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SUMMARY 

Nanoparticle-mediated nucleic acid delivery can regulate the expression of any 

gene, making it a promising way to treat disease. However, clinically relevant1, 2 delivery 

of RNA therapies to non-hepatocytes in vivo remains challenging3. It is known that the 

efficiency with which nanoparticles deliver RNA depends on (i) the route of 

administration4 (ii) the chemical composition of a nanoparticle, (iii) the protein corona that 

adsorbs onto a nanoparticle5, and (iv) interactions between a nanoparticle and a cell6. 

Despite these differences, LNPs are typically screened in vitro before a few finalists are 

confirmed in vivo. Since particles that tend to work in vitro do not necessarily work in vivo, 

this leads to a small number of viable candidates. 

This work will describe the development and use of novel nanoparticle DNA 

barcoding systems7-9 which increase the number of LNPs that can be concurrently studied 

in vivo. Specifically, Chapter 2 discusses the inefficiency of using in vitro static cell culture 

to find LNPs that have potency and specificity in vivo by testing whether in vitro delivery 

is predictive of in vivo delivery, and understanding how different cell types within a tissue 

microenvironment are targeted. Importantly, this thesis shows that in vitro LNP delivery is 

not predictive of in vivo LNP delivery – evidence that prompted the development of newer 

generation in vivo screening models.   

Chapter 3 incorporates a diverse set of chemically modified cholesterols into LNPs 

in an attempt to shift LNP tropism. Using high-throughput DNA barcoding technologies, 

the impact of modifications to both the ring and tail of cholesterol on LNP delivery as well 

as structure-function relationships are assessed. This work leads to discussion on the impact 
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of cholesterol trafficking on LNP delivery, specifically looking at the impact of LDLR and 

VLDLR.   

In Chapter 4, an additional set of chemically modified cholesterols is screened using 

FIND, a high-throughput functional LNP delivery screening system9. The addition of a 

hydroxyl group on the cholesterol tail leads to potent, low dose delivery while addition of 

a hydroxyl group to different positions on the cholesterol rings does not. Finally, this thesis 

shows that novel cholesterol variants can be used in place of regular cholesterol to generate 

potent, and selective delivery vehicles for siRNA, sgRNA, or mRNA.  

Chapter 5 investigates the ability of a small molecule to manipulate LNP mRNA 

delivery. Upregulation of the mTOR/PI3K pathway through exogenous administration of 

the small molecule PIP3 leads to a decrease in exogenous LNP-delivered mRNA 

translation both in vitro and in vivo. The mechanism of action that leads to decrease in 

mRNA translation is investigated using cell transcriptomics and metabolomics.  

Finally, Chapter 6 addresses the potential for related works and proposes new 

directions worthy of pursuit within the field of nucleic acid drug delivery.  Specifically, 

highlighted is the need for new screening systems that are agnostic to both cell type and 

mouse model, as well as potential new directions that arise by coupling nucleic acid drug 

delivery with transcriptomics and genomics. 
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CHAPTER 1. INTRODUCTION 

1.1 An overview of nucleic acid-based therapies 

1.1.1 Nucleic acids target nodes in the DNA-to-protein information pipeline 

The discovery of DNA as the source of hereditary material10, the subsequent 

identification of DNA’s helical structure a decade later11, and the proposition that transfer 

of genetic information flows unidirectionally from nucleic acid to protein12 were 

groundbreaking works that paved the way for future studies on nucleic acids. It is now 

known that DNA can be copied via replication and transcribed into RNA, and that some 

RNAs – such as fully processed mRNAs – can be translated into protein. While RNA 

replication and RNA-DNA reverse transcription does occur, these processes are limited to 

viral and bacterial species, as opposed to eukaryotes. Nucleic acid-based therapeutics, like 

many other therapeutic strategies, hijack, modify, or complement a missing part of the 

information pipeline. Examples of this include gene editing (e.g. CRISPR-Cas9), gene 

silencing (e.g. siRNA, miRNA), gene replacement (e.g. mRNA), and viral delivery (e.g. 

AAV, lentivirus) strategies. 

In order to modulate RNA translation and suppress excess gene transcripts, cells rely 

on an RNAi-based method that utilizes two non-coding RNAs known as miRNA and 

siRNA. miRNAs and siRNAs can be delivered exogenously or can be transcribed 

endogenously. Naturally, miRNA genes are transcribed into hairpin laden primary miRNA 

(pri-miRNA), which is processed by the enzyme Drosha in the nucleus before being 

exported to the cytoplasm as pre-miRNA. In the cytoplasm, these pre-miRNAs are cleaved 

by a ribonuclease called Dicer to form miRNA (~19-22 nt). miRNAs can then interact with 
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RISC for further processing – the endonuclease AGO2 unbinds and discards the passenger 

strand (sense strand) but, in most cases, does not cleave it due to imperfect 

complementarity between the sense and antisense strand13. This imperfect 

complementarity allows the remaining miRNA guide strand (antisense strand) within 

mature RISC to act upon its target in a multitude of ways. miRNAs can inhibit translation 

initiation, cause mRNA degradation or, in cases where perfect complementarity between 

the guide strand and the target mRNA exists, lead to mRNA cleavage13.  

Interestingly, miRNA binding specificity and method of action is partially 

determined, among other factors, by a 6-8 nucleotide (nt) seed region on its 5’ end14. 

Furthermore, over time, cells have evolved to have multiple miRNA binding sites; this 

ensures that full silencing of a target mRNA requires binding of multiple miRNAs at 

independent miRNA-binding sites. These binding sites have been found to act 

synergistically15, 16. Similarly, one miRNA can bind to repress many different mRNAs by 

binding to the 3’ or 5’UTR, making this approach a non-specific but potent endogenous 

RNAi mechanism17. This non-specificity has been explored as a method to replace or 

replenish low levels of miR-34s, which act on a number of genes, are closely coupled to 

regulation of p53, and are dysregulated in cancers18.  

While both RNAi types are powerful endogenous control mechanisms, siRNA-based 

gene silencing has been the dominant approach clinically1, 2, 19. In the cytoplasm, long 

dsRNAs – siRNA precursors –are also cleaved by Dicer to form short dsRNA – siRNA 

(~20-25 nt). Within RISC, AGO2 cleaves the passenger strand (sense strand) and the 

remaining guide strand guides RISC to the target complementary mRNA and cleaves it20. 

While inside RISC, the protected guide strand can repeatedly target complementary 
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mRNA, making this approach specific, potent, long-lasting, and clinically viable. Current 

clinically viable candidate siRNAs and miRNAs have been modified for stability and 

shortened to bypass Dicer21.  

Prior to the commercial approval of siRNA-based gene therapies in 2018, ASOs 

dominated the field of RNA therapy. Different definitions of ASOs encompass RNAi under 

the same umbrella, but for the purposes of this introduction, they will be kept separate. 

ASOs have the same principle function as RNAi therapies – to facilitate translational 

repression and modify RNA splicing. They are short, single stranded sequences between 8 

– 50 nt in length that interact with a complementary mRNA sequence through Watson-

Crick base pairing, forming DNA-RNA or RNA-RNA hybrids. These hybrids can either 

mediate RNA cleavage by acting as a substrate for RNase H, an enzyme that cleaves 

dsRNA, or facilitate binding mechanisms that interfere with the target RNA function 

without degradation. Examples of ASOs include antagomirs, splice-switching 

oligonucleotides (SSOs), gapmers, steric block oligonucleotides, and others21-23. At 

present, there are a handful of ASOs in the clinic and others making their way there24. A 

key example is the recently clinically-approved ASO Spinraza, which works by binding to 

an intronic sequence on SMN2 pre-mRNA in order to control mRNA splicing, increase the 

proportion of mature mRNAs that contain a specific exon, and, in turn, modulate the 

production of a specific protein isoform25. 

RNA is traditionally thought of as a middleman between DNA and protein, but RNA 

can also act as a catalyst and facilitate biological processes such as RNA processing, and 

RNA cleavage in addition to protein synthesis26. These catalytically-active RNAs, known 

as ribozymes, use their secondary structure to cleave complimentary RNAs on their own. 
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Therapeutic ribozymes have been developed to target and degrade RNA-based viruses27, 

28. Yet, other groups of RNAs (e.g. aptamers) have significant specificity for proteins due 

to their unique secondary structures. Aptamers have been used as a potential replacement 

for antibodies in diagnostics and as biosensors to detect disease biomarkers or 

environmental contaminants29.    

While RNAi has become a staple of exogenous gene control at the RNA level, recent 

advances in molecular biology have yielded control mechanisms that act at the DNA level. 

These mechanisms make up the field of genome editing and typically utilize the actions of 

a nuclease that is directed to make double stranded breaks (DSB) at specific locations in 

the genome. The cells endogenous repair machinery will then use non-homologous end 

joining (NHEJ) or homology directed repair (HDR) to fix the DSB. NHEJ typically results 

in indels, potentially causing the transcribed gene to be out-of-frame. HDR relies on a 

template strand to precisely repair the DSB; this template strand can be exogenously 

delivered in order to induce precise gene insertions. Gene editing approaches include the 

use of meganucleases, zinc finger nucleases, transcription activator-like effector nucleases 

(TALENs), and the clustered regularly interspaced short palindromic repeats 

(CRISPR/Cas9) system. Of these, CRISPR/Cas9, adapted for mammalian cell use from a 

bacterial defense mechanism, is regularly seen as the most feasible editing mechanism30, 

31. This feasibility arises from the ease at which different parts of the genome can be 

specifically targeted. Briefly, an sgRNA is designed to bind complementary target DNA 

and induce the endonuclease activity of Cas932. This system has been used with 

catalytically inactive Cas9, termed ‘dead-Cas9’ (dCas9)33 or short sgRNAs, termed ‘dead-

guides’ to induce site-specific transcriptional activation without the formation of a DSB34. 
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Analogs of the CRISPR/Cas9 system have since been discovered with applications in 

diagnostics, imaging, RNA cleavage, base editing, and deamination35-38. Despite the fact 

that most RNA-targeted therapeutics result in gene silencing or inactivation, the 

CRISPR/Cas9 system can be used to both curtail or induce the expression of a gene, as 

well as to induce the expression of a functionally inserted gene32. These attributes have 

made CRISPR/Cas9-based systems a viable option for diseases with single-gene 

disruptions39-43. Like any system, the CRISPR/Cas9 system has flaws that will need to be 

addressed before it becomes a clinically viable platform. Some of these caveats include the 

need to optimize the CRISPR/Cas9 system to avoid off-target editing44 and to 

accommodate the presence of pre-existing immunity in a large percentage of the 

population45, 46. A commonly used version of Cas9 (spCas9) comes from the bacterium 

Streptococcus pneumoniae, the most common cause of community acquired pneumonia 

and meningitis. Similarly, researchers will need to understand the pharmacokinetics and 

temporal relationship between Cas9 mRNA translation and guide RNA delivery in order 

to optimize the interaction between the two components.  

Most of the nucleic acid payloads discussed previously aim at reducing the presence 

of a target protein by interfering during transcription or translation. However, in the early 

1990s, researchers found that by injecting naked mRNA into mice they could correct 

disease phenotypes through transient protein production47. Since then, synthetic mRNAs 

have been developed for many applications including immunotherapies, infectious disease 

vaccines, transient protein expression, and nuclease delivery for editing systems. mRNA 

vaccines have been used to deliver the coding sequence of an antigen in order to immunize 

against influenza A48, HIV49, 50, and ZIKV51 in large animal models with some vaccine 
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candidates having begun testing in humans. Similarly, mRNA coding for nucleases such 

as Cas9, Cpf1, ZFNs, and TALENs have been successfully used for genome editing 

purposes. To this end, a number of companies have been formed to find successful delivery 

vehicles for co-delivery of Cas9 mRNA and sgRNA52. Nucleases have traditionally been 

delivered in the form of a protein or as DNA in a viral vector. Protein nucleases can be 

difficult to deliver in vivo because of their size and stability, while viral vectors ensure 

long-term nuclease production, which can result in non-specific editing over time53.  

mRNA therapeutics are convenient for a few reasons – namely, because they are 

transient and do not require genome integration. The pharmacokinetics of an mRNA drug 

can be optimized on a case-by-case basis through structural RNA modifications and 

sequence optimizations. These changes are made to increase the stability and duration of 

the RNA, protect it from exonucleases and endonucleases, and to improve mRNA 

translatability, respectively. Codon optimization is a useful technique to increase the 

translatability and stability of an mRNA therapeutic. By modifying the mRNA sequence, 

rare codons that are not commonly utilized by the target species’ cell machinery can be 

removed and frequently used codons can be included54. This allows for changing of the 

RNA sequence, but not the resulting amino acid sequence of the therapeutic protein. The 

diversity of available payloads has made the field of nucleic acid therapeutics wide and 

promising. However, despite exciting advances in the design, characterization, and utility 

of these payloads, their feasibility as therapeutic agents depends heavily on their stability 

in an in vivo environment, and their ability to be delivered exogenously to their intended 

site of action. Nucleic acid stability will be addressed in section 1.1.2 and delivery 

approaches in section 1.2.  
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1.1.2 Nucleic acid stability and the role of chemical modifications 

Oligonucleotide therapeutics obtain their potency from their chemical structure. 

Early nucleic acid-based drugs were plagued by their inability to function in vivo at 

clinically relevant doses. At that time, systemic administration of minimally modified 

nucleic acid drugs was done at relatively high doses in order to elicit effective translational 

silencing55. These high-dose, unmodified RNA administrations would often trigger the 

innate immune system by activating TLRs56. Whereas target specificity is conferred by the 

sequence of the oligonucleotide, in order to improve the potency and stability of 

oligonucleotides, modifications need to be made to the sugar, backbone, nucleobase, or 3’ 

or 5’ end of the nucleic acid57. Modifications are typically included in order to curtail 

degradation via endonucleases, exonucleases, and hydrolysis, and in turn increase stability 

and durability, or to improve target RNA affinity. The most common modification is the 

use of a phosphorothioate backbone to block digestion by exonuclease III and some 

restriction enzymes58, 59. However, the addition of a phosphorothioate backbone also 

reduces target RNA binding affinity57, 58, typically offset by the addition of sugar 

modifications that improve target affinity and stability. The most common of these sugar 

modifications occurs at the 2’ position of RNA and DNA – specifically, 2’-O-methyl (2’-

OMe), 2’-O-methoxyethyl (2’-MOE), and 2’-deoxy-2’-fluoro (2’-F) modifications are 

commonly used21, 57.  

Antisense and RNAi technologies have evolved to both positionally and structurally 

optimize the use of chemical modifications. Depending on the delivery vehicle and route 

of administration, different levels and types of chemical modification may be required60-62. 

For instance, only half of the bases on an siRNA need to be modified if the siRNA is getting 
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delivered with a LNP, whereas heavier modification patterns are required if the siRNA is 

getting delivered with a conjugate. While many biomolecules have been assessed as 

oligonucleotide drug conjugates, successful systemic conjugate-mediated delivery has 

been limited to the liver by utilizing GalNAc, a ligand for the rapidly recycled 

asialoglycoprotein receptor (ASGPR) on hepatocytes. GalNAc-conjugated oligos require 

modification of every nucleotide in order to function potently – however the type of 

modifications used may contribute to off-target delivery63.  

1.2 The utility of nucleic acid drug delivery vehicles 

1.2.1 Oligonucleotide delivery vehicles 

Currently, successful nucleic acid therapeutics are either locally administered to 

easily accessible sites using intraocular, intranasal, intramuscular, or intrathecal delivery 

methods or target hepatocytes in the liver using a conjugate ligand (e.g. GalNAc), a LNP, 

or a viral vector. Despite the potency of the payload, there is an imminent need for 

technologies that allow for the identification of nucleic acid delivery vehicles outside of 

the liver using systemic administration. With developments and improvements in 

oligonucleotide potency, the biggest barrier to successful delivery is reaching the intended 

target site.  

Lipid-based delivery vehicles have been used since the mid-2000s to deliver RNA 

therapeutics64-66 and early papers showed the potential of lipid delivery systems. 

Researchers were able to systemically deliver an siRNA, using a lipid-based delivery 

vehicle, to NHPs. The siRNA, targeting the APOB gene, was encapsulated in a stable 

nucleic acid lipid particle (SNALP) and led to protein knockdown out to six days at doses 
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as low as 1.0 mg/kg. These particles were similar in composition –they contained a PEG-

lipid, phospholipid, cholesterol, and a cationic lipid – and size (70 – 90 nm) to present day 

LNPs and laid the foundation for future LNP optimization and discovery papers66.  

Despite prior work to find potent lipid-based vehicles, discovery and synthesis of 

novel materials required multistep, time-intensive synthetic routes. To address this 

bottleneck, researchers developed a chemical method to rapidly develop new lipid-like 

molecules64. This method relied on chemistry that conjugated alkyl-acrylates or alkyl-

acrylamides to primary or secondary amines using Michael addition. This led to the 

production of 700 lipidoids that were then screened in HeLa cells one-by-one at multiple 

doses. After in vitro screening, researchers showed that they could take the best performing 

LNPs in vitro and use them to silence Factor VII, a blood clotting protein produced by 

hepatocytes, in vivo. This study was followed by multiple others that in total screened over 

1000 nanoparticles for potent, low dose, in vivo siRNA delivery67, 68. These studies 

analyzed the impact of the lipomer:RNA ratio, PEG chain length, and particle size on LNP 

pharmacokinetics and biodistribution69, 70. Combinatorial approaches to making new 

compounds for siRNA delivery continued, with the synthesis of cKK-E12, a potent 

ionizable lipid-like material71. This ionizable lipid had an ED50 of 0.002 mg/kg when 

delivering Factor VII siRNA in mice and is currently licensed for clinical development. 

cKK-E12 set the benchmark for potent and specific hepatocyte delivery vehicles and has 

been used in multiple formulations since its original publication72-74.  

 Other approaches to finding novel chemical structures used pre-existing cationic 

lipids (e.g. DLinDMA, DOTAP, DOTMA) to inform the creation of novel cationic lipids65. 

These amphiphilic molecules have an amine based headgroup and a hydrocarbon chain 



 10 

with a linker between the two. Researchers varied the linker between the headgroup and 

hydrocarbon chain in order to make novel cationic lipids. They then took the best 

preforming linker modification and modified the headgroup to additional lipids. Of these, 

the best performing lipid (DLin-KC2-DMA) had an ED50 of 0.3 mg/kg and worked as low 

as 0.1 mg/kg when delivered to NHPs75. Similar advances have been made for the 

identification of non-liver delivery vehicles. By screening epoxide-modified lipid-polymer 

hybrids at different lipid:RNA ratios in vitro, researchers were able to identify a 

nanoparticle containing a new lipid-compound termed 7C1 that potently delivered siRNA 

in vivo76. Specifically – 7C1 potently delivers siRNA to endothelial cells in the lung (ED50 

~ 0.01 mg/kg) and heart (ED50 ~ 0.05 mg/kg) after a single systemic injection.  

More recently, utility of lipid nanoparticles has expanded to include mRNA and 

DNA delivery. The biggest challenges that mRNA therapeutics face is their ability to be 

effectively delivered to their target cell type. A number of therapeutics have been 

developed that utilize LNPs, particularly focusing around the use of ionizable lipids. This 

shift in payload comes with its own challenges – siRNAs and miRNAs are typically small 

(~18-22 nucleotides) whereas mRNAs can be anywhere from a couple hundred basepairs 

to a few kilobases, making the barrier to clinically relevant cell delivery greater. This size 

disparity impacts the size and polydispersity index of an LNP. Studies have optimized the 

lipid:RNA ratio differently for siRNA and mRNA-based payloads. Due to their size, more 

siRNAs can typically be loaded into a LNP, with ideal lipid:RNA ratios being between 5-

10, whereas ideal lipid:RNA ratios for mRNA are between 7.5-10. This relationship as well 

as interactions between other LNP characteristics have been investigated, focusing on the 

use of variants of cKK-E12, 7C1, and a new class of lipids, termed conformationally 
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constrained lipids, to alter the tropism of LNPs in vivo9, 77. Additionally, a diverse set of 

cholesterols72, 78, both synthetic and natural, as well as phospholipids, have been identified 

as important components of potent LNPs. Despite challenges, it comes as no surprise that 

novel delivery vehicles for splenic ECs9, splenic T-Cells77, bone marrow ECs79, splenic 

immune cells80, and liver ECs72 have been identified. For example, biodegradable variants 

of the potent ionizable lipid cKK-E12 have led to potent splenic immune cell delivery80. 

Similarly, formulating cKK-E12 with the charged phospholipid DOTAP instead of DOPE 

has led to potent lung delivery with minimal liver off-target delivery81. The impact of 

phospholipid charge on LNP tropism has been further evaluated82.  Researchers developed 

a method known as Selective Organ Targeting (SORT) of nanoparticles in order to shift 

delivery of canonically liver-specific LNPs to the spleen and lung. Specifically, they 

showed that cationic phospholipids (e.g. DOTAP, DDAB, EPC) shift delivery to the lung 

while anionic phospholipids (e.g. 18PA, 18BMP) shift delivery to the spleen. Phospholipid 

charge may impact the overall LNP surface charge which has been shown to vary the types 

and amount of serum proteins that adhere to the LNP and drive tropism to different 

tissues83, 84. Often, efforts are made to reduce adsorption of serum proteins in the hopes of 

increasing circulation time and decreasing rapid clearance83, 85. For example, by varying 

the type and amount of PEG-lipid added to an LNP, researchers have shown that they can 

modulate LNP circulation time and tissue localization86, 87. The addition of PEG-lipids 

creates an aqueous shell around the LNP, reducing interaction with serum proteins and 

subsequent clearance. It is evident that the interplay between LNP components, the mole 

ratio between components, and the payload being delivered all play a role in the tropism 

and potency of clinically relevant LNPs.  
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While lipid nanoparticles have begun to make their way into the clinic – the first 

LNP-based siRNA delivery vehicle was approved in 2018 – viral based delivery strategies 

have been around for more than two decades. One caveat to LNP delivery is the current 

inability to access the nucleus of a cell directly. There is evidence to suggest that LNPs are 

endocytosed through multiple endocytosis mechanisms, including clathrin, caveolin, and 

micropinocytosis88, and a small portion of the nucleic acid payload contained within the 

LNP ends up making it to the cytoplasm of a cell. Attempts at getting these payloads into 

the nucleus include adding nuclear localization sequences or hijacking endogenous cell 

machinery to import the nucleic acid. Similar to LNPs, viruses bind to specific receptors 

on the outside of a cell89, 90 and get endocytosed via myriad endocytosis pathways91, 92. 

However, unlike LNPs, viruses are also efficient at getting their payload into the nucleus 

of a cell. Different DNA viruses have evolved NPC-dependent and NPC-independent 

methods of getting into the nucleus. For instance, recombinant AAVs are believed to 

achieve nuclear import through an NPC-dependent mechanism92. However, the rate of 

endosomal escape and nuclear import can vary between AAV serotypes.  When long-term 

nuclear expression is the requirement – as is often the case with treatments that require 

delivery of a functional version of a gene that will be present for the duration of a patients’ 

life – viruses are exceptionally good at delivering. AAVs in particular have gained steadfast 

appreciation for a number of reasons. These include their packaging capabilities (~4.7-5 

kb), long-term gene expression without DNA integration in nondividing cells, and their 

relatively low immunogenicity compared to other viral vectors93. In tissues that are 

predominantly post-mitotic such as the liver, retina, and skeletal muscle, these 
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characteristics make AAVs a favourable long-term gene therapy vector. In fact, there are 

already clinically approved AAVs for spinal muscle atrophy94 and retinal dystrophy95.  

However, some current viral-based strategies are troubled by the same issues as 

nanoparticles, namely delivery to on-target tissues outside of the liver and spleen without 

direct vector administration. Systemic delivery of AAV often leads to potent liver delivery 

– to obtain vector delivery outside of the liver, a high dose of the drug is required. This is 

true even for recombinant AAV serotypes that have tropism for non-hepatic tissues, such 

as AAV1, 6, and 9, which deliver to cardiomyocytes in the heart92. As another example, 

AAVs have been pursued as a viable option for delivery of functional dystrophin DNA to 

patients with muscular dystrophy – but, this approach requires delivery of the payload to 

muscle. While there are direct-administration-based approaches (e.g. intramuscular 

injection) where this technique would work well, potent systemic administration of an 

AAV intended to deliver to muscle with minimal off-target liver delivery is challenging41, 

96. To this end, researchers are attempting to find novel AAV capsids that have increased 

tropism and selectivity for skeletal muscle97. While it is clear that the evolution of nucleic 

acid delivery vehicles has yielded potent clinical candidates, it has also uncovered the 

complexity associated with the success of these delivery vehicles. Discussed below are a 

few of the known challenges that nanomedicines encounter in an in vivo environment, with 

specific focus on LNPs, the topic of this thesis.  

