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AbstractIn this article we study stochastic multistart methods for global optimization, whichcombine local search with random initialization, and their parallel implementations. It isshown that in a minimax sense the optimal restart distribution is uniform. We furtherestablish the rate of decrease of the ensemble probability that the global minimum hasnot been found by the nth iteration. Turning to parallelization issues, we show that underindependent identical processing (iip), exponential speedup in the time to hit the goal binnormally results. Our numerical studies are in close agreement with these �ndings.
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1. IntroductionIn this paper random restart methods for �nding a global optimum are analyzed. Letf be a real valued function on the domain D. In the event that f is su�ciently smooth,powerful methods can be employed for identifying local minimizers (or maximizers). Oftenthese methods utilize local derivative or gradient information to identify a sequence ofpoints x0; x1; : : : ! x� on which the function values vi = f(xi) decrease until a localminimum is determined within some tolerance. If f has numerous local minima, theproblem of locating a global minimizer can be di�cult and success depends on the choiceof a starting point x0. The methods encompassed in this study combine the \gradient"algorithm G with random initialization; the search proceeds by selecting at random aninitial starting point x, running the algorithm until a local minimizer G(x) has been found,and repeating this process independently and with the same probability distribution forselecting the starting point until meeting some speci�ed conditions for stopping.Features of these problems investigated here include e�cacy of parallel processing forrandom restart methods, choice of the restart probability distributions, and rate of decreaseof the ensemble probabilities of having not found the minimizer by termination. Analysisproceeds on two fronts: discrete and continuous models. Our �ndings can be summarizedas follows. First, the uniform probability measure is good for restarting. When it is used,the rate of decrease of the ensemble probabilities of not having found the minimum bythe time of termination, depend upon the probable \size" of the region containing theglobal minimum. This rate is exponential when the size is bounded below. Second, the\size" of the region containing the global minimum also in
uences the speedup available byparallel processing in terms of numbers of restarts. Speedup is an exponentially increasingfunction in the number of processors when the region containing the minimum is smalland the number of processors is moderate. Third, analysis in terms of number of restartsis useful also as an indicator of the time till minimization when the amount of time takento run the algorithm is approximately constant for each starting point. When times are3



variable and the number of possible states at each restart is large in comparison withthe number of local minima of the function being minimized, the speedup is always anexponentially increasing function in the number of processors for moderate numbers ofprocessors. Fourth, speedup can be superlinear even for large numbers of processors.A recent survey of literature on global stochastic optimization can be found in Schoen,(1990). What we have called random restart methods are included there as the simplestinstances of what Schoen calls multistart methods. Solis and Wets, (1981) study conver-gence for more complicated random restart methods in which the probability distributionfor choosing the next starting point can depend on the evolution of the search. Boenderand Rinnooy Kan, (1987) study stopping rules. Our studies do not address these issues.T�orn and Zelinskas, (1989) present in their survey some numerical results on parallelizationfor a collection of methods and end by recommending future study of Monte Carlo andgeometric rather than algorithmic parallelization. Our investigation of random restarts isin one such recommended area, multiple CPU Monte Carlo parallelization, and continuesthe work of Shonkwiler and Van Vleck, (1992) using the same techniques.To describe details of our �ndings some terminology is required. Let F be a set offunctions any member of which one may potentially be called upon to minimize, all de�nedon a common domain D and each having a global minimum in D. The algorithm G, whichto every f 2 F and x 2 D yields a point G(f; x) of D, is assumed to satisfy(i) f(G(f; x)) � f(x)and, �xing f ,(ii) G2(x) = G(x):For a �xed f , the relation r on D �D de�ned by xry if G(x) = G(y) is an equivalencerelation so that there is a partition B(f) of D into subsets B with the property that x and4



y are in B 2 B(f) if and only if G(x) = G(y). The properties (i){(ii) ensure that G mapseach basin B into itself.The unionM(f) of these sets B satisfying f(G(x)) = miny2D f(y) for x 2 B will be calledthe min{bin. The random variable E de�ned as the number of the restart on which theinitial point of the algorithm is �rst chosen inM shall be known as the minimization epoch.For example, if the starting point is chosen in the min{bin then E = 0, if the starting pointis in the complementMc but the restarting point is in M then E = 1 and so forth. Let Tdenote the time at which the initial point of the algorithm is �rst chosen in M .Detailed proofs of the results which follow can be found in the appendix.2. Choice of a Probability Measure for RestartIn this section arguments in favor of using the uniform measure on the state spaceare presented. The sense in which this is a good measure is this; if a random restartmethod is to be used to �nd a global minimum of a function f, and if this function isunknown (pointwise evaluations can be made of f and possibly some of its derivatives orother functionals, but the general behavior of f on D is not known) and could be any onefrom a su�ciently large collection of functions, then by using a measure other than theuniform the worst case is worse than for a uniform. Let D be a �nite set and suppose thatmembers of the family of functions F are all de�ned on D. The measure of performance ofthe restart distribution P is E[E(f)] = 1� �(f;P)�(f;P) ;where � = P[M(f)] is the probability assigned to the min bin of f by the restart distributionP. If the family F is su�ciently large then the uniformmeasure will minimize the maximumof these values over the functions in F. One condition which guarantees the family issu�ciently large is the following.Condition (A). For each x 2 D, F contains a function which achieves its minimumuniquely at x. 5



