
STABILITY, CONTROL, AND OPTIMIZATION OF NONLINEAR DYNAMICAL
SYSTEMS WITH APPLICATIONS IN ELECTRIC POWER NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Amin Gholami

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering (ISyE)

Georgia Institute of Technology

December 2021

© Amin Gholami 2021



STABILITY, CONTROL, AND OPTIMIZATION OF NONLINEAR DYNAMICAL
SYSTEMS WITH APPLICATIONS IN ELECTRIC POWER NETWORKS

Thesis committee:

Dr. Andy Sun, Advisor
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Pascal Van Hentenryck
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Santanu S. Dey
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Daniel Molzahn
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Na (Lina) Li
School of Engineering and Applied Sci-
ences
Harvard University

Date approved: December 10, 2021



To my family, for their unconditional love and support



ACKNOWLEDGMENTS

I am very grateful to my advisor Professor Andy Sun for his intelligence, guidance, and

endless help. I am greatly indebted to Andy for enthusiastically welcoming me into the

field of Operations Research and showing me the beauty of mathematics. His approach to

problem solving and thinking “outside the box” together with his high research and ethical

standards have forever changed my philosophy of research.

I would like to thank the members of my thesis committee Professor Santanu Dey,

Professor Pascal Van Hentenryck, Professor Daniel Molzahn, and Professor Na Li for their

support, constructive feedback, and insightful discussions. I am also deeply indebted to

Professor Maryam Saeedifard for her unconditional support during my first year of Ph.D.

at Georgia Tech.

I had the honor of being a member of GMI-GO team in the Department of Energy’s

(DOE) ARPA-E Grid Optimization (GO) competition during the last two years of my Ph.D.

I am deeply thankful to Professor Andy Sun for leading the team, and also to Kaizhao Sun

and Shixuan Zhang for being a source of creativity, for their innovative ideas, and for their

persistence and hard work. I must also thank Professor Santanu Dey and Professor Pascal

Van Hentenryck for their constructive interactions. Thanks to Terrence W.K. Mak for his

valuable suggestions. It has been very enjoyable and productive two years of working on

extremely challenging and large-scale optimization problems.

The greatest about the Georgia Tech’s ISyE is the people and distinguished faculty. I

am grateful to Professor Andy Sun, Professor Shabbir Ahmed, Professor Santanu Dey, and

Professor Arkadi Nemirovski for their unique and inspiring courses on the fundamentals

of Operations Research. I would like to thank Professor Edwin Romeijn and Professor

Santanu Dey for serving as the chair and associate chair for graduate studies during my

time in ISyE. I would like to also thank Amanda Ford, for serving as the graduate programs

manager and for all her help.

iv



I have been extremely lucky to have wonderful friends in my life. First and foremost, I

would like to thank my dearest friend, Tohid Shekari. Tohid is very warm-hearted, gener-

ous, and caring. His integrity and diligence have always inspired me to tackle my problems

in research and life in general. He unconditionally supported me during the most chal-

lenging and stressful days of my Ph.D. life, and I am forever indebted to him. I would

also like to thank his wife, Shima, for her kindness, and I wish them all the best. A spe-

cial thank goes to Mahsa for her kindness, sweet smile, and support. Thanks to Moussa

Hodjat-Shamami, Sajad Khodadadian, Sara Kaboudvand and Yasaman Mohammadshahi

for game nights, chats, and laughs that made up unforgettable memories. I shared won-

derful memories with my lifetime friends including Mohammadreza Miranbeigi, Amir H.

Hosseinnia, Morteza Rezaee, Nahid Aslani Amoli, Mahmoud Mehrabankhomartash, Saj-

jad Abdollahramezani, Saeed Ansari, Ali Taleb Zadeh Kasgari, Mahdi Jamei, Hadi Amini,

and Hamid Gholami.

I want to thank my friends and cohorts in ISyE, especially Kaizhao Sun and Shixuan

Zhang. Kaizhao and Shixuan are truly knowledgeable and hardworking, and I am grateful

to them for all the great interactions, fun times, and for teaching me many lessons. Thanks

to my officemate, Yu Yang, for introducing me to hot pot, and for our late night discussions

about philosophy and mathematics. Finally, thanks to Bai Cui for great discussions and all

the good times in our group meetings.

My thanks for my family will never be enough. This achievement lives on the support,

sacrifice, and unconditional love of them. I am very blessed to have my dear Saeid, Farzan,

Maryam, and Marjan in my life. I dedicate this thesis to my lovely parents. Thank you.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1: Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Electric Power Systems and Swing Equations . . . . . . . . . . . . 3

1.1.2 Multi-Microgrids and Stability-Constrained Optimization . . . . . . 5

1.1.3 Second-Order Ordinary Differential Equations . . . . . . . . . . . . 6

1.2 Outline and Summary of Contributions . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Chapter 2: Impact of Damping in Second-Order Dynamical Systems 7

1.2.2 Chapter 3: A Stability Certificate for Kron-Reduced Swing Equations 8

1.2.3 Chapter 4: A Stability Certificate for Structure-Preserving Swing
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Chapter 5: Stability and Control of Multi-Microgrids . . . . . . . . 9

1.2.5 Chapter 6: A Stability Certificate for Droop-Controlled Inverters . . 10

1.2.6 Chapter 7: Optimization-Based Load Shedding in Single Microgrids 11

vi



1.2.7 Chapter 8: Stability-Constrained Optimization in Multi-Microgrids . 12

1.3 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I Stability and Control of Nonlinear Dynamical Systems 15

Chapter 2: Impact of Damping in Second-Order Nonlinear Dynamical Systems 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Monotonic Effect of Damping . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Impact of Damping on Hyperbolicity and Bifurcation . . . . . . . . . . . . 31

2.4.1 Necessary and Sufficient Conditions for Breaking Hyperbolicity . . 31

2.4.2 Bifurcation under Damping Variations . . . . . . . . . . . . . . . . 35

2.5 Power System Models and Impact of Damping . . . . . . . . . . . . . . . . 38

2.5.1 Power System Model . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.2 Jacobian of Swing Equations . . . . . . . . . . . . . . . . . . . . . 40

2.5.3 Referenced Power System Model . . . . . . . . . . . . . . . . . . . 41

2.5.4 Impact of Damping in Power Systems . . . . . . . . . . . . . . . . 43

2.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



2.6.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3: A Stability Certificate for Kron-Reduced Swing Equations . . . . . . 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Autonomous Ordinary Differential Equations . . . . . . . . . . . . 57

3.2.2 Multi-Machine Swing Equations . . . . . . . . . . . . . . . . . . . 59

3.3 Linearization and Spectrum of Jacobian . . . . . . . . . . . . . . . . . . . 60

3.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Graph Induced by L and Its Spectral Properties . . . . . . . . . . . 60

3.4 Sufficient Condition for the Stability of Swing Equations: A Fast Certificate 62

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 4: A Stability Certificate for Structure-Preserving Swing Equations . . 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Structure-Preserving and Singular Perturbation Power System Models . . . 72

viii



4.2.1 Structure-Preserving Model . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 Singular Perturbation Model . . . . . . . . . . . . . . . . . . . . . 75

4.3 Stability Certificate in Structure-Preserving and Singular Perturbation Models 76

4.3.1 Fast and Distributed Scheme for Stability Assessment . . . . . . . . 78

4.3.2 Remarks on Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Perturbed Model Approximation: Time-Domain Comparison . . . . 80

4.4.2 Perturbed Model Approximation: Modal Analysis . . . . . . . . . . 81

4.4.3 Fast and Distributed Stability Assessment . . . . . . . . . . . . . . 82

4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 5: Stability and Control of Multi-Microgrids . . . . . . . . . . . . . . . 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Multi-Microgrid Model . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Linearization and Spectrum of Jacobian . . . . . . . . . . . . . . . . . . . 94

5.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Spectral Relationship Between Matrices J and L . . . . . . . . . . 95

5.3.3 A Directed Graph Induced by L . . . . . . . . . . . . . . . . . . . 96

ix



5.3.4 Spectral Properties of L . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Stability of Multi-Microgrid Networks . . . . . . . . . . . . . . . . . . . . 97

5.4.1 The Main Stability Theorem . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Intuition and Paradox Behind Condition (5.8) . . . . . . . . . . . . 99

5.4.3 Stability Condition in Structure-Preserving Networks . . . . . . . . 100

5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Control Schemes and Braess’s Paradox . . . . . . . . . . . . . . . 103

5.5.2 Stability Measure and Location of Eigenvalues . . . . . . . . . . . 106

5.5.3 Larger-Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6: A Stability Certificate for Droop-Controlled Inverters . . . . . . . . 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Droop-Controlled Inverter Model . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Linearization and Spectrum of Jacobian . . . . . . . . . . . . . . . . . . . 115

6.3.1 Spectral Relationship Between Matrices J and L . . . . . . . . . . 116

6.4 Stability of Droop-Controlled Inverters . . . . . . . . . . . . . . . . . . . . 119

6.5 Perturbation Bounds for Eigenvalues: The Impact of Coupling Terms . . . . 124

6.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



II Optimization with Stability Constraints 131

Chapter 7: Optimization-Based Load Shedding in Single Microgrids . . . . . . . 132

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Overview of the Proposed Load Shedding Algorithm . . . . . . . . . . . . 135

7.3 Optimal Amount and Threshold for Activation of Load Shedding . . . . . . 136

7.3.1 Frequency Response of the µG to an Islanding Event . . . . . . . . 137

7.3.2 Threshold for Activation of Load Shedding Scheme . . . . . . . . . 138

7.3.3 Optimal Amount of Load Shedding . . . . . . . . . . . . . . . . . 141

7.4 Optimization-Based Load Shedding Scheme . . . . . . . . . . . . . . . . . 143

7.4.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 Linearization of the Basic Model . . . . . . . . . . . . . . . . . . . 146

7.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Chapter 8: Stability-Constrained Optimization in Multi-Microgrids . . . . . . . 155

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2 Resilient Operation of Multi-Microgrids . . . . . . . . . . . . . . . . . . . 158

8.2.1 Structure of a Multi-Microgrid Network . . . . . . . . . . . . . . . 158

8.2.2 Overview of the Proposed Resilient Operation Scheme . . . . . . . 159

xi



8.3 Frequency Response of Multi-Microgrids Subsequent to Islanding . . . . . 161

8.3.1 Inertial Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3.2 Droop Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.3 Steady State and Nadir Frequencies at COI . . . . . . . . . . . . . 164

8.4 Resilient Operation Problem Formulation . . . . . . . . . . . . . . . . . . 166

8.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4.2 Real-Time AC Power Flow Limitations in µGs . . . . . . . . . . . 167

8.4.3 Real-Time AC Power Flow Limitations in the Linking Grid . . . . . 168

8.4.4 DER Output Limitations and Binary Variable Declaration . . . . . . 170

8.4.5 Frequency Constraints and Reformulation . . . . . . . . . . . . . . 170

8.4.6 Overall MINLP Formulation . . . . . . . . . . . . . . . . . . . . . 173

8.5 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.5.1 MISOCP Reformulation and Convexification . . . . . . . . . . . . 173

8.5.2 Cutting Plane Algorithm for Frequency Constraints . . . . . . . . . 179

8.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.6.1 Comparison with the MINLP-Based Scheme . . . . . . . . . . . . 182

8.6.2 Comparison with the Conventional UFLS Scheme . . . . . . . . . . 184

8.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Chapter 9: Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 187

9.1 Part I: Stability and Control of Nonlinear Dynamical Systems . . . . . . . . 187

9.2 Part II: Optimization with Stability Constraints . . . . . . . . . . . . . . . 190

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

xii



Chapter A: Detailed Proofs of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 193

A.1 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2 Stability of Symmetric Second-Order Systems with Nonsingular Damping . 193

A.3 Proof of Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.5 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter B: Detailed Proofs of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . 206

B.1 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Chapter C: Detailed Proofs of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . 209

C.1 Proofs of Corollary 1 and Theorem 11 . . . . . . . . . . . . . . . . . . . . 209

C.1.1 Outline of the Proof of Corollary 1 . . . . . . . . . . . . . . . . . . 210

C.1.2 Outline of the Proof of Theorem 11 . . . . . . . . . . . . . . . . . 211

Chapter D: Detailed Proofs of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . 213

D.1 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

D.2 Proof of Theorem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

D.3 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.4 Proof of Theorem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

xiii



LIST OF TABLES

3.1 Illustration of the proposed stability certificate in Theorem 10 . . . . . . . . 64

3.2 Dynamic parameters and converged load flow data of the 3-bus test system. 65

5.1 Dynamic parameters and converged load flow data of the four-microgrid
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Parameters to generate synthetic networks. U([`1, `2]) is uniform distribu-
tion on interval [`1, `2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Parameters of the IEEE 33-bus system. . . . . . . . . . . . . . . . . . . . . 107

6.1 Dynamic parameters, domain of stability certificates, and angle range. . . . 129

7.1 Constituent Terms in the Linearized Power Flow Equations [117] . . . . . . 146

7.2 Technical Data of DG Units . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3 µG Dynamic Data [107] . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4 Simulated Contingencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Comparison Between the Linear and Nonlinear Load Shedding Optimiza-
tion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 Computation Time of the Linear and Nonlinear Models . . . . . . . . . . . 154

8.1 Technical Data of DERs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2 Dynamic Parameters of the VSC Controller in each µG . . . . . . . . . . . 181

8.3 Comparison Between the MISOCP and MINLP Models . . . . . . . . . . . 183

xiv



8.4 Convergence of the Proposed Algorithm While SolvingMISOCP(R,F) . 184

8.5 Convergence of the Proposed Algorithm While SolvingMINLP(X ,F) . 185

xv



LIST OF FIGURES

2.1 Occurrence of supercritical Hopf bifurcation in Case 1. (a)-(c) Projection
of limit cycles into different subspaces as the parameter γ changes. (d)
Oscillations of the voltage angles ψ in radians and the angular frequency
deviation ω in radians per seconds when γ = 0. Note that ψ3 ≡ 0. . . . . . 50

2.2 Occurrence of subcritical Hopf bifurcation in Case 2. (a) Unstable limit
cycles as the parameter γ changes. (b)-(c) Projection of limit cycles into
different subspaces as the parameter γ changes. (d) The region of attraction
of the equilibrium point when γ = 0.25. The unstable limit cycle is shown
in red, while the orbits inside and outside of it are shown in green and blue,
respectively. Note that ψ2 ≡ 0. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Histogram of the distribution of ϕij for all (i, j) in different reduced IEEE
standard test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Spectrum of J in the IEEE 89-bus system. . . . . . . . . . . . . . . . . . . 65

3.3 Schematic diagram of the 3-bus test system. . . . . . . . . . . . . . . . . . 66

3.4 Instability of the equilibrium point in the 3-bus test system. (a) There exist
two eigenvalues with positive real part. (b) Starting from a neighborhood
of the equilibrium point, the trajectories become unbounded. . . . . . . . . 66

3.5 Real part of the closest nonzero eigenvalue of J to the imaginary axis as a
function of mini Si in the IEEE 9-bus system. . . . . . . . . . . . . . . . . 67

4.1 Single line diagram of the WSCC system. . . . . . . . . . . . . . . . . . . 80

4.2 Simulation results of the WSCC system: exact model (solid) and singular
perturbation model (dashed) with two different perturbation parameters. . . 82

xvi



4.3 Modal analysis of the WSCC system: eigenvalues of the exact model (red
asterisks) and singular perturbation model (cyan circles) with two different
perturbation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Verification of Assumption 1 in the WSCC system. . . . . . . . . . . . . . 84

4.5 Variation of degree of stability due to variation of stability index (4.6). . . . 84

5.1 Histogram of the distribution of ϕik for all lines (i, k) in different IEEE and
NESTA standard test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Schematic diagram of four coupled microgrids. . . . . . . . . . . . . . . . 105

5.3 Verifying the instability of the equilibrium point in Case (a2) of the four-
microgrid system. (a) There exist two eigenvalues with positive real part.
(b) Starting from a neighborhood of the equilibrium point, the orbits of the
system diverge to infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Illustration of stability certificate on the IEEE 33-bus system. (a) Spectrum
of matrix J . (b) Value of stability index Si in different buses. . . . . . . . . 108

5.5 Trajectories of the frequency deviation ωi for 6 DERs in the IEEE 33-bus
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Synthetic multi-µG networks satisfying condition (5.8). (a) Sparsity pat-
tern of the 50-microgrid adjacency matrix, black points are ones. (b) 50-
microgrid network. (c) Eigenvalues of the 50-microgrid network. (d) Spar-
sity pattern of the 100-microgrid adjacency matrix, black points are ones.
(e) 100-microgrid network. (f) Eigenvalues of the 100-microgrid network. . 109

6.1 Verifying the loose physical interaction between active power P and reac-
tive power Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Spectrum of J , and its diagonal blocks J1 and J4. Verifying Lemma 9 and
Theorem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.1 The general framework of the proposed load shedding algorithm. . . . . . . 136

7.2 A typical frequency response of a µG following an unintentional islanding
event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Block diagram of the adopted SFR model. . . . . . . . . . . . . . . . . . . 138

xvii



7.4 Single line diagram of the simulated µG [119]. . . . . . . . . . . . . . . . . 150

7.5 VOLL for different types of loads. . . . . . . . . . . . . . . . . . . . . . . 150

7.6 Comparison between the proposed and conventional UFLS methods in terms
of load shedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.7 Comparison between the proposed and conventional UFLS methods in terms
of load shedding cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.8 Comparison between the proposed and conventional UFLS methods in terms
of minimum dynamic frequency. . . . . . . . . . . . . . . . . . . . . . . . 152

7.9 Comparison between the proposed and conventional UFLS methods in terms
of steady-state frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.1 Schematic diagram of a distribution system under islanding. (a) Multi-
µG network. (b) Linking grid. . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 The general framework of the proposed resilient operation approach. . . . . 161

8.3 Block diagram of the aggregated SFR model. . . . . . . . . . . . . . . . . 163

8.4 Comparison between the proposed MISOCP-based and conventional UFLS
schemes for an islanding event with severity of 3200 kW. Permissible ranges
of nadir and steady state frequencies are shown by horizontal bars. . . . . . 186

xviii



SUMMARY

Electric power systems in recent years have witnessed an increasing adoption of renew-

able energy sources as well as restructuring of distribution systems into multiple micro-

grids. These trends, together with an ever-growing electricity demand, are making power

networks operate closer to their stability margins, thereby raising numerous challenges for

power system operators. In this thesis, we focus on two major challenges: How to effi-

ciently assess and certify the stability of power systems; and how to optimize the operation

of multiple microgrids while maintaining their stability.

In the first part of the thesis, we focus on the first question, and study one of the most

fundamental models of power systems, namely the swing equation model. We develop suf-

ficient conditions under which the equilibrium points of swing equations are asymptotically

stable. We also discuss the connection between the stability of equilibrium points and the

network structure. This for example reveals an analog of Braess’s Paradox in power system

stability, showing that adding power lines to the system may decrease the stability margin.

Based on the developed theories, we also introduce several distributed control schemes for

maintaining the stability of the system. Since swing equations belong to a more general

class of second-order ordinary differential equations (ODEs) which are the cornerstone of

studying many other physical and engineering systems, a considerable part of this thesis

is devoted to the study of this general class of ODEs, where we investigate the impact

of damping as a system parameter on the stability, hyperbolicity, and bifurcation in such

systems.

In the second part of the thesis, we address the second question and provide a com-

putationally efficient method for optimizing multi-microgrid operation while ensuring its

stability. Our goal is to maintain the frequency stability of multi-microgrid networks un-

der an islanding event and to achieve optimal load shedding and network topology control

with AC power flow constraints. Attaining this goal requires solving a challenging op-

xix



timization problem with stability constraints. To cope with this challenge, we develop a

strong mixed-integer second-order cone programming (MISOCP)-based reformulation and

a cutting plane algorithm for scalable computation of the problem. The optimization frame-

works and stability certificates developed in this thesis can be used as powerful decision

support tools for power system operators.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Power system stability has been an important topic for many years. There has been contin-

uing advancement in the understanding of stability in these systems. In the recent decade,

however, the proliferation of renewable energy resources has added new dimensions to the

problem. The uncertainty and volatility of these resources have brought about significant

stochastic transitions from one operating point to another, thereby making the system more

prone to instability. Another major consequence of moving towards more and more re-

newable resources is the loss of synchronous machines and their rotational inertia, which

further results in serious stability challenges. These growing challenges, more than ever,

warn us about the necessity of having a better understanding of power system stability. One

of the most fundamental models used in studying power system stability (especially angle

stability) is the swing equation model. This model describes the nonlinear relation between

the power output and voltage angles at each generator node and can be used to analyze

the short term dynamical behaviour of the system. Despite its simple-looking form, which

will be presented shortly in this chapter, the dynamics of swing equations is extraordinarily

rich and their application is ubiquitous in power system dynamical models and analysis.

Unfortunately, the existing studies on these equations are either focused on the simplified

lossless case or do not provide simple formulas to check if a given equilibrium point of such

equations is stable. Indeed, an open problem is to find clear and easy-to-check conditions

to certify the stability of lossy swing equations. Addressing this open problem is the main

motivation of the present dissertation.

Swing equations belong to a more general class of second-order ordinary differential

equations (ODEs) which are the cornerstone of studying many other physical and engi-

neering systems such as an n-degree-of-freedom rigid body and a system of n coupled
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oscillators, in particular Kuramoto oscillators with inertia. Part I of this dissertation begins

with the study of such general class of second-order ODEs, where we investigate the im-

pact of damping as a system parameter on the stability, hyperbolicity, and bifurcation in

such systems.

We continue Part I of the dissertation by focusing on swing equations and the small-

signal stability of power systems. We will answer some fundamental questions: Under

what conditions an equilibrium point of swing equations is stable? What is the relation

between the parameters of power systems and the stability of their equilibrium points? To

address these questions, we make use of the unique structure of these equations and strive

to develop sufficient conditions for the local stability of the equilibrium points.

Another important application of swing equations emerges in studying the stability of

multi-microgrid networks. Here, each microgrid is an energy-independent unit which could

be a block in the city such as a university or hospital. Based on the stability theories devel-

oped for swing equations in the previous parts, we study the stability of multi-microgrids.

We also demonstrate an analog of Braess’s Paradox in such networks, showing that adding

power lines to the system may decrease the stability margin. Part I of the dissertation ends

with the study of swing equations with variable voltage magnitudes. Such third-order mod-

els characterize the dynamics of droop-controlled inverters, which are important building

blocks of smart distribution systems.

Part II of this dissertation is devoted to a more detailed study of multi-microgrid net-

works, from an optimization perspective. Our main goal in Part II is to provide a com-

putationally efficient method for optimizing multi-microgrid operation while ensuring its

stability. Achieving this goal requires solving a challenging optimization problem with

stability constraints. To cope with this challenge, we first focus on single microgrids, and

develop an optimization-based scheme for under frequency load shedding (UFLS) in a mi-

crogrid following an unintentional islanding (i.e., disconnection of the microgrid from the

main grid). Next, we extend this scheme to multi-microgrids. We propose a comprehen-
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sive optimization and real-time control framework for maintaining frequency stability of

multi-microgrid networks under an islanding event and for achieving optimal load shed-

ding and network topology control with AC power flow constraints. Part II ends with our

discussion on a strong mixed-integer second-order cone programming (MISOCP)-based

reformulation and a cutting plane algorithm for scalable computation of the problem.

In the following sections of this chapter, we provide a brief introduction to swing

equations, multi-microgrids, and more general class of second-order differential equations.

Next, we discuss the problems that are considered in each chapter of this dissertation and

the challenges we face in solving them. We then provide a summary of our contributions.

We conclude this chapter by presenting a list of related publications as well as the basic

notations that are used throughout the dissertation.

1.1 Background

1.1.1 Electric Power Systems and Swing Equations

Consider an electric power system with the set of interconnected generatorsN = {1, · · · , n},

n ∈ N. Based on the classical small-signal stability assumptions [1], the mathematical

model of this system is described by the following system of second-order nonlinear ODEs:

mj

ωs
δ̈j(t) +

dj
ωs
δ̇j(t) = Pmj −

n∑
k=1

VjVkYjk cos
(
θjk − δj + δk

)
∀j ∈ N . (1.1)

Considering the state space S := {(δ, ω) : δ ∈ Rn, ω ∈ Rn}, the dynamical system (1.1)

can be represented as a system of first-order nonlinear ODEs, aka swing equations:

δ̇j(t) = ωj(t) ∀j ∈ N , (1.2a)

mj

ωs
ω̇j(t) +

dj
ωs
ωj(t) = Pmj −

n∑
k=1

VjVkYjk cos
(
θjk − δj + δk

)
∀j ∈ N , (1.2b)
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where for each generator j ∈ N , δj(t) is the terminal voltage angle in radians, Vj is the

terminal voltage magnitude in per unit, ωj(t) is the deviation of the angular frequency

from the nominal angular frequency in radians per seconds, ωs is the nominal angular

frequency in radians per seconds, mj is the inertia constant in seconds, dj is the unitless

damping coefficient, Pmj is the mechanical power in per unit, and t is the time in seconds.

Moreover, Yjk exp (iθjk) is the (j, k) entry of the reduced admittance matrix, with Yjk ∈ R

and θjk ∈ R. The reduced admittance matrix encodes the underlying graph structure of the

power grid, which is assumed to be a connected graph in this dissertation.

The equilibrium points of swing equations (1.2) with zero transfer conductance (the

so-called lossless model) have been studied in the 1980s (see e.g. Chiang et al. [2] and

Zaborszky et al. [3].) They assume that there is a unique stable equilibrium point and a

finite number of unstable equilibrium points in any 2π interval of generator angle coordi-

nate. It is shown that the stability boundary of a stable equilibrium point consists of the

stable manifolds of all the equilibrium points (and/or closed orbits) on the stability bound-

ary. Moreover, various methods in the broad category of the so-called direct methods have

been developed to estimate the region of attraction of equilibrium points [4, 5]. These

methods not only avoid expensive time-domain integration of swing equations, but also

provide a quantitative measure of the degree of stability. Unfortunately, the existing meth-

ods are mostly limited to lossless systems and require a significant computational effort.

More recently, the authors in [6] have alleviated some of these drawbacks, by showing that

there exists a convex set of Lyapunov functions certifying the transient stability of a given

power system.

The characteristics of swing equations with nontrivial transfer conductance (the so-

called lossy model) are more challenging to analyze. This is partly due to the fact that there

is no global energy function for such systems [7], and therefore, some main approaches

(e.g., the energy function method) to investigate these equations cannot be directly applied.

Nonetheless, several approaches are devised over the years. For instance, reference [8]
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computes numerical energy functions to deal with the effects of transfer conductances on

the system behavior. Our work in this dissertation mainly focuses on lossy swing equations,

but we also study lossless swing equations as a special case.

1.1.2 Multi-Microgrids and Stability-Constrained Optimization

Microgrids as building blocks of smart distribution grids, provide a unique infrastructure

for integrating a wide range of distributed energy resources (DERs) with different static

and dynamic characteristics. Microgrids are able to operate in island mode and energize

a portion of the grid while the main grid is down. Restructuring of distribution systems

into multiple microgrids, referred to as multi-microgrids, is one of the main ways of im-

proving the resilience of the electricity grid. The structural modularity of such networks

makes them remarkably resilient against extreme events, but inherently prone to instabil-

ities nonetheless. A minor contingency in these networks may lead to cascading outages

and a total blackout in all microgrids. There is, therefore, an urgent need for understanding

the notion of stability in multi-microgrids. This urgent need motivated us to study multi-

microgrids and devote three chapters of the dissertation to this topic.

Note that a key feature that distinguishes multi-microgrid networks from the conven-

tional distribution systems is that each microgrid will be connected to the rest of the system

via a point of common coupling (PCC). Moreover, each microgrid either has a voltage

source inverter (VSI)-based interface at PCC or is composed of a network of DERs, e.g.

VSIs, diesel generators (DGs), etc [9, 10]. On the other hand, it can be mathematically

proved (see Lemma 7) that the frequency dynamics of a droop-controlled VSI is equivalent

to the dynamics of a synchronous generator or DG, represented by swing equations [11],

[12]. Therefore, from a modeling perspective, the dynamical model of multi-microgrids is

closely related to that of interconnected generators [13], and analysis of multi-microgrids’

behaviour is intertwined with an accurate understanding of swing equations. Accordingly,

the swing equation studies in the first part of the dissertation help us get ready for the study
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of multi-microgrids at the end of Part I as well as Part II.

As mentioned above, in a multi-microgrid network, each microgrid is able to operate

in either island mode or grid-connected mode. An important challenge in these networks

is to control the dangerous transients caused by the transition between the grid-connected

and island modes. Several IEEE standards such as IEEE Std. 929-2000 [14] and IEEE Std.

1547.7-2013 [15] have highlighted this challenge and called for adaptive optimization and

control schemes to be used in such circumstances. Addressing this challenge will be our

main goal in Part II of this dissertation.

1.1.3 Second-Order Ordinary Differential Equations

As mentioned above, swing equations belong to a larger class of second-order ODEs of the

form

Mẍ+Dẋ+ f(x) = 0, (1.3)

and its corresponding first-order system

ẋ
ẏ

 =

0 I

0 −M−1D


x
y

−M−1

 0

f(x)

 . (1.4)

This general class will be discussed in Chapter 2. In (1.3) and (1.4), f : Rn → Rn is

a continuously differentiable function, the dot denotes differentiation with respect to the

independent variable t ≥ 0, the dependent variable x ∈ Rn is a vector of state variables,

and the coefficients M ∈ Sn and D ∈ Sn are constant n× n real symmetric matrices. We

refer toM andD as the inertia and damping matrices, respectively. We restrict our attention

to the case where M is nonsingular, thereby avoiding differential algebraic equations, and

D ∈ Sn+ is positive semi-definite (PSD). We also investigate and discuss the case where M

and D are not symmetric.
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The dynamical model (2.1) has been of interest to many researchers who have studied

necessary and sufficient conditions for its local stability [16, 17] or characterization of its

stability regions [18]. When f(x) is a linear function, this model coincides with the model

of n-degree-of-freedom viscously damped vibration systems which are also extensively

studied in the structural dynamics literature [19, 20, 21]. Equation (2.1) is also the corner-

stone of studying many physical and engineering systems such as an n-generator electric

power system [22], an n-degree-of-freedom rigid body [18], and a system of n coupled

oscillators [23, 22, 24], in particular Kuramoto oscillators with inertia [25, 26].

1.2 Outline and Summary of Contributions

In this section, we present an outline and summarize the contributions of the dissertation.

Part I: Stability and Control of Nonlinear Dynamical Systems

1.2.1 Chapter 2: Impact of Damping in Second-Order Dynamical Systems

In Chapter 2, we aim to answer some natural questions about ODEs of the form (1.3): How

does changing the damping matrix D affect the stability and hyperbolicity of equilibrium

points? What are the conditions on D under which an equilibrium point is hyperbolic?

When we lose hyperbolicity due to changing D, what kind of bifurcation happens?

• We show that in second-order systems increasing damping has a monotonic effect

on the stability of equilibrium points. To establish this result, we prove that the

rank of a complex symmetric matrix with PSD imaginary part does not decrease

if its imaginary part is perturbed by a real symmetric PSD matrix, which may be

of independent interest in the matrix perturbation theory. Moreover, we propose a

necessary and sufficient condition for an equilibrium point of such systems to be

hyperbolic. We also characterize a set of sufficient conditions for the occurrence

of Hopf bifurcation, when the damping matrix varies as a smooth function of a one
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dimensional bifurcation parameter.

• We show that the developed theoretical results have key applications in the stability

of electric power systems (1.1). We prove that in a lossy power system with two or

three generators, as long as only one generator is undamped, any equilibrium point

is hyperbolic, and as soon as there are more than one undamped generator, a lossy

system with any n ≥ 2 generators may lose hyperbolicity at its equilibrium points.

Finally, we perform bifurcation analysis to detect Hopf bifurcation and identify its

type based on two interesting case studies.

1.2.2 Chapter 3: A Stability Certificate for Kron-Reduced Swing Equations

In Chapter 3, we study lossy swing equations (1.1). We first use Kron reduction [27] to

eliminate all passive nodes and study the resulting reduced network. Our aim is to ad-

dress two questions: Under what conditions an equilibrium point of lossy swing equations

is asymptotically stable? What is the relation between the network structure of a power

system and the stability of the equilibrium points of swing equations?

• We develop a sufficient condition under which the equilibrium points of lossy swing

equations are locally asymptotically stable. In addition to providing new insights

into the theory of stability, the derived conditions are easy to check, use only local

information, and are suitable for real-time monitoring and fast stability assessment.

• The proposed stability certificate can be interpreted as enforcing an upper bound

on the matrix norm of the Laplacian of the underlying graph of the system. We

show that the aforementioned upper bound is proportional to the square of damping

and inverse of inertia at each node of the power grid. These results provide new

insights into the way the damping and inertia at each node of the system would affect

the stability of equilibrium points. We also illustrate how the proposed condition

provides a quantitative measure of the degree of stability in power systems.
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1.2.3 Chapter 4: A Stability Certificate for Structure-Preserving Swing Equations

During the Kron reduction process, loads are considered constant impedances and reflected

into the nodal admittance matrix which will be further reduced to a smaller matrix repre-

senting a reduced network of generator buses. The procedure of network reduction for

eliminating the load buses will close our eyes on the relations between the structure of the

underlying physical network and the stability properties of the system. In Chapter 4, we

study structure-preserving swing equations introduced by Bergen and Hill [28]. The main

assumption of this model is to use a frequency-dependent model for loads.

• We make use of singular perturbation techniques and Tikhonov’s theorem [29] to

establish the relationship between a structure-preserving model and its singular per-

turbation counterpart. Specifically, we show (under specific conditions) the stability

properties of the structure-preserving model are the same as those of its singular per-

turbation counterpart. Therefore, the singular perturbation counterpart can be used

for stability analysis instead of the the structure-preserving model, and this will fa-

cilitate our analysis.

• We strive to develop a sufficient condition that certifies the local asymptotic stability

of equilibrium points of structure-preserving swing equations. The proposed cer-

tificate is a practical alternative to the eigenvalue computation-based methods, which

can be quite computationally cumbersome for large-scale systems. We also introduce

a control scheme for improving the small-signal stability of power systems.

1.2.4 Chapter 5: Stability and Control of Multi-Microgrids

In Chapter 5, we delve deeper into an important applications of swing equations in model-

ing multi-microgrid networks.

• We derive sufficient conditions to guarantee local stability equilibrium points of

multi-microgrids in both lossless and lossy networks. The new certificates provide

9



significant insights about the interplay between system stability and reactive power

absorption, voltage magnitude, network topology, and interface parameters of each

microgrid. We also introduce a new weighted directed graph to study the spectral

properties of the multi-microgrid Laplacian.

• Based on the developed theory, we introduce a fully distributed control scheme to ad-

just the dynamic parameters of each microgrid interface for maintaining the stability

of the system. The stability conditions developed in this chapter surprisingly reveal

an analog of Braess’s Paradox in power system stability, showing that adding power

lines to the system may decrease the stability margin [30]. We also revisit the stabil-

ity of structure-preserving models from a graph-theoretic perspective (in Chapter 4,

we studied structure-preserving models via singular perturbation techniques).

1.2.5 Chapter 6: A Stability Certificate for Droop-Controlled Inverters

In Chapter 6, we aim to extend our previous stability results to swing equations with vari-

able voltage magnitudes. This leads to a third-order model which characterizes the dynam-

ics of voltage angles, frequency deviations, and voltage magnitudes.

• We scrutinize the Jacobian of the third-order swing equations with variable voltage

magnitude and strive to find its relation with the Jacobian of power flow equations.

After investigating its spectral properties, we find an structural property of the Ja-

cobian matrix which stems from the loose physical linkage between active and re-

active powers. Taking advantage of this inherent property, we make a reasonable

assumption (referred to as the decoupling assumption) and develop sufficient con-

ditions under which an equilibrium point of the third-order model is asymptotically

stable. Similar to the sufficient conditions developed in previous chapters, the de-

rived conditions are easy to check, use only local information, and are suitable for

real-time monitoring and fast stability assessment.
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• We further investigate the aforementioned decoupling assumption and study the im-

pact of coupling terms on the eigenvalues of the Jacobian matrix. Although the loose

physical linkage between active and reactive powers is a well-known property in

power systems and has been the basis for the fast decoupled load flow [31], we are

not aware of any study on the impact of coupling terms and the robustness of the

decoupled model under coupling perturbations. Here for the first time, we make

use of the existing theorems in the literature such as Bauer–Fike theorem to provide

residual bounds for the perturbation of Jacobian eigenvalues as the coupling terms

change. Our findings shed light on the validity of the decoupling assumption for

practical purposes.

Part II: Optimization with Stability Constraints

1.2.6 Chapter 7: Optimization-Based Load Shedding in Single Microgrids

In Part II of this dissertation, we aim to develop adaptive optimization and control schemes

to handle the dangerous transients in microgrids caused by the transition between the grid-

connected and island modes. Chapter 7 is devoted to design an efficient optimization and

control scheme for single microgrids.

• We present an adaptive optimization-based load shedding scheme to curtail the min-

imum amount of loads to preserve the microgrid stability following an unintentional

islanding event. The developed technique arranges a look-up table including the opti-

mum amount and location of load curtailments. In particular, given a specific amount

of power exchange between the microgrid and the upstream grid, the optimal total

amount of load shedding is determined. This value depends on the response of both

the generators and the loads to the islanding event. These responses are reflected in

the system frequency response (SFR) model as well as the microgrid dynamic and

static frequency limitations.
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• We derive a mixed-integer linear programming (MILP) model for obtaining the amount

of load drops at different buses. In the optimization model, an approximation of the

microgrid AC operational limitations are considered to ensure the network security

following the islanding event.

1.2.7 Chapter 8: Stability-Constrained Optimization in Multi-Microgrids

Finally, in Chapter 8, we explore the resilient operation of multi-microgrid networks after

a scheduled or unscheduled islanding in a distribution system.

• We propose a framework that is strategically designed in two parts. In the first part,

we develop a near real-time decision support tool which is used to determine the opti-

mal reconfiguration of the multi-microgrid network, cooperation between microgrids

(sharing their resources), new operating point of dispatchable DERs, and emergency

load curtailments (if necessary). The second part of the framework pertains to the

real-time monitoring and control of multi-microgrids based on the outcomes of the

decision support tool. Specifically, we formulate the real-time resilient operation,

including optimal power flow, optimal load shedding, and optimal topology recon-

figuration, of a multi-microgrid network as a mixed-integer nonlinear programming

(MINLP) problem. Then, we propose an MISOCP relaxation to this problem, which

considerably improves the computational efficiency of our control framework and

renders it scalable in practical systems.

• We derive necessary constraints for keeping the nadir and steady state frequency

of the network within the permissible ranges, and introduce a new reformulation

for frequency limitation constraints. This reformulation implicitly guarantees the

frequency stability of the network after dangerous transients such as islanding. Next,

we develop a set of valid inequalities and a separation scheme for incorporating the

frequency constraints in the operation of a multi-microgrid network, and based on
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that, we establish a cutting-plane approach to eliminate the frequency violations in a

computationally effective way.

1.3 Related Publications

• Chapter 2
A. Gholami and X. A. Sun, “The impact of damping in second-order dynamical
systems with applications to power grid stability,” Accepted for publication in SIAM
Journal on Applied Dynamical Systems, 2021. arXiv:2010.06662 [math.DS].

• Chapter 3
A. Gholami and X. A. Sun, “A fast certificate for power system small-signal stabil-
ity,” in 59th IEEE Conference on Decision and Control (CDC), pp. 3383–3388,
2020. arXiv:2008.02263 [math.OC].

• Chapter 4
A. Gholami and X. A. Sun, “A distributed scheme for stability assessment in large-
scale structure preserving models via singular perturbation,” in Proceedings of 54th
Hawaii International Conference on Systems Sciences (HICSS), pp. 3169–3177,
2021. arXiv:2103.15333 [eess.SY].

• Chapter 5
A. Gholami and X. A. Sun, “Stability of multi-microgrids: New certificates, dis-
tributed control, and braess’s paradox,” Accepted for publication in IEEE Transac-
tions on Control of Network Systems, 2021. arXiv:2103.15308 [eess.SY].

• Chapter 6
A. Gholami and X. A. Sun, “Stability of droop-controlled inverters with third-order
model,” Draft Paper, 2021.

• Chapter 7
A. Gholami, T. Shekari, and X. A. Sun, “An adaptive optimization-based load shed-
ding scheme in microgrids,” in Proceedings of the 51st Hawaii International Con-
ference on System Sciences (HICSS), pp. 2660–2669, 2018. Best Paper Award.

• Chapter 8
A. Gholami and X. A. Sun, “Towards resilient operation of multi-microgrids: An
MISOCP-based frequency-constrained approach,” IEEE Transactions on Control
of Network Systems, vol. 6, pp. 925–936, 2019.

1.4 Notations

Our notation is more or less standard. We use N to denote the set of natural numbers, R to

denote the set of real numbers, R+ to denote the set of nonnegative real numbers, C−/+ to
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denote the set of complex numbers with negative/positive real part, and C0 to denote the set

of complex numbers with zero real part. The set of real and complex n-vectors are denoted

by Rn and Cn, respectively. Likewise, the set of real and complex m × n matrices are

denoted by Rm×n and Cm×n, respectively. We use parentheses to construct column vectors

from comma separated lists. For instance, if a ∈ Rn and b ∈ Rm, we have

(a, b) =

a
b

 ∈ Rn+m.

i =
√
−1 is the imaginary unit. If A ∈ Cm×n, the transpose of A is denoted by A>, the

real part of A is denoted by Re(A), and the imaginary part of A is denoted by Im(A). The

conjugate transpose of A is denoted by A∗ and defined by A∗ = Ā>, in which Ā is the

entrywise conjugate.

The matrix A ∈ Cn×n is said to be symmetric if A> = A, Hermitian if A∗ = A, and

unitary if A∗A = I . The spectrum of a matrix A ∈ Rn×n is denoted by σ(A). We use Sn to

denote the set of real symmetric n×nmatrices, Sn+ to denote the set of real symmetric PSD

n×nmatrices, and Sn++ to denote the set of real symmetric positive definite n×nmatrices.

For matrices A and B, the relation B � A means that A and B are real symmetric matrices

of the same size such that B − A is PSD; we write A � 0 to express the fact that A is a

real symmetric PSD matrix. Strict version B � A of B � A means that B − A is real

symmetric positive definite, and A � 0 means that A is real symmetric positive definite.

For A ∈ Cn×n and α, β ⊆ {1, ..., n}, the submatrix of entries in the rows indexed by

α and columns indexed by β is denoted by A[α, β]. Similarly, for a vector x ∈ Cn, x[α]

denotes the subvector consisting of entries indexed by α.
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Part I

Stability and Control of Nonlinear

Dynamical Systems
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CHAPTER 2

IMPACT OF DAMPING IN SECOND-ORDER NONLINEAR DYNAMICAL

SYSTEMS

In this chapter, we consider a broad class of second-order dynamical systems and study

the impact of damping as a system parameter on the stability, hyperbolicity, and bifurca-

tion in such systems. We prove a monotonic effect of damping on the hyperbolicity of

the equilibrium points of the corresponding first-order system. This provides a rigorous

formulation and theoretical justification for the intuitive notion that damping increases sta-

bility. To establish this result, we prove a matrix perturbation result for complex symmetric

matrices with positive semidefinite perturbations to their imaginary parts, which may be

of independent interest. Furthermore, we establish necessary and sufficient conditions for

the breakdown of hyperbolicity of the first-order system under damping variations in terms

of observability of a pair of matrices relating damping, inertia, and Jacobian matrices, and

propose sufficient conditions for Hopf bifurcation resulting from such hyperbolicity break-

down. The developed theory has significant applications in the stability of electric power

systems, which are one of the most complex and important engineering systems. In par-

ticular, we characterize the impact of damping on the hyperbolicity of the swing equation

model which is the fundamental dynamical model of power systems, and demonstrate Hopf

bifurcations resulting from damping variations.

2.1 Introduction

Newton’s second law (stating that the rate of change of the linear momentum is equal to

the force acting on the body) involves the second derivative of the position of the body with

respect to time. Therefore, it comes as no surprise that the mathematical model of many

physical systems is represented as second-order differential equations.
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In this chapter, we study the class of second-order ordinary differential equations (ODEs)

of the form

Mẍ+Dẋ+ f(x) = 0, (2.1)

and its corresponding first-order system

ẋ
ẏ

 =

0 I

0 −M−1D


x
y

−M−1

 0

f(x)

 , (2.2)

where f : Rn → Rn is a continuously differentiable function, the dot denotes differentiation

with respect to the independent variable t ≥ 0, the dependent variable x ∈ Rn is a vector of

state variables, and the coefficients M ∈ Sn and D ∈ Sn are constant n×n real symmetric

matrices. We refer to M and D as the inertia and damping matrices, respectively. We

restrict our attention to the case where M is nonsingular, thereby avoiding differential

algebraic equations, and D ∈ Sn+ is positive semi-definite (PSD). We also investigate and

discuss the case where M and D are not symmetric.

An important example of (2.1) is an electric power system with the set of interconnected

generators N = {1, · · · , n}, n ∈ N characterized by the second-order system

mj

ωs
δ̈j(t) +

dj
ωs
δ̇j(t) = Pmj −

n∑
k=1

VjVkYjk cos
(
θjk − δj + δk

)
∀j ∈ N , (2.3)

where δ ∈ Rn is the vector of state variables. The inertia and damping matrices in this

case are M = 1
ωs
diag(m1, · · · ,mn) and D = 1

ωs
diag(d1, · · · , dn). System (2.3), which

is known as the swing equations, describes the nonlinear dynamical relation between the

power output and voltage angle of generators [32, 17]. The first-order system associated

with swing equations is also of the form (2.2), i.e.,

δ̇j(t) = ωj(t) ∀j ∈ N , (2.4a)
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mj

ωs
ω̇j(t) +

dj
ωs
ωj(t) = Pmj −

n∑
k=1

VjVkYjk cos
(
θjk − δj + δk

)
∀j ∈ N , (2.4b)

where (δ, ω) ∈ Rn+n is the vector of state variables. Note that each generator j is a second-

order oscillator, which is coupled to other generators through the cosine term in (2.4b) and

the admittance Yjk encodes the graph structure of the power grid (see Section 2.5 for full

details on swing equations).

Among the various aspects of model (2.1), the impact of damping matrix D on the

stability properties of the model is one of the most intriguing topics [33, 21, 34]. More-

over, better understanding of the damping impact in swing equations (2.3) is of particular

importance to the stability analysis of electric power systems [22]. Undamped modes and

oscillations are the root causes of several blackouts, such as the WECC blackout on Au-

gust 10, 1996 [35] as well as the more recent events such as the forced oscillation event

on January 11, 2019 [36] in the Eastern Interconnection of the U.S. power grid. In order

to maintain system stability in the wake of unexpected equipment failures, many control

actions taken by power system operators are directly or indirectly targeted at changing the

effective damping of system (2.3) [32, 37, 38]. In this context, an important question is how

the stability properties of power system equilibrium points change as the damping of the

system changes. Our main motivation is to rigorously address this question for the general

model (2.1) and show its applications in power system model (2.3).

