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Abstract

In this paper, we study the data placement problem from a reorganization point of
view. Effective placement of the declustered fragments of a relation is crucial to the per-
formance of parallel database systems having multiple disks. Given the dynamic nature
of database systems, the optimal placement of fragments will change over time and this
will necessitate a reorganization in order to maintain the performance of the database
system at acceptable levels. This study shows that the choice of data placement strategy
can have a significant impact on the reorganization costs. Until now, data placement
heuristics have been designed with the principal purpose of balancing the load. How-
ever, this paper shows that such a policy can be beneficial only in the short term. Long
term database designs should take reorganization costs into consideration while making
design choices.

1 Introduction

Declustering is a technique that partitions a file and spreads it across many disks [5], [11].
Performance studies have shown that, except under extremely high utilization conditions,
declustering is consistently a better approach than placing the entire relation on a single
disk [9], [10]. After a relation has been declustered, decisions must be made regarding the
number of disks over which the relation will be distributed, and the particular disks on which
to place the data [1]. In full declustering, a relation is declustered across all the available
disks, whereas in no declustering, the entire relation is placed on a single disk. In many
situations, less than full declustering outperforms both no declustering and full declustering.
In this case, data placement is a non-trivial problem [1]. Effective data placement is crucial
to the performance of database systems having multiple disks. A data placement is effective
when the 1/O load is distributed as uniformly as possible across all the disks.



The number of disks on which to place the relation fragments, called the degree of
allocation, is determined based on a number of criteria: response time and throughput
requirements of transactions, the access characteristics of the relation, the sizes of the
relations, the number of disks available in the system etc. However, database systems are
dynamic in that relations can grow in size, the access characteristics can change, and more
disks and processors can be added. All of these changes can change the degree of allocation
of the relation, and with it, there is an opportunity to improve the response time and
throughput of queries and transactions. However, this opportunity can be fully exploited
only after reorganizing and moving data to reflect the new allocation.

In this paper, we study the data placement problem from a reorganization point of
view. More specifically, we address the following problem: given that the degree of al-
location of a relation changes, what impact does a data placement strategy have on the
consequent reorganization costs? Ideally, we seek a data placement strategy that not only
does a good job of balancing the load across disks, but also minimizes the reorganization
costs in the event of a reorganization. Minimization of reorganization costs is an important
goal especially when the reorganization has to be performed on-line or concurrently with
usage. When reorganization is performed without taking the database off-line or quiescing
the transactions, it is called concurrent reorganization or on-line reorganization. On-line
reorganization has been identified as a challenging problem by the database community
[14, 17, 2, 15, 16]. The single most compelling reason to do on-line reorganization is the
availability of the database during the reorganization. The conventional approach to reor-
ganization is to take the database offline. Any business enterprise that relies on 24-hour
availability such as reservation systems, global finance, hospitals, police etc. cannot afford
to go offline to perform reorganization.

A fundamental parameter that directly controls the performance of online reorganization
is the amount of data to be reorganized. In this paper, we seek the relationship between
data placement strategies and the amount of data to be reorganized. We consider four
data placement strategies - classical Bubba placement strategy [1], an optimization to the
classical Bubba called Bubba Opt1, a hash placement strategy, and a hybrid hash placement
strategy. The data placement strategies are compared with the following metric: the amount
of data to be reorganized (also referred to as the reorganization cost). The reorganization
cost plays a direct role in determining the magnitude of the performance impact on the
transactions during on-line reorganization. Thus a lower reorganization cost of a data
placement strategy translates to a smaller performance impact on transactions.

The paper is structured as follows: in section 2, we present the related work. In section
3, we motivate the problem by showing that, when the sizes of the relations change sig-
nificantly, it pays to change the degree of allocation of relations and re-place the relations
using a data placement strategy. This motivates us to examine the relationship between
data placement strategies and the reorganization costs. We use the TPC-C benchmark to
make a simulation study. In section 4, the various data placement strategies are discussed.

In section 5, an experimental study of the the relationship between the data placement



strategies and the amount of data to be reorganized is presented. In section 6, we develop
and validate the analytical models that describe the relationship. Finally, the conclusions

are made in section 7.

2 Related Work

In [1], the authors introduce the Bubba placement strategy, which places relation fragments
in descending order of their weights, and selecting the least loaded disk in every step.
The initial placement for the relations is determined by applying the Bubba placement
strategy for all the relations simultaneously. If the disks become imbalanced after the
initial placement, they re-place the relations causing the imbalance. To determine the new
placement for the relation under consideration, they use the Bubba placement strategy,
except that all relations other than the relation under consideration are already placed.
But the degree of allocation for the relation remains unchanged. In this paper, we follow
a similar method, i.e., we apply the placement strategy to one relation at a time, but
systematically vary the degree of allocation and measure the reorganization cost.

In [4], the authors present an adaptive data placement scheme to rebalance the disks
when the disks become imbalanced due to insertions and deletions. Their scheme tries to
minimize the data movement by retaining as many fragments on the disks as possible. Their
technique is useful only when the degree of allocation of the relation remains unchanged.

In [13, 12], the authors describe an adaptive method for data allocation and load bal-
ancing in disk arrays that responds to evolving access patterns. Their methods place more
emphasis on maintaining the load balance rather than maintaining the degree of allocation.
It is important to maintain the degree of allocation of relations because it has a direct bear-
ing on the response time of transactions. The methods in their paper can unintentionally
cause the degree of allocation of relations to change. This is not a desirable feature.