1.2.2 Complexity of lipid nanoparticle delivery  

Nanomedicine delivery is a complex process regulated by the body98. Successful 

delivery requires a nanomedicine to protect the drug from degradation, avoid the systemic 
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immune system, avoid clearance organs99, enter the desired tissue, select the right cell type 

within a complex tissue microenvironment and - if the drug requires cytoplasmic delivery 

- gain access to the cytoplasm without degrading in an organelle (Fig. 1.1). Given these 

barriers, it quickly becomes clear that a major challenge with nucleic acid therapeutics is 

their delivery to the correct cell or tissue. For example, nanoparticles carrying small 

molecules have been safely administered to patients100, and siRNA delivered to 

hepatocytes by GalNAc conjugates101 or lipid nanoparticles1 have treated genetic disease. 

At the same time, the need for systemically administered nanomedicines that target non-

hepatocytes is significant, since most systemically-administered drug delivery systems are 

still sequestered in the liver. 

At each step, the nanomedicine must overcome defenses that have evolved to 

sequester and degrade foreign materials, making drug delivery inefficient. For example, a 

LNP that delivers siRNA to hepatocytes in mice, NHPs, and humans1 was used to ask an 

important question: if a LNP carrying siRNA reaches the endosome of a target cell in vivo, 

what percentage of the siRNA accesses the cytoplasm? This LNP only released 2% of its 

siRNA into the cytoplasm88. Recognizing these inefficiencies, clinical advances in 

nanotechnology research1, 100-103 are impressive. In order for nanoparticles to undergo a 

step function-like change in efficacy, we believe it is critical to answer four fundamental 

questions. First, how does nanoscale chemical structure, and in particular cholesterol 

structure, influence drug delivery in vivo? Second, which biological pathways govern 

nanoparticle delivery in vivo? Third, is screening directly in vivo the best approach? And 

fourth, can we quicken the pace at which clinically relevant lipid nanoparticles are 
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identified? These questions have been reviewed extensively elsewhere6, 104, 105 and over 

three decades of work has resulted in a substantial body of knowledge.  

It is well known that biological molecules and physical barriers govern on-target 

delivery, off-target delivery, toxicity, and the endosomal escape of LNPs. For example, 

labs have made important contributions to our understanding of the protein corona. We 

now know that the surface area:volume ratio of nanoparticles as well as 

hydrophilic/hydrophobic interactions make it thermodynamically likely5 that diverse 

proteins will bind to nanoparticles after they are administered106. It is also known that the 

composition of this protein corona changes with time5, 107 and the local microenvironment4, 

108, 109. Finally, there is consensus that the protein corona can dictate interactions between 

a nanoparticle and the immune system110, or a nanoparticle and a target cell84, 111-113. To 

further this knowledge, in vivo studies of lipid nanoparticle dynamics and cellular 

interactions at a high-throughput scale are necessary.  

As a second example, it is clear that physical barriers can influence nanoparticle 

delivery. When a LNP is administered intravenously, serum protein opsonization can lead 

to rapid clearance due to nonspecific uptake facilitated by the mononuclear phagocyte 

system114, 115. For example, in the liver, Kupffer cell sequestration is an important barrier 

to functional LNP delivery to hepatocytes and other hepatic cell types. Cationic 

nanoparticles can be disassembled by the renal anionic basement membrane116, and 

nanoparticles can have a difficult time accessing brain parenchyma, due to the capillary 

tight junctions and glial cells that make up the blood brain barrier117-121. By contrast, 

nanoparticles can access tissues like the liver because of discontinuous basement 

membranes in the hepatic sinusoids117-121. Notably, detailed in vivo analysis and 



 16 

mathematical modeling was used to demonstrate that slow blood flow through the hepatic 

sinusoids increased nanoparticle uptake, potentially by increasing the likelihood 

nanoparticles extravagated out of the blood99. This suggests that altered blood flows can 

influence nanoparticle interactions in other diseases known to have unusual flow, including 

atherosclerotic plaques122. 

Endocytic pathways have also been shown to affect nanoparticle delivery. Many 

studies have identified genes that impact nanoparticle uptake in vitro88, 123-125, and a 

growing number of publications have performed similar studies in vivo. For example, when 

nanoparticle pharmacokinetics were measured in healthy mice and tumor-bearing mice, 

authors observed a difference in delivery to non-tumor organs126. Similarly, nanoparticle 

pharmacokinetics changed in ApoE-/- and LDLR-/- mice127, complementing previous data 

that demonstrate cholesterol trafficking pathways can influence in vivo nanoparticle 

delivery65. Small molecules that modulate specific pathways have also been shown to 

influence nanoparticle delivery. A recent publication demonstrated that the anti-malarial 

drug Chloroquine reduced nanoparticle uptake by macrophages128, and that rapamycin 

delivered in nanoparticles increased the tolerability of other biologic drugs129. Nanoparticle 

chemical composition130, shape131-133, and size134 can affect particle endocytosis, whereas 

genes related to lysosomal storage135, anti-viral immune response136, and mRNA 

translation125 all impact the fate of a LNP once it is inside the cell. These broad examples 

represent a fraction of the work that has been performed at the interface of nanotechnology 

and biology over the previous decades137 and highlight the complexity of nanoparticle 

delivery.  
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Despite these advances, questions regarding the interactions between 

nanotechnology and biology remain. For example, how do the structures of clinically 

relevant nanoparticles influence delivery? Are there universal rules that relate nanoparticle 

chemical traits to potency? How should nanoparticles be designed so that they reach an on-

target tissue and cell type and do not get cleared by clearance organs? The following 

chapters describe the use of DNA barcoding as a high-throughput tool to study LNP 

delivery7 and identify non-hepatocyte targeting LNPs (Fig. 1.2). Most current methods of 

LNP identification rely on in vitro testing to identify LNPs that work potently in vivo. This 

approach does not model any of the barriers to delivery previously described, making it a 

difficult approach to rely on when searching for LNPs whose functional actions translate 

across the species line. Throughout this work, high-throughput LNP barcoding is used to 

bypass in vitro testing and assess LNP functional delivery and biodistribution within an 

animal model as well as to identify novel, clinically relevant, LNPs with new tropisms. 
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Figure 1.1 LNP delivery can be viewed as a complex phenotype affected by many cells and 
biomolecules. (A) Nanoparticles are (1) cleared by circulating immune cells and tissue 
resident immune cells. Due to their high surface area: volume ratio, nanoparticles interface 
with (2) lipoproteins and (3) other biomolecules that make up the protein corona. The corona, 
in turn, can (4) alter how nanoparticles bind target cells. Interestingly, depending on its 
composition, the nanoparticle corona can promote or inhibit cell targeting. While reaching 
target cells, nanoparticles also interact with (5) a dense ‘forest’ of cell surface glycoproteins 
and glycolipids, collectively termed the glycocalyx. Alternatively, nanoparticles may interact 
(6) directly with cell surface receptors. Nanoparticles can also exit the bloodstream; this 
process is affected by (7) the permeability of vascular endothelial cells. Within the target 
tissue, nanoparticles interact with (8) proteoglycans in the extracellular matrix (ECM), or (9) 
cells within the tissue itself. (B) DNA- and RNA-driven gene expression dictates nanoparticle 
behavior by controlling the synthesis and processing of proteins, sugars, and lipids. As a 
result, high throughput quantification of the five biomolecules could improve our 
understanding of biological pathways that affect nanoparticle delivery. Two methods are 
typically used: next generation sequencing, which quantifies DNA and RNA, and mass 
spectroscopy, which quantifies lipids, carbohydrates, and proteins. The scale at which DNA 
and RNA can be analyzed is currently greater than the scale at which lipids, carbohydrates, 
and proteins can be analyzed.   
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Figure 1.2 Next generation sequencing for high-throughput DNA barcoding. (a) DNA barcodes 
are most effective when amplified with universal primers. The barcode sequence is often a 
smaller number of nucleotides located in a larger DNA sequence. After amplification, sample 
indices and sequencing adapters are added using PCR or ligation. The sequencing adapters (b) 
bind the DNA to the sequencing flow cell. In solid state bridge amplification, each individual 
DNA sequence is amplified on the flow cell to create a cluster. The sequence of each cluster is 
read using fluorescent nucleotides. In this way, flow cells can generate hundreds of millions of 
data reads in a single experiment. 
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CHAPTER 2. A DIRECT COMPARISON OF IN VITRO AND IN VIVO 
LIPID NANOPARTICLE DELIVERY 

The work presented here is an excerpt from Paunovska* K, Sago* CD, Monaco CM, 
Hudson WH, Gamboa Castro M, Rudoltz TG, Kalathoor S, Vanover DA, Santangelo PJ, 
Ahmed R, Bryksin AV, Dahlman JE (2018). “A Direct Comparison of in Vitro and in Vivo 
Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak 
Correlation.” Nano Letters. 

 

2.1 Introduction 

 The transport of foreign nucleic acids is carefully regulated, making systemic drug 

delivery inefficient98, 114, 138. To deliver nucleic acids, thousands of chemically distinct lipid 

nanoparticles have been designed64, 68, 71, 76, 139, 140. LNP chemical diversity is imparted 2 

ways. First, thousands of distinct biomaterials have been synthesized64, 68, 71, 76, 139, 140. 

Second, each biomaterial can be formulated into hundreds of LNPs by adding PEG, 

cholesterol, DOPE, and other constituents at different mole ratios. LNPs are screened in 

vitro before a small number of finalists is tested in vivo64, 68, 71, 76, 139, 140; in a typical 

example, we measured how well 2,000 LNPs delivered siRNA to HeLa cells in static cell 

culture before analyzing 5 LNPs in vivo76. Similar studies have been performed with LNPs 

composed of small amine-, sugar-, or peptide-based materials64, 68, 71, 139, 140.  

 To successfully deliver nucleic acids after systemic administration, nanoparticles 

must overcome complex obstacles that are difficult to model in vitro. Nanoparticles must 

protect the DNA or RNA from degradation, avoid clearance, target the desired cell within 

a complex microenvironment, and gain access to the cytoplasm, without stimulating a 

systemic immune response. A significant fraction of the drug can be lost at each point, and 

as a result, every step is important to model. Physical variables also influence delivery. 

Cationic nanoparticles can be disassembled by the renal anionic basement membrane116, 

and nanoparticles can be blocked from accessing brain parenchyma, due to the capillary 
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tight junctions and glial cells that make up the blood brain barrier117-121. By contrast, 

nanoparticles can access tissues like the liver via porous ECs and discontinuous basement 

membranes in the hepatic sinusoids117-121. In addition to these barriers, in vivo analysis and 

mathematical modeling have demonstrated that blood flow rates affect nanoparticle 

targeting by affecting the likelihood a particle extravasates99.  

 Despite these differences, nanoparticles are often screened for delivery in vitro. 

Large scale in vitro nanoparticle screens typically utilize cells that are easy to expand (e.g. 

HeLa)64, 68, 71, 76, 139, 140. These cells have genotypes and phenotypes that differ from cells in 

vivo. Cells can also undergo significant changes in gene expression when cultured141. Many 

of these changes may be driven by exposure to a combination of foreign serum (e.g., FBS) 

and static fluid flow, which most cell types are not exposed to in vivo. Given that in vitro 

and in vivo delivery require the nanoparticle to overcome different physiological obstacles, 

and that endocytosis is likely to be affected by gene expression changes that occur when 

cells are removed from their natural microenvironment, we hypothesized that in vivo LNP 

delivery would not be predicted in vitro using common cell culture conditions.  

 The field can currently synthesize nanomaterials at a rate several orders of 

magnitude higher than the rate at which we can test nanomaterials for drug delivery in vivo. 

Recently, we reported a nanoparticle DNA barcoding system7 to increase the number of 

LNPs we could study at once in vivo. We used a microfluidic device to barcode LNPs (Fig. 

2.1A)142; each LNP was formulated to carry a unique DNA barcode. We pooled stable 

LNPs, administered them to animals, and deep sequenced the barcodes to quantify the 

delivery of up to 30 LNPs simultaneously7. This original paper focused exclusively on 

control experiments designed to characterize the system. Specifically, we demonstrated 

that barcoded LNPs can be made so they do not mix in solution, that DNA sequencing 

readouts were linear with respect to the amount of injected DNA, that DNA barcode 

delivery recapitulates the behavior of previously characterized LNPs, that delivery does 
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not change with DNA sequence, and that delivery of DNA barcodes to hepatocytes in vivo 

modeled siRNA delivery to hepatocytes in vivo7.  

 We now report that the same LNP barcoding system, herein named JORDAN, can 

elucidate fundamental questions about nanoparticle delivery. We quantified how well 281 

LNPs delivered DNA barcodes to endothelial cells and macrophages, both in vitro and in 

vivo. We focused on endothelial cells and macrophages for three reasons. First, both cell 

types are implicated in many diseases143, 144. Second, since they are ubiquitous, we could 

measure delivery to the same cell type in multiple tissues. Third, endothelial cells are more 

‘accessible’ upon intravenous injection than tissue macrophages. We reasoned, incorrectly, 

that delivery to more accessible cells would be more predictable in vitro. Our data strongly 

suggest that in vitro LNP delivery to endothelial cells and macrophages using static cell 

culture does not predict in vivo LNP delivery to the same cell types.  

 We then used the JORDAN system to investigate how different LNPs distribute 

within a clearance organ (the spleen). By measuring how 85 LNPs delivered barcodes to 8 

different splenic cell types, we found that cells derived from myeloid progenitors tended 

to be targeted to by similar LNPs; cells derived from lymphoid progenitors tended to be 

targeted by different LNPs. We then identified LNP1, which delivered barcodes to all 8 

cell types we studied in the spleen. We confirmed the splenic targeting of LNP1 using 

fluorescently labeled DNA. The approach we have described can be extended to study (i) 

how well any in vitro system (e.g., tissue-on-a-chip) predicts delivery in vivo, and (ii) how 

different cells are targeted within a tissue. 

2.2 Results  

2.2.1 Rationally designed DNA barcodes for in vivo LNP delivery 
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We rationally designed DNA barcodes in order to study the delivery of many LNPs 

at once (Fig. 2.1A-C). Each DNA barcode contained phosphorothioate linkages in order to 

reduce exonuclease activity, and universal primer sites for unbiased PCR amplification 

(Fig. 2.1C)7. The 8 nucleotide ‘barcode’ region was located in the middle of the 56 

nucleotide DNA sequence. Of the 48 possible DNA barcode combinations, we designed 

240 to work with Illumina sequencing machines (Fig. 2.2A). We amplified barcodes using 

universal primers and labeled individual samples with Illumina dual-indexed adapters that 

enabled sample multiplexing (Fig. 2.2B). For each experiment, we calculated the 

‘normalized delivery’, using the administered LNP solution as a DNA input (Fig. 2.1D, 

Fig. 2.2C). We also added new LNP quality controls to reduce the likelihood LNPs mixed 

together. Specifically, we analyzed the size of each individual LNP using DLS. Based on 

our experience studying LNPs7, 31, 76, 145-147, we only pooled stable LNPs with good 

autocorrelation curves and diameters between 20 and 300 nm (Fig. 2.2D). We then tested 

whether barcoded LNPs entered cells. We formulated Alexa647-tagged DNA barcodes in 

a previously characterized7, 31, 76, 145-149 LNP named 7C1. Barcodes entered iMAECs within 

15 minutes and were observed inside the cell at 1.5 and 72 hours after administration (Fig. 

2.1E, Fig. 2.2E, F).  

2.2.2 LNPs can be screened using high-throughput barcoding 

We then formulated 144 LNPs, systematically varying PEG structure. We 

synthesized 2 biomaterials called ‘lipomers’, which are lipid-amines conjugates created by 

reacting epoxide, acrylate, or methacrylate-terminated lipids with oligoamines7, 64, 76, 150, 

151. Both lipomers were formulated into 72 LNPs, using 9 different PEGs, and 8 different 

PEG mole percentages, for a total of 144 LNPs (Fig. 2.3A, Fig. 2.4A). 112 out of 144 
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formulations formed stable LNPs and were pooled (Fig. 2.4B). We administered the 112 

stable LNPs, as well as a naked DNA barcode - which served as a negative control - to 

cells at a total DNA dose of 4, 20, and 100 ng/well, in a 24 well plate. Concurrently, we 

administered the LNPs to mice via a tail vein injection at a total dose of 0.5 mg/kg DNA. 

We isolated DNA from cells or tissues 72 hours later, a time point we chose to minimize 

the influence of dynamic endocytic processes76, 88, 124, 152, 153. The 4 ng total DNA dose 

equaled an average DNA dose of 0.035 ng/well/LNP, demonstrating the sensitivity of the 

DNA barcoding system. We administered the LNPs to iMAECs, and mouse macrophages 

(RAWs). We chose iMAECs since they are isolated directly from the murine heart, and 

have been shown to recapitulate endothelial cell signaling and function154. We chose 

RAWs since they are a commonly used cell line.   

2.2.3 In vitro LNP delivery does not recapitulate in vivo delivery 

We examined positive and negative controls to evaluate whether this dataset was 

robust. The naked barcode (negative control) performed poorly compared to LNP-

delivered DNA in all 18 samples (Fig. 2.3C, D). LNP delivery in iMAECs and RAWs 

treated with 20 ng total DNA predicted LNP delivery in iMAECs and RAWs treated with 

4 or 100 ng DNA with high precision (R2 > 0.9) (Fig. 2.3E, Fig. 2.4B-D). Put another way, 

in this positive control experiment, delivery to iMAECs in vitro at 1 dose predicted delivery 

to iMAECs at 2 other doses.  

We then investigated whether in vitro LNP delivery predicted in vivo LNP delivery 

(Fig. 2.5A). We compared normalized delivery in iMAECs and RAWs to endothelial cells 

and macrophages isolated from mice injected with LNPs. We isolated endothelial cells and 
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macrophages from mice using a FACS protocol we previously established7, 76, 145, 148 (Fig. 

2.6A-C). In vitro iMAEC delivery did not predict in vivo delivery to heart, lung, or bone 

marrow endothelial cells (Fig. 2.6J-L). Similarly, delivery to RAW cells in vitro did not 

predict delivery to heart, lung, or bone marrow macrophages (Fig. 2.6S-U). To validate 

these results, we synthesized two additional LNP libraries (Fig. 2.6D-G). Library two 

consisted of 120 LNPs, of which 105 were found to be stable by DLS and included (Fig. 

2.6E). In this library, we systematically varied the lipid tail and amine reacted to make the 

lipomer component of each LNP. Library three consisted of 156 LNPs, of which 64 were 

found to be stable by DLS and included (Fig. 2.6G). In this library, we systematically 

varied the PEG tail length and MW, using three different tail lengths (C14, C16, C18) and 

2 different MWs (350, 2000 Da). Results from libraries two and three recapitulated results 

from library one; in vitro delivery to endothelial cells and macrophages did not predict in 

vivo delivery to the same cell types. In total, we performed three experiments, formulating 

420 LNPs, of which 281 were stable and included (Fig. 2.6H-I). Results from each 

individual experiment are plotted in Fig. 2.6J-AA. Combined results from all 3 experiments 

are plotted in Fig. 2.5B-G.  

We considered the possibility that our results were due to a poor choice of cell line 

or time-point. To exclude this possibility, we investigated to what extent the (i) cell line 

and (ii) experimental time point altered the predictivity of in vitro delivery. We performed 

these experiments using library two. We administered library two to iMAECs, RAWs, and 

mice, and measured delivery 4, 48, and 72 hours after LNP administration (Fig. 2.6M-O, 

V-X, BB-LL). At all three time points, we also administered LNPs to three primary human 
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endothelial cell lines: HAECs, HAVECs, and HUVECs. We observed no strong 

relationship between in vitro and in vivo delivery (Fig. 2.6MM-UU).  

We then analyzed our data set, with the goal of quantifying the ‘efficiency’ of 

traditional in vitro screening. Put another way, if a LNP library is screened in vitro and a 

small number of LNPs is selected for in vivo analysis, how likely is it that the best in vivo 

candidate is selected? We first calculated the percentage of an in vitro library required to 

select the top 5, 10, 15, or 20% of in vivo LNPs. To ensure the top 5% of in vivo LNPs 

were selected, more than 50% of the in vitro library would need to be selected (Fig. 2.7A, 

Fig. 2.8A). We then analyzed how well the best in vivo LNPs performed in vitro. We 

ranked LNPs based on their in vitro performance. We then colored the LNPs that performed 

in the top 10% in vivo (Fig. 2.8D). Some LNPs that performed well in vivo also performed 

well in vitro. However, in many cases, LNPs that performed well in vivo did not rank highly 

in vitro; these LNPs would likely be discarded after an in vitro screen. Third, we evaluated 

how the top in vitro LNPs performed in vivo. Top ranked in vitro LNPs did not consistently 

perform well in vivo (Fig. 2.7B, Fig. 2.8B). Based on this result, we asked a 4th question: 

if we selected the top 3, 5, or 20 in vitro LNPs, how likely were we to pick the 1st, 1st and 

2nd, or 1st, 2nd, and 3rd ranked in vivo LNPs? The odds of finding the top LNP in vivo were 

11%, 22%, and 44% using the top 3, 5, and 20 in vitro LNPs, respectively; the odds of 

finding the top 2, or top 3 in vivo LNPs were lower (Fig. 2.7C, Fig. 2.8C). Taken together, 

these data strongly suggest that in vitro delivery may not predict systemic in vivo delivery. 

While they do not directly implicate all in vitro systems or all cell types, they do strongly 

suggest each in vitro system should be validated using many nanoparticles before being 

used as the basis for nanoparticle discovery.  



 27 

2.2.4 High-throughput screening enables us to analyze LNP-property relationships 

The JORDAN system generates large nanoparticle datasets; the size of these 

datasets enabled us to analyze the relationship between LNP properties and in vivo delivery 

statistically. We plotted DNA barcode delivery as a function of each material property. In 

total, we analyzed 309 relationships between LNP structure and in vivo delivery. We found 

that the lipomer alkyl tail length, lipomer amine structure, and PEG MW were most likely 

to influence LNP delivery (Fig. 2.8E). These results suggest that the structure of the amine-

lipid compound, as well as the degree of LNP PEG both strongly influence LNP targeting. 

These results provide an important insight into LNP library design and substantiate 

previously reported nanoparticle research69, 86, 155. One important limitation is that we were 

not able to identify a mathematical framework with assumptions that allowed us to analyze 

how multiple LNP chemical variables interacted with one another. This future work is 

important, given that changing 1 LNP parameter often impacts another (e.g., adding more 

PEG to the LNP concomitantly reduces cholesterol). 

2.2.5 LNP delivery to immune cells clusters by progenitor type 

Nanoparticle biodistribution is quantified using ex vivo tissue fluorescence; 

however, it is still unclear how different cell types within a tissue microenvironment are 

targeted76, 99. More specifically, it is unclear which cell types tend to be targeted by similar 

LNPs. To address this question, we focused on the spleen; LNPs can deliver nucleic acids 

to156, and be cleared by99, the spleen. We formulated a 4th LNP library. Library 4 consisted 

of 144 LNPs, of which 85 were found to be stable by DLS, and included (Fig. 2.10A, B). 

We administered library 4 to RAWs and mice, and isolated 8 different cell types using 
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FACS (Fig. 2.9A, Fig. 2.10C). We performed unbiased Euclidean clustering, which is used 

to compare how many experimental groups relate to one another. Recapitulating our results 

from libraries 1-3, Euclidean clustering separated clearly separated in vivo delivery to all 

cell types (including macrophages) from in vitro delivery to RAWs (Fig. 2.9B, Fig. 2.9C, 

Fig. 2.9G).  

More interestingly, the 7 immune cell sub-types clustered into cells derived from 

(i) myeloid progenitors and (ii) lymphoid progenitors, respectively. Plasmacytoid and 

conventional DCs were clustered most closely with one another, and also clustered closely 

with macrophages and neutrophils (Fig. 2.9B, Fig. 2.9C). All 4 cell types derive from a 

common progenitor. T cells, B cells, and natural killer cells, which derive from a different 

progenitor, clustered together (Fig. 2.9B, Fig. 2.9C). To quantify this clustering, we 

measured the correlation between all 8 in vivo cell types and RAWs (Fig. 2.9C). 

Conventional DCs and plasmacytoid DCs, which clustered together, were highly correlated 

(R2 value = 0.90) (Fig. 2.9C, 2.9D), as were B cells and T cells (R2 value = 0.88) (Fig. 

2.9C, 2.9E). Cells derived from myeloid progenitors (e.g., conventional DCs) and 

lymphoid progenitors (e.g., T cells) had a much weaker correlation (R2 value = 0.2) (Fig. 

2.9F). These data demonstrate a unique capability for the JORDAN system; directly 

comparing how dozens of LNPs deliver nucleic to 7 different cell types would be very 

challenging using traditional one-by-one methods (e.g., fluorescence). 

