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Abstract— This paper presents provably correct algorithms for
computing the outcome of the BGP route-selection process for
each router in a network, without simulating the complex details
of BGP message passing. The algorithms require only static
inputs that can be easily obtained from the routers: the BGP
routes learned from neighboring domains, the import policies
configured on the BGP sessions, and the internal topology. Solving
the problem would be easy if the route-selection process were
deterministic and every router received all candidate BGP routes.
However, two important features of BGP—the Multiple Exit
Discriminator (MED) attribute and route reflectors—violate these
properties. After presenting a simple route-prediction algorithm
for networks that do not use these features, we present algorithms
that capture the effects of the MED attribute and route reflectors
in isolation. Then, we explain why the interaction between these
two features precludes efficient route prediction. These two
features also create difficulties for the operation of BGP itself,
leading us to suggest improvements to BGP that achieve the
same goals as MED and route reflection without introducing the
negative side effects.

I. INTRODUCTION

To control the flow of traffic through their networks, opera-
tors need to know how configuration changes affect the routes
that each router in the network selects. The outcome of the
route-selection process depends on the routes advertised by
neighboring domains, the internal topology, the interdomain
routing policies, and the intradomain link weights. Ordinarily,
computing the outcome would require a complex simulation
of routing-protocol dynamics. Instead, we present efficient al-
gorithms that compute the outcome of the BGP route-selection
process without backtracking. In designing our algorithms, we
grapple with two features of the Border Gateway Protocol
(BGP) [1]: limited visibility into the available routes for each
destination and non-deterministic ranking of these routes.

A. Backbone Network Engineering
The flow of traffic through a backbone network depends on

the interactions between three routing protocols, as shown in
Figure 1:

External BGP (eBGP): Routers in the AS use eBGP to
receive route advertisements from neighboring ASes. For
example, the routers W , X , and Y each have eBGP sessions
with neighboring ASes. The routers may apply an import
policy to modify the attributes of the routes learned from the
neighbor, with the goal of influencing the selection process in
Table I that each router applies to select a single best BGP
route for each destination prefix.

Internal BGP (iBGP): The routers use iBGP to disseminate
the routes to the rest of the network. In the simplest case, each

4
1

1

2

iBGP
session

destination

eBGP
session

PSfrag replacements

W X Y

Z

I

AS A AS B

Fig. 1. Network with three egress routers connecting to two neighboring
ASes: Solid lines correspond to physical links (internal links are annotated
with IGP link weights) and dashed lines correspond to BGP sessions. Thick
lines illustrate the shortest path from one router to its closest egress point for
reaching the destination.

router has an iBGP session with every eBGP-speaking router,
forming an “full mesh” configuration. If two routes are equally
good through the first four steps in Table I, the router favors
an eBGP-learned route over an iBGP-learned one. In Figure 1,
router Z receives three iBGP routes, from routers W , X , and
Y . Upon learning routes with the same local preference, AS
path length, origin type, and MED values, router Z uses the
IGP to break ties between the remaining routes.

Interior Gateway Protocol (IGP): The routers run an Interior
Gateway Protocol (IGP) to learn how to reach each other.
Two common IGPs today are OSPF [2] and IS-IS [3], which
compute shortest paths based on configurable link weights.
The routers also use the IGP path costs in the sixth step of the
BGP route-selection process in Table I. In Figure 1, router Z
selects the route with the smallest IGP path cost of 2, learned
from router X .1

After selecting a route to each destination, each router com-
bines the BGP and IGP information to construct a forwarding
table that maps the destination prefix to the outgoing link along
the shortest path. In Figure 1, the forwarding path consists of
the thick lines from the ingress link at router Z to the egress
link at router X .

If the link from X to AS B becomes persistently congested,
the network operator may need to adjust the configuration of

1If two routes have the same IGP path cost, the router performs an arbitrary
tiebreak in the seventh step in Table I.
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Step Criterion
1 Highest local preference
2 Lowest AS path length
3 Lowest origin type
4 Lowest MED (with same next-hop AS)
5 eBGP-learned over iBGP-learned
6 Lowest IGP path cost to egress router
7 Lowest router ID of BGP speaker

TABLE I
STEPS IN THE BGP ROUTE-SELECTION PROCESS.

the routing protocols to direct some of the traffic to other
egress routers. For example, the operator could modify the
import policy at router X for the routes it learns from AS A
and AS B to make the BGP routes for some destinations look
less attractive than the routes received at other routers [4].
Changing the import policy in this way causes the route that
X readvertises via iBGP to carry a smaller local preference,
which influences the routes that other routers in the network
select. For example, changing the import policy at X has the
indirect effect of directing some of the traffic entering at router
Z to egress router Y (the next-closest egress point, in terms
of the IGP path costs), thereby alleviating the congestion on
the link connecting X to AS B. Network operators make
similar kinds of configuration changes for a variety of other
reasons, such as exploiting new link capacity, preparing for
maintenance on part of the network, or reacting to equipment
failures.

Operators must predict the effects of changes to the routing
protocol configuration before modifying the configuration on a
live network. Human intuition is not sufficient for understand-
ing the complex interactions between three routing protocols
running on a large, dynamic network. Experimenting on a
live network runs the risk of making disruptive configuration
changes that degrade performance. Instead, we believe that
operators should have an accurate and efficient tool that
computes the effects of configuration changes on the flow of
traffic through the network. This tool should allow a network
operator (or automated configuration algorithm) to efficiently
explore the large space of possible configurations.

B. Problem Statement and Challenges
Our goal is to compute the outcome—the routing deci-

sion for each router—once the protocols have converged.
Accordingly, we present algorithms that accurately and quickly
determine how the network configuration and the eBGP-
learned routes affect the flow of traffic through an AS. Some
existing tools simulate BGP’s behavior [5–7] and even use
simulation as an “inner loop” for optimizing BGP policy
configuration [8]. On the other hand, this work is the first
to develop algorithms that determine the outcome of the
BGP route-selection process at each router in an AS without
simulating the dynamics of the protocol.

Predicting the route that each router ultimately selects is
challenging because the route selected by one router often
depends on the routes selected by other routers. Consider
Figure 2, where router R1 receives two routes via eBGP, while
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Fig. 2. Route prediction requires resolving circular dependencies. Deter-
mining the route that R2 ultimately selects (i.e., a, b, or c) first requires
determining whether R1 selects route a or b. Ultimately, R1’s selected route
could depend on whether it learns route c from R2, which requires revisiting
R1.

R2 receives a single route via eBGP. To determine the route
that each one of these routers ultimately selects, we must
first determine the candidate routes available to each router.
Of course, the set of candidate routes available to each of
these routers depends on the route that the other selects! This
circular dependency seems to imply some “back and forth”
reasoning (i.e., determining the route that R1 selects depends
on the route that R2 selects, which in turn depends on the
route that R1 selects, etc.). Efficiently resolving these types of
circular dependencies is the focus of this paper. In particular,
we solve the following problem:

Problem: Given only a static snapshot of the routing
configuration for the routers in an AS and the BGP
routes learned from neighbor ASes, determine the
route that each router selects for each destination,
while considering each available candidate route only
once.

Solving this problem would be easy if (i) the route-selection
process in Table I allowed each router to form a deterministic
ranking of all candidate routes and (ii) the dissemination of
routes in iBGP ensured each router received the best route for
a destination from every eBGP-speaking router. If these two
properties held, then a simple algorithm that considered which
route each router would select from all of the eBGP-learned
routes would correctly compute the outcome of BGP route
selection without having to revisit any routers. Unfortunately,
two features of BGP cause these properties to be violated, thus
making route prediction more challenging:

The BGP selection process does not form a deterministic
ranking of the routes, due to the Multiple Exit Discriminator
(MED) attribute. An eBGP neighbor can set the MED attribute
of route advertisements on different BGP sessions to influence
the decisions in a neighboring AS. For example, in Figure 1,
AS B may send a route with a MED of 10 to router Y
and a route with a MED of 20 to router X ; as a result, Z
would select the route from Y with the smaller MED, even
though the IGP path to X is shorter. The MED comparison in
Table I applies only to routes learned from the same next-hop
AS. When MEDs are used in this fashion, a router does not
necessarily have a deterministic ranking of the BGP routes. In
other words, the choice of one route over another may depend
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on the presence or absence of a third route [9]. An accurate
route-prediction algorithm must resolve these dependencies.

The dissemination of routes within an AS does not nec-
essarily satisfy visibility, due to the use of route reflectors.
The quadratic scaling of a full-mesh iBGP configuration forces
large networks to distribute routes in a hierarchical fashion. A
router configured as a route reflector selects a single best route
and forwards the route to its clients. Using route reflectors
reduces the number of iBGP sessions, as well as the number of
routes the clients need to receive and store. Because each route
reflector forwards only its best route to its iBGP neighbors, the
candidate routes available at one router depend on decisions
at other routers. In particular, a route reflector may make a
different choice in step 6 of the route-selection process (i.e.,
shortest IGP path to the next-hop IP address) than its clients
because it is located at a different place in the IGP topology.