2.1.1 Related Work

Regarding damping effects in power systems, the results are sporadic and mostly based on

empirical studies of small scale power systems. For example, it is known that the loss-

less swing equations (i.e., when the transfer conductances of power grid are zero, which

corresponds to ∇f(x) in (2.1) being a real symmetric matrix for all x) have no periodic

solutions, provided that all generators have a positive damping value [39]. It is also shown

by numerical simulation that subcritical and supercritical Hopf bifurcations, and as a con-
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sequence, the emergence of periodic solutions, could happen if the swing equations of a

two-generator network are augmented to include any of the following four features: vari-

able damping, frequency-dependent electrical torque, lossy transmission lines, and excita-

tion control [40, 41]. Hopf bifurcation is also demonstrated in a three-generator undamped

system as the load of the system changes [42], where several energy functions for such

undamped lossy swing equations in the neighborhood of points of Hopf bifurcation are de-

veloped to help characterize Hopf bifurcation in terms of energy properties. Furthermore, a

frequency domain analysis to identify the stability of the periodic orbits created by a Hopf

bifurcation is presented in [43]. The existence and the properties of limit cycles in power

systems with higher-order models are also numerically analyzed in [44, 45].

Another set of literature relevant to our work studies the role of power system param-

eters in the stability of its equilibrium points. For instance, the work presented in [37]

examines the dependence of the transfer functions on the system parameters in the swing

equation model. In [46], the role of inertia in the frequency response of the system is

studied. Moreover, it is shown how different dynamical models can lead to different con-

clusions. Finally, the works on frequency stability, voltage stability, and transient stability

in power systems [47, 48, 49, 50, 51, 52, 53, 54, 55] are conceptually related to our work.

2.1.2 Main Results

This chapter presents a thorough theoretical analysis of the role of damping in the stability

of model (2.1)-(2.2). Our results provide rigorous formulation and theoretical justification

for the intuitive notion that damping increases stability. The results also characterize the

hyperbolicity and Hopf bifurcation of an equilibrium point of (2.2) through the inertia

M , damping D, and Jacobian ∇f matrices. These general results are applied to swing

equations (2.3) to provide new insights into the damping effects on the stability of power

grids.

The contributions and main results of this chapter are summarized below.
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1. We show that increasing damping has a monotonic effect on the stability of equilib-

rium points in a large class of ODEs of the form (2.1) and (2.2). In particular, we

show that, when M is nonsingular symmetric, D is symmetric PSD, and ∇f(x0) is

symmetric at an equilibrium point (x0, 0) of the first-order system (2.2), if the damp-

ing matrix D is perturbed to D′ which is more PSD than D, i.e. D′ − D ∈ Sn+,

then the set of eigenvalues of the Jacobian of (2.2) at (x0, 0) that have a zero real

part will not enlarge as a set (Theorem 2). We also show that these conditions on

M,D,∇f(x0) cannot be relaxed. To establish this result, we prove that the rank of

a complex symmetric matrix with PSD imaginary part does not decrease if its imag-

inary part is perturbed by a real symmetric PSD matrix (Theorem 1), which may be

of independent interest in the matrix perturbation theory.

2. We propose a necessary and sufficient condition for an equilibrium point (x0, 0) of

the first-order system (2.2) to be hyperbolic. Specifically, when M and ∇f(x0) are

symmetric positive definite and D is symmetric PSD, then (x0, 0) is hyperbolic if

and only if the pair (M−1∇f(x0),M−1D) is observable (Theorem 3). We extend

the necessary condition to the general case where M,D,∇f(x0) are not symmetric

(Theorem 4). Moreover, we characterize a set of sufficient conditions for the occur-

rence of Hopf bifurcation, when the damping matrix varies as a smooth function of a

one dimensional bifurcation parameter (Theorem 5 and Theorem 6).

3. We show that the theoretical results have key applications in the stability of electric

power systems. We propose a set of necessary and sufficient conditions for breaking

the hyperbolicity in lossless power systems (Theorem 7). We prove that in a lossy

system with two or three generators, as long as only one generator is undamped, any

equilibrium point is hyperbolic (Theorem 8), and as soon as there are more than one

undamped generator, a lossy system with any n ≥ 2 generators may lose hyperbolic-

ity at its equilibrium points (Proposition 3). Finally, we perform bifurcation analysis

20



to detect Hopf bifurcation and identify its type based on two interesting case studies.

2.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 2.2 introduces some notation and

provides the problem statement. In Section 2.3, we rigorously prove that damping has a

monotonic effect on the local stability of a large class of ODEs. Section 2.4 further in-

vestigates the impact of damping on hyperbolicity and bifurcation and presents a set of

necessary and/or sufficient conditions for breaking the hyperbolicity and occurrence of bi-

furcations. Section 2.5 introduces the power system model (i.e., swing equations), provides

a graph-theoretic interpretation of the system, and analyzes the practical applications of our

theoretical results in power systems. Section 2.6 further illustrates the developed theoretical

results through numerical examples, and finally, the chapter concludes with Section 2.7.

2.2 Background

2.2.1 Problem Statement

Consider the second-order dynamical system (2.1). The smoothness (continuous differen-

tiability) of f is a sufficient condition for the existence and uniqueness of solution. We

transform (2.1) into a system of 2n first-order ODEs of the form

ẋ
ẏ

 =

0 I

0 −M−1D


x
y

−M−1

 0

f(x)

 . (2.5)

If f(x0) = 0 for some x0 ∈ Rn, then (x0, 0) ∈ Rn+n is called an equilibrium point.

The stability of such equilibrium points can be revealed by the spectrum of the Jacobian

of the 2n-dimensional vector field in (2.5) evaluated at the equilibrium point. Note that

f : Rn → Rn is a vector-valued function, and its derivative at any point x ∈ Rn is referred

to as the Jacobian of f and denoted by ∇f(x) ∈ Rn×n. This Jacobian of f should not be
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confused with the Jacobian of the 2n-dimensional vector field in right-hand side of (2.5),

which is

J(x) :=

 0 I

−M−1∇f(x) −M−1D

 ∈ R2n×2n. (2.6)

If the Jacobian J at an equilibrium point (x0, 0) ∈ Rn+n has all its eigenvalues off the

imaginary axis, then we say that (x0, 0) is a hyperbolic equilibrium point. An interesting

feature of hyperbolic equilibrium points is that they are either unstable or asymptotically

stable. Breaking the hyperbolicity (say due to changing a parameter of the system), leads to

bifurcation. As mentioned before, we restrict our attention to the case where inertia matrix

M is nonsingular. Instead, we scrutinize the case where damping matrix D is not full

rank, i.e., the system is partially damped. This is a feasible scenario in real-world physical

systems [34], and as will be shown, has important implications specially in power systems.

Now, it is natural to ask the following questions:

(i) How does changing the damping matrix D affect the stability and hyperbolicity of

equilibrium points of system (2.5)?

(ii) What are the conditions on D under which an equilibrium point is hyperbolic?

(iii) When we lose hyperbolicity due to changing D, what kind of bifurcation happens?

Note that in these questions, the inertia matrix M is fixed, and the bifurcation parameter

only affects the damping matrix D. Questions (i)-(iii) will be addressed in the following

sections, but before that, we present Lemma 1 [17] which provides some intuition behind

the role of different factors in the spectrum of the Jacobian matrix J . Let us define the

concept of matrix pencil [56]. Consider n × n matrices Q0, Q1, and Q2. A quadratic

matrix pencil is a matrix-valued function P : C → Rn×n given by λ 7→ P (λ) such that

P (λ) = λ2Q2 + λQ1 +Q0.
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Lemma 1. For any x ∈ Rn, λ is an eigenvalue of J(x) if and only if the quadratic matrix

pencil P (λ) := λ2M + λD +∇f(x) is singular.

Proof. For any x ∈ Rn, let λ be an eigenvalue of J(x) and (v, u) be the corresponding

eigenvector. Then

 0 I

−M−1∇f(x) −M−1D


v
u

 = λ

v
u

 , (2.7)

which implies that u = λv and −M−1∇f(x)v − M−1Du = λu. Substituting the first

equality into the second one, we get

(
∇f(x) + λD + λ2M

)
v = 0. (2.8)

Since v 6= 0 (otherwise u = λ × 0 = 0 which is a contradiction), equation (2.8) implies

that the matrix pencil P (λ) = λ2M + λD +∇f(x) is singular.

Conversely, for any x ∈ Rn, suppose there exists λ ∈ C such that P (λ) = λ2M +λD+

∇f(x) is singular. Choose a nonzero v ∈ ker(P (λ)) and let u := λv. Accordingly, the

characteristic equation (2.7) holds, and consequently, λ is an eigenvalue of J(x).

To give some intution, let us pre-multiply (2.8) by v∗ to get the quadratic equation

v∗∇f(x)v + λv∗Dv + λ2v∗Mv = 0, (2.9)

which has roots

λ± =
−v∗Dv ±

√
(v∗Dv)2 − 4(v∗Mv)(v∗∇f(x)v)

2v∗Mv
. (2.10)

Equation (2.10) provides some insights into the impact of matricesD,M , and∇f(x) on the

eigenvalues of J . For instance, when D � 0, it seems that increasing the damping matrix

23



D (i.e., replacing D with D̂, where D̂ � D) will lead to more over-damped eigenvalues.

However, this argument is not quite compelling because by changing D, the eigenvector

v would also change. Although several researchers have mentioned such arguments about

the impact of damping [20], to the best of our knowledge, this impact has not been studied

in the literature in a rigorous fashion. We will discuss this impact in the next section.

2.3 Monotonic Effect of Damping

In this section, we analytically examine the role of damping matrix D in the stability of

system (2.1). Specifically, we answer the following question: let System-I and System-II

be two second-order dynamical systems (2.1) with partial damping matrices DI � 0 and

DII � 0, respectively. Suppose the two systems are identical in other parameters (i.e.,

everything except their dampings) and (x0, 0) ∈ R2n is an equilibrium point for both sys-

tems. Observe that changing the damping of system (2.1) does not change the equilibrium

points. Here, we focus on the case where M and L := ∇f(x0) are symmetric (these

are reasonable assumptions in many dynamical systems such as power systems). Now,

if System-I is asymptotically stable, what kind of relationship between DI and DII will

ensure that System-II is also asymptotically stable? This question has important practical

consequences. For instance, the answer to this question will illustrate how changing the

damping coefficients of generators (or equivalently, the corresponding controller parame-

ters of inverter-based resources) in power systems will affect the stability of equilibrium

points. Moreover, this question is closely intertwined with a problem in matrix pertur-

bation theory, namely given a complex symmetric matrix with PSD imaginary part, how

does a PSD perturbation of its imaginary part affect the rank of the matrix? We answer

the matrix perturbation question in Theorem 1, which requires Lemma 2 to Lemma 5 and

Proposition 1. Finally, the main result about the monotonic effect of damping is proved in

Theorem 2. The following lemma on Autonne-Takagi factorization is useful.

Lemma 2 (Autonne-Takagi factorization). Let S ∈ Cn×n be a complex matrix. Then S> =
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S if and only if there is a unitary U ∈ Cn×n and a nonnegative diagonal matrix Σ ∈ Rn×n

such that S = UΣU>. The diagonal entries of Σ are the singular values of S.

Proof. See e.g. [57, Chapter 4].

We also need the following lemmas to derive our main results. Lemma 3 generalizes a

simple fact about complex numbers to complex symmetric matrices: a complex scalar z ∈

C, z 6= 0 has a nonnegative imaginary part if and only if z−1 has a nonpositive imaginary

part.

Lemma 3. Let S ∈ Cn×n be a nonsingular complex symmetric matrix. Then Im(S) � 0 if

and only if Im(S−1) � 0.

Proof. Since S is nonsingular complex symmetric, by Autonne-Takagi factorization, there

exists a unitary matrix U and a diagonal positive definite matrix Σ such that S = UΣU>.

The inverse S−1 is given by S−1 = ŪΣ−1U∗. The imaginary parts of S and S−1 are

Im(S) = −1

2
i(UΣU> − ŪΣU∗),

Im(S−1) = −1

2
i(ŪΣ−1U∗ − UΣ−1U>).

The real symmetric matrix 2Im(S−1) = i(UΣ−1U> − ŪΣ−1U∗) is unitarily similar to the

Hermitian matrix i(Σ−1U>U − U∗ŪΣ−1) as

U∗(2Im(S−1))U = U∗(i(UΣ−1U> − ŪΣ−1U∗))U

= i(Σ−1U>U − U∗ŪΣ−1),

and is *-congruent to i(U>UΣ− ΣU∗Ū) as

ΣU∗(2Im(S−1))UΣ = iΣ(Σ−1U>U − U∗ŪΣ−1)Σ

= i(U>UΣ− ΣU∗Ū).
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Note that the latter transformation is a *-congruence because UΣ is nonsingular but not

necessarily unitary. Hence, 2Im(S−1) has the same eigenvalues as i(Σ−1U>U −U∗ŪΣ−1)

and has the same inertia as i(U>UΣ− ΣU∗Ū) by Sylvester’s law of inertia. Furthermore,

since U>U is unitary and U>U = U∗Ū , then

i(U>UΣ− ΣU∗Ū) = (U>U)(i(ΣU>U − U∗ŪΣ))(U∗Ū),

which implies that i(U>UΣ − ΣU∗Ū) has the same eigenvalues as i(ΣU>U − U∗ŪΣ).

Furthermore, since

U(i(ΣU>U − U∗ŪΣ))U∗ = i(UΣU> − ŪΣU∗) = −2Im(S),

Im(S−1) and −Im(S) have the same inertia, i.e., they have the same number of positive

eigenvalues and the same number of negative eigenvalues. Therefore, Im(S) � 0 if and

only if all eigenvalues of Im(S−1) are nonpositive, that is, if and only if Im(S−1) � 0.

Lemma 4 shows how rank-one perturbation to the imaginary part of a nonsingular com-

plex matrix preserves its nonsingularity.

Lemma 4. Let S ∈ Cn×n be a nonsingular complex symmetric matrix. If Im(S) � 0, then

S + ivv> is nonsingular for any real vector v ∈ Rn.

Proof. We use Cauchy’s formula for the determinant of a rank-one perturbation [57]:

det(S + ivv>) = det(S) + iv>adj(S)v

= det(S) + iv>S−1v det(S)

= det(S)(1 + iv>S−1v)

= det(S)(1− v>Im(S−1)v + iv>Re(S−1)v),

where adj(S) is the adjugate of S, which satisfies adj(S) = (det(S))S−1. Since det(S) 6=
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0, we only need to prove that the complex scalar z := (1−v>Im(S−1)v+ iv>Re(S−1)v) is

nonzero for any v ∈ Rn. By Lemma 3, Im(S−1) � 0, thus Re(z) = 1− v>Im(S−1)v ≥ 1.

This proves that any rank-one update on the imaginary part of S is nonsingular.

Now, we extend Lemma 4 to the case where the perturbation is a general real PSD

matrix.

Proposition 1. Let S ∈ Cn×n be a nonsingular complex symmetric matrix with Im(S) � 0.

Then, for any real PSD matrix E ∈ Sn+, S + iE is nonsingular.

Proof. Since E is a real PSD matrix, its eigendecomposition gives E =
∑n

`=1 v`v
>
` , where

v` is an eigenvector scaled by the `-th eigenvalue of E. Now, we need to show that S +∑n
`=1 iv`v

>
` is nonsingular. According to Lemma 4, S̃` := S+iv`v

>
` is nonsingular for each

` ∈ {1, · · · , n}. Moreover, S̃` is a complex symmetric matrix with Im(S̃`) � 0. Therefore,

Lemma 4 can be consecutively applied to conclude that S + iE is nonsingular.

Remark 1. The assumption of S being complex symmetric cannot be relaxed. For example,

consider unsymmetric matrix

S =

1 + i
√

2

−
√

2 −1

 , E =

0 0

0 1

 , S + iE =

1 + i
√

2

−
√

2 −1 + i

 .
Then, Im(S) � 0, det(S) = 1 − i, but det(S + iE) = 0. Likewise, the assumption of E

being real PSD cannot be relaxed.

Before proceeding further with the analysis, let us recall the concept of principal sub-

matrix. For A ∈ Cn×n and α ⊆ {1, · · · , n}, the (sub)matrix of entries that lie in the rows

and columns ofA indexed by α is called a principal submatrix ofA and is denoted byA[α].

We also need Lemma 5 about rank principal matrices. In what follows, the direct sum of

two matrices A and B is denoted by A⊕B.
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Lemma 5 (rank principal matrices). Let S ∈ Cn×n and suppose that n > rank(S) = r ≥

1. If S is similar toB⊕0n−r (soB ∈ Cr×ris nonsingular), then S has a nonsingular r-by-r

principal submatrix, that is, S is rank principal.

Proof. See Section A.1.

Now we are ready to state our main matrix perturbation result.

Theorem 1. Suppose A ∈ Sn is a real symmetric matrix, and D ∈ Sn+ and E ∈ Sn+ are

real symmetric PSD matrices. Then rank(A+ iD) ≤ rank(A+ iD + iE).

Proof. Define r := rank(A + iD) and note that if r = 0, i.e., A + iD is the zero matrix,

then the rank inequality holds trivially. If r ≥ 1, the following two cases are possible.

For r = n : in this case S := A + iD is a nonsingular complex symmetric matrix

with Im(S) � 0, and according to Proposition 1, A + iD + iE is also nonsingular, i.e.,

rank(A + iD + iE) = n. Thus, in this case, the rank inequality rank(A + iD) ≤

rank(A+ iD + iE) holds with equality.

For 1 ≤ r < n: sinceA+iD is complex symmetric, using Autonne-Takagi factorization

in Lemma 2, A+ iD = UΣU> for some unitary matrix U and a diagonal real PSD matrix

Σ. Moreover, r = rank(A+ iD) will be equal to the number of positive diagonal entries of

Σ. In this case, A+ iD is unitarily similar to Σ = B⊕0n−r, for some nonsingular diagonal

B ∈ Rr×r. According to Lemma 5, there exists a principal submatrix of A + iD with size

r that is nonsingular, that is, there exists an index set α ⊆ {1, · · · , n} with card(α) = r

such that A[α] + iD[α] is nonsingular. Note that A[α] + iD[α] is also complex symmetric.

Now, using the same index set α of rows and columns, we select the principal submatrix

E[α] of E. Recall that if a matrix is PSD then all its principal submatrices are also PSD.

Therefore, D[α] � 0 and E[α] � 0. Using the same argument as in the previous case of

this proof, we have rank(A[α] + iD[α]) = rank(A[α] + iD[α] + iE[α]) = r. On the one

hand, according to our assumption, we have rank(A + iD) = rank(A[α] + iD[α]) = r.
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On the other hand, we have

rank(A+ iD + iE) ≥ rank(A[α] + iD[α] + iE[α]) = r = rank(A+ iD). (2.11)

Note that the inequality in (2.11) holds because the rank of a principal submatrix is always

less than or equal to the rank of the matrix itself. In other words, by adding more columns

and rows to a (sub)matrix, the existing linearly independent rows and columns will remain

linearly independent. Therefore, the rank inequality rank(A+ iD) ≤ rank(A+ iD+ iE)

also holds in this case.

We now use Theorem 1 to answer the question of how damping affects stability. In

particular, Theorem 2 shows a monotonic effect of damping on system stability. Namely,

when ∇f(x0) is symmetric at an equilibrium point (x0, 0), the set of eigenvalues of the

Jacobian J(x0) that lie on the imaginary axis does not enlarge, as the damping matrix D

becomes more positive semidefinite.

Theorem 2 (Monotonicity of imaginary eigenvalues in response to damping). Consider

the following two systems,

Mẍ+DI ẋ+ f(x) = 0, (System-I)

Mẍ+DII ẋ+ f(x) = 0, (System-II)

where M ∈ Sn is nonsingular and DI , DII ∈ Sn+. Suppose (x0, 0) is an equilibrium point

of the corresponding first-order systems defined in (2.5). Assume L := ∇f(x0) ∈ Sn.

Denote JI , JII as the associated Jacobian matrices at x0 as defined in (2.6). Furthermore,

let CI ⊆ C0 (resp. CII ⊆ C0) be the set of eigenvalues of JI (resp. JII) with a zero real

part, which may be an empty set. Then the sets CI , CII of eigenvalues on the imaginary
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axis satisfy the following monotonicity property,

DII � DI =⇒ CII ⊆ CI . (2.12)

Proof. Recall the Jacobian matrices are defined as

JI =

 0 I

−M−1L −M−1DI

 , JII =

 0 I

−M−1L −M−1DII

 ,
at an equilibrium point (x0, 0). According to Lemma 1, iβ ∈ CI if and only if the quadratic

matrix pencil PI(iβ) := (L− β2M) + iβDI is singular. The same argument holds for CII .

Since JI and JII are real matrices, their complex eigenvalues will always occur in complex

conjugate pairs. Therefore, without loss of generality, we assume β ≥ 0. Note that for any

β ≥ 0 such that iβ /∈ CI the pencil PI(iβ) = (L−β2M) + iβDI is nonsingular. Moreover,

(L−β2M) ∈ Sn is a real symmetric matrix and βDI ∈ Sn+ is a real PSD matrix. According

to Theorem 1,

r = rank(L− β2M + iβDI)

≤ rank(L− β2M + iβDI + iβ(DII −DI))

= rank(L− β2M + iβDII),

consequently, PII(iβ) = L− β2M + iβDII is also nonsingular and iβ /∈ CII . This implies

that CII ⊆ CI and completes the proof.

Remark 2. In the above theorem, the assumption of L = ∇f(x0) being symmetric cannot

be relaxed. For example, consider

f(x1, x2) =

2x1 +
√

2x2

−
√

2x1

 , DI =

1 0

0 0

 , DII =

1 0

0 1

 ,M =

1 0

0 1

 .
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Here, the origin is the equilibrium point of the corresponding first-order systems, and L =

∇f(0, 0) is not symmetric. The set of eigenvalues with zero real part in (System-I) and

(System-II) are CI = ∅ and CII = {±i}. Accordingly, we have DII � DI , but CII 6⊆ CI .

2.4 Impact of Damping on Hyperbolicity and Bifurcation

2.4.1 Necessary and Sufficient Conditions for Breaking Hyperbolicity

We use the notion of observability from control theory to provide a necessary and suffi-

cient condition for breaking the hyperbolicity of equilibrium points in system (2.5) when

the inertia, damping, and Jacobian of f satisfy M ∈ Sn++, D ∈ Sn+,∇f(x0) ∈ Sn++ at

an equilibrium point (x0, 0) (Theorem 3). We further provide a sufficient condition for

the existence of purely imaginary eigenvalues in system (2.5) when M,D,∇f(x0) are not

symmetric (Theorem 4). Such conditions will pave the way for understanding Hopf bifur-

cations in these systems. Observability was first related to stability of second-order system

(2.1) by Skar [58].

Definition 1 (observability). Consider the matrices A ∈ Rm×m and B ∈ Rn×m. The pair

(A,B) is observable if Bx 6= 0 for every right eigenvector x of A, i.e.,

∀λ ∈ C, x ∈ Cm, x 6= 0 s.t. Ax = λx =⇒ Bx 6= 0.

We will show that the hyperbolicity of an equilibrium point (x0, 0) of system (2.5) is

intertwined with the observability of the pair (M−1∇f(x0),M−1D). Our focus will remain

on the role of the damping matrixD ∈ Sn+ in this matter. Note that if the damping matrixD

is nonsingular, the pair (M−1∇f(x0),M−1D) is always observable because the nullspace

of M−1D is trivial. Furthermore, if the damping matrix D is zero, the following lemma

holds.

Lemma 6. In an undamped system (i.e., whenD = 0), for any x ∈ Rn the pair (M−1∇f(x),M−1D)
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can never be observable. Moreover, for any x ∈ Rn

λ ∈ σ(J(x)) ⇐⇒ λ2 ∈ σ(−M−1∇f(x)).

Proof. The first statement is an immediate consequence of Definition 1 and the second one

follows from Lemma 1.

The next theorem yields a necessary and sufficient condition on the damping matrix D

for breaking the hyperbolicity of an equilibrium point.

Theorem 3 (hyperbolicity in second-order systems: symmetric case). Consider the second-

order ODE system (2.1) with inertia matrix M ∈ Sn++ and damping matrix D ∈ Sn+.

Suppose (x0, 0) ∈ Rn+n is an equilibrium point of the corresponding first-order system

(2.5) with the Jacobian matrix J ∈ R2n×2n defined in (2.6) such that L = ∇f(x0) ∈ Sn++.

Then, the equilibrium point (x0, 0) is hyperbolic if and only if the pair (M−1L,M−1D) is

observable.

Proof. According to Lemma 6, if D = 0, the pair (M−1L,M−1D) can never be observ-

able. Moreover,M−1L = M− 1
2 L̂M

1
2 , where L̂ := M− 1

2LM− 1
2 . This implies thatM−1L is

similar to (and consequently has the same eigenvalues as) L̂. Note that L̂ is *-congruent to

L. According to Sylvester’s law of inertia, L̂ and L have the same inertia. Since L ∈ Sn++,

we conclude that L̂ ∈ Sn++. Therefore, the eigenvalues of M−1L are real and positive,

i.e., σ(M−1L) ⊆ R++ = {λ ∈ R : λ > 0}. Meanwhile, when D = 0, we have

µ ∈ σ(J) ⇐⇒ µ2 ∈ σ(−M−1L), hence all eigenvalues of J would have zero real

parts, i.e., σ(J) ⊆ C0, and consequently, the theorem holds trivially. In the sequel, we

assume that D 6= 0.

Necessity: Suppose the pair (M−1L,M−1D) is observable, but assume the equilibrium

point is not hyperbolic, and let us lead this assumption to a contradiction. Since L =

∇f(x0) is nonsingular, Lemma 1 asserts that 0 6∈ σ(J). Therefore, there must exist β > 0

such that iβ ∈ σ(J). By Lemma 1, iβ ∈ σ(J) if and only if the matrix pencil (M−1L +
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iβM−1D − β2I) is singular:

det
(
M− 1

2 (M− 1
2LM− 1

2 + iβM− 1
2DM− 1

2 − β2I)M
1
2

)
= 0,

or equivalently, ∃(x+ iy) 6= 0 such that x, y ∈ Rn and

(M− 1
2LM− 1

2 + iβM− 1
2DM− 1

2 − β2I)(x+ iy) = 0

⇐⇒


(M− 1

2LM− 1
2 − β2I)x− βM− 1

2DM− 1
2y = 0,

(M− 1
2LM− 1

2 − β2I)y + βM− 1
2DM− 1

2x = 0.

(2.13)

Let L̂ := M− 1
2LM− 1

2 , D̂ := M− 1
2DM− 1

2 , and observe that


y>(L̂− β2I)x = y>(βD̂y) = βy>D̂y ≥ 0,

x>(L̂− β2I)y = x>(−βD̂x) = −βx>D̂x ≤ 0,

where we have used the fact that D̂ is *-congruent to D. According to Sylvester’s law

of inertia, D̂ and D have the same inertia. Since D � 0, we conclude that D̂ � 0. As

(L̂ − β2I) is symmetric, we have x>(L̂ − β2I)y = y>(L̂ − β2I)x. Therefore, we must

have x>D̂x = y>D̂y = 0. Since D̂ � 0, we can infer that x ∈ ker(D̂) and y ∈ ker(D̂).

Now considering D̂y = 0 and using the first equation in (2.13) we get

(L̂− β2I)x = 0 ⇐⇒ M− 1
2LM− 1

2x = β2x, (2.14)

multiplying both sides from left by M− 1
2 we get M−1L(M− 1

2x) = β2(M− 1
2x). Thus,

x̂ := M− 1
2x is an eigenvector of M−1L. Moreover, we have

M−1Dx̂ = M−1DM− 1
2x = M− 1

2 (D̂x) = 0,
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which means that the pair (M−1L,M−1D) is not observable; we have arrived at the desired

contradiction.

Sufficiency: Suppose the equilibrium point is hyperbolic, but assume that the pair

(M−1L,M−1D) is not observable; we will show that this assumption leads to a contradic-

tion. According to Definition 1, ∃λ ∈ C, x ∈ Cn, x 6= 0 such that

M−1Lx = λx and M−1Dx = 0. (2.15)

We make the following two observations. Firstly, as it is shown above, we have σ(M−1L) ⊆

R++. Secondly, since L is nonsingular, the eigenvalue λ in (2.15) cannot be zero. Based

on the foregoing two observations, when the pair (M−1L,M−1D) is not observable, there

must exist λ ∈ R+, λ 6= 0 and x ∈ Cn, x 6= 0 such that (2.15) holds. Define ξ =
√
−λ,

which is a purely imaginary number. The quadratic pencil M−1P (ξ) = ξ2I + ξM−1D +

M−1L is singular because M−1P (ξ)x = ξ2x+ ξM−1Dx+M−1Lx = −λx+ 0 +λx = 0.

By Lemma 1, ξ is an eigenvalue of J . Similarly, we can show −ξ is an eigenvalue of J .

Therefore, the equilibrium point is not hyperbolic, which is a desired contradiction.

As mentioned above, if matrix D is nonsingular, the pair (M−1∇f(x0),M−1D) is

always observable. Indeed, if we replace the assumption D ∈ Sn+ with D ∈ Sn++ in

Theorem 3, then the equilibrium point (x0, 0) is not only hyperbolic but also asymptotically

stable. This is proved in Theorem 17 in Section A.2.

Another interesting observation is that when an equilibrium point is hyperbolic, Theo-

rem 3 confirms the monotonic behaviour of damping in Theorem 2. Specifically, suppose

an equilibrium point (x0, 0) is hyperbolic for a value of damping matrix DI ∈ Sn+. Theo-

rem 3 implies that the pair (M−1∇f(x0),M−1DI) is observable. Note that if we change

the damping to DII ∈ Sn+ such that DII � DI , then the pair (M−1∇f(x0),M−1DII) is

also observable. Hence, the equilibrium point (x0, 0) of the new system with damping DII

is also hyperbolic. This is consistent with the monotonic behaviour of damping which is
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proved in Theorem 2.

Under additional assumptions, Theorem 3 can be partially generalized to a sufficient

condition for the breakdown of hyperbolicity when L, M , and D are not symmetric as in

the following

Theorem 4 (hyperbolicity in second-order systems: unsymmetric case). Consider the

second-order ODE system (2.1) with nonsingular inertia matrix M ∈ Rn×n and damping

matrix D ∈ Rn×n. Suppose (x0, 0) ∈ Rn+n is an equilibrium point of the corresponding

first-order system (2.5) with the Jacobian matrix J ∈ R2n×2n defined in (2.6) such that

L = ∇f(x0) ∈ Rn×n. If M−1L has a positive eigenvalue λ with eigenvector x such that

x is in the nullspace of M−1D, then the spectrum of the Jacobian matrix σ(J) contains a

pair of purely imaginary eigenvalues.

Proof. The proof is similar to that of Theorem 3 and is given in Section A.3.

2.4.2 Bifurcation under Damping Variations

In Section 2.4.1, we developed necessary and/or sufficient conditions for breaking the hy-

perbolicity through purely imaginary eigenvalues. Naturally, the next question is: what

are the consequences of breaking the hyperbolicity? To answer this question, consider the

parametric ODE

Mẍ+D(γ)ẋ+ f(x) = 0, (2.16)

which satisfies the same assumptions as (2.1). SupposeD(γ) is a smooth function of γ ∈ R,

and (x0, 0) ∈ Rn+n is a hyperbolic equilibrium point of the corresponding first-order system

at γ = γ1 with the Jacobian matrix J(x, γ) defined as

J(x, γ) =

 0 I

−M−1∇f(x) −M−1D(γ)

 ∈ R2n×2n. (2.17)
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Let us vary γ from γ1 to γ2 and monitor the equilibrium point. There are two ways in which

the hyperbolicity can be broken. Either a simple real eigenvalue approaches zero and we

have 0 ∈ σ(J(x0, γ2)), or a pair of simple complex eigenvalues approaches the imaginary

axis and we have ±iω0 ∈ σ(J(x0, γ2)) for some ω0 > 0. The former corresponds to

a fold bifurcation, while the latter is associated with a Hopf (more accurately, Poincare-

Andronov-Hopf) bifurcation1. The next theorem states the precise conditions for a Hopf

bifurcation to occur in system (2.16).

Theorem 5. Consider the parametric ODE (2.16), with inertia matrix M ∈ Sn++ and

damping matrix D(γ) ∈ Sn+. Suppose D(γ) is a smooth function of γ, (x0, 0) ∈ Rn+n is

an isolated equilibrium point of the corresponding first-order system, and L := ∇f(x0) ∈

Sn++. Assume the following conditions are satisfied:

(i) There exists γ0 ∈ R such that the pair (M−1L,M−1D(γ0)) is not observable, that is,

∃λ ∈ C, v ∈ Cn, v 6= 0 such that

M−1Lv = λv and M−1D(γ0)v = 0. (2.18)

(ii) iω0 is a simple eigenvalue of J(x0, γ0), where ω0 =
√
λ.

(iii) Im(q∗M−1D′(γ0)v) 6= 0, where D′(γ0) is the derivative of D(γ) at γ = γ0, `0 =

(p, q) ∈ Cn+n is a left eigenvector of J(x0, γ0) corresponding to eigenvalue iω0, and

`0 is normalized so that `∗0r0 = 1 where r0 = (v, iω0v).

(iv) det(P (κ)) 6= 0 for all κ ∈ Z \ {−1, 1}, where P (κ) is the quadratic matrix pencil

given by P (κ) := ∇f(x0)− κ2ω2
0M + iκω0D(γ0).

Then, there exists smooth functions γ = γ(ε) and T = T (ε) depending on a parameter ε

with γ(0) = γ0 and T (0) = 2π|ω0|−1 such that there are nonconstant periodic solutions of
1It can be proved that we need more parameters to create extra eigenvalues on the imaginary axis unless

the system has special properties such as symmetry [59].
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(2.16) with period T (ε) which collapses into the equilibrium point (x0, 0) as ε→ 0.

Proof. By Theorem 3, condition (i) implies that the Jacobian matrix (2.17) at (x, γ) =

(x0, γ0) possesses a pair of purely imaginary eigenvalues±iω0, where ω0 =
√
λ. Moreover,

a right eigenvector of iω0 is (v, iω0v), where v is from (2.18). According to condition (ii),

the eigenvalue iω0 is simple. Therefore, according to the eigenvalue perturbation theorem

[60, Theorem 1], for γ in a neighborhood of γ0, the matrix J(x0, γ) has an eigenvalue ξ(γ)

and corresponding right and left eigenvectors r(γ) and `(γ) with `(γ)∗r(γ) = 1 such that

ξ(γ), r(γ), and `(γ) are all analytic functions of γ, satisfying ξ(γ0) = iω0, r(γ0) = r0, and

`(γ0) = `0. Let us differentiate the equation J(x0, γ)r(γ) = ξ(γ)r(γ) and set γ = γ0, to

get

J ′(x0, γ0)r(γ0) + J(x0, γ0)r′(γ0) = ξ′(γ0)r(γ0) + ξ(γ0)r′(γ0). (2.19)

After left multiplication by `∗0, and using `∗0r0 = 1, we obtain the derivative of ξ(γ) at

γ = γ0:

ξ′(γ0) =

[
p∗ q∗

]0 0

0 −M−1D′(γ0)


 v

iω0v

 = −iω0q
∗M−1D′(γ0)v.

Now, Im(q∗M−1D′(γ0)v) 6= 0 in condition (iii) implies that Re(ξ′(γ0)) 6= 0 which is

a necessary condition for Hopf bifurcation. Therefore, the results follow from the Hopf

bifurcation theorem [61, Section 2]. Note that J(x0, γ) is singular if and only if ∇f(x0) is

singular. Thus, nonsingularity of∇f(x0) is necessary for Hopf bifurcation.

If one or more of the listed conditions in Theorem 5 are not satisfied, we may still

have the birth of a periodic orbit but some of the conclusions of the theorem may not hold

true. The bifurcation is then called a degenerate Hopf bifurcation. For instance, if the

transversality condition (iii) is not satisfied, the stability of the equilibrium point may not

change, or multiple periodic orbits may bifurcate [61]. The next theorem describes a safe
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region for damping variations such that fold and Hopf bifurcations will be avoided.

Theorem 6. Consider the parametric ODE (2.16), with a nonsingular inertia matrix M ∈

Rn×n. Suppose the damping matrix D(γ) ∈ Rn×n is a smooth function of γ, (x0, 0) ∈ Rn+n

is a hyperbolic equilibrium point of the corresponding first-order system at γ = γ0, and

L := ∇f(x0) ∈ Rn×n. Then, the following statements hold:

(i) Variation of γ in R will not lead to any fold bifurcation.

(ii) Under the symmetric setting, i.e., when M ∈ Sn++, D(γ) ∈ Sn+, and L ∈ Sn++,

variation of γ in R will not lead to any Hopf bifurcation, as long as D(γ) � D(γ0).

If in addition the equilibrium point is stable, variation of γ in R will not make it

unstable, as long as D(γ) � D(γ0).

Proof. According to Lemma 1, zero is an eigenvalue of J if and only if the matrix L =

∇f(x0) is singular. Therefore, the damping matrix D has no role in the zero eigenvalue of

J . The second statement follows from Theorem 2.

The above theorem can be straightforwardly generalized to bifurcations having higher

codimension.

2.5 Power System Models and Impact of Damping

The Questions (i)-(iii) asked in Section 2.2.1 and the theorems and results discussed in the

previous parts of this chapter arise naturally from the foundations of electric power systems.

These results are useful tools for analyzing the behaviour and maintaining the stability of

power systems. In the rest of this chapter, we focus on power systems to further explore

the role of damping in these systems.

2.5.1 Power System Model

Consider a power system with the set of interconnected generators N = {1, · · · , n}, n ∈

N. Based on the classical small-signal stability assumptions [1], the mathematical model
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for a power system is described by the following second-order system:

mj

ωs
δ̈j(t) +

dj
ωs
δ̇j(t) = Pmj − Pej(δ(t)) ∀j ∈ N . (2.20)

Considering the state space S := {(δ, ω) : δ ∈ Rn, ω ∈ Rn}, the dynamical system

(2.20) can be represented as a system of first-order nonlinear autonomous ODEs, aka swing

equations:

δ̇j(t) = ωj(t) ∀j ∈ N , (2.21a)

mj

ωs
ω̇j(t) +

dj
ωs
ωj(t) = Pmj − Pej(δ(t)) ∀j ∈ N , (2.21b)

where for each generator j ∈ N , Pmj and Pej are mechanical and electrical powers in per

unit, mj is the inertia constant in seconds, dj is the unitless damping coefficient, ωs is the

synchronous angular velocity in electrical radians per seconds, t is the time in seconds, δj(t)

is the rotor electrical angle in radians, and finally ωj(t) is the deviation of the rotor angular

velocity from the synchronous velocity in electrical radians per seconds. For the sake of

simplicity, henceforth we do not explicitly write the dependence of the state variables δ and

ω on time t. The electrical power Pej in (2.21b) can be further spelled out:

Pej(δ) =
n∑
k=1

VjVkYjk cos
(
θjk − δj + δk

)
(2.22)

where Vj is the terminal voltage magnitude of generator j, and Yjk exp (iθjk) is the (j, k)

entry of the reduced admittance matrix, with Yjk ∈ R and θjk ∈ R. The reduced admittance

matrix encodes the underlying graph structure of the power grid, which is assumed to be a

connected graph in this chapter. Note that for each generator j ∈ N , the electrical power

Pej in general is a function of angle variables δk for all k ∈ N . Therefore, the dynamics of

generators are interconnected through the function Pej(δ) in (2.20) and (2.21).

Definition 2 (flow function). The smooth function Pe : Rn → Rn given by δ 7→ Pe(δ) in
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(2.22) is called the flow function.

The smoothness of the flow function (it is C∞ indeed) is a sufficient condition for the

existence and uniqueness of the solution to the ODE (2.21). The flow function is transla-

tionally invariant with respect to the operator δ 7→ δ + α1, where α ∈ R and 1 ∈ Rn is the

vector of all ones. In other words, Pe(δ + α1) = Pe(δ). A common way to deal with this

situation is to define a reference bus and refer all other bus angles to it. This is equivalent

to projecting the original state space S onto a lower dimensional space. We will delve into

this issue in Section 2.5.3.

2.5.2 Jacobian of Swing Equations

Let us take the state variable vector (δ, ω) ∈ R2n into account and note that the Jacobian

of the vector field in (2.21) has the form (2.6) where M = 1
ωs
diag(m1, · · · ,mn) and

D = 1
ωs
diag(d1, · · · , dn). Moreover, f = Pe − Pm and ∇f = ∇Pe(δ) ∈ Rn×n is the

Jacobian of the flow function with the entries:

∂Pej
∂δj

=
∑
k 6=j

VjVkYjk sin
(
θjk − δj + δk

)
,∀j ∈ N

∂Pej
∂δk

= −VjVkYjk sin
(
θjk − δj + δk

)
, ∀j, k ∈ N , k 6= j.

Let L be the set of transmission lines of the reduced power system. We can rewrite

∂Pej/∂δj =
∑n

k=1,k 6=j wjk and ∂Pej/∂δk = −wjk, where

wjk =


VjVkYjk sin

(
ϕjk
)
∀{j, k} ∈ L

0 otherwise,
(2.23)

and ϕjk = θjk − δj + δk. Typically, we have ϕjk ∈ (0, π) for all {j, k} ∈ L [17]. Thus, it

is reasonable to assume that the equilibrium points (δ0, ω0) of the dynamical system (2.21)
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are located in the set Ω defined as

Ω =
{

(δ, ω) ∈ R2n : 0 < θjk − δj + δk < π,∀{j, k} ∈ L, ω = 0
}
.

Under this assumption, the terms wjk > 0 for all transmission lines {j, k} ∈ L. Conse-

quently, ∂Pej/∂δj ≥ 0, ∀j ∈ N and ∂Pej/∂δk ≤ 0,∀j, k ∈ N , k 6= j. Moreover, ∇Pe(δ)

has a zero row sum, i.e., ∇Pe(δ)1 = 0 =⇒ 0 ∈ σ(∇Pe(δ)). Given these properties,

∇Pe(δ0) turns out to be a singular M-matrix for all (δ0, ω0) ∈ Ω [17]. Recall that a ma-

trix A is an M-matrix if the off-diagonal elements of A are nonpositive and the nonzero

eigenvalues of A have positive real parts [62]. Finally, if the power system under study has

a connected underlying undirected graph, the zero eigenvalue of ∇Pe(δ0) will be simple

[17].

In general, the Jacobian ∇Pe(δ) is not symmetric. When the power system is lossless,

i.e., when the transfer conductances of the grid are zero, then θjj = −π
2
,∀j ∈ N and

θjk = π
2
,∀{j, k} ∈ L. In a lossless system, ∇Pe(δ) is symmetric. If in addition an

equilibrium point (δ0, ω0) belongs to the set Ω, then ∇Pe(δ0) ∈ Sn+, because ∇Pe(δ0) is

real symmetric and diagonally dominant [63].

2.5.3 Referenced Power System Model

The translational invariance of the flow function Pe gives rise to a zero eigenvalue in the

spectrum of ∇Pe(δ), and as a consequence, in the spectrum of J(δ). This zero eigenvalue

and the corresponding nullspace pose some difficulties in monitoring the hyperbolicity

of the equilibrium points, specially during Hopf bifurcation analysis. As mentioned in

Section 2.5.1, this situation can be dealt with by defining a reference bus and referring all

other bus angles to it. Although this is a common practice in power system context [1], the

spectral and dynamical relationships between the original system and the referenced system

are not rigorously analyzed in the literature. In this section, we fill this gap to facilitate our
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analysis in the later parts.

Referenced Model

Define ψj := δj − δn,∀j ∈ {1, 2, ..., n − 1} and reformulate the swing equation model

(2.21) into the referenced model

ψ̇j = ωj − ωn ∀j ∈ {1, ..., n− 1}, (2.24a)

ω̇j = − dj
mj

ωj +
ωs
mj

(Pmj − P r
ej

(ψ)) ∀j ∈ {1, ..., n}, (2.24b)

where for all j in {1, ..., n} we have

P r
ej

(ψ) =
n∑
k=1

VjVkYjk cos
(
θjk − ψj + ψk

)
, (2.25)

and ψn ≡ 0. The function P r
e : Rn−1 → Rn given by (2.25) is called the referenced flow

function.

The Relationship

We would like to compare the behaviour of the two dynamical systems (2.21) and (2.24).

Let us define the linear mapping Ψ : Rn×Rn → Rn−1×Rn given by (δ, ω) 7→ (ψ, ω) such

that

Ψ(δ, ω) =
{

(ψ, ω) : ψj := δj − δn,∀j ∈ {1, 2, ..., n− 1}
}
.

This map is obviously smooth but not injective. It can also be written in matrix form

Ψ(δ, ω) =

T1 0

0 In


δ
ω


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where In ∈ Rn×n is the identity matrix, 1 ∈ Rn−1 is the vector of all ones, and

T1 :=

[
In−1 −1

]
∈ R(n−1)×n. (2.26)

The next proposition, which is proved in Section A.4, establishes the relationship be-

tween the original model (2.21) and the referenced model (2.24).

Proposition 2. Let (δ0, ω0) be an equilibrium point of the swing equation (2.21) and

(n−, n0, n+) be the inertia2 of its Jacobian at this equilibrium point. The following two

statements hold:

(i) Ψ(δ0, ω0) is an equilibrium point of the referenced model (2.24).

(ii) (n−, n0 − 1, n+) is the inertia of the Jacobian of (2.24) at Ψ(δ0, ω0).

Remark 3. Note that the equilibrium points of the referenced model (2.24) are in the set

Ẽ =

{
(ψ, ω) ∈ Rn−1 × Rn : ωj = ωn ,∀j ∈ {1, ..., n− 1},

Pmj = P r
ej

(ψ) + djωn/ωs, ∀j ∈ {1, ..., n}
}

where ωn is not necessarily zero. Therefore, the referenced model (2.24) may have extra

equilibrium points which do not correspond to any equilibrium point of the original model

(2.21).

2.5.4 Impact of Damping in Power Systems

The theoretical results in Section 2.3 and Section 2.4 have important applications in electric

power systems. For example, Theorem 2 is directly applicable to lossless power systems,

and provides new insights to improve the situational awareness of power system operators.

Recall that many control actions taken by power system operators are directly or indirectly

2Inertia of a matrix (see e.g. [57] for a definition) should not be confused with the inertia matrix M .
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targeted at changing the effective damping of the system [32, 37, 38]. In this context,

Theorem 2 determines how the system operator should change the damping of the system

in order to avoid breaking the hyperbolicity and escaping dangerous bifurcations.

Now, consider the case where a subset of power system generators have zero damp-

ing coefficients. Such partial damping is possible in practice specially in inverter-based

resources (as damping coefficient corresponds to a controller parameter which can take

zero value). The next theorem and remark follow from Theorem 3, and show how partial

damping could break the hyperbolicity in lossless power systems.

Theorem 7 (purely imaginary eigenvalues in lossless power systems). Consider a lossless

network (2.21) with an equilibrium point (δ0, ω0) ∈ Ω. Suppose all generators have posi-

tive inertia and nonnegative damping coefficients. Then, σ(J(δ0)) contains a pair of purely

imaginary eigenvalues if and only if the pair (M−1∇Pe(δ0),M−1D) is not observable.

Proof. As mentioned above, we always assume the physical network connecting the power

generators is a connected (undirected) graph. Under this assumption, as mentioned in Sec-

tion 2.5.2, matrix L := ∇Pe(δ0) has a simple zero eigenvalue with a right eigenvector

1 ∈ Rn, which is the vector of all ones [17]. Moreover, since the power system is loss-

less and (δ0, ω0) ∈ Ω, we have L ∈ Sn+. If D = 0, the pair (M−1L,M−1D) can never

be observable. Using a similar argument as in the first part in the proof of Theorem 3, it

can be shown that M−1L has a simple zero eigenvalue and the rest of its eigenvalues are

positive, i.e., σ(M−1L) ⊆ R+ = {λ ∈ R : λ ≥ 0}. Meanwhile, when D = 0, we have

µ ∈ σ(J) ⇐⇒ µ2 ∈ σ(−M−1L). Notice that a power grid has at least two nodes, i.e.

n ≥ 2, and hence, M−1L has at least one positive eigenvalue, i.e., ∃λ ∈ R+, λ > 0 such

that λ ∈ σ(M−1L). Hence, µ =
√
−λ is a purely imaginary number and is an eigenvalue

of J . Similarly, we can show that −µ is an eigenvalue of J . Consequently, the theorem

holds in the case of D = 0. In the sequel, we assume that D 6= 0.