Using delivery data generated from this screen, we identified two LNPs for 

additional characterization (Fig. 2.11A). Barcodes delivered by LNP1 were enriched in all 

8 splenic cell types, relative to barcodes delivered by LNP2 (Fig. 2.11B, C). We formulated 

LNP1 and LNP2 separately, using a Cy5.5-tagged DNA barcode, and injected mice 
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intravenously with 0.75 mg/kg DNA barcode. LNP1-treated mice had 12.1x more splenetic 

Cy5.5 ex vivo fluorescence than LNP2-treated mice, recapitulating the barcode readouts 

(Fig. 2.11D).   

2.3 Discussion 

We found that in vivo delivery to macrophages and endothelial cells is not predicted 

in vitro using common cell culture conditions. Modeling all the factors (e.g., blood flow, 

vascular heterogeneity, systemic and local immune cells, unwanted delivery to clearance 

organs) that influence nanoparticles in vivo is challenging. These results have important 

implications for nanoparticle design, given that nanoparticles are typically selected in vitro. 

We compared delivery to 5 different cell lines, and 6 different in vivo cell types; it will be 

important to determine whether these results extend to other cell types and cell culture 

conditions. For example, it was previously shown that delivery in primary hepatocytes was 

more predictive of in vivo delivery than a hepatoma cell line157. At first glance, our results 

may seem to contradict this work. We believe they do not; both studies underscore the 

importance of characterizing how well a given in vitro system predicts a desired in vivo 

outcome. To this end, we believe JORDAN is well positioned to optimize organ-on-a-

chip158 and organoids159 designed to predict in vivo behavior by acting as a positive control. 

JORDAN is agnostic to cell type and animal model. This allowed us to easily study 

drug delivery to 8 different splenic cell types in a single experiment. Testing how many 

LNPs target several cell types may lead to interesting discoveries. For example, our results 

suggest cells derived from myeloid progenitors tend to be targeted by the similar LNPs. 

This provides preliminary evidence that gene expression patterns that promote LNP 
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delivery to phagocytic cells may be identified. However, these results need to be validated 

using other nanoparticles. 

We noticed that there were practical advantages to using the JORDAN system. 

Testing many nanoparticles at once reduces experimental variation that occurs when 

experiments performed over months are compared to one another. We previously screened 

LNPs one by one76; it was difficult to ensure kits, reagents, and cell passage number were 

perfectly consistent. By testing many LNPs on the same day, it is easier to reduce 

unintentional experimental bias. At the same time, the JORDAN system has limitations. 

JORDAN is unlikely to work with unstable or toxic LNPs; it is critical to characterize 

particles before pooling them. JORDAN measures biodistribution, which is required, but 

not sufficient, for intracellular delivery. It will also be important to prevent PCR 

contamination. Finally, like all high throughput screening systems, lead candidates need to 

be independently verified. For example, we identified LNP1, which performed well in our 

barcode screen, and LNP2, which performed poorly in our barcode screen, before 

confirming their activity one by one (Figs. 2.9, 2.11). As part of our original barcoding 

study7, we performed a similar confirmation experiment using Factor 7 siRNA.  

Despite these caveats, we believe our data demonstrate that JORDAN is a powerful 

new tool to help researchers understand in vivo drug delivery. We also believe the 

differences between in vitro and in vivo delivery suggest that in vivo screening may 

accelerate the rate at which clinically relevant LNPs can be discovered. To help other labs 

use the JORDAN system, we have published an open source, ‘living’ document, which 

details reagents, protocols and our LNP bioinformatics pipeline on dahlmanlab.org. 
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2.4 Materials and Methods 

Nanoparticle Formulation. Nanoparticles were formulated in a microfluidic device by 

mixing DNA with lipomer, PEG, cholesterol, and a helper lipid, as previously described7, 

31, 76, 142, 145-149, 160. Nanoparticles were made with variable molar ratios of these constituents. 

The genetic drug (in this case, DNA barcode) was diluted in 10 mM citrate buffer 

(Teknova), and loaded into a syringe (Hamilton Company). The materials making up the 

nanoparticle (lipomer, cholesterol, PEG, and helper lipid) were diluted in 100% ethanol, 

and loaded into a second syringe. The citrate phase and ethanol phase were mixed together 

in a microfluidic device, at rates of 600 uL/min and 200 uL/min, respectively, to form 

LNPs. We used the following helper lipids: DOPE (Avanti Lipids, 850725), and DOPC 

(Avanti Lipids, 850375).  

DNA barcoding. Each chemically distinct LNP was formulated to carry its own unique 

DNA barcode (Fig. 2.1A, B). For example, LNP1 carried DNA barcode 1, while the 

chemically distinct LNP2 carried DNA barcode 2. The DNA barcodes were designed 

rationally with several characteristics, as we previously described7.  We purchased 56 

nucleotide single stranded DNA sequences from IDT (Fig. 2.1C, Fig. 2.2A). We included 

2 universal 21 and 20 nucleotide primer regions in addition to a random 7 nucleotide (‘7N’) 

region that is unique to each piece of DNA (Fig. 2.2B). Barcodes were distinguished using 

an 8 basepair (bp) sequence in the middle of the barcode. An 8 bp sequence can generate 

over 1,000,000 (48) unique barcodes; we selected 240 barcodes to prevent sequence 

bleaching on the Illumina MiniSeqTM machine. The 2 nucleotides on the 5’ and 3’ ends of 

the 56-nucleotide ssDNA sequence were modified with phosphorothioate linkages to 

reduce exonuclease degradation and improve DNA barcode stability.  
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Nanoparticle Characterization. LNP hydrodynamic diameter was measured using high 

throughput DLS (DynaPro Plate Reader II, Wyatt). LNPs were diluted in sterile 1X PBS 

to a concentration of ~0.0005 mg/mL and analyzed. LNPs were included if they met 3 

criteria: diameter >20 nm, diameter <300 nm, and autocorrelation function with only 1 

inflection point. Over the course of our experiments, ~65% of the LNPs we formulated met 

all 3 criteria. Particles that met these criteria were pooled and dialyzed with 1X phosphate 

buffered saline (PBS, Invitrogen), and were sterile filtered with a 0.22 μm filter.  

Animal Experiments. All animal experiments were performed in accordance with the 

Georgia Institute of Technology’s IACUC. Female C57BL/6J (#000664) mice were 

purchased from the Jackson Laboratory. All mouse weights before and after injection, are 

shown in (Fig. 2.12A, B). In all experiments, mice were aged 4-12 weeks, female, and N 

= 3 – 5 mice per group were injected intravenously via the lateral tail vein with the same 

pooled LNPs.  

Nanoparticle dosing. Mice were injected with a total DNA dose of 0.5 mg/kg. As an 

example, if an experiment measured 100 nanoparticles, then on average, each nanoparticle 

was administered at a dose of 0.005 mg/kg. The nanoparticle dose was determined using 

NanoDrop (Thermo Scientific).  

Cell Culture. In vitro experiments were performed using mouse macrophage cells (RAW 

264.7, ATCC), mouse aortic endothelial cells (provided by Hanjoong Jo at Emory)154, 

HAEC (Lonza), HUVEC (Lonza), and HAVEC (Lonza). In all cases, cells were maintained 

and cultured using previously established conditions. In all cases, cell media was 

supplemented by penicillin-streptomycin (500 U/mL penicillin G, 0.5 mg/mL 
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streptomycin) (PenStrep, VWR) and 10% (v/v) FBS (VWR). RAW cells were passaged 

with DMEM F-12 50/50 (Corning). iMAEC cells were passaged using DMEM with 1 g/L 

glucose, L-glutamine, and sodium pyruvate (Corning), supplemented by 1% (v/v) 

MEMNEAA (Sigma Aldrich), and 25 μg/mL ECGS (Emd Millipore). HAEC and HAVEC 

cells were passaged with MCDB 131 media without L-glutamine (VWR Scientific), 

supplemented by 1% (v/v) L-glutamate, 25 μg/mL ECGS, 0.1% (v/v) ascorbic acid, 

hydrocortisol, and the following growth factors: endothelial growth factor (EGF), vascular-

endothelial growth factor (VEGF), fibroblast growth factor (FGF), and insulin-like growth 

factor (IGF). HUVEC cells were passaged with M199 media with Earle’s salts and L-

glutamine (Corning), supplemented by 1% (v/v) ECGS, L-glutamine, and 0.2% (v/v) 

heparin. In all cases, cells were seeded in a 24-well plate at a density of 40,000 cells/well. 

24 hours later, LNPs were added with a total DNA dose of 4, 20, or 100 ng (Fig. 2.3E, Fig. 

2.4B-D). Based on these results, cells were treated with 20 ng total DNA in all other 

experiments. Six hours after transfection, media was removed, and fresh media was added. 

72 hours after transfection, media was removed and DNA was isolated using QuickExtract 

(EpiCentre).  

Fixed-cell staining. Cells were plated onto 35 mm glass-bottom dishes (In Vitro Scientific) 

one day prior to particle delivery. Cells were fixed at the indicated time points with 4% 

paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature before 

permeabilization with 0.2% Triton X-100 (Sigma-Aldrich) for 5 min at room temperature. 

To stain actin, cells were then incubated with Phalloidin-488 (Thermo Scientific) for 30 

minutes at 37°C. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) (Life 
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Technologies), and coverslips were placed over the cells in the dish and mounted with 

Prolong Gold (Life Technologies). 

Microscopy. Images were acquired with a Hamamatsu Flash 4.0 v2 sCMOS camera on a 

PerkinElmer UltraView spinning disk confocal microscope mounted to a Zeiss Axiovert 

200M body with a 63x NA 1.4 plan-apochromat objective. Images were acquired with 

Volocity (PerkinElmer) with Z-stacks taken in 0.2 µm increments. For live-cell images, 

cells and dishes were kept at 37 °C during imaging by using a Chamlide TC-L live-cell 

stage-top environment with objective heater (Live Cell Instrument). All images were 

linearly contrast enhanced. Live-cell images were smoothed with a fine rolling ball filter 

in Volocity. 

Cell Isolation. One time-course experiment was performed; delivery was analyzed 4, 48, 

and 72 hours after LNPs were administered. In all other cases, tissues and cells were 

isolated 72 hours after injection with LNPs. In all experiments, mice were perfused with 

20 mL of 1X PBS through the right atrium. The heart, lungs, spleen, and bone marrow 

were isolated immediately following perfusion. Tissues were finely cut, and then placed in 

a digestive enzyme solution with Collagenase Type I (Sigma Aldrich), Collagenase XI 

(Sigma Aldrich), and Hyaluronidase (Sigma Aldrich). The digestive enzyme for heart 

included Collagenase IV (Sigma Aldrich)145. Tissues were digested for 45 minutes at 37ºC 

and 550 rpm. Digested tissues were passed through a 70 μm filter. Red blood cells were 

lysed using (RBC) lysis buffer. Cells were resuspended in FACS buffer (2% FBS in 1X 

PBS).  
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Heart, Lung, Bone Marrow Cell Staining. Cells were stained to identify specific cell 

populations and sorted using the BD FACSFusion and BD FACS Aria IIIu cell sorters in 

the Georgia Institute of Technology cellular analysis core. Antibodies used for staining 

were CD31 (Clone 390, BioLegend), CD45.2 (Clone 104, BioLegend), and CD11b (Clone 

M1/70, BioLegend). We defined cell populations in the following manner: macrophages 

(CD31-CD45+CD11b+), heart and lung endothelial cells (CD31+CD45-), bone marrow 

endothelial cells (CD31+), immune cells excluding macrophages (CD31-CD45+CD11b-), 

and other cells (CD31-CD45-) (Fig. 2.6A-C).  

Splenetic Cell Staining and Isolation. Splenocytes were isolated by digesting sliced 

spleens in 0.1 U/ml collagenase (Sigma Aldrich) in Hank’s Balanced Salt Solution 

(Corning) for 30 minutes at 37°C.  Digestion was stopped by addition of EDTA to 5 mM, 

and the resulting mixture was passed through a cell strainer. Red blood cells were removed 

with ACK lysing buffer (Lonza), and cells were washed in FACS buffer (PBS 

supplemented with 2% FBS and 2 mM EDTA; Corning and HyClone) and re-strained. 

Cells were stained by conventional methods in FACS buffer as previously described161. 

Antibodies used for staining were CD19 (clone 1D3, eBioscience), CD3 (clone 17A2, 

eBioscience), CD31 (clone 390, BioLegend), CD45 (clone 104, BioLegend), NK1.1 (clone 

PK136, eBioscience), CD11b (clone M1/70, BioLegend), CD11c (clone N418, 

BioLegend), Siglec H (clone 551, BioLegend), F4/80 (clone BM8, BioLegend), and Ly-

6G (clone 1A8, BioLegend). Cells were also stained with LIVE/DEAD viability dyes 

(Thermo Fisher) to exclude dead cells. Described splenocyte cell types (Fig. 2.9A, Fig. 

2.10D) from four mice were isolated by FACS on two FACSAria II cell sorters (BD 

Biosciences) at the Emory University School of Medicine Flow Cytometry Core. 
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PCR Amplification. All samples were amplified and prepared for sequencing. More 

specifically, 1μL of primers (5uM for Final Reverse/Forward, 0.5uM for Base Forward) 

were added to 5 μL of Kapa HiFi 2X master mix, 3 μL sterile H2O, and 1 μL DNA template. 

The reaction was run for 30 cycles. When the PCR reaction did not produce clear bands, 

the primer concentrations, DNA template input, PCR temperature, and number of cycles 

were optimized for individual samples. The PCR amplicon was isolated with gel extraction. 

Deep Sequencing. Illumina deep sequencing was conducted in Georgia Tech’s Molecular 

Evolution core. Runs were performed on an Illumina MiniseqTM. Primers were designed 

based on Nextera XT adapter sequences.  

Data Normalization. Counts for each particle, per tissue, were normalized to unity (Fig. 

2.1D) The DNA counts in each tissue were then normalized to 100%. For example, if a 

sample (e.g., heart1) had 500,000 total barcode reads, and 50,000 of them came from 

particle X, while 4,000 came from particle Y, then the normalized delivery for particle X 

and Y would be 10% and 0.8%, respectively. The barcoded LNP mixture we injected into 

the mouse was also sequenced. This ‘input’ DNA was used to normalize DNA counts from 

the cells and tissues (Fig. 2.2C).  

Data Analysis. Sequencing results were processed using a custom python-based tool to 

extract raw barcode counts for each tissue. These raw counts were then normalized with an 

R script prior to further analysis. Statistical analysis was done using GraphPad Prism 7. 

Correlation analyses were run assuming a Gaussian distribution in order to obtain Pearson 

correlation coefficients. R2 values (0 – 1) were computed by squaring Pearson correlation 

coefficients. 
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Data Access. The data, analyses, and scripts used to generate all figures in the paper are 

available upon request to J.E.D. or dahlmanlab.org. 
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Figure 2.1 JORDAN, a system for high throughput in vivo nanoparticle analysis. (a) LNPs were 
formulated to carry DNA barcodes, before (b) stable LNPs were pooled together and 
administered to cells or mice. Cells were deep sequenced to quantify the relative delivery of all 
the LNPs simultaneously. (c) The DNA barcode was rationally designed with universal primer 
sites and a randomized 7 nucleotide region to minimize PCR bias. (d) Normalized delivery for 
every barcoded LNP was calculated. In this example schematic, all 3 barcodes were equally 
represented in Sample 1, while in Sample 2, the green barcode was overrepresented. We would 
hypothesize that the gray LNP delivered DNA more efficiently to Sample 2 than the yellow or 
blue LNP. The full data analysis to calculate normalized delivery is described in Fig. 2.2C. (e) 
Alexa-647 fluorescence 1.5 and 72 hours after cells were transfected with 20 ng of Alexa Fluor 
647 tagged DNA barcode formulated into the LNP 7C1. 
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Figure 2.2 JORDAN is a rationally designed system for high throughput in vivo LNP 
analysis. (a) 240 barcode sequences were chosen to comply with the Illumina MiniSeq 
machine. (b) Primers used to amplify barcodes from in vitro and in vivo samples. (c) 
Data from all experiments was normalized using the procedure shown. (d) Pooled 
LNPs were stable, had good autocorrelation curves, and single-peak diameter 
distributions between 20 and 300 nm. All other LNPs were discarded. (e) Alexa Fluor 
647 tagged DNA barcode localizes to cell surface after 15 minutes and (f) can be seen 
in the cell cytoplasm after 72 hours. 
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Figure 2.3. To analyze the robustness of our system (a) We formulated 144 chemically distinct LNPs, 
(b) pooled stable LNPs and administered them to two cell lines (RAWs, iMAECs) and mice. (c) 
Normalized delivery for all LNPs and naked barcode in 18 cell and tissue types. (d) Average normalized 
delivery for all 18 samples. The naked barcode delivered DNA less efficiently than all LNPs. (e) 
Normalized delivery in iMAECs 72 hours after 20 ng or 100 ng total DNA was administered. In vitro 
delivery to iMAECs at 20 ng/well predicted in vitro delivery to iMAECs at 100 ng/well. 
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Figure 2.4 The data generated by JORDAN are robust. (a) Library 1 was designed to 
vary PEG chain length (C14, C16, C18) and PEG MW (350, 2000, 5000), using two 
different lipomers. Chemical formulas for lipomers as well as all other LNP 
components are shown. (b,c) Normalized delivery in RAWs 72 hours after 4 ng, 20 
ng, or 100 ng total DNA was administered. (d) Normalized delivery in IMAECs 72 
hours after 4 ng or 100 ng total DNA was administered. 
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Figure 2.5 A direct comparison between in vitro and in vivo nanoparticle delivery. (a) 420 LNPs were 
formulated and delivery was compared between in vivo FACS sorted cells, primary cells, and cell lines.  
(b-d) Normalized delivery of LNPs in iMAECs and heart, lung, and bone marrow endothelial cells. (e-g) 
Normalized delivery of LNPs in RAWs and heart, lung, and bone marrow macrophages. In both cases, 
in vitro LNP delivery does not predict in vivo delivery.   
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Figure 2.6 Gating strategy for isolation of endothelial cells and macrophages from (a) mouse 
heart, (b) mouse lung, and (c) mouse bone marrow. (d) Library 2 was designed to test the efficiency 
of different lipomers. 15 different lipomers were tested at varying lipomer mole percentages. 
Chemical formulas for lipomers are shown. (e) LNP diameters (nm) for stable pooled LNPs from 
library 2. (f) Library 3 was designed to further investigate the effect of PEG lipid length (C14, 
C16, C18) and MW (350, 2000). Chemical formulas for lipomers are shown. (g) LNP diameters 
(nm) for stable pooled LNPs from library 3. (h) For experiments in (a), (b), and (c), 420 LNPs 
were formulated, of which 281 formed stable LNPs and were pooled. (i) Diameter distribution for 
281 stable LNPs that were pooled. Lines on violin plot represent 75th quartile, mean, and 25th 
quartile, respectively. Normalized heart, lung, and bone marrow endothelial cell delivery versus 
normalized iMAEC delivery for (j-l) library 1, (m-o) library 2, (p-r) library 3. Normalized heart, 
lung, or bone marrow macrophage delivery versus normalized RAW delivery for (s-u) library 1, 
(v-x) library 2, (yaa) library 3. Normalized heart, lung, and bone marrow endothelial cell delivery 
versus normalized (bb-dd, hh-jj) iMAEC and (ee – gg, kk-ll) RAW delivery 4 hours and 48 hours 
after LNP administration, respectively. (mm-oo) Normalized HAEC, (pp-rr) HAVEC, and (ss-uu) 
HUVEC delivery 4 hrs, 48 hrs, and 72 hrs after LNP administration versus heart, lung, and bone 
marrow macrophages at the same timepoints. 
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Figure 2.7 Quantifying the efficiency with which in vitro screens predict in vivo 
delivery. (a) Percentage of in vitro LNPs required to encompass the top 5, 10, 15, and 
20% of the LNPs in heart, lung, and bone marrow endothelial cells in vivo. For 
example, over 50% of the in vitro library would be required to ensure the top 5% of 
the in vivo LNPs were selected. (b) LNP rank in vivo in heart, lung, and bone marrow 
endothelial cells, for the top 5 in vitro ranked LNPs. (c) Frequency with which the 1st, 
1st and 2nd, or 1st, 2nd, and 3rd in vivo LNPs would be chosen by selecting the top 3, 5, 
and 20 LNPs in vitro. 
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Figure 2.8 The amount (%) of total LNPs from an in vitro screen required to encompass the top 
5, 10, 15, and 20% of LNPs in heart, lung, and bone marrow macrophages in vivo. For example, 
nearly 60% of the in vitro library would be required to ensure that the top 5% of in vivo LNPs 
were found. (b) LNP rank in vivo in heart, lung, and bone marrow macrophages, for the top 5 in 
vitro performing LNPs. (c) Frequency with which the 1, 1 and 2, or 1, 2, and 3 in vivo LNPs are 
chosen when the top 3, 5, and 20 LNPs in vitro. (d) LNP rank in heart, lung, and bone marrow 
macrophages, plotted by in vitro ranking. The columns are sorted from best (LNP 1) to worst 
(LNP 104) in vitro. Top performing in vivo LNPs are colored. (e-g) The compositions and 
diameters of the colored LNPs in Fig. S4D are listed for each library for heart, lung, and bone 
marrow ECs and macrophages. (h) The number of significant (p<0.05, ANOVA) and non-
significant relationships between LNP structure and cell targeting. Lipomer alkyl tail, amine 
structure, and PEG MW were most likely to influence LNP delivery. 
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Figure 2.9 High throughput analysis of delivery to splenic microenvironment. (a) 144 LNPs were 
formulated; 85 stable LNPs were pooled and administered to WT mice. 72 hours later, cell types were 
isolated from the spleen using FACS. (b) Unbiased clustering of LNPs in each cell type, generated by a 
Euclidean distance algorithm. RAWs (macrophage in vitro) clustered separately from all 8 in vivo cell 
types, and both DC populations clustered together. (c) R2 values for all 8 in vivo cell types as well as 
RAWs. Normalized delivery in (d) plasmacytoid and conventional DCs, (e) B cells and T cells, (f) 
conventional DCs and T cells, and (g) RAWs and splenic macrophages. 
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Figure 2.10 (a) LNPs used for spleen biodistribution are shown. Three different lipomers with varying 
amines. Two low MW Poly(ethlyeneimine) (PEI - MW600 and MW1200), and triethylenetetramine were 
chosen. Chemical formulas for lipomers as well as other LNP components are shown. (b) Stable LNPs 
were pooled. (c) Gating strategy for isolation of immune cell subsets from mouse spleen by FACS. Red 
gates are parents of subsequent populations, and blue gates represent sorted populations. 
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Figure 2.11 (a) Chemical compositions of LNP1 and LNP2. (b) Normalized delivery of 2 LNPs; 
1 with high (LNP1) and 1 with low (LNP2) normalized delivery. (c) The ratio of normalized 
delivery (LNP1/LNP2) in each cell type using barcodes, as well as fluorescence of the spleen 
whole tissue. (d) Cy5.5 fluorescence in splenic whole tissue 3 hours after mice were injected 
with either LNP1 or LNP2. LNP1 fluorescence was higher, as predicted by the barcoding data. 
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Figure 2.12 (a) Mouse weights before, W (0 hrs), and after injection, W (72 hrs), are 
shown for each experiment. (b) Normalized mouse weights for each experiment 
compared to PBS injected mice. 
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CHAPTER 3. ANALYZING IN VIVO DRUG DELIVERY DATA POINTS 
REVEALS CHOLESTEROL STRUCTURE IMPACTS NANOPARTICLE 

DELIVERY   

The work presented here is an excerpt from Paunovska K, Carmen JG, Lokugamage MP, 
Sago CD, Sato M, Lando GN, Gamboa Castro M, Bryksin AV, Dahlman JE (2018). 
“Analyzing 2000 in vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts 
Nanoparticle Delivery.” ACS Nano. 

 

3.1 Introduction  

In vivo drug delivery is a complex process that is difficult to predict.98, 114 The 

relationship between in vitro and in vivo delivery can be non-existent,8 demonstrating the 

utility of testing hundreds of nanoparticles in vivo.8 Recently, DNA barcode-based 

technologies have enabled scientists to study many nanoparticles in vivo simultaneously.7, 

8, 162 Here we sought to improve nucleic acid delivery mediated by LNPs by systematically 

studying the relationship between LNP chemical structure and in vivo delivery.  