In general, these two features of BGP cannot be ignored
because operators use them often to satisfy important policy
and scalability goals. To illustrate the extent to which these
artifacts of BGP complicate route prediction, we present the
“ideal” route-prediction algorithm, before considering more
sophisticated algorithms that capture the effects of these two
artifacts. The paper makes three main contributions:

Simple algorithm for predicting BGP route selection, when
determinism and visibility are satisfied: Rather than analyzing
BGP dynamics, we present efficient algorithms to compute the
outcome of the distributed route-selection process using only
static inputs. Our algorithms exploit the following observation:
when a routing system converges, the outcome does not
depend on the order and timing of the messages, allowing
our algorithms to apply a message ordering that efficiently
computes the outcome of BGP route selection. Section II
presents practical constraints that enable efficient computation
of network-wide BGP route selection and decomposes the
route-prediction problem into three stages. After we introduce
some notation in Section III, Section IV presents an algorithm
that computes the outcome of BGP route selection for the
simple case, with a full-mesh iBGP configuration and no MED
attribute.2

Algorithms that capture the influence of the MED attribute
and route reflectors: Most of the rest of the paper deals
with route prediction in networks that employ MED, route
reflection, or both. We first present algorithms that handle
MED and route reflectors in isolation. We then discuss why
the interaction between these two features precludes efficient
route prediction. Section V focuses on algorithms that capture
the effects of the MED attribute, assuming a full-mesh iBGP
configuration. In Section VI, we consider iBGP configurations
that use route reflection.

Proposed improvements to BGP: The two features—the
MED attribute and route reflection—that complicate route pre-
diction also create difficulties for the operation of BGP itself.
Section VII suggests ways to improve the design and operation
of BGP to avoid the harmful effects without sacrificing the

2Throughout the paper, we often describe BGP “without MED”. Network
configurations “without MED” could also be viewed as a configuration that
compares the MED attributes across all routes (e.g., in Cisco IOS, this
behavior can be enabled with always-compare-med setting).

policy semantics of MEDs and the scalability provided by
route reflectors.

Our route-prediction algorithms have been implemented in
a traffic-engineering tool for network operators [10, 11]. We
tested our prototype on a large tier-1 ISP to measure the
speed of the algorithms on realistic inputs and to validate
the correctness of the results. The study showed that the tool
provides fast, accurate answers to “what if” questions about
the effects of configuration changes on the flow of traffic
through the network.

II. MODELING CONSTRAINTS AND OVERVIEW

In this section, we impose three constraints that the routing
system must satisfy to enable efficient and accurate route
prediction. Next, we describe how these constraints enable us
to decompose the algorithm into three stages—applying the
import policy to eBGP-learned routes, selecting the best BGP
route at each router, and computing the forwarding path. The
algorithm takes as input the router configuration and a static
snapshot of the routes learned via eBGP and outputs the route
that each router in the AS selects, for each destination. Because
the first and third stages of the algorithm are relatively simple,
the rest of the paper focuses on the second stage of computing
the best BGP route at each router for each destination prefix.

A. Modeling Constraints
Efficiently computing the effects of a configuration or

topology change is possible when three important conditions
hold. Imposing the constraints we outline in this section frees
our prediction algorithms from needing to consider whether
different orderings of routing messages will produce differ-
ent results. This property allows us to focus on designing
algorithms that emulate a particular message ordering that
prevents the algorithm from having to revisit routers where it
has already made a prediction. The rest of this section explains
how these constraints help simplify the prediction algorithms.

First, the inputs to the algorithm must be stable.
Constraint 1 (Slowly changing inputs): The eBGP-learned

routes change slowly with respect to the timescale of network
engineering decisions.

If the eBGP-learned routes change frequently, the internal
routing system does not have time to propagate the effects
of one eBGP advertisement before the next one arrives. In
practice, most BGP routes are stable for days or weeks at a
time [12], and the vast majority of traffic is associated with
these stable routes [13]. This allows the routing algorithm to
operate on a static snapshot of the eBGP routes. Any eBGP
routing change can be treated as a separate problem instance.

Second, the routers must ultimately converge to stable
outcome.

Constraint 2 (Safety and uniqueness): Given stable eBGP-
learned routes and fixed iBGP and IGP topologies, each router
inside the AS converges to a unique routing decision.

If the routers continually change the routes that they select,
accurately predicting the flow of data traffic becomes signifi-
cantly more challenging. Fortunately, previous work [14] has
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identified sufficient conditions for an internal routing config-
uration to satisfy Constraint 2. We describe these conditions
in more detail in Section VI when we address the challenges
introduced by route reflectors.

Third, the routing decisions at each router should not depend
on message ordering or timing.

Constraint 3 (Independence of message ordering): The
routing decision at each router depends only on the routes
received from its neighbors and not the order or timing of
these routing messages.3

Common BGP implementations have two configurable fea-
tures that, if enabled, would violate Constraint 3. First, some
router vendors have an additional step in the BGP route-
selection process that favors the “oldest” route before the final
tie-breaking step of comparing the router IDs. Configuring the
router to skip this step in the route-selection process avoids the
problem. Second, the MED attribute can also cause violations
of Constraint 3 in two cases: (1) if the router compares a new
route announcement to only the current best route, rather than
rerunning the entire route-selection process; or (2) in certain
pathological cases, such as the “mashed potato” configuration
described in previous work [16]. To handle the first case,
router vendors recommend enabling the “bgp deterministic-
med” option to ensure that route selection does not depend
on which routes were learned first; we discuss this feature
in greater detail in the Appendix of our previous study of
interdomain traffic engineering [4]. The second case results
from the fact that MED prevents the set of routes to any
destination from forming a total ordering.

Constraint 2, which guarantees that the routing system will
converge to a unique outcome, and Constraint 3, which guar-
antees that this outcome does not depend on the ordering of
routing messages, allow us to make the following observation:

Observation 1: If a routing system is guaranteed
to converge to a unique outcome, that outcome is
independent of the order in which routers exchange
routes and apply the route-selection process.

This observation implies that the algorithm can consider the
evolution of the routing system under any particular message
ordering, without the risk of arriving at the wrong answer.

Although our algorithms require Constraints 2 and 3 to hold,
we note that existing static analysis tools (e.g., rcc [17]) can
easily check that the routing configuration satisfies these con-
straints. It is also worth noting that, although our algorithms
assume that the routing protocol configuration satisfies the
above properties, they do not assume that the routing protocol
is configured “correctly”, as defined in previous work [15]
(e.g., the resulting BGP routes may give rise to forwarding
loops). The algorithms in this paper are only concerned with
predicting the outcome of BGP selection process, not whether
the resulting routes actually produce the desired results.

3In previous work, we incorporated this concept into the definition of
determinism [10, 15]; in this paper, we have separated the terms for clarity.

B. Problem Decomposition

Following the approach applied in other recent work [18,
19], the algorithms in this paper compute the effects of a
particular message ordering using an activation sequence, an
offline analysis technique that “activates” one or more routers
at each discrete step. When activated, a router applies the
route-selection process in Table I and propagates the best
route to its iBGP neighbors. In an actual network, routers
may be activated in any order and may change their best
route many times before the network converges. Capitalizing
on Observation 1, our algorithms are based on an activation
sequence that allows us to decompose route prediction into
three distinct stages, as shown in Figure 3:

1. Receiving the eBGP routes and applying import
policy. This stage takes as input all of the eBGP-learned routes
at each router and applies the appropriate import policies at
each router before exchanging any iBGP update messages
and outputs the set of eBGP-learned routes after these import
policies have been applied. This stage activates all of the
edge routers at the same time. Each eBGP-learned route has
attributes (such as the destination prefix and the AS path) and
is associated with an eBGP session. The import policy may
filter the route or set certain attributes such as local preference,
origin type, and multiple-exit discriminator (MED), according
to attributes in the advertised route (e.g., based on ASes in
the AS path). Because applying the import policy is a local
operation for each eBGP-learned route at each router, the first
stage emulates the operations a real router would perform upon
receiving each of the eBGP routes. These routes, with modified
attributes, are the input to the second stage.

2. Computing the best BGP route at each router. Many
routes from the first stage could never be selected by any router
as the best route. For example, an eBGP-learned route with a
local preference of 90 would never be selected over another
route with a local preference of 100. In addition, different
routers in the AS may select different best BGP routes because
they have different IGP path costs to the egress router. Also,
a router can only consider the routes advertised by its iBGP
and eBGP neighbors, which may influence the final decision
at that router. This stage takes as input the set of eBGP-
learned routes after the import policies of each router have
been applied and outputs a single best egress router for each
ingress router and destination prefix. Constructing an efficient
activation sequence for this stage is challenging and is the
focus of the next four sections of the paper.