In [19], the authors present a method to determine the degree of allocation of a relation.
Their method assumes the system is operated in single user mode, and all read and write
requests are for the entire file, rather than for fractions of files as in a database environment.
The authors also propose dynamic placement strategies. We do not examine the relationship
between dynamic placement strategies and reorganization costs, because dynamic placement
strategies are suitable in a file system environment, where files are created and deleted often.
In a database environment, all the relations are known at database design time, and it is
very rare that new relations are added. New relations are typically added when the database

schema is changed. Hence we focus on static data placement strategies.

3 Motivation

Is it necessary to change the degree of allocation of a relation? To answer this question, we
will make a simulation study to determine if a change in the degree of allocation can actually

improve the performance of queries and transactions. For the simulation study, we chose the



Table Name Initial | Size after
Size | 3 months
WAREHOUSE | 0.089 0.089
DISTRICT 0.950 0.950
CUSTOMER 19650 19650
HISTORY 1380 45450
ORDER 720 23850
NEW-ORDER 72 72
ORDER-LINE | 16200 238482
STOCK 30600 30600
ITEM 8200 8200

Figure 1: TPC-C relations and their sizes (in 1000 bytes).

TPC (Transaction Processing Council) Benchmark C (TPC-C) [3], which models a medium
complexity online transaction processing workload. The TPC-C is patterned after an order-
entry workload, with multiple transactions types ranging from simple transactions that are
comparable to the simple debit-credit transaction to medium complexity transactions that
have two to fifty times the number of calls of the simple transactions. The workload also
includes a join query. In [8], the authors make a modeling study of the TPC-C benchmark
and determine the access skew for the relations, and the access pattern of the queries for
the various relations.

There are 9 relations and 5 query types in the TPC-C benchmark. The benchmark
specifies the initial sizes of the relations, their growth rate, and the frequency of queries.
Figure 1 shows the relations and their sizes, and Figure 2 shows the workload mix as specified
in the TPC-C benchmark and workload mix we used in our simulation study. Observe that
the fraction of Stock Level transaction is 0.3%. This is because of the following: in the TPC
benchmark, the transaction Stock Level has a join between ORDER-LINE and STOCK,
and it also allows indexes on the tables. So the join specified in the benchmark can be
computed using the indexes and thus the join can be relatively insensitive to the size of
the relations involved. However, in a real transaction processing workload, there are ad-hoc
queries where join processing can be computed only by scanning the relations involved. In
order to make our simulation reflect a real-life workload, we compute the join using only
table scans. Therefore, the frequency of Stock Level transaction is set to 0.3%, because a
higher frequency can overwhelm the disks.

The simulator uses a closed-queueing model. The TPC-C benckmark specified a multi-
programming level of 10 for each warehouse in the WAREHQOUSE table. It is assumed that
there is only one warehouse in the database (the sizes of relations in figure 1 is for one
warehouse), 8 disks in the system, and the average 1/O time for disk access is 25 msec. The
page size is assumed to be 4K bytes. We determine the degree of allocation for each of the



Transaction | Minimum % | Simulation %
New Order * 45.7
Payment 43 45.0
Order Status 4 4.0
Delivery 4 5.0
Stock Level 4 0.3

Figure 2: Workload mix as specified in TPC-C and as used in our simulation

Relation New | Payment | Order | Delivery | Stock
Order Status Level

WAREHOUSE 1 1

DISTRICT 1 1 1

CUSTOMER 1 2 2 10

STOCK 10 Entire

ITEM 10

ORDER 1 1 10

NEW-ORDER 1 10

ORDER-LINE 10 10 100 Entire

HISTORY 1

Figure 3: Number of items requested by various queries.

relations using a method to be described a little later in this section. No assumptions are
made of the declustering techniques. However, it is assumed that after the fragments of
the declustered relation have been placed on the chosen set of disks (equal to the degree
of allocation of that relation), random requests to the relation will translate to uniform
access to the set of disks. This is a reasonable assumption even when the relations have
skew, because one of the goals of a placement strategy is to balance the load on disks in the
presence of skew. After the degree of allocation for each of the TPC-C relations has been
determined, they are placed on the disks using the Bubba placement strategy [1]. When
queries make requests for data, requests are queued at the disks which hold the relation
fragments. Table 3 shows the number of items requested by each query type from various
relations.

The following method is used to determine the degree of allocation for each relation in
the TPC-C benchmark. Earlier methods to determine the degree of allocation [19] were
geared towards a single user system and for one relation at a time. This method is geared
towards multiple user system and can determine the degree of allocation for all the relations
in the database schema at the database design time. It is designed to minimize the response
times for the mixed workload. A comparison of this method and earlier ones is beyond the



relation Initial 3 months later
Utilization | Deg. of Alloc. | Utilization | Deg. of Alloc.
WAREHOUSE 0.025 1 0.014 1
DISTRICT 0.025 1 0.007 1
CUSTOMER 0.054 1 0.030 1
STOCK 0.811 4 0.406 1
ITEM 0.125 1 0.069 1
ORDER 0.028 1 0.015 1
NEW-ORDER 0.027 1 0.015 1
ORDER-LINE 0.642 3 2.70 7
HISTORY 0.013 1 0.014 1

Figure 4: Utilization of relations and the degree of allocation as determined by our method.
Number of disks in the system = 8.

scope of this paper. The method involves the following steps:

1.

Assume that there are as many disks as relations, so that each relation is placed on a
separate disk.

. Execute the query workload using the simulator.