We focused on cholesterol variants in the LNP for several reasons. Many labs have 

studied how the structure of hundreds of cationic or ionizable lipid-like biomaterial in 

LNPs affects delivery in vitro;64, 65, 68, 71, 76, 163 in vivo structure function studies using more 

than a few LNPs have not been published. LNPs are created (‘formulated’) by mixing these 

lipid-like biomaterials with other constituents, most often PEG-lipids69 and unmodified 

cholesterol. However, cholesterol is naturally oxidized or esterified in vivo. Oxidized 

cholesterol is typically found within ox-LDL. LDL oxidation is partially driven by diet, the 

presence of ROS, and other factors.164 Esterification of cholesterol occurs at different sites 

(e.g. peripheral tissues, liver), enabling more compact storage and transportation of 
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cholesterol.165 Esterification of cholesterol from peripheral tissues is mediated by lecithin-

cholesterol acyltransferase on the surface of nascent HDL, and by acyl-COA-cholesterol 

acyltransferase intracellularly.166, 167 These cholesterol ‘variants’ are also actively 

trafficked to cells including hepatocytes, endothelial cells, and macrophages.165  

The amount of different cholesterol variants also changes with many common 

diseases (e.g., high cholesterol, atherosclerosis, hyperlipidemia, diabetes),168 suggesting 

that LNP trafficking may change with the disease state of the patient. For instance, ox-LDL 

is pro-atherosclerotic, pro-inflammatory, and contributes to the amount of ROS in the 

bloodstream.169-172 Increases in ox-LDL are indicators of diseases such as atherosclerosis 

and heart disease.173-176 Despite these facts, the relationship between cholesterol structure 

and in vivo LNP delivery remains unexplored.  

We hypothesized that the structure of cholesterol included in LNPs affects targeting 

in vivo. This hypothesis has important implications. It suggests LNP targeting can be tuned 

using naturally- or synthetically-derived cholesterol variants; this is critical given the need 

for LNPs that deliver RNAs to cell types other than hepatocytes.3 It also implies that LNPs 

may behave differently in patients with aberrant cholesterol levels. For instance, patients 

with aberrant metabolisms may have increased amounts of oxidative stress, leading to a 

higher presence of oxidized cholesterol, creating positive feedback.177 In patients with 

dyslipidemia, this positive feedback loop can start as a change in lipoprotein core structure, 

particularly a decrease in cholesteryl esters and cholesterol and an increased chance of 

oxidation.178 This is important given the growing clinical use of LNPs that deliver 

siRNAs179 and the high percentage of patients that have aberrant cholesterol levels. We 

tested our hypothesis in wild type mice as well as LDLR and VLDLR knockout mice. Both 
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mouse models are regularly used to study cholesterol dysfunction.180, 181 LDLR-/- and 

VLDLR-/- mice are typically given high fat diets to induce metabolic disease. Herein we 

examined nanoparticle delivery in strain- and age-matched WT controls for mice fed a 

normal diet, such that the only difference would be LDLR or VLDLR expression.  

Other groups have studied the relationship between nanoparticles and gene 

expression84, 127. Our current work complements these studies but is distinct. These studies 

used a small number of nanoparticles to test the hypothesis that a specific gene influenced 

nanoparticle delivery. By contrast, we used >100 LNPs to test hypothesis that cholesterol 

structure affected LNP delivery. We formulated 141 LNPs with 6 cholesterol variants 

based on natural lipoproteins. We administered all the LNPs in vivo at once to WT, LDLR-

/-, or VLDLR-/- mice using high throughput LNP DNA barcoding,7, 8 and isolated cells using 

FACS. Using a nanoparticle bioinformatics pipeline, we found that LNPs formulated with 

esterified cholesterol increased LNP distribution relative to LNPs with regular or oxidized 

cholesterol in WT mice when averaging nanoparticle distribution across all cell types 

analyzed. Based on the in vivo screen, we identified an LNP enriched in hepatic endothelial 

cells. As predicted by the in vivo nanoparticle barcoding screen, the LNP efficiently 

delivered therapeutic acids to hepatic endothelial cells, which have been refractory to 

systemic nanoparticle targeting. 

3.2 Results 

We used high throughput DNA barcoding7, 8 to assess how cholesterol variants 

altered LNP biodistribution. LNPs can be made with a similar size and composition as LDL 

and VLDL (Fig. 3.1A), two lipoproteins which interact with the LDLR and VLDLR (Fig. 
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3.1B). We formulated 141 LNPs using esterified, oxidized, or unmodified cholesterol (Fig. 

3.1C, D, Fig. 3.2A). All LNPs were formulated using the validated biomaterial 7C1.76 Of 

the 141, 111 met our inclusion criteria: autocorrelation curves with 1 inflection point and 

hydrodynamic diameters between 20 nm and 200 nm, based on DLS (Fig. 3.1E-F, Fig. 

3.2B). These 111 LNPs – along with a naked DNA barcode, which served as a negative 

control - were pooled together and intravenously administered to WT, LDLR-/-, and 

VLDLR-/- mice at a total DNA dose of 0.5 mg/kg (0.0045 mg/kg/barcode). We sacrificed 

the mice 72 hours later and harvested  

DNA from lung endothelial cells (CD31+CD45-), lung macrophages (CD31-

CD45+CD11b+), splenic endothelial cells, splenic macrophages, liver endothelial cells, and 

hepatocytes (CD31-CD45-) using FACS8, 76, 145, 148, 149 (Fig. 3.2C-E). Seventy-two hours is 

sufficiently long for LNPs to be cleared from the bloodstream.76 All 3 cell types play 

critical roles in cholesterol trafficking. Macrophages are known to uptake oxidized 

cholesterol via scavenger receptor-mediated endocytosis of ox-LDL, one of the initial steps 

in the formation of foam cells which are critical to the progression of atherosclerosis182-184 

Hepatocytes also play a critical role by synthesizing cholesterol in the liver and responding 

to internal increases or decreases in cholesterol by up or down-regulating production of 

LDLR.185, 186 Finally, endothelial cells actively interact with serum lipoproteins to maintain 

cholesterol homeostasis.187, 188 To assess how all LNPs delivered DNA at once, we 

amplified barcodes and deep sequenced them as we previously described7, 8. The readout 

for these DNA sequencing experiments is normalized delivery,8 which is analogous to 

counts per million in RNA-seq experiments (Fig. 3.2F). 



 67 

We first analyzed whether cholesterol structure affected LNP size. We measured the 

hydrodynamic diameter of all 111 LNPs individually. Oxidized, esterified, and unmodified 

cholesterol formulated LNPs that met our inclusion criteria 72-100%, 56-76%, and 80% of 

the time, respectively (Fig. 3.2G). Cholesteryl oleate had the lowest percent included LNPs 

and the tightest diameter distribution (22 – 115 nm) for cholesterol containing LNPs (Fig. 

3.2H). The average LNP diameter did not change with cholesterol type (Fig. 3.1H). As an 

additional control for LNP size, we plotted normalized delivery against LNP diameter for 

all ~2,000 in vivo data points. The number of in vivo data points was calculated as shown 

in Table 1. As we reported previously,7, 8 we found no relationship between LNP size and 

delivery (Fig. 3.2I). We then looked at whether this relationship improved if we split the 

LNPs by cholesterol variant and then plotted normalized delivery against LNP diameter 

(Fig. 3.2J-P). We did not observe an improvement in the R2 value, suggesting that there 

was no trend between LNP size distribution and normalized delivery when breaking up the 

LNPs by cholesterol variant (Fig. 3.2Q). The diameter of the pooled LNPs was similar to 

the diameters of the individual LNPs (Fig. 3.1F). We also analyzed the delivery of naked 

barcode; as expected, this negative control was delivered much less efficiently than 

barcodes delivered by LNPs in all 18 samples (Fig. 3.1G, H). 

3.2.1 Cholesterol variants impact LNP biodistribution 

To assess how cholesterol structure affected delivery in vivo for all LNPs, we used 

unbiased Euclidian analysis to generate a nanoparticle targeting heatmap (Fig. 3.3A). 

Euclidean analysis is a common bioinformatics approach189 that ‘clusters’ large data sets 

into experimental groups which behave similarly; it can be used to study barcoded LNPs.8 

The naked barcode – designated by an asterisk – was easily identified; it delivered barcodes 
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inefficiently in all samples. Euclidean analysis created 3 clusters; when compared to the 

‘center’ cluster, the left- and right-most clusters had more purple, which designated higher 

normalized delivery (Fig. 3.3A). Based on this data visualization, we analyzed the 

cholesterol types in the left- and right-most (i.e. ‘good’) clusters, and the center (i.e. ‘bad’) 

cluster. LNPs formulated with esterified cholesterols were 1.4-fold enriched in the good 

clusters, relative to LNPs made with oxidized cholesterol. In other words, LNPs formulated 

with esterified cholesterols were 1.4-fold more likely to be in the left- or right-most clusters 

than oxidized cholesterols. LNPs made with oxidized cholesterols were enriched by 1.3-

fold in the center cluster (Fig. 3.3B). Enrichment is described in Fig. 3.4A.  

3.2.2 Esterified cholesterol outperforms oxidized cholesterol 

Based on these analyses, we quantified normalized barcode delivery mediated by 

nanoparticles that contained esterified, unmodified, or oxidized cholesterols in all cell types 

in WT mice. Normalized barcode delivery mediated by LNPs made with esterified 

cholesterol was significantly higher than barcode delivery mediated by LNPs with regular 

cholesterol or oxidized cholesterol (Fig. 3.3C, D, Table 2). These analyses averaged 

delivery of each nanoparticle, including those that delivered barcodes inefficiently, across 

all cell types. However, many studies focus on top performing LNPs. We identified LNPs 

in the top 15% in each cell type and performed an enrichment analysis as described in Fig. 

3.4A. LNP formulations that were enriched in each cell type in WT, VLDLR-/-, and LDLR-

/- mice are listed in Fig. 3.4B-D. We then analyzed whether particle size and biodistribution 

in top performing LNPs were correlated and found no significant relationship between the 

two (Fig. 3.4E-K).  We performed this analysis for the whole animal (i.e., all cell types, 

averaged); esterified cholesterol was consistently enriched in the top 15%. LNPs 
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formulated with esterified cholesterols were 2-fold more likely to be in the top 15% of 

LNPs than LNPs made with oxidized cholesterols in WT mice (Fig. 3.3E, F). Taken 

together, these data support the hypothesis that cholesterol structure affects LNP delivery 

in vivo.  

3.2.3 LDLR and VLDLR affect LNP in vivo delivery globally  

We performed the same analyses described above (Fig. 3.3C-F) for LDLR-/- and 

VLDLR-/- mice (Fig. 3.4L-S). Mimicking results in WT mice, oxidized cholesterols 

performed poorly relative to esterified and unmodified cholesterol in both knockout models 

when quantified using average normalized delivery and enrichment. Esterified cholesterol 

and unmodified cholesterol performed similarly when quantified using average normalized 

delivery. Enrichment in the top 15% varied; esterified cholesterol outperformed 

unmodified cholesterol in LDLR-/- mice, but not in VLDLR-/- mice. These results support 

previously published data demonstrating the cholesterol trafficking receptors can affect 

LNP delivery.84  

Based on these initial analyses, we quantified the extent to which LNP delivery in 

LDLR-/- and VLDLR-/- mice differed from LNP delivery in WT mice. We plotted 

normalized delivery for all LNPs in all 6 cell types in WT, LDLR-/-, and VLDLR-/- mice 

(Fig. 3.5A). If either gene affected delivery of the LNP library tested, then the R2 value 

between the WT and knockout mice would decrease (Fig. 3.5A). The high throughput 

nature of barcoding enabled us to compare WT and knockout mice rigorously; each plot 

contains >650 in vivo data points (Fig. 3.5B, C). We found that both LDLR and VLDLR 

affected delivery; the R2 values between WT and either LDLR-/- or VLDLR-/- mice was 
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0.37 and 0.50, respectively. We then evaluated whether there was a cell type-specific effect 

to these genes by analyzing the R2 values between WT and LDLR-/- (Fig. 3.6A-F) or 

VLDLR-/- (Fig. 3.6G-L) mice for each of the 6 cell types individually. We did not observe 

clear patterns; the cell type specific effects of these genes on LNP delivery will need to be 

explored using different approaches in the future. 

3.2.4 LNPs formulated with cholesteryl oleate deliver therapeutic RNA 

DNA barcode readouts quantify nanoparticle biodistribution, which is required, but 

not sufficient, for functional RNA delivery into the cytoplasm. Cytoplasmic RNA delivery 

is necessary for successful RNA-interference as well as gene editing. RNA mediated in 

vivo genome editing is important for studying biological pathways and understanding the 

potential differential effects that genes have on different cell types. To analyze whether 

LNPs formulated with esterified cholesterols functionally delivered RNAs in vivo, we 

selected an LNP for further analysis. To directly compare esterified cholesterol and 

unmodified cholesterol – which is the current gold standard in the field - we chose an LNP 

molar ratio (Fig. 3.7A) that made up 3 of the top 5 LNPs in hepatic endothelial cells in our 

barcoding screen (Fig. 3.7B). Hepatic endothelial cells have – with few exceptions151 – 

been difficult to target systemically, and as a result, have not been edited by Cas9 after 

systemic administration of sgRNAs. We formulated 2 LNPs with a 50: 29: 11: 10 molar 

ratio of 7C1, cholesterol, C14PEG2000, and 18:1 Lyso PC, respectively. LNP-oleate 

contained cholesteryl oleate, whereas LNP-unmod contained unmodified cholesterol. This 

molar ratio resulted in small, stable LNPs when formulated to carry siRNA and sgRNA 

(Fig. 3.8A). We considered formulating LNPs with cholesteryl stearate, however, LNPs 

formulated with stearate were stable less frequently (Fig. 3.2H).  
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We formulated LNP-oleate and  LNP-unmod to carry a chemically modified190 

sgRNA targeting GFP (Fig. 3.8B) and injected these nanoparticles intravenously into mice 

that express SpCas9-P2A-GFP under a CAG promoter. Five days after a 1.0 mg/kg sgRNA 

injection, we isolated hepatic endothelial cells and hepatocytes using FACS and quantified 

indels using TIDE.191 Delivery to hepatic endothelial cells was highly efficient, leading to 

41% editing at the target GFP locus (Fig. 3.7C). LNP-unmod was efficient (31% indels), 

but less so than LNP-oleate. Oleate delivery was particularly specific; the indel ratio of 

hepatic endothelial cells: hepatocytes was 3 (Fig. 3.7D, E). By contrast, all previous 

systemically administered nanoparticle gene editing has occurred preferentially in 

hepatocytes.39, 190, 192, 193 This is the first report of sgRNA-mediated in vivo editing in 

hepatic endothelial cells.  

We assessed the activity of LNP-oleate and LNP-unmod using siRNA. siRNA-based 

therapeutics have successfully treated disease in hepatocytes; understanding how to target 

hepatic endothelial cells has the potential to lead to therapeutics that target endothelial cell 

driven disease. We intravenously injected WT mice with 1.5 mg/kg siRNA targeting the 

endothelial specific gene ICAM-2 (Fig. 3.8C). Both siICAM-2 and the control siRNA 

targeting Luciferase (siLuc) were chemically modified to reduce immune stimulation and 

promote on-target activity.76, 145, 148 Three days after siICAM-2 treatment with LNP-oleate 

or LNP-unmod, ICAM-2 protein expression, measured by MFI, decreased by 74% and 

75% respectively, in hepatic endothelial cells, compared to PBS- and siLuc-treated mice 

(Fig. 3.7F). Following treatment, mice injected with sgRNA or siRNA gained weight as 

quickly as PBS-treated mice (Fig. 3.8D, E). 

3.3 Discussion 
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Despite being a universal problem that limits all genetic therapies,15, 30, 194, 195 it is 

still difficult to predict which nanoparticles will deliver RNAs in vivo. Here we 

demonstrated that in vivo screening can be used to identify LNP traits that affect delivery. 

Our study was powered by strong statistical analyses; we compared nearly 2,000 in vivo 

drug delivery data points. These data support the hypothesis that modified cholesterols can 

affect nanoparticle targeting.   

We identified an LNP formulation that efficiently targeted hepatic endothelial cells 

in vivo. The LNP preferentially delivered sgRNAs to hepatic endothelial cells 3X more 

efficiently than hepatocytes. This is uncommon; almost all reported LNPs preferentially 

target hepatocytes.39, 64, 65, 68, 69, 71, 163, 190, 192, 193 Targeting hepatic endothelial cells is 

important given the active role they play in establishing the liver microenvironment and 

driving fibrosis, inflammation, primary tumor growth, and metastasis.196 Although we do 

not know the mechanism for preferential targeting to hepatic endothelial cells over 

hepatocytes, literature suggests that LNPs interact with serum proteins, which may promote 

delivery to specific cell types. We anticipate future studies utilizing LNP-oleate to treat 

hepatic endothelial cell disease and study fundamental biological questions related to 

hepatic endothelial cell signaling. More generally, our data demonstrate that cholesterol 

can be viewed as another modular LNP component that can be rationally designed to 

improve in vivo delivery, demonstrating that DNA barcoding is a powerful tool that can 

identify material properties that influence nanoparticle delivery in vivo. 

This study complements previous in vitro work relating siRNA delivery to the 

structure of the cationic or ionizable lipid-like compound.64, 65, 68, 76, 163 This work also 

supports the idea that LNPs can be rationally designed with cholesterol structures that 
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closely mimic natural LDL, HDL, or VDLR to improve delivery,197 or rationally designed 

to interact with natural cholesterol trafficking pathways. Given that cholesterol trafficking 

is perturbed in many diseases and as a side effect of commonly prescribed drugs,168 this 

also suggests that the efficacy of a LNP may vary with the patient population. One 

important limitation to this work is that the mechanism by which delivery of LNPs with 

esterified cholesterol is improved remains unclear. We hypothesize that this effect is 

mediated by differential interactions with serum proteins and the protein corona.198 Future 

studies detailing changes in target cell signaling and protein coronas will be required to 

confirm or disprove this proposed mechanism. 

3.4 Materials and Methods 

Nanoparticle Formulation. Nanoparticles were formulated in a microfluidic device by 

mixing DNA with 7C1, PEG, cholesterol, and a helper lipid, as previously described.7, 31, 

76, 142, 145-149, 160 Nanoparticles were made with variable mole ratios of these constituents. 

The nucleic acid (e.g. DNA barcode, siRNA, sgRNA) was diluted in 10 mM citrate buffer 

(Teknova) and loaded into a syringe (Hamilton Company). The materials making up the 

nanoparticle (7C1, cholesterol, PEG, and helper lipid) were diluted in 100% ethanol, and 

loaded into a second syringe. The citrate phase and ethanol phase were mixed together in 

a microfluidic device at 600 uL/min and 200 uL/min, respectively. Helper lipids were 

purchased from Avanti Polar Lipids.  

DNA barcoding. Each chemically distinct LNP was formulated to carry its own distinct 

DNA barcode (Fig. 3.1A, B). For example, LNP1 carried DNA barcode 1, while the 

chemically distinct LNP2 carried DNA barcode 2. The DNA barcodes (IDT) were designed 
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rationally with universal primer sites and an 8 nucleotide barcode sequence, similar to what 

we previously described7, 8. Three nucleotides on the 5’ and 3’ ends were modified with 

phosphorothioates to reduce exonuclease degradation and improve DNA barcode stability. 

To ensure equal amplification of each sequence, we included universal forward and reverse 

primer regions on all barcodes. Each barcode was distinguished using a distinct 8nt 

sequence. An 8nt sequence can generate over 48 (65,536) distinct barcodes. We used 156 

distinct 8nt sequences designed by to prevent sequence bleaching on the Illumina 

MiniSeqTM sequencing machine.  

Nanoparticle Characterization. LNP hydrodynamic diameter was measured using DLS 

(DynaPro Plate Reader II, Wyatt). LNPs were diluted in sterile 1X PBS to a concentration 

of ~0.06 µg/mL, and analyzed. LNPs were included if they met 3 criteria: diameter >20 

nm, diameter <200 nm, and autocorrelation function with only 1 inflection point. Particles 

that met these criteria were pooled and dialyzed in 1X phosphate buffered saline (PBS, 

Invitrogen), and sterile filtered with a 0.22 μm filter.  

Animal Experiments. All animal experiments were performed in accordance with the 

Georgia Institute of Technology’s IACUC. Female C57BL/6J (#000664), LDLR-/- 

(#002207), VLDLR-/- (#002529), and SpCas9 constitutive mice (#026179) were purchased 

from the Jackson Laboratory. All mice were purchased from the Jackson Laboratory. In all 

experiments, mice were aged 5-8 weeks, and N = 3 or 4 mice per group were injected 

intravenously via the lateral tail vein (Table 3). The nanoparticle concentration was 

determined using NanoDrop (Thermo Scientific).  
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Cell Isolation & Staining. Mice were perfused with 20 mL of 1X PBS through the right 

atrium. The lungs, spleen, and liver were isolated immediately following perfusion. Tissues 

were finely cut, and then placed in a digestive enzyme solution with Collagenase Type I 

(Sigma Aldrich), Collagenase XI (Sigma Aldrich), and Hyaluronidase (Sigma Aldrich) at 

37ºC and 550 rpm for 45 minutes. The digestive enzyme for heart and spleen included 

Collagenase IV (Sigma Aldrich).76, 145, 148 Digested tissues were passed through a 70 μm 

filter and red blood cells were lysed. Cells were stained to identify specific cell populations 

and sorted using the BD FACSFusion cell sorter in the Georgia Institute of Technology 

Cellular Analysis Core. Antibody clones used for staining were anti-CD31 (390, 

BioLegend), anti-CD45.2 (104, BioLegend), anti-CD11b (M1/70, BioLegend), and anti-

CD102 (3C4, BioLegend).  

Endothelial RNAi. C57BL/6J Mice were injected with 1.5 mg/kg siLuciferase or 1.5 

mg/kg siICAM2 (AxoLabs). siRNAs were chemically modified at the 2’ position to 

increase stability and specificity and negate immunostimulation. Both siGFP and siICAM2 

sequences have been previously reported several times.76, 145, 148 Seventy-two hours after 

injection, tissues were isolated and protein expression was quantified as MFI using flow 

cytometry. ICAM2 MFI in PBS-treated mice was normalized to 100 percent, and all treated 

groups were compared to this control group. 

Endothelial Gene Editing. Constitutive SpCas9 mice were injected with LNP-unmod or 

LNP-oleate delivering e-sgGFP (AxoLabs) at a dose of 1.0mg/kg. 5 days after injection, 

tissues were isolated, and cell types were sorted using FACS. DNA was extracted using 

QuickExtract and sanger sequencing was conducted by Eton Biosciences. Indel formation 

was measured by TIDE (https://tide-calculator.nki.nl). 

https://tide-calculator.nki.nl)/
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PCR Amplification. All samples were amplified and prepared for sequencing using a two-

step, nested PCR protocol. More specifically, 1 μL of each primer (10 uM 

Reverse/Forward) were added to 5 μL of Kapa HiFi 2X master mix, 2 μL sterile H2O, and 

1 μL DNA template. This first PCR reaction was run for 30 cycles. The second PCR, to 

add Nextera XT chemistry, indices, and i5/i7 adapter regions was run for 5-10 cycles and 

used the product from ‘PCR 1’ as template If this initial PCR reaction did not produce clear 

bands, the primer concentrations, DNA template input, PCR temperature, and number of 

cycles were optimized for individual samples. The PCR amplicon was isolated using 

BluePippin (Sage Science). 

Deep Sequencing. Illumina deep sequencing was conducted in Georgia Tech’s Molecular 

Evolution core. Runs were performed on an Illumina MiniseqTM. Primers were designed 

based on Nextera XT adapter sequences.  

Data Normalization. Counts for each particle, per tissue, were normalized to the barcoded 

LNP mixture injected into mice, as previously described.7 This ‘input’ DNA was used to 

normalize DNA counts from the cells and tissues.  

Data Analysis. Sequencing results were processed using a custom python-based tool to 

extract raw barcode counts for each tissue. These raw counts were then normalized with an 

R script prior to further analysis. Statistical analyses were done using GraphPad Prism 7. 