3. Computing the forwarding path through the AS:
The third stage computes the effects of the IGP link weights
on the construction of the forwarding path through the AS
from an ingress router toward a destination prefix. Given the
selected BGP route, the ingress router forwards packets along
the outgoing link (or links) along shortest paths to the egress
router, and the process repeats at the next router. Ideally, the
traffic flows along the shortest path (or paths) all the way
from the ingress router to the selected egress router. However,
in practice, routers along the shortest path may have selected a
different egress router. These violations can occur if the iBGP
session configuration limits the BGP routing options at the
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Fig. 3. Our algorithms decompose network-wide BGP route selection into three independent stages. The algorithms take as input the eBGP-learned routes
from neighboring ASes, the router IDs of each BGP session, and the routing configurations from all of the routers in the AS, which provide information about
the IGP topology, the iBGP topology, and the import policies (i.e., rankings) of each router.

routers [14]. By considering one router at a time, the third
stage can compute an accurate view of the forwarding path(s)
even when deflections occur.

While all three steps are necessary for determining the flow
of traffic through a network from a static snapshot of the
network state, the rest of this paper focuses on the second
step (i.e., computing the best BGP route at each router), since
performing this step correctly and efficiently is considerably
more difficult than either of the other two steps.

III. PRELIMINARIES

We first introduce some notation. Table II lists the notation
we use for the remainder of this paper and summarizes where
this notation is introduced. We assume that the AS has a set
E of N eBGP-learned routes for a given destination prefix,
which it learns at R routers. E contains the eBGP-learned
routes after each router in the AS has applied its local import
policy (which may filter some set of the routes it receives and
set or modify the route attributes of others). For convenience,
we define Er ⊆ E as the set of eBGP-learned routes at router
r ∈ R. At any given time, a router r also has zero or more
iBGP-learned routes Ir ⊆ E. We define two useful functions:

• λr, which takes a set of routes at router r and produces
the best route at router r according to the BGP route-
selection process in Table I.

The subscript on λr is necessary because different routers
can apply the BGP route-selection process to the same set of
routes and obtain different results based on the BGP session
from which they learn the route and their location in the
topology. For example, in Figure 1, router X would treat the
route learned from AS B as an eBGP-learned route with the
router ID of the eBGP session with B. On the other hand, Z
sees an iBGP-learned route with an IGP path cost of 2 and
the router ID associated with the iBGP session to X .

• γ, which takes a set of BGP routes, C, and produces
C ′ ⊆ C, such that routes in C ′ are the network-wide
best routes based on the first four steps in Table I.

Unlike λr, γ has global (i.e., network-wide) context; that
is, its context is not router-specific. When the routers’ λr

functions do not satisfy determinism, each router’s best route
is not guaranteed to be in the set ∪rλr(Er). In Sections V
and VI, we will apply γ to a set of routes when it is safe
to eliminate all routes that could never be the best route at
any router. In these sections, we will see that as long as all
routers have either complete visibility of the routes that the

Symbol Description Section
FUNCTIONS ON ROUTES

λr Takes a set of routes received at router r and
outputs the best route at router r, according
to the BGP route-selection process applied
at router r

III

γ Takes a set of routes and extracts the subset
whose attributes are equally good up through
the first four steps of the route-selection
process

III

σ Takes a set of routes and extracts the subset
whose attributes are equally good up through
the first three steps of the route-selection
process

V-B

SETS OF ROUTES OR ROUTERS (INITIAL INPUTS)
R routers in the AS III
A routers that have been activated VI-B
E eBGP-learned routes III
Er eBGP-learned routes at router r III
N number of eBGP-learned routes (i.e., |E|) III

SETS OF ROUTES (INTERMEDIATE AND FINAL OUTPUTS)
Ir iBGP-learned routes at router r III
Pr All routes learned at router r III
br The best route that router r selects. III
C The set of candidate routes at some interme-

diate activation. A subset of E.
IV

Cr The set of candidate routes at router r at
some intermediate activation. A subset of
Er.

V-B

B The set of best routes computed by the
algorithm. A subset of C.

IV

L The set of routes eliminated at some activa-
tion step.

V-B

IBGP TOPOLOGY
S iBGP sessions. VI-B
G iBGP session graph. G = (R, S). VI-B

TABLE II
DESCRIPTION OF THE NOTATION USED IN THIS PAPER, AND THE SECTIONS

WHERE EACH PIECE OF NOTATION IS INTRODUCED.

AS learns via eBGP or λr functions that satisfy determinism,
every router will ultimately select a route from γ(E).

IV. BGP WITH DETERMINISM AND FULL VISIBILITY

In this section, we describe an algorithm that predicts the
outcome of BGP route selection when a network employs a
full mesh iBGP topology and the MED attribute is compared
across all routes (which we also refer to as “no MED”
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Algorithm: Full Mesh, No MED
SELECTBEST EBGP(E, R)

// Build the set of locally best routes at each router.
// This set is the set of candidate best eBGP routes.
C ← ∪rλr(Er)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type,
// lowest MED
B ← γ(C)

Fig. 4. Algorithm for computing the best route at eBGP routers, assuming
that MED is compared across all routes (i.e., that there exists a total ordering
of routes at each router).

or “without MED”).4 After describing the route-prediction
algorithm and proving its correctness, we explain two basic
properties that hold in this case that make the prediction
algorithm quite simple and explain why two artifacts of BGP—
MED and route reflection—can cause these properties to be
violated.

A. Algorithm: Full Mesh, No MED
A full-mesh iBGP topology provides full visibility of BGP

routes at each router: every router learns the set of routes
selected by every eBGP-speaking router in the AS. Further-
more, when the MED attribute is compared across all routes
(as opposed to just those from the same neighboring AS) a
router’s ranking over the set of routes it learns form a total
ordering, which implies that determinism is satisfied. These
characteristics allow us to devise a relatively simple algorithm
to compute the outcome of BGP route selection at each router
in the AS.

In this case, the algorithm for computing the best route
at every eBGP-speaking router is shown in Figure 4. The
algorithm takes as input the set E of all eBGP-learned routes
and the set R of all eBGP-speaking routers, and produces
the set B of best eBGP routes. Er refers to all eBGP-
learned routes learned by router r, and C represents the set of
candidate routes after each router selects the best route from
the set of its eBGP-learned routes. The output of this algorithm
is B = γ(C), the set of all best routes to this destination, such
that br = λr(B). The algorithm proceeds in two steps. The
first step computes the locally best BGP route at each eBGP-
speaking router; this step guarantees that each router selects no
more than one eBGP-learned route. The second step eliminates
any route from this set for which a router would select another
router’s iBGP route over its own locally best route.

The first step of the algorithm scans all N eBGP-learned
routes and selects the best eBGP-learned route at each router,
if any; at most |R| routes remain after this step. The second

4This scenario may be the case for many small stub ASes that do not
have customers of their own: a network that does not have many routers will
typically configure its iBGP topology as a full mesh, and a stub AS typically
does not receive (or honor) MEDs from the ASes from which it buys transit. In
practice, some transit ISPs even configure their routers to compare the MED
attribute across all candidate routes (often to avoid problems with oscillation),
and most small networks do not use route reflection.

step selects, for each router r ∈ R, the best route from R.
Thus, the running time will be O(N + |R|2), where N is
the number of eBGP-learned routes, and |R| is the number
of routers in the system (a full mesh iBGP configuration will
have |R|(|R|−1) iBGP sessions). When |R| > N , the N term
is dominated, so the running time is O(|R|2). When N > |R|,
however, a simpler approach to the algorithm would simply
be to apply λr(E) at each router, which has O(N |R|) running
time. Thus, the computational complexity for route prediction
is proportional to the total number of routes in the system.

To prove that this algorithm is correct, we must show that
this algorithm accurately emulates one activation sequence;
Observation 1 guarantees that as long as the algorithm cor-
rectly emulates some activation, it will correctly emulate BGP
route selection.

Theorem 1: When each router can produce a total ordering
over all possible candidate routes, the algorithm in Figure 4
correctly computes the outcome of the route-selection process
for all routers that select an eBGP-learned route as their best
route.

Proof. We prove this theorem constructively, by showing that
the algorithm correctly emulates an activation sequence and
message ordering that could occur in BGP. Consider the
following ordering:

1) All routers receive routes to the destination via eBGP.
Then, every router is activated simultaneously.

2) Every router advertises its locally best route via iBGP.
After all iBGP messages have been exchanged, every
router is activated simultaneously.