Lemma 2.1. If F satis�es (A) then, letting subscript 0 refer to the uniform distribution,infP supf2FE[E(f)] = supf2FE0[E(f)]Proof. . Since supf2FE0[E(f)] = supM(f)(1� P0[M(f)])P0[M(f)] ;the latter is just supM(f) (1� n(M(f)))=n(D)n(M(f))=n(D) ;and the function (1�x)x is continuous and decreasing on [a; 1] for any a > 0, the lefthand side is n(D) � 1 by condition (A). On the other hand, for any other measure P,supf2F E[E(f)] = supM(f) 1�P[M(f)]P[M(f)] = (minx2D P(x))�1 � 1 > n(D) � 1:The condition (A) is not very restrictive. For example, in the case of a discretizedcontinuum, if the collection F contains the functions(f(x) = kXi=1 ai(xi � ci)2 : a 2 Rk; c 2 D) ;then condition (A) is satis�ed. In a TSP with k nodes in the plane, for example, D consistsof all possible tours and the functions f 2 F have values which depend on the locations ofthe nodes. Clearly, by appropriate placement of the nodes, any tour can be made to bethe unique minimum.Throughout the remainder of the paper, including the section in which D is modeledas a continuum, it is assumed that restarting is always done using the uniform measure.Furthermore, it is done independently of all other information so that the restart sequenceforms an iid sequence of D-valued random variables.3. Analysis of Some Discrete ModelsIn this section e�cacy of running parallel processors at a �xed but arbitrary f 2 Fis investigated for some models based on a �nite discrete set D. We study the bene�ts,6



measured by the decrease in expected time to hit the goal, of employing m independentidentical processors, each running the same local algorithm in a multistart way. Thespeed at which the global optimum is found is of course in
uenced by the particular localalgorithm employed; but it is not this aspect which is studied here. In our study thealgorithm is �xed and can be any one in a broad class of algorithms. It is the bene�ts ofparallelization alone which we attempt here to assess.Since any one of the processors �nding the global minimum results in success, it isclear because of independence that for any algorithm the expected time to attain the globalminimum will be decreased by increasing the number of processors. It is, however, notclear exactly what quanti�cation of this decrease is most illuminating (see Bertsekis andTsitsiklis, (1989) for some related issues in de�ning speedup). For this reason we begin thissection by a brief discussion of our choice of the measure of speedup and its relationshipto some other possible choices.If �rst we allow ourselves some license to capture the idea without paying carefulattention to details, a simple characterization of our choice of measure is that it measuresthe decrease in expected time to turn a local algorithm into a global algorithm as a functionof the number of processors employed. The reason we have chosen our measure is two-fold;the measure is natural and closely related to the traditional comparison in terms of timeto goal and is more easily computed than the latter.To be speci�c, our discussion begins with the simplest discrete model, the atomicmodel employed implicitly in section 2 in which the only quantity analyzed is the epochof minimization. Setting � = P0[M(f)], the probability of starting in the goal bin, if X isthe random hitting time of the global minimum using a single processor, Xm is that for mindependent processors, E is the random hitting epoch of the min bin for a single and Emthat for m independent processors then in this simple model X = E + 1, Xm = Em + 17



and denoting by SGB (speedup to hit the goal bin) our measure of speedup isSGB = E(E)E(Em) = 1� (1� �)m�(1 � �)m�1 ;see (3.1). The more traditional measure of speedup in terms of the hitting times X isSG = E(X)E(Xm) = 1� (1� (1� �)m):We note �rst that the two measures are equivalent since one is a monotonic function ofthe other. This can be seen easily from the expression of yet another reasonable measure,the relative improvement of the expected hitting timesRm = E(X) � E(Xm)E(X) ;for Rm = 1� SG�1 = E(E) � E(Em)E(X) = E(E)E(E) + 1 E(E)� E(Em)E(E) = c(1� SGB�1):All of these measures are equivalent. Incidentally, the constant c will be close to 1 innon-trivial problems.Second we notice that exponential speedup, a phrase which reoccurs in this paper,is always inappropriate to the traditional measure SG; no matter how quickly the paral-lelization works to get the process into the goal bin, there is always a last step so thatXm � 1. Thus SG is a bounded function of m with SG � E[X]. In contrast, SGB can beexponential (see the formulas above) in m.Turning to another facet, the ease of computation, we illustrate by citing the multi-step discrete model realizing that the same issues apply in the continuum model. In thismodel T is the random time to hit the goal bin so if X is as above and Tm and Xm arethe minimum times as above then SGB = E(T )E(Tm)8