Correlation analyses were run assuming a Gaussian distribution in order to obtain Pearson 

correlation coefficients. R2 values (0 – 1) were computed by squaring Pearson correlation 

coefficients. Data is plotted as mean ± standard error mean unless otherwise stated.  
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Data Access. The data, analyses, and scripts used to generate all figures in the paper are 

available upon request to J.E.D. or dahlmanlab.org. 
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Figure 3.1 High throughput DNA barcoding can be used to test the hypothesis that cholesterol 
modifications influence LNP delivery in vivo. (A) LDL and VLDL particles share physical 
traits with LNPs, including composition and size. Notably, LDL and VLDL both contain 
unmodified cholesterol as well as modified cholesterol. (B) Cells naturally interact with (and 
traffic) LDL and VLDL, suggesting similar mechanisms may alter LNP targeting. (C) A 
diverse library of 141 LNPs was formulated using 6 cholesterol variants to test the hypothesis 
that cholesterol structure altered LNP delivery in vivo. (D) Each LNP was formulated to carry 
a distinct DNA barcode, before (E) stable LNPs were pooled together and administered to 
either WT, LDLR-/-, or VLDLR-/- mice. After isolating 6 cell types from each mouse, delivery 
mediated by all LNPs was measured concurrently using DNA sequencing. (F) Hydrodynamic 
diameter, measured by DLS, for all individual LNPs included, as well as the diameter of the 
LNP pool after mixing. (G, H) Normalized delivery for the negative control (naked barcode) 
- averaged across all 18 samples - was much lower than normalized delivery for all LNPs. 
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Figure 3.2 (A) A library of 141 LNPs was formulated to test 6 cholesterol variants 
using 8 different molar ratios. (B) LNPs were pooled based on whether or not they 
met our inclusion criteria: autocorrelation curves with 1 inflection point and 
hydrodynamic diameters between 20 nm and 200 nm, based on DLS. Representative 
FACS gates for sorting of lung (C) and spleen (D) endothelial cells and macrophages, 
as well as liver (E) endothelial cells and hepatocytes. (F) Data normalization after 
sequencing of individual cell types yields relative distribution of different LNPs to cell 
types and tissues. (G) More than 50% of LNPs of every cholesterol type met our 
inclusion criteria and were pooled and analyzed. (H) Diameter distributions for all 
LNPs, subdivided by cholesterol type. (I) Diameter plotted against distribution across 
all WT cell types in all tissues.   
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Figure 3.3 LNPs made with esterified cholesterol outperform LNPs made with oxidized cholesterol 
in vivo. (A) A nanoparticle targeting heatmap depicting normalized delivery generated by unbiased 
Euclidean clustering. This dataset contains nearly 2,000 in vivo drug delivery data points. The 
negative control (*) performed worse than all LNPs. LNP delivery was divided into 3 horizontal 
clusters. Lung, liver, and spleen endothelial cells (ECs), lung and spleen macrophages (Macs) and 
liver hepatocytes (Hep) are clustered vertically.  (B) Enrichment of esterified and oxidized 
cholesterols in the left-/right-most (good) clusters and center-most (bad) cluster. LNPs made with 
esterified and oxidized cholesterol were more likely to be found in good and bad clusters, 
respectively. (C, D) Normalized delivery for all LNPs in WT mice, subdivided by the cholesterol 
type. (E, F) Enrichment in the top 15% of LNPs, subdivided by the cholesterol type. *p>0.0332, 
**p<0.0021, ***p<0.0002, 1-way ANOVA.  
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Figure 3.4 Cholesterol structure can alter nanoparticle delivery in vivo. (A) Schematic 
(not real data; cartoon data simplified for this example) showing enrichment for 5 
LNP properties; initially, each LNP property is represented 20% of the time in all 
LNPs. However, property 5 is represented 50% of the time in the top 15% of LNPs. 
We would consider this a 2.5-fold enrichment in the top 15%. Normalized delivery 
for all LNPs in (B, C) LDLR-/- and (D,E) VLDLR-/- mice, subdivided by cholesterol 
type. Enrichment in the top 15% of LNPs in (F, G) LDLR-/- and (H,I) VLDLR-/- mice, 
subdivided by cholesterol type.  

 

 



 85 

  

Figure 3.5 LDLR and VLDLR affect LNP in vivo delivery globally. (A) To quantify the extent to 
which LDLR and VLDLR influenced LNP delivery, we quantified the correlation between delivery 
for all LNPs in all 6 cell types (>650 data points per mouse model). Normalized delivery in (B) LDLR-

/- and (C) VLDLR-/- knockout mice plotted against normalized delivery in WT mice. The R2 values 
strongly suggest that both genes affect LNP targeting in vivo, and that LDLR affects delivery slightly 
more than VLDLR. 
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Figure 3.6 Normalized delivery in (A-F) VLDLR-/- mice and (G-L) LDLR-/- mice 
plotted against normalized delivery in WT mice for endothelial cells (ECs), 
macrophages (Macs), and Hepatocytes. 

 



 87 

  

Figure 3.7 LNPs formulated with cholesteryl oleate deliver therapeutic RNAs as – or 
more – efficiently than LNPs formulated with unmodified cholesterol. (A, B) Based 
on the DNA barcoding screen, LNPs with a 50:29:11:10 molar ratio of 7C1: 
cholesterol: C14PEG2000: 18:1 Lyso PC were highly enriched in hepatic endothelial 
cells. We formulated 2 LNPs with this molar ratio; LNP-oleate contained cholesteryl 
oleate, where LNP-unmod contained unmodified cholesterol, the current gold 
standard in the field. (C-D) Indel percentage from (C) hepatic endothelial cells and 
(D) hepatocytes isolated 5 days after a single intravenous injection of either LNP-
oleate or LNP-unmod. (E) Interestingly, LNP-oleate delivery led to 3X more editing 
in hepatic ECs relative to hepatocytes. (F) ICAM-2 MFI 3 days after an injection of 
PBS (control) siRNA targeting Luciferase (control) or siICAM-2. Robust ICAM-2 
protein silencing was observed in siICAM-2 treated mice, but not siLuc treated mice. 
* p< 0.0332, **p<0.0021, ***p<0.0002, ****p<0.0001, 1-way ANOVA. 
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Figure 3.8 (A) LNP-unmod and LNP-oleate formed small, stable LNPs when formulated to carry 
(B) modified sgRNA targeting the GFP locus or (C) modified siRNA against ICAM-2. (D) 
Normalized mouse weights 0-5 days post sgRNA containing LNP-unmod and LNP-oleate 
injection. (E) Normalized mouse weights for 0, 1, and 2 days post siRNA containing LNP-unmod 
and LNP-oleate injection. Mouse weights are always normalized to mouse weight immediately 
before injection. 
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Table 1 Calculation showing the # of in vivo data points.  
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Table 2 Significance data for Figure 3.3D.  
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Table 3 The strain, sex, and age of each mouse as well as the number of mice 
used in each experiment and the type of procedure done on each group of mice. 
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CHAPTER 4. LIPID NANOPARTICLES CONTAINING OXIDIZED 
CHOLESTEROL EFFICIENTLY DELIVER MRNA TO THE LIVER 

MICROENVIRONMENT 

The work presented here is an excerpt from Paunovska K, Da Silva Sanchez AJ, Sago CD, 
Lokugamage MP, Islam F, Kalathoor S, Krupczak BR, Dahlman JE (2019). “Nanoparticles 
Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at 
Clinically Relevant Doses.” Advanced Materials. 

 

4.1 Introduction 

There have been several advances in local and systemic mRNA delivery199, 

especially to hepatocytes192, 193. However, low dose mRNA delivery to other cell types 

within the liver microenvironment remains challenging. Using a high-throughput DNA 

barcode screen named JORDAN, we observed that in vitro nanoparticle delivery can be a 

poor predictor of in vivo delivery8. Since in vitro assays typically lack a complete immune 

system200, variable blood flow99, heterogeneous vasculature, off-target cells, and other 

factors that influence delivery in vivo98, we reasoned that an ideal nanoparticle experiment 

would study LNPs directly in vivo. We therefore developed FIND9 to quantify how over 

100 LNPs deliver functional mRNA into the cytoplasm of target cells in a single mouse. 

LNPs are formulated by mixing nucleic acids with ionizable lipids, PEG-lipids, 

phospholipids, and cholesterol. The diversity of available chemistries enables scientists to 

evaluate how LNP structure affects delivery. However, these studies are mostly performed 

in vitro71, 139 and use LNPs formulated with unmodified cholesterol. Several lines of 

evidence led us to hypothesize that cholesterol chemical structure affected LNP mRNA 

delivery. First, cholesterol structure is modified via oxidation; this requires specific 
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enzymes, demonstrating that cells regulate cholesterol structure201, 202. Second, oxidized 

cholesterols signal differently than unmodified cholesterols, altering interactions with 

membrane and nuclear receptors that regulate gene expression203. Third, cholesterol is 

trafficked in lipoproteins using forward and reverse transport204 and trafficking to 

endothelial cells, hepatocytes, and macrophages may change with cholesterol structure in 

vivo165. Fourth, LNPs and lipoproteins have similar size and composition. Finally, using 

JORDAN, we found that modified cholesterols alter LNP biodistribution78, however this 

study measured LNP biodistribution; it did not measure functional mRNA delivery. Given 

that less than 4% of exogenously delivered RNA escapes endosomes88 and endosomal 

escape changes with cell type205, it is difficult to predict functional mRNA delivery using 

biodistribution. 

To test the hypothesis that cholesterol structure affects LNP delivery of mRNA, we 

created a library of LNPs with nine cholesterol variants. We chose variants that were (i) 

produced naturally or synthetically and (ii) had oxidative modifications on sterol ring B, 

the hydrocarbon tail attached to sterol ring D, or both. We formulated LNPs to carry DNA 

barcodes and Cre mRNA9, systemically injected them into Cre reporter mice, and analyzed 

the efficiency with which they delivered Cre mRNA in 28 cells types in vivo. We identified 

an LNP that delivers mRNA to Kupffer cells and hepatic endothelial cells five-fold more 

potently than to hepatocytes. Notably, the lead LNPs performed as predicted by the FIND 

screen, suggesting that FIND can rapidly identify LNPs for mRNA delivery. 

4.2 Results 

4.2.1 Rationally designed nanoparticles can be screened for mRNA delivery 
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Unmodified cholesterol is acted upon by enzymes to form variants that are side-chain 

or ring oxidized (Fig. 4.1A). To investigate whether these modifications altered LNP 

targeting, we formulated 125 FIND LNPs using microfluidics (Fig. 4.1B). To minimize 

variation from components other than cholesterol, LNPs were made of the ionizable lipid-

like material cKK-E1271, two well validated PEG-lipids, the phospholipid DOPE, and one 

of nine different cholesterol variants (Fig. 4.1B).  

We formed LNPs by mixing the contents together in a microfluidic device142. Each 

LNP carried a unique DNA barcode, which acted as a tag for that LNP, as well as Cre 

mRNA, which signals functional mRNA delivery (Fig. 4.1C). Stable LNPs were pooled 

together (Fig. 4.1D) and administered to Ai14 mice at a total nucleic acid dose of 1.0 

mg/kg. Ai14 mice contain a LSL-tdTomato construct under the control of a CAG promoter; 

as a result, cells in Ai14 mice become tdTomato+ if: (1) Cre mRNA is delivered into the 

cytoplasm, (2) Cre mRNA is translated into Cre protein, (3) Cre protein translocates from 

the cytoplasm into the nucleus, and (4) Cre protein edits the genome by removing the ‘Stop’ 

between Lox sites. Therefore, by isolating tdTomato+ cell types using FACS and using 

NGS to quantify barcodes within them, FIND identifies LNPs located in cells where 

functional mRNA delivery occurred (Fig. 4.1E). We quantified NGS sequencing data as 

‘normalized delivery’, analogous to counts per million in RNA-seq9 (Fig. 4.1E). 

As a quality control, we analyzed the size of each individual LNP. LNPs were only 

pooled if their hydrodynamic diameter was between 20 and 215 nm and their 

autocorrelation curve contained one inflection point (Fig. 4.2A, B). Eighty-six of the 125 

LNPs we formulated met these criteria and were pooled. As a control, we compared the 

diameters of all 86 LNPs to the diameter of the pooled LNP solution, and found they were 
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similar (Fig. 4.3C). This suggests that the pooled LNPs did not aggregate after mixing; we 

have previously observed that pooled LNPs are stable9. We added a naked DNA barcode 

as a negative control8 since naked DNA does not readily enter cells. After isolating cells 

and performing NGS, we found that - as expected - the naked DNA was delivered into cells 

less frequently than all the DNA barcodes delivered by LNPs (Fig. 4.3D, E).Mice were 

sacrificed 72 hours after we injected the pooled LNPs9; this timepoint allows cells to 

express tdTomato after Cre mRNA delivery (Fig. 4.3A).  

We isolated the liver, spleen, heart, kidney, pancreas, lung, and bone marrow. Using 

FACS, we then isolated 28 different tdTomato+ cell types (Fig. 4.3A). Comparing the 

percentage of tdTomato+ cell types in different organs, cells in the liver tended to be 

targeted more than cells in other organs (Fig. 4.3B). The organ with the second-highest 

percentage of tdTomato+ cells was the spleen; the remaining five organs had negligible 

delivery (Fig. 4.2C). We then clustered the barcode sequencing data using an unbiased 

Euclidean algorithm. This bioinformatics technique is regularly applied to gene expression 

data189 and can analyze nanoparticle barcoding data206. Euclidean clustering revealed that 

the 4 liver cell types tended to ‘cluster’ together more closely than they did to splenic cell 

types (Fig. 4.3F).  

4.2.2 Modifying cholesterol can alter nanoparticle functional delivery in vivo 

Unexpectedly, we found that the percentage of tdTomato+ hepatic endothelial cells, 

hepatic immune cells, and Kupffer cells was much higher than the percentage of tdTomato+ 

hepatocytes (Fig. 4.3B). This result was surprising, however, the stability of the pooled 

LNPs, the poor performance of the naked barcode, the high percentage of tdTomato+ cells 
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in the liver relative to other organs, and the Euclidean clustering convinced us the data were 

reliable enough to test our hypothesis: LNP cholesterol structure alters mRNA delivery in 

vivo. To quantify the impact of cholesterol structure on overall splenic and hepatic delivery, 

we calculated the normalized delivery across all 8 cell types we sequenced (4 in spleen and 

4 in liver) (Fig. 4.4A). We noted that side-chain oxidized cholesterol variants tended to 

enhance delivery relative to the other cholesterol variants (Fig. 4.4B, C). In particular, 

LNPs formulated with 25-hydroxycholesterol (25-OH) and 20α-hydroxycholesterol (20α-

OH) resulted in higher normalized delivery across all 8 cell types (Fig. 4.4D). To 

complement these calculations, we assessed which cholesterol variants were enriched in 

the top 10% of LNPs (Fig. 4.4E). We then calculated the enrichment in the bottom 10% of 

LNPs69 and subtracted it from enrichment in the top 10% (Fig. 4.4E,F). This identifies how 

likely it is that a given cholesterol variant is found in the best- and worst-performing LNPs. 

Enrichment calculations are detailed in Fig. 4.2A. As an additional control, we performed 

the same two analyses – normalized delivery across all 8 cell types, and enrichment – for 

cholesterol mole percentage, ionizable lipid mole percentage, and phospholipid mole 

percentage (Fig. 4.4B-D). We did not observe any significant trends.  

These data suggested that LNP cholesterol chemical composition was an important 

factor in LNP targeting. However, they did not take LNP size into account. We previously 

found no relationship between nanoparticle size and delivery for hydrodynamic diameters 

between ~20 and ~200 nm26,34. To investigate how size altered delivery in this experiment, 

we calculated whether normalized delivery varied with LNP size for all LNPs (Fig. 4.4E), 

LNPs with tail oxidized cholesterols (Fig. 4.4F), and LNPs with ring oxidized cholesterols 

(Fig. 4.4G); we found no relationship. We then calculated the percentage of formulated 
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LNPs that met our inclusion criteria as a function of cholesterol structure and the average 

size of stable LNPs based on cholesterol structure and found no significant differences 

(Fig. 4.4H, I). We performed the same analyses as a function of cholesterol mole 

percentage and reached the same conclusions (Fig. 4.4J, K). Thus, we did not find evidence 

that size affected LNP delivery between 20 and 220 nm. However, we cannot exclude the 

possibility that size could affect delivery if very small or very large nanoparticles are 

analyzed. 

4.2.3 LNPs formulated with 20a-OH deliver mRNA at clinically relevant doses 

Like all high-throughput screens, the utility of FIND is governed by its ability to 

make predictions that can be verified. To this end, we formulated our top 3 LNP candidates 

identified by FIND with Cre mRNA. Of the 3 LNPs formulated, one LNP – which 

contained 25-OH cholesterol - did not formulate consistently and was excluded. The 

remaining two LNPs – which contained 20α-OH cholesterol (Fig. 4.5G, H, Fig. 4.6F, G) 

– formed stable LNPs, and were administered to Ai14 mice at a total mRNA dose of 0.25 

mg/kg. Encouragingly, we found that both LNPs recapitulated the results from the FIND 

screen (Fig. 4.5I-L). Both LNP1 and LNP2 robustly targeted cells in the microenvironment 

after a 0.25 mg/kg injection; as predicted by the screen, hepatocytes were targeted far less 

efficiently. LNP1 did not cause mouse weight loss in any experiment; LNP2 did cause mice 

to lose weight at 0.25 mg/kg (Fig. 4.8B). Encouraged by robust delivery at 0.25 mg/kg, we 

injected LNP1 and LNP2 at a dose of 0.05 mg/kg.  

Once again, we found robust delivery (Fig. 4.5I-L). Whereas LNP1 and LNP2 both 

performed equally well at 0.25 mg/kg by saturating our Cre-based system, LNP1 

outperformed LNP2 at the lower dose of 0.05 mg/kg. We then investigated whether LNP1 
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formulated with unmodified cholesterol performed as effectively as LNP1 formulated with 

20α-OH (Fig. 4.5M). Three days after injecting mice with 0.05 mg/kg Cre mRNA, we 

found that 20α-OH improved delivery to the liver, across all hepatic cell types (Fig. 4.5N-

Q). As an additional control, we assessed the potency of LNP1 compared to a previously 

reported LNP with potency at 0.2 mg/kg (Fig. 4.5M); LNP1 outperformed this positive 

control LNP (Fig. 4.5N-Q) between 14- and 77-fold within the liver microenvironment. 

We then used QUANT207, a highly sensitive biodistribution system. to assess LNP 

biodistribution, for LNP1, LNP2, and LNP1-Chol. We did not find a difference in LNP 

biodistribution within the liver microenvironment (Fig. 4.6D, E). 

4.3 Discussion 

Systemic delivery of therapeutic RNA to hepatocytes has led to an FDA approved 

drug208. Delivery to non-hepatocytes has remained more challenging. Thus, an unbiased, 

high throughput method to study how LNPs deliver RNA in vivo could accelerate the 

discovery of nanoparticles with new tropisms. Here we report that FIND can predict 

delivery of LNPs to the liver microenvironment. If this holds true for other cell types, then 

FIND could reduce the time and resources needed to identify clinically relevant LNPs, 

relative to traditional in vitro screening. Future studies will also be needed to identify 

therapeutic mRNA that – when delivered to Kupffer cells – will alleviate disease. 

We found that LNPs containing oxidized cholesterol can deliver mRNA to cells in 

the liver microenvironment more potently than to hepatocytes. Notably, robust delivery 

occurred at 0.05 mg/kg, which is below the dose regime used for siRNA therapies in 

humans208. Given the importance of liver endothelial cells196 and Kupffer cells209  in 



 99 

disease, these data suggest that additional advances in delivery could eventually result in 

protein replacement therapies within the liver microenvironment. We observed that 

oxidative modifications made to the hydrocarbon tail were more well tolerated than those 

made to the B cholesterol ring.  

These results need to be repeated with more ionizable lipids before they can be 

considered a general statement. However, in the context of these experiments, cholesterol 

structure impacts functional delivery. We find it feasible that different protein coronas may 

adsorb onto LNPs based on cholesterol structure, thereby altering targeting. In this paper, 

one limitation is that we did not identify the mechanism; although future work is needed to 

substantiate this hypothesis, we believe these data are an exciting first step to understanding 

how cholesterol structure can be rationally altered to change LNP tropism. 

4.4 Materials and Methods 

Synthesis of CKK-E12. Compound 1 (20 g, 41.9 mmol) was added into a 100 ml flask 

and trifluoroacetic acid (42 mL) was added slowly at 0 ºC, then stirred at room temperature 

for 30 min. The solvent was evaporated under reduced pressure and then the crude product 

dissolved in DMF (5 mL) was added dropwise to pyridine (300 mL) at 0 ºC. The reaction 

mixture was stirred at room temperature overnight. The solvents were evaporated under 

reduced pressure to afford a white solid and washed with ethyl acetate to give pure 

compound 2 (8.4 g, 13.04 mmol, 31% yield) (Fig. 4.6B). To a solution of compound 2 in 

acetic acid/CH2Cl2 (150/150 mL) was added Pd/C (10 wt. %, 3.0 g). The black suspension 

was degassed for 5 min with hydrogen and stirred at room temperature under hydrogen 

atmosphere overnight. The reaction mixture was filtered by celite and washed with MeOH. 
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The combined filtrates were concentrated to obtain a crude yellow viscous oil. The oil was 

solidified by adding ethyl acetate and washed with ethyl acetate to yield compound 3 (Fig. 

4.6C). To a solution of compound 3 (84 mg, 0.22 mmol) and 1,2-epoxydodecane (247 mg, 

1.34 mmol) in EtOH (2 mL) was added triethylamine (0.12 mL, 0.88 mmol). After stirring 

for 30 min at room temperature, the reaction mixture was then irradiated in the microwave 

reactor at 150 ºC for 5 h. Purification of the crude residue via flash column chromatography 

(Fig. 4.6C). After purifying the version with four alkyl tails using flash column 

chromatography, we confirmed its chemical structure using 1H-NMR (Fig. 4.6D).  

Nanoparticle Formulation. Nanoparticles were formulated in a microfluidic device by 

mixing Cre mRNA, DNA, the ionizable lipid, PEG, and cholesterol as previously 

described142. Nanoparticles were made with variable mole ratios of these constituents. The 

nucleic acid (e.g. DNA barcode, mRNA) was diluted in 10 mM citrate buffer (Teknova) 

and loaded into a syringe (Hamilton Company). The materials making up the nanoparticle 

(CKK-E12, cholesterol, PEG, DOPE) were diluted in ethanol, and loaded into a second 

syringe. The citrate phase and ethanol phase were mixed together in a microfluidic device 

using syringe pumps. 

DNA barcoding. Each chemically distinct LNP was formulated to carry its own distinct 

DNA barcode. For example, LNP1 carried Cre mRNA and DNA barcode 1, whereas the 

chemically distinct LNP2 carried Cre mRNA and DNA barcode 2. The DNA barcodes 

were designed rationally with universal primer sites and a specific 8 nucleotide barcode 

sequence, similar to what we previously described7. To ensure equal amplification of each 

sequence, we included universal forward and reverse primer regions on all barcodes. An 

8nt sequence can generate over 48 (65,536) distinct barcodes.  
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Nanoparticle Characterization. LNP hydrodynamic diameter was measured using DLS. 

LNPs were diluted in sterile 1X PBS to a concentration of ~0.06 µg/mL, and analyzed. 

LNPs were included if they met 3 criteria: diameter >20 nm, diameter <215 nm, and 

autocorrelation function with only 1 inflection point. Particles that met these criteria were 

pooled and dialyzed in 1X phosphate buffered saline (PBS, Invitrogen), and sterile filtered 

with a 0.22 μm filter.  

Animal Experiments. All animal experiments were performed in accordance with the 

Georgia Institute of Technology’s IACUC. C57BL/6J (#000664) and Ai14 LSL-Tomato 

(#007914) mice were purchased from the Jackson Laboratory. In all experiments, mice 

were aged 5-8 weeks, and N = 3-4 mice per group were injected intravenously via the 

lateral tail vein. The nanoparticle concentration was determined using NanoDrop (Thermo 

Scientific). Weights for all mice are included in Fig. 4.7A-D. 

Cell Isolation & Staining. In all cases, mice were sacrificed 3 days after administration of 

LNPs and immediately perfused with 20 mL of 1X PBS through the right atrium. Organs 

were isolated immediately following perfusion. Tissues were cut, and then placed in a 

digestive enzyme solution with Collagenase Type I (Sigma Aldrich), Collagenase XI 

(Sigma Aldrich), and Hyaluronidase (Sigma Aldrich) at 37ºC and 750 rpm for 45 minutes. 

The digestive enzyme for heart and spleen included Collagenase IV (Sigma Aldrich)76. 

Digested tissues were passed through a 70 μm filter and red blood cells were lysed. Cells 

were stained to identify specific cell populations and sorted using a BD FACSFusion cell 

sorter. Antibody clones used for staining were: anti-CD31 (390, BioLegend), anti-CD45.2 

(104, BioLegend), anti-CD11b (M1/70, BioLegend), anti-CD68 (FA-11, BioLegend), anti-

CD3 (17A2, BioLegend), anti-CD19 (6D5, BioLegend), anti-CD34 (SA376A4, 
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BioLegend). Representative gating strategies for liver and spleen cell populations are 

included in Fig. 4.8A-D. 

PCR Amplification. All samples were amplified and prepared for sequencing using a 

nested PCR protocol. More specifically, 1 μL of each primer (10 uM Reverse/Forward) 

were added to 5 μL of Kapa HiFi 2X master mix, 2 μL sterile H2O, and 1 μL DNA template. 

The second PCR added Nextera XT chemistry, indices, and i5/i7 adapter regions and used 

the product from ‘PCR 1’ as template.  

Deep Sequencing. Illumina deep sequencing was performed on Illumina MiniSeqTM using 

standard protocols suggested by Illumina. The sequencing was conducted in the Georgia 

Tech Molecular Evolution core.  