. Let D; be the utilization of disk ¢. If the utilization of any disk is greater than 90%,

then partition the relation and store it on two or more disks. This is because a disk
with an utilization of greater than 90% becomes the bottleneck in the system, and
reduces the utilization of other disks (because queries need data from more than one
disk). Therefore, to get a true indication of the utilization of various relations, it is

necessary that no disk has a utilization greater than 90%.

. Let S be the cumulative utilizations of all the disks. Let N be the number of actual

disks in the system. If the relations were placed on N disks, then each disk should
theoretically have an average utilization of A = S/N.

. The degree of allocation for relation ¢ is given by D;/A, rounded off to the nearest

integer.

Figure 4 shows the utilizations and the degree of allocation of the relations. For ease of

presentation, we will refer to the degree of allocation of relation in column three in Figure
4 as INITIAL DEGREE OF ALLOCATION, and the degree of allocation of relations in
column five of Figure 4 as FINAL DEGREE OF ALLOCATION.

The simulation results are shown in Figure 5, which shows the response times for the

various query types as well as the mixed workload. The second column is the response

times with INITIAL DEGREE OF ALLOCATION for relations. The third column in



Transaction | Inital After 3 months
Before Reorganization | After Reorganization
Mixed 2.0 14.60 8.22
New Order 2.0 22.85 8.32
Payment 1.76 1.49 6.80
Order Status | 0.84 22.58 4.61
Delivery 2.60 21.99 7.49
Stock Level | 50.89 525.78 210.947

Figure 5: Response times (in seconds) of the TPC-C query workload before and after
reorganization.

Figure 5 is the response times after 3 months with INITIAL DEGREE OF ALLOCATION
for relations. The fourth column is the response times of the queries after reorganizing
relations with FINAL DEGREE OF ALLOCATION. Notice the improvement in response
times after reorganization. The mixed workload shows about 43% improvement whereas
New Order shows about 63% improvement. Except the query Payment, all the queries show
significant performance improvement.

We also considered the case where the degree of allocation of relations in the initial
database is the same as the degree of allocation of the relations after 3 months (i.e., the
degree of allocation for relations was FINAL DEGREE OF ALLOCATION). Figure 6 shows
the response times of the queries. Clearly, this results in inferior performance.

The simulation results shows that, for the initial database, the INITIAL DEGREE OF
ALLOCATION provides better performance. After three months, because of the growth in
the relation sizes, the FINAL DEGREE OF ALLOCATION provides a better performance.
The simulation results provide conclusive evidence that the degree of allocation changes
with the growth of the relations. Moreover, there is no one degree of allocation that is
best for all sizes of the relation. Thus the degree of allocation of a relation is a dynamic

parameter that changes with the size of the relation.

4 Data Placement Strategies

In this section, we describe four data placement strategies: the classical Bubba placement
strategy, an optimization of classical Bubba called Bubba Optl, hash placement, and a
hybrid hash placement strategy called HUBBA. For the purpose of this paper, we assume
that the relation is hash declustered into M buckets, and there are IV disks in the parallel
database system. Each hash bucket ¢ is associated with a weight w;, which is equal to the
number of tuples in bucket ¢. (It is important to note that it is not essential for a relation
to be hash declustered for the study in this paper to be valid.) It is reasonable to assume
that the hash bucket weights have a Zipf-like distribution with parameter 6 [6] (see Figure

-~



Transaction | with INITIAL DEGREE | with FINAL DEGREE
OF ALLOCATION OF ALLOCATION

Mixed 2.0 6.33
New Order 2.0 11.94
Payment 1.76 0.486
Order Status 0.84 1.24
Delivery 2.60 1.73
Stock Level 50.89 191.3

Figure 6: Response times (in seconds) of the TPC-C query workload for the initial database
with two different degree of allocations.

7).

1. Classical Bubba Bubba’s placement strategy [1] uses the following simple algorithm:

place hash buckets on disks in the descending order of their weights, and choose the
disk with the least cumulative weight in every step.

2. Bubba Optl placement strategy: With this strategy, the first time a relation is placed

on the disks, the classical Bubba strategy is used. Every subsequent time the relation
has to be re-placed, the placement for the heaviest N (equal to the number of disks)
buckets is unchanged. But the remaining buckets are placed with the classical Bubba

placement strategy.

3. Hash Placement strategy: In this strategy, the weights of the buckets are not used.

Instead the hash buckets are placed on disks using another hash function of the type
KmodD, where K is the hash bucket number, and D is the degree of allocation for
the relation.

4. HUBBA placement strategy: This placement strategy exploits the Zipf-like distribu-

tion of the hash bucket weights. Depending upon a tunable parameter «, it uses the
Bubba Optl placement strategy to place the first a% of the heaviest buckets, and
the hash placement strategy to place the remaining (1-a)% of the buckets.

The value of « can be varied from 0% to 100%. With « equal to 0%, HUBBA is
completely hash; with « being 100%, HUBBA is completely Bubba Optl. However,
the parameter o should be selected such that o times the number of buckets is well
beyond the knee of the Zipf-like distribution. Therefore, o can be expected to never

exceed 7! (i.e., 0.36) for any skew value and any number of buckets.
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Figure 7: An example hash bucket weight distribution for # = 0.2 and M = 100.

5 Experimental Comparison of data placement strategies

In this section, we compare the data placement strategies using two metrics: the ability to

load balance, and the reorganization cost.

5.1 Load Balance

We begin with by comparing the standard deviations in the load due to each of the data
placement strategies. The standard deviations in the general case, as per the skew distribu-
tion in 7, is shown in figure 8. We also considered a bad case scenario for Zipf-like bucket
weight distribution, wherein multiples of a certain bucket have the largest weights. In our
experiments, we chose multiples of bucket 7 to have the largest weights. The bad case load
variance is shown in 9.