Necessity: Assume there exists β > 0 such that iβ ∈ σ(J). We will show that the pair

(M−1L,M−1D) is not observable. By Lemma 1, iβ ∈ σ(J) if and only if the matrix pencil
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(M−1L+ iβM−1D − β2I) is singular:

det
(
M− 1

2 (M− 1
2LM− 1

2 + iβM− 1
2DM− 1

2 − β2I)M
1
2

)
= 0,

or equivalently, ∃(x+ iy) 6= 0 such that x, y ∈ Rn and

(M− 1
2LM− 1

2 + iβM− 1
2DM− 1

2 − β2I)(x+ iy) = 0

⇐⇒


(M− 1

2LM− 1
2 − β2I)x− βM− 1

2DM− 1
2y = 0,

(M− 1
2LM− 1

2 − β2I)y + βM− 1
2DM− 1

2x = 0.

(2.27)

Let L̂ := M− 1
2LM− 1

2 , D̂ := M− 1
2DM− 1

2 , and observe that


y>(L̂− β2I)x = y>(βD̂y) = βy>D̂y ≥ 0,

x>(L̂− β2I)y = x>(−βD̂x) = −βx>D̂x ≤ 0,

where we have used the fact that D̂ is *-congruent to D. According to Sylvester’s law

of inertia, D̂ and D have the same inertia. Since D � 0, we conclude that D̂ � 0. As

(L̂ − β2I) is symmetric, we have x>(L̂ − β2I)y = y>(L̂ − β2I)x. Therefore, we must

have x>D̂x = y>D̂y = 0. Since D̂ � 0, we can infer that x ∈ ker(D̂) and y ∈ ker(D̂).

Now considering D̂y = 0 and using the first equation in (2.27) we get

(L̂− β2I)x = 0 ⇐⇒ M− 1
2LM− 1

2x = β2x, (2.28)

multiplying both sides from left by M− 1
2 we get M−1L(M− 1

2x) = β2(M− 1
2x). Thus,

x̂ := M− 1
2x is an eigenvector of M−1L. Moreover, we have

M−1Dx̂ = M−1DM− 1
2x = M− 1

2 (D̂x) = 0,
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which means that the pair (M−1L,M−1D) is not observable.

Sufficiency: Suppose the pair (M−1L,M−1D) is not observable. We will show that

σ(J) contains a pair of purely imaginary eigenvalues. According to Definition 1, ∃λ ∈

C, x ∈ Cn, x 6= 0 such that

M−1Lx = λx and M−1Dx = 0. (2.29)

We make the following two observations. Firstly, as it is shown above, we have σ(M−1L) ⊆

R+. Secondly, L has a simple zero eigenvalue and a one-dimensional nullspace spanned

by 1 ∈ Rn. We want to emphasize that this zero eigenvalue of L cannot break the ob-

servability of the pair (M−1L,M−1D). Note that ker(L) = ker(M−1L) and M−1L1 = 0

implies that M−1D1 6= 0 because D 6= 0. Based on the foregoing two observations,

when the pair (M−1L,M−1D) is not observable, there must exist λ ∈ R+, λ 6= 0 and

x ∈ Cn, x 6= 0 such that (2.29) holds. Define ξ =
√
−λ, which is a purely imaginary

number. The quadratic pencil M−1P (ξ) = ξ2I + ξM−1D + M−1L is singular because

M−1P (ξ)x = ξ2x + ξM−1Dx + M−1Lx = −λx + 0 + λx = 0. By Lemma 1, ξ is

an eigenvalue of J . Similarly, we can show −ξ is an eigenvalue of J . Therefore, σ(J)

contains the pair of purely imaginary eigenvalues ±ξ.

The following remark illustrates how Theorem 7 can be used in practice to detect and

damp oscillations in power systems.

Remark 4. Consider the assumptions of Theorem 7 and suppose there exists a pair of

purely imaginary eigenvalues ±iβ ∈ σ(J(δ0)) which give rise to Hopf bifurcation and os-

cillatory behaviour of the system. This issue can be detected by observing the osculations

in power system state variables (through phasor measurement units (PMUs) [38]). Ac-

cording to Theorem 7, we conclude that β2 ∈ σ(M−1∇Pe(δ0)). Let X := {x1, ..., xk} be a

set of independent eigenvectors associated with the eigenvalue β2 ∈ σ(M−1∇Pe(δ0)), i.e.,

we assume that the corresponding eigenspace is k-dimensional. According to Theorem 7,
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we have M−1Dx` = 0,∀x` ∈ X , or equivalently, Dx` = 0,∀x` ∈ X . Since D is diagonal,

we have djx`j = 0,∀j ∈ {1, · · · , n},∀x` ∈ X . In order to remove the purely imaginary

eigenvalues, we need to make sure that ∀x` ∈ X ,∃j ∈ {1, · · · , n} such that djx`j 6= 0.

This can be done for each x` ∈ X by choosing a j ∈ {1, · · · , n} such that x`j 6= 0 and

then increase the corresponding damping dj from zero to some positive number, thereby

rendering the pair (M−1∇Pe(δ0),M−1D) observable.

Theorem 7 gives a necessary and sufficient condition for the existence of purely imagi-

nary eigenvalues in a lossless power system with nonnegative damping and positive inertia.

It is instructive to compare it with an earlier result in [63], which shows that when all the

generators in a lossless power system have positive damping dj and positive inertia mj ,

then any equilibrium point in the set Ω is asymptotically stable. This is also proved in

Theorem 17 of Section A.2 for the general second-order model (2.1).

Recall that the simple zero eigenvalue of the Jacobian matrix J(δ0) in model (2.21)

stems from the translational invariance of the flow function defined in Definition 2. As

mentioned earlier, we can eliminate this eigenvalue by choosing a reference bus and refer

all other bus angles to it. According to Proposition 2, aside from the simple zero eigenvalue,

the Jacobians of the original model (2.21) and the referenced model (2.24) have the same

number of eigenvalues with zero real part. Hence, Theorem 7 provides a necessary and

sufficient condition for breaking the hyperbolicity in the referenced lossless power system

model (2.24).

In lossy power systems, matrix∇Pe(δ) may not be symmetric. In this case, Theorem 4

can be used for detecting purely imaginary eigenvalues. Meanwhile, let us discuss some

noteworthy cases in more detail. Theorem 8 asserts that in small lossy power networks with

only one undamped generator, the equilibrium points are always hyperbolic. The proof is

provided in Section A.5.

Theorem 8. Let n ∈ {2, 3} and consider an n-generator system with only one undamped

generator. Suppose (δ0, ω0) ∈ Ω holds, the underlying undirected power network graph is

47



connected, and ∇Pe(δ). Then the Jacobian matrix J(δ0) has no purely imaginary eigen-

values. We allow the network to be lossy, but we assume ∂Pej/∂δk = 0 if and only if

∂Pek/∂δj = 0. The lossless case is a special case of this.

The following counterexample shows that as long as there are two undamped genera-

tors, the Jacobian J(δ) at an equilibrium point may have purely imaginary eigenvalues.

Proposition 3. For any n ≥ 2, consider an (n + 1)-generator system with 2 undamped

generators and the following (n+ 1)-by-(n+ 1) matrices L = ∇Pe(δ0), D, and M :

L =



1 − 1
n
− 1
n
· · · − 1

n

− 1
n

1 − 1
n
· · · − 1

n

...
...

... . . . ...

− 1
n
− 1
n
− 1
n
· · · 1


,

D = diag([0, 0, d3, d4, · · · , dn+1]), M = In+1.

Then ±iβ ∈ σ(J(δ0)), where β2 = 1 + 1
n

.

Proof. Let β2 = 1 + 1
n

and observe that rank(L−β2M) = 1 and rank(βD) = (n+ 1)−

2 = n− 1. The rank-sum inequality [57] implies that

rank(L− β2M − iβD) ≤ rank(L− β2M) + rank(−iβD) = 1 + (n− 1) = n,

that is det
(
L+ iβD − β2M

)
= 0. Now according to Lemma 1, the latter is equivalent to

iβ ∈ σ(J(δ0)). This completes the proof. Also note that the constructed L is not totally

unrealistic for a power system.

2.6 Numerical Results

Two case studies will be presented to illustrate breaking the hyperbolicity and the occur-

rence of Hopf bifurcation under damping variations. Additionally, we adopt the center

48



manifold theorem to determine the stability of bifurcated orbits. Note that using the cen-

ter manifold theorem, a Hopf bifurcation in an n-generator network essentially reduces to

a planar system provided that aside from the two purely imaginary eigenvalues no other

eigenvalues have zero real part at the bifurcation point. Therefore, for the sake of better

illustration we focus on small-scale networks.

2.6.1 Case 1

Consider a 3-generator system with D = diag([γ, γ, 1.5]), M = I3, Y12 = Y13 = 2Y23 = i

p.u., Pm1 = −
√

3 p.u., and Pm2 = Pm3 =
√

3/2 p.u. The load flow problem for this

system has the solution Vj = 1 p.u. ∀j and δ1 = 0, δ2 = δ3 = π/3. Observe that when

γ = 0, the pair (M−1∇Pe(δ0),M−1D) is not observable, and Theorem 7 implies that

the spectrum of the Jacobian matrix σ(J) contains a pair of purely imaginary eigenval-

ues. Moreover, this system satisfies the assumptions of Proposition 3, and consequently,

we have ±i
√

1.5 ∈ σ(J). In order to eliminate the zero eigenvalue (to be able to use the

Hopf bifurcation theorem), we adopt the associated referenced model using the procedure

described in Section 2.5.3. The conditions (i)-(iv) of Theorem 5 are satisfied (specifically,

the transversality condition (iii) holds because Im(q∗M−1D′(γ0)v) = −0.5), and accord-

ingly, a periodic orbit bifurcates at this point. To determine the stability of bifurcated orbit,

we compute the first Lyapunov coefficient l1(0) as described in [59]. If the first Lyapunov

coefficient is negative, the bifurcating limit cycle is stable, and the bifurcation is supercrit-

ical. Otherwise it is unstable and the bifurcation is subcritical. In this example, we get

l1(0) = −1.7 × 10−3 confirming that the type of Hopf bifurcation is supercritical and a

stable limit cycle is born. Figs. (2.1a)-(2.1c) depict these limit cycles when the parameter

γ changes. Moreover, Fig. (2.1d) shows the oscillations observed in the voltage angles and

frequencies when γ = 0.
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(a)
 (b)

 

(c)
 

(d)

Figure 2.1: Occurrence of supercritical Hopf bifurcation in Case 1. (a)-(c) Projection of
limit cycles into different subspaces as the parameter γ changes. (d) Oscillations of the
voltage angles ψ in radians and the angular frequency deviation ω in radians per seconds
when γ = 0. Note that ψ3 ≡ 0.
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2.6.2 Case 2

Next, we explore how damping variations could lead to a Hopf bifurcation in lossy systems.

It is proved in Theorem 8 that a 2-generator system with only one undamped generator

cannot experience a Hopf bifurcation. To complete the discussion, let us consider a fully-

damped (i.e., all generators have nonzero damping) lossy 2-generator system here. Note

also that the discussion about a fully-undamped case is irrelevant (see Lemma 6). Suppose

M = I2, D = diag([γ, 1]), Y12 = −1 + i5.7978 p.u., Pm1 = 6.6991 p.u., and Pm2 =

−4.8593 p.u. The load flow problem for this system has the solution Vj = 1 p.u. ∀j and

δ1 = 1.4905, δ2 = 0. We observe that γ = 0.2 will break the hyperbolicity and lead to

a Hopf bifurcation with the first Lyapunov coefficient l1(0.2) = 1.15. This positive value

for for l1(0.2) confirms that the type of Hopf bifurcation is subcritical and an unstable limit

cycle bifurcates for γ ≥ 0.2. Therefore, the situation can be summarized as follows:

• If γ < 0.2, there exists one unstable equilibrium point.

• If γ = 0.2, a subcritical Hopf bifurcation takes place and a unique small unstable

limit cycle is born.

• If γ > 0.2, there exists a stable equilibrium point surrounded by an unstable limit

cycle.

Figs. (2.2a)-(2.2c) depict the bifurcating unstable limit cycles when the parameter γ

changes in the interval [0.2, 0.35]. This case study sheds lights on an important fact: bi-

furcation can happen even in fully damped systems, provided that the damping matrix D

reaches a critical point (say Dc). When D � Dc, the equilibrium point is unstable. On the

other hand, when D � Dc, the equilibrium point becomes stable but it is still surrounded

by an unstable limit cycle. As we increase the damping parameter, the radius of the limit

cycle increases, and this will enlarge the region of attraction of the equilibrium point. Note

that the region of attraction of the equilibrium point is surrounded by the unstable limit
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(a)

 

(b)

 

(c)
 

(d)

Figure 2.2: Occurrence of subcritical Hopf bifurcation in Case 2. (a) Unstable limit cycles
as the parameter γ changes. (b)-(c) Projection of limit cycles into different subspaces as the
parameter γ changes. (d) The region of attraction of the equilibrium point when γ = 0.25.
The unstable limit cycle is shown in red, while the orbits inside and outside of it are shown
in green and blue, respectively. Note that ψ2 ≡ 0.

cycle. This also confirms the monotonic behaviour of damping proved in Theorem 2. Fig.

(2.2d) shows the region of attraction surrounded by the unstable limit cycle (in red) when

γ = 0.25. In this figure, the green orbits located inside the cycle are spiraling in towards

the equilibrium point while the blue orbits located outside the limit cycle are spiraling out.

Although both supercritical and subcritical Hopf bifurcations lead to the birth of limit

cycles, they have quite different practical consequences. The supercritical Hopf bifurcation

which occurred Section 2.6.1 corresponds to a soft or noncatastrophic stability loss because

a stable equilibrium point is replaced with a stable periodic orbit, and the system remains

in a neighborhood of the equilibrium. In this case, the system operator can take appropriate

measures to bring the system back to the stable equilibrium point. Conversely, the subcrit-

ical Hopf bifurcation in Section 2.6.2 comes with a sharp or catastrophic loss of stability.
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This is because the region of attraction of the equilibrium point (which is bounded by the

unstable limit cycle) shrinks as we decrease the parameter γ and disappears once we hit

γ = 0.2. In this case, the system operator may not be able to bring the system back to the

stable equilibrium point as the operating point may have left the region of attraction.

2.7 Final Remarks

In this chapter, we have presented a comprehensive study on the role of damping in a

large class of dynamical systems, including electric power networks. Paying special at-

tention to partially-damped systems, it is shown that damping plays a monotonic role in

the hyperbolicity of the equilibrium points. We have proved that the hyperbolicity of the

equilibrium points is intertwined with the observability of a pair of matrices, where the

damping matrix is involved. We have also studied the aftermath of hyperbolicity collapse,

and have shown both subcritical and supercritical Hopf bifurcations can occur as damping

changes. It is shown that Hopf bifurcation cannot happen in small power systems with

only one undamped generator. In the process, we have developed auxiliary results by prov-

ing some important spectral properties of the power system Jacobian matrix, establishing

the relationship between a power system model and its referenced counterpart, and finally

addressing a fundamental question from matrix perturbation theory. Among others, the

numerical experiments have illustrated how damping can change the region of attraction

of the equilibrium points. We believe our results are of general interest to the community

of applied dynamical systems, and provide new insights into the interplay of damping and

oscillation in one of the most important engineering system, the electric power systems.
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CHAPTER 3

A STABILITY CERTIFICATE FOR KRON-REDUCED SWING EQUATIONS

In Chapter 2, we studied a large class of second-order differential equations. In this chap-

ter, we study an important example of such second-order differential equations, namely

swing equations. Swing equations are an integral part of a large class of power system

dynamical models used in rotor angle stability assessment. Despite intensive studies, some

fundamental properties of lossy swing equations are still not fully understood.

In this chapter, we develop a sufficient condition for certifying the stability of equilib-

rium points of these equations, and illustrate the effects of damping, inertia, and network

topology on the stability properties of such equilibrium points. The proposed certificate

is suitable for real-time monitoring and fast stability assessment, as it is purely algebraic

and can be evaluated in a parallel manner. Moreover, we provide a novel approach to

quantitatively measure the degree of stability in power grids using the proposed certifi-

cate. Extensive computational experiments are conducted, demonstrating the practicality

and effectiveness of the proposal.

3.1 Introduction

Power system stability has been an important topic in power engineering for many years.

There has been continuing advancement in the understanding of the stability issues of the

system. In the recent decade, the proliferation of renewable energy resources has added

new dimensions to the problem. The uncertainty and volatility of these resources have

brought about significant stochastic transitions from one operating point to another [64],

thereby making the system more prone to instability.

Owing to the complexity and high dimensionality of power systems, several CIGRE

and IEEE Task Forces have classified power system stability into appropriate categories

54



with the aim of facilitating the assessment of the problem [65]. In each category, a set

of simplifying assumptions are made and an appropriate system model with a reasonable

level of details is adopted. One of the most fundamental models used in several categories

of stability (especially rotor angle stability) is the swing equation model. This model de-

scribes the nonlinear relation between the power output and voltage angles of synchronous

generators and can be used to analyze the short term dynamical behaviour of the system.

The application of swing equations is not restricted to the characterization of intercon-

nected synchronous machines. They can also be used to model the behavior of inverter-

based resources, which can be controlled to emulate the behavior of synchronous machines

[9]. Despite such a wide range of applications, some basic questions on the equilibrium

points of swing equations are not fully understood. In particular,

(i) Under what conditions an equilibrium point of swing equations with nontrivial trans-

fer conductance is asymptotically stable?

(ii) What is the relation between the network structure of a power system and the stability

of the equilibrium points of swing equations?

Such challenging questions have perplexed many researchers over the years. In the next

section, we review the parts of the puzzle which have been solved.

3.1.1 Related Work

In [54], the authors extend the lossy swing equation model by considering the dynam-

ics of the excitation system, and ensure the asymptotic stability of the operating points

by designing a nonlinear feedback control for the generator excitation field. In [58], the

local stability of swing equations with nontrivial transfer conductance is examined by lin-

earization and conditions for stability of equilibrium points are established. It is found that

undamped swing equations can be stable only under very special circumstances. Another

set of literature that address similar questions are the recent studies of the synchronization
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of Kuramoto oscillators that are applicable to the stability analysis of lossy swing equations

with strongly overdamped generators [66]. Furthermore, exploring question (ii), the recent

work [67] statistically studies the impact of topology of the network on transient stability.

3.1.2 Main Results

In this chapter, we aim to address questions (i) and (ii), and provide a rigorous analysis

of the stability of equilibrium points in lossy swing equation models. There are two main

contributions in the present chapter.

• We characterize the relationship between the Jacobian of swing equations and the

underlying graph of power grids. Specifically, we associate a weighted graph with

the swing equation model and then mathematically describe the relationship between

the spectrum of the graph Laplacian and the spectrum of the swing equation Jacobian.

• We develop a sufficient condition under which the equilibrium points of lossy swing

equations are stable. In addition to providing new insights into the theory of stability,

the derived conditions are easy to check, use only local information, and are suit-

able for real-time monitoring and fast stability assessment. The proposed stability

certificate can be interpreted as enforcing an upper bound on the matrix norm of the

Laplacian of the underlying graph of the system. We show that the aforementioned

upper bound is proportional to the square of damping and inverse of inertia at each

node of the power grid. These results provide new insights into the way the damping

and inertia at each node of the system would affect the stability of equilibrium points.

We also illustrate how the proposed condition provides a quantitative measure of the

degree of stability in power systems.

3.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 3.2 provides a brief background

on autonomous ordinary differential equations as well as swing equations. In Section 3.3,
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the swing equation model is linearized and the linkage between the Jacobian of swing

equations and the underlying graph of the power grid is established. Section 3.4 is devoted

to the main results on the stability of the swing equation equilibrium points. Section 3.5

further illustrates the developed analytical results through numerical examples, and finally,

the chapter concludes with Section 3.6.

3.2 Background

3.2.1 Autonomous Ordinary Differential Equations

Suppose f : Rn → Rn is a smooth vector field, where the term smooth here means contin-

uously differentiable. An autonomous ODE is an equation of the form

ẋ = f(x), (3.1)

where the dot denotes differentiation with respect to the independent variable t (here a

measure of time), and the dependent variable x is a vector of state variables.

Definition 3 (equilibrium point). Consider ODE (3.1). If f(x0) = 0 for some x0 ∈ Rn,

then x0 is called an equilibrium point.

Let us define the function φ : R × Rn → Rn as follows: for any x ∈ Rn, let t 7→

φ(t, x) be the solution of the ODE (3.1), that is, dφ
dt

(t, x) = f(φ(t, x)),∀t ∈ R. Moreover,

φ(0, x) = x. The smoothness of the vector field f is a sufficient condition for existence

and uniqueness of solution.

Definition 4 (stability). An equilibrium point x0 of the ODE (3.1) is

• stable (in the sense of Lyapunov) if for each ε > 0, there exits a number ξ > 0 such

that ||φ(t, x)− x0|| < ε,∀t ≥ 0 whenever ||x− x0|| < ξ;

• unstable if it not stable;
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• asymptotically stable if it is stable and ξ can be chosen such that limt→∞ ||φ(t, x)−

x0|| = 0 whenever ||x− x0|| < ξ.

Note that the above definitions of stability are not restricted to equilibrium points. They

can also refer to arbitrary solutions of the ODE. See [68, p. 22] for details on different types

of stability and their definitions.

Definition 5 (hyperbolicity). If x0 is an equilibrium point of ODE (3.1) and if the Jacobian

∇f(x0) has all its eigenvalues not on the imaginary axis, then we say that x0 is a hyperbolic

equilibrium point.

Hyperbolicity plays a central role in dynamical system analysis, as it enables us to

understand the nonlinear dynamics of (3.1) through its linearized counterpart

ẋ = ∇f(x0)(x− x0). (3.2)

In particular, the local dynamics at a hyperbolic equilibrium point of (3.1) is topologically

conjugate to the dynamics of the linear system (3.2) by the Hartman–Grobman theorem

[68].

Theorem 9 (Hartman–Grobman). If x0 is a hyperbolic equilibrium point for the ODE (3.1),

then there is an open set U containing x0 and a homeomorphism H with domain U such

that the orbits of the differential equation (3.1) are mapped byH to orbits of the linearized

system (3.2) in the set U .

An interesting feature of hyperbolic equilibrium points is that they are either unstable

or asymptotically stable. Moreover, if x0 is an equilibrium point for the ODE (3.1) and

if all eigenvalues of the linear transformation ∇f(x0) have negative real parts, then x0 is

asymptotically stable. An interested reader is referred to [68] for a more comprehensive

study of ODE and dynamical systems.
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3.2.2 Multi-Machine Swing Equations

Consider a power system with the set of generatorsN = {1, · · · , n}, n ∈ N. As mentioned

in Section 2.5.1, the mathematical model for a power system is described by the following

system of nonlinear autonomous ODEs, aka swing equations:

δ̇i(t) = ωi(t), ∀i ∈ N , (3.3a)

mi

ωs
ω̇i(t) +

di
ωs
ωi(t) = Pmi − Pei(δ(t)), ∀i ∈ N , (3.3b)

where for each generator i ∈ N , Pmi and Pei are respectively the mechanical and electrical

power in per unit, mi is the inertia constant in seconds, di is the unitless damping coeffi-

cient, ωs is the synchronous angular velocity in electrical radians per seconds, t is the time

in seconds, δi(t) is the rotor electrical angle in radians, and finally ωi(t) is the deviation of

the rotor angular velocity from the synchronous velocity in electrical radians per seconds.

Henceforth we do not explicitly write the dependence of the state variables δ and ω on time

t. The electrical power Pei in (3.3b) is given by:

Pei(δ) =
n∑
j=1

ViVjYij cos
(
θij − δi + δj

)
, (3.4)

where Vi is the terminal voltage magnitude of generator i, and Yij]θij is the (i, j) entry of

the reduced admittance matrix.

Recall from Definition 2 in Section 2.5.1 that the function Pe : Rn → Rn given by δ 7→

Pe(δ) in (3.4) is called the flow function. Recall also that we addressed the translational

invariance of the flow function in Section 2.5.3.
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3.3 Linearization and Spectrum of Jacobian

3.3.1 Linearization

The Jacobian of the vector field in (3.3) is given by

J :=

 0 I

−M−1L −M−1D

 ∈ R2n×2n, (3.5)

where I ∈ Rn×n is the identity matrix,M = 1
ωs
diag(m1, · · · ,mn), andD = 1

ωs
diag(d1, · · · , dn).

Moreover, L ∈ Rn×n is the Jacobian of the flow function with the diagonal entries:

Lii =
∂Pei
∂δi

=
∑
j 6=i

ViVjYij sin
(
θij − δi + δj

)
,∀i ∈ N ,

and off-diagonal entries

Lij =
∂Pei
∂δj

= −ViVjYij sin
(
θij − δi + δj

)
,∀i, j ∈ N , j 6= i.

Recall that Lemma 1 illustrated the spectral relationship between J and L via a singu-

larity constraint. Hence, matrix L plays an important role in the stability of equilibrium

points. Next, we look more closely at the spectrum of L.

3.3.2 Graph Induced by L and Its Spectral Properties

The Jacobian L of the flow function encodes the graph structure of the power network.

To see this, we can define a weighted directed graph G = (N ,A,W) where each node

i ∈ N corresponds to a generator and each directed arc (i, j) ∈ A corresponds to the entry

(i, j), i 6= j of the Jacobian matrix L. We further define a weight for each arc (i, j) ∈ A:

wij = ViVjYij sin
(
ϕij
)
, ∀(i, j) ∈ A, (3.6)
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Figure 3.1: Histogram of the distribution of ϕij for all (i, j) in different reduced IEEE
standard test cases.

where ϕij := θij − δi + δj . With the above definitions, we can see that the Jacobian matrix

L of the flow function in (3.5) is indeed the Laplacian of the directed graph G defined

as L = D+(G) − A(G), where D+(G) is a diagonal matrix with the i-th diagonal entry

being the sum of all the weights of the out-going arcs incident to node i, and A(G) is the

adjacency matrix of G. Later, in Section 5.3.3, we will discuss the digraph induced by L in

more details.

In general, the arc weights wij can be positive or negative, and matrix L is not necessar-

ily symmetric. In practice, however, wij varies in a small positive range. Fig. 3.1 illustrates

the histogram of the angle ϕij for all (i, j) in different reduced IEEE standard test cases,

where the load flow solution is provided by MATPOWER [69]. Accordingly, ϕij ∈ (0, π)

in all of these cases. We make the following reasonable assumption that the equilibrium

points of swing equations (3.3) are located in the set Ω defined as

Ω =
{

(δ, ω) ∈ R2n : 0 < ϕij < π,∀(i, j) ∈ A, ω = 0
}
.

Proposition 4. Let (δ∗, ω∗) ∈ Ω be an equilibrium point of swing equations (3.3). The

Jacobian matrix L at this point is a singular M-matrix. In particular, L has the following

properties:

(i) L = λ0I − B for some nonnegative matrix B (i.e., bij ≥ 0,∀i, j) and some λ0 ≥ ρ,
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where ρ is a maximal (non-negative) eigenvalue of B.

(ii) All principal minors of L are non-negative.

(iii) L has at least one zero eigenvalue, 1 is an eigenvector, and the real part of each

non-zero eigenvalue of L is positive.

Proof. When (δ∗, ω∗) ∈ Ω, we have ∂Pei
∂δi
≥ 0, ∀i ∈ N and ∂Pei

∂δj
≤ 0, ∀(i, j) ∈ A, i 6= j.

Since L has zero row sum, we have L1 = 0 =⇒ 0 ∈ σ(L). Furthermore, the sum of the

absolute values of the nondiagonal entries in the i-th row of L is equal to Lii, that is

Lii =
∑
j 6=i

|Lij| ∀i ∈ N . (3.7)

Let D(Lii) be a closed disc centered at Lii with radius Lii. According to the Gershgorin

circle theorem, every eigenvalue of L lies within at least one of the Gershgorin discs D(Lii),

which are located on the right half plane. This shows (iii). The equivalence of (iii) with (i)

and (ii) is a fundamental property of M-matrices [62].

We will use property (iii) of matrix L shown in the above proposition later to prove our

main result in the next section.

3.4 Sufficient Condition for the Stability of Swing Equations: A Fast Certificate

In this section, we present our main result on the stability of the swing equation equilibrium

points.

Theorem 10. Let (δ∗, ω∗) ∈ Ω be an equilibrium point of swing equations (3.3). Suppose

all generators have positive damping coefficient and inertia, and the underlying undirected

graph of the power grid is connected. If condition

∑
j 6=i

ViVjYij sin
(
θij − δ∗i + δ∗j

)
≤ d2

i

2mi

, ∀i ∈ N (3.8)
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holds, then the equilibrium point is asymptotically stable.

The proof of Theorem 10 is given in Appendix B.1.

Remark 5. Condition (3.8) provides a practical and efficient way to certify the small-signal

stability of the equilibrium points. The left-hand side of condition (3.8) is closely related

to the reactive power output of a generator. Note that at an equilibrium point the reactive

power injected from bus i into the network is Qi = −∑n
j=1 ViVjYij sin(θij − δ∗i + δ∗j ). In-

tuitively, when a generator is supplying more reactive power, the left-hand side of condition

(3.8) decreases, and this helps make condition (3.8) satisfied. This interpretation will be

further discussed in Chapter 5.

It is worth mentioning that in [70], small-signal stability of lossless swing equations is

studied. It is shown that if (δ∗, ω∗) ∈ Ω is an equilibrium point, then the equilibrium point

is locally asymptotically stable. Theorem 10 is a generalization of such results to lossy

swing equations. Contrary to the lossless case, we will show in the next section that an

equilibrium point in lossy networks could be unstable even if it belongs to the set Ω.

3.5 Numerical Results

In this section, we test the practicality of the assumptions on which Theorem 10 is based.

We also show how conservative condition (3.8) is, and how it can be used not only as a fast

stability certificate, but also as a quantitative measure of the degree of stability.

Table 3.1 provides the details of testing Theorem 10 and condition (3.8) on different

IEEE standard test systems [69]. All these systems have a connected underlying graph and

nonzero transfer conductances. The second column of Table 3.1 shows the domain of ϕij

in these test cases. Recall that ϕij = θij − δi + δj is the argument of the sin function, and

having ϕij ∈ (0, π) ensures that an equilibrium point (δ∗, ω∗) belongs to the set Ω. As can

be seen, this property holds in all test cases of Table 3.1, and therefore, the assumptions of

Theorem 10 hold in a wide variety of practical power systems.
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Table 3.1: Illustration of the proposed stability certificate in Theorem 10

Test case Dom(ϕij/π) Dom(Si) |<(λ2)|
IEEE 9-bus [0.48, 0.52] [− 0.79,−0.22] 3.18
IEEE 14-bus [0.43, 0.66] [− 5.08,−0.03] 2.17
IEEE 30-bus [0.36, 0.66] [− 12.26,−0.51] 0.75
IEEE 39-bus [0.37, 0.62] [− 7.73,−0.12] 4.95
IEEE 89-bus [0.45, 0.59] [− 143.75, 1166.9] 4.15

IEEE 89-bus mod. [0.25, 0.97] [− 280.19,−0.49] 4.14
IEEE 118-bus [0.42, 0.63] [− 241.73,−0.21] 0.11
IEEE 300-bus [0.30, 0.72] [− 266.99,−3.04] 0.15

Next, let us define

Si :=
∑
j 6=i

ViVjYij sin
(
θij − δ∗i + δ∗j

)
− d2

i

2mi

,

and recall that according to condition (3.8) in Theorem 10, if Si ≤ 0,∀i ∈ N , then the

equilibrium point of swing equations is asymptotically stable. The third column of Table

3.1 provides the domain of Si, i.e., [mini Si,maxi Si]. Accordingly, Si ≤ 0 holds for all

test cases, except the IEEE 89-bus system. Note that the corresponding equilibrium points

in these systems are all stable. While the evaluation of condition (3.8) confirms the stability

of equilibrium points in all other cases, it gives an inconclusive answer in the IEEE 89-bus

case. However, here we show how condition (3.8) can be used as a quantitative measure

of the degree of stability. The positive values of Si in the IEEE 89-bus system pertain to

the bus numbers 6233, 6798, 7960, and 9239, indicating that the stability of the system

can be improved by making Si negative in these buses via appropriate corrective actions.

Exploring the structure of the system reveals that each of these buses is connected to the

rest of the grid through a line with a relatively small resistance. As a corrective action, we

change these resistances as follows: r(659, 9239) = 6×10−5 → 0.5×10−3, r(659, 7960) =

6 × 10−5 → 1 × 10−3, r(659, 6233) = 6 × 10−5 → 2 × 10−3, and r(659, 6798) =

7× 10−5 → 1.5× 10−3, where all the values are in p.u. With this corrective action (which

can be implemented through flexible AC transmission system (FACTS) devices), we will
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Figure 3.2: Spectrum of J in the IEEE 89-bus system.

Table 3.2: Dynamic parameters and converged load flow data of the 3-bus test system.

i mi [sec.] di Pmi [p.u.] Vi [p.u.] δ∗i [rad] Si
1 6.1 1.5 0.89 0.9 −0.30 6.98
2 10 1 15.06 0.9 0.36 12.73
3 4.5 1.8 2.53 0.913 −0.12 8.91

have Si ≤ 0,∀i ∈ N and condition (3.8) will hold true, certifying the stability of the system

(see the test case IEEE 89-bus mod. in Table 3.1). Fig. 3.2 depicts the spectrum of J in the

IEEE 89-bus system before and after implementing the corrective actions. As can be seen,

the magnitude of the imaginary parts of the eigenvalues in σ(J) is reduced, and their real

parts are mainly moved towards −∞, thereby making the modified system less oscillatory.

Evidently, condition (3.8) increased the stability margins of the system. Finally, λ2 ∈ σ(J)

denotes the closest nonzero eigenvalue of J to the imaginary axis, and the fourth column

of Table 3.1 depicts this value in different cases. Note that the proposed stability certificate

can be fully parallelized, thereby making it even more reliable and resilient for real-time

applications.

Next, we provide an example of an unstable equilibrium point and show how enforcing

condition (3.8) will make the equilibrium point stable. Consider the 3-bus system in Fig.

3.3 whose dynamic parameters and converged load flow data are provided in Table 3.2. As

can be observed from the last column of Table 3.2, we have Si ≥ 0,∀i ∈ N , i.e., condition

(3.8) is violated in all buses of this system, indicating that the system does not have suf-

ficient stability margins. The instability of this equilibrium point can be verified through

eigenvalue analysis and time domain simulation, as depicted in Fig. 3.4. In order to achieve
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y11 = 6.98 + i43.95
1 y12 = 0.22− i7.84 2

y22 = 9.89 + i34.26

y13 = 17.78− i6.11

y33 = 3.33 + i27.53 3

y23 = 7.87− i6.41

Figure 3.3: Schematic diagram of the 3-bus test system.

 

(a) Eigenvalues of matrix J .
 

(b) Trajectories of the system.

Figure 3.4: Instability of the equilibrium point in the 3-bus test system. (a) There exist two
eigenvalues with positive real part. (b) Starting from a neighborhood of the equilibrium
point, the trajectories become unbounded.

stability, the power system operator can enforce condition (3.8) either by moving the cur-

rent equilibrium point to a new point (e.g., through adding constraint (3.8) to the optimal

power flow problem) or by making the current equilibrium point stable through adjusting

the right-hand side of condition (3.8). Particularly, the latter is possible if we have inverter-

based resources where the inertia mi and damping di are adjustable parameters of their

controllers. In this case, by setting M = diag(0.9, 0.9, 0.9) and D = diag(4.5, 4.9, 4.8),

we would have S1 = −4.08, S2 = −0.55, and S3 = −3.52, thereby certifying the stability

of the system.

We conclude our numerical experiments by further illustrating the effect of condition

(3.8) on the spectrum of matrix J . We have varied the operating point and parameters

(inertia and damping) of the IEEE 9-bus system, and for each operating point or parameter

value we have recorded λ2 as well as mini Si. Fig. 3.5 shows the relationship between λ2
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Figure 3.5: Real part of the closest nonzero eigenvalue of J to the imaginary axis as a
function of mini Si in the IEEE 9-bus system.

and mini Si as the system operating point and parameters change. Accordingly, a smaller

mini Si yields a farther λ2 from the imaginary axis.

3.6 Final Remarks

This chapter is aimed at finding a computationally efficient way to certify the stability of

power system equilibrium points. We have shown if the matrix norm of the Laplacian of the

underlying graph is upper bounded by a specific value, then the equilibrium point is stable.

The aforementioned upper bound is proportional to the square of damping and inverse of

inertia at each node of the power grid. This fact also sheds light on the interplay of inertia,

damping, and graph of the system, and provides profound insights into how power system

should be designed and operated to be stable. A worthwhile direction for future research

would be extending condition (3.8) as a function of network connectivity measure.
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CHAPTER 4

A STABILITY CERTIFICATE FOR STRUCTURE-PRESERVING SWING

EQUATIONS

In Chapter 3, we studied the stability of equilibrium points of swing equations in Kron-

reduced networks. During the Kron reduction process, loads are considered constant impedances

and reflected into the nodal admittance matrix which will be further reduced to a smaller

matrix representing a reduced network of generator buses. The procedure of network re-

duction for eliminating the load buses will close our eyes on the relations between the

structure of the underlying physical network and the stability properties of the system.

In 1981, Bergen and Hill introduced their well-known structure-preserving model [28]

for the swing equation. The main assumption of this model is to use a frequency-dependent

model for loads. In this chapter, we base our stability analyses upon this structure-preserving

model. This model leads to more realistic analyses, and since its introduction, many re-

searchers have based their investigations upon it. Specifically, we develop a stability cer-

tificate for structure-preserving swing equations. To develop the certificate, we use singular

perturbation techniques and Tikhonov’s theorem [29], and in the process, we establish the

relationship between the structure-preserving model and its singular perturbation counter-

part.

Moreover, we propose a fully distributed control scheme which uses only local mea-

surements and its computational cost does not increase with the size of the system. The

validity of our findings and the effectiveness of the control scheme are numerically il-

lustrated on the WSCC system. Later, in Section 5.4.3, we will revisit the stability of

structure-preserving models from a graph-theoretic perspective.
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4.1 Introduction

The rapid growth of renewable energy sources, open access transmission, intensifying com-

petition in electricity markets, and aging transmission infrastructure are reshaping the op-

eration of power systems in new ways that raise unprecedented challenges to the stability

of the power grid. Mitigating power system instability would be a real challenge for power

system operators. The advent of wide area measurement system could pave the way for

improving the situational awareness of system operators and set the stage for new ways

of stability assessment in power systems. Nonetheless, there is an urgent need for de-

veloping novel methods that combine the classical model-based approaches with the new

measurement-based ones in order to achieve faster stability monitoring and assessment.

This chapter is motivated by this urgent need and aims to develop a fully distributed con-

trol scheme for the small-signal stability of the structure-preserving swing equation model

of power systems.

4.1.1 Related Work

Broadly speaking, the vast literature on power system stability can be classified based on

two modeling assumptions. The first and the more classical one assumes the stability model

under study is fully known, whereas the second stream of research is model-free and adopts

synchronized wide-area measurements in order to monitor and address the stability prob-

lem [71], [72]. In this measurement-based approach, the underlying model of the system

is not necessarily known. Our work in the present chapter is an attempt to combine the

measurement-based and model-based approaches with the aim of achieving faster stability

assessment.

Considering the model-based approach, the classical model for rotor angle stability

analysis is the swing equation [17]. This model is based on representing loads as constant

impedances, and then incorporating load impedances into the nodal admittance matrix for
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a reduced network with only generator buses. Much effort has been devoted to understand-

ing the stability properties of this network-reduced model, e.g. studying its small-signal

stability [17], hyperbolicity and bifurcation [73], phase portrait [3], constructing energy

functions and Lyapunov functions [74], and using direct methods [4].

Among the various simplifying assumptions applied to the swing equation [1], ignoring

the transfer conductance of the transmission lines and load dynamics are the most unrealis-

tic ones. In 1981, Bergen and Hill introduced their well-known structure-preserving model

[28] for the swing equation. The main assumption of this model is to use a frequency-

dependent model for loads. In the present chapter, we base our stability analyses upon this

structure-preserving model. The structure-preserving model leads to more realistic anal-

yses, and since its introduction, many researchers have based their investigations upon it.

For instance, in [75], Dorfler et al. show that locally near the synchronization manifold,

the phase and frequency dynamics of the Bergen and Hill network-preserving model are

topologically conjugate to the phase dynamics of a nonuniform Kuramoto model together

with decoupled and stable frequency dynamics. In [76], the transient stability problem in a

structure-preserving model is addressed using the quadratic Lyapunov functions approach.

The use of a network-preserving model enables us to study the impact of network topol-

ogy and system parameters on the system stability. In this regard, a related study is [37],

where the classical network-reduced swing equation model is used to examine how the net-

work topology (i.e., the reduced fictitious network) will affect the system transfer function.

In this chapter, we tackle the small-signal stability problem in network-preserving mod-

els. Recall that small-signal stability concerns with the ability of a power system to main-

tain generator phase synchronism under small disturbances [65]. There is a large body

of work on the model-based small-signal stability assessment [77, 78, 79, 80, 58]. For

instance, [77] proposes a method to damp inter-area oscillations using system loads, and

[78] examines the role of wind turbine integration in these inter-area oscillations. In [80],

small-signal stability of power systems is investigated based on matrix pencils and the
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generalized eigenvalue problem. The paper compares different formulations and the state-

of-the-art solvers. Finally, in [58] it is shown that unstable equilibrium solutions for swing

equations may exist even though the rotor angles are less than π/2 out of phase.

4.1.2 Main Results

In this chapter, we combine the measurement-based and model-based approaches to de-

velop a condition that certifies the small-signal stability of a structure-preserving swing

equation model. The proposed certificate is a practical alternative to the eigenvalue computation-

based methods, which can be quite computationally cumbersome for large-scale systems.

We also introduce a control scheme for improving the system small-signal stability.

The proposed control and assessment schemes can be implemented in a completely

distributed fashion and do not require any information exchange between the neighboring

generators and areas. This property makes them particularly suitable for fast assessment

in large-scale power systems and when proprietary information from neighboring areas or

power plants cannot be shared.

In the process, we investigate the impact of network topology and system parameters

(generator’s inertia and damping) on the stability of the system. We introduce an stability

index which provides a quantitative measure of the degree of stability.

We make use of singular perturbation techniques to establish the relationship between a

structure-preserving model and its singular perturbation counterpart. Specifically, we show

(under specific conditions) the stability properties of the structure-preserving model are the

same as those of its singular perturbation counterpart. Therefore, the singular perturbation

counterpart can be used for small-signal analysis instead of the the structure-preserving

model, and this will facilitate our analysis.
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4.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 4.2 introduces the structure-

preserving model as well as its singular perturbation counterpart. The main results of this

chapter are presented in Section 4.3. Section 4.4 further exhibits the validity and conser-

vativeness of the proposed stability certificate. Finally, the chapter concludes with Section

4.5.

4.2 Structure-Preserving and Singular Perturbation Power System Models

The classical swing equation model discussed in Section 2.5.1 is based on a set of sim-

plifying assumptions (see [1] for the details of the assumptions) out of which ignoring the

transfer conductances is the most unrealistic one. This issue stems from the fact that the

loads are considered constant impedances and reflected into the nodal admittance matrix

which will be further reduced to a smaller matrix representing a reduced network of gen-

erator buses. Ignoring the real part of this reduced admittance matrix seems, therefore,

unreasonable since this real part is not only representing the resistive part of the trans-

mission lines, but also the active power consumption of the system. Aside from this, the

procedure of network reduction for eliminating the load buses will close our eyes on the

relations between the structure of the underlying network and the stability properties of the

system. With these in mind, the small-signal stability analysis in this chapter is based on

the standard structure-preserving model [28]. This model incorporates the nonlinear swing

equation dynamics of generators as well as the frequency-dependent dynamics of loads.

The model also preserves the original network topology (rather than undergoing the usual

Kron reduction). We will exploit this preservation of topology later to analyze the effect of

network topology on the stability of the system.
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4.2.1 Structure-Preserving Model

Since generators are connected to the network through transient reactances, it is conve-

nient to introduce fictitious buses representing the internal generator voltages, and further

consider the transient reactances to be a transmission line. In the sequel, we assume that

this transformation has been done, and therefore, the buses of the network can be catego-

rize into generator buses (internal generator buses) and load buses. Moreover, with this

transformation, no load is connected to generator buses and vice versa.

Consider an n-bus power system for some n ∈ N with the set of transmission lines E .

Let G = {1, · · · , n0} be the set of generator buses, and L = {n0 + 1, · · · , n} be the set

of load buses. Based on the classical small-signal stability assumptions [28], the structure-

preserving model of this power system is

miδ̈i + diδ̇i = Pmi − Pei ∀i ∈ G, (4.1a)

diδ̇i = −Pdi − Pei ∀i ∈ L, (4.1b)

where (4.1a) and (4.1b) characterize the the dynamics of generator buses and load buses,

respectively. In these equations, δi is the bus voltage angle in radians. For each generator

bus i ∈ G, Pmi is the mechanical power in per unit. Moreover, mi = Mi

ωs
and di = Di

ωs
,

where Mi > 0 is the inertia constant in seconds, Di > 0 is the unitless damping coefficient,

and ωs is the synchronous angular velocity in electrical radians per seconds.

For each load bus i ∈ L, di > 0 is the frequency-dependence coefficient and Pdi is the

load value in per unit at the current operating point.

In general, the real power drawn by load i ∈ L is a nonlinear function of voltage

and frequency. Under small-signal stability assumptions, voltages are constant, and for

small frequency variations around an operating point Pdi , it is reasonable to consider the
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frequency-dependent load model

−Pei = Pdi + diδ̇i ∀i ∈ L. (4.2)

This load model describes the dynamics at load buses in (4.1b). Note that as di → 0

in (4.2), we approach a constant-power load model. In (4.1) and (4.2), Pei is the active

electrical power injected from bus i into the network, and is given by

Pei =
n∑
j=1

ViVjYij cos
(
θij − δi + δj

)
, (4.3)

where Vi represents the voltage magnitude of the ith bus which is assumed to be constant,

and Yij∠θij is the (i, j)th entry of the nodal admittance matrix.

4.2.2 Equilibrium Points

The state of system (4.1) is characterized by the vector x = (δ1, · · · , δn, δ̇1, · · · , δ̇n0)
>.

An equilibrium point of system (4.1) is a state x∗ such that if the system reaches x∗, it

will stay there permanently. Particularly, in (4.1), an equilibrium point x∗ is of the form

x∗ = (δ∗1, · · · , δ∗n, 0, · · · , 0)>. Indeed, the generator frequency deviations are zero, i.e.,

δ̇∗i = 0,∀i ∈ G, and the set of bus angles δ∗i ,∀i ∈ G
⋃L is a solution to the following

system of active power flow equations

Pmi =
n∑
j=1

ViVjYij cos
(
θij − δ∗i + δ∗j

)
∀i ∈ G,

−Pdi =
n∑
j=1

ViVjYij cos
(
θij − δ∗i + δ∗j

)
∀i ∈ L.