while the traditional is as above SG = E(X)E(Xm) :In this model X = T + Y , where Y is a random variable. However there is now no simplerelationship between Xmand Tm since one processor may reach the goal bin before allothers but some other may enter the goal bin at a later time ahead of all earlier arrivalsin line to the goal. It is still true that E[Xm] � E[Tm] + E[Y ] so we have the boundsE(T ) + E(Y )E(Tm) � E(X)E(Xm) � E(T ) + E(Y )E(Tm) + E(Y ) :It follows that SGB�1c+K � SG�1 � SGB�1c;where c = (1+ E(Y )E(T ))�1 and K = E(Y )E(Y )+E(T ). One would expect in any non-trivial problemthat K is close to 0 and c is close to 1.Atomic ModelThe simplest possible discrete model is the \atomic" model employed implicitly in Section2. In this analysis the only quantity analyzed is the epoch of minimization. Setting� = P0[M(f)], denoting the number of processors by m, and the epoch at which the�rst of the independently running processors restarts in the min{bin by Em, elementarycalculations yield speedup = E[E]E[Em] = 1� (1� �)m�(1 � �)m�1 : (3:1)Some numerical values of the speedup of parallel processing follow.Atomic Speedupmn� 0.001 0.01 0.1 0.210 10.05 10.47 16.80 33.2550 51.25 64.63 1737.29 2:80� 105100 105.12 171.47 3:39� 105 19:6� 1091000 1717.92 2:29� 106 - -Table 19



If it is true that T = (E +1)k, where k is the iteration number or time, then these �guresare indicative of the savings in time due to employing m independent processors. In thiscase, it has been implicitly assumed either that the process of restarting takes a minusculetime compared to the time k taken to run the algorithm G or that all the processors arestarted simultaneously and execute according to the same schedule. The numbers areespecially intriguing in the context of the latter case. Is the apparently enormous speedupessentially wasted because many processors are �nding the min{bin on the start? When� = :01 and m = 50, for example, the number to start in the min{bin has approximately aPoisson distribution with mean 1/2 so the probability that at least one starts there is only0.4. It appears that in this case the answer is no. Other cases are given in the followingtable. Probability of at Least One Start in the Min{binmn� 0.001 0.01 0.1 0.210 0.01 0.10 0.63 0.8650 0.05 0.39 0.99 1.00100 0.10 0.63 1.001000 0.63 1.00 Table 2Multi-step Discrete ModelIn the next portion of this section we shall be concerned not only with the epoch E butalso with the total time taken to search the individual basins encountered up to thatpoint. For that purpose we introduce the \multi-step" model. The function f creates apartition B(f) consisting of b basins. We shall also assume that in each basin there isa unique minimum and that a single basin, B1, contains the global minimum. Denotethe states in bin i by (i; j), 1 � j � n(i), where (i; 1) is the local minimum in basin iand n(i) is the number of such states, We shall arrange the states of the non-goal bins10



(2; 1); : : : (2; n(2)); (3; 1); : : : ; (b; n(b)) in such a way that n(2) � n(3) � � � � � n(b). Usingthe uniform measure, the state{transition matrix for a single processor is P = [Aij ],i = 1; : : : ; b, j = 1; : : : ; b, where Aii is the n(i) � n(i) sub{matrixAii =0BBB@ 1N 1N � � � 1N 1N1 0 � � � 0 00 1 � � � 0 0� � �0 0 � � � 1 0 1CCCAfor i = 1; : : : ; b and the n(i) � n(j) sub{matrix Aij for i 6= j is given byAij =0BBB@ 1N 1N � � � 1N 1N0 0 � � � 0 00 0 � � � 0 0� � �0 0 � � � 0 0 1CCCAHere N =Pbi=1 n(i) and in the notation above, � = n(1)=N .Shonkwiler and Van Vleck, (1992) analyzespeedup = E[T ]E[Tm] ;where E[Tm] is the expected minimum time until the �rst of m independent processorsrestarts in the min{bin. In their analysis the deleted transition matrix, P̂ , obtained bydeletion of the �rst n(1) rows and columns of P is introduced and plays a key role. Theyprove that the speedup is given byspeedup = sm�1 1� �m1� � +O(1� �m) (3:2)as � ! 1. In this, � is the Perron{Frobenius eigenvalue of the deleted transition matrixP̂ ; ! is the corresponding left eigenvector normalized so that !01 = 1, � is the correspondingright eigenvector normalized so that !0� = 1, ands�1 = �̂0�;11



where �̂ is the common deleted initial probability starting vector of all processors. In ourcase this is the (N � n(1)) � 1 column vector �̂0 = 1N 10. As an example, for the atomicmodel in the �rst part of this section, it can be shown that � = 1 � � and s�1 = 1 � � sothat one has exactly speedup = sm�1 1� �m1� � :We consider next the analysis of the Perron{Frobenius eigenvalue of P̂ in the multi{stepmodel.Theorem 3.1. The Perron{Frobenius eigenvalue of P̂ is �, where 
 = ��1 is the uniquesolution larger than 1 to f(
) = 0 for f given byf(�) = 1N bXi=2 �n(i)+1 �� 1N (b � 1) + 1� � + 1: (3:3)The associated right eigenvectors are scalar multiples ofv00 = (1; 
; 
2; : : : ; 
n(2)�1; 1; 
; 
2; : : : ; 
n(3)�1; 1; : : : ; 
n(b)�1);and the associated left eigenvectors are scalar multiples ofw0 = (1� 
n(2); 1� 
n(2)�1; : : : ; 1� 
n(2)�2; : : : ; 1� 
1� 
n(3); 1� 
n(3)�1; : : : ; 1� 
; : : : ; 1� 
n(b); : : : ; 1� 
)The next theorem shows that in the multistep model, s > 1 always.Theorem 3.2. For the multi{step model,s = �Pbj=2 n(j)��(n(j)+1) �N�n(1) � ��1 > 1where � is the Perron{Frobenius eigenvalue.12



