period is further sub-divided into one or more representations. Each representation

denotes a distinct quality level, i.e., it is a vector of video bitrate, audio bitrate, video reso-

lution, frame rate, and/or other encoding characteristics. Each representation will contains

one or more segments of the same media content. By dynamically selecting segments from

the listed representations, a media player can adaptively adjust its streaming quality to

match its network conditions. In SDASH, we represent the segments that were downloaded

by a media player in a Media Cached Description (MCD) file (Figure 29b). The MCD file

describes the representation associated with the downloaded segment, and the URL through

which it was retrieved from the video server.

4.4.2 Segment Caching and Prefetching

SDASH caches previously streamed video segments on the local storage. It also prefetches

and caches segments of video files shared with the user. Segment caching and prefetching

has two major benefits. First, it helps to reduce the impact of uncertain network conditions,

leading to smoother playback of the video. Second, the availability of the video segments

for local streaming is enhanced since social peers can fetch some of the cached segments

from one another rather than only going to the centralized server. Implementing the ap-

propriate caching and prefetching technique is therefore very essential: the device may be

able to stream a particular video at higher quality than the network throughput at the

point of streaming, if it has some percentage of the video already cached. However, seg-

ment prefetching and caching also incurs network, energy, and storage costs. The predictive

accuracy of the prefetching system is therefore very essential to reduce the resource costs
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(a) Media Presentation Description

(b) Media Cached Description

Figure 29: Representation of Shared and Cached Video Files.

incurred. We explain how SDASH implements its caching and prefetching mechanism while

balancing the device’s network-energy-storage-accuracy tradeoffs.

Determining Prefetched Segments

We use a video ranking scheme adapted from previous research into social video prefetching

[129] to determine how to rank the set of videos shared with the user during a prefetching

session. For a given user i, the set of all users in its sharer network Ni, and the set of all

videos Vi shared with the user i but have not been viewed by the user i, we calculate the

video rank rv for each video v ∈ Vi. The video rank rv for video v is estimated from two

factors: the historical affinity of the viewing user i for watching the videos shared by all the

sharers of v and the popularity of the video v in the sharer network. Let Sv denote the sub-

set of Ni that are sharers of the video v, i.e., the participants that have re-shared/cached
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the video v ; and let cij denote the number of times participant i streamed videos from

participant j ∈ Sv. We define an index aij to evaluate participant i ’s historical affinity for

every other participant j of video v as aij =
cij

Σk∈Ni
cik

. We define a popularity rank, pv for

video v as pv = |Sv |
|Ni| . For each video v, we give a video rank rv defined as follows:

rv = α.
Σk∈Svaik
|Sv|

+ β.pv {0 < α < 1, 0 < β < 1} (1)

where α and β values are configuration parameters used to adjust the relative weights of

historical affinity and video popularity. The first term in equation 1 computes the average

of the historical affinity of participant i for all the sharers of video v while the second term

computes the popularity of video v as a fraction of the size of the sharer network. Larger rv

indicates the video v should be prefetched ahead of other videos. Our video ranking scheme

differs from the scheme presented by Wang et al. [129] in that it follows our client-driven

design approach and therefore focuses on only the set of all the participants that have his-

torically shared videos with a given participant i (the sharer network) instead of the larger

social network that i belongs to.

Determining When to Prefetch Segments

The context of the mobile device (i.e., the battery charging status, the battery level, and

whether the device is connected to the Internet via a Wi-Fi network) plays a big role in

deciding when to prefetch segments from the sharer network. We use the configuration

parameters ψlow, πmax for determining whether to turn on or disable prefetching. Prefetch-

ing is only enabled if the battery level is greater than ψlow and the device is connected to

the Internet via a Wi-Fi access point or the cellular data usage is less than a threshold

limit πmax. Prefetching is turned off altogether when the battery level falls below ψlow.

In the current implementation, we use default values of ψlow = 30% and πmax = 75% of

cellular bandwidth quota. As we mentioned in Section 4.3.3, a participant can also tune

the prefetching parameters to adjust to his/her own specific requirements.

Determining How Many Segments to Prefetch

The number of the prefetched videos is modulated based on the average number of videos

watched by the user per time period and the amount of cache space available, with 4 videos
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used as the initial maximum. Similarly, using a starting duration of 60 seconds, we adjust

the prefetched segment duration to match the viewing history of the user. We chose these

parameters based on the typical length of video segments (e.g., a 10 seconds video segment

with a bitrate of 1200 Kbit/s is about 0.5 - 1.5 MB in size ) and experimental results from

Section 4.6.3.

4.4.3 Segment Request Scheduling

Figure 30: Segment request scheduling. SDASH sends segment requests to
either the video servers or the mobile peers and adjusts subsequent requests to
match the network conditions and responses from the segment sources.

The video server and the set of nodes in the sharer network with cached segments

which are available for device-to-device connections constitutes the candidate sources from

where a given segment may be downloaded (Figure 30). Using estimations of the network

conditions, the segment scheduler downloads the segments from the candidate sources. In

this subsection, we describe the components of the SDASH architecture that deal with

segment quality adaptation and source selection.

Segment quality adaptation: The segment quality adaptation algorithm determines

the bitrate for the next segment to be downloaded should be given the network conditions.

It estimates the network throughput by dividing the segment size by the segment fetch

63



Input:
β(t), /* buffer level at time t */

bs(t), /* smoothed bw estimate */

ηsteady/* is steady state? */

σ(t)/* recent segments with low quality */

Output:
br(t)+1, /* bitrate of next segment */

Br(t)+1/* next request time */

changesource/* change next request source */

1 invoke MASS Adaptation (Figure 18) ;
2 if bs(t) ≤ br(avg) then

3 σ(t) = σ(t) + 1 ;

4 if σ(t) > θ then

5 changesource := true ;
6 end

7 else
8 σ(t) = 0 ;

9 changesource := false ;

10 end

Figure 31: Algorithm: SDASH Quality Adaptation.

time. The estimated throughput is then smoothed over a time window (using a harmonic

mean) and quantized to a reference bitrate. Based on the reference bitrate, the quality

adaptation algorithm decides whether to switch-up to a higher bitrate or switch-down to a

lower bitrate.

The segment quality adaptation algorithm extends the MASS adaptation scheme (Figure

31). Our scheme takes one additional input parameter: σ(t), the number of recent segments

with below-average quality and returns an additional output parameter changesource which

tells the scheme to probe the P2P network for a peer with better quality.

The quality adaptation scheme operates as follows. It begins by initially checking the

device cache for segments of the current video. It switches to fetching from the server once

all the cached segments have been used up. If the average bitrate over the last k = 10

previous chunks is less than the average baseline, it sets the parameter changesource to

true. It then invokes the source selection algorithm which determines the optimal candidate
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source for fetching the next set of segments. Based on results from Section 4.6.2, we use an

average baseline of 2 Mbps.