To put these results into perspective, we quote Livny, Khoshafian, and Boral from
their paper [9]: ”In the recent International Workshop on High Performance Transaction
Processing, a United Airlines representative reported a differential of only 1% between
the busiest and most idle disks. This is achieved by hand tuning the data placement
from day to day”. We relax this a little bit and define a data placement strategy to be
effective if it produces a load deviation of no more than 5%. By this standard, Bubba
and Bubba Optl, and HUBBA are all effective data placement strategies. However, hash
placement is not quite effective. In fact, when the number of disks is increased, the number
of buckets decreased, but the skew is increased, the effectiveness of the hash placement
strategy decreases. This is also reflected in the effectiveness of HUBBA because hash
constitutes (1-a)% of HUBBA. The excessive dependency on hash is one of the limitations



Number of | Mean Standard Deviation
Disks disk wt. | Classical | Bubba Optl | Hash | HUBBA
4 25.0 0.00 0.00 4.70 0.60
5 20.0 0.13 0.13 4.42 0.26
6 16.6 0.16 0.16 4.28 0.78
7 14.2 0.09 0.09 4.08 1.38
8 12.5 0.13 0.13 3.96 1.81
9 11.1 0.46 0.46 3.70 1.97
10 10.0 0.80 0.80 3.61 1.93
11 9.09 1.06 1.06 3.48 2.35
12 8.33 1.25 1.25 3.50 2.35

Figure 8: Normal case load deviation in percent: 8 = 0.2, buckets=100, a=0.3

of HUBBA. This is to be expected because the hash placement does not use the weights
of the hash buckets. Note also that in the bad case scenario, the variance due to the hash
placement strategy is disastrously high. When the number of disks was 7, the standard
deviation is as much as 12% and almost as much as the mean itself. This is because there
is a strong correlation between the weights of buckets which are multiples of 7. The hash
placement strategy K mod 7 placed all these heavy buckets on the same disk, and hence
the large variance. However, HUBBA does well even in the bad case because it uses Bubba
Optl to place the heaviest weights on different disks. Note that the values in figures 8
and 9 correspond to the case with small number of buckets, high skew, and progressively
increasing number of disks. When a real-life application relation is hash declustered, the
number of buckets is usually much larger than 100, in which case the load deviation would
be much lower. Although not reported here, HUBBA showed a deviation of less than 1%
with 1000 buckets.

Observe that the bad case distribution of weights does not affect the effectiveness of load
balancing of classical Bubba and Bubba Optl. This is to be expected because for these
placement strategies, the bad case is just another permutation of the input weights. Since
these strategies select weights in decreasing order, the input permutation does not matter.

5.2 Reorganization Cost

We now compare the four placement strategies with respect to the reorganization cost,

which is computed as follows:

1. Let the initial degree of allocation of a relation be N. Without loss of generality, the
relation hash buckets can be placed on disks numbered 0 through N — 1.

2. Apply each of the four data placement strategies to determine the initial placement
of buckets to disks.

10



Number of | Mean Standard Deviation
Disks disk wt. | Classical | Bubba Optl | Hash | HUBBA
4 25.0 0.00 0.00 5.99 1.31
5 20.0 0.13 0.13 6.40 1.93
6 16.6 0.16 0.16 4.28 2.90
7 14.2 0.09 0.09 14.67 2.12
8 12.5 0.13 0.13 3.96 2.97
9 11.1 0.46 0.46 3.33 3.10
10 10.0 0.80 0.80 3.41 3.03
11 9.09 1.06 1.06 3.33 3.80
12 8.33 1.25 1.25 3.62 3.86

Figure 9: Bad case load deviation in percent: 8 = 0.2, buckets = 100, & = 0.3.

3. Change the degree of allocation to N'. Relation hash buckets can be placed on disks
numbered 0 through N’ — 1.

4. Apply each of the four data placement strategies to determine the new placement of
buckets to disks.

5. For each data placement strategy, compare the allocation in steps 2 and 4 to determine
the hash buckets that are assigned to different disks. These hash buckets have to be
reorganized, i.e., moved across disks. The cumulative weights of these hash buckets
gives the reorganization cost for the respective data placement strategies.

In our experiments, we assume that there are 16 disks in the system. The initial degree
of allocation of the relation in consideration is 4. The degree of allocation is progressively
changed from 5 to 16. Figures 10 and 11 show the reorganization cost for each of the four
placement strategies. In these figures, we only show the results for the case where the new
degree of allocation is greater than the old degree of allocation, i.e., N > N. Interestingly,
the interchanging of N and N’ has no effect on the reorganization cost. In other words,
given a pair of N and N', it does matter whether we consider N as the old degree of
allocation and N’ as the new degree of allocation; or vice versa; the reorganization cost is
identical in both cases. We can make a number of observations from figures 10 and 11:

The hash and HUBBA placement strategies show sharp depressions at certain points in
these graphs. At these points, the reorganization cost is as low as 48%, i.e., less than 50%
percent of the data belonging to the declustered relation has to be moved across the disks
to achieve effective load balance once again. Comparative reorganization costs for other
placement strategies is as much as 95% at these points. The reason hash and HUBBA
display such a behavior is explained in more detail in the section 6.2. Essentially, with
hash placement, the movement of data displays a certain pattern when the degree of of
allocation is changed. This pattern is best seen if we represent the reorganization under

11
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Figure 10: Percent of Data reorganized. 8 = 0.2, N = 4, Buckets = 100, o = 0.3.

hash placement as bipartite graph. The two sets of nodes represent the initial set of N disks,
and the new set of N' disks respectively. The edges represent the movement of at least one
logical bucket from the source node to the destination node. The bipartite graph displays
connected components under the hash placement strategy (see Section 6.2). For example,
if N =4, and N = 8, then there would be 4 connected components in the bipartite graph.
The number of connected components is equal to the greatest common divisor of N and N'.
Thus, the greater the number of connected components in the bipartite graph, the lower
the reorganization cost. Thus the reorganization cost is the lowest when the new degree of
allocation is twice the old degree of allocation. Thus the depression in the figures 10 and
11 is the largest when N' =8 (the bipartite graph has 4 connected components).