Data Normalization. Counts for each particle were normalized to the barcoded LNP 

mixture injected into mice, as we previously described9.  

Data Analysis. Sequencing results were processed using a custom python-based tool to 

extract raw barcode counts for each tissue. These raw counts were then normalized with an 

R script prior to further analysis. Statistical analyses were done using GraphPad Prism 7. 

Data is plotted as mean ± standard error mean unless otherwise stated.  

Data Access. All data are available upon request to james.dahlman@bme.gatech.edu or 

dahlmanlab.org. 
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Figure 4.1 Synthesizing a library of rationally designed nanoparticles containing oxidized 
cholesterols. (A) Cholesterol can be modified to form sterol variants that differentially act upon 
a number of biological pathways. Here we investigate whether cholesterol variants affected 
delivery. (B) We formulated 125 nanoparticles by combining the ionizable material cKK-E12, 
PEG-lipids, DOPE, and 9 different cholesterol variants. (C) These distinct nanoparticles were 
then barcoded and screened for functional mRNA delivery using FIND. (D) After formulation, 
barcoded nanoparticles are put through DLS-based quality control, pooled, and (E) 
intravenously administered to Ai14 mice. If Cre mRNA is delivered into the cytoplasm and 
translated into Cre protein that edits the genome, the cells become tdTomato+. tdTomato+ cells 
are isolated using FACS and barcodes are sequenced to identify nanoparticles that co-localize 
with cells transfected with Cre in vivo. This enables us to study how many LNPs deliver mRNA 
in a single mouse. 
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Figure 4.2 (A) Representative autocorrelative curve and (B) diameter 
distribution for included and excluded LNPs. (C) %tdTomato+ cells for cell 
types isolated from heart, lung, kidney, pancreas, and bone marrow. 
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Figure 4.3 Quantifying mRNA delivery mediated by 75 nanoparticles to 28 cell types in vivo. 
(A) After injecting mice with pooled nanoparticles carrying mRNA and DNA barcodes, we 
isolated 28 cell types from 7 tissues using FACS. (B) Functional Cre mRNA delivery, 
quantified as %tdTomato+ cells, in 8 cell types from the liver and spleen. (C) Hydrodynamic 
diameter of all administered LNPs; the diameter of the LNP pool is similar. (D) Normalized 
delivery of all LNPs, for all 8 cell types individually as well as (E) averaged for all 8 cell types. 
The naked barcode – negative control – falls out of every cell type. (F) Unbiased Euclidean 
clustering of 8 different cell types in 2 different tissues based on LNP delivery (%) clusters 
cell types according to tissue. The naked barcode is designated by an asterisk. 
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Figure 4.4 (A) Enrichment calculations detailed for obtaining enrichment (fold) 
difference values. Average whole animal normalized delivery (%), enrichment in the 
top and bottom 10% of LNPs, and fold difference in enrichment calculated for (B) 
cholesterol mole %, (C) ionizable lipid mole %, and (D) phospholipid mole %. LNP 
diameter plotted against average whole animal normalized delivery (%) for (E) all 
LNPs, (F) LNPs containing only tail-modified cholesterols, and (G) LNPs containing 
ring-oxidized cholesterols. LNPs formulated (%) shown based on (H) cholesterol 
variant used and (J) cholesterol mole %. LNP diameter shown based on (I) cholesterol 
variant used and (K) cholesterol mole %. 



 108 

  



 109 

 

 

  

Figure 4.5 Modified cholesterols can alter nanoparticle delivery in vivo. (A) Normalized delivery 
averaged across all 8 liver and splenic cell types for each LNP, sorted by cholesterol type. (B,C) 
We observed that cholesterols modified on the cholesterol tail tended to enhance delivery more so 
than modifications made to the B ring. (D) Normalized delivery averaged across all 8 liver and 
splenic cell types suggested that 25-OH and 20α-OH cholesterols promote delivery. (E) 
Enrichment of cholesterol variants in the top 10% and bottom 10% of nanoparticles. (F) Fold 
enrichment in the top 10% of LNPs, calculated by subtracting enrichment in the bottom 10% of 
LNPs from enrichment in the top 10% of LNPs. (G) Based on these results we selected LNP1 and 
LNP2; they contain cKK-E12, DOPE, C18PEG2k, and 20α-OH. (H) LNP mole %, diameter (nm), 
polydispersity index (PDI), and pKa. (I-L) As predicted by the FIND screen, LNP1 and LNP2 
delivered Cre mRNA to (I) endothelial cells, (J) hepatocytes, (K) Kupffer cells, and (L) immune 
cells, at 0.25 mg/kg. LNP1 delivered Cre mRNA more efficiently than LNP2 at 0.05 mg/kg. (M) 
The efficiency of LNP1 carrying Cre mRNA was compared to a control LNP1 that contained 
cholesterol and a previously reported control LNP, all 3 of which carried Cre mRNA. 
%tdTomato+ cells with each LNP are shown for (N) endothelial cells, (O) hepatocytes, (P) Kupffer 
cells, and (Q) immune cells. P-values are represented as p-value < 0.0332 (*), <0.0021 (**), <0.0002 
(***). 
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Figure 4.6 (A-B) CKK-E12 synthesis. (C) 1H-NMR spectra confirming CKK-E12 
structure. (D) LNP formulation ratios and components for LNP1, LNP2, and LNP1 – 
Cholesterol control. (E) LNP biodistribution, shown as barcode counts (Au), for 
LNP1, LNP2, and LNP1 – Cholesterol control. LNP (F) diameter (nm) and (G) 
polydispersity index (PDI) shown for LNP1 and LNP2 over time.  
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Figure 4.7 Mouse weights shown for mice injected with (A) 1 mg/kg LNP pool, (B) 
LNP1 and LNP2 containing Cre mRNA at a dose of 0.25 mg/kg, (C) LNP1 and LNP2 
containing Cre mRNA at a dose of 0.05 mg/kg, (D) LNP1 and Control LNP containing 
Cre mRNA at a dose of 0.05 mg/kg. 
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Figure 4.8 Representative gating strategies for FACS for cell types in the (A,B) liver, 
and (C,D) spleen.  
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CHAPTER 5. SMALL MOLECULES CAN BE USED TO MANIPULATE 
MRNA DELIVERY MEDIATED BY LIPID NANOPARTICLES 

The work presented here is an excerpt from Paunovska* K, Da Silva Sanchez* AJ, Foster 
MT, Loughrey D, Blanchard EL, Islam FZ, Gan Z, Mantalaris A, Santangelo PJ, Dahlman 
JE (2020). “Increased PIP3 Activity Blocks Nanoparticle mRNA Delivery.” Under 
Review. 

 

5.1 Introduction 

Nanoparticle-mediated mRNA delivery has the potential to express any gene, 

making this approach a promising way to treat disease. Nanoparticle delivery is a multi-

step process governed by interactions between synthetic materials and the body. As a result, 

understanding the biological pathways that affect nanoparticles enable scientists to design 

effective drug delivery systems. For example, nanoparticles can interact with proteins 

expressed in the serum and on the cell surface. Serum proteins adsorbed onto nanoparticles 

can promote, or alternatively, block, interactions between nanoparticles and cell surface 

receptors5, 106, 111. In one case, the expression of apolipoprotein E was necessary for 

ionizable lipid nanoparticles (LNPs) to deliver siRNA to hepatocytes in vivo; this was 

mediated by the low-density lipoprotein receptor, which is expressed on the cell surface84. 

Understanding this biological mechanism of action helped lead to the development of an 

FDA approved LNP1. It is similarly accepted that once a nanoparticle reaches a cell, the 

route by which it accesses the cytoplasm impacts its activity in vitro and in vivo. For 

example, studies manipulating endocytosis with small molecules125, 210, 211, siRNA88, 124, 

CRISPR-Cas9125, or knockout mice78, 207 have revealed that endocytosis, and subsequent 

endosomal escape, is carefully regulated. In one representative example, researchers found 
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that siRNA-containing LNPs engage both clathrin-mediated endocytosis and 

macropinocytosis to deliver their cargo to the cytoplasm. Furthermore, the bioavailability 

of the siRNA was limited by the escape of the drug from hybrid endosomes, which 

exhibited early and late endosomal characteristics88. The researchers also characterized the 

escape window for siRNAs and estimate that only 1-2% of administered siRNAs make it 

to the cytosol of a target cell. In another example, researchers found that less than 1% of 

mRNAs delivered by LNPs made it to the cytosol of a cell and that mRNA endosomal 

escape was highly dependent on the type of LNP used to deliver the mRNA212. 

In this study, we sought to answer whether cell metabolism alters nanoparticle 

delivery. We focused on this question for four reasons. First, it has immediate clinical 

relevance; nanomedicines are currently administered to patients with disorders 

characterized by strong metabolic phenotypes, including cancer213. Second, literature 

suggests metabolism could affect some steps of the drug delivery process. Specifically, to 

achieve cytoplasmic mRNA delivery, a nanoparticle first interacts with serum proteins and 

the cell surface. Metabolism influences how cells interact with lipoproteins214, which are 

naturally occurring nanomaterials that can have a similar chemical structure to LNPs78, 197. 

After a nanoparticle reaches the cell it can enter, and with less frequency exit, an endosome; 

metabolism affects endocytosis pathways important for nanomedicine215. Third, mRNA 

that enters the cytoplasm must be translated into protein; cell metabolism affects mRNA 

translation and degradation205. Finally, recent evidence implicates mTOR, a canonical 

metabolic pathway, as a mediator and player in both antisense oligonucleotide (ASO) 

activity216 and nanoparticle delivery via to-be-determined mechanisms125. In the first 

example, authors found that small-molecule inhibition of mTOR increased ASO activity 
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in vivo. In the second example, authors inactivated genes related to endocytosis using 

CRISPR. They found knocking out Rab7a, which is necessary for late endosomal 

trafficking, reduced delivery, whereas knocking out Rab4a and Rab5a, which is necessary 

for endosomal recycling and early endosomal trafficking respectively, did not. The authors 

reasoned that halting endosomal maturation by deleting Rab7a blocked the metabolic gene 

mTORC1, which is expressed on the lysosomal surface, from initiating mRNA translation. 

To verify this, the authors activated mTORC1 and observed increased protein expression.   

These lines of evidence led us to reason that we could manipulate metabolism with 

small molecules to improve LNP delivery. Specifically, we hypothesized that it was 

possible to metabolically reprogram cells, so more mRNA was translated once it reached 

the cytoplasm. To achieve this goal, we chose the bioactive lipid PIP3. PIP3, a membrane 

phospholipid created by the phosphorylation of PIP2, mediated by PI3K, signals via 

interactions with proteins containing pleckstrin homology domains at the plasma 

membrane217. Specifically, PIP3 binds to PDK1, initiating the protein kinase to 

phosphorylate and activate Akt. Phosphorylation of Akt leads to inhibition of the TSC 

complex and downstream activation of the GTPase Rheb, which directly stimulates 

mTORC1 kinase activity218, 219. Increased PIP3 concentrations upregulate clathrin- and 

dynamin-mediated endocytosis of EGFR220 and sort endosomal cargos in epithelial cells221, 

suggesting PIP3 could increase endocytosis. Increased PIP3 activity also promotes cell 

growth via several mechanisms, including increased translation222. We therefore reasoned 

treating cells with PIP3 and mRNA containing LNPs would transiently upregulate 

translation, thereby increasing the ‘effective potency’ of the LNPs. However, the data we 

generated did not support this hypothesis. Instead, we found the opposite: PIP3 potently 
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blocked mRNA delivery mediated by three clinically relevant (FDA approved or licensed 

for clinical translation) LNPs (Fig. 5.1A).  

By performing RNA-seq and metabolomics analyses of PIP3-treated cells, we 

identified pathways that, until now, have not been related to LNP delivery. Our analysis 

suggests that activating metabolism increases endogenous transcription, which we posit 

may reduce the effective concentration of exogenous mRNA delivered by the LNPs. These 

data highlight the importance of understanding the metabolic profile of target and off-target 

cells when designing nanomedicines. 

5.2 Results 

5.2.1 PIP3 treatment reduces mRNA translation in multiple cell types 

To study how PIP3 affected LNP-mediated mRNA delivery, we used 

microfluidics142 to formulate a clinically relevant LNP (herein named LNP1) so it carried 

chemically modified mRNA encoding GFP (Fig. 5.1B and Fig. 5.2A). LNP1 has delivered 

mRNA to lung endothelial cells in vivo81, and is composed of the lipid cKK-E12, which 

delivered RNA in NHPs 71 and is being considered for clinical use. We used two cell lines: 

HEKs and iMAECs154. Cells in 24 well plates were concurrently treated with GFP mRNA 

and PIP3. Six or 24 hours later, we quantified mRNA delivery by measuring the percentage 

of GFP+ cells using flow cytometry, using untreated cells as flow cytometry gating controls 

(Fig. 5.2, B to J).  

We observed a PIP3 dose-dependent decrease in GFP fluorescence (Fig. 5.1, C and 

D); the statistical significance of these results is listed (Fig. 5.2, K to P). The PIP3 induced 
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effect was significant: at six hours, GFP expression was reduced from 85% (0 µM PIP3) 

to 0% (10 µM PIP3) in iMAECs and from 85% (0 µM PIP3) to 20% (10 µM PIP3) in 

HEKs (Fig. 5.1C). We repeated the experiment using L2K and observed a similar PIP3 

dose-dependent reduction in GFP expression (Fig. 5.1, E and F). We repeated the 

experiment with a second clinically relevant LNP9 (termed LNP2) that has a different 

chemical structure and in vivo tropism than LNP1 (Fig. 5.1B). Specifically, LNP2 delivers 

mRNA to splenic endothelial cells in vivo9 and consists of the lipid 7C176 (Fig. 5.2A), 

which delivered RNA in NHPs223 and is licensed for clinical development. We observed 

PIP3 dose-dependent inhibition of GFP fluorescence after LNP2 transfection (Fig. 5.2 Q 

and R). We then treated cells with 0, 10, or 20 µM PIP3 and concurrently administered 

increasing doses of GFP mRNA. GFP expression decreased with PIP3 dose and increased 

with GFP mRNA dose, as expected (Fig. 5.1G and Fig. 5.2, S and T). To understand the 

kinetics of this effect, we then varied the timing between PIP3 and LNP treatment. PIP3-

treated cells expressed less GFP when PIP3 was administered four hours before the LNP 

and expressed normal levels of GFP when PIP3 was administered three hours after the 

LNPs (Fig. 5.1H). Taken together, these results led us to conclude that treating cells with 

PIP3 reduced the amount of mRNA translated into protein after LNP delivery in vitro. 

5.2.2 Reduced protein expression is not caused by overt toxicity  

We reasoned this surprising reduction in mRNA delivery could be due to overt 

cellular toxicity. We performed four assays comparing untreated cells to PIP3-treated cells: 

(i) MTT (six or 24 hours after PIP3 administration), (ii) LDH (24 hours after PIP3 

administration), (iii) Nf-κB activation (eight or 12 hours after PIP3 administration), and 

(iv) cell morphology (six or 24 hours after PIP3 administration). We did not find any 
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evidence of toxicity in any of these assays. Specifically, we found no significant change in 

MTT readouts when administering PIP3 at a 10 µM or 20 µM dose (Fig. 5.2U) and no 

significant decrease in LDH readouts after PIP3 was administered to cells at 10 µM or 20 

µM; the positive control LPS did reduce cell viability (Fig. 5.2V). Similarly, PIP3 did not 

increase Nf-κB activation in Nf-κB reporter cells (Fig. 5.2W). We then analyzed the effect 

of PIP3 on iMAEC cell morphology and found no difference between untreated cells and 

cells treated with PIP3 (Fig. 5.1I). Finally, we performed a literature search and found 

similar results; 25 µM PIP3 doses did not cause toxicity224. Thus, these data did not support 

our hypothesis that reduced protein expression was due to overt cytotoxicity. 

5.2.3 Reduced protein production is not explained by cell uptake or endosomal escape 

Our second hypothesis was that PIP3 blocked mRNA delivery by changing (i) 

particle stability, (ii) cell uptake, (iii) endosomal escape, or a combination thereof (Fig. 

5.3A). To study (i) particle stability, we quantified the hydrodynamic diameter of LNP1 in 

PBS supplemented with mouse serum or iMAEC media using DLS. Adding PIP3 did not 

change LNP diameter (Fig. 5.4A). To study (ii) cell uptake, we formulated LNP1 carrying 

GFP mRNA so it contained the phospholipid DOTAP labeled with a fluorescent probe 

(NBD-DOTAP) (λabs 460nm; λem 535nm). Separately, we formulated LNP2 carrying 

mRNA so it contained Alexa Fluor 647-tagged DOPE (AF647-DOPE) (λex 643 nm; 

λem 662.0 nm). We did not change formulation ratios; we replaced normal DOTAP and 

DOPE with fluorescent DOTAP and DOPE. We administered the LNPs to HEKs and 

iMAECs at a dose of 50 ng / well for LNP1 and 150 ng / well for LNP2, and either did (or 

did not) add PIP3. We then isolated cells and quantified cellular fluorescence. As a negative 

control, we used untreated cells. PIP3 did not impact LNP1 uptake in iMAECs (Fig. 5.3B) 



 121 

but did impact LNP1 uptake in HEKs at early timepoints; there was a 6% increase in LNP 

uptake in PIP3 treated HEKs at both 0.5 and 1 hour (Fig. 5.3C). PIP3 increased LNP2 

uptake in iMAECs by 52% at two hours, 56% at six hours, and 29% at 24 hours (Fig. 5.3D) 

and decreased uptake in HEKs by 72% at two hours (Fig. 5.3E). These data suggested that 

PIP3 may alter nanoparticle uptake; however, the effects were not conserved across LNPs 

or cell type. More importantly, changes to LNP uptake were far less substantial than the 

(almost total) reduction in GFP MFI. We therefore concluded these effects on LNP uptake 

were not sufficient to explain the consistent and robust decrease in protein production. 

We then investigated whether PIP3 reduced canonical endocytosis using two 

pathways: clathrin- and caveolin-mediated endocytosis. We quantified the uptake of 

transferrin and cholera toxin B, which are ligands for clathrin- and caveolin-mediated 

endocytosis, respectively225, 226. We treated cells with PIP3 and either transferrin or cholera 

toxin B that were fluorescently tagged. Compared to cells that were not pre-treated with 

PIP3, transferrin and cholera toxin B uptake was unchanged in iMAECs and HEKs (Fig. 

5.4 B and C). These data led us to conclude that PIP3 did not substantially impact canonical 

clathrin- or caveolin-mediated endocytosis.  

We then studied (iii) whether PIP3 reduced LNP endosomal escape. We focused 

on LNP2, since its uptake was impacted more by PIP3 than LNP1. We treated cells with 

LNP2 formulated with fluorescently labeled DOPE. Thirty minutes and six hours after 

delivery, cells were fixed and stained with 1º antibodies against Rab7, EEA1, and CD63 

which mark different stages of endosomal maturation227. We used a 2º antibody to stain all 

endosomes (Fig. 5.3F) and quantified both the line profiles (Fig. 5.3, G and H) as well as 

the M1 and M2 coefficients of LNPs with endosomes for 30 cells per treatment condition 
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as previously described227 (Fig. 5.3, I and J). The M1 coefficient quantifies the fraction of 

LNP signal that is colocalized with endosomal signal, while the M2 coefficient quantifies 

the fraction of endosomal signal that is colocalized with LNP signal. Thus, a lower M1 

coefficient indicates greater endosomal escape of LNP in the cell at that timepoint. Cells 

treated with both LNP and PIP3 had 49% and 27% lower M1 coefficients than cells treated 

with LNP only at 30 minutes and 6 hours, respectively (Fig. 5.3I). Cells treated with both 

LNP and PIP3 also had a 7.6-fold reduction in M2 coefficient at 6 hours compared to those 

treated with LNP only (Fig. 5.3J). The decrease in the M1 coefficients after PIP3 treatment 

indicates that, at the tested timepoints, PIP3 increased the endosomal escape of LNPs. 

However, these data do not explain the absence of GFP expression in PIP3-treated cells. 

Although we cannot discard the potential interplay of endosomal trafficking with the 

metabolic alterations caused by PIP3 treatment, these results suggest that endosomal 

escape does not explain the observed effect.  

5.2.4 RNA-seq and metabolomics suggest novel pathways could influence LNP delivery 

The data above led us to conclude that our second hypothesis did not explain the 

robust reduction in mRNA delivery. We therefore tested a third hypothesis: that cell 

metabolism altered LNP delivery (Fig. 5.3A). To test this, we performed RNA-seq analysis 

of gene expression in iMAECs that were not treated with PIP3, as well as cells treated with 

10 µM PIP3 for six or 24 hours. We generated a total of 530 million clean reads from 12 

cDNA libraries using Illumina Nextseq, an average of 114.4x fold coverage of the coding 

region of the genome. We then performed quality controls to ensure it was appropriate to 

analyze these data. First, we found more than 90% of the clean reads had quality scores 
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greater than Q30. Second, more than 95% of the total reads were uniquely mapped to the 

reference genome.  

We generated two volcano plots (six and 24 hours) to analyze the adjusted p-value 

as well as the fold change of each transcript, relative to the untreated cells. Specifically, we 

set a p<0.05 and fold change >1.5 as thresholds for differentially expressed genes. These 

data were interesting for several reasons. First, the volcano plots showed that the metabolic 

state of the cell was, generally, more perturbed six hours after PIP3 treatment (Fig. 5.5A), 

relative to 24 hours (Fig. 5.5B). When we analyzed the differentially expressed genes at 

the six-hour timepoint, we found seven upregulated and 11 downregulated genes following 

PIP3 exposure. At the 24 timepoint, zero were upregulated and six were downregulated. 

Second, when we analyzed these genes using traditional Pubmed searches (Fig. 5.5, C and 

D, and Fig. 5.6, A to D), we found that, as expected, many of these genes had annotated 

roles in cell metabolism. At six and 24 hours, 56% and 50%, respectively, of the 

differentially regulated genes had clear connections to mTOR, indicating that the observed 

transcriptional response is in line with canonical PI3K-Akt-mTOR signaling. Interestingly, 

almost none of these genes had currently annotated roles in endocytosis, transcription, 

translation, or LNP delivery. We believe these genes are interesting and novel candidates 

for future LNP delivery studies.  

Given that most of our identified genes were not related to pathways that 

traditionally alter nanoparticle delivery (e.g., endocytosis), we performed a less biased 

analysis of the genes using the KEGG analytical tool. In the six-hour dataset, we found 

that, as expected, the PI3K-Akt pathway was affected by PIP3 treatment. Interestingly, 

signaling pathways related to immune response (IL-17), proliferation/migration (MAPK), 
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endocrine signaling, and differentiation regulated by immune response were also altered. 

We were unable to find previous studies relating these genes to LNP delivery in vivo. 

However, it was notable that scRNA-seq recently revealed that IL-17 regulates the immune 

response to tissue engineering constructs228. Our data support this IL-17 result and suggest 

that this pathway may regulate the biological response to synthetic materials. It was also 

recently shown that IL-17 production could be positively regulated through induction of 

RAR-related orphan receptor gamma (RORγ) and aryl hydrocarbon receptor (AHR), both 

of which are mediated by the mTOR pathway229, 230. Studies have also identified mTOR 

signaling as an important component of Th17 (IL-17 producing T helper) cell development 

and differentiation into IFN-γ producing cells231, 232 as well as a regulator of the innate 

inflammatory immune response through TSC. mTOR signaling, and specifically 

mTORC1, is a mediator of IFN-γ production and Th17 response at sites of inflammation – 

indicating that mTORC1 is important in regulating metabolic heterogeneity within the 

Th17 population and modulating the cellular response to chronic inflammation by initiating 

cell differentiation232. Given current literature, it comes as no surprise that the IL-17 

pathway is impacted by changes in mTOR signaling. Notably, twenty-four hours after PIP3 

exposure, PI3K-Akt, MAPK, and IL-17 pathways were again differentially expressed.  

We then performed a second, complementary unbiased analysis of our RNA-seq 

dataset. Specifically, we used GO enrichment (specifically, the Enrichr package) to identify 

cellular processes regulated by the dysregulated genes we identified. We focused on GO 

pathways related to cellular components, biological processes and molecular functions. In 

the six hour dataset, the GO categories for transcriptional repressor activity, RNA 

polymerase II activating transcription factor binding (p<0.000051, GO:0098811), the 
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regulation of pri-miRNA transcription from RNA polymerase II promoter (p< 0.00013, 

GO:1902895), and RNA polymerase II transcription factor complex formation (p<0.008, 

GO:0090575) were strongly regulated (Fig. 5.6E). After twenty-four hours, negative 

regulation of cell cycle (p<0.0002, GO:0045786), and RNA polymerase II core promoter 

proximal region sequence-specific DNA binding (p<0.0025, GO:0000978) were regulated 

(Fig. 5.6F). Taken together, our three analyses (Pubmed, KEGG, GO) suggested that a 

combination of cell metabolism transcription, inflammation, and cell cycle may work in 

concert to regulate the efficacy of mRNA delivered by LNPs. 