Source selection: The source selection scheme selects a node sc from the list of candi-

date sources S = sserver, sp1, sp2, ..., spk. It uses two key metrics: (i) Rc, the average response

time of the source for segment requests made over the last k = 50 previous chunks, and (ii)

Tc, the average throughput of the source for segment requests made over the last k = 50

previous chunks. At initialization, the scheme selects a source sc at random and sends the

next request to the source. Subsequent requests are sent to the chosen source until one of

two conditions occurs (i) the buffer level at time t is less than a minimum value Bmin of 10

seconds, or (ii) no response was received for the last request after the segment timeout. The

segment timeout is defined as 70% of the segment duration. If either of these two conditions

is met, the algorithm computes the values Rc and Tc for the candidate sources and selects

the peer with the minimum average response time and the maximum average throughput

to direct the next segment request.

4.5 Prototype Implementation

We implement the SDASH system encompassing the cooperative streaming mechanisms

described in Section 4.4 as a middleware on top of Android 4.2 platform. The SDASH

architecture is general and can work with any social network. Our current implementation

uses Facebook. We use the Facebook Android SDK [54] and Facebook Graph API [55] for

interacting with the Facebook social network and retrieving the user’s friends as well as for

checking newly posted videos and publishing newly shared videos to the user’s “news feed”.

As we mentioned in Section 4.3.3, we use a tracker server to manage indexing of shared

segment files and to coordinate connectivity and membership changes in the sharer network.

We also use a tiny HTTP server (NanoHTTPd [16]) on each mobile peer for serving the

requested segments and UPnP [126] for port mapping and enabling remote access across

routers.

The SDASH prototype (see Figure 28) also provides the user with a graphical user

interface (GUI) for specifying user preferences and interacting with the social network. The
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user can specify whether to turn off prefetching, at which minimum battery-level to start

prefetching, the user’s mobile data limit, and at what percentage of mobile data usage to

turn off SDASH. The GUI also includes menus for logging into the user’s social network

and selecting the lists of friends that are allowed to participate in cooperative streaming.

4.6 Evaluation

Our evaluation of SDASH addresses the following issues: (a) Baseline performance:

What is the baseline performance when fetching segments from different network access

types (i.e., 3G, 4G, Wi-Fi, and P2P)? (b) Prefetching and Caching: How does the

availability of prefetched and locally cached segments affect video quality? (c) Adaptive

Streaming: How well does peer-assisted streaming adapt to changing network conditions?

Does SDASH lead to improvements over server-based network access?

4.6.1 Experimental Testbed

Our experimental testbed consists of two components: a desktop PC and eight smartphone

devices. The desktop PC serves as the AHS video hosting server and the tracker server.

The desktop PC uses a wired Internet connection. A newly joined peer contacts the tracker

to retrieve connection information about members of its sharer network. Each peer also

synchronizes data (connection information, indexes of the shared video files and cached

video segments descriptions, and location information) with the tracker. We use eight

Android phones: five Google Nexus IV smartphones equipped with Wi-Fi and 4G network

radios, and three Google Nexus S devices equipped with Wi-Fi and 3G network radios. The

4G phones obtain Internet connectivity via T-Mobile 4G LTE network while the 3G phones

obtain Internet connectivity via T-Mobile 3G network. In the experiments, the phones

download segments of the 5 minutes video dataset presented in Chapter 2 (Section 2.2.1)

from the remote server: segments of Big Buck Bunny video [5] encoded using x264 encoder

at 14 different bitrates (100, 200, 350, 500, 700, 900, 1100, 1300, 1600, 1900, 2300, 2800,

3400, and 4500 kbit/s) with a segment duration of 2 seconds and frame rate of 48 fps.
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(a) Throughput (b) Startup Latency

(c) Deadline Miss Ratio (d) Rebuffering Ratio

(e) Buffer Undershoot (f) Buffer Level

Figure 32: Performance of different connection access types with fixed segment
representation when varying the requested quality from 100 Kbps to 4500 Kbps.
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4.6.2 Performance with Fixed Segment Representation

In this section, we evaluate the performance of SDASH when the segment quality is fixed

throughout the length of the playback. Using the connection access types of Server (3G),

Server (4G), Server (Wi-Fi), and P2P (Wi-Fi), we vary the segment quality from 100 Kbps

to 4500 Kbps and average the results over 80 runs. The results are shown in Figure 32.

Figure 32a shows the throughput values for different connection access type. While

the average throughput for the server-based connection access type is almost a constant,

the throughput for the P2P connection access type increases progressively with the video

quality level. At lower quality levels, the processing cost incurred by a peer for serving the

video (using NanoHTTPd) dominates the overall time required for transferring the video

segment. With higher bitrate videos, the processing overhead is amortized over larger-sized

segment transfers thus resulting in better performance at higher video quality levels.

Figure 32b shows the startup latency for fetching segments through each of the connec-

tion access types. The startup latency is measured as the time between the initialization

of the video url to completing the download of the first 5 segments. As shown in the fig-

ure, P2P incurs much higher startup latency than the server-based access types. This is

because P2P requires initial setup time to discover and connect to peers (an average of 8.42

seconds). The initial setup time includes the time to retrieve the lists of available peers and

descriptions of the video segments that the peers currently have in their local caches from

the tracker server. It also includes the time to establish connection to one of the available

peers and receive permission to download segments from the peer. Because of the higher

startup latency incurred by P2P, SDASH utilizes the video server as the default source

for fetching segments and only invokes its source selection algorithm after the first set of

segments have been downloaded.

In Figure 32c and Figure 32d, we show the average number of download deadline misses

and rebufferings experienced for the different network access types. The results show that

streaming via P2P outperforms all the other access types by experiencing very little re-

buffering (less than 1% for most of the quality levels). In contrast, the 3G network access

incurs significant rebufferings with increasing video quality levels.
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Figure 32e and Figure 32f shows the buffer undershoot metric and the average buffer

level for each connection type. As expected, streaming with 3G suffers significant buffer

undershoot as the quality level is increased, yielding a buffer size close to zero when the

segment bitrate is fixed above 1300 Kbps. The buffer undershoot metric is similar for P2P

in comparison to 4G and Wi-Fi at low to mid quality levels (100 Kbps to 1300 Kbps);

however, its performance trumps the other connection types at higher video quality levels

(1300 Kbps to 4500 Kbps).

In summary, the results show that while streaming from nearby peers incurs a higher

startup latency, it however outperforms other connection access types on all the remaining

optimization metrics. We note that in order to minimize the startup latency, SDASH begins

streaming by fetching segments from the server while the P2P overlay network is established

in parallel by a background thread. It then invokes its source selection algorithm after it

has successfully connected to one or more peers which can serve as alternative sources for

fetching the desired video segments.

4.6.3 Impact of Prefetching and Caching

In this section, we quantify the performance improvement of video streaming as the length of

prefetched segments is progressively increased from 0 to 90 seconds. In the experimentation,

we use the basic SDASH adaptation over Wi-Fi network access with the P2P component

disabled. We also prefetched segments of the video using the highest quality level of 4500

Kbps. The prefetched segments are then saved on the local SD Card of all the smartphones.