In the first phase, each router r computes λr(Er), resulting
in a set of candidate routes C = ∪rλr(Er), as in the first line
of the algorithm in Figure 4. Then, each router learns these
routes. Note that B ⊆ C by definition, which means that
each router that learns a route to the destination via eBGP has
either zero or one route in B. We consider both cases. If a
router r has a route in C but not in B, then r’s eBGP-learned
route br = λr(Er) must have been worse according to the first
four steps of the route-selection process than some other route,
bs = λs(Es) in C (otherwise, γ(C) would not have eliminated
it). But in a full mesh iBGP topology, r would learn a route
via iBGP that is at least as good as bs, so br would also be
eliminated in phase 2 of the activation. Of course, if a router
has a route in C, then that must be the route that it would select
after phase 2 of activation: it is equally good as all routes in
γ(C) through the first four steps of the route-selection process
(by construction), and it prefers its own best route over any
iBGP-learned route (by step 5 of the route-selection process).
�

B. Importance of Determinism and Visibility
The simple algorithm in Figure 4 works because two prop-

erties hold. First, when MED is compared across all routes,
every router that selects a route from the set of eBGP-learned
routes will select its locally best route. Second, when the iBGP
topology is a full mesh, each BGP-speaking router ultimately
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§ MED RR Running Time Prop. 1 Prop. 2
IV No No O(N + |R|2) • •

V-B Yes No O(N log N + N |R|) •
VI-B No Yes O(N + |S|) • •
VI-C Yes Yes —

TABLE III
PROPERTIES OF THE BGP ROUTE PREDICTION ALGORITHMS IN EACH OF

THE THREE CASES.

Router ID: 2
MED: 20Router ID: 1

MED: 20

PSfrag replacements
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c

Fig. 5. With MED, a router may select a route that is no router’s best eBGP
route, thus violating Property 1.

selects a route in γ(E); that is, every router ultimately selects
a route that has the maximum local preference, minimum AS
path length, lowest origin type, and lowest MED (assuming
MEDs are compared across all routes). Table III summarizes
when these two properties hold, for all possible combinations
of MED and route reflection (the rest of this section treats
defines these two properties more formally). The table also
indicates the computational complexity for computing the best
route at each router, for each scenario. We now formalize these
two properties, explain why they make route prediction simple,
and present cases where BGP violates each of them.

Every best route is some router’s locally best eBGP route.
This property holds only if every router’s λr() function
satisfies determinism. We now formalize this property, prove
that determinism is required to ensure that it holds, and show
an example where this property is violated if BGP does not
satisfy determinism.

Property 1: If determinism is satisfied, then each router
ultimately either selects its own best eBGP-learned route or
some iBGP-learned route. Formally, br ∈ Er ⇒ br = λr(Er).

Proof. By definition, each router r applies the route-selection
process to the union of the routes it learns via eBGP and
iBGP: br = λr(Er∪Ir). Therefore, either br ∈ Er or br ∈ Ir.
Furthermore, because determinism is satisfied, the router r’s
preferences over routes in Er ∪ Ir form a total ordering, so
either br = λr(Er) or br = λr(Ir). But, if br 6= λr(Er), then
br = λr(Ir), so br ∈ Ir and br 6∈ Er. �

Property 1 makes it possible to propagate the effects of
route selection at each router only once, because each router
ultimately selects either its locally best eBGP-learned route or
some other router’s locally best route.

Unfortunately, when the MED attribute is only compared
among routes from the same AS, BGP does not satisfy
determinism, so this property no longer holds. Figure 5 shows

an example where this property is violated. In this example,
router R1’s ranking between a and b depends on whether
it learns route c. Thus, even though route a is R1’s locally
best route (by the router ID tiebreak), R2 ultimately selects
route b (c eliminates a due to MED, and R1 selects b over a
because b is learned via eBGP), which is no router’s best eBGP
route. As such, the simple algorithm that selects each router’s
best route from the set of best eBGP routes does not work:
a naı̈ve algorithm would result in precisely the “back and
forth” behavior described in Section I-B. Section V describes
an alternate route prediction algorithm that handles this case.

Every best route is in γ(E). This property states that every
router selects a route that is equally good up through the MED
comparison step of the route-selection process. Intuitively, it
might seem that this property would always hold—why would
a router ever select a route with a lower local preference,
longer AS path, higher origin type, or higher MED value
if it had a better route available? In fact, in certain iBGP
configurations, a route reflector can prevent a router from
learning a route with a lower MED value than the one it
selects. Property 2 holds if either the iBGP topology is a full
mesh or determinism is satisfied. We now formally state the
conditions when this property holds, show an example where a
BGP configuration can violate this property, and briefly discuss
its implications for route prediction.

Property 2: If (1) every router in the AS receives the best
eBGP-learned route from every other router in the AS or
(2) all route attributes are compared across all routes (i.e.,
it is possible to construct a total ordering over all routes) and
every router receives at least one route in γ(E), then every
router r will ultimately select a route, br ∈ γ(E), where E is
the set of all eBGP-learned routes.

Proof. Define Pr ⊆ E, the set of routes that router r learns
(i.e., Pr = Er ∪ Ir). Assume that some router r selects br =
λr(Pr) /∈ γ(E). This property implies that Pr∩γ(E) = φ (i.e.,
that Pr contains no routes in γ(E); otherwise, br would be
better than all routes in γ(E), which contradicts the definition
of γ. But, if Pr ∩ γ(E) = φ, then the iBGP topology is such
that r does not learn all routes, because at least one router
s ∈ R selects a route from γ(E), and router r would have
learned that route from s. If path visibility is satisfied and
br 6∈ γ(E), this also implies that some route attribute is not
compared across all routes (i.e., it is not possible to form a
total ordering): otherwise, given a total ordering, if one router
selects a route from γ(E), then every router either learns that
route and selects it, or selects its own route (which must be
in γ(E), by total ordering) and propagates that route. �

Property 2 makes it possible to compute the route that each
router r selects by applying λr to the set of all locally best
routes, B (i.e., br = λr(B)), thus eliminating other routes.

Unfortunately, this property is not guaranteed when de-
terminism is violated and every router does not learn every
eBGP-learned route. Consider the example shown in Figure 6.
The network learns routes to some destination at routers X ,
Y , and Z that are equally good up to MED comparison. All
three routers are clients of the route reflector RR. The routes
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Fig. 6. When an AS’s iBGP topology uses route reflectors and MED, a
router may not always select a route in γ(E).

at X and Y are learned from the same next-hop AS, and rY

has a lower MED value. One might think that router X would
never select route a, since, after all, it has a higher MED value
than route b, but that is not the case in this figure: RR learns
routes a, b, and c, and selects route c as its best route, because
c has the shortest IGP path cost. As a result, X never learns
route b.

When Property 2 is not satisfied, route prediction must
essentially resort to simulation. The problem in this case is
that it is impossible to know when activating any given router
that it is safe to eliminate any route that it learns via eBGP.
We discuss this problem in more detail in Section VI.

V. ROUTE PREDICTION WITHOUT DETERMINISM

In this section, we present how to model path selection when
the MED attribute is compared only across routes learned from
the same AS, rather than across all routes for a destination
prefix. MED prevents each router from having a total ordering
over all possible candidate routes, so it is actually possible
to have br ∈ Er without br = λr(Er). In Section V-A, we
describe this problem in more detail and describe why the
simple approach presented in Section IV fails; then, we present
an algorithm that accurately computes the outcome of BGP
path selection when MED is compared only across routes from
the same AS.

A. Problems Introduced by MED
The algorithm from Section IV assumes that each router’s

ranking between two routes is independent of whether other
routes are present (i.e., λr({a, b}) = a ⇒ λr({a, b, c}) 6=
b, ∀a, b, c). When MED is only compared across routes from
the same AS, the algorithm cannot simply select the locally
best route at each router, because a router may ultimately select
a best route that it learned via eBGP that was not its locally
best route. This point has serious implications, because we can
no longer assume that if a router selects an eBGP-learned route
to a destination, that eBGP-learned route will be that router’s
locally best route; rather, the route that the router ultimately
selects may be worse than the “best” route at that router when
compared only against routes learned via eBGP at that router.
Thus, the approach from Section IV, which computes br by
taking the locally best route at each router from γ(E), may not
compute the correct result. Using the example in Figure 7, we

AS 2AS 1

Router ID: 2
MED:  1 MED:  10

Router ID: 2
MED:  20MED:  2

Router ID: 1 Router ID: 1
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Fig. 7. Interaction between MED and router ID in the BGP route-selection
process. X and Y are routers, each with direct eBGP sessions to ASes 1
and 2. a, b, c, and d are routes learned via eBGP.

explain why two seemingly-natural approaches to computing
the routes do not work:

• Local route elimination is not correct. The algorithm in
Figure 4 would first apply λr(Er) at each router. In
Figure 7, given the choice between the two eBGP-learned
routes a and c, router X prefers c, because c has a smaller
router ID. Between routes a, c, and d (which it learns
via Y ), however, router X prefers route a, because route
d eliminates route c due to its lower MED value. Thus,
router X’s preference between routes a and b depends on
which route Y selects. The algorithm in Figure 4 would
compute λX ({a, c}) = c and λY ({b, d}) = d (resulting
in C = {c, d}), and ultimately compute B = {d} because
d has a smaller MED value than c. In reality, though,
router X would select route a over d, because a is an
eBGP-learned route from a different neighboring AS.