Interestingly, endocytosis and endosomal escape-based pathways and processes 

were not implicated at the six or 24-hour RNA-seq timepoints with the three analyses that 

we preformed. Of the 18 differentially regulated genes at six hours, only one –Thbs2 – has 

been characterized as playing a role in endocytosis (Fig. 5.5C). At 24-hours, no genes are 

implicated in endocytosis or endosomal escape (Fig. 5.5D). Thbs2 has been identified as a 

ligand for LRP-1233; LRP-1 is a multifunctional endocytic receptor that is part of the LDLR 

family. We and others have previously shown that knocking out and / or silencing LDLR 

or LRP-1 impacts RNA delivery78, 88. However, LRP-1, LDLR, or any related proteins were 

not differentially regulated within our RNA-seq dataset; this data supports the conclusions 

we made in the previous section and suggests that alteration of endocytic pathways may 

not be the cause of diminished GFP protein expression after PIP3 treatment. 

Based on these RNA analyses as well as the canonical role PIP3 has in regulating 

cell metabolism, we performed an unbiased metabolomic analysis of cells treated with 10 

µM PIP3. In this case, we compared five groups of iMAECs: zero hours without PIP3, six 

hours with and without PIP3, and 24 hours with and without PIP3. We used five samples 
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per group: four for analysis and one for DNA quantification (as a control). We then 

performed a series of statistical analyses and dimensionality reduction techniques to ensure 

the data were robust; specifically, we performed PCA on cells treated with or without PIP3 

for 24 hours. Control cells that were not treated with PIP3 tended to have less variability 

across both components while cells treated with PIP3 had little variability across PC1, 

which makes up for most of the variance, but displayed more variability across PC2 (Fig. 

5.7A). Alongside PCA, we used hierarchical clustering, which confirmed that cells 

separated into two groups associated with (or not) treatment with PIP3.  Specifically, the 

PIP3 treated cells formed a distinct cluster while the untreated cells clustered separately 

(Fig. 5.7B). PCA and hierarchical clustering was also performed for metabolites analyzed 

at six hours (Fig. 5.8). We performed several additional controls, which are detailed in 

Materials and Methods.  

This analysis identified metabolites that were significantly changed in cells treated 

with PIP3, relative to time-matched cells that were not (Fig. 5.7C). We observed 

metabolites that were not significantly changed as well as metabolites that were 

significantly changed at six and 24 hours. Within the group of metabolites upregulated at 

both six and 24 hours, we found pathways responsible for (i) anabolic metabolism with 

increased glycolysis, (ii) pentose phosphate regulation, (iii) methionine-enabled methyl 

transferase epigenetic regulation, (iv) phospholipid/glycerolipid synthesis, and (v) 

nucleotide synthesis. We were especially interested in (iv) and (v), which could potentially 

alter the stability of (iv) LNP components or (v) mRNA, respectively. We similarly noted 

that hexadecanoic acid and octadecanoic acid, which contain alkyl tails similar to those in 

the LNPs, were upregulated at both timepoints. Within the metabolites that were 
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upregulated six hours following PIP3 treatment, we noted those related to cholesterol 

production, since these (and most reported) LNPs contain cholesterol72, 78. Finally, we 

found that several amino acids (specifically, isoleucine, alanine, ß-alanine, homoserine, 

and ornithine) were significantly decreased at the 24-hour timepoint in PIP3-treated cells. 

As detailed in the discussion, these data supported our RNA-seq analyses and led us to 

conclude that PIP3 metabolic reprogramming of cells blocked mRNA delivered by LNPs. 

5.2.5 In vivo delivery is blocked by PIP3 

All the studies described above were performed in vitro, which can be a poor 

predictor of in vivo delivery8. We therefore investigated whether PIP3 blocked LNP 

delivery in vivo. We performed these studies in Ai14 mice, which have a LSL-tdTomato 

construct under the control of a constitutive promoter. When Cre protein is produced, it 

translocates into the nucleus and excises the ‘Stop’ from genomic DNA; the cells then 

become tdTomato+ (Fig. 5.9A). The percentage of tdTomato+ cells after Cre mRNA 

delivery is a validated readout of nanoparticle delivery9, 72, 81. To quantify how PIP3 

treatment altered mRNA delivery in vivo, we intravenously injected mice with PBS or 10 

mg/kg PIP3. Immediately afterwards, we intravenously injected mice with 1 mg/kg Cre 

mRNA formulated inside LNP1 or LNP2. Three days later we quantified the percentage of 

tdTomato+ cells using flow cytometry. As a control, we gated on an Ai14 mouse treated 

with PBS. As previously reported, LNP1 delivered Cre mRNA to lung endothelial cells 

(Fig. 5.9B) and LNP2 delivered Cre mRNA to splenic endothelial cells (Fig. 5.9C). LNP1 

and LNP2 did not efficiently deliver mRNA to cells in the liver (Fig. 5.10, H to K, and 

Fig. 5.10 S to V). Thus, to evaluate whether PIP3 blocked mRNA translation in the liver, 

which is an important clinical target for RNA therapies, we formulated LNP3 (Fig. 5.9D), 
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which, as reported, delivered RNA to hepatocytes71 (Fig. 5.9E). mRNA delivery mediated 

by LNP1, LNP2, and LNP3 was reduced robustly, between six- and 14-fold in mice treated 

with PIP3 (Fig. 5.9). Specifically, we observed a 10.4-fold reduction in tdTomato+ cells 

when administering LNP1 and PIP3 concurrently (Fig. 5.9B), a 6.2-fold reduction when 

administering LNP2 and PIP3 concurrently (Fig. 5.9C), and a 13.6-fold reduction when 

administering LNP3 and PIP3 concurrently (Fig. 5.9E).  Notably, in every cell type with 

high levels of delivery, we observed decreases in Cre mRNA delivery, most of which were 

statistically significant (Fig. 5.10). None of the mice treated with PIP3 exhibited weight 

loss (Fig. 5.12) or changes in behavior suggesting toxicity.  

5.2.6 PIP3 co-formulated within an LNP does not consistently alter protein expression  

Finally, we investigated whether PIP3 blocked LNP delivery when it was 

administered ‘intracellularly’, i.e., co-formulated within an LNP (Fig. 5.11A). We first 

characterized LNP size after formulating the LNPs with PIP3; we found that LNP size did 

not change when PIP3 was incorporated and that PIP3-containing LNPs were stable (Fig. 

5.11B). We repeated the experiments above, comparing LNPs formulated with and without 

PIP3. We found that including PIP3 did not consistently increase or decrease protein 

expression in vitro (Fig. 5.11C) or in vivo (Fig. 5.11D-O). We then analyzed the cellular 

uptake of LNPs formulated with and without PIP3 and found it to be similar (Fig. 5.11P-

S). These data suggest that PIP3-mediated reductions in LNP efficacy occur when PIP3 is 

administered directly to cells, but not when administered within an LNP. The data support 

previous evidence suggesting that the subcellular localization of a lipid can alter its 

biological effect234. However, many more experiments are required to understand whether 

this is consistent and robust. 
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5.3 Discussion 

Taken together, these data demonstrate that the bioactive lipid PIP3 reduced the 

efficacy with which chemically distinct LNPs delivered mRNA in vitro and in vivo. We 

concluded that this effect was not driven by overt toxicity or overt differences in cell uptake 

or endosomal escape. Instead, we found that this effect was largely driven by changes to 

metabolic, transcriptional, and inflammatory cell signaling.  

By performing RNA-seq and metabolic analyses, we were able to generate two non-

mutually exclusive hypotheses. In our first hypothesis, we propose that exogenous mRNA 

delivered into the cytoplasm by LNPs competes with endogenous mRNA for cellular 

resources that lead to protein production and protein stability. By increasing the basal 

metabolic activity of a cell at the time LNPs were delivered, PIP3 limited the resources 

available to process exogenously administered mRNA, effectively ‘drowning out’ LNP 

delivery. This hypothesis is in its early stages; however, it is supported by several lines of 

evidence. First, we noted that, surprisingly, several genes identified by RNA-seq regulated 

transcription, which could change the amount of endogenous mRNA competing with 

exogenous LNP-delivered mRNA. This was also supported by the metabolic data reporting 

increased lipid and nucleotide syntheses. Second, 24 hours after PIP3 treatment, the 

number of available amino acids decreased. Third, while we observed substantial 

reductions in protein production, we did not observe similarly substantial reductions in 

endocytosis or endosomal escape in the PIP3-treated group. 

Our second hypothesis is that high metabolic activity in the cell leads to cell stress, 

and eventually catabolism; this catabolism degrades protein translated from mRNA. Six 
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hours after PIP3 treatment, we observed increased aerobic glycolysis, characterized by 

upregulated amino acid synthesis, protein synthesis, and cholesterol production. By 24 

hours, we observed an ROS-driven catabolic phenotype, characterized by no increases in 

protein synthesis or cholesterol production, and by significant decreases in amino acids.  

More specifically, we observed increased flux throughout glycolysis in the cytosol 

and TCA cycle within the mitochondria. Increases in glycolysis increase mitochondrial-

mediated metabolic pathways, including the TCA cycle and OxPhos. We observed two 

lines of evidence that suggest TCA and OxPhos upregulation. First, both TCA and OxPhos 

utilize hexa- and octo-decanoic acids235, two lipids that were upregulated at 6 and 24 hours. 

Second, upregulated OxPhos is also a metabolic phenotype for pro-survival pathway 

activation, which was supported by the transcriptomic changes in MAPK and IL-17 we 

observed236. These PIP3-driven increases in mitochondrial expansion and OxPhos elevated 

intracellular ROS, which suggests cells shifted to catabolism by 24 hours. The increase in 

ROS was supported by our transcriptomic data showing changes in Fos, which senses ROS 

stress237. Furthermore, the reduced aspartate and TCA cycle compounds (e.g. citrate) serve 

as another indication of the catabolic shift described. At 24 hours, it is feasible that 

catabolic metabolism led to increased autophagy, a process in which cell surface and 

cytosolic proteins are endocytosed and degraded to amino acids. This process may explain 

the drop in amino acids we observed at 24 hours. Interestingly, our transcriptomics showed 

significant changes in Muc5b and Fos genes at 24 hours; both genes are linked to 

membrane trafficking, which changes during autophagy238.  

Independent of these proposed mechanisms, we believe these data are important for 

pragmatic reasons. The first LNP-based RNA drug was approved by the FDA in 20181; its 
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translation was aided by studies that identified the mechanism of action by which the LNP 

targeted hepatocytes84. Second-generation RNA therapies, which also target hepatocytes, 

have also shown promise in clinical trials2. Once again, the delivery mechanism of action 

is understood239-241. In order to continue realizing the potential of RNA drugs, it will be 

important to develop a more sophisticated understanding of the genes and pathways that 

enhance, or in this case, block RNA delivery.  

Our data suggest that metabolic signaling can alter LNP delivery in vivo in 

unexpected ways. We believe these data constitute early steps toward an important goal: 

Exploiting natural differences in cell signaling in order to improve cell type-specific 

nanoparticle delivery242. We eventually hope to identify signaling that promotes the 

activity of a therapeutic RNA in a target cell type while reducing its activity in off-target 

cells. In addition, although we do not have direct evidence to date, these results may have 

implications for tumor delivery. Tumor delivery is thought to be limited, in part, by 

tortuous vasculature and pressure gradients that reduce efflux from the bloodstream. Our 

data posit a complementary mechanism: Highly metabolic tumor cells, particularly those 

exhibiting metabolic changes characterized as the Warburg effect, may be less likely to 

translate exogenous mRNA that nanoparticles deliver into the cytoplasm. This may be 

especially important for tumors characterized by overactive PIP3 signaling243, 244.  

It is important to acknowledge the limitations of this study. First, we were unable to 

identify the non-clathrin and non-caveolin pathways that were affected by PIP3. Our cell 

uptake data also did not elucidate the extent to which endocytosis or endosomal escape was 

affected by PIP3. Second, our in vivo studies were in mice; future work will need to 

evaluate whether the same results are observed in other models, most notably NHPs. 
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Despite these caveats, we believe these data provide evidence that cellular metabolism 

affects nanoparticle delivery, and more generally, that cell metabolism needs to be 

considered when designing RNA therapies. 

5.4 Materials and Methods 

Chemical Synthesis. Microwave irradiations were performed using a Biotage Initiator. 

TLC was performed on precoated silica Gel GF plates and visualized using KMnO4 stains. 

1H-NMR spectra were recorded at 400 MHz (Varian) using CDCl3 with TMS or residual 

solvent as standard. 13C-NMR spectra were recorded at 100 MHz (Varian) using CDCl3 

with TMS or residual solvent as standard.  High-resolution mass spectra (HRMS) were 

recorded on a time-of-flight mass spectrometer by ESI. All other chemicals were obtained 

from commercial sources. 

Synthesis of compound 3 (Fig. 5.13)71. Compound 1 (20 g, 41.9 mmol, 1 eq.) was 

charged in a 100 mL flask and trifluoroacetic acid (42 mL) was slowly added at 0ºC. The 

reaction mixture was stirred at room temperature for 30 minutes. The solvent was 

evaporated under reduced pressure and the crude product dissolved in DMF (5 mL) before 

being added dropwise to pyridine (300 mL) at 0ºC. The reaction mixture was stirred at 

room temperature overnight. Pyridine was evaporated under reduced pressure and the 

remaining white solid was washed with EtOAc (3 x 100 mL). Intermediate 2 was used in 

the next step without further purification. To a degassed solution of 2 (8.4 g, 13.0 mmol, 1 

eq.) in AcOH/DCM (1/1, 300 mL) was added Pd/C (10 wt. %, 3.0 g). The reaction mixture 

was then degassed for 5 min with H2 and stirred at room temperature under H2 atmosphere 

overnight. After completion of the reaction, the reaction mixture was filtered over a Celite 
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pad and washed with MeOH (500 mL). The filtrate was concentrated under reduced 

pressure to obtain a crude yellow viscous oil. Precipitation of the crude with EtOAc (50 

mL) followed by further EtOAc washes (3 x 50 mL) afforded compound 3 (4.8 g, 98% 

yield) as a white solid. 1H NMR (400 MHz, D2O) δ 1.38-1.52 (m, 4H, CH2), 1.73-1.65 

(m, 4H, CH2), 1.83-1.89 (m, 4H, CH2), 2.98 (t, J = 7.6 Hz, 4H, NCH2), 4.14 (t, J = 5.2 Hz, 

2H, COCH). 13C NMR (100 MHz, D2O) δ 21.0, 23.2, 26.3, 32.8, 39.0, 54.1, 170.2. HRMS 

(ESI, m/z) C12H25N4O2 [M + H]+ calculated 257.1972, found 257.1968. 

Synthesis of compound cKK-E12 (Fig. 5.13)71. To a solution of 3 (84 mg, 0.22 

mmol, 1 eq.) and 1,2-epoxydodecane (247 mg, 1.34 mmol, 6 eq.) in EtOH (2 mL) was 

added triethylamine (0.12 mL, 0.88 mmol, 4 eq.) before being stirred for 30 min at room 

temperature. The reaction mixture was then irradiated in the microwave reactor at 150ºC 

for 5 h. After completion of the reaction, the reaction mixture was evaporated under 

reduced pressure and purified via flash column chromatography (silica gel, gradient eluent: 

1-2.0 % of MeOH/DCM then 2.0-4.0 % MeOH/DCM containing 0.5 % NH4OH) affording 

cKK-E12 (148 mg, 67%) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 0.87 (t, J = 

6.8 Hz, 12 H, CH3), 1.21-1.35 (m, 64 H, CH2), 1.37-1.65 (m, 16 H, CH2), 1.71-1.95 (m, 4 

H, CH2), 2.19-2.66 (br, 12 H, NCH2), 3.62 (m, 4 H, CHOH), 3.99 (m, 2 H, COCH). HRMS 

(ESI, m/z) C60H121N4O6 [M + H]+ calculated 993.9281, found 993.9269. 

Nanoparticle Formulation. Nanoparticles were formulated in a microfluidic device as 

previously described26 by mixing a nucleic acid, an ionizable lipid, PEG, cholesterol, and 

a phospholipid. Nanoparticles were made with variable mole ratios of these constituents. 

The mass ratio for all the constituents: RNA was 7.5:1 for LNP1 and 10:1 for LNP2. LNP1 

consisted of the ionizable lipid CKK-E12, cholesterol (Avanti Lipids, 700000P), 
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C14PEG2K (Avanti Lipids, 880150P), and DOTAP (Avanti Lipids, 890890P) or NBD-

DOTAP (Avanti Lipids, 810890P). LNP2 consisted of the ionizable lipid 7C1, cholesterol, 

C14PEG2K, and DOPE (Avanti Lipids, 850725P). LNP3 consisted of the ionizable lipid 

cKK-E12, cholesterol, C18PEG2K (Avanti Lipids, 880120P), and DOPE (Avanti Lipids, 

850725P) or AF647-DOPE (Millipore-Sigma, 42247). Chemically modified mRNA (GFP 

or Cre) was purchased from TriLink. The mRNA was diluted in 10 mM citrate buffer 

(Teknova) and loaded into a syringe (Hamilton Company). The materials making up the 

nanoparticle (cKK-E12 or 7C1, cholesterol, PEG, DOPE or DOTAP) were diluted in 100% 

ethanol, and loaded into a second syringe. The citrate phase and ethanol phase were mixed 

together in a microfluidic device using syringe pumps.  

Nanoparticle Characterization. LNP hydrodynamic diameter was measured using DLS. 

LNPs were diluted in sterile 1X PBS to a concentration of ~0.06 µg/mL and analyzed. 

LNPs were used if they met 3 criteria: diameter >20 nm, diameter <200 nm, and 

autocorrelation function with only 1 inflection point. Particles that met these criteria were 

dialyzed in 1X phosphate buffered saline (PBS, Invitrogen), and sterile filtered with a 0.22 

μm filter. 

Animal Experiments. All animal experiments were performed in accordance with the 

Georgia Institute of Technology’s IACUC. C57BL/6J (#000664) and Ai14 LSL-Tomato 

(#007914) mice were purchased from the Jackson Laboratory. In all experiments, mice 

were aged 5-8 weeks, and N = 3-4 mice per group were injected intravenously via the 

lateral tail vein. 
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Nanoparticle and PIP3 Dosing. Mice were injected with a total Cre mRNA (TriLink) 

dose of 1.0 mg/kg and a PIP3 (Cayman Chemical) dose of 10 mg/kg. RNA concentration 

was determined using NanoDrop (Thermo Scientific).  

Cell Culture. In vitro experiments were performed with iMAECs (provided by Hanjoong 

Jo at Emory)154, HEK cells (GenTarget), iMAECs stably transduced with CAG-SpCas9-

EGFP, produced in the Dahlman Lab, or mouse aortic endothelial cells (C57E κB-GFP) 

(provided by Martin Schwartz at Yale). In all cases, cells were maintained at 37°C and 5% 

CO2 and cultured using previously established conditions. In all cases, cell media was 

supplemented by penicillin-streptomycin (500 U/mL penicillin G, 0.5 mg/mL 

streptomycin) (PenStrep, VWR) and 10% (v/v) FBS (VWR). HEKs were passaged with 

DMEM F-12 50/50 (Corning). iMAECs were passaged using DMEM with 1 g/L glucose, 

L-glutamine, and sodium pyruvate (Corning), supplemented by 1% (v/v) MEMNEAA 

(Sigma Aldrich), and 25 μg/mL ECGS (Emd Millipore). C57E κB-GFP were passaged 

with EGM-2 media (Lonza).  Unless noted, cells were seeded in a 24-well plate at a density 

of 40k cells/well with 500 µL media/well. 24 hours later, LNPs were added with a total 

RNA dose of 50, 150, or 250 ng/well. Initial experiments done with L2K used a total RNA 

dose of 400 ng/well.  

MTT assay. Cells were seeded in a 96-well plate at a cell density of 25k cells/well with 

100 µL media/well. 24 hours later, PIP3 was added at a dose of 0, 10 or 20 µM. Six or 24 

hours later, media was discarded and replaced with 50 µL of serum-free media (same as 

described above, without FBS) and 50 µL of MTT reagent (Abcam). Cells were incubated 

for 3 hours at 37°C and treated with 150 µL of MTT solvent (Abcam). Plates were then 
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shaken for 15 minutes at 350 rpm. Formazan formation was quantified by measuring 

absorbance at OD = 590 nm using a BioTek Synergy HTX Multi-Mode Microplate Reader.  

LDH assay. Cells were seeded in a 96-well plate at a cell density of 10k cells/well with 

100 µL media/well. 24 hours later, PIP3 was added at a dose of 0, 10, or 20 µM. The 

positive control received 12 µL of CytoScan LDH Lysis Buffer (G Biosciences). 24 hours 

later, 50 µL of supernatant and 50 µL of the CytoScan LDH Assay Buffer (G Biosciences) 

were mixed together and incubated for 30 minutes at 37°C. 50 µL of CytoScan LDH Stop 

Solution (G Biosciences) was then added to the solution and absorbance was measured at 

OD = 490 nm using a BioTek Synergy HTX Multi-Mode Microplate Reader.  

NF-κB assay. C57E cells, isolated from WT C57bl/6 aorta endothelium and immortalized 

with a py-MT lentiviral plasmid were used. Cells contain an NF-κB binding sequence 

upstream of a GFP reporter gene in their genome. The cells containing this construct 

constitutively express RFP and only express GFP when NF-κB is released from its receptor 

protein (IκB-α). Cells were seeded in a 24-well plate at a density of 40k cells/well with 500 

µL media/well. 24 hours later, PIP3 was added at a dose of 0, 10, or 20 µM. The positive 

control received 100 ng of LPS. 8 and 12 hours later, cells were analyzed via flow 

cytometry using a BD Accuri C6 Benchtop Flow Cytometer (Fig. 5.2, I to K). 

Fixed-cell staining. Cells were plated in glass-bottom 24-well plates at a density of 40k 

cells/well one day prior to LNP delivery. Cells were fixed 6- or 24-hours post-transfection 

with 4% paraformaldehyde (Electron Microscopy Sciences) for 10 min at room 

temperature before permeabilization with 0.2% Triton X-100 (Sigma-Aldrich) for 5 min at 

room temperature. To stain for endosomes, cells were first blocked for nonspecific binding 
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with 5% BSA (Sigma Aldrich) for 30 minutes at 37°C, then incubated with a mixture of 

anti-Rab7 (Invitrogen), anti-EEA1 (Invitrogen), and anti-CD63 (Abcam) for 30 minutes at 

37°C. Cells were then incubated with a Alexa-Fluor 568 secondary antibody (Invitrogen) 

for 30 minutes at 37°C. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) 

(Life Technologies), and coverslips were placed over the cells in the dish and mounted 

with Prolong Gold (Life Technologies). 

Microscopy. Images were acquired with a Hamamatsu Flash 4.0 v2 sCMOS camera on a 

PerkinElmer UltraView spinning disk confocal microscope mounted to a Zeiss Axiovert 

200M body with a 63x NA 1.4 plan-apochromat objective. Images were acquired with 

Volocity acquisition software (PerkinElmer). All images were linearly contrast enhanced. 

Colocalization analysis was performed via Volocity acquisition software by calculating the 

M1 and M2 coefficients for 30-40 cells per condition on unenhanced images. 

Metabolomics. Metabolomics was performed for five groups (0 hours no PIP3, six hours 

no PIP3, six hours PIP3, 24 hours no PIP3, 24 hours PIP3). Cells were seeded in 6-well 

plates at 500,000 cells/well and cultured for 24 hours before the start of the experiment. 

Four samples per time point and condition were created, with a fifth sample created for 

DNA quantification. Specifically, each replicate was created from two wells in different 

plates treated with the same condition. Cells were manually counted with a hemocytometer 

to check approximate number and viability. Methanol-based metabolite extraction was 

performed at each timepoint with, -80˚C methanol added to each sample before subsequent 

storage at -20˚C until analysis. Methanol based extraction preserves polar metabolites, a 

standard in cell-based metabolic extraction245. The fifth sample was treated by aspirating 

all PBS and adding digestion buffer consisting of 1xTris-EDTA and proteinase K. Internal 
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standards for each sample were added based upon cell number. Cell counting performed 

was performed on the fifth sample collected for each condition via the Promega Quant-

iT™ PicoGreen® method utilizing pico-green dye reagent and Promega fluorescent plate 

reader to quantify dsDNA concentration as according to the manufacturer protocol. Internal 

standards of ribitol and C13-glucose were added to the methanol-extracted samples in 

concentrations of 1 µL/1x106 cell and 2 µL/1x106 cells, respectively.  and then dried in a 

speed vacuum system (Savant® SpeedVac SPD1030) overnight at 45˚C and 5.1 mTorr. 