In the experiments, we begin by fetching segments from the cache and then switch to the

network once the last cached segment has been retrieved. We then measure the overall

performance across the segments regardless of where the segments are downloaded (labeled

all segments in Figure 33) and the performance across only the segments that were retrieved

from only the server (labeled network segments in Figure 33). We average the results over

50 runs. The results are shown in Figure 33.
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(a) Inefficiency (b) Instability

(c) Buffer Undershoot (d) Buffer Undershoot

Figure 33: Impact of Prefetching and Caching in SDASH. Overall, the per-
formance as measured by these metrics improves as the length of the cached
segments is increased.

The results show significant performance improvement 1 for the inefficiency metric (Fig-

ure 33a) and the buffer level metric (Figure 33d) as the cached size is progressively increased.

For the instability metric (Figure 33b), due to the sharp transition from high bitrate from

the cache to low bitrate from the network, there is an initial decrease in performance when

less than 15 seconds of the fetched segments were locally cached. However, the performance

as measured by the instability metric improves as more segments are fetched from the cache.

Similarly, the buffer undershoot metric sees a reduction in performance as the length of the

cached segments is increased from 0 to 50 seconds, but increases in performance by up to

1Note: smaller is better for these performance metrics.
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50% as the length of the cached segments is increased from 50 to 90 seconds (Figure 33c ).

The results of the buffer undershoot is also slightly reflected in the size of the buffer level,

which sees a small dip when between 10 and 50 seconds of the downloaded segments are

fetched from the cache. However, the buffer level results also show that the overall effect

of the worsening in buffer undershoot is minimal since it has only a moderate effect on the

average buffer level. We note that the increase in instability and buffer undershoot when

the length of cached segments is between 0 and 40 seconds can be minimized by intelligently

spreading out the cached segments across the length of playback instead of caching only

the initial set of segments. Comparing the results and performance tradeoffs, we choose a

default caching size of 60 seconds.

4.6.4 Performance with Quality Adaptation

In this section, we quantity the performance of SDASH when segments are fetched from a

variety of available sources and network connection access types: remote video server with

3G connectivity, remote video server with 4G connectivity, remove video server with Wi-Fi

connectivity, and when using a combination of P2P connectivity and Wi-Fi access to the

server (i.e., peer-assisted streaming). For P2P, we pre-cached each of the mobile peer with

the highest quality representation (4500 Kbps). We average the results over 100 runs. The

results are shown in Figure 34.

Figure 34a compares the inefficiency of SDASH (P2P + Server) with other forms of

connection access. As expected, the inefficiency of the 3G, 4G, and Wi-Fi access reflects

the values we presented earlier for the average throughput (Table 5). The result shows that

SDASH outperforms all the other schemes: it outperforms Server-Wi-Fi connection access

by 4%, Server-4G by 43% and by Server-3G by 54.5%.

In Figure 34b, we compare the instability metric for all the access types. The results

show that using the peer-assisted approach provides more robust performance than the

other schemes, increasing the stability by a factor of 0.35 to 7.8. The 3G connection access

type exhibits the least stability, with instability values of more than double the that with

4G.
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Performance of P2P + Wi-Fi Server as used in SDASH versus other
forms of mobile connection access. P2P+Wi-Fi Server combo outperforms all
the other connection access types on inefficiency, instability, buffer undershoot
metrics. It is comparable to the best in rebuffering and buffer level metrics. It
is better than 3G and 4G on battery depletion metric, and slightly worse than
Wi-Fi Server alone.

Similarly, SDASH with peer-assisted streaming outperforms the other access types on

the buffer undershoot (Figure 34c) metric: P2P + Server outperforms Server-Wi-Fi by

34%, Server-3G by 71%, and Server-4G by 77% on buffer undershoot. At the same time, its

average buffer level is above the target size of 30 seconds (Figure 34e). It also outperforms

4G on the rebuffering ratio metric (Figure 34d) but its performance is slightly below that

of Wi-Fi.

The battery depletion due to SDASH (P2P + Server) is shown in Figure 34f. We measure
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the battery depletion by recording the remaining percentage of battery as reported by the

Android system every 1 second. We filter out the results for when the smartphone is being

concurrently charged and results for when the remaining battery level is less than 50%. We

then compute a simple average of the depletion over the lifetime of our experimentation.

The results show that despite the extra costs of setting up and taking part in a P2P overlay

network, SDASH’s battery depletion is comparable to the performance of fetching segments

via 3G or Wi-Fi.

In summary, fetching segments with peer-assisted streaming (P2P + Server) outperforms

all the remaining approaches on all of the metrics except for the battery depletion– it

outperforms 3G and 4G on battery depletion but consumes slightly more battery than Wi-

Fi. It also outperforms all of the other approaches on the instability by as much as a factor

of 0.35 (Wi-Fi Server) and a factor of 7 (3G).

4.7 Related Work

Our work builds on prior work in adaptive HTTP streaming, hybrid P2P/CDN streaming,

social P2P video streaming, and cooperative mobile platforms.

Adaptive HTTP Streaming Systems: Variants of Adaptive HTTP Streaming been

proposed by major commercial media providers. These products include Microsoft’s Smooth

Streaming, Apple’s HTTP Live Streaming, and Adobe’s HTTP Dynamic Streaming. A

standardization process sponsored by the Motion Pictures Experts Group (MPEG) resulted

in a new ISO/IEC 23009-1:2012 standard called Dynamic Adaptive Streaming over HTTP,

or DASH [119]. Following these developments, a new wave of research have studied different

types of video segmenting, and adaptation techniques for AHS [91, 75, 89]. However, we are

not aware of any systems that considers the problem of improving the Quality of Experience

for mobile clients by exploiting social sharing.

Hybrid P2P/CDN Streaming Systems: Many researchers have studied the use of

peer-to-peer networks for providing scalable and cost-effective media streaming [138, 73, 90,

94]. In these systems, new clients admitted into the P2P network automatically become

members of a swarm for the video items they are streaming. Hybrid P2P/CDN systems
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combining the scalability advantages of the P2P networking with the stability advantages

of CDN systems have also been examined by several researchers [81, 134, 106, 83, 132, 76].

In these hybrid systems, new clients can request video segments from the server but may

also join existing swarms depending on the system conditions. These systems are focused

on leveraging P2P techniques for improving scalability of the video servers. In contrast,

SDASH’s hybrid P2P/CDN design is focused on performance improvements for mobile

clients.

Caching and Prefetching Systems: Several projects have proposed techniques for

cooperative caching in ad hoc and wireless networks [135, 102, 139, 34, 139, 102]. A key

problem studied by these systems is the optimization techniques for resolving the tension

between increasing the data accessibility and reducing the caching overhead [67, 130, 48].

Similarly, a number of previous studies has also studied prefetching techniques for mobile

video [62, 129, 41]. While SDASH shares similarities with these systems, SDASH focuses

on cooperative techniques for caching and prefetching of P2P video data originating from

mobile social networks. SDASH utilizes users’ sharing history and friendship ties as well as

the device context to determine what, when, and how much data to cache or prefetch in

order to optimize the video viewing experience.