Recall from Section 2.5.3, that solution of the above active power flow equations is

not unique since any shift c in the bus angles, i.e., δ∗i + c,∀i ∈ G⋃L is also a solution.

However, this translational invariance can be dealt with by defining a reference bus and
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referring all other bus angles to it.

Assumption 1. An equilibrium point of system (4.1) satisfies the condition 0 < (θij − δ∗i +

δ∗j ) < π for all transmission lines (i, j) ∈ E .

Recall that this is a reasonable assumption since the entries of the admittance matrix,

i.e., Yij∠θij satisfy π
2
≤ θij < π, ∀(i, j) ∈ E . In lossless networks, we have θij = π

2
, and

thus Assumption 1 translates to |δ∗i − δ∗j | < π
2
. More generally, the X/R ratio, i.e., the ratio

of the line reactance to the line resistance is significantly above unity in lossy transmission

networks. Therefore, θij is close to π
2
, and Assumption 1 translates to |δ∗i − δ∗j | < γ < π

2
,

for some number γ close to π
2
.

4.2.3 Singular Perturbation Model

To facilitate the analysis, we study the singular perturbation model of dynamical system

(4.1):

miδ̈i + diδ̇i = Pmi − Pei ∀i ∈ G, (4.4a)

εδ̈i + diδ̇i = −Pdi − Pei ∀i ∈ L, (4.4b)

where the variables δ̈i,∀i ∈ L are multiplied by a small positive parameter ε. Note that

by setting ε = 0 we will return to the original unperturbed model (4.1). The main moti-

vation for working with the singular perturbation model (4.4) in this chapter is that it will

pave the way for developing a stability certificate for the equilibrium points. Naturally,

it is important to find the relationship between this auxiliary model (4.4) and the original

structure-preserving model (4.1). If the two models have the same stability properties, then

it is reasonable to work with the model that is easier to analyze. We will see if this is the

case in the next section.

Note that, the form of the equilibrium points of the singular perturbation system (4.4)

is similar to those of system (4.1), discussed in Section 4.2.2. Likewise, Assumption 1 can
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be applied to system (4.4).

4.3 Stability Certificate in Structure-Preserving and Singular Perturbation Models

Three questions naturally arise regarding the equilibrium points of systems (4.1) and (4.4):

Q1 Which equilibrium points are stable?

Q2 What is the relationship between the stability of an equilibrium point and the parame-

ters (e.g., damping, inertia, network topology, etc.) of the system?

Q3 What is the relationship between the stability of system (4.1) and its singular perturba-

tion counterpart (4.4)?

In Chapter 3, we answered Q1 and Q2 for Kron-reduced swing equations. Now, our

goal is to address these questions for structure-preserving swing equations. Obviously, Q1

can be addressed by finding the eigenvalues of the Jacobian matrix associated with the first-

order representation of the system (see (C.1) and (C.2) in Appendix C.1 for more details).

Another possibility is to numerically construct a Lyapunov function for this system using

semidefinite programming techniques. Clearly, both of these ways are computationally

expensive and not applicable to realistic large-scale systems. Corollary 1 provides a com-

putationally tractable condition to certify the stability of an equilibrium point, therefore,

provides an answer to Q1 and Q2.

Corollary 1. Consider the singular perturbation model (4.4) with an equilibrium point

x∗ that satisfies Assumption 1. Moreover, suppose the underlying undirected graph of the

power grid is connected. If the condition

−Qi − V 2
i Bii ≤

d2
i

2mi

∀i ∈ G, (4.5)

is satisfied, then the equilibrium point is locally asymptotically stable. In (4.5), Qi denotes
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the reactive power injected from bus i into the network, given by

Qi = −
n∑
j=1

ViVjYij sin
(
θij − δ∗i + δ∗j

)
.

Furthermore, Bii is the imaginary part of the ith diagonal element of the bus admittance

matrix.

Proof. The proof follows from Theorem 10, and is outlined in Appendix C.1.

Next, Theorem 11 answers Q3. This theorem justifies the use of singular perturbation

for stability analysis. Recall that an equilibrium point is hyperbolic, if the Jacobian of the

corresponding first-order system has no eigenvalues on the imaginary axis.

Theorem 11. Consider the structure-preserving model (4.1) and its singular perturbation

counterpart (4.4). The following statements hold:

(i) If x∗ is an exponentially stable equilibrium point of the unperturbed model (4.1), then

the corresponding equilibrium point of the singular perturbation model (4.4) is also

exponentially stable, for sufficiently small ε.

(ii) Suppose for every sufficiently small ε, y∗ is an asymptotically stable equilibrium point

of the singular perturbation model (4.4). If x∗ is a corresponding hyperbolic equilib-

rium point of the unperturbed model (4.1), then x∗ is also asymptotically stable.

We outline the proof of the above theorem in Appendix C.1. For detailed definitions

of the terms used above, see [68]. Roughly speaking, Theorem 11 states that under certain

conditions (i.e., if the equilibrium points of systems (4.1) and (4.4) are hyperbolic for any

small ε), then the stability properties of an equilibrium point of system (4.1) is the same

as those of system (4.4). Therefore, we can confidently use the results of Corollary 1,

as the stability certificate in this theorem will also guarantee the stability of the original

structure-preserving system (4.1).
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4.3.1 Fast and Distributed Scheme for Stability Assessment

The proposed control scheme is based on Corollary 1. Specifically, condition (4.5) offers

a distributed control rule instructing how to change the operating point and parameters of

the system in order to move towards stability. For our purposes, it is convenient to reorder

the terms in (4.5) and define the stability index

Si := −Qi − V 2
i Bii −

d2
i

2mi

∀i ∈ G. (4.6)

The proposed scheme works as follows: Using local measurements of reactive power Qi

and voltage Vi, each generator computes the value of Si for itself. If each generator makes

sure its Si is nonpositive, then the small-signal stability of the entire system is guaranteed.

Note that the proposed scheme is totally distributed and does not need any information

from the neighboring generators. This property makes it suitable for fast small-signal sta-

bility assessment in large-scale power systems. We will show in Section 4.4.3 that Si can

be used as an stability index, that is, as Si moves towards−∞, the system roughly speaking

becomes more stable (the real part of eigenvalues of the system moves towards −∞).

A more conservative stability certificate will also be presented in the next section in

Corollary 2. According to this corollary, the small-signal stability can be certified based

only on the local network topology information. This criterion is useful for topology design

and planning problems, where system operators only have limited information about the

operating point of the system.

4.3.2 Remarks on Corollary 1

First and foremost, condition (4.5) in Corollary 1 revolves only around the generator buses,

confirming that small-signal stability is concerned with the rotor angle stability of the gen-

erators.

The variable Qi in (4.5) is the net reactive power injected from bus i into the network,
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that is, if the generator at bus i is supplying reactive power, then Qi > 0. Otherwise, if

it is consuming reactive power, then Qi < 0. Intuitively, when the generator at bus i is a

supplier of reactive power, the first term on the left-hand side of (4.5) is negative, and this

situation will help condition (4.5) hold, thereby improving the stability of the system.

Recall that Yii∠θii = Gii + iBii =
∑n

j=1 yij , where yij = gij + ibij is the admittance

of line (i, j), with gij ≥ 0 and bij ≤ 0. Therefore, Bii ≤ 0, and the second term on the

left-hand side of (4.5) is always positive. Here, it is assumed that yii, i.e., the admittance-

to-ground at bus i is negligible. Otherwise, we may have Bii > 0, and the second term on

the left-hand side of (4.5) could be negative.

Condition (4.5) enforces an upper bound which is proportional to the square of damping

and inverse of inertia. This is consistent with the intuition that if we increase the damping,

the stability margin of the system will increase. However, it is not intuitive (could be a

paradox) that decreasing the inertia of a generator will increase the stability margin.

By adding more transmission lines to the system, |Bii| will increase, and this in turn

could increase the left-hand side of (4.5) and lead to instability. This can be called the

Braess’s Paradox [30] in power system stability. The next corollary will further illustrate

this stability paradox.

Corollary 2. Consider the singular perturbation model (4.4) with an equilibrium point

x∗ that satisfies Assumption 1. Moreover, suppose the underlying undirected graph of the

power grid is connected. If the condition

n∑
j=1,j 6=i

ViVjYij ≤
d2
i

2mi

, ∀i ∈ G (4.7)

is satisfied, then the equilibrium point is locally asymptotically stable.

This corollary directly follows from the proof of Corollary 1 provided in Appendix C.1.

Counterintuitively, according to (4.7), adding more power lines can lead to violating the

sufficient condition for stability and making the system unstable. This Braess’s Paradox in
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Figure 4.1: Single line diagram of the WSCC system.

power systems has been also acknowledged for example in [81, 82, 83] in different context

and using different approaches.

4.4 Numerical Results

Consider the popular western system coordinating council (WSCC) 9-bus 3-generator sys-

tem [69], depicted in Fig. 4.1. The base MVA is 100, the system frequency is 60 Hz,

the network has nonzero transfer conductances, and the line complex powers are around

hundreds of MVA each.

In Sections 4.4.1 and 4.4.2, we verify Theorem 11 by showing that the singular pertur-

bation model (4.4) can be used instead of the network-preserving model (4.1) for stability

analysis. Then, in Section 4.4.3, we show the application of Corollary 1 in fast and dis-

tributed stability assessment.

4.4.1 Perturbed Model Approximation: Time-Domain Comparison

The singular perturbation model (4.4) can be viewed as an approximation of the network-

preserving model (4.1). In Fig. 4.2, the upper figure in each subfigure (a) and (b) compares

the voltage angle δi at generator buses of the exact (solid) structure-preserving model with

those of the approximate (dashed) singular perturbation model. The trajectories of the
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two models clearly converge to the same stable equilibrium point, confirming Theorem

11. Moreover, as we decrease the perturbation parameter ε from 10−2 in subfigure (a)

to 2 × 10−3 in subfigure (b), the approximation error also decreases. Indeed, it can be

rigorously proved that the aforementioned estimation is O(ε).

Fig. 4.2 also shows the frequency deviation δ̇i at load buses of the singular perturbation

model. Recall that these δ̇i,∀i ∈ L were the state variables whose time derivative was

multiplied by ε in (4.4b). From (4.4b), the time derivative of δ̇i at load buses is δ̈i =

(−diδ̇i − Pdi − Pei)/ε, which can be large when ε is small. Accordingly, in Fig. 4.2 (b)

with a smaller ε compared to Fig. 4.2 (a), the dynamics of δ̇i at load buses converges more

rapidly to zero.

4.4.2 Perturbed Model Approximation: Modal Analysis

Fig. 4.3 provides a comparison between the eigenvalues associated with the Jacobian ma-

trix of models (4.1) and (4.4). The two models have a set of eigenvalues which are close

to each other. Additionally, note that the state space of the singular perturbation model has

more dimensions (in this WSCC example, it has 6 additional dimensions which is equal to

the number of load buses). These additional eigenvalues are also shown separately in each

subfigure.

Comparing Figs. 4.3(a) and 4.3(b), as the perturbation parameter gets smaller, the set

of eigenvalues of model (4.1) approaches those of model (4.4). Moreover, using a smaller

perturbation parameter, the additional eigenvalues of the singular perturbation model move

towards −∞. Indeed, as ε → 0, the two systems will have a set of common eigenvalues,

while the additional eigenvalues of the singular perturbation model will approach −∞.

Finally, observe that as ε → 0, the eigenvalues of the singular perturbation model do not

approach the imaginary axis. According to Theorem 11, the equilibrium points of the two

models (4.1) and (4.4) have the same stability properties. This justifies the use of model

(4.4) instead of model (4.1) for stability assessment.
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(a) Using perturbation parameter ε = 10−2.

 

(b) Using perturbation parameter ε = 2× 10−3.

Figure 4.2: Simulation results of the WSCC system: exact model (solid) and singular
perturbation model (dashed) with two different perturbation parameters.

4.4.3 Fast and Distributed Stability Assessment

As mentioned previously, Assumption 1 is reasonable and holds in practice. Fig. 4.4

confirms this issue for the WSCC system. As can be seen, the angles (θij − δ∗i + δ∗j ) for all

transmission lines are perfectly located within the interval 0 to π rad. Moreover, Theorem

11 has been verified in Sections 4.4.1 and 4.4.2, thereby justifying the use of Corollary 1

and the singular perturbation model for stability assessment. In this section, we test the

efficacy of the scheme proposed in Section 4.3.1.

82



 

(a) Using perturbation parameter ε = 10−3.

 

(b) Using perturbation parameter ε = 10−4.

Figure 4.3: Modal analysis of the WSCC system: eigenvalues of the exact model (red
asterisks) and singular perturbation model (cyan circles) with two different perturbation
parameters.

Recall when the stability index Si defined in (4.6) is negative for all generators, then

by Corollary 1, the equilibrium point of the system is asymptotically stable. Note that the

converse may not be true, i.e., Si could be positive while the system is stable. However,

even in such cases, Si can be viewed as an index, showing the degree of stability.

Consider the WSCC system under different operating points as well as different system

parameters (generators’ inertia and damping). As the operating points or system parameters

vary, the eigenvalues of the system may also move to either right half-plane (less stable)

or left half-plane (more stable). Now, the stability index (4.6) helps us understand how
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Figure 4.4: Verification of Assumption 1 in the WSCC system.
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Figure 4.5: Variation of degree of stability due to variation of stability index (4.6).

the eigenvalues move if we vary operating points or system parameters. Fig. 4.5 shows

the variation in the real parts of eigenvalues of model (4.4) as a function of changes in the

stability index (4.6). In this figure, under all operating conditions and system parameters,

the equilibrium point is asymptotically stable. However, as the average of stability indices

moves towards negative value (i.e., the violation of condition (4.5) decreases and at some

point the condition holds), the average real part of eigenvalues move towards −∞, making

the operating point more stable.

4.5 Final Remarks

We showed under reasonable assumptions, the small-signal stability of the classical structure-

preserving model is equivalent to its singular perturbation counterpart. Based on this equiv-

alence, we developed a novel stability certificate for the structure-preserving model. The
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certificate can be computed in a fully distributed fashion, using only local information, and

can be used for real-time monitoring. The certificate suggests that the eigenvalues of the

system will move towards the left half-plane by increasing generators’ damping and de-

creasing generators’ inertia. It also reveals a paradox that adding more transmission lines

can lead to the violation of the stability certificate and making the system unstable. The

stability certificate could be incorporated as a constraint into various problems such as the

optimal power flow problem in order to guarantee and improve the stability of solutions.

Our results could also be extended towards tighter and nonlocal stability certificates.
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CHAPTER 5

STABILITY AND CONTROL OF MULTI-MICROGRIDS

In the previous chapters, we studied the stability of swing equations. Now, we delve deeper

into an important applications of swing equations in modeling multi-microgrid (multi-µG)

networks. Specifically, we derive sufficient conditions to guarantee small-signal stability

of multi-µGs in both lossless and lossy networks. The new stability certificate for lossy

networks only requires local information, thus leads to a fully distributed control scheme.

Moreover, we study the impact of network topology, interface parameters (virtual inertia

and damping), and local measurements (voltage magnitude and reactive power) on the

stability of the system. The proposed stability certificate suggests the existence of Braess’s

Paradox in the stability of multi-µGs, i.e. adding more connections between microgrids

could worsen the multi-µG system stability as a whole.

We also extend the presented analysis to structure-preserving network models, and pro-

vide a stability certificate as a function of original network parameters, instead of the Kron

reduced network parameters. Stability of structure-preserving models was also addressed

in Chapter 4, but here we revisit the problem from a graph-theoretic perspective. We pro-

vide a detailed numerical study of the proposed certificate, the distributed control scheme,

and a coordinated control approach with line switching. The simulation shows the effec-

tiveness of the proposed stability conditions and control schemes in a four-µG network,

IEEE 33-bus system, and several large-scale synthetic grids.

5.1 Introduction

Restructuring of distribution systems into multi-µGs is one of the main ways of improving

the resilience of the electricity grid. The structural modularity of such networks makes them

remarkably resilient against extreme events, but inherently prone to instabilities nonethe-
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less. A minor contingency in these networks may lead to cascading outages and a total

blackout in all microgrids. There is, therefore, an urgent need for understanding the notion

of stability in multi-µGs. The present chapter is motivated by this urgent need and is aimed

at characterizing the conditions under which a multi-µG is locally stable. We also attempt

to understand how the topology and parameters of the network would affect the stability of

a multi-µG, and how we can monitor and guarantee its stability using a distributed control

scheme.

5.1.1 Related Work

A key feature that distinguishes future multi-µG networks from the conventional distribu-

tion systems is that each microgrid will be connected to the rest of the system via a point

of common coupling (PCC). Moreover, each microgrid either has a voltage source inverter

(VSI)-based interface at PCC or is composed of a network of distributed energy resources

(DERs), e.g. VSIs, diesel generators (DGs), etc [9, 10]. On the other hand, it can be math-

ematically proved (see Lemma 7) that the frequency dynamics of a droop-controlled VSI is

equivalent to the dynamics of a synchronous generator or DG, represented by swing equa-

tions [11], [12]. Therefore, from a modeling perspective, the dynamical model of multi-

µGs is closely related to that of interconnected generators [13], and analysis of multi-µGs’

behaviour is intertwined with an accurate understanding of swing equations.

Swing equations can be studied from a graph-theoretic perspective, where the main fo-

cus is on investigating the relationship between the underlying graph structure of the power

system and the system stability [84, 85, 86, 70, 87] . Our work in this chapter falls into

this research category. We refer to [70] and [87] for a comprehensive survey on this topic.

In particular, the existing results on the small-signal stability of lossless swing equations

are reviewed and studied in [70]. It is shown that if bus angle differences at an equilibrium

point are less than π/2, then the equilibrium point is locally asymptotically stable. The

present chapter provides a generalization of such results to lossy swing equations. Con-
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trary to the lossless case, we will show that an equilibrium point in lossy networks could

be unstable even if bus angle differences are less then π/2.

Swing equations also play an important role in studying droop-controlled inverters in

microgrids. In the literature, various models with different complexities have been adopted

for droop-controlled inverters, including first-order models [88], second-order models [9,

11, 13], third-order models [89], and higher-order models [90, 91, 92]. Each model is useful

for studying a particular aspect of droop-controlled inverters such as their frequency stabil-

ity, voltage stability, or electromagnetic transients. The application of swing equations is

more common in second-order models and frequency stability [11, 13]. Swing equations

with variable voltage magnitudes also appear in third-order models. For instance, in [89],

each inverter is modeled by a third-order differential equation including swing equations

with variable voltage magnitudes. Using this model, sufficient conditions are derived for

boundedness of trajectories in lossy microgrids as well as asymptotic stability of equilib-

rium points in lossless microgrids. In the present chapter, we focus on frequency stability

and adopt a second-order model with constant voltage magnitudes for each inverter. In

comparison with [89], in the lossless case, our results match the results of [89, See Remark

5.11]. In the lossy case, our sufficient condition in this chapter certifies the asymptotic sta-

bility of equilibrium points instead of boundedness of trajectories as in [89]. Nonetheless,

our model for inverters here is different, and a direct comparison seems unfair.

The framework in [90] (and the follow-up articles [91, 92]) utilizes a more detailed

dynamical model for inverter-based microgrids, modeling the droop-based frequency and

voltage controls as well as the electromagnetic transients of power lines. After performing a

model order reduction and constructing a Lyapunov function for the reduced model, a set of

decentralized sufficient conditions are developed for guaranteeing the small-signal stability

of the equilibrium points. In the present chapter, we pursue the same goal as in [90, 91,

92], i.e., finding decentralized sufficient conditions for small-signal stability. However, our

focus is more on frequency stability, and deriving more explicit stability conditions that
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reveal the role of network topology and parameters in small-signal stability.

The small-signal stability of multi-µGs is studied in [9], where various control frame-

works are proposed for the microgrids’ interface. Moreover, a plug-and-play rule is pro-

posed in [13], guaranteeing the stability of multi-µGs without requiring the global knowl-

edge of network topology or operating conditions. The multi-µG model in the present

chapter is similar to the one in [13], except we do not incorporate a local integral control.

Corollary 2 in the present chapter matches the plug-and-play rule in [13]. Moreover, the

main result in Theorem 12 generalizes the main result of [13] because our stability certifi-

cate considers the real-time operating condition of the system and is less conservative. Our

result is also a generalization of the result in [11] as we do not require uniform damping of

inverters.

Another set of literature that are conceptually related to our work in this chapter are

the recent studies on power grid synchronization [93], frequency control [52, 55], voltage

stability [94], and also the study of Kuramoto oscillators which has been linked to the

stability analysis of lossy power systems with strongly overdamped generators [66].

5.1.2 Main Results

The main contributions of this chapter can be summarized below.

• Stability Certificates: We derive explicit sufficient conditions that certify small-

signal stability of multi-µGs for both lossless and lossy networks. The new certifi-

cates provide significant insights about the interplay between system stability and

reactive power absorption, voltage magnitude at PCC, network topology, and inter-

face parameters of each microgrid. We also introduce a new weighted directed graph

to study the spectral properties of the multi-µG Laplacian.

• Distributed Control: In addition to providing new insights into the theory of sta-

bility, the derived stability certificates use only local information and are suitable for

real-time monitoring and fast stability assessment. Based on the developed theory,
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we introduce a fully distributed control scheme to adjust the dynamic parameters of

each microgrid interface for maintaining the stability of the system.

• Analog of Braess’s Paradox: The stability conditions developed in this chapter

surprisingly reveal an analog of Braess’s Paradox in power system stability, showing

that adding power lines to the system may decrease the stability margin [30]. The

current chapter rigorously establishes the impact of switching-off lines, increasing

damping, and decreasing virtual inertia on improving system stability.

• Generalization to Structure-Preserving Models: We extend the presented analy-

sis to structure-preserving power network models. Specifically, we prove a mono-

tonic relationship between entries of a nodal admittance matrix and its Kron reduced

counterpart. This monotonic relationship enables us to derive a stability condition as

a function of original network parameters, instead of the Kron reduced network pa-

rameters. This is beneficial to real-time distributed control as the network parameters

constantly change and Kron reduction may not be available to individual controllers.

We believe the findings in this chapter are also applicable to other problems whose

models display similar structural properties, such as small-signal stability assessment in

the transmission level and synchronization of coupled second-order nonlinear oscillators.

5.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 5.2 provides a brief background on

multi-µGs. In Section 5.3, the multi-µG model is linearized and several properties of the

Jacobian matrix are proved. Section 5.4 is devoted to the main results on sufficient condi-

tions for the stability of multi-µGs. Section 5.5 further illustrates the developed analytical

results through numerical examples, and finally, the chapter concludes with Section 5.6.
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5.2 Background

5.2.1 Multi-Microgrid Model

Consider a distribution network represented as an undirected graph G = (N , E), where N

is the set of nodes and E is the set of edges. Each node in N represents a microgrid and

each edge in E represents an electrical branch connecting the two microgrids across the

branch. We will refer to G as the linking grid [10]. The linking grid G is connected if for

any two nodes i, k ∈ N , i 6= k there exists a path between i and k consisting of power lines

with nonzero admittance. To begin the study, let us assume that each microgrid is modeled

by a grid-forming VSI connected to a node of the linking grid.

Given the time window of small-signal stability assessment, characterization of each

microgrid by a VSI can be understood in two ways:

1. The first possibility is that a microgrid contains an ensemble of devices (e.g., grid-

forming inverters, diesel generators, and loads) whose aggregate behavior can be

modeled by a VSI. The derivation of the aggregated VSI model is out of the scope

of this thesis. We refer to [95, 96] for details. Moreover, we restrict the type of

microgrid DERs to grid-forming VSIs, DGs, and more generally to those whose

dynamics can be captured by swing equations.

2. The second possibility is that a microgrid is connected to the linking grid through

a grid-forming VSI at PCC [9, 10, 13]. VSI-based interfaces decouple the intra-

microgrid dynamics from the grid side, and consequently, the interactions among

different microgrids will be primarily determined by the VSI control law [9, 10].

When the model order reduction in way 1 introduces major errors, or VSI interfaces in 2

do not exist, it is inevitable that the internal structure, DERs, and loads of the microgrid be

explicitly modeled. Later in Section 5.4.3, we will introduce a way to consider a structure-

preserving model for each microgrid and extend our stability analysis to such cases. Let us

91



for now focus on the case where each microgrid is represented as a node in the linking grid

G = (N , E) and modeled by a VSI.

Accordingly, the dynamics of a multi-µG network is characterized by the following

system of nonlinear autonomous ordinary differential equations (ODEs):

δ̇i(t) = ωi(t) ∀i ∈ N , (5.1a)

miω̇i(t) + diωi(t) = Psi − Pei(δ(t)) ∀i ∈ N , (5.1b)

where for each microgrid i ∈ N , Psi is the active power setpoint in per unit, Pei is the

outgoing active power flow in per unit, mi is the virtual inertia in seconds induced by the

delay in droop control, di is the unitless damping coefficient, t is the time in seconds, δi(t)

is the terminal voltage angle in radian, and finally ωi(t) is the deviation of the angular

frequency from the nominal angular frequency in radian per seconds. For the sake of

simplicity, henceforth we do not explicitly write the dependence of the state variables δ

and ω on time t.

The PCC of two microgrids i and k are connected via a power line with the admittance

yik = gik + ibik, where gik ≥ 0 and bik ≤ 0. In transmission-level small-signal stability

studies, the conductance gik of transmission lines is commonly assumed to be zero (aka

lossless model). While this is a reasonable assumption in the transmission level, it may not

hold in the distribution level and multi-µG networks. Therefore, our analysis will be based

on the general lossy case, and we discuss the lossless model as a special case. Let yii denote

the admittance-to-ground at PCC i and define the symmetric admittance matrix given by

the diagonal elements Yii]θii =
∑n

k=1 yik and off-diagonal elements Yik]θik = −yik.

Based on this definition, the function Pei in (5.1b) can be further spelled out:

Pei(δ) =
n∑
k=1

ViVkYik cos (θik − δi + δk), (5.2)

where Vi is the PCC terminal voltage magnitude of microgrid i.
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Recall from Definition 2 in Section 2.5.1 that the function Pe : Rn → Rn given by δ 7→

Pe(δ) in (5.2) is called the flow function. Recall also that we addressed the translational

invariance of the flow function in Section 2.5.3.

Observe that equilibrium points of the multi-µG dynamical system (5.1) are of the

form (δ∗, ω∗) ∈ R2n where δ∗ is a solution to the active power flow problem Pei(δ
∗) =

Psi ,∀i ∈ N and ω∗ = 0. We seek an answer to the following question: under what

conditions is an equilibrium point (δ∗, ω∗) locally asymptotically stable? A perfect answer

to this question should give us a purely algebraic condition, shedding light on the relation

between the stability of the equilibrium point and the parameters of system (5.1) (i.e., the

interface parameters mi and di, the setpoints Psi , and the underlying graph of the multi-µG

network). The rest of this chapter is devoted to finding such an answer.

As mentioned before, model (5.1) is identical to the well-known swing equation model

describing the dynamics of interconnected synchronous generators [1], and this is because

VSI control schemes are widely devised to emulate the behavior of synchronous machines

[9, 10, 12]. Indeed, the equivalence of the dynamics of synchronous generators and droop-

controlled VSIs can be rigorously formalized. Specifically, a droop-controlled VSI at node

i ∈ N can be modeled as [11]:

δ̇i(t) = −ki
(
Pmi(t)− Pdi

)
, (5.3a)

τiṖmi(t) = −Pmi(t) + Pei , (5.3b)

where ki ≥ 0 is the droop gain, Pmi ∈ R is the measured active power, Pdi ∈ R is the

desired active power setpoint, and τi ≥ 0 is the time constant of the low-pass filter of the

power measurement. Now, the next lemma shows the droop-controlled VSI model (5.3)

can be reparametrized as the swing equation model (5.1).

Lemma 7 (VSI model reparametrization). The dynamics of the droop-controlled VSI model

(5.3) is equivalent to the dynamics of the swing equation model (5.1).
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Proof. Consider the VSI model (5.3) and define the new variable ωi(t) as

ωi(t) := δ̇i(t) = −ki
(
Pmi(t)− Pdi

)
. (5.4)

Thus, using the new variable ωi(t), equation (5.3a) can be written as (5.1a). By substituting

Pmi(t) = −ωi(t)/ki + Pdi into (5.3b), we get

−τiω̇i(t)/ki = ωi(t)/ki − Pdi + Pei .

Now, for each node i ∈ N , define the virtual inertia coefficient mi := τi/ki, virtual damp-

ing di := 1/ki, and active power setpoint Psi := Pdi . Therefore, (5.3b) is equivalent to

(5.1b).

Similar derivations can be found for example in [11, 97]. Accordingly, the application

of model (5.1) is not restricted to the characterization of interconnected microgrids. The

model (and consequently, the results developed in this chapter) can be applied to a system

of interconnected synchronous machines, coupled oscillators, etc.

5.3 Linearization and Spectrum of Jacobian

5.3.1 Linearization

Let us take the state variable vector (δ, ω) ∈ R2n into account and note that the first step

in studying the stability of multi-µG equilibrium points is to analyze the Jacobian of the

vector field in (5.1):

J :=

 0 I

−M−1L −M−1D

 ∈ R2n×2n (5.5)

where I ∈ Rn×n is the identity matrix,M = diag(m1, · · · ,mn), andD = diag(d1, · · · , dn).

Throughout the chapter, we assume M and D are nonsingular. Moreover, L ∈ Rn×n is the
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Jacobian of the flow function with the entries:

Lii =
n∑

k=1,k 6=i

ViVkYik sin (θik − δi + δk),∀i ∈ N (5.6a)

Lik = −ViVkYik sin (θik − δi + δk) ,∀i 6= k ∈ N . (5.6b)

The matrix L plays a prominent role in the spectrum of the Jacobian matrix J (and as

a consequence, in the stability properties of the equilibrium points of multi-µGs). We

illustrate this role in the following subsection.

5.3.2 Spectral Relationship Between Matrices J and L

Recall from Lemma 1 that the eigenvalues of J and L are linked through a singularity

constraint. Now, Proposition 5 illustrates the relationship between the kernels and the

multiplicity of the zero eigenvalue of the two matrices J and L.

Proposition 5. Consider the Jacobian matrix J in (5.5). The following statements hold:

(i) The kernel ofL is the orthogonal projection of the kernel of J onto the linear subspace

Rn × {0}. That is, ker(L) = proj(ker(J)).

(ii) The geometric multiplicity of the zero eigenvalue in σ(J) and σ(L) are equal.

(iii) J is nonsingular if and only if L is nonsingular.

Proof. See Appendix D.1.

As the role of L in the spectrum of J became more clear, we scrutinize the spectrum of

L in the next subsection. Our final goal is to use the spectral properties of L together with

the relationships established in Lemma 1 and Proposition 5 to derive a stability certificate

for multi-µGs.
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5.3.3 A Directed Graph Induced by L

The linking grid of a multi-µG is represented by the undirected graph G defined in Section

5.2.1. However, to fully represent the Jacobian L of the flow function (5.2), we need to

introduce a new weighted directed graph (digraph). Let
−→G = (N ,A,W), where each node

i ∈ N corresponds to a microgrid and each directed arc (i, k) ∈ A corresponds to the entry

(i, k), i 6= k of the admittance matrix. We further define a weight for each arc (i, k) ∈ A:

wik = ViVkYik sin (ϕik) , (5.7)

where ϕik := θik − δi + δk. With the above definitions, we can see that the Jacobian matrix

L of the flow function, which appeared in (5.6), is indeed the Laplacian of the weighted

digraph
−→G . In general, the arc weights wik can take any values in R, and the matrix L is

not necessarily symmetric. In practice, however, wik varies in a small nonnegative range.

Figure 5.1 illustrates the histogram of the angle ϕik for all lines (i, k) in different IEEE and

NESTA standard distribution test cases, where the converged load flow data are obtained

from MATPOWER [69]. Accordingly, ϕik ∈ (0, π) in all of these cases. Thus, it is

reasonable to assume that the equilibrium points (δ∗, ω∗) of the multi-µG dynamical system

(5.1) are located in the set Ω defined as

Ω =
{

(δ, ω) ∈ R2n : 0 < θik − δi + δk < π,∀(i, k) ∈ A, ω = 0
}
.

Under this assumption, the arc weights wik > 0 for all arcs (i, k). So, there are two arcs

(i, k) and (k, i) between microgrids i and k if and only if the two microgrids are physically

connected. We always assume the physical network connecting all the microgrids is a

connected (undirected) graph. The weighted digraph
−→G will be used to study the spectral

properties of L.
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Figure 5.1: Histogram of the distribution of ϕik for all lines (i, k) in different IEEE and
NESTA standard test cases.

5.3.4 Spectral Properties of L

When ϕij’s satisfy the above angle assumption, the following proposition shows that L

is a singular M-matrix. Moreover, the zero eigenvalue of L is simple, i.e. the algebraic

and geometric multiplicities are one, which is important for preventing bifurcation from

happening in the multi-µgrid network.

Proposition 6. Let (δ∗, ω∗) ∈ Ω be an equilibrium point of the multi-µG system (5.1).

Assume the linking grid G is connected. The Jacobian matrix L defined by (5.6) at this

equilibrium point has the following properties:

(i) L has a zero eigenvalue with an eigenvector 1, and the real part of each nonzero

eigenvalue of L is positive, i.e. L is a singular M-matrix.

(ii) The zero eigenvalue of L is simple.

Properties (i) and (ii) of L shown in the above proposition will be used in the next

section to prove the stability of J in the main result of the chapter.

5.4 Stability of Multi-Microgrid Networks

Now we are ready to answer the fundamental question posed in Section 5.2.1: under what

conditions is an equilibrium point (δ∗, ω∗) locally asymptotically stable?
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5.4.1 The Main Stability Theorem

Theorem 12. Let (δ∗, ω∗) ∈ Ω be an equilibrium point of the multi-µG system (5.1). Let

B ∈ Rn×n denote the imaginary part of the admittance matrix. Suppose all microgrid in-

terfaces have positive damping coefficients and inertia, and the linking grid G is connected.

Then, the following statements hold:

(a) The Jacobian J at this equilibrium point has a zero eigenvalue with geometric multi-

plicity of one.

(b) All the nonzero real eigenvalues of J are negative.

(c) Let Qi be the net outgoing reactive power flow from microgrid PCC i. If

−Qi − V 2
i Bii ≤

d2
i

2mi

, ∀i ∈ N (5.8)

then all the nonzero eigenvalues of J , both real and complex, are located in the left

half plane, i.e., σ(J) ⊂ C− ∪ {0}, and the equilibrium point is locally asymptotically

stable.

(d) If the transfer conductance of the lines is zero, then all the nonzero eigenvalues of J

are located in the left half plane, and the equilibrium point is locally asymptotically

stable.

Proof. See Appendix D.2.

Remark 6. Properties (a) and (b) hold independently of the sufficient conditions in (c) and

(d). Property (d) says if the network is lossless, then regardless of (c), any equilibrium

point is stable. If instead the network is lossy, then not every equilibrium point is stable

and condition (5.8) provides a new certificate to guarantee the small-signal stability of an

equilibrium point.
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Remark 7. Notice that a salient feature of condition (5.8) is that it only requires local

information at each microgrid interface, hence, leads to a fully distributed control scheme

to stabilize the multi-µG system. Detailed numerical simulation will be shown in Section

5.5.

5.4.2 Intuition and Paradox Behind Condition (5.8)

Condition (5.8) in Theorem 12 provides a practical and efficient way to certify the sta-

bility of the equilibrium points in general lossy multi-µG networks. It also introduces a

distributed control rule for tuning the interface parameters of each microgrid without com-

promising the network stability. In this section, we will explore the intuition behind this

theory as well as two interesting paradoxes that come with it.

• Note 1: The variable Qi in (5.8) is the net reactive power that microgrid i injects into

the rest of the multi-µG network, that is, if microgrid i is supplying reactive power,

then Qi > 0. Otherwise, if it is consuming reactive power, then Qi < 0. Intuitively,

when microgrid i is a supplier of reactive power, the first term on the left-hand side

of (5.8) is negative, and this situation will help condition (5.8) hold.

• Note 2: Recall that Yii]θii = Gii + iBii =
∑n

k=1 yik, where yik = gik + ibik is the

admittance of line (i, k), with gik ≥ 0 and bik ≤ 0. Therefore, Bii ≤ 0, and the

second term on the left-hand side of (5.8) is always positive. Here, it is assumed that

yii, i.e., the admittance-to-ground at PCC i is negligible. Otherwise, we may have

Bii > 0, and the second term on the left-hand side of (5.8) could be negative.

• Note 3: The first two notes clarify that the left-hand side of (5.8) can be negative

if microgrid i is supplying reactive power; otherwise it is positive. Consequently,

condition (5.8) is not trivial.

• Note 4: Condition (5.8) enforces an upper bound which is proportional to the square

of damping and inverse of inertia. This is consistent with the intuition that if we
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increase the damping, the stability margin of the system will increase. However, it

is not intuitive (could be a paradox) that decreasing the virtual inertia of a microgrid

interface will increase the stability margin.

• Note 5: By adding more transmission lines to the system, |Bii| will increase, and

this in turn could increase the left-hand side of (5.8) and lead to the violation of this

condition. This can be called the Braess’s Paradox in power system stability.

Corollary 2 further illustrates the aforementioned Braess’s Paradox. Counterintuitively,

according to Corollary 2, adding more power lines can lead to violating the sufficient con-

dition for stability. This Braess’s Paradox in power systems has been also acknowledged

in [81] and [13] in different contexts and using different approaches. Note that removing

lines from a network could make the system more vulnerable to contingencies and elimi-

nate the reliability benefits of having more transmission line capacity. This trade-off should

be taken into account during the design and operation of power grids.

5.4.3 Stability Condition in Structure-Preserving Networks

Motivation

The stability certificate (5.8) in Section 5.4.1 is derived for the linking grid G = (N , E),

where each microgrid is reduced to one node modeled as a grid-forming inverter using

the swing equation. In this section, we consider the more general situation, where the

internal active and passive elements of a microgrid are explicitly modeled. In particular, let

Gd = (N d, Ed) be the distribution network composed of all microgrids Gi = (Ni, Ei) for

i ∈ N as subnetworks. The buses Ni of microgrid i may include both active nodes (i.e.,

those connected to DGs and/or VSIs) and passive nodes (i.e., those connected to a constant

admittance load).

In order to study the stability property of Gd, we first use Kron reduction to eliminate

all passive nodes from each microgrid and study the resulting reduced network Gr. The
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stability condition (5.8) can be applied to Gr. However, such a certificate is expressed

in the system states and parameters of Gr, not of the original network Gd. This is not

desirable, as it obscures the relations between the topology of the original network and

the stability properties of the equilibrium points. Moreover, the parameters of the Kron-

reduced network Gr may not be available to the individual microgrid controllers in real

time. We want to find a stability certificate for the Kron-reduced network Gr, expressed in

the system states and network topology of the original network Gd.

To tackle this challenge, we first identify in Section 5.4.3 a sufficient condition on

the admittances of the original network Gd, under which certain monotonic relationship

between the admittances of Gd and Gr can be obtained. Then in Section 5.4.3, we use

this monotonicity property to derive a stability certificate expressed directly in states and

parameters of Gd.

The Kron-Reduced and Original Networks

Definition 6. Let Y be the nodal admittance matrix of a microgrid Gi = (Ni, Ei), where

the set of active and passive nodes are denoted by α, β ⊆ Ni, respectively. The Kron

reduction of Gi that eliminates all nodes in β has an admittance matrix given by Y r :=

Y [α, α]− Y [α, β]Y [β, β]−1Y [β, α]. This Kron-reduced network is denoted by Gri .

Assumption 2 below is widely satisfied in distribution grids.

Assumption 2. The nodal admittance matrix Y = G + iB of a distribution grid satisfies

Gik ≤ 0, Bik ≥ 0, for all i 6= k, and Gii ≥ 0, Bii ≤ 0 for self-admittances.

Assumption 3 below is the sufficient condition used in Lemma 8 to derive a monotonic-

ity relation between the admittances of the original and Kron-reduced networks.

Assumption 3. Let Y = G + iB be the nodal admittance matrix of a distribution grid.

There exist two fixed real numbers νmin and νmax that satisfy

0 ≤ νmin ≤ νmax ≤
√

1 + 2ν2
min (5.9)
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such that, for every line (i, k), the conductance Gik and susceptance Bik are bounded as

νmin|Gik| ≤ |Bik| ≤ νmax|Gik|. (5.10)

Remark 8. By (5.10), if Gik = 0, then Bik = 0; otherwise, νmin ≤ |Bik|/|Gik| ≤ νmax,

where the upper and lower bounds satisfy (5.9). As an example, if νmin = 5, then we can

set νmax =
√

1 + 2 · 52 = 7.14. Then, according to (5.10), all lines have |Bik|/|Gik| ratio

between 5 and 7.14, which is typical in distribution grids, especially in microgrids.

Lemma 8. Suppose the nodal admittance matrix Y = G + iB of a distribution grid sat-

isfies Assumptions 2 and 3 and the Kron-reduced matrix Y r = Gr + iBr from eliminating

a passive node k0 ∈ Ni satisfies Assumption 3. Then, Y r also satisfies Assumption 2.

Furthermore, the monotonicity condition, Br
kk ≥ Bkk, holds for all nodes k 6= k0.

See Appendix D.3 for the proof of this lemma.

Stability Condition as a Function of Original Network

Recall that the Kron-reduced network Gr is obtained by Kron-reducing all passive nodes

in all the microgrids. So Gr only contains active nodes and its dynamical system is defined

by model (5.1), where each active node has a swing equation. The next theorem is the

key result of this section that states a stability certificate for Gr but expressed in the states,

network topology, and parameters of the original multi-µG, where microgrids are allowed

to have an arbitrary internal structure with DGs, grid-forming inverters, and passive loads.

Theorem 13. Suppose Assumption 2 holds for all the microgrids Gi = (Ni, Ei) for i ∈ N

in the distribution grid Gd and Assumption 3 holds for the reduced admittance matrix of

Gd resulting from removing any passive node k0 in Gi for any i ∈ N . Then an equilibrium

point of the Kron-reduced grid Gr is locally asymptotically stable, if the following condition

102



holds

−Qk − V 2
k Bkk ≤

d2
k

2mk

, ∀k ∈ αi, i ∈ N , (5.11)

where αi ⊆ Ni is the set of active nodes in microgrid Gi and all quantitiesQk, Vk, Bkk, dk,mk

correspond to the original network Gd.

The proof of this theorem is given in Appendix D.4.

5.5 Numerical Results

In this section, we test various aspects of Theorems 12 and 13, and show how they can be

used not only as a fast stability certificate, but also as a quantitative measure of the degree of

stability. Furthermore, we demonstrate that condition (5.8) offers a distributed control rule

to retain and ensure the stability of interconnected microgrids in an emergency situation.

Let us define

Si := −Qi − V 2
i Bii −

d2
i

2mi

,

and recall that according to condition (5.8) in Theorem 12, if Si ≤ 0,∀i ∈ N , then the

equilibrium point of the multi-µG system is guaranteed to be asymptotically stable.

5.5.1 Control Schemes and Braess’s Paradox

Consider the four-microgrid system shown in Fig. 5.2a and its load-flow and dynamical

data tabulated in Case (a1) of Table 5.1. The system is normally operating in this case,

but Si > 0,∀i ∈ N and Theorem 12 does not certify the stability of the system. Such a

positive Si for all microgrids indicates that the multi-µG system, albeit operating normally,

is close to its stability margins. We will show how a credible contingency could push such

an uncertified system into instability.
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Internal Outage Leads to Instability: Subsequent to a generation outage inside microgrid

µG4, the active power Ps4 changes from −4.06 to −7.06, i.e., this microgrid starts to get

3 p.u. more active power from the linking grid to compensate for its internal outage. In

response, microgrid µG3 aids µG4 by using its internal generation capacity and changing

its active power Ps3 from−2.25 to 0.25. See Case (a2) in Table 5.1. Such a smart, resilient,

and self-healing multi-µG system seems very appealing and is indeed one of the main

purposes of building these interconnected systems. However, as it was hinted by positive

values of Si (i.e., violation of condition (5.8)), this new equilibrium point of the multi-

µG system is unstable. The instability of this equilibrium point can be verified through

eigenvalue analysis and time domain simulation, as depicted in Fig. 5.3. Now, Theorem 12

offers two remedial approaches to ensure system stability.

A Distributed Control Scheme: The first approach is based on a distributed control rule

instructing how to change the interface controller parameters di or mi in order to improve

the multi-µG stability (recall the characterization of mi and di for microgrids described in

Section 5.2.1). Based on local measurements of reactive power Qi and voltage Vi, each

microgrid can increase its damping di and/or decrease its virtual inertia to ensure that con-

dition (5.8) is satisfied. The key features of the distributed control scheme include 1) by

increasing d2
i /mi the system can always be stabilized according to condition (5.8); 2) the

operating point of the system is not changed; 3) no information exchange from the neigh-

boring microgrids is required. Implementing this approach, we reach to Case (a3) in Table

5.1. The stability of the same equilibrium point as in Case (a2) is certified.

A Coordinated Control Scheme: The second approach offers coordination of a more

general set of corrective actions including change of interface controller parameters di or

mi, change of reactive power Qi or voltage magnitude Vi, and change of network topology.

Condition (5.8) instructs which actions will improve the stability of the equilibrium point.

The equilibrium point of the system may be moved in the coordinated control scheme to

achieve corrective actions with smaller magnitude. To illustrate, we choose a combination
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Figure 5.2: Schematic diagram of four coupled microgrids.

Table 5.1: Dynamic parameters and converged load flow data of the four-microgrid system.

i mi di Psi [p.u.] Vi [p.u.] δ∗i [rad] Si

C
as

e
(a

1) 1 5.76 1.03 13.13 0.95 0.75 21.18
2 9.20 1.61 0.39 0.95 0.28 16.85
3 9.32 1.86 −2.25 1.05 −0.18 12.12
4 4.92 1.50 −4.06 1.05 −0.07 16.12

C
as

e
(a

2) 1 5.76 1.03 13.13 0.96 0.47 21.17
2 9.20 1.61 0.39 0.95 0.07 16.50
3 9.32 1.86 0.25 0.99 −0.25 13.08
4 4.92 1.50 −7.06 1.02 −0.37 13.53

C
as

e
(a

3) 1 0.50 4.62 13.13 0.96 0.47 −0.074
2 0.56 4.32 0.39 0.95 0.07 −0.035
3 0.66 4.19 0.25 0.99 −0.25 −0.037
4 0.56 3.92 −7.06 1.02 −0.37 −0.001

C
as

e
(b

) 1 0.80 4.03 5.72 1.05 0.8 −0.0036
2 0.56 3.90 0.40 1.05 0.24 −0.0668
3 0.70 3.78 0.25 1.05 −0.62 −0.0057
4 0.68 3.49 −2.11 0.95 −0.8 −0.0205

of all available options to find a stable equilibrium point. Let us reconfigure the network by

switching two lines off (see Fig. 5.2(b)) and also modify the dynamic parameters to reach

Case (b) in Table 5.1. The new equilibrium point satisfies condition (5.8) and therefore

is stable. Note that by removing distribution lines from case (a), the value of |Bii|,∀i ∈

{1, 2, 4} will decrease. Moreover, increasing damping and decreasing inertia will increase

the right-hand side of (5.8). Consistent with Braess’s Paradox, switching off two lines

indeed improves system stability.
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Table 5.2: Parameters to generate synthetic networks. U([`1, `2]) is uniform distribution on
interval [`1, `2].