The observation that s > 1 in this model indicates that speedup is approximately anexponentially increasing function in m (for small to moderate m) when N is large or � issmall. This can be seen from (3.2) and an examination of the row sums of P̂ . Indeed,using familiar facts about the Perron{Frobenius eigenvalue it follows that � > 1� �. It isalso true that � ! 1 as N ! 1 even if � is not close to 1 as can be seen from the factthat 
 = ��1 solves f(
) = 0 where f is de�ned in (3.3).How general is this model? One feature assumed at the outset is that there is aunique basin containing the global minimum, but this assumption may be relaxed andthe results still apply to the more general case if n(1) is replaced by the appropriate sumof the number of states in the min{bin. Another feature of the multistep formulationrestricts its generality. It is assumed implicitly by the structure of the transition matrixof the Markov chain that the basins consist of single paths of varying lengths to localminima and the basins are disjoint. In many problems there will be more than one pathto a local minimum so these features are inconsistent. However, if there are relatively fewlocal minima in comparison to the total number N of possible starting points then thecalculations made above assuming disjoint bins should be indicative of parallel speedup.In the next section we investigate a continuous time model which does not force thispath structure on the basins and allows a separation of basin size and time taken to searchthe basin.4. A Continuum ModelIn this section an attempt is made to shed further light on the e�cacy of parallelprocessing by modeling the search times as continuous random variables. Generally, super{linear speedup in the number of processors m results when basins can have \long" searchtimes.Even though the discrete multi{step model is rather general, as noted above, multiplepaths leading to the settling point of a basin complicate the construction and analysis of13



the transition matrix. Moreover that approach does not allow an easy quantitative insightinto one important aspect of the problem of e�cacy of parallel processing, by which wemean the in
uence of the distribution of the time taken to search non{goal basins. As inx1 let B(f) = fB1; : : : ; Bbg denote the basins of f . Let Yj denote the random time tilltermination given that the initial point is in the jth basin, that is Yj is the time to searchthe jth basin. One would expect that if long search times Yj occur with reasonably largeprobabilities, then the bene�ts of using m > 1 processors should increase more rapidlythan if all the non{goal basins were rapidly searched. Hence we introduce the continuummodel.The Case of a Single ProcessorLet �i, i � 1, be the probability that a starting point in the ith basin is chosen whenthe starting points are chosen according to a uniform distribution on the space D to besearched. By the length of the jth epoch we shall mean the time Yj spent in searching thejth chosen basin. As before, let E denote the number of the restart at which an initialpoint is �rst chosen in the min{bin. One observes thatP[E = n] = (1� �)n�for n = 0; 1; 2; : : : ; where we assume without loss of generality �1 = � = P0[M(f)]. Also,if T is the random time spent until the �rst start in the min{bin, thenE(T ) =Xn�0E[T jE = n]P[E = n]:Now letting Rj denote the random time spent searching during the jth epoch one has forn � 1 E[T jE = n] = E24 nXj=1Rj jE = n35 = nXj=1 bXi=2 E[Yi] �i(1� �) ;14



since the conditional distribution of R given the basin is not the �rst isP[R � tj bin 1 not chosen] =Pbi=2 P[Yi � t]P[ bin i is chosenji 6= 1] =bXi=2 P[Yi � t] �i(1� �) :Therefore E(T ) =Xn�1n bXi=2 E[Yi] �i(1� �) (1 � �)n� = bXi=2 E[Yi] �i(1� �) 1� �� :So E(T ) = Pbi=2 �i�i� ;where �i = E[Yi].The Case of m ProcessorsIn the case of m processors let U1 < U2 < : : : denote the times at which at least one ofthe m processors randomly restarts. We shall assume that the search times are continuousrandom variables so that the probability that more than one processor restarts at the sameinstant is zero. Letting E be as above, the time for at least one of the m processors to �ndthe min{bin has the same probability distribution as UE where U0 = 0 andUE = UE �UE�1 + � � �+ U2 � U1 +U1 � U0 + U0:Noting that E[Uj+1 � Uj ] � E � min1�i�mRi�it follows thatE[UE] �Xn�1nE � min1�i�mRi� (1 � �)n� = E � min1�i�mRi� (1 � �)=�:With Tm be the randomminimum time taken form processors to �rst start in the min{bin,we have E[Tm] � E � min1�i�mRi� (1� �)=�:15