Cooperative Mobile Platforms: Mobile Social Networks (MSNs) [78], which are

formed when mobile users encounter each other and communicate with each other using

local wireless devices have been studied by the research community [61, 110]. These systems

use P2P and WLAN technologies to implement features provided by existing location-

based social applications. Recent works [109, 46] have also looked into crowd sourcing for

cooperatively accomplishing a variety of community sensing tasks.

Similarly, research on ad hoc networking, opportunistic networking, and delay tolerant

networking have proposed cooperative techniques for disseminating content among mobile

clients [105, 86, 116]. They use Wi-Fi, Bluetooth, and other device-to-device connections

to create forwarding paths between mobile devices. Prior works [74, 33] have studied the

advantages of exploiting social ties for multi-hop content dissemination in such opportunistic

networks.
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In Microcast [77], the authors proposed a cooperative live video streaming platform for

mobile devices which are concurrently connected to the same wireless network. Microcast

uses the cellular links of the phones to download the files from the remote server and a

wireless protocol to broadcast the video segments to the peers through the Wi-Fi links.

Microcast also included network coding algorithms for optimizing the packet broadcast

process. Other researchers [27, 49] have examined using multiple WLAN links often present

on smartphones for achieving better connectivity, collaboratively downloading of content or

offloading content from cellular links.

While there are several similarities between the work presented in this chapter and

some of the previous research described above, SDASH distinguishes itself from these works

in several ways. First, it extends the paradigm of content sharing on social networks to

video streaming by enabling sharers of video to actively cooperate in streaming the shared

content. Second, it uses P2P communication between sharers of video to augment AHS

streaming for mobile clients. Third, it exploits the context of the peers in optimizing its

quality adaptation algorithm. Finally, it implements techniques for mobile clients to control

their degree of participation in the sharer network. To the best of our knowledge, SDASH

is the first platform that is geared towards providing consistent quality of service among

mobile sharers of videos.

4.8 Summary

Variants of the Adaptive HTTP Streaming exploiting the CDN infrastructure are popular

for video streaming on the Internet. With the proliferation of mobile devices and the

popularity of video streaming to mobile devices it is natural to use AHS for streaming to

mobile devices as well. AHS video streaming on mobile devices face additional challenges

of high network variability, heterogeneous networking interfaces, multiple form-factors, and

limited battery life.

In this chapter, we have proposed SDASH, an extension to Adaptive HTTP Streaming,

which exploits the social networks that a client is a part of, to enhance the streaming qual-

ity for the client using P2P sharing techniques. SDASH incorporates cooperative caching,
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prefetching, and peer-assisted streaming of segments among the clients in a social network.

We have implemented SDASH on Android smartphones and have demonstrated through

experimentation that the techniques we have implemented for enabling social sharing of

videos results in a much better quality of video streaming than vanilla Adaptive HTTP

Streaming. We have also shown that this performance boost comes at minimal additional

battery depletion on the client devices. In our proof-of-concept system, we have used a

centralized approach for sharing information about the availability of peers and the down-

loadable content at the peers. Our future work includes consideration of other more scalable

ways of disseminating such information among the peers in the social network.
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CHAPTER V

DYNAMICALLY FORMED SOCIAL NETWORKS FOR VIDEO

SHARING

In the previous chapter, we leverage video sharing on online social networks for optimizing

mobile video streaming experience. However, given the increasingly geographical local-

ization of video streaming (Figure 3), there are multiple situations whereby connectivity

to infrastructure-based services such as Facebook may not be available or desirable. In

this chapter, we present a system infrastructure for enabling the formation of dynami-

cally formed social networks of mobile devices that communicate via device-to-device links

[136]. We consider the elements of managing such transient social networks defined by four

attributes: spatial locality, temporal locality, encounter-based community formation, and in-

terest alignment. By exploiting additional opportunities for sharing of user-generated video

content through P2P communication techniques, we can further improve the Quality of

Experience of mobile video streaming.

The rest of this chapter is organized as follows:

• Section 5.1 — We describe the application space for dynamically formed social net-

works at a high level. We also introduce Micrograph, our proposed middleware in-

frastructure for membership management in dynamically formed social networks, and

review related work.

• Section 5.2 — We describe the system architecture of Micrograph and the structure

of the dynamic social graph.

• Section 5.3 — Based on the model of the social graph described in Section 5.2, we de-

scribe the implementation of membership management protocols used by Micrograph

in details, including the configuration messages exchanged between the nodes in the

overlay network.
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• Section 5.4 — We perform quantitative performance analysis of the overhead incurred

by the Micrograph middleware. We also provide qualitative discussion of the experi-

mental results.

• Section 5.5 — We conclude the chapter with a short summary.

5.1 Background and Related Work

Social networks have attracted millions of users worldwide, empowering individuals to con-

nect, share and interact with friends, family, and acquaintances across geographical bound-

aries. In existing online social networks, client devices serve as simple endpoints for pub-

lishing to and downloading contents from the cloud servers of the service providers. As

the hunger for the generation and consumption of user-generated content scales up, this

client-server model between the end-devices and cloud servers will limit scalability. Besides,

this client-server model ignores the synergy that exist between members of a given social

network, who are likely interested in sharing content among themselves. Location-based

social networks and decentralized P2P social networks (such as Foursquare [10], and Di-

aspora [7]) are extending the traditional uses of social networks (such as Facebook [9]

and Twitter [20]) to geo-community information sharing. However, such extensions to

traditional social networks still assume membership of the social communities to be static

or evolving very slowly over time and hence managed centrally. In the future, we expect

much more dynamism in how social networks are formed and disbanded (e.g., first respon-

ders arriving at the scene of a natural disaster, attendees at a sporting event, et cetera).

With the exponentially increasingly capabilities in the end devices, and the scaling up of

the user community across the globe, there is an opportunity to democratize the creation

and management of social networks that are currently offered only via wide-area Internet,

as well as enable a plethora of new applications.

In this chapter, we introduce the elements of managing dynamically-formed or transient

social networks that are defined by the following four attributes: spatial locality, temporal

locality, encounter-based community formation, and interest alignment. The first three

attributes, namely, the participants being in the same geographical locality, being aligned
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in time for engaging in activities of mutual interest, and not having to know one another

a priori, sets apart a transient social network from a traditional social network such as

Facebook. Via their mobile devices, nodes in the same vicinity can form a peer-to-peer

(P2P) overlay network for exchanging information and activities of mutual interest.

Micrograph is a middleware for supporting the management of community membership

in dynamically-formed social networks. It provides services such as membership manage-

ment, messaging, and state management in a uniform manner for applications. It gives

intuitive control to an application for specifying device-level attributes (such as sensing

requirements, energy considerations, and network bandwidth), as well as application-level

attributes (such as interest in specific types of information and locality). Micrograph uses

these attributes autonomically in forming and morphing the overlay social network (e.g.,

splitting and merging the social graphs when such attributes are violated or met, respec-

tively). In doing this, it ensures that the member list of a community is consistent across

the nodes in the community, i.e., it gives complete transparency to the participants as to

the instantaneous membership of the social graph that a participant is currently partici-

pating in. Finally, a participant (i.e., the device associated with her) may be associated

with multiple social groups simultaneously. Micrograph ensures complete isolation for each

application that a given device may simultaneously be participating in at any given mo-

ment. In a nutshell, Micrograph provides novel mechanisms for community management to

address the specific challenges faced by applications built for mobile social networks.