• Global route elimination is not correct. It might also seem
reasonable to apply γ globally, followed by applying λr

locally at each router. In Figure 7, a global comparison
of the routes (i.e., applying γ({a, b, c, d})), would first
eliminate a and c based on MED, and then router X
would select route d (because d is preferred to b based
on the router ID comparison applied at router Y ). This
conclusion is incorrect, because X would always prefer
route a over route d, because a is learned via eBGP (step
5) and a and d are equally good up through step 4 (recall
that a router does not compare the MEDs of routes with
different next-hop ASes).

The crux of the problem is that the MED attribute makes it
impossible to produce an ordering of the routes at X that is
independent of the presence or absence of other routes.

B. Algorithm: Full Mesh, MED
To correctly handle the interaction between the MED and

router ID attributes, the algorithm emulates a message ordering
that propagates the effects of MED on each router’s best route.
Figure 8 summarizes this algorithm. For this algorithm, we
define a new function, σ, which takes a set of routes and
returns all routes equally good up through the first three steps
of the BGP route-selection process (i.e., local preference, AS
path length, and origin type). When applied to the network
in Figure 7, the algorithm starts with all routes in σ(E) and
proceeds as follows:
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Algorithm: Full Mesh, MED
SELECTBEST EBGP MED(E, R)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type
C ← σ(E)
B0 ← φ; i← 0
do

Bi+1 ← ∪rλr(Cr ∪ Bi); i← i + 1
while Bi+1 6= Bi

return Bi

Fig. 8. Algorithm for computing the best route at eBGP routers, assuming
that MED is only compared across routes from the same neighboring AS.

1) B1 gets the locally best routes from X and Y : c and d,
respectively. That is, B1 = {c, d}.

2) On the second iteration, X compares the routes from C
that it learns via eBGP, a and c, along with route d from
B1, so λX ({a, c, d}) = a. Similarly, λY ({b, c, d}) = d.
Thus, B2 = {a, d}.

3) On the third iteration, the process repeats, and B3 =
{a, d}, at which point the algorithm terminates.

This algorithm computes the correct routing decision for each
router: a at router X and d at router Y . At router Y , d is better
than a (step 5), b (step 7) and c (step 4). At router X , a is
better than d (step 5); a is not better than b, but this does not
matter because router Y does not select b, and a is not better
than c, but this does not matter because c is always worse than
d (step 4).

Theorem 2: When MED is compared only across routes
from the same neighboring AS, the algorithm from Figure 8
accurately emulates the results of one activation sequence and
message ordering for all routers that select an eBGP-learned
route as their best route.
Proof. Computing σ(E) produces the set C, which is simply
the set of eBGP-learned routes, E, minus the routes that could
never be the best route at any router (i.e., because they have a
lower local preference, longer AS path length, or higher origin
type). Because the iBGP topology forms a full mesh, as long
as there is a route in E at any router that is better in the first
three steps of the route-selection process, no router will select
a route that is not in σ(E). The remainder of the algorithm
evaluates a routing system with the routes in σ(E).

The remainder of the algorithm follows an activation se-
quence where each phase (or iteration of the loop) activates
all of the routers simultaneously. The proof proceeds by
induction. After the first iteration of the loop, B0 = φ and
br = λr(Cr), where Cr is all of the routes learned at router
r via eBGP with the highest local preference, shortest AS
path length, and lowest origin type. By definition, λr(Cr)
returns each router’s locally best route according to the BGP
route-selection process, which is the same as that which the
BGP route-selection process would select for each router after
phase 1 of the activation sequence. In a network with a full
mesh iBGP configuration, each router r then sends its locally
best route, br, to every other router.

Suppose the algorithm correctly computes the outcome of
the BGP route-selection process for the first i iterations of
the activation sequence. Suppose that there is some router r
for which the algorithm, at iteration i + 1, computes b′r,i+1,
the element in Bi+1 that is the best route at router r, such
that b′r,i+1 6= br,i+1. Then, it must be the case that br,i+1 6∈
Cr ∪ Bi; otherwise, λr(Cr ∪ Bi) would also have selected
br,i+1. Either br,i+1 is an eBGP-learned route or it is an iBGP-
learned route. If it is eBGP-learned, then it must be in Cr, as
we previously established. If it is iBGP-learned, then it must
be in Bi, because every iBGP-learned route is the best route
of some other router in the AS. But if either br,i+1 ∈ Cr or
br,i+1 ∈ Bi, then br,i+1 ∈ Cr ∪ Bi, which is a contradiction.

The algorithm terminates when Bi = Bi+1; that is, when
activating all of the routers in the AS does not cause any router
to select a new best route and generate a new BGP update
message. We have shown that the algorithm correctly predicts
the outcome of BGP route selection after k iterations for any
k. Further, we assumed that the routing system satisfies safety;
that is, given a stable topology, it is guaranteed to converge to a
path assignment where no router changes its best route. When
the BGP routing system converges to this path assignment, no
router changes the route it selects and, hence, no new routing
messages are generated. Since, after i iterations, the algorithm
correctly predicts the outcome of BGP route selection and the
algorithm activates every router in the AS on every iteration,
then it will terminate precisely when it has reached the BGP
path assignment when no new BGP messages are generated
(i.e., the unique solution). �

The algorithm in Figure 8 is correct, but it is not efficient:
each iteration of the loop repeatedly considers routes that have
been “eliminated” by other routes. A more efficient algorithm
would eliminate routes from consideration at each iteration
if we know that they could never be the best route at any
router—such is the spirit of applying σ(E) across the initial
set of routes. Unfortunately, because the MED attribute is not
comparable across all routes, it is possible for a route that is
not in the set Bi to emerge in the set Bj for some j > i.
We now formally define a condition under which routes may
be eliminated, which will allow us to devise a more efficient
prediction algorithm.

Lemma 1: Suppose there exist two routes: (1) s ∈ Cr at
router r and (2) t ∈ Cr′ at router r′ 6= r. If t ∈ Bi, λr(s, t) =
t, and router r learns route t (e.g., as in a full mesh iBGP
configuration), then s 6∈ Bj ∀j > i.

Proof. First, note that as long as t ∈ Bj , then s 6∈ Bj because
route t is preferable to s Also note that because all routes in C
are equally good up the MED comparison and eBGP-learned
routes are preferred over iBGP-learned routes, we know that
λr(s, t) = t because MED(t) < MED(s). Now, suppose there
exists some j > i for which t 6∈ Bj . Call the best route
at router r′ at step i, v = λr′(Cr′) 6= t; again, we know that
MED(v) < MED(t). But this means that MED(v) < MED(s),
λr(s, v) = v, and, thus, s 6∈ Bj . �
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Algorithm: Full Mesh, MED (Efficient Algorithm)
SELECTBEST EBGP MED(E, R)

// Eliminate all routes from C that
// do not have highest local preference,
// shortest AS path length, lowest origin type
C ← σ(E)

// Keep track of the best routes at each router.
do

B ← ∪rλr(Cr)
L← B \ γ(B)
C ← C \ L

while L 6= φ

Fig. 9. Computationally efficient algorithm for computing the best route at
eBGP routers, assuming that MED is only compared across routes from the
same AS (i.e., that there is no total ordering of routes).

routers
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Fig. 10. Implementation of the route computation algorithm from Figure 9.
Each stack represents one of |R| total routers, and each stack element
represents one of L routes. The top elements of the |R| stacks represent
Bi, the elements marked L represent routes that are worse than the routes at
the top of the remaining stacks according to the first four steps of the route-
selection process (i.e., local preference, AS path length, origin type, MED),
and the shaded routes represent Bi+1. The algorithm terminates when no
routes are marked L.

We can use this result to devise a more efficient route pre-
diction algorithm that eliminates, at every iteration, a router’s
locally best route if it has a higher MED value (and same
next-hop AS) than some other router’s locally best route. This
algorithm is described in Figure 9 and shown conceptually in
Figure 10; it can also be thought of in terms of an activation
sequence: (1) each router learns routes via eBGP, selects a
locally best route, and readvertises via iBGP; (2) each router
compares its locally best route with all other routes learned via
iBGP, and eliminates its own locally best route from the system
if it is worse than some other locally best route at another
router; (3) the system is restarted (from phase 1) with the
eliminated routes removed. This algorithm is computationally
more efficient than the one in Figure 8; we now analyze its
running time complexity.