Generally the explicit computation of E[min1�i�m Ri] is impossible. It is howeverpossible to come to some conclusions regarding the role of multiprocessing in speedup form large. Consulting the results available concerning the convergence of normalized minimafrom general probability distributions and the convergence of their expected values, thetwo results we shall need are as follows.The �rst, Theorem 2.1.5 from Galambos, (1978), states that if there is a constant
 > 0 such that for all x > 0 limt!�1 F �(tx)F �(t) = x�
where F �(x) = F (�1=x) for x < 0, then, setting Mn = min1�i�nRi, for all x > 0limn!1P[Mn=dn � x] = 1� e�x
 ;where dn = F�1(1=n):The other is due to Pickands, (1968) who proves that under the conditions above,E[Mn]=dn ! Z 10 
x
e�x
dx = �(1 + 1=
)Where � is the gamma function.Example 4.1. (Alternative to the multi-step). Suppose the search time Yi of the ithbasin is uniform and proportional to the size of the bin so that for all i = 2; : : : ; bFi(tN�i) = P [Yi � tN�i] = ( 0 if t � 0t if 0 < t < 11 if t � 1One can verify that 
 = 1 for this problem and dn = F�1(1=n) = N�=(b � 1)n, so(b � 1)nE[Mn]=N� ! �(1 + 1) = 1! = 1. 16



The speedup for m processors isE[T ]E[Tm] � �Pbi=2 �i�i� �.�E � min1�i�mRi� (1 � �)=��=  bXi=2N�2i!. (2(1 � �)E[Mm ]) :Now let � 2 (0; 1) be given and m be so large that E[Mm] < (1 + �)N�=(b � 1)m. ThenE[T ]E[Tm] �m(b � 1) bXi=2 �2i!.(2(1 + �)�(1 � �)):The speedup is therefore at least linear in m, the number of processors, for m large.Example 4.2. Suppose P[Yi > t] = expf��it�ig, 1 � i � b, so that the Y 's are Weibullrandom variables. An analysis like the one in Example 1 shows that 
 = min1�i�b �i andthat for the choice of dn = � �nPi2J �i�i�1=
 ;where � =Pi2J �i and J = fi 2 f2; 3; : : : ; bg : �i = 
g, one hasE[Mn]=dn ! �(1 + 1=
):It follows that for m su�ciently largeE[T ]E[Tm] � �Pbj=2 �j�j�(1� �)�(1 + 1=
)(1 + �)�Pi2J �i�i� �1=
m1=
 :The means the �i are �i = ��1=�i�(1 + 1=�i). Hence speedup can be superlinear.5. Ensemble AnalysisWe close with an analysis of the ensemble probability of having not found the globalminimum by the nth epoch in problems with the property that, even if the global minimumhas been found by termination of the procedure, it is not possible to recognize it as such.In this analysis we return to the \atomic" viewpoint used in x3.17



Denoting as usual � = P0[M(f)], in the absence of knowledge of the particular fwhich the method will be called upon to minimize, the parameter � can be regarded as arandom variable with a prior probability distribution �. Some properties of the ensembleprobabilities of �nding the minimum of f by the nth epoch as a function of the priordistribution � on � are studied here.First, two examples.Example 5.1. Suppose � has the prior Beta distribution on (0,1) whose density is (a >0; b > 0) �(�) = � �(�+�)�(�)�(�)���1(1 � �)��1 if � 2 (0; 1)0 otherwiseThe conditional probability that the minimum has not been found by the end of epochn � 1 is P[F cnj�] = (1 � �)n so the probability of not �nding the minimum by the end ofthat epoch is Z (1� �)n�(�)d� = �(� + �)�(n + �)�(n + �+ �)�(�) :Using Stirling's approximation, this is asymptotic to�(� + �)n��(�) :In particular, for the uniform measure on � the probability P[F cn] that the minimum hasnot been found by the end of epoch n� 1 is 1=(n+ 1).Example 5.2. Suppose the prior density on � is uniform on the interval (a; 1). Theprobability that the minimum has not been found by the end of epoch n� 1 isP[F cn] = Z (1� �)n�(�)d� = Z 1a (1 � �)nd�=(1 � a)= (�(1 � �)n+1=(n+ 1)(1 � a))j1a = (1� a)n=(n+ 1):The probability that the minimumhas not been found by the end of epoch n�1 is thereforeapproaching zero geometrically. 18



In the two examples, the rate of convergence of the ensemble probability of havingnot yet found the minimum depended only upon the form of the prior density around 0.This is as one would guess; if the functions in F can have arbitrarily small values of � thenit is to be expected that the location of the minimum by the methods studied here wouldrequire large numbers of restarts, and the probability of requiring these large numberswould depend upon the likelihood of such a function being the one to be minimized. Thefollowing two lemmas give precise expression to this behavior for arbitrary prior densities�.Lemma 5.1. If �(�) = 0 on (0; a) then P[F cn] = O((1� a)n). Thus, if it is not possible tohave the global minimum located in a region of arbitrarily small measure then the rate ofconvergence to zero of the probability of not �nding the minimum by the nth iteration isdecreasing to zero geometrically .In the following let � � 0.Lemma 5.2. If lim inf�!0 �(�)=�� � L > 0 then lim infn!1P[F cn]n�+1 > 0.Lemma 5.3. If lim sup�!0 �(�)=�� � L < 1 then for � 2 (0; 1),lim supn!1 P[F cn]n�+1�� = 0.Lemmas 5.2 and 5.3 imply that if the prior puts mass close to zero in the mannerdescribed by j�(�)=�� � Lj ! 0as �! 0, then the rate of convergence of the probability of having not found the minimumby the nth iteration can not be geometric; it converges to zero at least as fast as n�(1+���)for any � > 0 but no faster than n�(1+�).The results in the case of parallel processing are easily obtained; for m independentprocessors replace the n in the formulas above by mn.19