Admittances b = U([−1, 0]) [p.u.], g = |b| × U([0, 0.5]) [p.u.]
Voltages V = U([0.95, 1.05]) [p.u.], δ = U([−0.5, 0.5]) [rad]

Interface settings d = U([1.5, 3]), m = U([0.4, 2]) [sec.]

 

(a) Spectrum of matrix J .
 

(b) Orbits of the system.

Figure 5.3: Verifying the instability of the equilibrium point in Case (a2) of the four-
microgrid system. (a) There exist two eigenvalues with positive real part. (b) Starting
from a neighborhood of the equilibrium point, the orbits of the system diverge to infinity.

5.5.2 Stability Measure and Location of Eigenvalues

As mentioned above, condition (5.8) can be used not only as a fast stability certificate, but

also as a quantitative measure of the degree of stability. To further illustrate this, consider

the IEEE 33-bus network during islanded operation, consisting of 4 DGs and 2 storage units

interfaced via VSIs [98]. The load, line, and DG data can be found in [69, 99, 98], and Table

5.3. Here, we first compute the Kron-reduced system to obtain a network of interconnected

DGs. Note that Theorem 13 is applicable to this reduced network because by Lemma 7

the dynamical model of interconnected droop-controlled VSIs can be reparametrized as

the swing equation model (5.1). Observe that according to Fig. 5.1, the assumption ϕik ∈

(0, π) holds in this system. We assume the network is operating at 80% of the nominal load,

and the interface parameters ki, τi, mi, di, and setpoints are designed following Theorem

13 (see Table 5.3). The simulations are carried out in MATLAB.

Fig. 5.4 shows the spectrum of matrix J along with the value of Si,∀i ∈ {1, ..., 6}

under three different operating points referred to as Cases 1 to 3. In Case 1, Si > 0 for

i = 4 and i = 6. Moreover, in Case 2, Si > 0 for i = 6. Case 3 is the only case where
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Table 5.3: Parameters of the IEEE 33-bus system.

i 1 2 3 4 5 6

Bus index 8 13 16 19 25 26
DER type DG DG DG VSI DG VSI

di 1.7 1.7 2 1 2 1.2
mi 0.5 0.5 0.6 0.7 0.6 0.7

Base values Pbase = 100 MW, Vbase = 12.66 kV

Si ≤ 0, ∀i ∈ {1, ..., 6}, and condition (5.11) guarantees that the system is asymptotically

stable in this case. According to this figure, in all three cases the non-zero eigenvalues of

J are located in the left half plane and the system is asymptotically stable. However, from

Case 1 to Case 3, as we move towards satisfying Si ≤ 0,∀i ∈ {1, ..., 6}, the magnitude of

the imaginary parts of the eigenvalues in σ(J) is reduced, and their real parts are mainly

moved towards−∞, thereby making the system less oscillatory. Indeed, a smaller value of

Si (say when Si > 0) means the violation of constraint Si ≤ 0 is smaller, and it is easier to

enforce condition (5.11), and therefore to make sure we have reached stability. Evidently,

the value of Si can be seen as a stability measure, i.e., it roughly indicates how stable the

system is. This application of condition (5.11) was also shown in the four-microgrid test

case in the previous section.

Finally, Fig. 5.5 depicts the frequency trajectories of the system in Case 3, where

condition (5.11) holds. As can be seen, after a transient, all frequency deviations converge

to zero, and the equilibrium point, which was certified by Theorem 13, is asymptotically

stable. The initial condition in this simulation is chosen arbitrary within a reasonable range.

5.5.3 Larger-Scale Systems

Next, we test the proposed stability certificate on a set of large-scale synthetic networks.

Figs. 5.6b and 5.6e show two examples of such multi-µG networks consisting of 50 and

100 microgrids, respectively. The network graphs are randomly generated, the sparsity

patterns of their adjacency matrix are depicted in Figs. 5.6a and 5.6d, and the corresponding

static and dynamic parameters are given Table 5.2. Note also that the diameter (i.e., the

107



−2.5 −2 −1.5 −1 −0.5 0
−1

−0.5

0

0.5

1

Real
Im

a
g
in
a
ry Case 1 Case 2 Case 3

(a)

1 2 3 4 5 6

−3
−2
−1
0

i

S i

Case 1 Case2 Case 3

(b)

Figure 5.4: Illustration of stability certificate on the IEEE 33-bus system. (a) Spectrum of
matrix J . (b) Value of stability index Si in different buses.

longest graph geodesic) of the graphs 5.6b and 5.6e are 6 and 8, respectively. Adopting the

aforementioned distributed control rule, each microgrid adjusts its controller parameters

di and mi (within the permissible range) to meet condition (5.8). Obeying this rule at an

equilibrium point guarantees that all nonzero eigenvalues of the Jacobian matrix J have

negative real part, and consequently, the equilibrium point is locally asymptotically stable

(see Figs. 5.6c and 5.6f).

 

Figure 5.5: Trajectories of the frequency deviation ωi for 6 DERs in the IEEE 33-bus
system.
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(a)
 

(b)
 

(c)

 

(d)  (e)
 

(f)

Figure 5.6: Synthetic multi-µG networks satisfying condition (5.8). (a) Sparsity pattern
of the 50-microgrid adjacency matrix, black points are ones. (b) 50-microgrid network.
(c) Eigenvalues of the 50-microgrid network. (d) Sparsity pattern of the 100-microgrid
adjacency matrix, black points are ones. (e) 100-microgrid network. (f) Eigenvalues of the
100-microgrid network.

5.6 Final Remarks

This chapter proposes new stability certificates for the small-signal stability of multi-µGs.

In particular, we prove in Theorem 12 that an equilibrium point of a multi-µG system is

locally asymptotically stable if either i) the network is lossless; or ii) in a lossy network,

a local condition (i.e., condition (5.8)) is satisfied at each microgrid PCC/DER, which

roughly speaking requires:

( Reactive power

absorption

)
+

Voltage magnitude
Line reactance

≤ Damping2

2 · Inertia
.

This condition sheds new light on the interplay of system stability, network topology, and

dynamic parameters. It also provides a fully distributed control scheme that is guaranteed

to stabilize the multi-µG system. The new certificate also reveals an analog of Braess’s

Paradox in multi-µG control that adding more lines in the linking grid may worsen system
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stability, and switching off lines may improve stability margin. The proposed condition

in Theorems 12 and 13 can improve the situational awareness of system operators by pro-

viding a fast stability certificate as well as showing how different corrective actions would

make the equilibrium point stable. In the literature, several stability criteria are developed

based on various dynamical models, focusing on different aspects of stability. Finding a

proper way to compare and merge these criteria and deriving a unified stability criterion

will be an interesting direction for future work, and the framework proposed in [90, 91, 92]

is a promising step towards this direction.
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CHAPTER 6

A STABILITY CERTIFICATE FOR DROOP-CONTROLLED INVERTERS

In the previous chapters, we studied second-order swing equations, where voltage magni-

tudes were assumed to be constant. In this chapter, we aim to relax this assumption and

study swing equations where voltage magnitudes are also considered state variables. Such

a third-order model characterizes the dynamics of droop-controlled inverters. Accordingly,

this chapter is also motivated by the growing interest in the smart grid technology and the

prominent role of droop-controlled inverters in this new technology. We attempt to answer

the same fundamental question: Under what conditions an equilibrium point of third-order

inverter model is asymptotically stable? After making a number of reasonable and practical

assumptions, we strive to derive a set of sufficient conditions for the local stability of the

equilibrium points of these models.

6.1 Introduction

6.1.1 Related Work

In the literature, various models with different complexities have been adopted for droop-

controlled inverters, including first-order models [88], second-order models [9, 11, 13],

third-order models [89], and higher-order models [90, 91, 92]. Each model is useful for

studying a particular aspect of droop-controlled inverters such as their frequency stabil-

ity, voltage stability, or electromagnetic transients. Swing equations with variable voltage

magnitudes appear in third-order models. For instance, in [89], each inverter is modeled by

a third-order differential equation including swing equations with variable voltage magni-

tudes. Using this model, sufficient conditions are derived for boundedness of trajectories in

lossy microgrids as well as asymptotic stability of equilibrium points in lossless microgrids.
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In the present chapter, we adopt a similar third-order model for each inverter. In compari-

son with [89], in the lossy case, we derive a sufficient condition in this chapter that certifies

the asymptotic stability of equilibrium points instead of boundedness of trajectories as in

[89].

In a similar vein, a distributed safety certification for droop-controlled inverters is pro-

posed in [100]. Moreover, a sum-of-squares based algorithm is used to present a com-

putational approach to obtain these safety certificates in a distributed manner. One major

drawback in such methods is their scalability. In this chapter, we strive to cope with this

challenge and develop a stability certificate for large-scale systems.

6.1.2 Main Results

In this chapter, we aim to extend our previous stability results to swing equations with

variable voltage magnitudes. This leads to a third-order model which characterizes the

dynamics of voltage angles, frequency deviations, and voltage magnitudes. There are two

main contributions in the present chapter.

• We scrutinize the Jacobian of the third-order swing equations with variable voltage

magnitude and strive to find its relation with the Jacobian of power flow equations.

After investigating its spectral properties, we find an structural property of the Ja-

cobian matrix which stems from the loose physical linkage between active and re-

active powers. Taking advantage of this inherent property, we make a reasonable

assumption (referred to as the decoupling assumption) and develop sufficient con-

ditions under which an equilibrium point of the third-order model is asymptotically

stable. Similar to the sufficient conditions developed in previous chapters, the de-

rived conditions are easy to check, use only local information, and are suitable for

real-time monitoring and fast stability assessment.

• We further investigate the aforementioned decoupling assumption and study the im-

pact of coupling terms on the eigenvalues of the Jacobian matrix. Although the loose
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physical linkage between active and reactive powers is a well-known property in

power systems and has been the basis for the fast decoupled load flow [31], we are

not aware of any study on the impact of coupling terms and the robustness of the

decoupled model under coupling perturbations. Here for the first time, we make

use of the existing theorems in the literature such as Bauer–Fike theorem to provide

residual bounds for the perturbation of Jacobian eigenvalues as the coupling terms

change. Our findings shed light on the validity of the decoupling assumption for

practical purposes.

6.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 6.2 introduces a third-order model

for droop-controlled inverters. In Section 6.3, the third-order model is linearized and the

linkage between its Jacobian and the Jacobian of the power flow function is established.

Section 6.4 is devoted to our main results on the stability of equilibrium points of the third-

order model. In Section 6.5, we analyze the spectrum of the third-order model Jacobian

under perturbations. Section 6.6 further illustrates the developed theoretical results through

numerical examples, and finally, the chapter concludes with Section 6.7.

6.2 Droop-Controlled Inverter Model

The mathematical model for a set of droop-controlled inverters N = {1, · · · , n}, n ∈ N is

described by the following system of ODEs [89, 100]:

δ̇i = ωi, ∀i ∈ N (6.1a)

τiω̇i = −ωi + λpi (P
set
i − Pi), ∀i ∈ N (6.1b)

τiv̇i = v0
i − vi + λqi (Q

set
i −Qi), ∀i ∈ N (6.1c)
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where for each i ∈ N , λpi > 0 and λqi > 0 are the droop coefficients associated with the

active power vs. frequency and the reactive power vs. voltage droop curves, respectively. τi

is the time constant of a low-pass filter used for the active and reactive power measurements.

δi, ωi and vi are the voltage angle, frequency deviation, and voltage magnitude. v0
i is the

nominal voltage magnitude. P set
i andQset

i are the active power and reactive power set points.

More importantly, Pi and Qi are the active and reactive power injected into the network:

Pi =
n∑
j=1

vivjYij cos(θij − δi + δj), ∀i ∈ N (6.2a)

Qi = −
n∑
j=1

vivjYij sin(θij − δi + δj), ∀i ∈ N (6.2b)

where Yij∠θij is the (i, j) entry of the reduced admittance matrix. The admittance ma-

trix encodes the underlying graph structure of the power grid, which is assumed to be a

connected graph in this chapter.

Remark 9. The equilibrium points of model (6.1) are of the form (δ∗, 0, v∗) ∈ R3n, where

δ∗ and v∗ are solutions to equations

Pi = P set
i , v0

i − vi + λqi (Q
set
i −Qi) = 0, ∀i ∈ N .

Note that if v∗ = v0, then equilibrium points are of the form (δ∗, 0, v0) ∈ R3n, where δ∗ is

a solution to power flow equations

Pi = P set
i , Qi = Qset

i , vi = v0
i , ∀i ∈ N .
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6.3 Linearization and Spectrum of Jacobian

Assuming τi > 0, the dynamical model (6.1) can be written in the following vector form:


δ̇

ω̇

v̇

 =


ω

−T−1ω + T−1Λp(P set − P (δ, v))

T−1v0 − T−1v + T−1Λq(Qset −Q(δ, v))

 , (6.3)

where T = diag (τ1, · · · , τn), Λp = diag (λp1, · · · , λpn), and Λq = diag (λq1, · · · , λqn). The

Jacobian of vector field of (6.3) is given by

J :=


0 I 0

−T−1Λp∇δP −T−1 −T−1Λp∇vP

−T−1Λq∇δQ 0 −T−1(I + Λq∇vQ)

 ∈ R3n×3n, (6.4)

where I ∈ Rn×n is the identity matrix and 0 ∈ Rn×n is the zero matrix. Moreover,

[∇δP,∇vP ] ∈ Rn×2n is the Jacobian of the active flow function P : R2n → Rn given

by (δ, v) 7→ P (δ, v) in (6.2a). Likewise, [∇δQ,∇vQ] ∈ Rn×2n is the Jacobian of the

reactive flow functionQ : R2n → Rn given by (δ, v)→ Q(δ, v) in (6.2b). Let us also define

L :=

∇δP ∇vP

∇δQ ∇vQ

 ∈ R2n×2n. (6.5)

Specifically, L is the Jacobian of the power flow vector field (P,Q) : R2n → R2n given by

(δ, v) 7→ (P (δ, v), Q(δ, v)). We now look into the spectral properties of L. Let us use the

notation L1 := ∇δP , L2 := ∇vP , L3 := ∇δQ, and L4 := ∇vQ. According to the power

flow equations (6.2), the entries of matrix L are

L1
ii =

∂Pi
∂δi

=
n∑

j=1,j 6=i

vivjYij sin(θij − δi + δj), ∀i ∈ N (6.6)
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L1
ij =

∂Pi
∂δj

= −vivjYij sin(θij − δi + δj), ∀i ∈ N , j 6= i (6.7)

L2
ii =

∂Pi
∂vi

= 2viYii cos(θii) +
n∑

j=1,j 6=i

vjYij cos(θij − δi + δj), ∀i ∈ N (6.8)

L2
ij =

∂Pi
∂vj

= viYij cos(θij − δi + δj), ∀i ∈ N , j 6= i (6.9)

L3
ii =

∂Qi

∂δi
=

n∑
j=1,j 6=i

vivjYij cos(θij − δi + δj), ∀i ∈ N (6.10)

L3
ij =

∂Qi

∂δj
= −vivjYij cos(θij − δi + δj), ∀i ∈ N , j 6= i (6.11)

L4
ii =

∂Qi

∂vi
= −2viYii sin(θii)−

n∑
j=1,j 6=i

vjYij sin(θij − δi + δj), ∀i ∈ N (6.12)

L4
ij =

∂Qi

∂vj
= −viYij sin(θij − δi + δj), ∀i ∈ N , j 6= i. (6.13)

Matrix L plays a prominent role in the spectrum of the Jacobian matrix J (and as a conse-

quence, in the stability properties of the equilibrium points of the third-order model). We

illustrate this role in the following subsection.

6.3.1 Spectral Relationship Between Matrices J and L

The next proposition shows that the eigenvalues of J and L are linked through a singularity

constraint.

Proposition 7. λ ∈ σ(J) if and only if the matrixQ(λ) := ΛL+ diag (λ2T + λI, λT + I)

is singular. Here Λ := diag (Λp,Λq).

Proof. Let λ ∈ σ(J) and (x, y, z) be the corresponding eigenvector. Then


0 I 0

−T−1Λp∇δP −T−1 −T−1Λp∇vP

−T−1Λq∇δQ 0 −T−1(I + Λq∇vQ)



x

y

z

 = λ


x

y

z

 (6.14)
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which implies


y = λx,

−[T−1Λp∇δP ]x− T−1y − [T−1Λp∇vP ]z = λy,

−[T−1Λq∇δQ]x− T−1(I + Λq∇vQ)z = λz.

(6.15)

Substituting y = λx in the second and third equations, we get


[T−1Λp∇δP ]x+ λT−1x+ λ2x+ [T−1Λp∇vP ]z = 0,

[T−1Λq∇δQ]x+ T−1(I + Λq∇vQ)z + λz = 0,

(6.16)

or equivalently


[Λp∇δP ]x+ [Λp∇vP ]z + λx+ λ2Tx = 0,

[Λq∇δQ]x+ [Λq∇vQ]z + z + λTz = 0,

(6.17)

which can be written in the matrix formΛp

Λq


∇δP ∇vP

∇δQ ∇vQ


x
z

+

λ2T + λI

λT + I


x
z

 = 0. (6.18)

Thus,Q(λ) := ΛL+diag (λ2T + λI, λT + I) is singular. Conversely, suppose there exists

λ ∈ C such that Q(λ) is singular. Choose a nonzero (x, z) ∈ ker(Q(λ)) and let y := λx.

Accordingly, the characteristic equation (6.14) holds, and consequently, λ is an eigenvalue

of J .

The next proposition illustrates how the kernels of J and L are related.

Proposition 8. The Jacobian matrix J is nonsingular if and only if the matrix N := L +

diag (0,Λ−q) is nonsingular. Moreover, ker(N) = proj(ker(J)), i.e., the kernel of N

117



is the orthogonal projection of the kernel of J onto the linear subspace Rn × {0} × Rn.

Finally, the geometric multiplicity of the zero eigenvalue in σ(J) and σ(N) are equal.

Proof. According to Proposition 7, we have 0 ∈ σ(J) if and only if Q(0) := ΛL +

diag (0, I) is singular, where Λ := diag (Λp,Λq). This is equivalent to the singularity of

N := L + diag (0,Λ−q). Moreover, according to the proof of Proposition 7, we have

(x, 0, z) ∈ ker(J) if and only if (x, z) ∈ ker(N). This shows the second part of the

proposition.

Finally, we know {(x1, 0, z1), · · · , (xm, 0, zm)} is a set of linearly independent eigen-

vectors in ker(J) if and only if {(x1, z1), · · · , (xm, zm)} is a set of linearly independent

eigenvectors in ker(N), i.e., dim(ker(J)) = dim(ker(N)).

As the role of L in the spectrum of J became more clear, observe that matrices L1

and L3 have zero row sum. According to the next proposition, this property results in the

singularity of the Jacobian matrix J .

Proposition 9. The Jacobian matrix J defined in (6.4) has a zero eigenvalue with the cor-

responding right eigenvector (1,0,0) ∈ R3n.

Proof. According to Proposition 8, 0 ∈ σ(J) if and only if the matrixN := L+diag (0,Λ−q)

is singular. Set u := (1,0) ∈ R2n

Nu =

L1 L2

L3 L4 + Λ−q


1
0

 =

L11

L31

 = 0,

where the last equality follows from the fact that matrices L1 and L3 have zero row sum.

This implies that 0 ∈ σ(N), i.e., N is singular. The second part of Proposition 8 implies

that (1,0,0) ∈ R3n is the corresponding eigenvector of the Jacobian matrix J .
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6.4 Stability of Droop-Controlled Inverters

Now we are ready to present our main result on the stability of equilibrium points in the

droop-controlled inverter model (6.1). We first make use of the loose physical interaction

between active power P and reactive power Q in power systems.

Assumption 4 (P − δ/Q− v decoupling). In matrix L defined in (6.5), at least one of the

two matrices∇vP and∇δQ is negligible.

The next lemma shows the role of P − δ/Q − v decoupling in the spectrum of the

Jacobian matrix J :

Lemma 9. Under Assumption 4, the spectrum of the Jacobian matrix J defined in (6.4) is

the union of spectrum of two matrices J1 and J4, i.e., σ(J) = σ(J1) ∪ σ(J4), where

J1 :=

 0 I

−T−1Λp∇δP −T−1

 , J4 := −T−1(I + Λq∇vQ) (6.19)

Proof. The Jacobian matrix J presented in (6.4) can be written as

J =

J1 J2

J3 J4

 ,
where J1 and J4 are defined in (6.19), and J2 and J3 are

J2 =

 0

−T−1Λp∇vP

 , J3 =

[
−T−1Λq∇δQ 0

]
. (6.20)

If∇vP = 0, then J2 = 0. In this case, for any λ ∈ σ(J), there exists a nonzero eigenvector
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(x, y) such that

J1 0

J3 J4


x
y

 = λ

x
y

 , (6.21)

that is, J1x = λx and J3x + J4y = λy. If x 6= 0, from J1x = λx, we conclude that

λ ∈ σ(J1). If x = 0, then J4y = λy, i.e., λ ∈ σ(J4). Hence, σ(J) ⊂ σ(J1) ∪ σ(J4).

Conversely, suppose λ ∈ σ(J1) ∪ σ(J4). There are two cases:

1. If λ ∈ σ(J4), then there exists a nonzero y such that J4y = λy. Set x = 0, and

observe that (x, y) in this case satisfies (6.21). Hence, λ ∈ σ(J).

2. If λ ∈ σ(J1), then there exists a nonzero x such that J1x = λx. Consider the

following two cases: Case 1) If λ 6∈ σ(J4), then J4 − λI is nonsingular, and we can

define y := −(J4 − λI)−1J3x. Thus, (x, y) satisfies (6.21). Hence, λ ∈ σ(J). Case

2) If λ ∈ σ(J4), then we have already proved that λ ∈ σ(J).

This shows that σ(J) ⊃ σ(J1)∪σ(J4). Combining this with the result of the previous step,

we conclude σ(J) = σ(J1) ∪ σ(J4). Similar argument can be proved under the condition

that∇δQ = 0, that is, J3 = 0.

Let us define the following set:

Ω =
{

(δ, ω, v) ∈ R3n : 0 < θij + δi − δj < π,∀(i, j) ∈ A, v > 0
}
, (6.22)

whereA is the set of arcs associated with the underlying graph of the power grid. The next

theorem provides a sufficient condition for the stability of voltage dynamics (6.1c).

Theorem 14. Let (δ∗, 0, v∗) ∈ Ω, and suppose for all i ∈ N , we have positive droop

coefficients λpi > 0, λqi > 0 and positive time constant τi > 0. If the condition

−Qi +
n∑
j=1

(v∗i )
2Yij sin(θij − δ∗i + δ∗j ) ≤

v∗i
λqi
, ∀i ∈ N (6.23)
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holds then the nonzero eigenvalues of the matrix J4 := −T−1(I + Λq∇vQ) are located in

the open left-half plane.

Proof. According to the Gershgorin circle theorem, every eigenvalue of J4 lies within at

least one of the Gershgorin discs D(ci, ri). Note D(ci, ri) is a closed disc centered at ci with

radius ri such that

ci = − 1

τi
− λqi
τi
L4
ii = − 1

τi
+
λqi
τi

(2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYij sin(θij − δ∗i + δ∗j )), (6.24)

ri =
n∑

j=1,j 6=i

λqi
τi
|L4

ij| =
n∑

j=1,j 6=i

λqi
τi
v∗i Yij sin(θij − δ∗i + δ∗j ), (6.25)

whereL4 = ∇vQ. In (6.25), we have used the assumption of (θij−δ∗i +δ∗j ) ∈ (0, π),∀(i, j) ∈

A, which implies sin(θij − δ∗i + δ∗j ) > 0,∀(i, j) ∈ A. Hence, ri ≥ 0 for all i ∈ N . A

sufficient condition for the stability of J4 is to have all discs D(ci, ri) on the left-half plane,

i.e., ci ≤ 0, |ci| ≥ ri. The condition ci ≤ 0 is equivalent to

ci ≤ 0 ⇐⇒ − 1

τi
+
λqi
τi

(2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYij sin(θij − δ∗i + δ∗j )) ≤ 0 (6.26)

⇐⇒ −1 + λqi

2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYij sin(θij − δ∗i + δ∗j )

 ≤ 0 (6.27)

⇐⇒ λqi

2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYij sin(θij − δ∗i + δ∗j )

 ≤ 1 (6.28)

⇐⇒ λqi

2(v∗i )
2Yii sin(θii) +

n∑
j=1,j 6=i

v∗i v
∗
jYij sin(θij − δ∗i + δ∗j )

 ≤ v∗i (6.29)

⇐⇒ λqi

(v∗i )
2Yii sin(θii) +

n∑
j=1

v∗i v
∗
jYij sin(θij − δ∗i + δ∗j )

 ≤ v∗i (6.30)

⇐⇒ λqi
(
(v∗i )

2Yii sin(θii)−Qi

)
≤ v∗i (6.31)

⇐⇒ (v∗i )
2Yii sin(θii)−Qi ≤

v∗i
λqi
. (6.32)
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Next, the condition |ci| ≥ ri is equivalent to (note that since ci ≤ 0 from the above condi-

tion, we get |ci| = −ci):

|ci| ≥ ri ⇐⇒
1

τi
− λqi
τi

2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYij sin(θij − δ∗i + δ∗j )


≥ λqi

τi

n∑
j=1,j 6=i

v∗i Yij sin(θij − δ∗i + δ∗j ).

Equivalently,

|ci| ≥ ri ⇐⇒
1

λqi
−

2v∗i Yii sin(θii) +
n∑

j=1,j 6=i

v∗jYijsij

 ≥ n∑
j=1,j 6=i

v∗i Yijsij (6.33)

⇐⇒ 1

λqi
≥ 2v∗i Yii sin(θii) +

n∑
j=1,j 6=i

v∗jYijsij +
n∑

j=1,j 6=i

v∗i Yijsij (6.34)

⇐⇒ v∗i
λqi
≥ 2(v∗i )

2Yii sin(θii) +
n∑

j=1,j 6=i

v∗i v
∗
jYijsij +

n∑
j=1,j 6=i

(v∗i )
2Yijsij (6.35)

⇐⇒ v∗i
λqi
≥ −Qi + (v∗i )

2Yii sin(θii) +
n∑

j=1,j 6=i

(v∗i )
2Yijsij (6.36)

⇐⇒ v∗i
λqi
≥ −Qi +

n∑
j=1

(v∗i )
2Yijsij. (6.37)

where sij := sin(θij − δ∗i + δ∗j ). Since (θij − δ∗i + δ∗j ) ∈ (0, π),∀(i, j) ∈ A, we have

sin(θij − δ∗i + δ∗j ) > 0, and (6.37) implies (6.32), hence ci ≤ 0. Thus, (6.23) is a sufficient

condition for the nonzero eigenvalues of J4 to be in the left-half plane. This completes the

proof.

Corollary 3. Suppose the nominal voltage is uniform at all buses, i.e., v∗i = v,∀i. Then

the sufficient condition (6.23) can be written as:

2Qi +
v∗i
λqi
≥ 0, ∀i ∈ N . (6.38)
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Proof. Under the uniform voltage, we have

(v∗i )
2Yii sin(θii) +

n∑
j=1,j 6=i

(v∗i )
2Yij sin(θij − δ∗i + δ∗j ) = −Qi, ∀i ∈ N .

Hence, condition (6.23) can be simplified as (6.38).

Theorem 15. Let (δ∗, 0, v∗) ∈ Ω be an equilibrium point of system (6.1), and suppose for

all i ∈ N , we have positive droop coefficients λpi > 0, λqi > 0 and positive time constant

τi > 0. Assume also that Assumption 4 holds at this equilibrium point. If the two conditions

−Qi +
n∑
j=1

(v∗i )
2Yij sin(θij − δ∗i + δ∗j ) <

v∗i
λqi
, ∀i ∈ N (6.39)

−Qi − (v∗i )
2Yii sin(θii) ≤

1

2τiλ
p
i

, ∀i ∈ N (6.40)

hold, then all the nonzero eigenvalues of the Jacobian matrix J are located in the left half

plane. Moreover, the equilibrium point (δ∗, 0, v∗) is asymptotically stable.

Proof. On the one hand, according to Theorem 14, under the assumptions of the theorem,

if (6.39) holds, all eigenvalues of the matrix J4 = −T−1(I + Λq∇vQ) are located in the

open left-half plane. Notice that condition (6.39) should hold strictly, hence J4 has no zero

eigenvalue. On the other hand, according to Theorem 10, under the assumptions of the

theorem if (6.40) holds, all the nonzero eigenvalues of the matrix J1 defined in (6.19) are

located in the open left-half plane. Translating to the inertia and damping notation, note

that d2i
2mi

=
1/(λpi )2

2τi/λ
p
i

= 1
2τiλ

p
i
. Finally, according to Lemma 9, under Assumption 4, we have

σ(J) = σ(J1)∪σ(J4). Therefore, all the nonzero eigenvalues of the Jacobian matrix J are

located in the left half plane. Based on the same argument as in the proof of Theorem 10,

the zero eigenvalue of J is simple, and the equilibrium point is asymptotically stable.

Remark 10 (On the role of τi, λ
p
i and λqi ). From (6.39) and (6.40), we observe that by

decreasing τi, λ
p
i and λqi , the upper bound of the conditions increases. In this way, it is
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always possible to make the conditions (6.39) and (6.40) satisfied by decreasing τi, λ
p
i and

λqi .

6.5 Perturbation Bounds for Eigenvalues: The Impact of Coupling Terms

The stability certificates developed in the previous section are based on the P − δ/Q − v

decoupling assumption described in Assumption 4. This assumption stems from the loose

physical interaction between active power P and reactive power Q, which holds typically

in power systems. A natural question we can ask is: What is the impact of the coupling

terms ∇vP and ∇δQ on the eigenvalues of the Jacobian matrix J . In this section, we aim

to address this question and provide residual bounds for the eigenvalues of J . Recall the

block partition of matrix J

J =

J1 J2

J3 J4

 , (6.41)

with J1 to J4 presented in (6.19)-(6.20). The next lemma from [101, Theorem 5] demon-

strates the effect of J2 and J3 as perturbations to matrix J .

Lemma 10. Consider matrix J partition as in (6.41), and suppose J is diagonalizable. Let

λ̃ be an eigenvalue of J1 and λ̃ 6∈ σ(J4). Let X be a matrix that diagonalizes J , i.e., X is

invertible and Σ := X−1JX is a diagonal matrix. Then there is an eigenvalue λ of J such

that

|λ− λ̃| ≤ κ(X)‖J2‖‖J3‖‖(J4 − λ̃I)−1‖. (6.42)

Here ‖ · ‖ denotes the spectral norm (i.e., `2-norm), and κ(X) := ‖X‖‖X−1‖ is the condi-

tion number of X .

Proof. See [101, Theorem 5]
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A major concern about the eigenvalue bound in Lemma 10 is the requirement that the

perturbed matrix J (as opposed to the unperturbed matrix) must be diagonalizable. More-

over, matrix X in (6.42) is a matrix that diagonalizes J . This is not desirable because

the diagonalizability of J and the value of κ(X) depend on the perturbation terms J2 and

J3. Note that ‖J2‖ = ‖T−1Λp∇vP‖ and ‖J3‖ = ‖T−1Λq∇δQ‖. Decreasing droop co-

efficients Λp and Λq, and increasing time constants T will make ‖J2‖ and ‖J3‖ smaller.

However, terms κ(X) and ‖(J4 − λ̃I)−1‖ in (6.42) also depend on Λp and Λq.

The next lemma alleviates a number of these concerns, and provides an eigenvalue per-

turbation bound which is a function of perturbation terms as well as the condition number

of the unperturbed matrix:

Lemma 11. Consider matrix J partition as in (6.41), and let us decompose J as

J =

J1 J2

J3 J4

 = Jd + J c, with Jd =

J1 0

0 J4

 , J c =

 0 J2

J3 0

 .
Notice that Jd is the decoupled Jacobian and J c is the coupling Jacobian. Suppose Jd is

diagonalizable (i.e., J1 and J4 are diagonalizable), and letX be a matrix that diagonalizes

Jd, i.e., Jd = XΣX−1 in which X is nonsingular and Σ is diagonal. If λ is an eigenvalue

of J , there is an eigenvalue λ̃ of Jd such that

|λ̃− λ| ≤ κ(X)‖J c‖. (6.43)

Here ‖ · ‖ is a matrix norm induced by an absolute norm on Cn, and κ(X) := ‖X‖‖X−1‖

is the condition number of X .

Proof. see Bauer–Fike theorem [57, Theorem 6.3.2].

Note that κ(X) plays an important role in the error bounds of eigenvalues. Fortunately,

there are fast methods to find an upper bound on κ(X). See [102], for example. The next
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corollary provides a guideline for choosing the parameters of the third-order model in order

to achieve the desired eigenvalue bound.

Corollary 4. Consider the notation of Lemma 11 and suppose the decoupled Jacobian Jd is

diagonalizable. For any ε > 0, there exist positive time constants τi and droop coefficients

λpi , λ
q
i such that |λ̃− λ| ≤ ε, whenever

λpi /τi ≤ ε/(κ(X)‖Lc‖), ∀i ∈ N (6.44)

λqi/τi ≤ ε/(κ(X)‖Lc‖), ∀i ∈ N (6.45)

where

Lc =


0 0 0

0 0 ∇vP

∇δQ 0 0

 . (6.46)

Proof. Recall

J c =

 0 J2

J3 0

 =


0 0 0

0 0 −T−1Λp∇vP

−T−1Λq∇δQ 0 0



=


0 0 0

0 −T−1Λp 0

0 0 −T−1Λq




0 0 0

0 0 ∇vP

∇δQ 0 0

 .

Since spectral norm is submultiplicative, we have,

‖J c‖ ≤
(

max(max
i
|λpi /τi|,max

i
|λqi/τi|)

)
‖Lc‖
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where Lc is the coupling part of the power flow Jacobian

Lc =


0 0 0

0 0 ∇vP

∇δQ 0 0

 . (6.47)

According to the bound (6.43) in Lemma 11, we have

|λ̃− λ| ≤ κ(X)‖J c‖ ≤ κ(X)

(
max(max

i
|λpi /τi|,max

i
|λqi/τi|)

)
‖Lc‖. (6.48)

Hence, we need κ(X)
(
max(maxi |λpi /τi|,maxi |λqi/τi|)

)
‖Lc‖ ≤ ε, and this can be achieved

by choosing λpi , λ
q
i and τi such that

max(max
i
|λpi /τi|,max

i
|λqi/τi|) ≤ ε/(κ(X)‖Lc‖). (6.49)

If λpi , λ
q
i and τi are chosen such that (6.49) holds, then the desired eigenvalue error bound

holds. This completes the proof.

6.6 Numerical Results

In this section, we test the loose physical interaction between active power P and reactive

power Q, and the practicality of Assumption 4. We also illustrate the validity of spectrum

decoupling in Lemma 9 as well as the stability certificates in Theorem 15.

Fig. 6.1 shows the `2-norm, i.e., maximum singular value of the four blocks of matrix L

defined in (6.5), namely, ‖∇δP‖, ‖∇vP‖, ‖∇δQ‖, and ‖∇vQ‖ in different IEEE standard

test systems. For each test case, matrix L is evaluated at the equilibrium point, which is

obtained from the converged load flow data in MATPOWER [69]. Accordingly, the values

of ‖∇vP‖ and ‖∇δQ‖ are significantly smaller than the values of ‖∇δP‖ and ‖∇vQ‖ in

all four test systems. This confirms the practicality of Assumption 4 and the loose physical
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Figure 6.1: Verifying the loose physical interaction between active power P and reactive
power Q.

interaction between active power P and reactive power Q.

Table 6.1 provides the dynamic parameters λp, λq, and τ as well as the variation of sta-

bility certificates in the aforementioned test systems. All these systems have a connected

underlying graph and nonzero transfer conductances. Recall that in Chapter 3, we inves-

tigated the stability of these systems based on the second-order swing equation model.

Recall also that we have verified the validity of the assumption ϕij ∈ (0, π),∀(i, j) ∈ A

with ϕij := θij − δ∗i + δ∗j at an equilibrium point (δ∗, 0, v∗). The last column of Table 6.1

verifies the practicality of this assumption again. Note that voltage magnitudes are always

positive, i.e., v∗ > 0 holds in any power grid. Next, let us define

Vi := −Qi +
n∑
j=1

(v∗i )
2Yij sin(θij − δ∗i + δ∗j )−

v∗i
λqi
,
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Table 6.1: Dynamic parameters, domain of stability certificates, and angle range.

Test case λp λq τ Dom(Vi) Dom(Si) Dom(ϕij/π)
IEEE 9-bus 0.1 0.5 0.1 [−2.4,−1.7] [− 44.5,−43.8] [0.46, 0.52]
IEEE 14-bus 0.1 0.5 0.1 [−2.7,−1.7] [− 46.62,−21.4] [0.41, 0.67]
IEEE 39-bus 0.1 0.5 0.1 [−8.07,−1.61] [− 34.46,−15.42] [0.30, 0.64]
IEEE 118-bus 0.04 0.2 0.09 [−6.9,−1.2] [− 135.6, 42.01] [0.42, 0.63]

Si := −Qi − (v∗i )
2Yii sin(θii)−

1

2τiλ
p
i

.

According to Theorem 15, if for all i ∈ N , we have Vi < 0 and Si ≤ 0, then the equilibrium

point of the third-order model is asymptotically stable. The 5th and 6th columns of Table

6.1 provide the domain of variations of Vi and Si, i.e., Dom(Vi) := [mini Vi,maxi Vi] and

Dom(Si) := [mini Si,maxi Si]. Accordingly, Vi < 0 holds for all test cases, certifying

that matrix J4 is a Hurwitz matrix. Moreover Si ≤ 0 holds for all test cases, except the

IEEE 118-bus system. Condition Si ≤ 0 certifies that matrix J1 is Hurwitz. We will see

shortly that the equilibrium points of all the test systems in Table 6.1 are asymptotically

stable. Therefore, the violation of Si ≤ 0 in the 118-bus system is due to the fact that

Theorem 15 provides sufficient conditions for asymptotic stability, and these conditions

may not be necessary in some cases. In Chapter 3, we discussed that even in such cases,

the above stability certificates can be used to quantitatively measure the degree of stability.

Next, Fig. 6.2 depicts the spectrum of J as well as J1 and J4. Recall that J1 corre-

sponds to the Jacobian of the second-order swing equation model (6.1a)-(6.1b) while J4 is

the Jacobian of the voltage dynamics (6.1c). In this figure, black asterisks, red circles, and

blue triangles respectively depict the eigenvalues of matrices J , J1 and J4. As can be seen,

the result of Lemma 9 holds with reasonable accuracy in all these test cases. In other words,

due to the loose coupling between active and reactive powers (see Fig. 6.1), the spectrum

of J is roughly equal to the union of spectrums of J1 and J4. This figure also confirms the

stability of equilibrium points in all test cases of Table 6.1, as all nonzero eigenvalues of

the third-order model are located in the left half plane.
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Figure 6.2: Spectrum of J , and its diagonal blocks J1 and J4. Verifying Lemma 9 and
Theorem 15

6.7 Final Remarks

This chapter is aimed at developing stability certificates for the third-order model of droop-

controlled inverters. According to the derived certificates, two inequalities should hold at

each node of the system. To check these inequalities at each node, we only require the

local information about the reactive power consumption, voltage magnitude and the pa-

rameters of the inverter at the node. Therefore, the proposed certificates can be utilized for

distributed and fast stability assessment an monitoring. In order to develop these certifi-

cates, we have made use of the loose physical linkage between active and reactive powers.

We have also investigated the role of coupling terms and the robustness of the decoupled

model under coupling perturbations. A worthwhile direction for future research would be

generalizing the developed stability certificates to higher-order models.
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Part II

Optimization with Stability Constraints
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CHAPTER 7

OPTIMIZATION-BASED LOAD SHEDDING IN SINGLE MICROGRIDS

This chapter proposes an adaptive optimization-based approach for under frequency load

shedding (UFLS) in microgrids (µGs) following an unintentional islanding. In the first

step, the total amount of load curtailments is determined based on the system frequency

response (SFR) model. Then, the proposed mixed-integer linear programming (MILP)

model is executed to find the best location of load drops. The novel approach specifies the

least cost load shedding scenario while satisfying network operational limitations. A look-

up table is arranged according to the specified load shedding scenario to be implemented

in the network if the islanding event occurs in the µG. To be adapted with system real-

time conditions, the look-up table is updated periodically. The efficiency of the proposed

framework is thoroughly evaluated in a test µG with a set of illustrative case studies.

7.1 Introduction

In recent years, the proliferation of distributed energy resources (DERs) has led to an in-

crease in on-site electricity service procurement for customers. This new trend has a set of

advantages and disadvantages over the conventional centralized power generation paradigm

in terms of reliability, cost of maintenance, economies of scale, resiliency, and sustainabil-

ity, to name a few [103]. Moreover, deploying DERs in a widespread and efficient manner

requires practical mechanisms to identify and resolve the challenges of integration. In this

context, microgrids (µGs) are emerging as a flexible way to aggregate DERs. The Depart-

ment of Energy (DOE) defines a µG as “a group of interconnected loads and DERs within

clearly defined electrical boundaries that acts as a single controllable entity with respect to

the grid. A µG can connect and disconnect from the grid to enable it to operate in both

grid-connected or island mode” [104].
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A µG may enter the island mode either intentionally or unintentionally. In the case of

intentional islanding, the exact time of the islanding is known and the required adjustments

in the µG power exchange with the upstream grid can be made to ensure the security of

the grid following the islanding. On the contrary, an unintentional islanding usually occurs

in µGs in the event of unforeseen faults in the upstream grid. IEEE 929-1988 Std. [105]

necessitates the disconnection of DERs once the unintentional islanding event happens in

the µG. Furthermore, IEEE 1547-2003 Std. [106] enforces DERs to detect the unintentional

islanding and cease energizing the µG within maximum 2 sec. following the islanding

event. Therefore, in the case of unintentional islanding, blackouts seem inevitable.

It goes without saying that the current practice of disconnecting the DERs following an

islanding event is not economical since it imposes immense costs on the µG. When a µG

with DERs is islanded, usually the frequency will change. The frequency will either go up

if there is excess generation or down if there is excess load. The former can be controlled

by reducing the output power of the distributed generators (DGs) or other DERs [107].

However, coping with the latter is more challenging. It is worth mentioning that in the

normal operating condition, photovoltaic (PV) systems usually use maximum power point

tracking and variable speed wind turbines optimize power coefficient (Cp) to produce max-

imum power. Thus, if all of the DGs are operating at maximum power and the frequency

still goes down, some loads have to be shed to bring the frequency back to the allowable

range. Nonetheless, it is possible that PV generators and wind turbines withhold produc-

tion (these resources are non-dispatchable, but curtailable), and this is a growing trend in

power system operation which provides further flexibility.

Conventional under frequency load shedding (UFLS) scheme is currently used as the

last resort in the bulk power system to stop declining frequency and to maintain the security

of the whole network following under frequency events (e.g., large generation rejection or

important tie-line disconnection) [108]. This method sheds a constant amount of load,

based on experience, at predetermined frequency threshold with intentional time delay.
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The main weakness of the conventional UFLS scheme is to drop a fixed amount of load at

certain locations regardless of the severity of the contingency and network conditions. To

address the weaknesses of conventional UFLS scheme, researchers have proposed adaptive

load shedding schemes, which can be classified into two main categories: decentralized and

centralized algorithms. Decentralized approaches use local voltage and frequency signals

at each bus to make the decision about the load shedding process at that bus. Indeed, using

these algorithms, the location, speed, and the amount of load curtailments are adjusted

adaptively to preserve the system stability following severe incidents.

Centralized methods, on the other hand, use the data gathered from the grid in order

to decide which load to be shed. The centralized schemes proposed in [109] drop loads

at different buses based on their VQ margin and post-fault voltage magnitude. Reference

[110] adopts both voltage and frequency information provided by phasor measurement

units (PMUs) to implement the appropriate load shedding scenario in the network. Other

centralized methods determine the amount and location of load drops according to the

complete post-fault information about the network [111, 112, 113, 114].

7.1.1 Main Results

Owing to the differences between µGs and bulk power systems, the load shedding mecha-

nism for a µG should be treated differently. µGs usually have small generators and, hence,

small inertia. As a consequence, the frequency declines more rapidly in µGs. This chap-

ter presents a centralized adaptive optimization-based load shedding scheme to curtail the

minimum amount of loads to preserve the µG stability following an unintentional islanding

event. The developed technique arranges a look-up table including the optimum amount

and location of load curtailments. The main contributions of the new methodology can be

summarized as follows:

1. Given a specific amount of power exchange between the µG and the upstream grid,

the optimal total amount of load shedding is determined. Specifically, this value
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depends on the response of both the generators and the loads to the islanding event.

These responses are reflected in the system frequency response (SFR) model as well

as the µG dynamic and static frequency limitations.

2. We developed a mixed-integer linear programming (MILP) model for obtaining the

amount of load drops at different buses. In the optimization model, an approximation

of the µG AC operational limitations are considered to ensure the network security

following the islanding event.

3. A hierarchical structure is proposed in this chapter so as to reduce both data and

communication requirements of the new centralized algorithm. To give more expla-

nation, the majority of the needed information are periodically updated and only a

practically tractable share is gathered in real time.

7.1.2 Chapter Outline

The rest of this chapter is organized as follows. Section 7.2 presents the overview of the

proposed load shedding algorithm. In Section 7.3, a method for estimating the total amount

of load curtailments is developed. Section 7.4 is devoted to introducing the optimization-

based load shedding scheme. Section 7.5 exhibits the efficiency of the novel approach

using an illustrative case study. Eventually, conclusion is given in Section 7.6.

7.2 Overview of the Proposed Load Shedding Algorithm

The general framework of the proposed load shedding algorithm is depicted in Fig. 7.1.

In the first step, the µG master controller (µGMC) gathers the network data periodically

(e.g., ∆T = 5 min.) and runs the state estimation (SE) in order to obtain the proposed

scheme’s input parameters (operating point of the µG, load and generation data, and µG

topology). Then, the optimum total amount of load curtailments is determined based on

the µG SFR model and the power exchange between the µG and the upstream grid. Note
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Figure 7.1: The general framework of the proposed load shedding algorithm.

that the obtained total amount of load drops satisfies the µG dynamic and static frequency

limitations. The total amount of load shedding along with the SE data are fed into the

proposed optimization model in order to arrange a look-up table including the location of

load drops as well as appropriate post load shedding strategies. On the other side, the status

of point of common coupling (PCC) circuit breaker is monitored using indication (i.e.,

binary) data. If an unintentional islanding happens and the amount of power mismatch is

greater than a specific value, the pre-specified load shedding scenarios will be implemented

in the µG. Detailed explanations about different parts of the proposed methodology are

provided in the following sections.

7.3 Optimal Amount and Threshold for Activation of Load Shedding

The aim of this section is to determine the minimum amount of load curtailments as well as

a threshold for activation of the load shedding process, while the µG dynamic and steady-

state frequency limitations are satisfied. The minimum dynamic and steady-state frequen-

cies are indicated in a typical frequency response of a µG following an unintentional is-
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event.

landing event, Fig. 7.2.

7.3.1 Frequency Response of the µG to an Islanding Event

As the first step, the frequency response of the µG to an islanding event should be specified.

To do so, we use the aggregated SFR model of the µG as shown in Fig. 7.3 [115], [32]. This

model is an equivalent single machine model of all DGs in the µG, where the frequency

of the center of inertia is considered by ignoring intermachine oscillations. In this model,

τT is the turbine time constant, τV is the governor valve time constant, H is the inertia

constant, D is the damping coefficient, and R is the governor droop control.