The reorganization costs of classical Bubba and Bubba Optl are represented by almost
parallel lines. The difference between them constitutes the fraction of data in the heaviest
N buckets that is not moved by Bubba Optl. When the skew decreases from 6 = 0.0 to
f = 1.0, the difference between the parallel lines narrows because the fraction of data in the
heaviest IV buckets decreases progressively. Observe in figure 11 that there is a small but
finite gap between the two parallel lines. This gap is about 4%.

In summary, classical Bubba and Bubba Optl placement strategies are effective in bal-
ancing the load, especially when the variance among the bucket weights is large; however,
they do not have a low reorganization cost. On the other hand, Hash is not effective in
balancing the load when the variance is large; however, it possesses the low reorganization
cost property. With the hybridization, HUBBA inherits the good properties of both Bubba
and Hash: effective load balancing property from Bubba and low reorganization cost from

hash.

12
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Figure 11: Percent of Data reorganized. 8 = 1.0, N = 4, Buckets = 100, o = 0.3.

In order to provide a deeper and fuller understanding of the relationship between the
data placement strategies and the reorganization cost, we will derive analytical models for

the data placement strategies in the next section.

6 Analytical Modeling

6.1 Analytical model for Classical Bubba and Bubba Optl strategies

Without loss of generality, assume that the buckets are arranged in a decreasing order of
weights. Denote by p(M, N, 7, 8) the probability that a particular bucket would be placed on
disk 7 when the bucket skew is 6 and the number of buckets is M, and the number of disks
is N. The approximation we make is that the number of buckets placed on a particular
disk is inversely proportional to the heaviest bucket placed on that disk. Since the bucket

weights have a Zipf-like distribution, we have, after normalization,

p(M,N,1,8) =

1
| (1)
Z(M,i,0)« YN m

where Z(M, k, 0) is the weight of bucket &, and belongs to the Zipf-like distribution is
given by [7]
1

Z(M,k,@):W

(2)

where H](\/l[_e) is the harmonic number of order (1—#6). When the the degree of allocation

is changed to N’ disks, the probability that a particular bucket would be placed on disk

13



iis p(M, N' i, ). The probability that a particular bucket is not moved (i.e., reassigned
to the same disk) during the reorganization is p(M, N,,0) x p(M, N' i, ). Therefore the
probability that a bucket will be moved is

N
P’rioved:1_Zp(M7]V7j70)*p(M7‘N7j70) (3)
i=1

The fraction of data moved for classical Bubba is also Pgwued. However, the fraction of

data moved for Bubba Optl is given by

N

szoved*(l_ZZ(M7k70)) (4)
k=1

This is because the heaviest buckets assigned to disks 1 through N are not moved.
Validation of Equations 3 and 4
In table 1, we compare the errors in the analytical predications using equation 3 with

respect to the experimental results for the fraction of the data moved by classical Bubba.
The numbers in the tables were obtained as follows: equation 3 was used for each pair of
numbers (N, N’), where N was set to 4, and N’ was varied from 5 through 16. The result
of equation 3 was compared with the respective experimental data and the error was noted.
The mean error in the tables represents the error over the entire range of N’ values. The
maz error was the maximum error for some particular value of N', and so was min error.
Table 1 shows the errors when the number of buckets is 500 Note that the maximum error
is only 8%. When the number of buckets is 100, the maximum error is only 6%. Due to lack
of space, we do not include the table for this case here. Therefore, Equation 3 reasonably
approximates the behavior of the classical Bubba data placement strategy.

In tables 2 and 3, we compare the analytical predictions using equation 4 and the
experimental results for the fraction of data moved by Bubba Optl placement strategy.
Table 3 presents the results for 100 buckets. With the exception of skew cases 0.7-0.9, the
errors are within 13%. We have not been able to satisfactorily model the skew case 0.7
through 0.9. One of the reasons for the errors being large in these cases in that the number
of buckets is quite small, in this case only 100. When the number of buckets is increased to
500, the errors are well within 14% for all the cases without exception as shown in table 2.

6.2 Analytical model for Hash placement

We now model the behavior of the hash placement strategy. As mentioned earlier in this
section, with hash placement, the movement of data displays a recognizable pattern when
the degree of of allocation is changed. This pattern is best seen if we represent the reor-
ganization under hash placement as a bipartite graph. The bipartite graph has two sets of
vertices S7 and S3. Set S corresponds to the old set of disks 0...N — 1, and S5 to the
new set of disks 0...N' — 1. The edges in the bipartite graph are defined as follows: an
edge between a vertex ¢ € Sy and a vertex j € Sy exists if at least one record in old disk

14



| Bucket skew () | mean error (in %) | max error (in %) | min error (in %) |

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.5
4.7
3.4
3.5
2.6
2.6
2.2
2.3
1.2
0.6
-0.3