6. Numerical ResultsIn this section the results of some simulations are compared with theoretical calcu-lations based on the models. We have chosen to analyze two one-dimensional problems.The �rst, test function (C) shown in �g. 1, is given byf(x) = 0:1x+ 1� cos( 60x30 + x ); 0 � x < 27:The global minimum for this function is 0 and occurs at x = 0. The min bin is the smallestof the basins. Test Function C
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�g. 1Our second problem, test function (S) shown in �g. 2, is an example of a Shekelfunction and is the function f6 in (T�orn,p177). The function is given byf(x) = � 10Xi=1 1(ki(x � ai))2 + ci ; 0 � x � 10;where the parameters ai, ci, and ki are given in Table 3.
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Test Function S
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�g. 2Shekel Function Parametersa k c4.696 2.871 0.1494.885 2.328 0.1660.800 1.111 0.175.4986 1.263 0.1833.901 2.399 0.1282.395 2.629 0.1170.945 2.853 0.1158.371 2.344 0.1486.181 2.592 0.1885.713 2.929 0.198Table 3In this problem the global minimum is -15.875 and occurs at x = 0:933. This time the minbin is the largest.6.1 Procedure for Generating and Analyzing the Numerical Data.For the gradient algorithm G in these problems we used Newton's Method for Uncon-strained Minimization (see Dennis and Schnabel, (1983)) with the modi�cation that noNewton's step was allowed to exceed a pre-calculated maximum, MAXSTEP. This value21



was based on the reciprocal of the maximum curvature of the graph and assured that everydownhill sequence remained in its restart bin.For each trial, the number of iterations required to �nd the goal basin was observed.The raw data consists of 1000 such trials and was �rst processed to determine the com-plementary hitting time distribution (chd). Thus for each k, chd(k) is the fraction of runsrequiring k or more iterations. Theoretically, the chd is asymptotically geometric,chd(k) � 1s�k�1:Therefore a log(chd) vs k�1 plot should tend to a straight line with slope log(�). This plotwas indeed observed to be approximately a�ne in its central region and least squares wasused to calculate its slope and hence �, see �g. 3 for function (C) and �g. 4 for function(S). Log CHD Plot for Test Function C
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Log CHD Plot for Test Function S
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�g. 4The chd plot is not suitable for determining the acceleration factor s however as itsintercept is too sensitive to the choice of a�ne region selected. Instead the s-factor deter-mination is made from the speedup plot, S vs m. Speedup data for m parallel processeswere obtained by the in-code parallel technique. That is, m separate trial solutions aremaintained in each iteration of a single processor algorithm. The �rst of these to reachthe min{bin 
ags a stop to the others. The hitting time is noted, and a new run initiated.The speedup plot for function (C) is given in �g. 5 and that for function (S) in �g. 6. Inthese �gures, linear speedup is shown for comparison.Speedup Plot for Test Function C
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Speedup Plot for Test Function S
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�g. 6Using the approximate equalityS = sm�1 1� �m1� �and the value of � previously determined, it is an easy matter to estimate s from thespeedup plot.Before turning to the speci�c results, we give next an asymptotic result for the de-termination of 
 = 1=� and s as the number of points per basin increases without boundwhile the relative number of points per basin remains �xed.Theorem 6.1. If limN!1 n(i)N = �i for i = 1; : : : ; b then denoting by 
(n) the 
 > 1satisfying f(
) = 0 for the particular con�guration n(1); : : : ; n(b) and f given in (3.3), andby c the unique positive real number satisfying the equationbXi=2 ec�i � (b � 1) � c = 0 (6:1)one has(i) 
(n) = 1 + cN + o(N�1) and(ii) limN!1 s(n) = Pbi=2 �i expfc�ig�1�1 . 24



6.2 Test ResultsFor test function (C), � and s were estimated in three di�erent ways: (1) empiricallyby the numerical procedure described above, (2) asymptotically according to Theorem 6.1,and (3) by approximate discretization as we now describe. A plot of the objective function�g. 1 was hand discretized every �x = 0:25 units and the resulting number of points perbasin counted. For example, the second \basin" B1 consists of 8 points representing themonotone decreasing segment of the function between 1.68 and 3.47. Gradient descent bya Newton's Method algorithm would descend to 3.47 if started anywhere in the interval.The discretized domain is only an approximation to the continuum since Newton's Methodwill not necessarily select these 8 points. On the other hand, the algorithm will select somediscrete subset of points in such a descent, the speci�c ones selected is not important, onlythe number of steps taken for any given starting point. From Theorem 6.1, so long as therelative bin sizes are maintained by the discretization, the discretized results approximatethe exact ones.The resulting goal deleted matrix is 101 by 101 with 7 non-goal basins. Its spectralproperties can be easily calculated from which � and s are obtained. The results for allthree methods are shown in Table 4.Test function (S) was analyzed only by the �rst two methods, empirically and asymp-totically with the results shown in Table 4.� and s Estimates by Three MethodsFunction Empirical Asymptotic DiscretizationC � = 0:991, s = 1:049 � = 0:993, s = 1:049 � = 0:991, s = 1:032S � = 0:992, s = 1:147 � = 0:994, s = 1:179 {Table 425