The transfer function 1
2Hs+D

in the forward path represents the swing equation of the

equivalent DG as well as the effects of the µG loads which are lumped into a single damping

constant D. Moreover, the transfer functions in the feedback loop are associated with the

governor droop, governor time constant, and turbine time constant of the equivalent DG

[32].

The transfer function of the adopted SFR model can be written as (7.1).

H (s) =
α1s

2 + α2s+ α3

s3 + β1s2 + β2s+ β3

, (7.1)
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Figure 7.3: Block diagram of the adopted SFR model.

where

α1 =
1

2H
,α2 =

1

2H

(
1

τT
+

1

τV

)
, α3 =

1

2HτT τV

β1 =
D

2H
+

1

τT
+

1

τV
, β2=

1

τT τV
+

D

2H

(
1

τT
+

1

τV

)
β3 =

1
R

+D

2HτT τV
.

Note that α1, α2, α3, β1, β2, β3 are auxiliary parameters.

7.3.2 Threshold for Activation of Load Shedding Scheme

Let PM be the µG pre-fault energy exchange with the upstream grid. In the wake of an

unintentional islanding, the governors and loads in the µG will respond to the incident,

thereby compensating for a portion of power mismatch. Consequently, load shedding is

not necessary in all cases. Specifically, the minimum amount of power mismatch which

would activate the load shedding process is obtained by (7.2).

PM
thr = min

{
PM
thr,SSF , P

M
thr,DF

}
, (7.2)

where PM
thr,SSF and PM

thr,DF are the steady-state and dynamic thresholds of PM , respec-

tively. Suppose that the µG is not equipped with any load shedding scheme. In this condi-

tion, if an unintentional islanding happens, the input power deviation of the SFR model in

Fig. 7.3 is defined as (7.3).

∆P (t) = −PMu (t) , ∆P (s) =
−PM

s
, (7.3)
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where u (t) is the unit step function. Hence, the Laplace form of the frequency deviation

function is obtained as (7.4).

∆f (s) = H (s) ∆P (s) =

F(s)︷ ︸︸ ︷
α1s

2 + α2s+ α3

s (s3 + β1s2 + β2s+ β3)

(
−PM

)
.

(7.4)

Accordingly, F (s) can be decomposed into three terms using partial-fraction decomposi-

tion as follows:

F (s) =
α1s

2 + α2s+ α3

s (s3 + β1s2 + β2s+ β3)
=
δ1

s
+

δ2

s−m1

+
δ3s+ δ4

s2 +m2s+m3

, (7.5)

where

m1 =
−1

3

(
β1 + c1 +

c2

c1

)
, m2 =

2

3

(
β1 −

c1

2
− c2

2c1

)
,

m3 =
1

9

[(
β1 −

c1

2
− c2

2c1

)2

+
3

4

(
c1 −

c2

c1

)2
]
,

c1 =
3

√
c3 +

√
c2

3 − 4c3
2

2
,

c2 = β2
1 − 3β2, c3 = 2β3

1 − 9β1β2 + 27β3,

δ1 =
α3

β3

, δ2 =
α1m

2
1 + α2m1 + α3

m3
1 +m2m2

1 +m3m1

,

δ3 = − (δ1 + δ2) , δ4 = (δ1β2 + δ2m3 − α2) /m1.

Note thatm1,m2,m3, c1, c2, c3, δ1, δ2, δ3, δ4 are all auxiliary parameters. Taking the inverse

Laplace transform of F (s), F (t) is given by:

F (t) =

(
δ1 + δ2e

m1t +
δ3e

−m2
2

t

cos (φ)
cos ($t+ φ)

)
u (t) , (7.6)

where

$ =

√
m3 −

m2
2

4
, cosφ =

$√
$2 +

(
m2

2
− δ3

δ4

)2
.
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Therefore, ∆f (t) can be written as (7.7).

∆f (t) = −PMF (t) . (7.7)

Steady-State Threshold of PM

Given ∆f (t) as (7.7), ∆fSSF (i.e., steady state frequency deviation) can be computed as

(7.8).

∆fSSF = lim
t→∞

∆f (t) =
(
−PM

)
δ1. (7.8)

The load shedding process will be triggered if the value of ∆fSSF exceeds a given threshold

∆fmax
SSF , that is: ∣∣∣∣(−PM

)
δ1

∣∣∣∣ ≥ |∆fmax
SSF | . (7.9)

Therefore, the minimum amount of PM which violates the steady-state frequency limita-

tion, and thus, triggers the load shedding process is acquired as follows:

PM ≥ |∆fmax
SSF |

(
D +

1

R

)
. (7.10)

Accordingly, we define the right hand side of (7.10) as the steady state threshold of PM .

Dynamic Threshold of PM

The time when the frequency nadir happens (i.e., when the lowest frequency is reached

before the frequency starts to recover) can be calculated by putting the first derivative of

∆f (t) equal to zero:

tmin = min

{
t : t > 0,

d∆f (t)

dt
= 0

}
. (7.11)

Here tmin is the time when the minimum dynamic frequency occurs. Let ∆fDF denote the

nadir value of frequency deviation, and ∆fmax
DF denote the given threshold for ∆fDF . Ac-
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cordingly, the second trigger for the load shedding process is associated with the violation

of nadir frequency limitation, that is:

∣∣∆f (tmin)
∣∣ ≥ |∆fmax

DF | . (7.12)

The solution to this inequality in terms of PM , will provide another criterion or lower

bound (denoted by PM
thr,DF in (7.2)) for the activation of the load shedding process.

7.3.3 Optimal Amount of Load Shedding

The minimum total amount of load curtailments satisfying both steady-state and dynamic

frequency limitations is calculated as (7.13).

pShed = max
{
pShedSSF , p

Shed
DF

}
, (7.13)

where pShedSSF and pShedDF are obtained as follows. Suppose that the load shedding scheme

is implemented in the µG with a delay of tShed, subsequent to the unintentional islanding

event. Indeed, tShed is the time instant when load shedding is implemented. Accordingly,

the input power deviation of the SFR model will be defined as (7.14).

∆P (t) = −PMu (t) + pShedu
(
t− tShed

)
. (7.14)

Taking the Laplace transform of ∆P (t) yields

∆P (s) =
1

s

(
−PM + pShede−t

Sheds
)
. (7.15)

Hence, the Laplace form of the frequency deviation function is obtained as (7.16).

∆f (s) = F(s)
(
−PM + pShede−t

Sheds
)
, (7.16)
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where F (s) is obtained from (7.5). Taking the inverse Laplace transform of (7.16), ∆f (t)

can be written as (7.17) below

∆f (t) = −PMF (t) + pShedF
(
t− tShed

)
, (7.17)

where F (t) is calculated in (7.6).

Load Shedding Value Based on the Steady-State Frequency Limitation

Given ∆f (t) as (7.17), ∆fSSF can be computed as (7.18) [111].

∆fSSF = lim
t→∞

∆f (t) =
(
−PM + pShedSSF

)
δ1. (7.18)

Therefore, the minimum total amount of load shedding satisfying the steady-state fre-

quency limitation (i.e., |∆fSSF | ≤
∣∣∆fmax

SSF

∣∣) is acquired as follows:

pShedSSF = PM − |∆fmax
SSF |

(
D +

1

R

)
. (7.19)

Load Shedding Value Based on the Dynamic Frequency Limitation

Similar to the previous section, the time when the frequency nadir happens is acquired

by solving (7.11), where ∆f (t) is calculated according to (7.17). By applying the nadir

frequency limitation (i.e., |∆fDF | ≤
∣∣∆fmax

DF

∣∣), the minimum amount of load shedding

satisfying dynamic frequency limitation (i.e., pShedDF ) is obtained. It should be noted that the

proposed method in this chapter is aimed at bringing the frequency to the permissible range

(according to ∆fmax
SSF and ∆fmax

DF ) with the minimum amount of load shedding. Obviously,

the frequency should finally bring back to 60 Hz, but this transition can happen with a

short delay (2-3 minutes) with the advantage of shedding fewer loads. Subsequent to load

shedding, DERs will try to bring the frequency back to 60 Hz. If this cannot happen (e.g.,

due to some limitations in the output of DERs), further loads will be curtailed. This idea
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is consistent with the load-frequency control mechanisms which are done in three different

successive steps (i.e., primary control, secondary control, tertiary control).

7.4 Optimization-Based Load Shedding Scheme

7.4.1 Basic Model

In this section, the basic model of the µG load shedding scheme is presented. Consider

a µG with the set of buses ΩN , the set of lines ΩL, set of DGs ΩG, and set of renewable

energy source (RES) ΩRES . For each bus i ∈ ΩN , let ΩBi denote the set of load blocks

at bus i. We also useMG andMRES to denote the mapping of the set of DGs and RESs

into the set of buses. The optimization model of the proposed load shedding scheme is as

follows:

min
∑
i∈ΩN

∑
b∈ΩBi

λV OLLib (1− xib) pDib (7.20)

subject to

∑
g:(g,i)∈MG

pGg +
∑

r:(r,i)∈MRES

pRESr −
∑
b∈ΩBi

xibp
D
ib =

∑
(i,j)∈ΩL

fP(i,j),∀i ∈ ΩN (7.21)

∑
g:(g,i)∈MG

qGg +
∑

r:(r,i)∈MRES

qRESr −
∑
b∈ΩBi

xibq
D
ib =

∑
(i,j)∈ΩL

fQ(i,j),∀i ∈ ΩN (7.22)

fP(i,j) = G(i,j)

(
V 2
i − ViVj cos

(
θi − θj

))
−B(i,j)ViVj sin

(
θi − θj

)
,∀ (i, j) ∈ ΩL (7.23)

fQ(i,j) = −B(i,j)

(
V 2
i − ViVj cos

(
θi − θj

))
−G(i,j)ViVj sin

(
θi − θj

)
,∀ (i, j) ∈ ΩL (7.24)

143



−fP,max
(i,j) ≤ fP(i,j) ≤ fP,max

(i,j) ,∀ (i, j) ∈ ΩL (7.25)

−fQ,max
(i,j) ≤ fQ(i,j) ≤ fQ,max

(i,j) ,∀ (i, j) ∈ ΩL (7.26)

fP(i,j) + fP(j,i) =
G(i,j)

G2
(i,j) +B2

(i,j)

∣∣I(i,j)

∣∣2 ≤ fP,Loss,max
(i,j)

=
G(i,j)

G2
(i,j) +B2

(i,j)

∣∣∣Imax
(i,j)

∣∣∣2,∀ (i, j) ∈ ΩL

(7.27)

V min
i ≤ Vi ≤ V max

i ,∀i ∈ ΩN (7.28)

pDib = pDib

(
κPIib
(
Vi/V

∗
i

)2
+ κPCib

(
Vi/V

∗
i

)
+ κPPib

)
,∀i ∈ ΩN , b ∈ ΩBi

(7.29)

qDib = qDib

(
κQIib
(
Vi/V

∗
i

)2
+ κQCib

(
Vi/V

∗
i

)
+ κQPib

)
,∀i ∈ ΩN , b ∈ ΩBi

(7.30)

−RD
g ≤ pGg − pG,0g ≤ RU

g ,∀g ∈ ΩG (7.31)

pG,min
g ≤ pGg ≤ pG,max

g ,∀g ∈ ΩG (7.32)

qG,min
g ≤ qGg ≤ qG,max

g ,∀g ∈ ΩG (7.33)

∑
i∈ΩN

∑
b∈ΩBi

(1− xib)pDib ≥ pShed (7.34)

xib ∈ {0, 1} ,∀i ∈ ΩN , b ∈ ΩBi . (7.35)
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The objective function, (7.20), is the load shedding cost in the µG, which should be mini-

mized. λV OLLib is the value of lost load, which is a socioeconomic parameter and varies for

different types of loads (e.g., industrial, commercial, agricultural, residential, and general

loads). xib is a binary variable indicating the load shedding status of the load at bus i ∈ ΩN

and block b ∈ ΩBi . We also assume pDib is the pre-fault active power consumption of the

load. The group of equations (7.21)–(7.24) is related to the AC power flow equations.

Here variables pDib and qDib are the active and reactive power consumption of the load at bus

i ∈ ΩN and block b ∈ ΩBi following the load shedding process. For each DG g ∈ ΩG,

variables pGg and qGg are active and reactive power output of the DG following the load

shedding process. For each RES r ∈ ΩRES , the parameters pRESr and qRESr are pre-fault

active and reactive power production of the RES obtained from state estimation. Moreover,

G(i,j) and B(i,j) are the conductance and susceptance of line (i, j) ∈ ΩL. Vi and θi are the

voltage magnitude and angle at bus i ∈ ΩN , following the load shedding process. Finally,

fP(i,j) and fQ(i,j) are the active and reactive power flow of line (i, j) ∈ ΩL.

Line flow limits and bus voltage constraints are modeled through (7.25)–(7.27) and

(7.28), respectively. Note that variable I(i,j) is the current flow of line (i, j) ∈ ΩL. Incorpo-

ration of a suitable load model for µG loads plays an important role in power system stabil-

ity studies [112]. Therefore, the active and reactive power demands at different buses are

modeled with voltage-dependent load model referred to as ZIP model, (7.29)–(7.30) [116].

In this model, the parameters κPIib , κ
PC
ib , and κPPib are coefficients of constant impedance,

constant current, and constant power terms in the active power load at bus i ∈ ΩN and

block b ∈ ΩBi . The parameters κQIib , κ
QC
ib , and κQPib denote similar coefficients for the cor-

responding reactive power load. Furthermore, parameter V ∗i denotes the pre-fault voltage

magnitude at bus i ∈ ΩN .

Constraints (7.31)–(7.33) revolve around DG’s ramp-up and ramp-down limits (7.31)

and active and reactive power generation limits of DGs (7.32)–(7.33). The parameters RU
g

and RD
g are ramp-up and ramp-down limits of DG g ∈ ΩG. Moreover, parameter pG,0g
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Table 7.1: Constituent Terms in the Linearized Power Flow Equations [117]

Term Approximation Max. Abs. Error
V 2
i 2Vi − 1 0.0025

ViVj cos
(
θi − θj

)
Vi + Vj + cos

(
θi − θj

)
− 2 0.0253

ViVj sin
(
θi − θj

)
sin
(
θi − θj

)
0.0659

sin
(
θi − θj

)
θi − θj 0.0553

denotes the active power generation of this DG before the load shedding process. The

minimum total load shedding constraint is expressed as (7.34), and finally, the status of

loads is characterized by a binary variable in (7.35).

7.4.2 Linearization of the Basic Model

The developed problem in Section 7.4.1 is a mixed-integer nonlinear programming (MINLP)

model. In order to attain computational efficiency, the nonlinear equations ought to be lin-

earized. The nonlinear terms xibpDib and xibqDib in (7.21)–(7.22) and (7.34) are the product

of a binary and continuous variables. We can linearize these terms with the big-M method

by introducing auxiliary semi-continuous variables (i.e., αPib
∆
= xibp

D
ib and αQib

∆
= xibq

D
ib ) and

the set of equations (7.36)–(7.39). In order to reduce the integrality gap in the linearized

version of the aforementioned constraints, Big-Ms (i.e., Mib and M ′
ib) should be as small as

possible, and it is usually challenging to determine correct values for them to use for each

specific implementation. However, in this particular application, we can set Mib = pDib and

M ′
ib = qDib , ∀i ∈ ΩN , b ∈ ΩBi . Note that these data (i.e., the upper bounds of active and

reactive loads) are usually available in any system.

Moreover, considering reasonable assumptions given in Table 7.1 [117], AC power

flow equations are replaced by their piecewise linear approximation form as (7.40)–(7.49).

Finally, considering the permissible range for bus voltage magnitudes at different buses

(i.e., 0.9 ≤ Vi, V
∗
i ≤ 1.1), (7.29)–(7.30) can be reasonably approximated by (7.50)–(7.51)

[112]. With these changes, the proposed model is transformed into an MILP model.
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− (1− xib)Mib ≤ αPib − pDib ≤Mib (1− xib) ,∀i ∈ ΩN , b ∈ ΩBi
(7.36)

−xibMib ≤ αPib ≤Mibxib,∀i ∈ ΩN , b ∈ ΩBi (7.37)

− (1− xib)M ′
ib ≤ αQib − qDib ≤M ′

ib (1− xib) ,∀i ∈ ΩN , b ∈ ΩBi
(7.38)

−xibM ′
ib ≤ αQib ≤M ′

ibxib,∀i ∈ ΩN , b ∈ ΩBi (7.39)

fP(i,j) = G(i,j)

(
Vi − Vj − ω(i,j) + 1

)
−B(i,j)

(
θi − θj

)
, ∀ (i, j) ∈ ΩL (7.40)

fQ(i,j) = −B(i,j)

(
Vi − Vj − ω(i,j) + 1

)
−G(i,j)

(
θi − θj

)
,∀ (i, j) ∈ ΩL (7.41)

ω(i,j) =
∑
p∈ΩP

s(i,j)pC
B
p , ∀ (i, j) ∈ ΩL (7.42)

θi − θj =
∑
p∈ΩP

s(i,j)pB
B
p ,∀ (i, j) ∈ ΩL (7.43)

∑
p∈ΩP

s(i,j)p = 1,∀ (i, j) ∈ ΩL (7.44)

∑
p∈ΩP

v(i,j)p = 1,∀ (i, j) ∈ ΩL (7.45)

s(i,j)p1 ≤ v(i,j)p1 ,∀ (i, j) ∈ ΩL (7.46)
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s(i,j)p ≤ v(i,j)p − v(i,j)(p−1),∀ (i, j) ∈ ΩL, p ∈ ΩP , p 6= {p1, pn} (7.47)

s(i,j)pn ≤ v(i,j)(pn−1),∀ (i, j) ∈ ΩL (7.48)

v(i,j)pn = 0, ∀ (i, j) ∈ ΩL (7.49)

pDib = pDib

(
κPIib

(
1 + 2 (Vi − V ∗i )

)
+ κPCib

(
Vi/V

∗
i

)
+ κPPib

)
, ∀i ∈ ΩN , b ∈ ΩBi (7.50)

qDib = qDib

(
κQIib

(
1 + 2 (Vi − V ∗i )

)
+ κQCib

(
Vi/V

∗
i

)
+ κQPib

)
, ∀i ∈ ΩN , b ∈ ΩBi . (7.51)

In (7.42), ω(i,j) is a piecewise linear approximation of cos(θi − θj). ΩP is the set of lin-

earization segments in this approximation. For each break point p ∈ ΩP , BB
p is value of

the break point and CB
p is the value of Cosine function at the point. Note for each line

(i, j) ∈ ΩL and break point p ∈ ΩP , s(i,j)p is an auxiliary positive variable and v(i,j)p is an

auxiliary binary variable.

7.5 Numerical Results

In this section, the performance of the proposed scheme for the µG load shedding problem

is thoroughly evaluated using a large-scale µG. All simulations were conducted on a PC

with Intel Core™ i5 CPU @2.67 GHz and 4 GB RAM. The optimization model was imple-

mented in the GAMS® IDE environment. The MILP and MINLP models were solved with

IBM ILOG CPLEX® and BONMIN solvers, respectively. The modified IEEE 33-bus test

system, which is a radial medium voltage (i.e., 12.66 kV) distribution system, is used as the

test µG in this chapter. The system topology and components are depicted in Fig. 7.4 and

the feeders’ and loads’ data are obtained from [118] and [119]. The test µG includes three

DGs, whose technical data are given in Table 7.2. Meanwhile, three wind turbines as RESs
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Table 7.2: Technical Data of DG Units

Parameter DG1 DG2 DG3 DG4

pDG,min (MW) 1 1 1 1
pDG,max (MW) 4 3.38 3.38 4.72
qDG,min (MW) −0.5 −0.5 −0.5 −0.5
qDG,max (MW) 2 2 2 2
RU (MW/min.) 2.4 2.4 2.4 2.4
RD (MW/min.) 2.4 2.4 2.4 2.4

Table 7.3: µG Dynamic Data [107]

Parameter Value Parameter Value
H (sec.) 2 τV (sec.) 0.1
D 1 τT (sec.) 0.5
R 0.05 tShed (msec.) 100

∆fmax
SSF (Hz) 0.2 ∆fmax

DF (Hz) 0.5

with a total capacity of 3 MW are installed at buses 14, 16, and 31. To have a more realistic

study, the load at each node of the µG is divided into three load blocks. Furthermore, five

different load types (i.e., general, residential, agricultural, commercial, and industrial) with

different VOLLs are taken into account, Fig. 7.5 [112]. Finally, the test system’s dynamic

data can be found in Table 7.3.

In this section, three different contingencies are simulated in the test system, Table

7.4. To evaluate the performance of the proposed methodology, it is compared with the

conventional UFLS scheme. The amount and setting of conventional UFLS relays have

been designed according to [120]. The simulation results are summarized in the following

figures and tables. According to Fig. 7.6, the amount of load shedding in the proposed

method is less than that of the conventional UFLS approach. Considering the SFR model in

the developed approach is the main reason of this observation. Similarly, the load shedding

cost associated with the proposed method is much less than that of the conventional UFLS

approach, Fig. 7.7. The reason is that in the conventional case, the locations of candidate

loads to be shed are fixed, despite the fact that the VOLL of different feeders changes

during the day. Therefore, in the conventional case, the interruption cost of dropped loads
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Abstract— 

I. CASE STUDY AND PERFORMANCE EVALUATION 

In this section, the performance of the proposed scheme for 

the µG load shedding problem is thoroughly evaluated using a 

large-scale µG. All simulations were conducted on a PC with 

Intel CoreTM i7 CPU @3.20 GHz and 4 GB RAM. The MILP 

optimization model was implemented in the GAMS®IDE 

environment [**] and the model was solved with IBM ILOG 

CPLEX ® 12.4 solver [***]. 

The modified IEEE 33-bus test system is a medium voltage 

(i.e., 12.66 kV) distribution network which is used as the test 

µG in this paper. The µG topology and components are 

depicted in Fig. 4 and the feeders’ data are obtained from 

[***]. Note that the switchable lines are also depicted in this 

figure by red dashed trajectories. The location and size of DGs 

are determined according to [***]. The technical 

characteristics of the DGs can be found in Tables II. 

Three RESs with a total capacity of 3 MW are installed at 

buses 14, 16, and 31. As µG buses are located in a small 

geographical region, the outputs of the three RESs are 

considered to be the same in our study. 

 
Fig. 4. Single line diagram of the simulated µG. 

 

Adoption of a reasonable model for representing the load 

behavior plays a prominent role in both voltage and frequency 

stability analyses. To have a more realistic study, the load at 

 
 

each node of the µG is divided into three load blocks. 

Moreover, five different load types (including general, 

residential, agricultural, commercial, and industrial) are taken 

into account. The contribution percentage as well as the VOLL 

of these loads are provided in Table III. 
 

TABLE II 
TECHNICAL CHARACTERISTICS OF DEPLOYED CONVENTIONAL DGS 

Unit 
Technical Constraints 

 (MW)G

i
P  

 
 (MW)G

i
P   (MVAr)G

i
Q   

 (MW)G

i
Q  R  H  

DG1 3 0.21 2.1 -2.1 2 2 

DG2 2 0.19 1.9 -1.9 2 2 

DG3 2 0.19 1.9 -1.9 2 2 

DG4 3 0.22 2.2 -2.2 2 2 

 
 

TABLE I 
VOLL FOR VARIOUS LOAD TYPES [22] 

Load Type VOLL ($/MW) Contribution Percentage (%) 

General 650 16.4 

Residential 190 6 

Agricultural 420 23.5 

Commercial 4365 11.6 

Industrial 5172 42.5 

 
 
 

A. Results and Discussion 

Considering a mip gap of 0%, the computation time was 20 

seconds which further illustrates the practical merits of the 

proposed framework in case of real-scale networks. 
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Figure 7.4: Single line diagram of the simulated µG [119].
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Figure 7.5: VOLL for different types of loads.

is not optimum around-the-clock. It is worth mentioning that in the proposed method,

although the loads are shed according to their VOLL, operational limitations play a more

important role. Indeed, the model is implemented in such a way that the load shedding cost

is minimized, and at the same time, the network operational limitations are preserved.

As can be seen in Fig. 7.8, for all unintentional islanding events, minimum frequency

of the µG is greater in the proposed approach due to its high speed in event indication

and implementing the load shedding scenario. Taking a glance at Fig. 7.9 yields that the

steady-state frequency of the µG following all contingencies is higher for the conventional

UFLS method. On the other hand, the steady-state frequency associated with the proposed

scheme is still in the safe range. Therefore, it can be inferred that the conventional method

sheds non-optimal amount of loads encountering different events. These results prove that
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Table 7.4: Simulated Contingencies

Contingency No. PM (MW) pShedSSF pShedDF

1 3 1.81 1.7
2 4 2.81 2.86
3 5 3.81 4.15
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Figure 7.6: Comparison between the proposed and conventional UFLS methods in terms
of load shedding.

the proposed method is capable of preserving the system from collapsing and moving it to

a new steady state and stable condition.

It is worth mentioning that keeping the bus voltages and line flows within the permis-

sible range would guarantee a secure µG operation following the load shedding process.

Therefore, if these constraints are violated in the network, the proposed methodology seeks

to return them to the permissible range by modifying the available control variables.

Table 7.5 provides the curtailed load blocks in contingency 2 for both the nonlinear and

linear optimization models, where differences are highlighted in red bold. In this contin-

gency, the optimal values of the objective function for the nonlinear and linear models are

$623.4 and $625.6, respectively. Accordingly, the load shedding costs are roughly equal

in these two models, and the curtailed loads are identical in most cases. Moreover, Table

7.6 shows a comparison between the computation time of the two models, which has been

obtained using a relative optimality criterion (i.e., Optcr) of 10−2. As can be seen, the com-

putation time is considerably diminished in the linear model, and this is highly effective in

precarious situations such as the load shedding process, since prompt measures can keep

electromechanical dynamics away from becoming stability threatening.
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Figure 7.7: Comparison between the proposed and conventional UFLS methods in terms
of load shedding cost.
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Figure 7.8: Comparison between the proposed and conventional UFLS methods in terms
of minimum dynamic frequency.

7.6 Final Remarks

The proliferation of µGs all over the world has been remarkable in recent years, and their

growth prospects in the future are astounding. µGs can improve the resilience of the grid

based on their self-supply and island-mode capabilities. However, when a µG uninten-

tionally enters the island mode, a considerable number of customers (or even all of them)

are disconnected from the grid in order to maintain the load-generation equilibrium. New

methodologies are therefore required to optimize the load shedding process in µGs. In

this chapter, an optimization-based load shedding model is presented as a promising tool

to attain this goal. Mathematically, the load shedding model is formulated as a MILP

problem. The structure of the proposed scheme reduces its communication requirements

which is a major challenge in practice. The most relevant aspects of the proposed load

shedding scheme are illustrated using a large-scale case study based on a 33-bus µG. It

was observed that the proposed method sheds less amount of load in comparison with
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Figure 7.9: Comparison between the proposed and conventional UFLS methods in terms
of steady-state frequency.

the conventional UFLS approach. Meanwhile, the developed structure outperformed the

conventional scheme in terms of load shedding cost and minimum dynamic frequency fol-

lowing the load shedding process. Future studies could reformulate power flow equations

for radial systems (since the complex power flow equations presented in this chapter are not

necessary for radial networks). Moreover, an unbalanced power flow model can be adopted

to make the proposed load shedding method more practical in real world applications.
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Table 7.5: Comparison Between the Linear and Nonlinear Load Shedding Optimization
Models

 1

  

Abstract— 

I. CASE STUDY AND PERFORMANCE EVALUATION 

This is the table 

 

 

 

 

 

 

 
Nonlinear Model Linear Model 

 Load Block # Load Block # 

Bus # B1 B2 B3 B1 B2 B3 

2 1.06     1.06     

3   0.96     0.96   

5   0.65     0.65   

6     0.63       

7           2.22 

10   0.70 0.69   0.70 0.68 

11         0.51   

12   0.67     0.67   

15   0.75 0.71   0.74   

16     0.68 0.74   0.67 

17     0.69     0.68 

18       1.03     

20 0.95   0.95 0.95   0.95 

21     0.95     0.95 

22 0.95     0.94     

24     4.62     4.61 

25 4.72     4.72     

28   0.66     0.66   

30 2.16     2.16     

32     2.42       

33 0.67 0.66 0.70 0.67   0.69 

 

that the switchable lines are also depicted in this figure by 

red dashed trajectories. The location and size of DGs are 

determined according to [***]. The technical characteristics of 

the DGs can be found in Tables II. 
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Table 7.6: Computation Time of the Linear and Nonlinear Models

Contingency No. Nonlinear model Linear model
1 93 sec. 9 sec.
2 214 sec. 7 sec.
3 40 sec. 7 sec.
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CHAPTER 8

STABILITY-CONSTRAINED OPTIMIZATION IN MULTI-MICROGRIDS

High penetration of distributed energy resources (DERs) is transforming the paradigm in

power system operation. The ability to provide electricity to customers while the main

grid is disrupted has introduced the concept of microgrids (µGs) with many challenges and

opportunities. Emergency control of dangerous transients caused by the transition between

the grid-connected and island modes in µGs is one of the main challenges in this context.

To address this challenge, this chapter proposes a comprehensive optimization and real-

time control framework for maintaining frequency stability of multi-µG networks under an

islanding event and for achieving optimal load shedding and network topology control with

AC power flow constraints. We also develop a strong mixed-integer second-order cone

programming (MISOCP)-based reformulation and a cutting plane algorithm for scalable

computation. We believe this is the first time in the literature that such a framework for

multi-µG network control is proposed, and its effectiveness is demonstrated with extensive

numerical experiments.

8.1 Introduction

Microgrids (µGs), as building blocks of smart distribution grids, provide a unique infras-

tructure for integrating a wide range of distributed energy resources (DERs) with different

static and dynamic characteristics. They are able to operate in island mode and energize a

portion of the grid while the main grid is down. This islanding capability of µGs is highly

beneficial for both customers and electric utilities, especially in areas with frequent electri-

cal outages. Although dynamic islanding is one of the basic objectives of building a µG,

IEEE Std. 929-2000 [14] and IEEE Std. 1547.7-2013 [15] mandate that DERs shall detect

the unintentional island mode and cease to energize the grid within two seconds, mainly
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due to safety concerns as well as complying with conventional control/protection schemes.

Operation of DERs during intentional islanding has also been under consideration for fu-

ture revisions of IEEE Std. 1547. Based on the current practices and standards, blackouts

in µGs seem inevitable in the event of islanding (especially an unscheduled islanding which

may occur subsequent to detection of abnormal conditions at the interconnection(s)).

Intuitively, the disconnection of DERs is not an ideal solution, particularly in a restruc-

tured environment where electric utilities compete to provide a more reliable service to

customers. In this context, a recent draft standard for interoperability of DERs in 2017 has

provided some guidance on scheduled and unscheduled islanding processes [121]. This

draft standard defines an intentional local island as any portion of the grid that is totally

within the bounds of a local power grid (e.g., a µG), and further states that DERs may have

to adjust several settings which shall be enabled only when the intentional island is isolated

from the main grid. This standard calls for adaptive protection and control schemes to be

used in such circumstances. This chapter is motivated by this need, and is aimed at provid-

ing a practical solution to the islanding process in modern distribution networks which are

comprised of multiple µGs, referred to as multi-microgrid (multi-µG) networks.

In a similar vein, [122, 123, 124] acknowledge that the current practice of disconnect-

ing DERs following a disturbance is no longer a reliable solution. Specifically, reference

[122] proposes an under frequency load shedding (UFLS) scheme to be used subsequent to

islanding in a distribution system. This scheme sheds an optimal number of loads based on

a set of criteria including frequency, rate of change of frequency, customers’ willingness to

pay, and load histories. The authors in [123] investigate autonomous operation of a distri-

bution system as an individual µG. The paper demonstrates the transient behavior of such

a µG due to preplanned and unplanned islanding processes. The authors also emphasize

that future studies should develop control strategies/algorithms for multiple electronically

interfaced DERs to achieve optimum response in terms of stability. In [124], a controller

for distributed generation (DG) inverters is designed for both grid-connected and inten-
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tional islanding modes. Moreover, an islanding-detection algorithm is developed in order

to switch between the two modes.

On the other hand, the operation of multi-µGs has been studied in the literature from

different perspectives, such as their on-line dynamic security assessment [125], interactive

control for guaranteed small signal stability [126], transient stability assessment [127],

electricity market operator design [128], hierarchical outage management [129], and self-

healing [130] to name a few. Another set of literature that are conceptually related to our

work are the recent studies on different relaxations of AC power flow equations [131].

8.1.1 Main Results

In this chapter, we propose a novel framework for the resilient operation of multi-µG net-

works after a scheduled or unscheduled islanding in a distribution system. The framework

is strategically designed in two parts. In the first part, we develop a near real-time decision

support tool which is used to determine the optimal reconfiguration of the multi-µG net-

work, cooperation between µGs (sharing their resources), new operating point of dispatch-

able DERs, and emergency load curtailments (if necessary). The second part of the frame-

work pertains to the real-time monitoring and control of multi-µGs based on the outcomes

of the decision support tool. The main contributions of this chapter are summarized below.

• We formulate the real-time resilient operation, including optimal power flow, op-

timal load shedding, and optimal topology reconfiguration, of a multi-µG network

as a mixed-integer nonlinear programming (MINLP) problem. Then, we propose

a mixed-integer second order cone programming (MISOCP) relaxation to this prob-

lem, which considerably improves the computational efficiency of our control frame-

work and renders it scalable in practical systems.

• We derive necessary constraints for keeping the nadir and steady state frequency

of the network within the permissible ranges, and introduce a new reformulation
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for frequency limitation constraints. This reformulation implicitly guarantees the

frequency stability of the network after dangerous transients such as islanding.

• We develop a set of valid inequalities and a separation scheme for incorporating the

frequency constraints in the operation of a multi-µG network, and based on that, we

establish a cutting-plane approach to eliminate the frequency violations in a compu-

tationally effective way.

8.1.2 Chapter Outline

The rest of this chapter is organized as follows. Section 8.2 introduces a resilient multi-

µG network and gives an overview of the proposed scheme. The frequency response of

multi-µGs to an islanding process is discussed in Section 8.3. In Section 8.4, a basic

MINLP model for the real-time resilient operation of multi-µGs is presented. Section 8.5

is devoted to solution methodology, including the MISOCP relaxation and cutting plane

algorithm. Section 8.6 exhibits the efficiency of the novel approach using an illustrative

case study, and finally, the chapter concludes with Section 8.7.

8.2 Resilient Operation of Multi-Microgrids

8.2.1 Structure of a Multi-Microgrid Network

A distribution network may experience a scheduled islanding due to several reasons such

as enhanced reliability, economic dispatch decisions for self-supply, pre-emptive action

prior to inclement weather, etc. Moreover, unscheduled islanding happens subsequent to

the detection of abnormal conditions at the interconnection(s) [121]. In either case, the

distribution system can be further partitioned into multiple µGs, thereby improving the

resilience of the system. Fig. 8.1 depicts a distribution network under such circumstances.

As can be seen in this example, the distribution network is composed of four µGs, where

each µG is connected to the rest of the system through the point of common coupling
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(PCC). Note that µGs in a multi-µG network are commonly integrated via voltage-source-

converter-(VSC)-based interfaces at the PCC, and the behavior of each µG is characterized

by the control scheme of its interface [132]. PCCs are commonly equipped with intelligent

electronic devices (IEDs) with synchrophasor capability [125]. A communication network

connects the IEDs to the distribution management system (DMS).

In Fig. 8.1(a), a set of buses (white fill in the figure), namely linking buses, are not

categorized to any µG. Additionally, the lines (dashed/dotted in Fig. 8.1(a), or equivalently

l1 to l5 in Fig. 8.1(b)) between such buses, namely linking lines, are equipped with switch-

ing relays, enabling various configurations for the multi-µG network. This portion of the

distribution network that consists of the linking buses and linking lines is called the linking

grid. Fig. 8.1(b) illustrates the linking grid associated with the multi-µG network of Fig.

8.1(a). Finally, the buses by which each µG is connected to the linking grid (gray fill in the

figure) are called boundary buses.

8.2.2 Overview of the Proposed Resilient Operation Scheme

The general framework of the proposed resilience management scheme is illustrated in Fig.

8.2. This framework can be divided into two stages: i) near real-time decision support tool,

and ii) real-time monitoring and control. In the first stage, the distribution system operator

(DSO) leverages the state estimation (SE) module and obtains the input parameters of an

optimization model. These data include the generation/consumption level of DERs/Loads,

real and reactive power exchange at PCCs, and the status of the circuit breakers (i.e., net-

work topology). Subsequently, the optimization model is solved and the following resilient

operation strategies are determined: optimal configuration of the linking network, cooper-

ation between µGs (sharing their DERs), new operating point of dispatchable DERs, and

emergency load curtailments (if necessary). Note that the frequency limitations of the sys-

tem are embedded in the optimization model to ensure the frequency stability of multi-µGs

following the islanding event. In the next step, a look-up table is generated based on the
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Figure 8.1: Schematic diagram of a distribution system under islanding. (a) Multi-µG net-
work. (b) Linking grid.

results of the optimization model. On the other side, in the second stage, the status of

the main circuit breaker (i.e., the islanding status of the distribution network) is monitored

using indication data. If an unscheduled/scheduled islanding happens, the pre-specified

strategies will be implemented in the multi-µG network.

The principal focus of this chapter is on the first stage (left-hand side of Fig. 8.2),

i.e., developing a near real-time decision support tool that will be thoroughly discussed in

the following sections. The second stage (right-hand side of Fig. 8.2) corresponds to the

mechanisms for implementing such decisions. The details of these mechanisms, which are

enabled by synchrophasor technology, go beyond the scope of this chapter.
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Figure 8.2: The general framework of the proposed resilient operation approach.

8.3 Frequency Response of Multi-Microgrids Subsequent to Islanding

In this section, we will derive the steady-state and nadir frequencies of a multi-µG network

subsequent to an imbalance between real power generation and consumption. Later in Sec-

tion 8.4.5, we will use these two metrics to construct our proposed frequency constraints,

ensuring that they will remain in the permissible range during the transition between the

grid-connected and island modes.

8.3.1 Inertial Response

As mentioned earlier, µGs in a multi-µG network are integrated via VSC-based interfaces at

the PCC. Meanwhile, VSC-based interfaces are controlled in such a way that they emulate

the behavior of conventional synchronous machines [127]. Inspired by this fact, let us first

focus on inertial response of µGs. SupposeM is the set of all µGs in the multi-µG network.

The artificial swing equation describes the inertial frequency dynamics of each m ∈M,

d∆ωm
dt

=
1

2Hm

(
∆PM

m −∆PE
m

)
, (8.1)
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where ∆ωm is the frequency deviation in p.u.; Hm is the artificial inertia constant in sec-

onds; ∆PM
m and ∆PE

m are the mechanical and electrical power deviations in p.u., respec-

tively. Based on (8.1), modeling interconnected µGs can be realized by the so-called aggre-

gation method [32]. Without loss of generality, we assume that for each m ∈M, equation

(8.1) is per-unitized based on a common power, SBase. We define the center of inertia (COI)

frequency as

ωCOI :=

∑
m∈M

Hmωm∑
m∈M

Hm

. (8.2)

Proposition 10. The swing equation of a fictitious equivalent generator whose frequency

is equal to ωCOI has the same form as

d∆ωCOI
dt

=
1

2Ha

(
∆PM

a −∆PE
a

)
, (8.3)

where Ha, ∆PM
a , and ∆PE

a are defined below

Ha :=
∑
m∈M

Hm, (8.4)

∆PM
a :=

∑
m∈M

∆PM
m , ∆PE

a :=
∑
m∈M

∆PE
m . (8.5)

Proof. A complete proof of this basic result cannot be easily located in the literature.

Therefore, we provide one here. Consider a small deviation from the initial value in (8.2),

i.e., ∆ωCOI := ωCOI − ω0
COI and ∆ωm := ωm − ω0

m, and take derivative of its both sides

with respect to t:

d∆ωCOI
dt

=

∑
m∈M

Hm
d∆ωm
dt∑

m∈M
Hm

. (8.6)

Then, re-arrange (8.1) as

Hm
d∆ωm
dt

=
1

2

(
∆PM

m −∆PE
m

)
. (8.7)
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Now substitute (8.7) in (8.6), as

d∆ωCOI
dt

=

∑
m∈M

1
2

(
∆PM

m −∆PE
m

)
∑
m∈M

Hm

. (8.8)

With the definition of (8.4)-(8.5), we get (8.3).

In the rest of the chapter, the COI frequency is simply denoted by ω instead of ωCOI .

8.3.2 Droop Response

Now we construct the aggregated system frequency response (SFR) model of a multi-

µG network as depicted in Fig. 8.3. In this model, the transfer function 1
2Has+D

in the

forward path represents the swing equation (8.3) as well as the frequency-dependent be-

havior of the loads which is lumped into a single damping constant D. In this chapter,

this damping constant D is assumed to remain unchanged while aggregating different µGs.

Different feedback loops in Fig. 8.3 model the contribution of each µG to the droop control

of the multi-µG network [32]. For each m ∈M, Rm is the droop constant of the VSC; Tm

and T ′m are the corresponding time constants.

1
2Has+D

1+T1s
1+T ′

1s
1
R1

1+Tms
1+T ′

ms
1

Rm

∆Pa(s) ∆ω(s)

−−

Figure 8.3: Block diagram of the aggregated SFR model.

In general, the order of this SFR model is |M| + 1. In particular, however, we are

interested in the steady state and nadir outputs of the SFR model. It can be shown that the

steady state output of this general-order model is not a function of the time constant T ′m.

Moreover, the results of a sensitivity analysis on the parameters of a similar SFR model
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confirms that the nadir frequency is less sensitive to T ′m [133]. Accordingly, we assume

identical values of T ′m for all µGs in the multi-µG network, i.e., T ′ := T ′m,∀m ∈ M.

Consequently, the transfer function of the aggregated SFR model can be written as (8.9),

with the additional parameters defined in (8.10):

H(s) =
1 + T ′s

2HaT ′ (s2 + 2ξωns+ ω2
n)
, (8.9)

ωn :=

√
D + 1/Ra

2HaT ′
, ξ :=

2Ha + T ′D +Ka

2
√

2HaT ′
(
D + 1/Ra

) , (8.10a)

1

Ra

:=
∑
m∈M

1

Rm

, Ka :=
∑
m∈M

Tm
Rm

, (8.10b)

where ∆Pa(s) is the disturbance power in the multi-µG.

8.3.3 Steady State and Nadir Frequencies at COI

In general, the dynamic behavior of the aggregated SFR model can be described by two

parameters ξ and ωn. If ξ = 0, we will have an oscillatory system where the transient

response will not die out. If ξ ∈ (0, 1), the transient frequency response is oscillatory

(under-damped). When ξ = 1, we are in the critically-damped condition, and finally, if

ξ ∈ (1,+∞), the frequency response will be over-damped. We shall now analyze the

frequency response of the system to the unit-step input, i.e., ∆Pa(s) = 1/s for three cases:

the under-damped, critically-damped, and over-damped cases.

Proposition 11. In the under-damped case, the steady state and nadir COI frequencies

of a multi-µG network after a unit-step disturbance can be obtained by (8.11) and (8.12),

respectively, i.e.,

∆ω(tss) =
1

D + 1/Ra

, (8.11)
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∆ω
(
tN
)

=
1

D + 1/Ra

(
1 +

√
T ′ −RaKa

2HaRa

e−ξωnt
N

)
, (8.12)

where tN in (8.12) can be calculated as follows:

tN =



1
ωr

(
π − tan−1

(
ωrT ′

1−ξωnT ′

))
, if ξωnT ′ < 1,

π
2ωr
, if ξωnT ′ = 1,

1
ωr

(
tan−1

(
ωrT ′

ξωnT ′−1

))
, if ξωnT ′ > 1.

(8.13)

Additionally, in the critically-damped and over-damped cases, the nadir COI frequency is

equal to the steady state COI frequency, and both can be calculated according to (8.11).

Proof. In the under-damped case, the poles of the system are s1,2 = −ξωn ± jωr, where

ωr = ωn
√

1− ξ2 is the damped natural frequency and j =
√
−1 is the imaginary unit. In

this case, the unit-step response is

∆ω(t) =
1

2HaT ′

( 1

ω2
n

+
e−ξωnt

ωr

(
T ′ sin(ωrt)

− 1

ωn
sin(ωrt+ φ)

))
,

(8.14)

where φ := tan−1(

√
1−ξ2
ξ

). By definition, the steady state frequency is equal to ∆ω(tss) :=

lim
t→+∞

∆ω (t), which leads to (8.11). The time when the frequency nadir happens (when the

lowest frequency is reached before the frequency starts to recover) can be calculated by

solving the optimization problem tN := min{t : d∆ω(t)
dt

= 0, t ∈ R++}. The closed-form

solution to this problem is equal to (8.13). Additionally. substitution of tN in (8.14) yields

(8.12). Observe that when the two poles of the transfer function (8.9) are nearly equal,

i.e., s1,2 = −ωn, the system is approximated by a critically-damped one. Moreover, in the

over-damped case, the two poles of the transfer function are negative real and unequal, i.e.,

s1,2 = −ξωn ± ωn
√
ξ2 − 1. In the last two cases, no overshoot or undershoot is observed

165



in the transient response of the system, and consequently, the nadir frequency is equal to

the steady state frequency which is identical to (8.11).

The interested reader is referred to Proposition 3 in [46] for similar results under dif-

ferent settings. Now we are ready to adopt the steady-state and nadir frequencies at COI in

order to build our optimization model for the resilient operation of a multi-µG network.

8.4 Resilient Operation Problem Formulation

Consider a linking grid Ñ = (B̃, L̃), where B̃ and L̃ denote the set of linking buses and

linking lines, respectively. We assume that the distribution network under study is com-

prised of a set of µGs, i.e., m ∈ M, where each µG is modeled as a disjoint network

Nm = (Bm,Lm). Without loss of generality, we assume only one PCC for each µG, and

the corresponding boundary bus is denoted by B̂. In this section, we aim to introduce an

optimization model which is able to determine the optimal resilience improvement strat-

egy, including optimal load shedding and network topology control with AC power flow,

in the wake of a scheduled/unscheduled islanding in a multi-µG network. Our model is

formulated as follows.

8.4.1 Objective Function

The objective function (8.15) is to minimize the total load shedding cost in all µGs:

min
∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi, (8.15)

where λV OLLmi is the value of lost load (VOLL) in µG m and bus i; p̄Dmi is the pre-islanding

active power consumption obtained from state estimation (SE); and xmi is a binary variable

indicating the status of such a load after islanding happens.

166



8.4.2 Real-Time AC Power Flow Limitations in µGs

The set of constraints (8.16)-(8.25) which are defined for each m ∈ M guarantee the

AC power flow security of each µG after the islanding event. Let Gmij and Bmij be the

conductance and susceptance of line (i, j) in µG m; and fPmij and fQmij be the active and

reactive flow of that line. Additionally, let pGmg and qGmg be the active and reactive power

output of DER g in µG m; and similarly, pDmi and qDmi be the active and reactive power

consumption of the load at bus i in µG m. We define Vmi and θmi as the voltage magnitude

and angle of bus i in µG m. Finally, ∆Pm and ∆Qm denote the active and reactive power

exchange between the µGm and the linking grid (through the VSC). Based on this notation,

constraints (8.16) and (8.17) model the active and reactive power balance within each µG.