6.4
8.2
5.6
4.9
4.4
4.1
3.6
3.5
3.0
1.4
0.3

0.0
0.0
-2.8
0.0
0.0
0.0
0.0
0.0
-0.3
0.0
-0.8

Table 1: Errors in the analytical modeling of classical Bubba. Number of buckets is 500.

| Bucket skew (#) | mean error (in %) | max error (in %) | min error (in %) |

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.2
1.0
0.4
0.9
0.3
1.9
2.1
3.9
3.8
0.5
0.2

2.8
3.8
4.8
3.3
6.9
3.4
5.5
11.2
13.9
5.5
1.8

-3.1
-1.3
-2.7
-1.0
-9.0
0.0
-0.4
-0.9
-0.9
-2.5
-1.9
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Table 2: Errors in the analytical modeling of Bubba Optl. Number of buckets is 500.




| Bucket skew () | mean error (in %) | max error (in %) | min error (in%) |

0.0 -0.5 17.1 -5.1
0.1 0.1 7.3 -3.3
0.2 -1.9 0.0 -5.6
0.3 -1.1 3.2 -4.3
0.4 -2.6 4.4 -13.8
0.5 0.9 3.6 -1.4
0.6 1.5 13.7 -4.1
0.7 4.2 24.5 -3.2
0.8 10.5 57.7 -3.6
0.9 2.1 19.4 -3.9
1.0 0.1 3.7 -5.1

Table 3: Errors in the analytical modeling of Bubba Optl. Number of buckets is 100.

¢ will have to be moved to the new disk j. With this representation, the patterns of data
movement can be seen as connected components in the bipartite graph. All data movement
is within the component and never across components. This data movement pattern can be
used to explain the reorganization cost of the hash placement strategy. In the Appendix,
we will give a rigorous proof (as theorem 1) for the existence of connected components in

the bipartite graph. We now discuss its implications.

Theorem 1 The bipartite graph is partitioned into equivalence classes Ey, such that (¢,7) €
Ey if and only if i = j modulo ged (N, N/), where i € Sy, 7 € Sy, |S1| =N, |S2| = N', and
k = 07 «. .,ng(]V, ]\f,) - 1.

Corollary 2 If (¢,j) € Ej, then i mod ged(N, N’) = 7 mod ged (N, N’) =k, where 0 <
k < ged(N,N").

Corollary 3 The number of equivalence classes is gcd(N, N').
Corollary 4 Fach equivalence class is a fully connected bipartite graph.

Corollary 5 All equivalence classes have equal number of vertices from lhe sets S1 and
S2. The N' — N eatra disks belonging to S2 are equally distributed among all the classes.

Figure 12 shows an example of Theorem 1 when N = 4 and N' =6. The ged(N, NI) = 2.
Hence there are two connected components Fy and E;. Note that corollary 2 can be used
to quickly determine the members of each component.

Theorem 1 can be used to explain the behavior of hash placement strategy. By corollary
5, all equivalence classes have equal number of vertices from both the sets S1 and S52.
Therefore, the larger the number of components, the fewer the number of vertices in each
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gcd(4,6) =2

E) ={{0,2},{0,2,4}}
e, = {{1,3} {1, 3,5}}

Figure 12: Illustration of Theorem 1

component. The fewer number of vertices from S2 implies that a larger percentage of the
data on any disk belonging to the set S1 need not be reallocated. For example, let N =4
and N' = 6. In this case, there are 2 connected components in the bipartite graph. Then
the class Fy is given by {{0,2}, {0,2,4}}. In this case, data from disk 0 has to be relocated
to disks 2 and 4. Therefore, two-thirds of the logical buckets allocated to disk 0 will now
have to be moved. If N = 8, then there are 4 connected components in the bipartite graph.
Then Ey is given by {{0},{0,4}}. This implies that only one-half of the logical buckets
assigned to disk 0 will have to be moved to disk 4. Hence the larger the number of connected
components, the lower the cost of reorganization. This is the reason for the occurrence of
the sharp depressions in figures 10 through 11. Observe that larger the ged(XV, N'), lower
the fraction of data moved.

The fraction of data moved when the system is scaled up from N disks to N’ disks can
be computed by the fact that a bucket i does not move if i mod N = i mod N'. Therefore

we have:
, limit_1  limat_3
F(N,N)=1- Y S Z(M,k,6) (5)
7=0  k=jxlimit_2
where

. M x ged(N,N')

limit 1 = :

v { N+ N

P N x N’

Tmi = —_—
ged(N, N')

17



limit3 = min(j*limit24+ N -1, M — 1)

Validation: We found a perfect agreement between equation 5 and the experimental
data for the hash placement strategy, i.e., the mean, min and max errors were all 0%!.

6.3 Analytical model for HUBBA placement strategy

In this section, we will present the analytical model for the HUBBA placement strategy.
Since HUBBA is a hybrid of hash and Bubba Optl placement strategies, the fraction of
data moved is given in terms of equations 4 and 5. Define BS to be the set containing the
first o« M heaviest buckets. HUBBA uses Bubba Optl to place buckets in BS. Let h(7)

be a function that returns the ¢th heaviest bucket. Then the fraction of data moved is

M limit_1 limit_3
F(N,NY= Y z(M,i,0)- 3 Z(M,k,0) + frupba (6)
1=1,:¢BS 7=0  k=jxlimit_2,kZBS

where

otherwise

F P e Z(M (i), 6) ifax M >N
bubba — 0

The first term in equation 6 represents the fraction of data to be placed using the
hash component of the HUBBA placement strategy. The second term, similar to equation
5, represents the fraction of the data not moved by the hash placement strategy. The
third term, similar to equation 4, is the fraction of the data moved using the Bubba Optl
component of the HUBBA placement strategy. Observe that hash placement is applied to
the (1 — a)% of the buckets, and Bubba Optl to a% of the buckets.