Computational Complexity. Understanding the running
time of the algorithm in Figure 9 is easiest when we consider
the implementation of the algorithm shown in Figure 10.
In this figure, the eBGP-learned routes at each router are
represented as a stack and are sorted locally (i.e., compared
only to other routes learned at the same router). The top of
the stack represents the best route learned at that router; the
route that is second from the top is the second best route, and
so forth. Then, the algorithm from Figure 9 can be interpreted
as follows:

over
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Fig. 11. Example iBGP signaling graph.

• B ← ∪rλr(Cr) is the union of all of the elements at
the top of the stack and does not need to be computed
explicitly, assuming each stack is sorted. The complexity
of sorting N routes distributed across |R| stacks is
O(N log N). Each of N routes may be inserted into as
many as |R| stacks, so the complexity of this step is
O(N log N + N |R|).

• L ← B \ γ(B) marks a route at the top of a stack if
that route is worse than any route at the top of another
stack, according to the first four steps of the BGP route-
selection process. This process takes at most two scans
of the routes at the top of the |R| stacks, so the running
time is O(|R|).

• C ← C \L “pops” the marked routes from the top of the
stacks, where appropriate. This process requires a single
scan through |R| stacks and at most |R| pop operations,
so the running time is O(|R|).

In the worst case, the above three steps repeat until N − 1
routes are popped from the stacks, and each iteration only pops
a single route. Thus, in the worst case, the running time for
the algorithm is O(N log N + N |R|).

VI. ROUTE PREDICTION WITHOUT FULL VISIBILITY

A full mesh iBGP topology does not scale to large networks
because a network of |R| routers requires O(|R|2) iBGP
sessions. Network operators use a technique called route
reflection, which improves scalability by introducing hierarchy
but complicates route prediction. First, we define an iBGP
signaling topology, expound on problems introduced by route
reflection, and describe constraints on iBGP configuration
that must hold for route prediction to be possible. Next, we
propose an algorithm that efficiently computes the outcome of
BGP path selection in a network with route reflection; we
then present a minor modification to the algorithm that is
necessary if MED is only compared across routes from the
same neighboring AS.

A. Problems Introduced by Route Reflection
A router does not normally forward iBGP-learned routes

over other iBGP sessions, but it can be configured as a route
reflector (RR), which forwards routes learned from one of its
route-reflector clients to its other clients. The routers in an AS
form a directed graph, G = (R, S), of iBGP sessions called
a signaling graph. Each edge a = (u, v) ∈ S where u, v ∈ R
corresponds to an iBGP session between a pair of routers. We
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then define three classes of edges: (1) a ∈ down if v is a route-
reflector client of u; (2) a ∈ up if u is a route-reflector client
of v; and (3) a ∈ over if u and v have a regular iBGP session
between them. Figure 11 shows an example signaling graph.
In a full-mesh configuration, every eBGP-speaking router has
an edge in over with every other router in the AS, and both
the up and down sets are empty.

Previous work has shown that iBGP satisfies safety as
long as the structure of the signaling graph satisfies certain
sufficient conditions [14]. Accordingly, we refine Constraint 2
in terms of these sufficient conditions to guarantee that an
iBGP topology with route reflection satisfies safety (at least
when the MED attribute is not used or compared across all
routes):

Constraint 4: (1) ∀ u, v, w ∈ R, ((u, v) ∈
down and (u, w) 6∈ down) ⇒ λu({ρv, ρw}) = ρv , where ρv

represents any route learned from v and ρw is any route from
w; and (2) the edges in up are acyclic.

Part (a) is satisfied when routers do not change the attributes
of iBGP-learned routes and each router has a lower IGP path
cost to its clients than to other routers. The common practices
of applying import policies only on eBGP sessions and placing
route reflectors and their clients in the same point-of-presence
(i.e., “PoP”) ensure that these conditions hold. Part (b) states
that if a is a route reflector for b, and b is a route reflector
for c, then c is not a route reflector for a, consistent with the
notion of a route-reflector hierarchy (rather than an arbitrary
signaling graph).

Even a route reflector configuration that converges can
wreak havoc on the algorithms from Sections IV and V. A
route reflector hides information by advertising only a single
best route to its iBGP neighbors. For example, in Figure 11, if
W and Z have eBGP-learned routes, router Y learns a single
route from its route reflector RR1. Suppose that RR1 selects
the eBGP route advertised by Z. Then, Y would pick Z’s route
as well, even if Y would have preferred W ’s route over Z’s
route. Note that Y makes a different routing decision than it
would if it could select its best route from all the eBGP routes
(i.e., from both W and Z). In large networks, route reflection
reduces the number of routing messages and iBGP sessions,
which helps scalability, but it complicates route prediction in
the following ways:

1) A router will not typically learn every route that is
equally good up through the first four steps of the route-
selection process. That is, it is possible (and likely) that
some routers will not learn every route in γ(B). In
Section VI-B, we describe an algorithm that handles this
case.

2) If a network uses route reflectors, and MED is only
compared across routes from the same AS, the routes
that some routers ultimately select may be worse than
some eBGP-learned routes, according to the first four
steps of the route-selection process. That is, it may
be the case that br 6∈ γ(E) for some router r. This
characteristic creates problems not only for efficient
route prediction, but also for safety. We discuss this case
in Section VI-C.
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Fig. 12. When an AS’s iBGP topology uses route reflectors, a router may
not always discover the route corresponding to its closest egress router.

B. Algorithm: Route Reflection, No MED
Route reflection obviates the need for routers in an AS

to form a full mesh topology, but it also means that some
routers may not learn all routes in γ(B). This artifact has
two implications. First, the algorithm cannot simply assign a
non-eBGP-speaking router the route from the “closest” eBGP-
speaking router, because the former router may never learn the
route. Thus, applying br ← λr(B) may not always be correct.
For example, consider the network shown in Figure 12. W ,
X , and Y are clients of route reflector RR, and Z is a regular
iBGP peer of Y . X and Y have a short IGP path between
them, but they are not directly connected by an iBGP session.
Routers W , X , and Z have eBGP routes that are equally
good through the first four steps of the route-selection process,
and have thus selected their own eBGP-learned routes. In this
network, Y ’s closest egress point is X , but Y selects W ,
because RR’s closest egress router is W .

Second, often there is no consistent ranking of possible
egress routers from some non-eBGP-speaking router. For
example, in Figure 12, RR prefers egress router W because
its IGP path cost to W is the shortest. Router Y ’s preferences
over possible egress routes depends on the presence or absence
of other routes. If the AS learns routes for some destination via
eBGP sessions at routers X and Z, then router Y prefers using
X as an egress router. On the other hand, if the AS learned
routes at W , X , and Z, then Y prefers using Z, which implies
that Y prefers egress Z over X and is inconsistent with Y ’s
choice when only X and Z are available egress routers.

To account for the fact that some routes are not visible at
some routers, we design an algorithm that emulates a certain
activation sequence, making route assignments at each router
where possible and propagating the effects of these decisions
to other routers, without ever having to revisit any assignment.
This algorithm is shown in Figure 13. The algorithm first
activates the routers from the bottom of the route-reflector
hierarchy upwards, which guarantees that each router selects
a down route where possible, as required by Constraint 4(a).
Because the algorithm moves upwards from the bottom of
the hierarchy, it performs computations for each route reflec-
tor after all of the routes from its clients become known;
computations for these routers never need to be revisited,
since, by Constraint 4, a router always prefers routes from its
“children” (i.e., clients) over routes from its peers or parents.
Visiting the routers in the down direction ensures that the
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Algorithm: Route Reflection, No MED
SELECTBEST EBGP RR(E, R)

// Proceed up the hierarchy, assigning best routes.
// Find a router for which all children are activated.
A← φ
while ∃r ∈ R s.t. r 6∈ A and c ∈ A ∀c ∈ DOWN(r)

Ir ← ∪c∈DOWN(r)bc

br ← λr(Ir ∪Er)
A← A ∪ r

// Proceed down the hierarchy.
// Find a router for which all parents are activated.
A← φ
while ∃r ∈ R s.t. r 6∈ A and c ∈ A ∀c ∈ UP(r)

Ir ← ∪c∈UP(r)∪OVER(r)bc

br ← λr(Ir ∪ br)
A← A ∪ r

Fig. 13. Algorithm for computing the best route at each router in a network
with route reflection but no MED.

algorithm performs computations for the remaining routers
using all available routes from the up and over sets. The
algorithm defines two partial orderings of the routers based
on the elements of the up and down sets. We can define these
two partial orderings because Constraint 4(b) requires that the
signaling graph does not have any cycles of these edges, so
each partial ordering must have a top and bottom element.