Similarly, constraints (8.18) and (8.19) are related to the active and reactive power balance

at the boundary buses. Note thatO in these equations is the mapping of the set of DERs into

the set of buses. The set of equations (8.20)-(8.23) constitute the AC power flow equations,

line flow limits, and voltage bounds in each µG. Finally, active and reactive power demands

at different buses are modeled by the voltage-dependent ZIP model (8.24) and (8.25), where

κPI , κPC , and κPP denote the coefficients of constant impedance, constant current, and

constant power terms in active power loads, respectively. These coefficients are defined in

the same way for reactive power loads.

∑
g:(g,i)∈Om

pGmg − xmipDmi =
∑

(i,j)∈Lm

fPmij,∀i ∈ Bm (8.16)

∑
g:(g,i)∈Om

qGmg − xmiqDmi =
∑

(i,j)∈Lm

fQmij,∀i ∈ Bm (8.17)

∑
g:(g,i)∈Om

pGmg − xmipDmi + ∆Pm =
∑

(i,j)∈Lm

fPmij, ∀i ∈ B̂m (8.18)

∑
g:(g,i)∈Om

qGmg − xmiqDmi + ∆Qm =
∑

(i,j)∈Lm

fQmij,∀i ∈ B̂m (8.19)
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fPmij =Gmij

(
V 2
mi − VmiVmj cos

(
θmi − θmj

) )
−BmijVmiVmj sin

(
θmi − θmj

)
, ∀ (i, j) ∈ Lm

(8.20)

fQmij =−Bmij

(
V 2
mi − VmiVmj cos

(
θmi − θmj

) )
−GmijVmiVmj sin

(
θmi − θmj

)
, ∀ (i, j) ∈ Lm

(8.21)

fPmij + fPmji ≤ fmax
mij , ∀(i, j) ∈ Lm (8.22)

V min
mi ≤ Vmi ≤ V max

mi , ∀i ∈ (Bm ∪ B̂m) (8.23)

pDmi = pDmi

(
κPImiV

2
mi + κPCmi Vmi + κPPmi

)
,∀i ∈ (Bm ∪ B̂m) (8.24)

qDmi = qDmi

(
κQImiV

2
mi + κQCmi Vmi + κQPmi

)
,∀i ∈ (Bm ∪ B̂m). (8.25)

8.4.3 Real-Time AC Power Flow Limitations in the Linking Grid

Similarly, this group of constraints are associated with the AC power flow limitations of the

linking grid. Here, line switching is available, therefore, Zmk is a binary variable indicating

the status of the linking line (m, k). It is worth mentioning that connection/disconnection

of µGs to the linking grid is performed through the switchgear located at PCCs and line

switching in the linking grid is commonly available through the distribution automation

switches and isolators [125]. Let Mmk be a sufficiently large positive number. In these

constraints, in terms of notation, we use tilde over the variables and parameters to make

the difference between the linking grid and the rest of the distribution grid. In particular,

equations (8.26) and (8.27) model the active and reactive power balance at external buses.

The group of constraints (8.28)-(8.35) are associated with the AC power flow equations

(where the lines are allowed to be switched on and off), line flow limits, and voltage bounds

in the linking grid.

−∆Pm =
∑

(m,k)∈L̃

f̃Pmk, ∀m ∈M (8.26)
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−∆Qm =
∑

(m,k)∈L̃

f̃Qmk, ∀m ∈M (8.27)

−f̃Pmk + G̃mk

(
Ṽ 2
m − ṼmṼk cos(θm − θk)

)
− B̃mkṼmṼk sin(θm − θk)

+ (1− Zmk)Mmk ≥ 0, ∀(m, k) ∈ L̃

(8.28)

−f̃Pmk + G̃mk

(
Ṽ 2
m − ṼmṼk cos(θm − θk)

)
− B̃mkṼmṼk sin(θm − θk)

− (1− Zmk)Mmk ≤ 0, ∀ (m, k) ∈ L̃

(8.29)

−f̃Qmk − B̃mk

(
V 2
m − ṼmṼk cos(θm − θk)

)
− G̃mkṼmṼk sin(θm − θk)

+ (1− Zmk)M ′
mk ≥ 0, ∀ (m, k) ∈ L̃

(8.30)

−f̃Qmk − B̃mk

(
V 2
m − ṼmṼk cos(θm − θk)

)
− G̃mkṼmṼk sin(θm − θk)

− (1− Zmk)M ′
mk ≤ 0, ∀ (m, k) ∈ L̃

(8.31)

− f̃P,max
mk Zmk ≤ f̃Pmk ≤ f̃P,max

mk Zmk, ∀ (m, k) ∈ L̃ (8.32)

− f̃Q,max
mk Zmk ≤ f̃Qmk ≤ f̃Q,max

mk Zmk, ∀ (m, k) ∈ L̃ (8.33)

f̃Pmk + f̃Pkm ≤ f̃P,Loss,max
mk , ∀ (m, k) ∈ L̃ (8.34)

Ṽ min
m ≤ Ṽm ≤ Ṽ max

m , ∀i ∈ B̃, m ∈M. (8.35)
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8.4.4 DER Output Limitations and Binary Variable Declaration

Finally, (8.36)-(8.39) pertain to the limitations on the output of the generators and the

declaration of binary variables. In these constraints, RD, RU , and pG,0 are the ramp-down,

ramp-up, and pre-islanding active power generation of DERs, respectively.

−RD
mg ≤ pGmg − pG,0mg ≤ RU

mg, ∀g ∈ Gm,m ∈M (8.36)

pG,min
mg ≤ pGmg ≤ pG,max

mg , ∀g ∈ Gm,m ∈M (8.37)

qG,min
mg ≤ qGmg ≤ qG,max

mg , ∀g ∈ Gm,m ∈M (8.38)

x ∈ {0, 1}|M|×|B∪B̂| , Z ∈ {0, 1}|L̃| . (8.39)

8.4.5 Frequency Constraints and Reformulation

In Section 8.3, we developed the steady-state and nadir frequencies of a multi-µG network

subsequent to an imbalance between real power generation and consumption. Indeed, these

are two important metrics which are employed to ensure the frequency security of the

network. Therefore, we aim to keep these two metrics within the permissible range while

the multi-µG network moves from the grid-connected mode to the island mode. Note

that subsequent to the islanding process, the distribution network might be partitioned into

different components (each component might include one or more µGs), and the frequency

security limitations must be met for each component separately. We propose the following

constraints for ensuring the frequency security of the multi-µG network for each S ⊆

Ñ ,S 6= ∅:

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ IM (S is connected) + IM (S is isolated) , (8.40a)

∆ωmax
N ≥ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)
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− IM (S is connected)− IM (S is isolated) , (8.40b)

∆ωmin
ss ≤ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ IM (S is connected) + IM (S is isolated) , (8.40c)

∆ωmax
ss ≥ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

− IM (S is connected)− IM (S is isolated) , (8.40d)

where IM is the indicator function whose value is equal to 0 if the condition is satisfied,

and equal to a sufficiently large number, otherwise. Moreover, αS and βS are the nadir

and steady state values of the unit-step frequency response, which are calculated in (8.12)

and (8.11), respectively. The use of subscript S in these two parameters emphasizes that

they should be calculated for each S ⊆ Ñ , that is, the associated parameters Ha, Ra, and

Ka are obtained by (8.4) and (8.10b), where m ∈ M is replaced by m ∈ B̃S . Note that

∆ωmin
N /∆ωmax

N and ∆ωmin
ss /∆ωmax

ss denote the lower/upper bound on the nadir and steady

state frequencies, respectively. Moreover, ∆P 0
m denotes the pre-islanding power exchange

between µG m and the linking grid. In (8.40), the first term on the right-hand side of the

inequities is indeed the multiplication of the unit-step response by the post-islanding net

power mismatch (i.e., pre-islanding power exchange minus the amount of post-islanding

load shedding). Let us further investigate these frequency security constraints by defining

L̃(S) := {(m, k) ∈ L̃ : m, k ∈ B̃S , m > k}, (8.41a)

δ(S) := {(m, k) ∈ L̃ : m ∈ B̃S , k /∈ B̃S , m > k}. (8.41b)

Given a subgraph S of Ñ , L̃(S) in (8.41a) denotes the set of edges in the subgraph S, i.e.,

the set of edges in L̃ whose both ends are in B̃S . Additionally, (8.41b) describes the cutset

δ(S), i.e., the set of edges that have exactly one end in B̃S . Now, we will provide an equiv-

alent reformulation for (8.40) using a spanning tree characterization. This reformulation
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will help us verify the frequency constraints in each connected component of the grid. It

also provides new insights into the way we interpret the frequency constraints. We will

focus on the inequality (8.40a); (8.40b)-(8.40d) can be similarly analyzed.

Proposition 12. Inequality (8.40a) is equivalent to (8.42a), that is,

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ min
{

0 : (8.43a)− (8.43d)
}

+
∑

(m,k)∈δ(S)

(Zmk)MN ,

∀S ⊆ Ñ ,S 6= ∅ (8.42a)

where

umk ≤ Zmk, ∀(m, k) ∈ L̃(S), (8.43a)∑
(m,k)∈L̃(S)

umk = |B̃S | − 1, (8.43b)

∑
(m,k)∈δ(S)

umk ≥ 1, ∀S ⊆ Ñ ,S 6= ∅, Ñ , (8.43c)

umk ∈ {0, 1} , ∀(m, k) ∈ L̃(S). (8.43d)

Proof. The minimization problem embedded in (8.42a) has an optimal value equal to 0

if there exists an spanning tree in S. Otherwise, the problem is infeasible and the objec-

tive value will be equal to +∞, making (8.42a) redundant. Here, we use the definition

of a tree as a connected graph containing n − 1 edges (n is the number of nodes in the

graph). Accordingly, (8.43a) ensures that the spanning tree is a subgraph of S. Addition-

ally, (8.43b) and (8.43c) guarantee that the spanning tree has |B̃S | − 1 edges and satisfies

the connectivity requirement, respectively. Finally, the last term in (8.42a) ensures that S

is a component.

Note that both (8.40) and their reformulation in the form of (8.42a) have an exponential
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number of constraints. We will propose a cutting-plane approach to deal with this issue in

Section 8.5.

8.4.6 Overall MINLP Formulation

Before passing to solution methodology of the problem, let us review the overall MINLP

formulation of the multi-µG resilient operation problem. The decision variables of this

formulation are: i) the status of loads (xmi); ii) the status of linking lines (Zmk); iii) active

and reactive flow of lines (fPmij , f
Q
mij , f̃

P
mk, f̃

Q
mk); iv) active and reactive power of DERs and

loads (pGmg, q
G
mg, p

D
mi, q

D
mi); v) voltage magnitudes and angles (Vmi, θmi); vi) active and reac-

tive power exchange between the µGs and the linking grid (∆Pm, ∆Qm); and vii) spanning

tree variable (umk). For the sake of brevity, let X be the set of constraints (8.16)-(8.39) and

let F represent the set of constraints in (8.40). Now, we introduce MINLP(X ,F) as

follows:
ϑ = min

∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi

s.t. (8.16)-(8.40).

8.5 Solution Methodology

The formulationMINLP(X ,F) is a nonconvex nonlinear optimization problem. More-

over, the developed frequency limitations in (8.40) as well as their equivalent reformula-

tions in (8.42a) induce exponentially many constraints. In this section, we will address

these challenges.

8.5.1 MISOCP Reformulation and Convexification

Observe that all the nonlinearity and nonconvexity of MINLP(X ,F) stem from three

sources: i) the nonlinear terms V 2
mi, VmiVmj cos

(
θmi − θmj

)
, and VmiVmj sin

(
θmi − θmj

)
in constraints (8.20)-(8.21) and also the similar terms in (8.28)-(8.31), ii) the quadratic term

V 2
mi in constraints (8.24)-(8.25), iii) the bilinear terms xmipDmi and xmiqDmi in constraints
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(8.16)-(8.19) and (8.40). In this section, we will convexify/linearize the aforementioned

terms, leading to an MISOCP relaxation of the multi-µG resilient operation problem.

MISOCP Relaxation of AC Power Flow Equations

Based on the recent development in SOCP relaxation of standard AC-OPF [134], we define

the following auxiliary variables for each (i, j) ∈ Lm and m ∈M:

Cmij := VmiVmj cos
(
θmi − θmj

)
, (8.44a)

Smij := VmiVmj sin
(
θmi − θmj

)
. (8.44b)

Observe that (8.44) implies (8.45), that is

C2
mij + S2

mij = CmiiCmjj, (8.45a)

Smij = −Smji, Cmij = Cmji. (8.45b)

Similarly, we define C̃mk := ṼmṼk cos(θm − θk) and S̃mk = ṼmṼk sin(θm − θk) for each

(m, k) ∈ L̃, and the following constraints will be inferred:

C̃2
mk + S̃2

mk = C̃mmC̃kk, (8.46a)

S̃mk = −S̃km, C̃mk = C̃km. (8.46b)

Note that the convex relaxation of (8.45a) and (8.46a) are:

C2
mij + S2

mij ≤ CmiiCmjj, (8.47a)

C̃2
mk + S̃2

mk ≤ C̃mmC̃kk. (8.47b)
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With a change of variables for each m ∈ M and (i, j) ∈ Lm, constraints (8.20) and (8.21)

can be written as

fPmij = Gmij

(
Cmii − Cmij

)
−BmijSmij, (8.48a)

fQmij = −Bmij

(
Cmii − Cmij

)
−GmijSmij, (8.48b)

and the voltage bound (8.23) for each m ∈M and i ∈ (Bm ∪ B̂m) is transformed into

(V min
mi )2 ≤ Cmii ≤ (V max

mi )2. (8.49)

Likewise, a change of variables for each (m, k) ∈ L̃ leads to the constraints (8.50) as the

counterparts of (8.28)-(8.31):

− f̃Pmk + G̃mk

(
C̃mm − C̃mk

)
− B̃mkS̃mk (8.50a)

+ (1− Zmk)Mmk ≥ 0,

− f̃Pmk + G̃mk

(
C̃mm − C̃mk

)
− B̃mkS̃mk (8.50b)

− (1− Zmk)Mmk ≤ 0,

− f̃Qmk − B̃mk

(
C̃mm − C̃mk

)
− G̃mkS̃mk (8.50c)

+ (1− Zmk)M ′
mk ≥ 0,

− f̃Qmk − B̃mk

(
C̃mm − C̃mk

)
− G̃mkS̃mk (8.50d)

−
(
1− Zm,k

)
M ′

mk ≤ 0,

and similarly the voltage bound (8.35) for each m ∈M and i ∈ B̃ can be written as:

(Ṽ min
m )2 ≤ C̃mm ≤ (Ṽ max

m )2. (8.51)
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MISOCP Relaxation of ZIP Load Models

Using the SOCP auxiliary variables defined in Section 8.5.1, the ZIP load models (8.24)

and (8.25) can be written as (8.52) for each m ∈M and i ∈ (Bm ∪ B̂m), that is

pDmi = pDmi

(
κPImiCmii + κPCmi

√
Cmii + κPPmi

)
, (8.52a)

qDmi = qDmi

(
κQImiCmii + κQCmi

√
Cmii + κQPmi

)
. (8.52b)

The convex relaxation of these two constraints can be written as

pDmi

(
κPImiCmii + κPCmi

√
Cmii + κPPmi

)
− pDmi ≥ 0, (8.53a)

qDmi

(
κQImiCmii + κQCmi

√
Cmii + κQPmi

)
− qDmi ≥ 0. (8.53b)

Since the variable Cmii is bounded by the closed interval [Cmin
mii , C

max
mii ], the convex re-

laxation (8.53) can be tighten by introducing the following two hyperplanes which pass

through the end points for each i ∈ (Bm ∪ B̂m) and m ∈M:

pDmi − pD,min
mi ≥ pD,max

mi − pD,min
mi

Cmax
mii − Cmin

mii

(
Cmii − Cmin

mii

)
, (8.54a)

qDmi − qD,min
mi ≥ qD,max

mi − qD,min
mi

Cmax
mii − Cmin

mii

(
Cmii − Cmin

mii

)
. (8.54b)

Proposition 13. Constraints (8.53a) and (8.53b) are SOCP representable in terms of C2
mii.

Proof. We focus on constraint (8.53a); constraint (8.53b) is similarly analyzed. First, we

rearrange and square both sides of the constraint for each i ∈ (Bm∪ B̂m) and m ∈M such

that

κPCmi
√
Cmii ≥

pDmi
pDmi
− κPImiCmii − κPPmi (8.55)

(
κPCmi

)2

Cmii ≥
(
pDmi
pDmi
− κPImiCmii − κPPmi

)2

. (8.56)
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Note that Cmii = (Cmii+1
2

)2−(Cmii−1
2

)2, therefore (8.56) can be written as the following

SOCP constraint for each i ∈ (Bm ∪ B̂m) and m ∈M:

(
κPCmi

)2
(
Cmii + 1

2

)2

≥
(
κPCmi

)2
(
Cmii − 1

2

)2

+

(
pDmi
pDmi
− κPImiCmii − κPPmi

)2

. (8.57)

The proof is complete.

Linearizion of the Bilinear Terms

Finally, let us linearize the bilinear terms xmipDmi and xmiqDmi in (8.16)-(8.19) and (8.40),

where each bilinear term involves the product of a binary variable and a nonnegative con-

tinuous variable. We linearize these disjunctive terms via the big-M method by introducing

auxiliary semi-continuous variables ρmi := xmip
D
mi and σmi := xmiq

D
mi and defining addi-

tional constraints for each i ∈ (Bm ∪ B̂m) and m ∈M:

− (1− xmi) M̌p
mi ≤ ρmi − pDmi ≤ M̌p

mi (1− xmi) , (8.58a)

− xmiM̌p
mi ≤ ρmi ≤ M̌p

mixmi, (8.58b)

− (1− xmi) M̌ q
mi ≤ σmi − qDmi ≤ M̌ q

mi (1− xmi) , (8.58c)

− xmiM̌ q
mi ≤ σmi ≤ M̌ q

mixmi. (8.58d)

In order to reduce the integrality gap in (8.58), the big-Ms (i.e., M̌p
mi and M̌ q

mi) should

be as small as possible, and it is usually challenging to determine correct values for them

to use for each specific implementation. However, in this particular application, we can

set M̌p
mi = pDmi and M̌ q

mi = qDmi. Note that these data (i.e., the upper bounds of active and

reactive loads) are usually available in any system. Now, substituting the auxiliary variables

ρmi and σmi into the constraints (8.16)-(8.19), we get the linear constraints (8.59a)-(8.59b)

for each m ∈ M, i ∈ Bm, and also the constraints (8.59c)-(8.59d) for each m ∈ M,

177



i ∈ B̂m:

∑
g:(g,i)∈Om

pGmg − ρmi =
∑

(i,j)∈Lm

fPmij, (8.59a)

∑
g:(g,i)∈Om

qGmg − σmi =
∑

(i,j)∈Lm

fQmij, (8.59b)

∑
g:(g,i)∈Om

pGmg − ρmi + ∆Pm =
∑

(i,j)∈Lm

fPmij, (8.59c)

∑
g:(g,i)∈Om

qGmg − σmi + ∆Qm =
∑

(i,j)∈Lm

fQmij. (8.59d)

Complementarily, the frequency constraints (8.40) can be written as (8.60) for each S ⊆

Ñ ,S 6= ∅, where the indicator function IM is modeled using the big-M method and the

bilinear terms are replaced with their linear counterparts:

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
+

∑
(m,k)∈L̃(S)

(1− Zmk)MN +
∑

(m,k)∈δ(S)

(Zmk)MN , (8.60a)

∆ωmax
N ≥ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
−

∑
(m,k)∈L̃(S)

(1− Zmk)MN −
∑

(m,k)∈δ(S)

(Zmk)MN , (8.60b)

∆ωmin
ss ≤ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
+

∑
(m,k)∈L̃(S)

(1− Zmk)Mss +
∑

(m,k)∈δ(S)

(Zmk)Mss, (8.60c)

∆ωmax
ss ≥ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
−

∑
(m,k)∈L̃(S)

(1− Zmk)Mss −
∑

(m,k)∈δ(S)

(Zmk)Mss. (8.60d)
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Overall MISOCP Formulation

Before proceeding further with the analysis, let us define the setR as the set of constraints

(8.22), (8.26), (8.27), (8.32)-(8.34), (8.36)-(8.39), (8.45b), (8.46b), (8.47)-(8.51), (8.53),

(8.54), (8.58), and (8.59). Recall that F is the set of frequency constraints. Now, we can

formally define MISOCP(R,F), as the MISOCP relaxation of the multi-µG resilient

operation problem:

ψ = min
∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi

s.t. (8.22), (8.26), (8.27), (8.32)-(8.34), (8.36)-(8.39), (8.45b),

(8.46b), (8.47)-(8.51), (8.53), (8.54), (8.58)-(8.60).

It remains to deal with the exponential number of constraints in F . This is the topic of

the next section.

8.5.2 Cutting Plane Algorithm for Frequency Constraints

In this section, we propose a cutting plane approach to solveMISOCP(R,F). The idea

is to construct {Fk}k≥0, that is a sequence of relaxations of the set F , and dynamically

update Fk to obtain stronger relaxations in each iteration. Recall that the set F contains

exponentially many frequency constraints.

With this aim in mind, let C1
S , C2

S , C3
S , and C4

S denote respectively the constraints (8.60a),

(8.60b), (8.60c), and (8.60d), for a given connected component S of the linking grid, where

S ⊆ Ñ ,S 6= ∅. Moreover, let the graph Ñ ∗ represent the configuration of the linking grid

for a given solution to MISOCP(R,Fk), and let Q = {Sυ1 ,Sυ2 , ...,SυN} denote the

set of connected components of Ñ ∗ where {υ1, υ2, ..., υN} ⊆ {1, 2, ..., |B̃|}. For each

component inQ, we check the inequalities {CγS}4
γ=1; if any frequency violation is detected,

the corresponding valid inequality will be added to the set Fk. In other words, let A be the

set of feasible solutions to the problemMISOCP(R,F). In each iteration, if an optimal
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Algorithm 1 Multi-µG resilient operation algorithm

1: Initialize k ← 0, Fk ← ∅, Flag← NO
2: while Flag = NO do
3: SolveMISOCP(R,Fk) to obtain the graph Ñ ∗ representing the optimal configu-

ration of the linking grid
4: Compute Q = {Sυ1 ,Sυ2 , ...,SυN} as the set of connected components of Ñ ∗
5: Flag← YES
6: for υ = υ1 to υN do
7: for γ = 1 to 4 do
8: if Sυ violates CγSυ then
9: Flag← NO

10: Fk ← Fk ∪ {CγSυ}
11: end if
12: end for
13: end for
14: k ← k + 1
15: end while

solution of MISOCP(R,Fk) is in the set A, we stop since we have already found an

optimal solution to MISOCP(R,F). Otherwise, we generate a cut and add it to Fk
to separate the point from the set A and obtain stronger relaxations in the next iteration.

Algorithm 1 provides the details of the proposed cutting plane approach.

As can be seen, in Algorithm 1, we need a function to return the connected components

of the undirected graph Ñ ∗. Recall that a connected component of an undirected graph is

a maximal connected subgraph of the graph. This function can be implemented via depth-

first or breadth-first algorithm. See [135] for details.

Theorem 16. Algorithm 1 converges to an optimal solution of the MISOCP-based multi-

µG resilient operation problem, i.e.,MISOCP(R,F), in a finite number of iterations.

Proof. Let x∗mi and Z∗mk be an optimal solution to the problemMISOCP(R,F0) where

i ∈ (Bm ∪ B̂m), m ∈ M, (m, k) ∈ L̃, and F0 = ∅. If x∗mi and Z∗mk satisfy (8.60), then

Algorithm 1 converges to the optimal solution in one iteration. Otherwise, in each iteration,

at least one constraint will be added to the set Fk. We observe that the total number of

constraints in (8.60) is 4r, where r is the number of possible connected components of Ñ .
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Since each connected component is examined at most once in this algorithm, the number

of iterations needed for the convergence of the algorithm is less than 4r.

8.6 Numerical Results

In this section, the performance of the proposed framework for the multi-µG resilient oper-

ation problem is thoroughly evaluated. All simulations are conducted on a 64-bit PC with

Intel Core i7 CPU 2.8 GHz processor and 16 GB RAM. The algorithm is implemented in

the GAMS IDE environment [136]. We use BONMIN V1.8 [137] to solve MINLPs and

CPLEX V12.4 [138] to solve the MISOCPs. Moreover, we use the 39-bus multi-µG net-

work (depicted in Fig. 8.1) as our test system. This network is composed of six DERs,

whose technical data are given in Table 8.1. Feeders’ and loads’ data are adopted from

different portions of a standard IEEE distribution test system whose data can be found in

[139]. To have a more realistic study, five different load types (i.e., general, residential,

agricultural, commercial, and industrial) with different VOLLs are taken into account (see

Fig. 5 in [120]). Finally, the µGs’ dynamic data is given in Table 8.2.

Table 8.1: Technical Data of DERs

DERs
Parameters G1 G2 G3 G4 G5 G6

pG,min [×100 kW] 1 1 1 1 1 1
pG,max[×100 kW] 5 2 5 2 2 5
qG,min[×100 kVAr] −5 −2 −5 −2 −2 −5
qG,max[×100 kVAr] 5 2 5 2 2 5

RD\RD[×100 kW/min] 2 1 2 1 1 2

Table 8.2: Dynamic Parameters of the VSC Controller in each µG

Parameter Value Parameter Value Parameter Value
H [sec.] 0.9 D 1 T ′ [sec.] 0.1
R 0.08 ∆ωN [Hz] 0.5 VBase[kV] 12.66
T [sec.] 0.008 ∆ωss [Hz] 0.1 SBase[MW] 5

We assume that all µGs in Fig. 8.1 were initially connected to the main grid through
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the dashed lines (in red). Subsequent to islanding, these lines along with the main circuit

breaker trip. The proposed MISOCP-based resilient operation approach determines the

optimal strategy which may include re-closing the dashed lines and switching the dotted

lines (in gray), leading to different configurations for the distribution network. In order to

evaluate our framework, we compare it with the following two schemes:

• MINLP-Based Scheme: In this scheme, we follow our resilient operation scheme;

however, we useMINLP(X ,F) as the decision support tool in Algorithm 1.

• Conventional UFLS Scheme: In this scheme, subsequent to islanding of the distri-

bution network, each µG individually enters the island mode where the conventional

UFLS relays will curtail the necessary blocks of loads until reaching the equilibrium

point. The settings of these relays are obtained from [120].

8.6.1 Comparison with the MINLP-Based Scheme

Solution and Computation Time

Table 8.3 provides a comparison between the MINLP-based and MISOCP-based schemes

considering different severities for the islanding event (we define severity as the amount

of power flow from the main grid to the distribution network before the islanding). The

computation times in this table are obtained using a relative optimality criterion (i.e., Optcr)

of zero.

As can be seen, although the computation time is considerably diminished in the MISOCP-

based model, the solution quality (in terms of load curtailment) is the same, and this is

highly effective in precarious situations such as the emergency management of distribu-

tion networks, since prompt measures can keep electromechanical dynamics away from

becoming stability threatening.
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Table 8.3: Comparison Between the MISOCP and MINLP Models

Islanding
Severity

[kW]

MISOCP-Based Scheme MINLP-Based Scheme
Curtailment

[kW]
Computation

time [sec.]
Curtailment

[kW]
Computation

time [sec.]
2700 2248.4 57.21 2248.8 2978.8
3200 2725 52.74 2725 7185.7
3700 3208.4 73.58 3209.4 9593.5

Convergence

In order to see more details about the convergence of Algorithm 1, let us analyze the sec-

ond islanding event (with the severity of 3200 kW). For this event, Table 8.4 provides the

objective function value, the cardinality of the setFk, the amount of load shedding, the con-

figuration of the multi-µG network, and the elapsed time in each iteration of the algorithm

while solvingMISOCP(R,F). Accordingly, the algorithm converges in 15 iterations. In

each iteration, a set of cuts are generated to separate a given solution ofMISOCP(R,Fk),

that is a mixed integer solution, from the setA. This separation in each iteration leads to an

interplay between load shedding adjustments and network topology control, demonstrated

in the 4th and 5th columns of Table 8.4. It must be emphasized that when a mixed integer

solution is cut off, the corresponding integer solution (i.e., the projection onto the space of

integer variables) may not be cut off. For instance, in the 7th iteration in in Table 8.4, the

amount of load shedding is 2295 kW and the connected edges of the linking grid are l1, l3,

and l5 (see Fig. 8.1(b)). Although a valid inequality cuts off this mixed integer solution

in the next iteration, the corresponding integer solution appears again in the 15th iteration

with a different amount of load shedding.

As another interesting result, in the eighth iteration, the distribution network is parti-

tioned into two sub-systems and the objective function is increased by 8.5%. Eventually,

in the 15th iteration, the optimal resilience improvement strategy is achieved while the

distribution system is reconfigured as one connected component.

For the sake of comparison, Table 8.5 provides the outputs of Algorithm 1 while solv-
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ing MINLP(X ,F). As can be seen, the algorithm converges in a more number of it-

erations and the computation time of each iteration is considerably more than that of the

MISOCP-based model. The final solutions (the objective function, load curtailment, and

configuration of the linking grid), nevertheless, are quite the same as the ones in Table 8.4.

Table 8.4: Convergence of the Proposed Algorithm While SolvingMISOCP(R,F)

k
ψ

[×100 $]
|Fk| Curtailment

[×100 kW]
Connected edges of Ñ Elapsed time/iter [sec.]

0 1579.09 0 22.98 l1, l2, l3 6.0
1 1579.09 1 22.93 l2, l4, l5 3.8
2 1579.09 2 22.91 l2, l3, l4 4.0
3 1579.09 3 23.07 l1, l3, l4 4.6
4 1579.09 4 22.87 l3, l4, l5 3.2
5 1579.09 5 22.93 l1, l2, l5 2.9
6 1579.09 6 23.03 l1, l2, l4 2.6
7 1579.09 7 22.95 l1, l3, l5 2.7
8 1714.69 8 23.40 l2, l3, l5 1.6
9 2069.38 10 24.29 l1, l4 5.9
10 2081.35 12 24.92 l1, l5 3.9
11 2081.35 13 24.92 l4, l5 2.0
12 2086.23 14 24.11 l2, l5 2.4
13 2086.23 15 24.15 l3, l5 2.2
14 2086.23 16 24.07 l2, l3 2.7
15 2235.96 17 27.25 l1, l3, l5 2.4

8.6.2 Comparison with the Conventional UFLS Scheme

Fig. 8.4 provides a comparison between the MISOCP-based scheme and the conventional

UFLS scheme while they are coping with the second islanding event (with severity of

3200 kW). To have a more realistic result, we assume the communication latency to be 100

ms in the proposed scheme. We also consider the intentional delay of the UFLS relays

to be 100 ms. Since the distribution network is partitioned into four µGs in the conven-

tional UFLS scheme, this figure compares the amount of load shedding, nadir frequency,

and steady state frequency in each µG (denoted by m1 to m4), on the one hand, and the

same indices in the multi-µG network which is obtained from the proposed MISOCP-based
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Table 8.5: Convergence of the Proposed Algorithm While SolvingMINLP(X ,F)

k
ϑ

[×100 $]
|Fk| Curtailment

[×100 kW]
Connected edges of Ñ Elapsed time/iter [sec.]

0 1579.09 0 22.89 l1, l3, l4 664.2
1 1579.09 1 22.88 l1, l2, l4 478.1
2 1579.09 2 22.87 l1, l2, l3, l5 391.9
3 1579.09 3 22.86 l1, l2, l5 329.8
4 1579.09 4 22.87 l2, l3, l4, l5 341.4
5 1579.09 5 22.84 l2, l4, l5 246.3
6 1579.09 6 22.86 l1, l3, l5 285.5
7 1579.09 7 22.83 l3, l4, l5 185.0
8 1579.09 8 22.86 l1, l2, l3 165.0
9 1579.09 9 22.86 l2, l3, l4 124.1
10 1714.69 10 23.14 l2, l3, l5 291.7
11 2069.38 12 24.06 l1, l4 516.6
12 2081.35 14 24.68 l1, l5 387.5
13 2081.35 15 24.71 l4, l5 353.4
14 2086.23 16 23.86 l2, l5 322.2
15 2086.23 17 23.88 l3, l5 530.0
16 2086.23 18 23.89 l2, l3 172.6
17 2235.96 19 27.25 l1, l3, l4 1400.7

scheme, on the other hand.

Accordingly, the total amount of load shedding in our proposed scheme is 2725 kW,

while the steady state and nadir frequencies are remained within the permissible range.

In comparison, the total amount of load shedding in the conventional scheme is 3700 kW

(even more than the initial power deficiency), and the frequency of the µGs violates the

safe range. Specifically, in m3, the violation of frequency is more serious, and the conven-

tional scheme fails to maintain the frequency stability of the network. The main reason for

this observation is the rigidity of the conventional UFLS scheme in dealing with different

contingencies. In this scheme, load shedding is implemented in several steps with fixed

sizes, regardless of the intensity of the islanding. Therefore, it can be inferred that the con-

ventional method sheds non-optimal amount of loads encountering islanding events. These

results illustrate that the proposed method is capable of preserving the distribution network

from collapsing and moving it to a new steady state and stable condition. Aside from the
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Figure 8.4: Comparison between the proposed MISOCP-based and conventional UFLS
schemes for an islanding event with severity of 3200 kW. Permissible ranges of nadir and
steady state frequencies are shown by horizontal bars.

COI frequency, keeping the bus voltages and line flows within the permissible range in our

proposed scheme would guarantee a secure operation following the islanding process, and

this is not considered in the conventional scheme.

8.7 Final Remarks

In this chapter, we propose a novel framework for the near real-time operation as well as

the real-time control of multi-µG networks. Our framework provides the optimal power

flow, optimal load shedding, and optimal topology reconfiguration, while frequency dy-

namics and AC power flow limitations are taken into account. An exact reformulation of

frequency constraints in a cutting plane algorithm with tight MISOCP relaxations is estab-

lished, which significantly speeds up computation and achieves near optimal solution. To

the best of our knowledge, this comprehensive optimization and control framework for the

frequency stability of multi-µGs is proposed for the first time in the literature. Our numeri-

cal experiments further illustrate that the proposed emergency control scheme can success-

fully monitor, verify, and act to guarantee that the multi-µG network remains within the

operational limits during post-islanding frequency dynamics. It is practical for real-world

applications and outperforms the conventional UFLS scheme in terms of load shedding

amount, number of curtailed customers, and frequency stability.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This dissertation is aimed at devising easy-to-check conditions to certify the stability of

electric power systems and also developing control and optimization schemes for the stable

operation of these systems. Our results are categorized into two parts, namely, Part I which

is on the stability and control of nonlinear dynamical systems; and Part II which is devoted

to optimization with stability constraints in power systems. In each of these parts, we make

use of the underlying structure of the problems, such as the graph topology of power grids,

to develop efficient and practical computational methods which are scalable to large-scale

systems. In what follows, we briefly summarize our contributions and future directions.

9.1 Part I: Stability and Control of Nonlinear Dynamical Systems

In Chapter 2, we have presented a comprehensive study on the role of damping in a large

class of dynamical systems, including electric power networks. Paying special attention to

partially-damped systems, it is shown that damping plays a monotonic role in the hyper-

bolicity of the equilibrium points. We have proved that the hyperbolicity of the equilibrium

points is intertwined with the observability of a pair of matrices, where the damping ma-

trix is involved. We have also studied the aftermath of hyperbolicity collapse, and have

shown both subcritical and supercritical Hopf bifurcations can occur as damping changes.

It is shown that Hopf bifurcation cannot happen in small power systems with only one un-

damped generator. In the process, we have developed auxiliary results by proving some im-

portant spectral properties of the power system Jacobian matrix, establishing the relation-

ship between a power system model and its referenced counterpart, and finally addressing a

fundamental question from matrix perturbation theory. Among others, the numerical exper-

iments have illustrated how damping can change the region of attraction of the equilibrium
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points. Future Directions: Although we have provided numerous results and discussions

about the asymmetric case, most of the results in Chapter 2 are focused on symmetric

setting, i.e., when inertia, damping, and the Jacobian matrices are symmetric. Moving for-

ward, we need to extend these theories to asymmetric cases. Moreover, theoretical study

of other types of bifurcation in power systems is left as a future work. Another open ques-

tion is on the impact of inertia in the aforementioned class of second-order systems. Given

the proliferation of renewable sources and the growing concerns over the loss of inertia in

power systems, this open problem is of vital importance.

Chapter 3 has been aimed at finding a computationally efficient way to certify the stabil-

ity of power system equilibrium points. We have shown if the matrix norm of the Laplacian

of the underlying graph is upper bounded by a specific value, then the equilibrium point

is stable. The aforementioned upper bound is proportional to the square of damping and

inverse of inertia at each node of the power grid. This fact also sheds light on the inter-

play of inertia, damping, and graph of the system, and provides profound insights into how

power system should be designed and operated to be stable. Future Directions: As a future

work, the developed stability certificate can be incorporated as a constraint into various

scheduling problems such as the optimal power flow problem in order to guarantee and

improve the stability of solutions. Our results could also be extended towards tighter and

nonlocal stability certificates.

In Chapter 4, we have shown that under reasonable assumptions, the small-signal sta-

bility of the classical structure-preserving model is equivalent to its singular perturbation

counterpart. Based on this equivalence, we developed a novel stability certificate for the

structure-preserving model. Similar to the previous chapter, the certificate can be computed

in a fully distributed fashion, using only local information, and can be used for real-time

monitoring. The certificate suggests that the eigenvalues of the system will move towards

the left half-plane by increasing generators’ damping and decreasing generators’ inertia. It

also reveals a paradox that adding more transmission lines can lead to the violation of the
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stability certificate and making the system unstable. Future Directions: Moving forward,

we need to further study the Braess’s Paradox in the stability of networked systems. Find-

ing more examples of this phenomenon, developing some conditions to detect and devising

methods to mitigate it are potential future research directions.

In Chapter 5, we have proposed new stability certificates for the small-signal stability

of multi-microgrids. We proved that an equilibrium point of a multi-microgrid system is

locally asymptotically stable if either i) the network is lossless; or ii) in a lossy network, a

local condition is satisfied at each microgrid PCC/DER. This condition sheds new light on

the interplay of system stability, network topology, and dynamic parameters. It also pro-

vides a fully distributed control scheme that is guaranteed to stabilize the multi-microgrid

system. The proposed conditions in this chapter can improve the situational awareness of

system operators by providing a fast stability certificate as well as showing how different

corrective actions would make the equilibrium point stable. Future Directions: In the liter-

ature, several stability criteria are developed based on various dynamical models, focusing

on different aspects of stability. Finding a proper way to compare and merge these criteria

and deriving a unified stability criterion will be an interesting direction for future work,

and the framework proposed in [90, 91, 92] is a promising step towards this direction.

Moreover, in this work, we have considered only devices whose dynamical model can be

captured by swing equations (such as grid-forming inverters and diesel generators). Future

studies could investigate the stability theory of multi-microgrids in the presence of various

types distributed energy resources including both grid-forming and grid-feeding inverters.

Chapter 6 is aimed at developing stability certificates for the third-order model of droop-

controlled inverters. According to the derived certificates, two inequalities should hold at

each node of the system. To check these inequalities at each node, we only require the

local information about the reactive power consumption, voltage magnitude and the pa-

rameters of the inverter at the node. Therefore, the proposed certificates can be utilized for

distributed and fast stability assessment an monitoring. In order to develop these certifi-
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cates, we have made use of the loose physical linkage between active and reactive powers.

We have also investigated the role of coupling terms and the robustness of the decoupled

model under coupling perturbations. Future Directions: A worthwhile direction for future

research would be generalizing the developed stability certificates to higher-order models.

Moreover, the proliferation of various DERs in recent years has increased the complexity

and uncertainty of distribution systems and made it difficult to obtain accurate dynamical

models for the system. This calls for novel model-free data-driven method to ensure the

stability of power systems.

9.2 Part II: Optimization with Stability Constraints

The proliferation of microgrids all over the world has been remarkable in recent years, and

their growth prospects in the future are astounding. Microgrids can improve the resilience

of the grid based on their self-supply and island-mode capabilities. However, when a mi-

crogrid unintentionally enters the island mode, a considerable number of customers (or

even all of them) are disconnected from the grid in order to maintain the load-generation

equilibrium. New methodologies are therefore required to optimize the load shedding pro-

cess in microgrids. In Chapter 7, an optimization-based load shedding model is presented

as a promising tool to attain this goal. Mathematically, the load shedding model is formu-

lated as a MILP problem. The structure of the proposed scheme reduces its communication

requirements which is a major challenge in practice. The most relevant aspects of the

proposed load shedding scheme are illustrated using a large-scale case study based on a

33-bus microgrid. It was observed that the proposed method sheds less amount of load

in comparison with the conventional UFLS approach. Meanwhile, the developed structure

outperformed the conventional scheme in terms of load shedding cost and minimum dy-

namic frequency following the load shedding process. Future Directions: Future studies

could reformulate power flow equations for radial systems (since the complex power flow

equations presented in this chapter are not necessary for radial networks). Moreover, an
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unbalanced power flow model can be adopted to make the proposed load shedding method

more practical in real world applications.

Finally, in Chapter 8, we have proposed a novel framework for the near real-time opera-

tion as well as the real-time control of multi-microgrid networks. Our framework provides

the optimal power flow, optimal load shedding, and optimal topology reconfiguration, while

frequency dynamics and AC power flow limitations are taken into account. An exact refor-

mulation of frequency constraints in a cutting plane algorithm with tight MISOCP relax-

ations is established, which significantly speeds up computation and achieves near optimal

solution. To the best of our knowledge, this comprehensive optimization and control frame-

work for the frequency stability of multi-microgrids is proposed for the first time in the

literature. Our numerical experiments further illustrate that the proposed emergency con-

trol scheme can successfully monitor, verify, and act to guarantee that the multi-microgrid

network remains within the operational limits during post-islanding frequency dynamics.

It is practical for real-world applications and outperforms the conventional UFLS scheme

in terms of load shedding amount, number of curtailed customers, and frequency stability.

Future Directions: The approach in this chapter is mainly developed to target micro-

grids/DERs whose dynamics can be captured by swing equation dynamics. Recent years

have seen major developments in new types of resources including DERs, intermittent re-

sources (wind and solar), and storage. A question therefore remains unanswered: Whether

there exists a unifying framework to systematically study the stability of these different

dynamical models and also to incorporate the associated stability constraints into an opti-

mization problem. We leave this question as an interesting challenge for future research, as

the existing techniques can only tackle a narrow class of problems with specific structures.
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APPENDIX A

DETAILED PROOFS OF CHAPTER 2

A.1 Proof of Lemma 5

Proof. Assume that all r-by-r principal submatrices of S are singular, and let us lead this

assumption to a contradiction. Since rank(S) = r, all principal submatrices of size larger

than r are also singular. Therefore, zero is an eigenvalue of every m-by-m principal sub-

matrix of S for each m ≥ r. Consequently, all principal minors of S of size m are zero for

each m ≥ r. Let E`(S) denote the sum of principal minors of S of size ` (there are
(
n
`

)
of

them), and observe that we have Em(S) = 0, ∀m ≥ r. Moreover, thought of as a formal

polynomial in t, let pS(t) =
∑n

`=0 a`t
` with an = 1 be the characteristic polynomial of S,

and recall that the k-th derivative of pS(t) at t = 0 is p(k)
S (0) = k!(−1)n−kEn−k(S),∀k ∈

{0, 1, · · · , n− 1}, and the coefficients of the characteristic polynomial are ak = 1
k!
p

(k)
S (0).

In this case, our assumption leads to ak = p
(k)
S (0) = 0,∀k ∈ {0, 1, · · · , n− r}, i.e., zero is

an eigenvalue of S with algebraic multiplicity at least n− r + 1. But from the assumption

of the lemma we know S is similar to B ⊕ 0n−r, that is, zero is an eigenvalue of S with

algebraic multiplicity exactly n− r, and we arrive at the desired contradiction.

A.2 Stability of Symmetric Second-Order Systems with Nonsingular Damping

Theorem 3 provides a necessary and sufficient condition for the hyperbolicity of an equi-

librium point (x0, 0) of the second-order system (2.1), when the inertia, damping, and

Jacobian of f satisfy M ∈ Sn++, D ∈ Sn+,∇f(x0) ∈ Sn++. In this section, we prove that

if we replace the assumption D ∈ Sn+ with D ∈ Sn++, then the equilibrium point (x0, 0)

is not only hyperbolic but also asymptotically stable. This asymptotic stability is proved

for lossless swing equations in [63, Theorem 1, Part d]. The next theorem generalizes [63,
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Theorem 1, Part d] to the second-order system (2.1) where the damping and inertia matrices

are not necessarily diagonal.

Theorem 17 (stability in second-order systems: symmetric case). Consider the second-

order ODE system (2.1) with inertia matrix M ∈ Sn++ and damping matrix D ∈ Sn++.

Suppose (x0, 0) ∈ Rn+n is an equilibrium point of the corresponding first-order system

(2.5) with the Jacobian matrix J ∈ R2n×2n defined in (2.6) such that L = ∇f(x0) ∈ Sn++.

Then, the equilibrium point (x0, 0) is locally asymptotically stable.

Proof. We complete the proof in three steps:

Step 1: First, we show all real eigenvalues of J are negative. Assume λ ∈ R, λ ≥ 0

is a nonnegative eigenvalue of J(x0), and let us lead this assumption to a contradiction.

According to Lemma 1,

det
(
λ2M + λD + L

)
= 0. (A.1)

Since all three matrices L,D, andM are positive definite, the matrix pencil P (λ) = λ2M+

λD+L is also a positive definite matrix for any nonnegative λ. Hence P (λ) is nonsingular,

contradicting (A.1).

Step 2: Next, we prove that the eigenvalues of J cannot be purely imaginary. We pro-

vide two different proofs for this step. According to our assumption, the damping ma-

trix D is nonsingular, and the pair (M−1∇f(x0),M−1D) is always observable because

the nullspace of M−1D is trivial. Hence, according to Theorem 3, the equilibrium point

(x0, 0) is hyperbolic, and J(x0) does not have any purely imaginary eigenvalue, so the first

proof of this step is complete. For the second proof, let λ ∈ σ(J(x0)), then according to

Lemma 1, ∃v ∈ Cn, v 6= 0 such that (λ2M + λD + L)v = 0. Suppose, for the sake of

contradiction, that λ = iβ ∈ σ(J(x0)) for some nonzero real β. Let v = x + iy, then
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((L− β2M) + iβD)(x+ iy) = 0, which can be equivalently written as

L− β2M −βD

βD L− β2M


x
y

 =

0

0

 . (A.2)

Define the matrix

H(β) :=

 βD L− β2M

L− β2M −βD

 . (A.3)

Since L ∈ Sn++, H(β) is a symmetric matrix. Notice also that H(β) cannot be positive

semidefinite due to the diagonal blocks ±βD. Since D ∈ Sn++, the determinant of H(β)

can be expressed using Schur complement as

det(H(β)) = det(−βD)det(βD + β−1(L− β2M)D−1(L− β2M)).

So we only need to consider the nonsingularity of the Schur complement. Define the fol-

lowing matrices for the convenience of analysis:

A(β) := L− β2M,

B(β) := D−
1
2A(β)D−

1
2 ,

E(β) := I + β−2B(β)2.

The inner matrix of the Schur complement can be written as

βD + β−1(L− β2M)D−1(L− β2M)

= βD
1
2 (I + β−2D−

1
2A(β)D−1A(β)D−

1
2 )D

1
2

= βD
1
2 (I + β−2B(β)2)D

1
2 = βD

1
2E(β)D

1
2 .
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Notice that E(β) and B(β) have the same eigenvectors and the eigenvalues of E(β) and

B(β) have a one-to-one correspondence: µ is an eigenvalue ofB(β) if and only if 1+β−2µ2

is an eigenvalue of E(β). Indeed, we have E(β)v = v + β−2B(β)2v = v + β−2µ2v =

(1+β−2µ2)v for any eigenvector v ofB(β) with eigenvalue µ. SinceB(β) is symmetric, µ

is a real number. Hence, E(β) is positive definite (because 1+β−2µ2 > 0), thereforeH(β)

is nonsingular for any real nonzero β. Then, the eigenvector v = x + iy is zero which is a

contradiction. This proves that J(x0) has no eigenvalue on the punctured imaginary axis.