Validation: Table 4 show the correspondence between the analytical computation of
the fraction of the data moved using equation 8 and the experimental data for the HUBBA
placement strategy. When the number of buckets is 100, the errors are less than 13% for
most cases, and about 18% in a couple of cases. Due to lack of space, we do not include a
figure here. When the number of buckets is 500 and « = 0.1, the errors are less than 9% as
shown in table 4. The errors are essentially due to equation 4. This shows that equation 6
is a fair approximation of the reorganization cost of the HUBBA placement strategy.

7 Conclusions

Data placement in parallel database systems is a critical factor in determining the perfor-
mance of the system. Given the dynamic nature of database systems, the optimal placement
of relations will change over time and this will necessitate a reorganization in order to main-
tain the performance of the database system at acceptable levels. The objective of this paper
has been to study the impact of data placement strategies on the reorganization costs. In

this paper, we focused on one particular aspect, i.e., given that the degree of allocation of a
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| Bucket skew () | mean error (in %) | max error (in %) | min error (in %) |

0.0 -1.0 4.8 -4.9
0.1 -0.8 3.2 -2.3
0.2 -1.4 0.6 -4.1
0.3 -0.4 2.2 -2.0
0.4 -1.4 0.4 -5.5
0.5 -0.1 1.2 -1.0
0.6 0.5 3.5 -1.0
0.7 1.0 8.6 -1.2
0.8 1.3 8.7 -0.7
0.9 0.5 3.9 -0.6
1.0 0.3 1.4 -0.9

Table 4: Errors in the analytical modeling of HUBBA. Number of buckets is 500, o = 0.1.

relation changes, what impact does a data placement strategy have on the consequent reor-
ganization costs? This is an important issue because the amount of data to be reorganized
directly determines the impact on transactions during on-line reorganization.

An important conclusion we can make from this study is that the choice of a data
placement strategy can have a significant impact on the reorganization costs, with associated
implications on on-line reorganization. So far, data placement heuristics were designed with
the express purpose of balancing the load. However, this paper shows that such a policy
can be beneficial only in the short term. Long term database designs should factor in
reorganization costs while making design choices.

A Appendix

A.1 Analytical Model for Hash Placement

Let us denote the hash placement function by h(K; N) = K mod N. When the degree of
allocation changes from N to NI, the hash placement function changes from h(K;N) to
R(K;N'). Then the data hashed into 0... N —1 disks by h(K; N) will have to be reorganized
into 0...N' — 1 disks to reflect the data placement due to h(K;N'). We can model the
reorganization problem as a bipartite graph with two sets of vertices Sy and S3. Set Sy
corresponds to the old set of disks 0...N — 1, and S; to the new set of disks 0.. N 1.
The edges in the bipartite graph are defined as follows: an edge between a vertex ¢ € 5
and a vertex j € 53 exists if at least one record in old disk ¢ will have to be moved to the
new disk 7.

Before we proceed to the main result (Theorem 1) of the subsection, we will need the
following discussion. Suppose the hashing function is changed from A(K;n) to h(K;m),
where n and m are relatively prime integers with n < m. Observe that K = h(K;n) +
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n| & = h(K;m)+m|£]. Rewriting this, we get A();m) — h(K;n) = n| L] —m|£|. We
can interpret h(K;m) — h(K;n), abbreviated as f(K), as the “distance” between the new
disk and the old disk for a record with key K. A non-zero value of the “distance” for a
record with key K signifies that the record needs to be reorganized. The “distance” has no

other physical significance. Therefore, we have:

For example, if K is 5, and n is 3 and m is 8, then old hashing function A(K;3) places this
record on disk 2, whereas the new hashing function h(K’;8) places it on disk 5. The distance
between these disks is 3. If K is 17, then the old hashing function places it on disk 2, and
the new hashing function on disk 1. Therefore, the distance is —1 or, more appropriately,
7 (because —1 mod 8 is 7). Note that the distance can also be computed using f(K).

We can ask two questions: (a) given a record with key K, what is its distance? (b)given a
distance, which keys have this distance? (These questions have direct relevance in proving
the necessary and sufficient conditions of theorem 1). The first question can be easily
answered using the above equation. To answer the second question, the reader is referred
to the example in figure 13, in which n is 3, and m is 8. The example in figure 13 tabulates
keys and their distance. We can make the following observations:

1. Consecutive keys can be grouped into blocks of 3 (i.e., n), starting at 0. Keys in a
block have the same distance. For example, keys 3 through 5 belong to a block and

have a distance 3.

2. Blocks of keys differing in their distance by 1 are separated by 3 blocks, (or 9 keys).
For example, the block with distance 1 begins with key 9, and the block with distance
2 begins with key 18. There are 9 keys between them, or equivalently, 3 blocks. This
separation is called shift and is measured in blocks.

3. The distance for a key K is the same as the distance for the key K mod 24 (i.e.,
K mod n * m). For example, key 25 has the same distance as key 1.

4. The values for distance are between 0 and 7 (i.e., 0 < distance < m — 1).

These observations can be used to answer the second question we posed earlier. For
example, to find a block of keys with distance 3, we can use observation 2: the block with
distance 3 is 3*shifl blocks away from the block with distance 0, i.e., keys in the range 27
through 29 have a distance 3. (From observation 3, the keys in the range 3 through 5 also
have a distance 3). This fact is generalized and expressed succinctly as lemma 1 below.
Lemma 1 is used in theorem 1 to prove a necessary and sufficient condition.