Micrograph shares similarities with a number of participatory and community sensing

systems [80, 36] such as Micro-blogs [61], and PRISM [46], as well as systems for group

formation and management [131, 113, 59]. In Micro-blogs, users upload blogs annotated

with sensed information to a server. The blogs are tagged by location coordinates that the

users upload to a server periodically. The platform can then process location-based queries

by other users. Similarly, Mob [38], PeopleNet [99] and Floating Content [105] provide

distributed querying to mobile devices by mapping queries to geographic locations. Similar

to these systems, Micrograph is designed for spontaneous exchange of information such

as video blogs of recent events among devices in the same vicinity. However, Micrograph

79



focuses on challenges of identity membership rather than simple information sharing.

A number of opportunistic and ad hoc networking platforms such as Spontaneous net-

working [57], Haggle [103], and MobiClique [108] also share similarities with the Micrograph.

These systems differ from Micrograph in that they are data-centric publish/subscribe ap-

proaches that focus on interest forwarding. Micrograph introduces group management

techniques that take the location, battery availability, registered interests, and other indi-

vidual node requirements into consideration for maintaining, splitting, and merging groups

of nodes in dynamic mobile social networks.

5.2 Design of Micrograph

5.2.1 Design Principles

Micrograph has four major design principles: (1) to support a broad range of encounter-

based transient social communities, (2) to provide transparency from third parties and

centralized servers (i.e., activities within a community are only visible to members of the

same community), (3) to provide isolation among the currently running applications on a

user device (i.e., an application can only interact with other devices that match its interest

sets, sensing requirements and resource availability), and (4) to provide good performance

by exploiting wireless networks. These principles help to capture the unique properties and

functionalities of dynamically-formed social network as stated in Section 5.1.

5.2.2 System Components

Figure 35 shows the software module that runs on each mobile device. Each node may have

differing degrees of resource availability and network connectivity. For example, a TSN

may augment the personal smart phones of the participants with resource-rich nodes that

can form a cloudlet [115] and provide latency-sensitive computation support while being

connected to cloud servers on the Internet.

We assume that each device has some facility for determining its current location, de-

tecting changes in movement, measuring resource usage such as battery availability and

interacting with sensors present on the device. These artifacts are determined with the help

of the native facilities provided by the operating system running on the device (shown as
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Figure 35: Architecture of Micrograph

device OS in Figure 35).

The location manager interacts with the device OS to determine the device location

using an available localization technology on the device such as GPS localization or wireless

network localization.

The graph membership manager running on each device manages community member-

ship functionality for each applications in the social graph. Depending on an applications

interest set, sensing needs, and current locality, the graph membership manager informs

the application of the dynamic joining and leaving of other participants that meet those

requirements.

The messaging manager is responsible for coordinating the exchange of application-

specific information between members of an existing graph. It allows an application to

send and receive messages to individual members or a subset of its membership list. The

data connection between peers is managed by the connectivity manager. Micrograph sup-

ports a number of connectivity configurations including: (a) an ad hoc Wi-Fi or Bluetooth

network, (b) a network of mobile devices connected to a municipal Wi-Fi network, nearby

Wi-Fi hotspots or private access points (e.g., a campus or apartment community Wi-Fi

network), (c) data connections through the cellular networks, and (d) a hybrid network
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Table 8: Micrograph API

Community Definition

interestId = createInterest(name);
commId = createCommunity(coords, duration);
addInterest(commId, interestId);
removeInterest(commId, interestId);

Member Set Manipulation

event addMember(memberId);
event removeMember(memberId);
boolean available = isMember(memberId);
location = queryMemberLocation(memberId);
interestSet = queryMemberInterests(memberId);
updateCurrentLocation(location);

Messaging

boolean sendToMember(msg);
boolean sendToMemberSet(msg);
msg = receiveFromMember();
msg = receiveFromMemberSet();

that opportunistically exploits each of these possible connectivity alternatives. There are

several works [31, 68, 137] that have examined how to leverage the combinations of the data

connectivity available to a device in an opportunistic manner.

Table 8 summarizes the Micrograph API. The API is divided into three categories: com-

munity definition, member set manipulation, and messaging. To manage the dynamism in

the social graph, Micrograph allows applications to register for specific events (addMember

and removeMember methods) when a member node that matches its community require-

ments joins or leaves the network; as well as primitives for querying information about other

member nodes such as location and interest set.

5.2.3 Design Assumptions

For the nodes in the Micrograph, we make a number of intuitive assumptions. First, we

assume random mobility of the nodes. We also assume that each node can discover other

nodes connected to the same physical network and can send data to and receive data from

those nodes using mechanisms available natively on the node. These mechanisms would be

implemented differently depending on whether the physical network is a wireless local area

network or a cellular network. For example, on wireless local area networks techniques that
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would be appropriate to use include those presented by Chandra, et al. [39], or Vasudevan,

et al. [127] for nodes to discover one-hop or multi-hop neighbors connected via ad hoc

routing or connected to neighboring access points. On cellular networks, we would leverage

geographically-aware peer-to-peer overlays such as Globase.KOM [79] and GeoPeer [29] for

maintaining data connectivity between peer nodes. Messages transmitted by each node can

then be bounded by limiting them to nodes within the participants current geographical

locality.

While Micrograph can be adapted to meet the specifics and exploit the features of the

underlying physical network, in the rest of this section, we focus on Micrograph design for

a devices on a wireless local area network.

5.2.4 Social Graph Model

In this section, we describe the representation of the social graph by the graph membership

manager.

We model the social graph as a multi-level graph consisting of three levels: data con-

nectivity network (DCN), feasible overlay graph (FOG), and the transient social network

(TSN) (Figure 36). As the name suggests, the DCN includes all the nodes that are capable

of communicating with one another via the wireless network (either directly or through

intermediary nodes that serve as relays). Further, DCN captures the temporal locality that

we alluded to in Section 5.1, namely, all the nodes in DCN are available at the same time

for participating in the formation of a TSN. The FOG on the other hand, represents the

set of nodes that can feasibly be part of a TSN given application-independent constraints

such as relative mobility and battery life. Thus, the nodes in the FOG are a subset of the

nodes in the DCN (e.g., H is in DCN but not in FOG in Figure 36). Lastly, the TSN, is the

applications view of the network for the social interactions among its participants, based

on interests expressed by a participant. Micrograph facilitates the formation of the FOG

using topology management protocols among the members of the DCN, thereby abstract-

ing the heterogeneity of the physical network. Micrograph manages the continuous arrival

and departure of new nodes into the FOG. Further, it manages the applications view by
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Figure 36: Micrograph social graph model consisting of three levels: Data
connectivity network (DCN), Feasible overlay graph (FOG), and distinct TSNs
representing disparate communitues as overlays on top of the FOG

overlaying user-specified constraints (e.g., interest set, privacy, et cetera), to form a TSN

on top of the FOG commensurate with these constraints.