Applying this algorithm to the example in Figure 12, the
shaded routers select best routes in the first step, because each
of those routers is at the bottom of the hierarchy and, thus,
all of their neighbors in down have been activated (because
they have none). Y is activated, but it does not select a route
at this point because it has no neighbors in down. Because
these four routers are at the same level in the hierarchy, they
can be activated in any order. Then RR is activated; it applies
λRR({rW , rX}) and selects rW because it has the smallest
IGP path cost. The routers are all activated again in the
downward direction; Y receives rW from RR and compares
it with rZ , which is its best route to the destination. X and Z
also receive rW but continue to select their own route, because
λr prefers eBGP routes over iBGP routes. We now prove that
the algorithm shown in Figure 13 is correct.

Theorem 3: If each router can form a total ordering over
the set of all candidate routes, then the algorithm in Figure 13
correctly computes the outcome of the BGP route-selection
process, br, for all routers r ∈ R.

Proof. Assume that some router r selects a route, br, that is
different from the route assigned by the algorithm in Figure 13,
b′r. The mismatch can occur in one of two cases: (1) when br

is learned from a session in down, or (2) when br is learned
from a session not in down (i.e., in either up or over).

Consider Case 1, where br is learned from a session in
down. Call b′r the first case of an incorrect computation (i.e.,
the algorithm has correctly computed the best route for all
routers below r in the hierarchy); because we examine the first
such mismatch, Ir is correct. If b′r is also in down, then b′r =
λr(Ir ∪ Er) when the algorithm proceeds up the hierarchy,

eBGP−learned routesN

sessions
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Fig. 14. Running time analysis of an iBGP graph walk for the algorithm in
Figure 13.

which implies that b′r is better than br according to the BGP
route-selection process, and r would have actually selected b′r.
If b′r is in up or over, then it must have been the case that
it was better, according to the BGP route-selection process,
than the displaced route br in down. But then, by definition
of λr, router r would have also selected b′r in BGP. Thus, the
algorithm correctly computes br for all routers r that select a
best route from down.

Consider Case 2, where br is learned from a session in up
or over. From the first half of the proof, we know that the
algorithm correctly computes br for all routers that select a
route from down, so call b′r the first instance of a mismatch
for some router that selects a best route from up or over (i.e.,
the algorithm correctly assigns br for all routers higher in the
hierarchy than r). Again, because we consider the first such
mismatch, we know that Ir is correct. If the route that the
algorithm selects, b′r, is in down, then, by Constraint 4(a),
BGP could not have selected br, so we have a contradiction.
If both br and b′r are learned from sessions in up and over,
then both are in Ir, and, according to the λr(Ir ∪ br) step in
the algorithm and by definition of λr, both the algorithm and
the BGP route-selection process would select the same route.
�

This theorem relates to one from earlier work [19] on
sufficient conditions for stable BGP routing at the AS level;
this work provides a constructive proof showing that the
sufficient conditions guarantee safety. In subsequent work,
Griffin et al. discovered that the sufficient conditions for stable
eBGP routing were analogous to those for stable iBGP routing
with route reflection [14]. The algorithm from this section
applies the iBGP analog of the constructive proof from the
work on stable interdomain routing to develop an algorithm
for computing that stable path assignment.

Computational Complexity. This algorithm traverses the
route-reflector hierarchy exactly twice. The running time of
this algorithm is O(N+|S|), where N is the number of eBGP-
learned routes, and |S| is the number of iBGP sessions. To
see why this is the case, consider the l-level route-reflector
hierarchy pictured in Figure 14. Starting from the bottom of
the hierarchy, the algorithm must perform comparisons over
N routes to determine the routes that the M routers at the
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bottom of the hierarchy select (the number of routers at the
bottom of the hierarchy is inconsequential: these comparisons
can be performed by constructing a subset of M routes from
the original N routes, which can be performed in a single scan
of the N routes). The algorithm then propagates the selection
of these M routes to the next level of the hierarchy, where
sl comparisons must be performed across the routers at the
next highest level, where sl is the number of iBGP sessions at
level l. Repeating this process up the hierarchy yields a total
running time of O(N + |S|).

Recall from Section IV that the running time for the
algorithm in the case of full-mesh iBGP, was O(N + |R|2), or
O(N + |S|). Note that the algorithm for the case with route
reflection has the same running time complexity as before;
the running time for computing the outcome of BGP route
selection is no more complex, even though the process for
computing the outcome is more involved. In an iBGP topology
with route reflection, the number of sessions, |S|, will actually
be less than |R|2; thus, the running time of the algorithm
benefits from the fact that route reflectors reduce the number
of sessions in the iBGP topology.

C. Algorithm: Route Reflection, MED
When a network uses both route reflection and MED, the

graph walk algorithm in Figure 13 no longer works, because it
relies on the fact that all routers will ultimately select a route
in γ(E). In a network with route reflection and MED, this is
not always true, because when a router selects a locally best
route, a route with a lower MED value might not be visible to
that router. As a result, some router in the AS might select an
eBGP-learned route that is worse, according to the first four
steps of the BGP route-selection process, than eBGP-learned
routes selected by other routers! Figure 15 shows an example
of exactly this scenario.

Note that applying the algorithm from Figure 13 does not
always correctly compute the outcome of the BGP route-
selection process. Consider the operation of the algorithm from
Figure 13 on the topology and route announcements shown in
Figure 15(a). Proceeding up the hierarchy: (1) routers X , Y ,
and Z would select routes a, b, and c, respectively; (2) RR
selects route b because b has a lower MED value than a and
a shorter IGP path to the egress than c. Proceeding down the
hierarchy, X prefers b because it has a lower MED value than
a, and ultimately picks d over b because it prefers an eBGP-
learned route. At this point, the algorithm in Figure 13 would
terminate successfully. But, depending on the IGP topology
X’s selection of d could have caused RR to select a new
best route. Suppose, instead, that the IGP topology were such
that RR were closer to X than to Y , as in Figure 15(b). In
this case, proceeding up the route-reflector hierarchy a second
time would cause RR to change its selected route from b to d;
subsequently proceeding down the hierarchy would cause X
to change its selected route from d to a. In fact, as described
in a similar example in recent work [15], BGP does not satisfy
safety in this example—therefore, no number of progressions
up and down the iBGP hierarchy would cause the algorithm
to predict the correct outcome.
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(a) When Y is closer to RR than X, the routing
system satisfies safety.
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(b) When X is closer to RR than Y , the routing
system violates safety and the algorithm in Figure 13
is incorrect.

Fig. 15. A BGP configuration where the algorithm in Figure 13 may produce
the incorrect result.

In this situation, any router in the AS might ultimately select
a route that is not in γ(E); as a result, the route-prediction
algorithm cannot eliminate a route from the set of candidate
routes Cr at any router r, as was done in the case where
determinism did not hold but every router was guaranteed to
learn every eBGP-learned route (Section V, Figure 9). As we
have seen, the fact that a router may select a route that is
not in γ(E) as its best route, the algorithm (and BGP route
selection, for that matter) is no longer guaranteed to terminate.

It might initially seem reasonable to impose constraints on
the iBGP and IGP topologies that guarantee safety and can
easily be checked with a tool like rcc [17]. Unfortunately, as
the example in Figure 15 shows, any condition that guarantees
safety would require knowledge of the MED attributes of
every eBGP-learned route to a destination, not just the iBGP
and IGP topologies. Further, the simplicity of this example
demonstrates that any condition that guarantees safety for any
combination of eBGP routes would be overly restrictive (i.e., it
would essentially require not using route reflectors). Thus, in
the case where a BGP configuration uses route reflection and
only compares the MED attribute across routes from the same
AS, the most efficient algorithm for determining the outcome
of BGP route selection (and detecting safety violations) is
actually a simulator. In other words, there are no conditions
on the topology that can be enforced to guarantee that an
algorithm would never have to visit each router in the AS
more than once, or even that BGP would satisfy safety.
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VII. PROPOSED IMPROVEMENTS TO BGP
Thus far, this paper has focused on predicting BGP route

selection inside a single AS. Notably, two artifacts, the MED
attribute and route reflection, complicate this process. Not
only do these attributes make route prediction difficult, they
also create problems with the operation of BGP itself. The
use of MED, both with and without route reflection has
been shown to cause oscillation [20]; route reflection can
also prevent convergence and cause forwarding loops [14].
The MED attribute is intended to allow a neighboring AS to
dictate preferred exit points on routes advertised at multiple
exit points, but it prevents a router from forming a consistent
ordering of preferences over routes. Route reflectors were
introduced to allow an iBGP topology to scale, but they do so
in a way that prevents routers from discovering the complete
set of eBGP-learned routes.

In this section, we explore possible solutions to the problems
introduced by MED and route reflection. A major lesson
one should draw from this section is that a system that had
visibility into an AS’s topology, configuration, and available
BGP routes could actively control the BGP route selection
process, rather than simply trying to predict its outcome. The
Routing Control Platform (RCP) [21, 22] can thus not only
help ensure correctness, but also make Internet routing easier
to control (and, hence, predict).