7. Appendix of ProofsProof of Theorem 3.1: The series of lemmas below prove Theorem 3.1.Lemma 7.1. The polynomial (3.3) has a smallest 
 2 (1;1) such that f(
) = 0.Proof. Observe that f is a polynomial of degree > 2 with a positive coe�cient of thelargest power so that f(�) ! +1 as � ! +1. Also observe that f(1) = 0. To prove thelemma it su�ces to prove that f 0(1) < 0. Calculating, one hasf 0(�) = 1N bXi=2(n(i) + 1)�n(i) � 1N (b � 1)� 1 (7:1)so that f 0(1) = N�1(N � n(1) + b� 1)�N�1(b � 1)� 1= N�1(N � n(1)) � 1 = 1� n(1)N � 1 = �n(1)N < 0:It is not di�cult to see that 
 is in fact the unique solution larger than 1 (see Lemma 7.5).Lemma 7.2. If 
 > 0 then the vectorv0 = (1; 
; 
2; : : : ; 
n(2)�1; 1; 
; 
2; : : : ; 
n(3)�1; 1; : : : ; 
n(b)�1))satis�es P̂ v = 1
 vif 1N 10v = 1
 : (7:2)Proof. Multiplying P̂ v, the condition is easily seen to be su�cient.
26



Lemma 7.3. The Perron{Frobenius eigenvalue of P̂ is 
�1, where the existence of 
 wasestablished in Lemma 7.1; the corresponding right eigenvector is v0, wherev00 = (1; 
; 
2; : : : ; 
n(2)�1; 1; 
; 
2; : : : ; 
n(3)�1; 1; : : : ; 
n(b)�1):Proof. By Lemma 7.2 it will be shown that v0 is an eigenvector if1
 = 1N 10v0 = 1N  bXi=2 1� 
n(i)1� 
 ! :To see that it does just note that1
 � 1N  bXi=2 1� 
n(i)1� 
 ! = 1
(1� 
) "1� 
 � 
 1N (b � 1) + 1N bXi=2 
n(i)+1# :By Lemma 7.1 
 solves (7.3), is positive, and v0 � 0. By Theorem 2.2 of Varga, (1963) itfollows that 
�1 is the Perron{Frobenius eigenvalue and that v0 is a right eigenvector.To calculate the s{factor, we next seek a corresponding left eigenvector w. Simplymultiplying the asserted vector in the Theorem 3.1 and using the results above, one canprove the following.Lemma 7.4. If u is a left eigenvector of P̂ corresponding to the P � F eigenvalue thenu0 is proportional to the vectorw0 =(1� 
n(2); 1� 
n(2)�1; 1� 
n(2)�2; : : : ; 1� 
;1� 
n(3); 1� 
n(3)�1; : : : ; 1� 
; : : : ; 1� 
n(b); : : : ; 1� 
):A formula for s useful in the proof of Theorem 3.2 follows. The left eigenvector ! ischosen to be proportional to w above with !01 = 1 so ! = cw and c = (w01)�1. The righteigenvector satis�es � = av0. Assuming that �̂ = 1N 1 one hass�1 = �̂0� = 1N w01v001w0v0 : (7:3)The following elementary property of functions will be utilized in the proof of Theorem3.2. 27



Lemma 7.5. Let g be a real valued function on x � a satisfying g(a) = 0, g0(a) < 0,g00(a) > 0, and g00 non{decreasing on [a;1).(i) there is a unique point b > a such that g(b) = 0 and(ii) g0(b) � �g0(a).Proof of Theorem 3.2: Observing that, by Lemma (7.3), v01 = N�, one has from (7.3)�s = w0v=w01 wherew0 = 0@n(2)�1Xu=0 ��u; n(2)�2Xu=0 ��u; : : : ; 1; : : : ; n(b)�1Xu=0 ��u; : : : ; 11Aand v0 = �1; 1�; : : : ; 1�n(2)�1 ; : : : ; 1 : : : ; 1�n(b)�1� :Noting that �s =0@ bXj=2 n(j)Xi=1 i��(i�1)1A.0@ bXj=2 n(j)Xi=1 i�(i�n(j))1Aand summing yields�s = Pbj=2(n(j)��n(j)+1 � (n(j) + 1)��n(j)+2 + �2)Pbj=2(��n(j)+1 � (n(j) + 1)�+ n(j)�2) (7:4)By (3.3), for the PF eigenvalue1N bXj=2 ��(n(j)+1)�� 1N (b � 1) + 1�+ 1 = 0so that bXj=2 ��(n(j)+1) = ��1(b � 1 +N(1 � �))and using this,Pbj=2 n(j) = N �n(1), and some algebraic manipulations in (7.4) we have�s = ��Pbj=2 n(j)��(n(j)+1)�N�n(1)28