In order to build a scalable TSN, a node in an FOG may assume one of three roles:

an ordinary member, a coordinator, or a manager. A node that assumes the role of a

coordinator (node B in Figure 36) is overall responsible for the maintenance and evolution

of the associated FOG. It is responsible for enforcing constraints on graph membership,
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inter-graph communication between disjoint graphs, coordinating the merging of two FOGs

whenever necessary, and the transfer of nodes from one FOG to another. As new nodes

join the FOG and the graph membership increases, the coordinator node may assign one

or more manager nodes (G and E in Figure 36) to assist in graph management operations.

Each manager node is responsible for maintaining the state information for a disjoint subset

of the nodes in the FOG, which we refer to as FOGsub. The node that plays the role of the

coordinator is additionally responsible for coordinating the exchange of state information

among the manager nodes.

The FOG membership application-independent constraints are meant to ensure effective

communication among the nodes in an FOG despite the dynamism in the network due to

node mobility, health of a node, etc. Examples of such constraints include:

1. Safe Distance: an upper bound on the physical distance between any two nodes.

2. Graph Size: maximum membership for an FOG.

3. Node Stability: an upper bound on the number of join/leave by a node that is

tolerable, which serves as a measure of the node mobility.

Currently, based on prior work on the size and capacity of wireless ad hoc networks

[87, 51]; we set the maximum size of an FCG to be 600, and the safe distance to be 500

meters. Further, for scalability of maintaining the TSN evolution, we use one manager node

for every 25 members in the FCG. The functionality of the coordinator and manager nodes

will become clearer in the next section where we describe the community management of

the TSN.

5.3 Membership Management Protocols

In this section, we discuss novel protocols in Micrograph for membership management. The

goal of Micrograph’s membership management protocols is to present to the applications an

accurate view of the nodes that are actually available for participating in a social activity

given the vagaries of the network and the mobility of the participants. To achieve this goal,

Micrograph may configure and reconfigure an FOG in response to events such as (a) the
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joining of a new node, (b) the departure of an existing node, (c) the selection of a new

graph coordinator, and the (d) merging of two FOG instances.

In the discussion that follows, we explain how Micrograph performs some of the key

configuration activities.

Figure 37: Message exchange during FOG formation. The dotted lines are
broadcast messages while the solid lines are point-to-point messages. The figure
shows the messages exchanged between nodes of the graph as a new node (node
f) initiates a join procedure.

5.3.1 FOG Admission Protocol

On arrival, a node initiates a protocol to join an existing FOG (Figure 37). At least two

nodes are needed for the initialization process to succeed. The arriving node (f in Figure

37) constructs a disc message (a discover message) which it broadcasts to potential peers.

It also listens for a special coord message that identifies the coordinator node (c in Figure

37). The coord message includes functional attributes of the FOG that it is associated with

and a unique graph id.

On receiving a coord message, f sends a join-req message to the coordinator node to

become a member of the FOG. The join-req message contains the nodes battery level, its

location, and its average speed. If the node meets the admission criteria for the FOG, the
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coordinator replies with a join-accept message. If no coord message is detected after some

time t, the node itself constructs a coord message and broadcasts it periodically, thereby

becoming the coordinator node for a newly formed (singleton node) FOG. A node that

thusly assumes the coordinator role for a singleton FOG may get a coord message from a

peer who has simultaneously assumed the same role. In this case, a simple procedure is

followed for breaking the tie: each node waits for a random amount of time before it re-

broadcasts its coord message; if in the meanwhile it receives a coord message from the other

peer then it simply accepts the other peer as the coordinator and sends it a join message

and also forwards all the join messages it has already received or subsequently receives to

the newly elected coordinator. The procedure avoids race condition by using time-bound

estimations given in [113] and linear backoffs. Once a node has been accepted into an FOG,

it sends an info message to the coordinator node that contains: its battery level, its location,

its average speed, and its resource list (e.g., list of available sensors). The coordinator node

in turn sends a join-commit message to the node which consists of the other members of

the FOG and its assigned manager node. The coordinator node also sends an add-node

message to manager nodes (or to the member nodes of the FOG if there are no manager

nodes) with the details of the new node. Each manager node then forwards the add-node

message to the member nodes that it is responsible for. Essentially, the coordinator node

and the manager nodes act as the nameservers and sensor registries for the set of nodes in

a FOG.

Each node in an existing FOG sends status updates to its assigned manager node (if it is

a member node) or to the coordinator node (if it is a manager node) at regular time-intervals

by constructing an alive message. The alive message contains information such as current

node location, node velocity, and estimated battery life. We use the alive message to detect

node failures/disconnections. On a node departure or disconnection, the FOGsub manager

node assigned to the node broadcasts a remove-node message to its member nodes, the other

manager nodes in the FOG and the coordinator node. Since each status update constitutes

an overhead, we use a number of techniques to reduce this overhead. The update schemes

are similar to those described in PRISM [46], adapted for the specifics of the Micrograph
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architecture.

Figure 38: FOG Merge Protocol. The figure shows the messages exchanged
between Graph A (nodes a, b, c) and Graph B (d, e, f) during the merge
operation.

5.3.2 FCG Merge Protocol

Due to the mobility of the nodes in the network, there is a possibility two distinct FOGs

previously in different geographical locality may move into the same locality. In such a

scenario, the two FOGs may decide to merge into one FOG provided they have similar

device-level constraints.

Such a situation will occur upon one or the other coordinator in the two graphs receiving

a coord message from its peer or a coord message forwarded by one of the members in its own

FOG, via the DCN. The coordinator in A (c in Figure 38) that receives this coord message

from the coordinator in B (f in Figure 38), first checks if the addition of new members will

not violate its graph constraints. If the constraints are met, c then sends a merge-request

message to f. The merge-request contains the list of members of As Micrograph, and the

location of each member. On receiving the merge-request, the coordinator in B (f in Figure

38) also checks to determine if its graph constraints are met. If the constraints are met, it

sends a merge-accept message to c, else it sends a merge-declined message which aborts the
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merge procedure. The merge-accept message contains information about the membership

list of B. If c gets back a merge-accept message, it notifies its members by sending them Bs

membership list and the coordinators id (f in Figure 38) as the new graph coordinator using

a merge-commit message. C also sends a merge-commit message to B. If c receives any new

updates from its members during the merge procedure, it simply forwards the updates to f.

The procedure avoids race conditions by ignoring any new merge requests until an ongoing

merge is completed. If there is a failure by any node during the merge procedure, the node

simply re-initiates a join procedure.

5.3.3 Coordinator Selection Protocol

The coordinator selection procedure dynamically elects a new coordinator every 300 seconds.