Step 3: Finally, we prove that any complex nonzero eigenvalue of J(x0) has a negative real

part. For a complex eigenvalue α + iβ of J(x0) with α 6= 0, β 6= 0, by setting v = x + iy,

the pencil singularity equation becomes

(L+ (α + iβ)D + (α2 − β2 + 2αβi)M)(x+ iy) = 0.

Similar to Step 2 of the proof, define the matrix H(α, β) as

H(α, β) :=

L+ αD + (α2 − β2)M −β(D + 2αM)

β(D + 2αM) L+ αD + (α2 − β2)M

 .
We only need to consider two cases, namely 1) α > 0, β > 0 or 2) α < 0, β > 0. For the

first case, β(D + 2αM) is invertible and positive definite, therefore, we only need to look

at the invertibility of the Schur complement

S(α, β) + T (α, β)S−1(α, β)T (α, β),

where S(α, β) := β(D + 2αM) and T (α, β) := L + αD + (α2 − β2)M . Using the

same manipulation as in Step 1 of the proof, we can see that the Schur complement is

always invertible for any α > 0, β > 0. This implies the eigenvector v is 0, which is a

contradiction. Therefore, the first case is not possible. So any complex nonzero eigenvalue
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of J(x0) has a negative real part.

A.3 Proof of Theorem 4

Proof. There exist λ ∈ R+, λ 6= 0 and x ∈ Cn, x 6= 0 such that

M−1Lx = λx and M−1Dx = 0. (A.4)

Define ξ =
√
−λ, which is a purely imaginary number. The quadratic matrix pencil

M−1P (ξ) = ξ2I + ξM−1D+M−1L is singular because M−1P (ξ)x = ξ2x+ ξM−1Dx+

M−1Lx = −λx + 0 + λx = 0. By Lemma 1, ξ is an eigenvalue of J . Similarly, we

can show −ξ is an eigenvalue of J . Therefore, σ(J) contains a pair of purely imaginary

eigenvalues.

A.4 Proof of Proposition 2

Let us first prove the following useful lemma.

Lemma 12. Let (δ0, ω0) be an equilibrium point of the swing equation (2.21) and Ψ(δ0, ω0)

be the corresponding equilibrium point of the referenced model (2.24). Let Jr denote the

Jacobian of the referenced model at this equilibrium point. For any λ 6= 0, λ is an eigen-

value of Jr if and only if the quadratic matrix pencil P (λ) := λ2M + λD + ∇Pe(δ0) is

singular.

Proof. The referenced model (2.24) can be written as

ψ̇
ω̇

 =

 T1ω

−DM−1ω +M−1(Pm − P r
e (ψ))

 . (A.5)

Note that the Jacobian of the referenced flow function ∇P r
e (ψ) is an n × (n − 1) matrix
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and we have∇P r
e (ψ0) = ∇Pe(δ0)T2, where

T2 :=

 In−1

01×(n−1)

 ∈ Rn×(n−1). (A.6)

Accordingly, the Jacobin of the referenced model (2.24) is

Jr =

 0(n−1)×(n−1) T1

−M−1∇Pe(δ0)T2 −DM−1

 . (A.7)

Necessity: Let λ be a nonzero eigenvalue of Jr and (v1, v2) be the corresponding eigenvec-

tor with v1 ∈ Cn−1 and v2 ∈ Cn. Then

 0(n−1)×(n−1) T1

−M−1∇Pe(δ0)T2 −DM−1


v1

v2

 = λ

v1

v2

 , (A.8)

which implies that T1v2 = λv1. Since λ 6= 0, we can substitute λ−1T1v2 = v1 in the second

equation to obtain

(
λ2M + λD +∇Pe(δ0)T2T1

)
v2 = 0. (A.9)

Since the eigenvector (v1, v2) is nonzero, we have v2 6= 0 (otherwise v1 = λ−1T10 = 0 =⇒

(v1, v2) = 0), Eq. (A.9) implies that the matrix pencil P (λ) = λ2M + λD+∇Pe(δ0)T2T1

is singular. Next, we show that∇Pe(δ0)T2T1 = ∇Pe(δ). Since∇Pe(δ0) has zero row sum,

it can be written as

∇Pe(δ0) =

A b

c> d

 , where A1 = −b, c>1 = −d.
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Therefore, we have

∇Pe(δ0)T2T1 =

A b

c> d


In−1

0

[In−1 −1
]

=

A −A1

c> −c>1

 =

A b

c> d

 .
Sufficiency: Suppose there exists λ ∈ C, λ 6= 0 such that P (λ) = λ2M+λD+∇Pe(δ0)

is singular. Choose a nonzero v2 ∈ ker(P (λ)) and let v1 := λ−1T1v2. Accordingly, the

characteristic equation (A.8) holds, and consequently, λ is a nonzero eigenvalue of Jr.

Now, we are ready to prove Proposition 2.

Proof. Any equilibrium point (δ0, ω0) of the swing equation model (2.21) is contained in

the set

E :=
{

(δ, ω) ∈ R2n : ω = 0, Pmj = Pej(δ), ∀j ∈ {1, ..., n}
}
.

Let (ψ0, ω0) = Ψ(δ0, ω0), and note that ω0 = 0. From (2.22) and (2.25), we observe that

Pej(δ
0) = P r

ej
(ψ0),∀j ∈ {1, ..., n} where ψ0

n := 0. Therefore, (ψ0, ω0) is an equilibrium

point of the the referenced model (2.24).

To prove the second part, recall that λ is an eigenvalue of the Jacobian of (2.21) at (δ0, ω0)

if and only if det(∇Pe(δ0)+λD+λ2M) = 0. According to Lemma 12, the nonzero eigen-

values J and Jr are the same. Moreover, the referenced model (2.24) has one dimension

less than the swing equation model (2.21). This completes the proof.

A.5 Proof of Theorem 8

We prove the following lemmas first:

Lemma 13. Let A,B ∈ Rn×n and define

C :=

 A −B

B A

.
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Then rank(C) = 2 rank(A+ iB) which is an even number.

Proof. Let V := 1√
2

 In iIn

iIn In

 and observe that V −1 = V̄ = V ∗, where V̄ stands for

the entrywise conjugate and V ∗ denotes the conjugate transpose of V . We have

V −1CV =

 A− iB 0

0 A+ iB

 = (A− iB)⊕ (A+ iB).

Since rank is a similarity invariant, we have rank(C) = rank((A − iB) ⊕ (A + iB)) =

2 rank(A+ iB).

Lemma 14. λ = iβ is an eigenvalue of J if and only if the matrix

M(β) :=

L− β2M −βD

βD L− β2M


is singular. Here L = ∇Pe(δ0).

Proof. According to Lemma 1, iβ ∈ σ(J) if and only if ∃x ∈ Cn, x 6= 0 such that

(
L− β2M + iβD

)
x = 0. (A.10)

DefineA := L−β2M , B := βD, and let x = u+ iv. Rewrite (A.10) as (A+ iB)(u+ iv) =

(Au−Bv) + i(Av +Bu) = 0, which is equivalent to

A −B

B A


u
v

 = 0.

Now, we are ready to prove Theorem 8: According to Lemma 14, iβ ∈ σ(J) for some
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nonzero real β if and only if the matrix

M(β) :=

L− β2M −βD

βD L− β2M


is singular. Recall that L := ∇Pe(δ0). In the sequel, we will show under the assumptions

of Theorem 8,M(β) is always nonsingular. First, we prove the theorem for n = 2. In this

case,

L =

 a12 −a12

−a21 a21

 , a12 > 0, a21 > 0.

According to Lemma 13, we have rank(M(β)) = 2 rank(L − β2M − iβD), and L −

β2M − iβD is full rank because

L− β2M − iβD =

 a12 − β2m1 −a12

−a21 a21 − β2m2 − iβd2

 ,
and det(L− β2M − iβD) = (a12 − β2m1)(a21 − β2m2 − iβd2)− a12a21. It is easy to see

that the real part and imaginary parts of the determinant cannot be zero at the same time.

Therefore, M(β) is also nonsingular and a partially damped 2-generator system cannot

have any pure imaginary eigenvalues.

Now, we prove the theorem for n = 3. Let A ∈ R2n×2n. For index sets I1 ⊆

{1, · · · , 2n} and I2 ⊆ {1, · · · , 2n}, we denote by A[I1, I2] the (sub)matrix of entries

that lie in the rows of A indexed by I1 and the columns indexed by I2. For a 3-generator

system, the matrix L can be written as

L =


a12 + a13 −a12 −a13

−a21 a21 + a23 −a23

−a31 −a32 a31 + a32


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where ajk ≥ 0,∀j, k ∈ {1, 2, 3}, j 6= k and ajk = 0 ⇐⇒ akj = 0. Moreover, M =

diag(m1,m2,m3) and D = diag(0, d2, d3). We complete the proof in three steps:

• Step 1: We show that the first four columns ofM(β) are linearly independent, i.e.,

rank(M(β)) ≥ 4.

To do so, we show that the equation

M(β)
[
{1, ..., 6}, {1, 2, 3, 4}

]


x1

x2

x3

x4


= 0

has only the trivial solution.

(i) If a12 + a13 − β2m1 6= 0, then x4 = 0. Moreover, we have βd2x2 = 0 and

βd3x3 = 0 which imply x2 = x3 = 0 because β, d2, and d3 are nonzero scalars.

Finally, the connectivity assumption requires that at least one of the two entries

a21 and a31 are nonzero, implying that x1 = 0.

(ii) If a12 + a13 − β2m1 = 0, then by expanding the fifth and sixth rows we get

βd2x2 − a21x4 = 0 =⇒ x2 =
a21

βd2

x4,

βd3x3 − a31x4 = 0, =⇒ x3 =
a31

βd3

x4.

Expanding the first row and substituting x2 and x3 from above gives

− a12x2 − a13x3 = 0 =⇒ −a12a21

βd2

x4 −
a13a31

βd3

x4 = 0.

The connectivity assumption (and the fact that akj ≥ 0,∀k 6= j and akj =

0 ⇐⇒ ajk = 0) leads to x4 = 0. This implies x2 = x3 = 0 and further x1 = 0
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due to the connectivity assumption.

• Step 2: We prove that the first five columns ofM(β) are linearly independent, i.e.,

rank(M(β)) ≥ 5.

To do so, we show that the equation

M(β)
[
{1, ..., 6}, {1, 2, 3, 4}

]


x1

x2

x3

x4


=



0

−βd2

0

−a12

a21 + a23 − β2m2

−a32


has no solution, i.e., the fifth column is not in the span of the first four columns.

Based on the equation in the fourth row we consider the following situations:

(i) If a12 + a13 − β2m1 = 0 and a12 6= 0, then there exists no solution.

(ii) If a12 + a13 − β2m1 = 0 and a12 = 0, then a13 = β2m1. Expanding the first

row yields −a13x3 = 0 =⇒ x3 = 0. Expanding the second row provides

(a23 − β2m2)x2 = −βd2 =⇒ x2 = − βd2
(a23−β2m2)

. Note that we assume

(a23 − β2m2) 6= 0, since otherwise the system has no solution. Finally, we

expand the fifth row and substitute x2 into it:

βd2x2 = a23 − β2m2 =⇒ − (βd2)2

(a23 − β2m2)
= a23 − β2m2

=⇒ −(βd2)2 = (a23 − β2m2)2

which is a contradiction.

(iii) If a12 + a13 − β2m1 6= 0 and a12 = 0, then x4 = 0. By expanding the fifth and
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sixth rows we get

βd2x2 = a23 − β2m2 =⇒ x2 =
a23 − β2m2

βd2

,

βd3x3 = −a32, =⇒ x3 = − a32

βd3

.

Expanding the second row and substituting x2 and x3 from above gives

(a23 − β2m2)x2 − a23x3 = −βd2 =⇒ (a23 − β2m2)2

βd2

+
a23a32

βd3

= −βd2

which is a contradiction.

(iv) If a12 + a13 − β2m1 6= 0 and a12 6= 0, then x4 = −a12
a12+a13−β2m1

. By expanding

the fifth and sixth rows and substituting x4 we get

βd2x2 +
a12a21

a12 + a13 − β2m1

= a21 + a23 − β2m2,

βd3x3 +
a12a31

a12 + a13 − β2m1

= −a32.

Now we expand the first row to get x1 = a12x2+a13x3
a12+a13−β2m1

. Finally, we expand the

second row and substitute for x1, x2, and x3:

−a21
a12x2 + a13x3

a12 + a13 − β2m1

+ (a21 + a23 − β2m2)x2 − a23x3 = −βd2,

which implies

((a21 + a23 − β2m2)− a12a21

a12 + a13 − β2m1

)x2

− (a23 +
a13a21

a12 + a13 − β2m1

)x3 = −βd2,
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or equivalently

1

βd2

((a21 + a23 − β2m2)− a12a21

a12 + a13 − β2m1

)2

+
1

βd3

(a23 +
a13a21

a12 + a13 − β2m1

)2 = −βd2.

which is a contradiction.

• Step 3: rank(M(β)) is an even number.

Finally, Lemma 13 precludes the rank of M(β) from being equal to 5. Therefore,

rank(M(β)) = 6, i.e.,M(β) is always nonsingular. This completes the proof.
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APPENDIX B

DETAILED PROOFS OF CHAPTER 3

B.1 Proof of Theorem 10

We complete the proof in three steps:

Step 1: First, we show that the zero eigenvalue of J is simple. According to Proposition

4, if (δ∗, ω∗) ∈ Ω, the Jacobian matrix L is a singular M-matrix, and consequently, it

has at least one zero eigenvalue. Consider the weighted directed graph G = (N ,A,W)

constructed in the beginning of Section 3.3.2. If (δ∗, ω∗) ∈ Ω, the arc weights wij are

positive for all arcs (i, j) ∈ A. Moreover, there are two arcs (i, j) and (j, i) between nodes

i and j if and only if the two nodes are connected in the underlying undirected graph of the

power grid. Therefore, if the underlying undirected graph of the power grid is connected,

then the directed graph G is strongly connected. Now, we need the following lemma from

graph theory to complete the proof: consider a weighted directed graph G with positive

weights. If G is strongly connected, then the zero eigenvalue of its Laplacian is simple (see

[87] and references therein). Note that the geometric multiplicity of the zero eigenvalue in

σ(J) and σ(L) are equal. See also Proposition 6.

Step 2: Next, we show all the nonzero real eigenvalues of J are negative. Let λ ∈ R be

an eigenvalue of J , then according to Lemma 1,

det
(
L+ λD + λ2M

)
= 0. (B.1)

Consider the Gershgorin disk Di centered at ci := Lii+λDi+λ
2Mi with radius ri := Lii =∑

j 6=i |Lij|. According to the Gershgorin circle theorem, every eigenvalue of the matrix

L + λD + λ2M lies within at least one of the discs Di,∀i ∈ N . Now assume for the sake

of contradiction that λ > 0, but this implies that ci > ri,∀i ∈ N , and consequently none
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of the Gershgorin disks contains the origin (i.e., 0 cannot be an eigenvalue), contradicting

(B.1).

Step 3: Finally, we show if condition (3.8) holds, then the nonzero eigenvalues of J are

located in the left half plane. This result holds for real nonzero eigenvalues of J , as shown

in the previous step. Now let λ ∈ C, λ ∈ σ(J), then according to Lemma 1, ∃v ∈ Cn, v 6= 0

such that

(
L+ λD + λ2M

)
v = 0. (B.2)

It is always possible to normalize v such that maxi∈N |vi| = 1. Here and in the rest of this

proof, if x ∈ C, then |x| denotes the modulus of x. Let k := argmaxi∈N |vi|, and spell out

the k-th row of (B.2):

∑
i∈N

Lkivi + λDkvk + λ2Mkvk = 0, (B.3)

which can be rewritten as

Lkkvk + λDkvk + λ2Mkvk = −
∑

i∈N ,i 6=k

Lkivi. (B.4)

Using the triangle inequality, we have

∣∣− ∑
i∈N ,i 6=k

Lkivi
∣∣ ≤ ∑

i∈N ,i 6=k

∣∣Lki∣∣∣∣vi∣∣ ≤ ∑
i∈N ,i 6=k

∣∣Lki∣∣.
Let us also define R :=

∑
i∈N ,i 6=k

∣∣Lki∣∣. Now assume that λ = α + iβ with α ≥ 0, β 6= 0

is a nonzero eigenvalue of J , and let us lead this assumption to a contradiction. Equation

(B.4) implies that

R2 ≥
∣∣Lkkvk + λDkvk + λ2Mkvk

∣∣2
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=
∣∣Lkk + λDk + λ2Mk

∣∣2∣∣vk∣∣2
=
∣∣Lkk + αDk + (α2 − β2)Mk + i(2αβMk + βDk)

∣∣2
=L2

kk + (αDk + (α2 − β2)Mk)
2 + 2Lkk(αDk + α2Mk)

− 2Lkkβ
2Mk + 4α2β2M2

k + β2D2
k + 4αβ2MkDk.

Recall that if (δ∗, ω∗) ∈ Ω, matrix L has zero row sum, i.e., R = Lkk. By cancelling R2

and L2
kk terms and moving 2Lkkβ

2Mk and β2D2
k to the left-hand side, we arrive at

β2(2LkkMk −D2
k) ≥(αDk + (α2 − β2)Mk)

2

+ 2Lkk(αDk + α2Mk)

+ 4α2β2M2
k + 4αβ2MkDk. (B.5)

According to our assumption in condition (3.8), we have (2LkkMk − D2
k) ≤ 0, thus the

left-hand side of the inequality (B.5) is nonpositive. If α ≥ 0 and β 6= 0, the right-hand side

of (B.5) would be positive, which is the desired contradiction. The idea used in this part of

the proof was inspired by Skar [58]. Note that the simple zero eigenvalue of the Jacobian

matrix J stems from the translational invariance of the flow function (3.4). As mentioned

earlier (see Section 2.5.3), we can eliminate this eigenvalue by choosing a reference bus and

refer all other bus angles to it. Therefore, the set of equilibrium points {δ∗ + α1 : α ∈ R}

will collapse into one equilibrium point. Such an equilibrium point will be asymptotically

stable.
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APPENDIX C

DETAILED PROOFS OF CHAPTER 4

C.1 Proofs of Corollary 1 and Theorem 11

The structure-preserving model (4.1) can be written as the following system of first-order

differential equations:

δ̇i = ωi ∀i ∈ G, (C.1a)

diδ̇i = −Pdi − Pei ∀i ∈ L, (C.1b)

miω̇i = −diωi + Pmi − Pei ∀i ∈ G, (C.1c)

where ωi is the deviation of angular frequency from its nominal value. Similarly, the sin-

gular perturbation model (4.4) can be written as

δ̇i = ωi ∀i ∈ G, (C.2a)

δ̇i = ωi ∀i ∈ L, (C.2b)

miω̇i = −diωi + Pmi − Pei ∀i ∈ G, (C.2c)

εω̇i = −diωi − Pdi − Pei ∀i ∈ L. (C.2d)

In the sequel, we usemi as an alias for ε,∀i ∈ L in order to represent its physical interpreta-

tion. In other words,mi = ε,∀i ∈ L. Let us defineD = diag(d1, · · · , dn0 , dn0+1, · · · , dn),

and M = diag(m1, · · · ,mn0 ,mn0+1, · · · ,mn). The Jacobian of (C.2) is

J =

 0 I

−M−1L −M−1D

 , (C.3)
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where L is the Jacobian of the flow function (4.3). Now, we are ready to present an outline

of the proof of Corollary 1 and Theorem 11.

C.1.1 Outline of the Proof of Corollary 1

Proof. According to Theorem 10, if condition

∑
j 6=i

ViVjYij sin
(
θij − δ∗i + δ∗j

)
≤ d2

i

2mi

, ∀i ∈ L ∪ G (C.4)

holds, then the equilibrium point is asymptotically stable. Note that

Qi = −
n∑
j=1

ViVjYij sin
(
θij − δ∗i + δ∗j

)
= −V 2

i Bii −
n∑

j=1,j 6=i

ViVjYij sin
(
θij − δ∗i + δ∗j

)

where Bii = Yii sin(θii). Hence, condition (C.4) can be re-written as

−Qi − V 2
i Bii ≤

d2
i

2mi

, ∀i ∈ L ∪ G. (C.5)

For load buses, (C.5) becomes

−Qi − V 2
i Bii ≤

d2
i

2ε
, ∀i ∈ L. (C.6)

It is reasonable to assume that ε << di,∀i ∈ L. Thus, the right-hand side of (C.6) tends to

infinity, and consequently, (C.6) holds trivially for load buses. Therefore, if condition

−Qi − V 2
i Bii ≤

d2
i

2mi

, ∀i ∈ G. (C.7)

is satisfied, then the equilibrium point is locally asymptotically stable.
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C.1.2 Outline of the Proof of Theorem 11

Proof. We follow the Tikhonov’s theorem [29]. The proof is outlined in the following 4

steps:

1. Define a reference bus, and write the referenced swing equation model according to

Section 2.5.3. This will put us in a convenient position to apply Tikhonov’s theorem.

2. The boundary layer model associated with the singular perturbation model (C.2) can

be simplified to the linear differential equation

dyi
dτ

= −diyi ∀i ∈ L, (C.8)

where τ is the the new time variable defined as

τ =
t− t0
ε

, (C.9)

and yi is defined as

yi = ωi +
Pdi
di

+
1

di
Pei , ∀i ∈ L. (C.10)

Therefore, the origin is a globally exponentially stable equilibrium point of this

boundary layer model as di > 0,∀i ∈ L. Now, Statement (i) of Theorem 11 fol-

lows from [29, Section 7, Corollary 2.3].

3. Let K be the Jacobian of the first order system (C.1). Show that K is a Schur com-

plement of J . Then, show if K has r eigenvalues with negative real part, then there

exits a sufficiently small ε such that J also has r eigenvalues with negative real part.

4. To prove Statement (ii) of Theorem 11, assume for the sake of contradiction that x∗

is not an asymptotically stable equilibrium point of (C.1). Since x∗ is hyperbolic,
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there must exist an eigenvalue in the right half-plane. Using step 3 of this proof, we

reach the contradiction that system (C.2) is not asymptotically stable.
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APPENDIX D

DETAILED PROOFS OF CHAPTER 5

D.1 Proof of Proposition 5

proof of (i). Let (v1, v2) ∈ ker(J) where v1, v2 ∈ Rn. Then

 0 I

−M−1L −M−1D


v1

v2

 = 0, (D.1)

which implies that v2 = 0 and M−1Lv1 = 0. Since M is non-singular, Lv1 = 0, i.e.

v1 ∈ ker(L). Therefore, proj(ker(J)) ⊆ ker(L). Conversely, let v1 ∈ ker(L). Set

v2 = 0. Then (v1, v2) ∈ ker(J) as it satisfies (D.1).

proof of (ii) and (iii). From part (i) of this proposition, we know that (v, 0) ∈ ker(J) ⇐⇒

v ∈ ker(L). Therefore, {(v1, 0), · · · , (vm, 0)} is a set of linearly independent eigenvec-

tors in ker(J) if and only if {v1, · · · , vm} is a set of linearly independent eigenvectors in

ker(L), i.e., dim(ker(J)) = dim(ker(L)). Finally, part (iii) is an immediate consequence

of either of the first two parts.

D.2 Proof of Theorem 12

proof of (a). This is an immediate consequence of Propositions 5 and 6.

proof of (b). See [17, Proof of Theorem 1].

proof of (c). The result holds for real nonzero eigenvalues of J , as shown in the previous

part. Now let λ ∈ C, λ ∈ σ(J), then according to Lemma 1, ∃v ∈ Cn, v 6= 0 such that

(
L+ λD + λ2M

)
v = 0. (D.2)
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It is always possible to normalize v such that maxi∈N |vi| = 1. Here and in the rest of this

proof, if x ∈ C, then |x| denotes the modulus of x. Let k := argmaxi∈N |vi|, and spell out

the k-th row of (D.2):

Lkkvk + λdkvk + λ2mkvk = −
n∑

i=1,i 6=k

Lkivi. (D.3)

Using the triangle inequality, we have

∣∣− n∑
i=1,i 6=k

Lkivi
∣∣ ≤ n∑

i=1,i 6=k

∣∣Lki∣∣∣∣vi∣∣ ≤ n∑
i=1,i 6=k

∣∣Lki∣∣.
Define R :=

∑n
i=1,i 6=k

∣∣Lki∣∣. Now assume that λ = α + iβ with α ≥ 0, β 6= 0 is a nonzero

eigenvalue of J , and let us lead this assumption to a contradiction. Recall |vk| = ‖v‖∞ = 1.

Equation (D.3) implies that

R2 ≥
∣∣Lkkvk + λdkvk + λ2mkvk

∣∣2 =
∣∣Lkk + λdk + λ2mk

∣∣2
=L2

kk + (αdk + (α2 − β2)mk)
2 + 2Lkk(αdk + α2mk)

− 2Lkkβ
2mk + 4α2β2m2

k + β2d2
k + 4αβ2mkdk.

Recall that if (δ∗, ω∗) ∈ Ω, matrix L has zero row sum, i.e., R = Lkk. By cancelling R2

and L2
kk terms and moving 2Lkkβ

2mk and β2d2
k to the left-hand side, we arrive at

β2(2Lkkmk − d2
k) ≥(αdk + (α2 − β2)mk)

2

+ 2Lkk(αdk + α2mk)

+ 4α2β2m2
k + 4αβ2mkdk. (D.4)

Now, note that the outgoing reactive power flow at PCC k is

Qk = −
n∑
i=1

VkViYki sin (θki − δ∗k + δ∗i )
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= −V 2
k Bkk −

n∑
i=1,i 6=k

VkViYki sin (θki − δ∗k + δ∗i )

= −V 2
k Bkk − Lkk, (D.5)

where Bkk = Ykk sin(θkk). Therefore condition (5.8) implies that (2Lkkmk − d2
k) ≤ 0,

thus the left-hand side of the inequality (D.4) is nonpositive. If α ≥ 0 and β 6= 0, the

right-hand side of (D.4) will be positive, which is the desired contradiction. According to

Proposition 5, the simple zero eigenvalue of the Jacobian matrix J stems from the trans-

lational invariance of the flow function (5.2). As mentioned earlier, we can eliminate this

eigenvalue by choosing a reference bus and refer all other bus angles to it. Therefore, the

set of equilibrium points {δ∗ + α1 : α ∈ R} will collapse into one equilibrium point. Such

an equilibrium point will be asymptotically stable.

proof of (d). See the proof of Theorem 17.

D.3 Proof of Lemma 8

Proof. Consider the nodal admittance matrix Y ∈ Cn×n which satisfies Assumptions 2 and

3. Let Y induce a network G = (N , E) with the set of active nodes α ⊂ N and passive

nodes β = N \α. According to Definition 6, the Kron reduced matrix after removing node

k0 ∈ β is Y r ∈ C(n−1)×(n−1) defined as

Y r
ik = Yik − Yik0Yk0k/Yk0k0 , ∀i, k 6= k0 (D.6)

First, we prove that Y r satisfies Assumption 2. Recall that the following two classes of

matrices are invariant under Kron reduction [27]: i) matrices with zero row sum; ii) sym-

metric matrices. In other words, Y r is a symmetric matrix with zero row sum. Hence,

we can restrict our analysis to off-diagonal entries, and aim to prove that Y r = Gr + iBr

satisfies Gr
ik ≤ 0, Br

ik ≥ 0, for all i 6= k. Consider Yik = Gik + iBik with Gik ≤ 0 and
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Bik ≥ 0 and note that for off-diagonal entries Y r
ik, i 6= k, we have

Yik−Y r
ik = Yik0Yk0k/Yk0k0

= (Gik0 + iBik0)(Gk0k + iBk0k)/(Gk0k0 + iBk0k0)

= ((Gik0Gk0k −Bik0Bk0k)

+ i(Gik0Bk0k +Bik0Gk0k))(Gk0k0 − iBk0k0)/η,

where η = G2
k0k0

+B2
k0k0

. Observe that

Im(Yik0Yk0k/Yk0k0)η =Gk0k0Gik0Bk0k +Gk0k0Bik0Gk0k

−Bk0k0(Gik0Gk0k −Bik0Bk0k) ≤ 0,

where the inequality holds because under Assumptions 2 and 3, we have

Gk0k0Gik0Bk0k ≤ 0, Gk0k0Bik0Gk0k ≤ 0,

Gik0Gk0k −Bik0Bk0k ≤ 0,−Bk0k0 ≥ 0.

This proves that Br
ik ≥ 0, for all i 6= k. Also observe that

Re(Yik0Yk0k/Yk0k0)η

= Gk0k0Gik0Gk0k −Gk0k0Bik0Bk0k

+Bk0k0Gik0Bk0k +Bk0k0Bik0Gk0k

≥ Gk0k0Gik0Gk0k − ν2
maxGk0k0Gik0Gk0k

+ ν2
minGk0k0Gik0Gk0k + ν2

minGk0k0Gik0Gk0k

= (1 + 2ν2
min − ν2

max)Gk0k0Gik0Gk0k ≥ 0,
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where the inequality holds because under Assumptions 2 and 3, we have 1+2ν2
min−ν2

max ≥

0 and Gk0k0Gik0Gk0k ≥ 0. This shows that Gr
ik ≤ 0 for all i 6= k, and completes the first

part of proof. Next, we prove that Br
kk ≥ Bkk for all k 6= k0. Observe that

Im(Y r
kk − Ykk)η = (G2

kk0
−B2

kk0
)Bk0k0 − 2Gk0k0Gkk0Bkk0 .

According to Assumption 2, we have Gk0k0 ≥ 0, Bk0k0 ≤ 0, Gkk0 ≤ 0, Bkk0 ≥ 0,∀k 6= k0.

Assumption 3 says |Gkk0| ≤ |Bkk0|. Hence (G2
kk0
−B2

kk0
)Bk0k0 ≥ 0 and−2Gk0k0Gkk0Bkk0 ≥

0. This implies that Br
kk ≥ Bkk, and completes the proof.

D.4 Proof of Theorem 13

Proof. Let the nodal admittance matrix of Gd be Y ∈ Cn×n which satisfies Assumptions

2 and 3. Suppose Gd has the set of active nodes α ⊂ N d and passive nodes β = N d \ α.

After properly labeling the nodes, we can have β = {n − |β| + 1, · · · , n}. In order to get

the admittance matrix Y r of the Kron reduced network Gr, we need to remove the set of

passive nodes β according to Definition 6, and this can be accomplished by constructing a

sequence of matrices {Y (`)}|β|`=1, where Y (`) ∈ C(n−`)×(n−`) is defined as

Y
(`)
ik = Y

(`−1)
ik − Y (`−1)

im`
Y

(`−1)
m`k

/Y (`−1)
m`m`

, (D.7)

where i, k ∈ {1, · · · , n − `}, Y (0) = Y , Y (|β|) = Y r, and m` = n − ` + 1. Observe that

the matrix sequence {Y (`)}|β|`=1 is well-defined. Now, according to Lemma 8, for each ` ∈

{1, · · · , |β|} matrix Y (`) satisfies Assumptions 2. Hence, Y r satisfies both Assumptions 2

and 3.

Next, Let V ∈ Cn and S ∈ Cn be the vector of nodal voltages and power injections

of network Gd, respectively. It can be shown that if the vector of nodal voltages of the

reduced network Gr is V [α], then the vector of power injections in the reduced network

is S[α]. Hence, if the voltage magnitudes in the original and Kron-reduced networks are
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equal, then the reactive power Qi at active nodes in the two networks are equal.

Moreover, Lemma 8 asserts that B(`)
ii ≥ B

(`−1)
ii , for all i ∈ {1, · · · , n − `}. Since this

inequality holds for all ` ∈ {1, · · · , |β|}, by induction, we conclude that Br
ii ≥ Bii, ∀i ∈

{1, · · · , n − |β|} where Br
ii and Bii are the ith diagonal entries of the Kron-reduced and

original admittance matrices, respectively. Note that −Qi − Br
iiV

2
i ≤ −Qi − BiiV

2
i .

Therefore, if −Qi − BiiV
2
i ≤ d2

i /2mi holds for active nodes in the original network, then

−Qi −Br
iiV

2
i ≤ d2i

2mi
also holds and according to Theorem 12, the stability of the system is

guaranteed.

218



REFERENCES

[1] P. M. Anderson and A. A. Fouad, Power System Control and Stability. John Wiley
& Sons, 2008.

[2] H.-D. Chiang, M. W. Hirsch, and F. F. Wu, “Stability regions of nonlinear au-
tonomous dynamical systems”, IEEE Trans. Automat. Control, vol. 33, no. 1, pp. 16–
27, 1988.

[3] J. Zaborszky, G. Huang, B. Zheng, and T.-C. Leung, “On the phase portrait of a
class of large nonlinear dynamic systems such as the power system”, IEEE Trans.
Automat. Control, vol. 33, no. 1, pp. 4–15, 1988.

[4] H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power Systems:
Theoretical Foundation, BCU Methodologies, and Applications. John Wiley & Sons,
2011.

[5] P. Varaiya, F. F. Wu, and R.-L. Chen, “Direct methods for transient stability analysis
of power systems: Recent results”, Proc. IEEE, vol. 73, no. 12, pp. 1703–1715,
1985.

[6] T. L. Vu and K. Turitsyn, “Lyapunov functions family approach to transient stabil-
ity assessment”, IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1269–1277, 2015.

[7] H.-D. Chiang, “Study of the existence of energy functions for power systems with
losses”, IEEE Trans. Circuits Syst., vol. 36, no. 11, pp. 1423–1429, 1989.

[8] T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct analysis
of transient stability”, IEEE Trans. Power App. Syst., no. 2, pp. 573–584, 1979.

[9] Y. Zhang and L. Xie, “A transient stability assessment framework in power electronic-
interfaced distribution systems”, IEEE Trans. Power Syst., vol. 31, no. 6, pp. 5106–
5114, 2016.

[10] A. Gholami and X. A. Sun, “Towards resilient operation of multimicrogrids: An
MISOCP-based frequency-constrained approach”, IEEE Trans. Control Netw. Syst.,
vol. 6, no. 3, pp. 925–936, 2019.

[11] J. Schiffer, D. Goldin, J. Raisch, and T. Sezi, “Synchronization of droop-controlled
microgrids with distributed rotational and electronic generation”, in 52nd IEEE
Conf. Decision Control, 2013, pp. 2334–2339.

219



[12] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous
generators”, IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp. 1259–1267,
2010.

[13] T. L. Vu, H. D. Nguyen, J. Slotine, and K. Turitsyn, “Reconfigurable microgrid
architecture for blackout prevention”, 2019.

[14] IEEE Recommended Practice for Utility Interconnected Photovoltaic (PV) Systems,
2000.

[15] IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource
Interconnection, 2013.

[16] S. J. Skar, “Stability of multi-machine power systems with nontrivial transfer con-
ductances”, SIAM J. Appl. Math., vol. 39, no. 3, pp. 475–491, 1980.

[17] A. Gholami and X. A. Sun, “A fast certificate for power system small-signal sta-
bility”, in 59th IEEE Conf. Decision Control, arXiv:2008.02263, 2020, pp. 3383–
3388.

[18] H.-D. Chiang and F. F. Wu, “Stability of nonlinear systems described by a second-
order vector differential equation”, IEEE Trans. Circuits Syst., vol. 35, no. 6, pp. 703–
711, 1988.

[19] A. Laub and W. Arnold, “Controllability and observability criteria for multivariable
linear second-order models”, IEEE Trans. Automat. Control, vol. 29, no. 2, pp. 163–
165, 1984.

[20] F. Ma, M. Morzfeld, and A. Imam, “The decoupling of damped linear systems in
free or forced vibration”, J. Sound Vib., vol. 329, no. 15, pp. 3182–3202, 2010.

[21] S. Adhikari, Structural Dynamic Analysis with Generalized Damping Models: Anal-
ysis. John Wiley & Sons, 2013.

[22] F. Dorfler and F. Bullo, “Synchronization and transient stability in power networks
and nonuniform kuramoto oscillators”, SIAM J. Control Optim., vol. 50, no. 3,
pp. 1616–1642, 2012.

[23] ——, “On the critical coupling for kuramoto oscillators”, SIAM J. Appl. Dyn. Syst.,
vol. 10, no. 3, pp. 1070–1099, 2011.

[24] J. A. Acebron, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, “The ku-
ramoto model: A simple paradigm for synchronization phenomena”, Rev. Modern
Phys., vol. 77, no. 1, pp. 137–185, 2005.

220

https://arxiv.org/abs/2008.02263


[25] I. V. Belykh, B. N. Brister, and V. N. Belykh, “Bistability of patterns of synchrony
in kuramoto oscillators with inertia”, Chaos, vol. 26, no. 9, p. 094 822, 2016.

[26] B. N. Brister, V. N. Belykh, and I. V. Belykh, “When three is a crowd: Chaos from
clusters of kuramoto oscillators with inertia”, Phys. Rev. E, vol. 101, p. 062 206, 6
2020.

[27] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to electrical
networks”, IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 1, pp. 150–163,
2012.

[28] A. R. Bergen and D. J. Hill, “A structure preserving model for power system sta-
bility analysis”, IEEE Trans. Power Appar. Syst., no. 1, pp. 25–35, 1981.

[29] P. Kokotovic, H. K. Khali, and J. O’reilly, Singular Perturbation Methods in Con-
trol: Analysis and Design. Siam, 1999, vol. 25.

[30] D. Braess, A. Nagurney, and T. Wakolbinger, “On a paradox of traffic planning”,
Transportation Science, vol. 39, no. 4, pp. 446–450, 2005.

[31] B. Stott and O. Alsac, “Fast decoupled load flow”, IEEE Trans. Power Appar. Syst.,
vol. PAS-93, no. 3, pp. 859–869, 1974.

[32] P. Kundur, Power System Stability and Control. New York, NY, USA: McGraw-
Hill, 1994.

[33] R. Miller and A. Michel, “Asymptotic stability of systems: Results involving the
system topology”, SIAM J. Control Optim., vol. 18, no. 2, pp. 181–190, 1980.

[34] F. J. Koerts, M. Burger, A. J. van der Schaft, and C. D. Persis, “Topological and
graph-coloring conditions on the parameter-independent stability of second-order
networked systems”, SIAM J. Control Optim., vol. 55, no. 6, pp. 3750–3778, 2017.

[35] D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model validation for the
august 10, 1996 wscc system outage”, IEEE Trans. Power Syst., vol. 14, no. 3,
pp. 967–979, 1999.

[36] (). “Eastern interconnection forced oscillation event report on january 11, 2019”.
North American Electric Reliability Corporation, (visited on 2019).

[37] K. Koorehdavoudi, S. Roy, T. Prevost, F. Xavier, P. Panciatici, and V. M. Venkata-
subramanian, “Input-output properties of the power grid’s swing dynamics: Depen-
dence on network parameters”, in 2019 IEEE Conf. Control Technology Applica-
tions (CCTA), IEEE, 2019, pp. 92–97.

221



[38] M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, “Wide-area power
oscillation damping with a fuzzy controller compensating the continuous commu-
nication delays”, IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1997–2005, 2012.

[39] A. Arapostathis, S. Sastry, and P. Varaiya, “Global analysis of swing dynamics”,
IEEE Trans. Circuits Syst., vol. 29, no. 10, pp. 673–679, 1982.

[40] E. Abed and P. Varaiya, “Oscillations in power systems via hopf bifurcation”, in
20th IEEE Conference on Decision and Control, IEEE, 1981, pp. 926–929.

[41] J. Alexander, “Oscillatory solutions of a model system of nonlinear swing equa-
tions”, Int. J. Elec. Power Ener. Syst., vol. 8, no. 3, pp. 130–136, 1986.

[42] H. G. Kwatny and X.-M. Yu, “Energy analysis of load-induced flutter instability in
classical models of electric power networks”, IEEE Trans. Circuits Syst., vol. 36,
no. 12, pp. 1544–1557, 1989.

[43] H. Kwatny and G. Piper, “Frequency domain analysis of hopf bifurcations in elec-
tric power networks”, IEEE Trans. Circuits Syst., vol. 37, no. 10, pp. 1317–1321,
1990.

[44] I. A. Hiskens and P. B. Reddy, “Switching-induced stable limit cycles”, Nonlinear
Dyn., vol. 50, no. 3, pp. 575–585, 2007.

[45] P. B. Reddy and I. A. Hiskens, Limit-induced stable limit cycles in power systems.
IEEE Russia Power Tech, 2005.

[46] F. Paganini and E. Mallada, “Global performance metrics for synchronization of
heterogeneously rated power systems: The role of machine models and inertia”, in
55th Annu. Allert. Conf. Commun. Control Comput., 2017, pp. 324–331.

[47] T. W. Mak, P. Van Hentenryck, and I. A. Hiskens, “A nonlinear optimization model
for transient stable line switching”, in 2017 American Control Conf. (ACC), 2017,
pp. 2085–2092.

[48] H. Hijazi, T. W. Mak, and P. Van Hentenryck, “Power system restoration with tran-
sient stability”, in Proc. AAAI Conf. Artificial Intelligence, vol. 29, 2015.

[49] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, “A sufficient condition for
power flow insolvability with applications to voltage stability margins”, IEEE Trans.
Power Syst., vol. 28, no. 3, pp. 2592–2601, 2013.

[50] C. Josz, D. K. Molzahn, M. Tacchi, and S. Sojoudi, “Transient stability analysis of
power systems via occupation measures”, in IEEE Conf. Innov. Smart Grid Tech-
nol., Washington, DC, USA, 2019.

222



[51] S. V. Dhople, Y. C. Chen, L. DeVille, and A. D. Dominguez-Garcia, “Analysis
of power system dynamics subject to stochastic power injections”, IEEE Trans.
Circuits Syst. I: Regul. Pap., vol. 60, no. 12, pp. 3341–3353, 2013.

[52] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side primary
frequency control in power systems”, IEEE Trans. Automat. Control, vol. 59, no. 5,
pp. 1177–1189, 2014.

[53] T. L. Vu and K. Turitsyn, “A framework for robust assessment of power grid stabil-
ity and resiliency”, IEEE Trans. Automat. Control, vol. 62, no. 3, pp. 1165–1177,
2016.

[54] R. Ortega, M. Galaz, A. Astolfi, Y. Sun, and T. Shen, “Transient stabilization of
multimachine power systems with nontrivial transfer conductances”, IEEE Trans.
Automat. Control, vol. 50, no. 1, pp. 60–75, 2005.

[55] E. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, C. De Persis, and F. Dorfler, “Robust
decentralized secondary frequency control in power systems: Merits and tradeoffs”,
IEEE Trans. Automat. Control, vol. 64, no. 10, pp. 3967–3982, 2018.

[56] F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem”, SIAM Rev.,
vol. 43, no. 2, pp. 235–286, 2001.

[57] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York: Cambridge
University Press, 2013.

[58] S. J. Skar, “Stability of power systems and other systems of second order differ-
ential equations”, Ph.D. dissertation, Dept. Math., Iowa State Univ., Iowa, USA,
1980.

[59] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory. Springer Science &
Business Media, 2004, vol. 112.

[60] A. Greenbaum, R.-c. Li, and M. L. Overton, “First-order perturbation theory for
eigenvalues and eigenvectors”, SIAM Rev., vol. 62, no. 2, pp. 463–482, 2020.

[61] D. S. Schmidt, “Hopf’s bifurcation theorem and the center theorem of liapunov
with resonance cases”, J. Math. Anal. Appl., vol. 63, no. 2, pp. 354–370, 1978.

[62] G. Poole and T. Boullion, “A survey on M-matrices”, SIAM Rev., vol. 16, no. 4,
pp. 419–427, 1974.

[63] A. Gholami and X. A. Sun, “Stability of multi-microgrids: New certificates, dis-
tributed control, and braess’s paradox”, IEEE Trans. Control Netw. Syst., 2021.

223



[64] A. J. Conejo, M. Carrion, and J. M. Morales, Decision Making under Uncertainty
in Electricity Markets. Springer, 2010.

[65] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziar-
gyriou, D. Hill, A. Stankovic, C. Taylor, et al., “Definition and classification of
power system stability”, IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1387–1401,
2004.

[66] F. Dorfler and F. Bullo, “Synchronization and transient stability in power networks
and nonuniform kuramoto oscillators”, SIAM J. Control Optimiz., vol. 50, no. 3,
pp. 1616–1642, 2012.

[67] F. Ebrahimzadeh, M. Adeen, and F. Milano, On the impact of topology on power
system transient and frequency stability. EEEIC-ICPS Europe, 2019.

[68] C. Chicone, Ordinary Differential Equations with Applications. Springer Science
& Business Media, 2006, vol. 34.

[69] R. D. Zimmerman and C. E. Murillo-Sanchez. (2019). “MATPOWER”. version 7.0.

[70] T. Ishizaki, A. Chakrabortty, and J.-I. Imura, “Graph-theoretic analysis of power
systems”, Proc. IEEE, vol. 106, no. 5, pp. 931–952, 2018.

[71] J. Ma, S. Feuerborn, C. Black, and V. M. Venkatasubramanian, “A comprehensive
software suite for power grid stability monitoring based on synchrophasor measure-
ments”, in 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies
Conf. (ISGT), IEEE, 2017, pp. 1–5.

[72] J. Follum, N. Zhou, and J. W. Pierre, “Evaluation of mode estimation accuracy for
small-signal stability analysis”, in 2011 North American Power Symp., IEEE, 2011,
pp. 1–7.

[73] A. Gholami and X. A. Sun, “The impact of damping in second-order dynamical
systems with applications to power grid stability”, SIAM J. Appl. Dyn. Syst., 2021,
arXiv:2010.06662 [math.DS].

[74] A. Michel, A. Fouad, and V. Vittal, “Power system transient stability using individ-
ual machine energy functions”, IEEE Trans. Circuits Syst., vol. 30, no. 5, pp. 266–
276, 1983.

[75] F. Dorfler and F. Bullo, “Topological equivalence of a structure-preserving power
network model and a non-uniform kuramoto model of coupled oscillators”, in 2011
50th IEEE Conf. Decision and Control and European Control Conf., IEEE, 2011,
pp. 7099–7104.

224

https://arxiv.org/abs/2010.06662


[76] T. L. Vu and K. Turitsyn, “A framework for robust assessment of power grid stabil-
ity and resiliency”, IEEE Trans. Automat. Control, vol. 62, no. 3, pp. 1165–1177,
2016.

[77] F. Wilches-Bernal, R. H. Byrne, and J. Lian, “Damping of inter-area oscillations via
modulation of aggregated loads”, IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2024–
2036, 2019.

[78] F. Wilches-Bernal, C. Lackner, J. H. Chow, and J. J. Sanchez-Gasca, “Effects of
wind turbine generators on inter-area oscillations and damping control design”, in
Proc. 52nd Hawaii Int. Conf. Syst. Sci., 2019.

[79] J. H. Chow and J. J. Sanchez-Gasca, “Linear analysis and small-signal stability”,
in Power System Modeling, Computation, and Control. 2020, pp. 149–173.

[80] F. Milano and I. Dassios, “Primal and dual generalized eigenvalue problems for
power systems small-signal stability analysis”, IEEE Trans. Power Syst., vol. 32,
no. 6, pp. 4626–4635, 2017.
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