As we can see from the above discussion, shift plays a critical role, for which we now
derive a general expression. Let Ky and K3 be two keys whose distance differs by 1. Without
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Key 0111234 |5]|6 10 |11 |12 )13 | 14
Distance |0 (0|03 ({3 |/3|6|6|6|1| 1| 1| 4] 4]4

-~
oo

Key 15|16 [ 17 | 18 |19 (20 |21 |22 | 23|24 | 25| 26 | 27
Distance | 7 7 7 2 2 2 5 5 5 0 0 0 3

Figure 13: An Example leading to lemma 1. Here n = 3, and m = 8.

loss of generality, let the distance for K; be greater than that of K. Therefore,

JKy) = J(Ky) =1

n mJ _RL%J —}—m[l;—?J =1
BB w182 =
nS—mr = 1

Ky Ky
“Lom| =

n|
n(]

where S'is |[Z1] — [Z2| and ris [Z1] — |£2]. We call S as the shift and is given by
(14rm)/n. Since shiftis measured in blocks, and the block length is n, we require (1+rm)
to be an integral multiple of n, i.e., (1 4+ rm) mod n = 0. In lemma 1, we show that this is
restriction is necessary.

We next present lemma 1. For ease of presentation, we assume that records with keys

between 0 through shift+n * m exist.

Lemma 1 Let n and m be a pair of relatively prime integers with n < m. Let S be an
integer called the Shift given by S = (14 rm)/n where r is the smallest positive integer such
that (14+rm) mod n = 0. Let f(K) =n|&| —m|E|. Then for any distance ¢, 0 < ¢ < m,
every K in the interval nSq < K < n(Sq+ 1) satisfies f(K) = q.

Proof: Let K = Sqn+ ¢, where 0 <7 < n. Then

Sqn +1 Sqn+1
n J=ml m

Sqn
—]

= Sqn—m|
m
= Sgn— (Sqgn — Sqn mod m)

J(K) = n|

J

(14 rm)g mod m
= 9
We require that (1 + rm) modn = 0. We show that if this is not the case, then
f(K) # q for some K in [nSq,n(Sq+ 1)). Let S’ be the integer part of S. Then the

intervals [nSq, n(Sq+ 1)) and [2(S'q+1),n(S g+ 2)) overlap. Let K = n(S'q+ 1) since it
belongs to both the intervals. Then,
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n(S'q+1) n(S'q+1)

) = oMYy |
= n(S'q+1)—[n(S'¢+1) = (n(S' ¢+ 1)) mod m]

Slqn mod m + n mod m

= ¢+ mnmodm

# q

In the example of figure 13, let n = 3 and m = 8. Then the distance ¢ can take values
in the range 0 through 7, i.e., m — 1. From the lemma, the shift is S = 3. Given a value of
g, every K in the interval [9¢, (9¢ + 3)) satisfies f(K) = g.

We next proceed to the main result (theorem 1) of this subsection. Theorem 1 shows
the existence of the connected components in the bipartite graph and gives an easy method
to compute the members of each of the connected components. Each connected component
is an equivalence class in which there is an edge between every pair of nodes, each belonging
to the two different node sets of the bipartite graph. The notation ¢ = j modulo Z means
that ¢ mod Z = j mod Z. The implications of theorem 1 are discussed in section 3.2.1.

For ease of presentation, we assume that records with keys between 0 through shiftx/V x
N’ exist. This is neither a stringent requirement nor a crucial assumption. This purpose of
the assumption is to allow the readers to clearly see the underlying structure of the bipartite
graph.

Theorem 6 The bipartite graph is partitioned into equivalence classes Ey, such that (¢,7) €
Ey if and only if i = j modulo ged (N, N/), where i € Sy, 7 € 5y, |S1| =N, |S2| = N', and
k = 07 «. .,ng(]V, ]\f,) - 1.

Proof:  Without loss of generality, let N < N'.

1. Necessary Part: Let (7,j) € E}, i.e., there exists an edge between vertices 7 and j. To

show ¢ = j modulo ged (N, NI), i.e., |¢ — 7| is an integral multiple of ged(XV, N/). Since
an edge exists, there exists a record with key K such that j =i+ N|%| - N[ ].

Nl
Write N = ged(N, N')* Ny, and N' = ged(N, N') Ny, where Ny and N, are integers.
Then
K K
i—i| = |IN|>|-N'|-
il = NI N
/ K K
= el V) 5 N

= ged(N,N')xp
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where p is an integer equal to |N1L%J - N{[%H

2. Sufficient Part: Let ¢ = j modulo ged(N, N'). Therefore [j — ] = p * ged(N, N'),
where p is an integer such that p* ged(N, N') < N’ (because 0 < |j —i| < N'). We

need to find a record with key K such that this record moves between disks 7 and j,

and the value of |7 — ¢| (i.e., the ‘distance’ for the record with key K') is constrained
to be an integral multiple of ged(N, N').

Let N = Q «n and N' = Q * m where n and m are relatively prime, and Q is the
product of the prime factors common to both N and N'.

j—il = prged(N,N)
K’ K’

= fnl =) - m| )1+ Q
K' K’

= (=] -ml=-])*Q

where K' = K/Q. Setting ¢ = |j — i|/Q, we can use function f(K) of Lemma 1.
Therefore, records with keys K in the interval [Sqn@Q,n@Q(S¢+ 1)) move between
disks ¢ and j where |j — i| is constrained to be p  gcd(N, NI).
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