The protocol takes a number of factors into account: (a) physical distance of the node from

the center of the graph (b) amount of battery life remaining at each node, (c) degree

of relative mobility (in meters per second), and (d) the time elapsed since becoming a

coordinator. The method used to choose a new coordinator is quite simple. The currently

active coordinator selects the top five nodes in the FOG that have the (1) least relative

distance to the center of the FOG, and (2), the least relative mobility. The node that has

the most available battery level among these five nodes is chosen as the new coordinator.

In the event of a tie based on battery levels, the node that has least recently served as the

coordinator is chosen to be the next coordinator. The coordinator selects new managers

using a similar heuristic as the size of the FOG increases. A newly admitted node is assigned

a manager which is closest to the node by spatial distance.

5.3.4 TSN Membership Protocol

Now we will describe how Micrograph facilitates application-specific overlays on top of the

FOG to form TSNs. A given node may be participating in multiple TSN applications

simultaneously. Each such application has its own unique interaction with other nodes in

the social graph which is largely determined by its quality of service requirements, sensing

operations, and interest attributes. For example, one application may require the use of

a compass and another application may require that its peers have both a compass and
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a microphone before it can successfully interact with them. Each application instance is

a distinct TSN projected on top of the same FOG (Figure 36). Further, the role played

by a given node may be different in each of the different TSNs that it is simultaneously

a part of. Micrograph helps in managing these multiple identities (or roles) for a given

node. These roles can be registered as interest attributes with the Micrograph runtime

using the Micrograph API (see Section 5.2.2). Each application informs its Micrograph

runtime of these requirements and/or attributes, and is only informed of nodes that match

these requirements.

Micrograph implements its attribute filtering mechanism on a per-application basis as

follows. After a node has joined an existing FOG, it receives a neighbor list from the

coordinator node. The newly joined node then broadcasts an attr-insert message that

contains a list of its registered attributes to all the peers in the FOG. Each node that receives

the incoming attributes then decides which of the attributes it is interested in based on

registration by applications running on this node to guide its node filtering decision. Nodes

that have matching attributes then send a response to the newly joined node by constructing

an attr-resp message containing a list of their own attributes list to the newly joined node.

The attr-insert is also re-broadcast whenever any attribute is added or removed. In this

fashion, each node locally or independently determines which attributes to add, to cache

or to respond to. This mechanism allows Micrograph to use localized policies to determine

the nodes participation in a given social networking application.

5.4 Evaluation of Micrograph

We implemented the Micrograph runtime in Java encompassing the community membership

management protocols described in Section 5.3 as a middleware on top of Android 2.3 OS.

For quantitative evaluation, we use a custom simulator designed for this project to evaluate

the scalability and effectiveness of our membership management protocols. There are three

experiments: (1) The first one measures the admission delay for a node to join an existing

TSN; (2) The second one illustrates the ability of Micrograph to stabilize under node churns

and readmissions. (3) The third experiment measures the overhead (in terms of additional
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network traffic) for the existing nodes when a new node joins the TSN.

5.4.1 Simulation Model

The mobile nodes in our simulations implement the graph formation manager of our archi-

tecture (Figure 35). The network area is a 1000meters 1000meters topology, the transmis-

sion rate of each node is 54 Mbps and the default radio range is 250 meters. Each node

moves within the network area according to the random waypoint mobility model [37]. The

velocity of a node is evenly chosen from a uniform distribution of 1 meters/s minimum

and 1.8 meters/s maximum, with a uniformly distributed pause time of 60s. Each member

node sends status updates to its manager or coordinator node at a periodic rate of 500ms.

We use a safe distance of 500 meters and a maximum FOGsub size of 100 for most of the

simulation experiments.

5.4.2 Delay due to Node Admisssion

We define the admission delay as the time it takes for existing members of the FOG to

become aware of a new node joining the FOG. The first experiment measure the admission

delay for a new joining an existing FOG. Using a maximum FOGsub size of 100, we gradually

increase the number of nodes in a given FOG from 1 to 1500. The results are shown in

Figure 39. The figure shows the admission delay as a function of the graph size. The results

show that the delay is low for all categories of nodes in an FOG. The coordinator node has

the least admission delay compared to manager nodes and member nodes, because it is the

first point of contact by a new node wanting to join the FOG.

5.4.3 Stability of Micrograph under Churn and Readmission

The second experiment evaluates the behavior of the FOG under sudden membership

changes (node churns and node readmissions). We divide the duration of the experiment

into 200 intervals; each interval is 30 seconds.

As shown in Figure 40, during the experiment, we disconnected 15% of the nodes si-

multaneously from the FOG between the 22nd interval and the 27th interval and then

readmitted them between the 50th and 55th intervals; similarly, we disconnected 25% of

91



Figure 39: FOG admission delay.

Figure 40: FOG membership under sudden membership changes over 200 in-
tervals.

nodes between the 120th and the 125th intervals and readmitted them during the 150th and

155th intervals. We repeated the experiment 100 times. Figure 40 shows how the member-

ship of the FOG evolves during these churns and readmissions. The membership stabilizes

within 1 interval subsequent to the churn or readmission, and thus illustrates Micrographs
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ability to react quickly to sudden sizable changes in node arrivals or departures from a given

FOG.

Figure 41: Bandwidth overhead of an FOG as the size of FOG is progressively
increased from 1 to 5000.

Figure 42: Bandwidth overhead of a coordinator node as the size of FOGsub is
progressively increased from 25 to 1000.

93



5.4.4 Bandwidth Overhead due to Node Admission

We define bandwidth overhead for a node as the additional network traffic incurred by the

node during node admission. The bandwidth overhead for a node in an existing FOG is a

function of node admissions and node churns. We measure the average bandwidth overhead

(both upstream and downstream) experienced by nodes in a given FOG, using a FOGsub

size of 100.

The results in Figure 41 show that the bandwidth overhead is low for the different

categories of nodes in a given FOG. The coordinator node has the largest overhead, since it

receives membership updates from the manager nodes and admission requests from member

nodes while the member nodes has the least overhead since it only communicates with its

assigned manager node after becoming an FOG member. It is important to note that

the overhead grows linearly with the size of the FOG implying that the implementation

is scalable. The last experiment is measuring the bandwidth overhead at the coordinator

node as a function of the FOGsub size. Figure 42 shows the bandwidth overhead at the

coordinator node as the maximum size of the FOGsub is increased from 25 to 1000 nodes.

The figure shows approximately linear decrease in the overhead, which is what one would

expect to see.

5.4.5 Discussion of Results

The experimental results confirm the following: (1) Micrograph design ensures that the

delay for node admission is linear in the number of nodes; (2) The design ensures that

it can quickly stabilize following node churns and readmissions; and (3) the bandwidth

overhead during node admissions in linear in the number of nodes.

5.5 Summary

In this chapter, we have presented Micrograph, a middleware infrastructure for membership

management in dynamically formed social networks. Micrograph manages the intricacies

involved in community formation and facilitates device-to-device messaging among the peers

in the social network. We describe the system architecture of Micrograph as well as the
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protocols for joining, merging and splitting the social graph of devices forming the overlay

network.

We have implemented Micrograph as a middleware on top of smartphones running An-

droid system. As a proof of concept, we have built sample applications on top of the Micro-

graph middleware. We have quantitatively shown that Micrograph is a scalable platform

for maintaining community membership information among nodes in a wireless network.