Changing parameters to 
 = ��1 and utilizing the derivative f 0 given in (7.1) one hassn(1) = bXj=2 n(j)
(n(j)+1)�N = 
 bXj=2 n(j)
n(j) �N= 
 24Nf 0(
)� bXj=2 
n(j) + b� 1 +N35�N= 
[Nf 0(
) � 
�1(Nf(
) + (b � 1 +N)
 �N) + b� 1 +N ]�Nand since f(
) = 0, upon simpli�cationsn(1) = 
[Nf 0(
)� 
�1N ]�N = 
Nf 0(
):Recalling some properties of f we have f(
) = 0, f 0(1) = ��1, andf 00(�) = 1N bXj=2(n(j) + 1)n(j)�n(j)�1which is increasing in � > 1 so that f satis�es the hypotheses of Lemma 7.5 and f 0(
) >�f 0(1) = �1. Therefore, s = 
�1 f 0(
) � 
�1 �1 = 
 > 1:Proof of Lemma 5.1: Observe that for all nP[F cn] = Z (1 � �)n�(�)d� = Z 1a (1� �)n�(�)d� � (1� a)n Z 1a �(�)d� = (1 � a)n:Proof of Lemma 5.2: Let c > 0 be arbitrary and note that for n su�ciently largeP[F cn] = Z (1� �)n�(�)d� � Z c=n0 (1� �)n�(�)d�� (L=2)Z c=n0 (1� �)n��d�� (1� c=n)n(L=2) c�+1(� + 1)n�+1 :29



Therefore lim infn!1 P[F cn]n�+1 � Lc�+1e�c=2(�+ 1) > 0:Proof of Lemma 5.3: Let � 2 (0; 1) be arbitrary, � 2 (0; �=(1 + �)) and a(n) = c=n1��.Then P[F cn] = Z (1� �)n�(�)d� = Z a(n)0 (1� �)n�(�)d� + Z 1a(n)(1� �)n�(�)d�� Z a(n)0 (1� �)n�(�)d� + (1 � a(n))n:Let � > 0 be arbitrary and choose �0 such that 0 < � < �0 entails �(�)=�� � L+ �. Thensince a(n)! 0 with n one has for n su�ciently largeP[F cn] � (L+ �)Z a(n)0 (1 � �)n��d� + (1 � a(n))n� L+ �1 + � (a(n))�+1 + (1� a(n))n:Since for any positive a and c and for all b 2 (0; 1) one has na(1� c=nb)n ! 0 as n!1,it follows thatlim supn!1 P[F cn]n�+1�� � lim supn!1 n�+1���L+ �1 + � (a(n))�+1 + (1 � a(n))n�= lim supn!1 �L+ �1 + �c�+1n�+1�����1+(1+�)� + n�+1��(1 � c=n1��)n� = 0:Proof of Theorem 6.1: Write 
(n) = 1 + x(n)N . We have already observed thatlimN!1 x(n)N = 0 and claim now that in fact limN!1 x(n) = c > 0. To see this itsu�ces to prove that x(n) is a bounded sequence. We shall prove shortly that it is abounded sequence, but assuming that boundedness has been proven, there would be aconvergent subsequence x(n0) to a point c0 and
(n0) = 1 + c0N + o(N 0�1):30



Therefore from (3.3)0 = f(
(n0))= bXi=2 ��1 + c0N + o(N 0�1)�N 0�n(i)+1)=N 0 � (b � 1)�1 + x(n)N �� x(n0)! bXi=2 ec0�i � (b � 1) � c0and it follows that either c0 is the c satisfying (6.1) or c0 = 0. If c0 were 0 then one wouldhave s(n0) ! �1 which is impossible since s(n) > 1 always (see Theorem 3.2); so c0 = c.Since every subsequence has a further subsequence converging to c it follows that x(n)! c.To conclude the proof we must prove that x(n) is bounded. Suppose not. Then thereis a subsequence x(n0)!1 and for all N 00 = f(
(n0)) = bXi=2 1x(n0) "�1 + x(n0)N 0 �N 0#(n0(i)+1)=N 0 � b � 1x(n0) �1 + x(n0)N 0 �� 1:The following inequality is true for all b > 1=2 and x=N 0 su�ciently small:�1 + xN 0�N 0+bx � ex:It follows that for N 0 su�ciently large1x(n0) �1 + x(n0)N 0 �N 0 � 1x(n0)� e(1 + x(n0)N 0 )b�x(n0) � 1x(n0) 2x(n0) !1:But we should have bXi=2 1x(n0) "�1 + x(n0)N 0 �N 0#(n0(i)+1)=N 0 ! 1so this contradiction shows that x(n) is bounded and concludes the proof of the theorem.References[1] Dimitri Bertsekas, John Tsitsiklis,Parallel and Distributed Computation, PrenticeHall, Englewood Cli�s (1989) 31
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