A. MED-ication for Late-Exit Semantics
The MED attribute causes problems because it is not com-

parable across routes from different neighboring ASes, which
prevents a router from producing a consistent total ordering
over all possible routes. Also, in networks without route
reflection, inconsistent preferences between pairs of routes is
based on the router ID attribute, an arbitrary tiebreak that
carries no meaningful semantics (as in Figure 7, for example).

Before we consider solutions to the problems introduced by
MED, it is worth noting that MED, as it operates today and
when used with route reflection may not have the intended
effect on route selection. Consider the example shown in
Figure 6. A neighboring AS sending routes a and b with MED
values 10 and 20, respectively, expects that the AS shown
would always prefer route a over route b, as long as both
existed, causing router X to perform late-exit routing (i.e.,
send its traffic via route b via router Y ). Unfortunately, the AS
shown will not do so: RR prefers route c, so router X will
never learn route b, and it will continue to forward packets via
route a.

We observe that if MED values are remapped into an
explicit ranking across neighboring ASes, rather than arbitrary
values, then the MED attribute can be compared across all
routes at step 4 of the route selection process (as it is today).
Comparing an exit-rank across all routes can sometimes result
in different outcomes than BGP today, but in many cases the
differences do not affect the important semantics of BGP. For
example, consider Figure 7, but where the MED attribute is
compared across all routes. Suppose that the route selection
process retains the MED comparison step, but that AS 2’s
MED values of 10 and 20 are remapped to 1 and 2, and

that the highest MED value of any eBGP-learned route, 2,
is added to the MED value on every route learned via iBGP
(this transformation guarantees that comparing MEDs across
all routes would not cause iBGP-learned routes to be preferred
over eBGP-learned routes). In this case, routers X and Y
would ultimately select routes c and d, respectively, as opposed
to a and d in BGP today. Although X selects c instead of a, its
preference between these two routes was based on the arbitrary
router ID tiebreak; therefore, having router X select c instead
does not destroy any meaningful semantics.

The type of remapping we have described preserves MED’s
semantics, but implementing an exit-rank requires visibility
into the set of available routes that is not available today.
Unfortunately, MED values are typically based on dynamic
values (e.g., IGP path costs across the network), so an AS
that sends routes with MED values cannot simply configure a
static ranking. Given today’s architectures, neither the sending
nor receiving AS could perform a remapping of MED values
into an exit-rank, since no single router learns the complete
set of routes advertised from a neighboring AS. Performing
such a remapping would require either the sending or receiving
AS to have complete visibility over all routes being sent or
received for a destination. On the other hand, the Routing
Control Platform (RCP) [22] or similar recently proposed
architectures [23] can perform such a remapping, since RCP
has full visibility of routes sent from a neighboring AS (as well
as full control over the routes that it sends to a neighboring
AS). This modification allow the algorithm from Figure 4 to
correctly compute the outcome of BGP route selection, and it
would also eliminate intra-AS safety problems.

B. Scalability without Route Reflection
Route reflectors allow iBGP topologies to scale to large

number of routers because they obviate the need to have a “full
mesh” topology with O(|R|2) sessions. Unfortunately, they
restrict route visibility because they only send a single best
route from all of the routes they have learned. In this paper,
we have explained how this restriction complicates predicting
the outcome of BGP route selection; previous work has also
noted that it can cause persistent oscillation and forwarding
loops [14, 20].

To remedy the problems with persistent oscillation, Basu
et al. proposed that route reflectors forward all routes that
are equally good up to and including the MED compari-
son. It turns out that this modification correctly emulates a
full mesh iBGP topology; thus, it is possible to model the
outcome of their modified protocol with the algorithm from
Figure 9. Unfortunately, this proposal requires modifications
to the routers, since each router readvertises multiple routes
instead of a single best route. Additionally, because each router
readvertises multiple routes to its neighboring routers, every
router must select routes using a consistent selection criterion.
Otherwise, given multiple routes, some router along the path to
an egress router might select a different route. This restriction
precludes certain policies and configurations (e.g., a router
may not manipulate attributes on a route learned via iBGP).

Architectures such as RCP propose separating route selec-
tion from the routers and placing this functionality in a system
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that computes routes on behalf of all of the routers within an
AS [22]. Rather than returning only a single best route to all
of its clients (as a route reflector does), RCP advertises to each
router the route that it would have selected in a full mesh iBGP
configuration. This architecture allows the network to scale in
the same way that route reflectors do, but it provides some
important additional advantages. First, because RCP explicitly
assigns routes to all routers in the network, it can guarantee
that the route assignments satisfy route validity. Second, RCP
allows for a more scalable network design. Furthermore, RCP
does not have to make the same routing decisions as its
clients (as route reflectors do today). As a result, unlike route
reflectors, RCP nodes can be replicated at arbitrary places in
the IGP topology.

VIII. RELATED WORK

Previous work presented an IGP emulator that helps network
operators optimize link weights for intradomain traffic engi-
neering [24], but this emulator does not model changes to BGP
routing policies or the effects of iBGP on path selection. There
has also been much focus on modeling BGP convergence [16,
19, 25], but this is the first paper to model BGP route selection.

Recent work proposes efficient techniques for large-scale
parameter optimization for various network protocols, includ-
ing the tuning of the local preference attribute in BGP [8].
This work is complementary to ours—the proposed search
techniques could use our emulator as the “inner loop”. These
techniques currently use simulators such as SSFNet [7], but
they only depend on the outcome of BGP path selection
(not on dynamics) and would likely benefit from having an
efficient, accurate emulator as an inner loop.

The BGP model in this paper applies several previous
theoretical results in new ways. The constraints for iBGP
configuration that we present in Section II are motivated by
previously-derived sufficient conditions for iBGP to guarantee
that the routing protocols converge to a stable assignment [14,
26]. This work specified these conditions to ensure correct
routing behavior, but these constraints are also required to
model BGP routing. The route prediction algorithm in Sec-
tion V-B also uses results from previous work. We applied a
constructive proof regarding stable inter-AS policy configura-
tions [19] to iBGP configuration and used this proof as the
basis for the third phase of the algorithm.

In previous work, we explored practical traffic engineering
techniques in BGP; we assumed the existence of a BGP
emulator for testing traffic engineering techniques offline [4].
We previously presented a model that accurately and efficiently
predicts the outcome of the BGP route selection process in a
single AS using only a snapshot of the network configura-
tion and the eBGP-learned routes from neighboring domains,
without simulating protocol dynamics [11]. We implemented
an emulator based on this model to demonstrate that our
algorithm is accurate and efficient enough to be used in
practice for many network engineering tasks. This paper ex-
tends that work by: formally presenting the proofs, algorithms,
and running time complexity for various cases of network
configuration; formalizing the complexity introduced by MED

and route reflection; explaining why the interaction between
these two features makes efficient route-prediction impossible;
and proposing protocol improvements that achieve the goals
of MED and route reflection reduce modeling complexity, and
prevent undesirable side effects (e.g., oscillations).

IX. CONCLUSION

To perform everyday network engineering tasks effectively,
efficiently, and with minimal unnecessary changes to the live
network, operators need a way to predict the behavior of a
routing protocol before deploying that configuration. This
paper has presented route prediction algorithms that predict
the outcome of BGP route selection based on only a static
snapshot of the network state.

In addition to helping network operators accomplish traffic
engineering tasks, these algorithms provide useful insight
into the subtleties of network-wide BGP route selection and
suggest several directions for improvements to the Inter-
net routing system. For instance, network-wide BGP route
prediction could be combined with traffic measurements to
help network operators select BGP configuration changes that
achieve various traffic engineering goals. In addition, the
emulator could be combined with higher-level mechanisms
that spot misconfiguration or check that other constraints are
satisfied [17].

Although the diagram in Figure 3 shows only three stages,
we envision that network operators could incorporate other
phases. For example, another phase could combine the pre-
dicted forwarding paths with traffic data to predict the load
on each link in the network. Using the model for traffic engi-
neering assumes that traffic volumes are relatively stable, and
that they remain stable in response to configuration changes.
In previous work, we found that prefixes responsible for large
amounts of traffic have relatively stable traffic volumes over
long timescales [4]. Operators could use the routing model to
test configuration changes on reasonably slow timescales that
affect prefixes with stable traffic volumes. A network operator
could also combine measurements or estimates of the traffic
arriving at each ingress router for each destination prefix [27]
with the link-level paths to predict the load on each link in the
network. Another phase might evaluate the optimality of the
these link-level paths in terms of propagation delay or link
utilization and could search for good configuration changes
before applying them on a live network.

Finally, we note that modeling BGP routing is more difficult
than it should be. In the future, we hope that routing protocol
designers will consider predictability as a design goal; as we
describe in Section VII, some of these simplifications that aid
protocol modeling also fix problems with protocol operation.
Routing protocols that are easy to model and reason about will
make everyday network engineering tasks more tractable.
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