As described in Chapter 4, we utilize our implementation of Micrograph for supporting

on-demand video sharing.
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CHAPTER VI

CONCLUSION & FUTURE WORK

The Internet traffic is being increasingly dominated by video with the share of video traffic

predicted to rise to more than 90% of global network traffic by 2017. As users embrace

Internet streaming of video, several studies have found that a small decrease in video quality

leads to a substantial increase in viewer abandonment and disengagement rates. Although

mobile devices are leading the deluge in video traffic, little work has been done to engineer

and tailor the video delivery infrastructure to address the constraints facing mobile video

streaming: difficult network conditions, heterogeneous networking interfaces, multiple form-

factors, and limited battery life. In this dissertation, we propose a number of solutions for

improving the quality of video streaming for mobile devices. We adopt a measurement-

driven approach, in which existing and new techniques for video quality adaptation are

evaluated using realistic bandwidth traces collected from field trials on commodity Android

smartphones.

Current approaches for video quality adaptation follow a four-step model consisting of

bandwidth estimation & smoothing, bitrate quantization, and request scheduling. A number

of heuristics have been proposed for each step of the adaptation process for optimizing

the overall streaming quality. Through careful experimentation and measurements, we

analyze the performance of existing schemes for Adaptive HTTP Streaming on mobile

devices, finding evidence of significant performance variability of the schemes when deployed

in wide-area environments. We also find significant differences in their performance on

fixed and controlled settings and noticeable differences in their performance on cellular

and Wi-Fi networks. Based on these findings, we hypothesize on the possible causes of

these inefficiencies. Based on insights from experimental results, we also identify the best

strategies from among those used by the existing schemes.

Then, we propose two approaches to address issues with Adaptive HTTP Streaming
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on mobile devices. First, we introduce MASS, a novel scheme for video quality adaptation

for mobile devices that leverages the measurement-driven insights from our study of ex-

isting schemes to improve the video streaming experience. We build on the best-practices

of existing schemes as well as introduce new techniques for tuning the robustness of the

rate adaptation scheme. These techniques include limited multi-bitrate switching, dynamic

quantizing safety margin, and fast ramp up. We then conducted experiments into per-

formance tradeoffs for key quality metrics to evaluate the impact of multiple sensitivity

parameters. Using the derived optimal configuration of the underlying components, we

compared the performance of MASS with existing schemes. The results show that MASS

outperforms existing schemes on key quality metrics.

Our second approach, SDASH, exploits the synergy between video sharing on social

networks and video streaming on mobile devices for improving the performance of quality

adaptation scheme. Cooperative techniques such as cooperative caching, video prefetching,

and P2P streaming offer the potential of reducing the impact of unreliable network condi-

tions on the video viewing experience by providing the mobile client with alternative sources

where segments of the desired video can be retrieved. We investigate the potential bene-

fits and costs of cooperative streaming by analyzing the average and maximum through-

puts achievable from cooperative techniques. Then, we present the architecture of the

SDASH system, which demonstrates the techniques for integrating cooperative streaming

with vanilla Adaptive HTTP Streaming. We also describe the details of several algorithms

used by SDASH to demonstrate our architecture in real scenarios. Through experimentation

on Android smartphones, we show that streaming via SDASH provides much better qual-

ity than vanilla Adaptive HTTP Streaming. We also show that SDASH imposes minimal

battery depletion on the client devices.

In addition, we introduce a middleware infrastructure for enabling decentralized video

sharing among mobile devices via device-to-device wireless links. By exploiting additional

opportunities for sharing of user-generated video content through P2P communication tech-

niques, we can further improve the video streaming experience. Our middleware infras-

tructure, called Micrograph, supports the formation of ad hoc groups of devices based on
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location, time, and shared interests. It manages the identities and membership of peers in

the dynamically formed social network. We describe the system architecture of Micrograph

as well as the protocols for joining, merging and splitting the social graph of devices in

the overlay network. Experimental evaluation of Micrograph shows that it incurs negligible

overhead for membership management of dynamically formed social networks.

There are many avenues for extending the research presented in this dissertation. First,

in Chapter 4 (Section 4.3), we describe a system architecture for exploiting social sharing

information for video prefetching and P2P streaming. In our current implementation, we

use a centralized tracker for managing the metadata and overlay information about the

shared videos and downloaded segments. In Chapter 5, we also present Micrograph, a

middleware infrastructure for dynamic video sharing. As future work, we will consider in-

network and decentralized techniques for communicating metadata and sharing information

among the mobile peers. Examples of approaches that could be relevant include leveraging

the structure of the social networks to determine where to cache video files (e.g., identifying

central nodes), caching and prefetching videos based on request patterns of nearby peers,

gossip and migration of data based on mobility patterns, and video viewing history, etc.

Similarly, there are a number of outstanding issues in P2P networking that will provide

improved support for cooperative mobile streaming. Issues of identity management, user

privacy, incentives management, NAT traversal, and decentralized networking has been

studied by the research community in other contexts (e.g., file sharing, live streaming to

fixed clients, and decentralized social networks) but have hitherto not been applied to

adaptive mobile streaming. Because of the personal nature of mobile devices, addressing

these issues is critical to unlocking the potential of cooperative streaming.

Another interesting research direction would be to explore techniques for optimizing the

content creation and segmentation of the video files. The ratio of the uplink bandwidth to

the downlink bandwidth is known to be asymmetrical in many cellular and mobile networks.

Therefore, it is quite likely that the granularity of existing segment sizes generated by CDNs

may be too large to be satisfied by a single peer in the social network. The limited uplink

bandwidth would result in too many deadline misses at a given client even if a peer is
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able and willing to serve the segment from its cache. However, multiple peers may have

the same video content cached in their respective local storages. Thus, splitting a segment

request into sub-requests for partial chunks that can be re-assembled at the requesting client

into the whole segment will result in less stress on the peers and reduce deadline misses at

the client. Such re-chunking techniques may become very essential when the source CDN

servers are unavailable but several peer devices have watched/cached the video segments

at earlier times (such as in mobile ad hoc networks, opportunistic networks, and Bluetooth

personal area networks). There is considerable prior work (e.g., BitTorrent [6], emule [8],

and COMBINE [27]) in file chunking and aggregation in the context of parallel downloads.

These prior works will provide insights into techniques and protocols for such fine-grained

segment scheduling and on-the-fly re-segmentation.

Finally, as new devices and platforms are developed for video consumption, it would

be of great value to better understand how to architect the video delivery system to pro-

vide multi-device support. Consumers are increasingly embracing new technologies such as

smartphones and tablets, hybrid smartphone-tablet or phablet devices, and networked tele-

visions, set-top boxes and game consoles (e.g., Amazon Fire TV [3], Apple TV [4], Google

TV [11], and Xbox Live [21]) that provide new opportunities for video sharing and expe-

riences. Addressing issues of session migration, video offloading, device and screen sharing

and multi-device storage management will allow efficient use of all resources available to an

individual user.
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