After drying, samples consisted of only a dehumidified pellet of extracted metabolites and 

were stored at -80˚C. Sample derivatization procedure was performed as described 

previously245. Briefly, addition of the derivatizing agent methoxyamine (added alone for 

1.5 hours) and then further addition of N-methyl-N-(trimethylsilyl)-trifluoroacetamide 

(MSTFA) (6 hours) was performed for samples, then placed into vials loaded to the GCMS 

system (Shimadzu® GCMS QP2010 ultra). No samples were left in derivatizing agents 

more than 22 hours, as this has been shown to degrade the metabolites present246. The 

GCMS performed 1 hour runs with a linear heating regime of the GC column from 70˚C 

to 310˚C.  

Bioinformatics Analysis for Metabolomics. Data were collected on the GCMS post-run 

analysis software (Shimadzu®). Raw data containing the peak intensities were compared 

to a pre-existing custom-built library of metabolites containing 74 metabolites found within 

mammalian cell metabolism. This produced peak areas present for each of these 

metabolites. The peak areas of each run were normalized to area of the ribitol peak, one of 

the internal standards added. As per the previous section, this normalization procedure 

provides a method to normalize metabolite peak areas. The ribitol peak areas were 



 139 

consistent within < 1% variation across all runs of each sample, an indication of run 

consistency and equipment accuracy. The ratio of the two C13-glucose derivatives (second 

internal standard added) were taken for each run. For each run, if the ratio was greater than 

one standard deviation away from the average ratio of all runs in that sample, the run was 

removed. This ensured that peak area values were statistically consistent between runs. 

Metabolites with a coefficient of variation greater than 25% across remaining runs for each 

sample were also removed. The average of each metabolite across all runs in a sample was 

calculated to be effective metabolite presence in the original sample. The final data 

contained a single value for metabolite presence in each sample –four samples per 

condition and time point. Statistical analysis was performed on the data through 

dimensionality reduction techniques and significance analysis. Importantly, no additional 

data cleaning was performed specifically for any of these techniques. PCA and hierarchical 

clustering was performed in R and visualized using ggplot2 and heatplot packages. PCA 

considered three principal components, covering only > 50% of observed variance in the 

data; this indicates the data were variable in a large number of dimensions (metabolites). 

Identification of significantly up- and down-regulated metabolites between two groups was 

performed using the method of SAM as described previously247, implemented using the 

SAMR package in R. Importantly, the delta value for SAM was calculated using the latest 

method described in the SAMR release documentation. Comparisons of metabolites 

between the PIP3 containing and non-PIP3 containing groups at six and 24 hours were 

compared and mapped to box plots and pathway maps for visualization and further 

analysis. 
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Whole-Transcriptome Sequencing. iMAECs were seeded in a 6-well plate at a seeding 

density of 500,000 cells/well. Cells were cultured for 24 hours as written above and then 

treated with 10 µM PIP3 or no PIP3. Six or 24 hours later RNA was harvested from the 

cells. Total RNA was extracted using the RNeasy Mini Kit (Qiagen) following the 

manufacturers protocol. The quantity and quality of RNA were examined by Qubit RNA 

HS Assay Kit, Qubit™ 3.0 Fluorometer (Life Technologies) and Agilent 2100 Bioanalyzer 

(Agilent Technologies). 1µg of high-quality RNA from each sample was used for cDNA 

synthesis and sequencing, using the Truseq Stranded mRNA protocol from Illumina 

(Illumina Inc.). After generating the clusters, library sequencing was performed on an 

Illumina Nextseq platform, to create paired end reads with a length of 75bp. 

Bioinformatics Analysis for RNA-Sequencing. The sequenced reads were trimmed and 

aligned to the mouse genome (mm10) using Isas analysis software 3.19.1.12, SAMtools 

0.1.20, STAR aligner STAR_2.6.1a, Salmon quantification software 0.11.2 and Strelka 

Variant Calling software 2.9.9. Differential expression analysis was determined using 

DESeq2248. Only genes with a P adjusted value (false-discovery rate) or less than 0.05 and 

a fold change greater than 1.5 were included within the subsequent GO and KEGG pathway 

analysis. To understand the functions of the differentially expressed genes, GO functional 

enrichment and KEGG pathway analysis were carried out by the Enrichr web server249 and 

KEGGMapper (https://www.kegg.jp/) respectively. 

Cell Isolation & Staining. Mice were sacrificed 3 days after administration of LNPs and 

immediately perfused with 20 mL of 1X PBS through the right atrium. In all cases, the 

lung, liver, and spleen were isolated following perfusion. All tissues were finely minced 

with micro dissecting scissors, and then placed in a 1X PBS solution containing 

https://www.kegg.jp/
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Collagenase Type I (450 U / mL) (Sigma Aldrich), Collagenase XI (125 U / mL) (Sigma 

Aldrich), and Hyaluronidase (60 U / mL) (Sigma Aldrich) at 37ºC and 750 rpm for 45 

minutes. The digestive enzyme for spleen included Collagenase IV (10 mg / mL) (Sigma 

Aldrich)145. Digested tissues were passed through a 70 μm filter and red blood cells were 

lysed with red blood cell lysis buffer (Alfa Aesar). Cells were stained to identify specific 

cell populations and flow cytometry was performed using a BD FacsFusion cell analyzer. 

Antibody clones used were anti-CD31 (390, BioLegend), anti-CD45.2 (104, BioLegend), 

anti-CD11b (M1/70, BioLegend), anti-CD68 (FA-11, BioLegend), anti-CD47 (miap301, 

BioLegend). PE conjugated anti-CD47 was used as a compensation control for tdTomato 

when running flow cytometry for in vivo experiments. Representative gating strategies for 

liver, lung, and spleen populations using control Ai14 mice injected with PBS are included 

in (Fig. 5.14A-F). 

Statistical Analysis. Unless otherwise noted, statistical analyses were done using 

GraphPad Prism 8. Unless otherwise noted, data are plotted as mean ± standard error mean. 

As indicated in each figure caption, an unpaired t-test, 1-way ANOVA, or 2-way ANOVA 

was used to analyze the data.  
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Figure 5.1 PIP3 reduces nanoparticle (NP)-mediated mRNA delivery in vitro. (A) (A) PIP3 blocks 
the functional delivery of nanoparticles carrying GFP mRNA. The data suggest this is driven in 
part by reduced endosomal escape. (B) LNP1 and LNP2 chemical composition. (C,D) Concurrent 
delivery of PIP3 and 50 ng of LNP1 carrying GFP mRNA led to decreased GFP expression in cells 
(C) six hours and (D) 24 hours after transfection. Reduced GFP expression was also observed at 
(E) six and (F) 24 hours when mRNA was carried by L2K and administered at a dose of 400 ng / 
well. (G) Concurrent delivery of PIP3 and varying doses of LNP1 carrying GFP mRNA shows 
that the percentage of GFP+ cells decreases as the amount of PIP3 increases. (H) PIP3 
administered before, concurrently, or after 50 ng of LNP1, 150 ng of LNP2 and 400 ng of L2K 
carrying GFP mRNA leads to a decrease in GFP expression. (I) PIP3 did not lead to changes in 
cell morphology 24 hours after PIP3 administration. Scsale bar = 10 μm. Nuclei stained with DAPI 
and cytoskeleton (phalloidin) stained with GFP. 
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Figure 5.2 LNP components and in vitro translation and viability experiments. (A) 
LNP1 and LNP2 chemical components. (B to J) Representative in vitro gating 
strategies for HEKs and iMAECs. The statistical analyses for Fig. 1, C to F are shown 
in (K to N) and compare the positive control (LNP only, no PIP3) to the PIP3 
experimental groups using a 2-way ANOVA. Statistical analysis for Fig. 1G is shown 
in (O) and compares the positive control (LNP only, no PIP3) to each experimental 
group using a 2-way ANOVA. Statistical analysis for Fig. 1H is shown in (P) and 
compares the positive control (LNP only at time = 0 hrs., no PIP3) to each 
experimental group using a 2-way ANOVA. *p<0.032, **p<0.0021, ***p<0.0002, 
****p<0.0001. Increasing doses of PIP3 led to a decrease in GFP protein expression 
in cells treated with LNP2 containing GFP mRNA (Q) 6 hours and (R) 24 hours after 
transfection. The percentage of GFP+ cells decreases with different concentrations of 
PIP3 despite an increase in the administered dose of GFP mRNA in (S) HEKs and (T) 
iMAECs. (U) PIP3 does not reduce cell viability as measured by the reduction of MTT 
to formazan in iMAECs or HEKs at 6 hours and 24 hours. (V) PIP3 does not reduce 
cell viability as measured by levels of secreted lactate dehydrogenase (LDH). (W) PIP3 
does not cause inflammation as measured by levels of IκB degradation at 8 hours and 
12 hours. Statistical analyses for (Q and R) compare the positive control (LNP only, 
0 µM PIP3) to each experimental group (2, 5, 10, or 20 µM PIP3) using a 2-way 
ANOVA. Statistical analysis for (S and T) compares the positive control (LNP only, 0 
µM PIP3) to the experimental group (10 µM PIP3 + LNP) for increasing doses of GFP 
mRNA using a 2-way ANOVA. Statistical analyses for (U) compare the negative 
control (untreated cells) to the experimental group (10 or 20 µM PIP3) using a 
Kruskal-Wallis ANOVA. Statistical analyses for (V and W) compare the negative 
control (untreated cells) to the experimental group (10 or 20 µM PIP3 or LPS) using 
a 1-way ANOVA. p-values are represented as p-value <0.0332 (*), ,0.0021 (**), 
<0.0002 (***), and <0.0001 (****). 
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Figure 5.3 Analysis of the effects PIP3 has on LNP uptake and endosomal escape. (A) We reasoned 
that PIP3 could reduce LNP delivery could be driven by inhibiting serum stability, cell uptake, 
endosomal escape, or the metabolic state of the cell. (B-E) LNPs containing GFP mRNA were 
formulated with fluorescent phospholipids and administered to cells. Cell normalized fluorescence 
was determined relative to an untreated control at each timepoint. Normalized fluorescence did 
not change over time in (B) iMAECs and did change slightly in (C) HEKs after administration of 
LNP1 and PIP3. Similarly, PIP3 had minimal effect on LNP2 uptake, measured by mean 
fluorescent intensity (MFI), in either (D) iMAECs or (E) HEKs. Normalized AF-647 MFI was also 
determined relative to an untreated control at each timepoint. p-values are represented as p-value 
<0.0332 (*), <0.0021 (**), <0.0002 (***), and <0.0001 (****). (F) In cells treated with PIP3, LNPs 
(red) co-localize with endosomes (green) whereas the opposite is observed without PIP3. (G) 
Colocalization images of endosomes and LNPs can be used to draw (H) representative line profiles. 
(I) The M1 coefficient shows a significant difference in colocalization of LNP and endosome for 
cells treated with PIP3 after 30 minutes and 6 hours. (J) The M2 coefficient is low, indicating that, 
as expected, there are more endosomes than endosomes colocalized with LNPs. All microscopy 
images are shown with a 10μm scale bar. Although only a few representative cells are shown, the 
M1/M2 coefficient generation represents colocalization analysis of more than 30 cells per condition. 
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Figure 5.4 PIP3 does not affect LNP stability or canonical endocytosis pathways. (A) Addition 
of 10 µM does not significantly affect the hydrodynamic diameter of LNP1 suspended in PBS 
supplemented with mouse serum or iMAEC media. PIP3 does not alter transferrin or cholera 
toxin B uptake in iMAECs or HEKs. Alexa-647 fluorescence in cells was analyzed by flow 
cytometry after cells were treated with (B) fluorescent transferrin, a ligand endocytosed 
through a clathrin-dependent pathway or (C) cholera toxin B, a ligand endocytosed through 
a caveolin-dependent mechanism. Statistical analysis for (A) was done using a one-way 
ANOVA comparing the PIP3 group to the untreated group for each of the suspensions. 
Statistical analyses for (B and C) was done using an unpaired t-test comparing the positive 
control (cholera toxin B or transferrin only) to the treatment group (cholera toxin B or 
transferrin + PIP3) for both pre-treatment timepoints. p-values are represented as p-value 
<0.0332 (*), ,0.0021 (**), <0.0002 (***), and <0.0001 (****). 
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Figure 5.5 PIP3 changes the transcriptional profile of a cell. More genes are upregulated or 
downregulated (A) 6 hours after PIP3 administration than (B) 24 hours after PIP3 administration. 
Most perturbed genes were unannotated however there was a noticeable change in genes associated 
with metabolism both (C) 6 and (D) 24 hours after PIP3 administration. 
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Figure 5.6 Transcriptional changes elicited by PIP3 treatment. (A) Table listing the 
transcripts identified as significantly differentially expressed six hours after exposure to 
PIP3 relative to control. Differentially expressed genes have a fold change>1.5 and p<0.05. 
A Pubmed search was used to identify whether the genes were associated with endocytosis, 
transcription, translation, metabolism or uncharacterized. A description of the known 
function of the gene is also included. (B) Log2(Fold change) of significantly perturbed genes 
six hours after PIP3 exposure. (C) Table listing the transcripts identified as significantly 
differentially expressed 24 hours after exposure to PIP3 relative to control. Differentially 
expressed genes have a fold change>1.5 and p<0.05. A Pubmed search was used to identify 
whether the genes were associated with endocytosis, transcription, translation, metabolism 
or uncharacterized. A description of the known function of the gene is also included. (D) 
Log2(Fold change) of significantly perturbed genes twenty-four hours after PIP3 exposure. 
(E to F) The top scoring GO pathways from each domain of the differentially expressed 
genes 6 (E) and 24 (F) hours after being exposed to PIP3, and the associated p-values from 
the Enrichr package. GO domains consist of biological processes, molecular functions, and 

  



 154 



 155 

Figure 5.7 PIP3 changes the metabolic state of the cell. (A) PCA revealed distinct grouping 
between cells 24 hours after they were treated with PIP3 or not treated with PIP3. Similar 
distinctions between treated and untreated cells at 24 hours were found using (B) joint 
hierarchical clustering, in this case displaying metabolites across the 7 samples. Significance 
analysis identified metabolites which were then mapped upon a (C) metabolic pathway 
diagram, highlighting significantly upregulated and downregulated metabolites in the PIP3 
positive group compared to the PIP3 negative control at both six and 24 hours. Common 
metabolic pathways in human metabolism are shown, with orange arrows representing 
multi-reaction steps in these pathways, maroon labels such as “protein synthesis” represent 
additional cellular metabolic pathways and phenotypes significantly influenced from the 
canonical metabolites and pathways listed. 
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Figure 5.8 Results of metabolomic analysis for both PIP3 positive and negative cultures 6 hours 
after stimulation. Analysis involved statistical methods including (A) PCA and (B) joint 
hierarchical clustering and heat map. 
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Figure 5.9 PIP3 reduces LNP mRNA delivery in vivo. (A) Ai14 mice were injected with 10 mg/kg 
of PIP3, and then immediately injected with LNP carrying 1 mg/kg Cre mRNA. PIP3 
consistently blocks functional LNP1 delivery in (B) lung endothelial cells and functional LNP2 
delivery in (C) splenic endothelial cells. (D) LNP3 was formulated to deliver Cre mRNA at 0.3 
mg/kg. (E) PIP3 blocked LNP-mediated delivery of Cre mRNA to hepatocytes. Statistical 
analyses are done comparing the positive control (LNP only) to the treatment group (LNP + 
PIP3) using an unpaired t-test. p-values are represented as p-value <0.0332 (*), <0.0021 (**), 
<0.0002 (***), and <0.0001 (****).  
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Figure 5.10 Off-target delivery of LNP-mediated mRNA delivery with PIP3 treatment. PIP3 
response in blocking functional LNP1 delivery in (A) lung other cells, (B) lung macrophage 
cells, (C) lung immune cells, (D) splenic other cells, (E) splenic macrophages, (F) splenic 
immune cells, (G) splenic endothelial cells, (H) liver endothelial cells, (I) hepatocytes, (J) liver 
Kupffer cells, and (K) liver immune cells. PIP3 response in blocking functional LNP2 delivery 
in (L) lung other cells, (M) lung macrophage cells, (N) lung immune cells, (O) lung endothelial 
cells, (P) splenic macrophages, (Q) splenic macrophages, (R) splenic immune cells, (S) liver 
endothelial cells, (T) hepatocytes, (U) liver Kupffer cells, and (V) liver immune cells. PIP3 
response in blocking functional LNP3 delivery in (W) liver endothelial cells, (X) liver Kupffer 
cells, and (Y) liver immune cells. Statistical analyses are done comparing the positive control 
(LNP only) to the treatment group (LNP + PIP3) using an unpaired t-test. p-values are 
represented as p-value >0.1234 (ns), <0.0332 (*), ,0.0021 (**), <0.0002 (***), and <0.0001 
(****). 
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Figure 5.11 (A) PIP3 delivered inside of an LNP does not block delivery. (B) LNP 
diameter does not significantly change with varying PIP3 concentrations. (C) GFP 
mRNA and different doses of PIP3 delivered with LNP1 have opposite effects in 
iMAECs and HEKs. PIP3 formulated into LNP1 does not consistently impact 
tdTomato+ cells in (D) spleen endothelial cells, (E) spleen other cells, (F) spleen 
macrophages, (G) spleen immune cells, (H) liver endothelial cells, (I) hepatocytes, 
(J) liver Kupffer cells, (K) liver immune cells, (L) lung endothelial cells, (M) lung 
other cells, (N) lung macrophages, or (O) lung immune cells. PIP3 does not block 
uptake of fluorescent LNP1 containing mRNA in (P) iMAECs and (Q) HEKs. PIP3 
has the same effect on fluorescent LNP2 containing mRNA in (R) iMAECs and (S) 
HEKs. Statistical analysis for (C) compares the positive control (LNP only, 0 µM 
PIP3) to each experimental group (2, 5, 10, 20, 100 or 200 µM PIP3) using a 2-way 
ANOVA. Statistical analyses for (D-O) are done comparing the positive control 
(LNP only) to the treatment group (LNP + PIP3) using an unpaired t-test. Statistical 
analyses for (P-S) compare the positive control (LNP only) to the treatment group 
(10 µM PIP3 + LNP) at each timepoint using a 2-way ANOVA. p-values are 
represented as p-value >0.1234 (ns), <0.0332 (*), ,0.0021 (**), <0.0002 (***), and 
<0.0001 (****).  
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Figure 5.12 Mouse weights for in vivo experiments. (A) Mouse weights for LNP1 in vivo 
experiments from day of injection to day of sacrifice. (B) Normalized mouse weights for each 
LNP1 in vivo experiment compared to PBS injected mice. (C) Mouse weights for LNP2 in vivo 
experiments from day of injection to day of sacrifice. (D) Normalized mouse weights for each 
LNP2 in vivo experiment compared to PBS injected mice. (E) Mouse weights for LNP3 in vivo 
experiments from day of injection to day of sacrifice. (F) Normalized mouse weights for each 
LNP3 in vivo experiment compared to PBS injected mice. 
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Figure 5.13 Chemical synthesis of CKK-E12. (A) CKK-E12 synthesis. (B) 1H-NMR 
spectra confirming CKK-E12 structure. 
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Figure 5.14 Representative in vivo gating strategies. Strategies for cell types in the (A, 
B) liver, (C, D) lung, and (E, F) spleen 
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CHAPTER 6. PERSPECTIVES AND FUTURE WORK 

6.1 Need for a universal high-throughput screening system 

Current LNP barcoding strategies are limited in the extent to which biological 

questions can be asked. Despite the fact that we have developed in vivo screening systems 

that can identify LNPs that efficiently deliver siRNA79  and mRNA9 in vivo, both of these 

screening systems either (i) rely on specialized mice to screen in or (ii) only allow for 

screening in specific cell types. Current siRNA screening systems are optimized to look 

for knockdown in ICAM-2 or GFP expressing cells as opposed to all cell types. There is a 

need for a high-throughput functional delivery screening system that can be used with 

genetic knockout mice. Currently, if the field wants to understand the mechanism of action 

of a particular LNP, each LNP needs to be assessed for its functional activity in knockout 

mice. Creating a screening system that works in knockout mice will allow for screening of 

a pool of LNPs in both WT and knockout mice, allowing researchers to get a broader sense 

of an LNPs mechanism. It has previously been shown that some LNPs rely on lipoprotein-

dependent mechanisms to access cells84, increasing interest in a screening platform that 

will allow researchers to identify ApoE-dependent and ApoE-independent LNPs. While 

we previously tried to answer pertinent question about the impact of specific genes (e.g. 

VLDLR, LDLR) on nanoparticle delivery using high-throughput LNP barcoding, we were 

constrained by the system that being used to ask these questions.  

To this end, we have begun search for a gene that is ubiquitously expressed in all 

cell types across all tissues (Figure 6.1), for which we will optimize the siRNA sequence 

that targets that gene, and begin work to recapitulate our siRNA screening system in vivo 
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using this new gene. In order to validate siRNAs targeting candidate genes, we designed 

chemically modified siRNAs targeting these genes. There are a number of potential gene 

candidates for such a system such as CD47 (marker of self) or beta-2-microglobulin 

(B2M). Both of these proteins are ubiquitously expressed on the surface of all cells. 

However, finding a gene that, when knocked down, will not lead to the destruction of the 

cell is necessary for looking at knockdown long-term. It is unclear whether knocking down 

CD47 or B2M using siCD47 or siB2M will lead to cell destruction via an immune 

response250.  

6.2 The utility of new sequencing technologies in studying nanomedicine  

The perspectives and future work depicted here is an excerpt from Paunovska K, 

Loughrey DA, Sago CD, Langer R, Dahlman JE (2019). “Using Large Datasets to 

Understand Nanotechnology” Advanced Materials. 

6.2.1 NGS approaches enable single cell and multiomics analyses  

A suite of technologies based on high-throughput NGS have been created and 

validated. All of these are driven by advances in sequencing-by-synthesis, which allows 

scientists to characterize millions of molecules at the same time. These omics techniques, 

referred to as “sequence census” methods, can examine the genome (DNA), transcriptome 

(RNA), and epigenome (DNA modifications). All exploit the fact that DNA sequences can 

function as a digital substrate that is easily counted251.  

These technologies have evolved rapidly. Soon after NGS was reported, scientists 

designed ways to sequence DNA252, and later, RNA253, from single cells. Advances in 
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single cell required specific advances in acquiring and analyzing data. In particular, when 

acquiring scRNA-seq data, it is important to understand ‘drop-out’, an effect wherein 

datasets contain many genes with no expression. By developing standardized 

methodologies to overcome drop-out, single cell techniques have enabled targeted RNA254, 

255 and whole transcriptome256 analysis. By sequencing RNA from single cells, scientists 

improved their fundamental understanding in many fields of biology, examining 

everything from the diversity of microbial ecosystems to the intratumor heterogeneity and 

clonal evolution of human cancer257, 258. As an example, scRNA-seq studies have been used 

to differentiate subclasses of a given cell type (e.g. neurons259-261, or immune cells262-264), 

or study heterogeneous cell responses to a given biological stimulus265. In one 

representative example, Villani et al. performed unbiased scRNA-seq on 2400 peripheral 

blood mononuclear cells. By analyzing the subsequent gene expression data, they identified 

new subtypes of dendritic cells and monocytes in human blood, enabling more accurate 

immune monitoring in disease263.  

In order to generate these single cell data, authors combined an experimental and 

computational strategy to identify discriminative surface markers in clusters of cells that 

were similar to each other. They isolated the cells using these markers and validated the 

identity of these inferred subtypes using scRNA-seq. In order to ensure the data were 

robust, the authors corroborated their findings by analyzing peripheral blood mononuclear 

cells from ten independent healthy individuals. Although scRNA-seq approaches are not 

frequently used to study cellular response to nanomaterials, we are optimistic this approach 

will be important to the nanomedicine field for 2 reasons. First, scRNA-seq is now easy to 

use. In fact, there is an ongoing effort called the ‘Human Cell Atlas’ that aims to perform 
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scRNA-sequencing on as many cell types as possible266. Second, in the papers cited above, 

authors found that a collection of cells thought to be homogenous exhibit a high degree of 

genetic and functional heterogeneity. These data suggest that gene expression and 

subsequent cell function, even within a given cell type, exists on a spectrum. These 

approaches could similarly reveal subtypes of immune cells that readily interact with 

nanomaterials. By studying the different gene expression profiles in immune cells that do 

(or do not) respond to nanotechnology, master regulatory genes that trigger immune 

responses to nanomaterials or promote effective endosomal release may be identified. 

More recently, the integration of diverse platforms (multiomics) has begun. In these 

examples, large scale analysis of multiple biomolecules is performed267-269. One key aspect 

of multiomic data generation is the fact that scientists must (i) process cells and (ii) design 

sequencing pipelines that allows several datasets to be acquired. In one example, scientists 

measured the genomic copy-number variations, transcriptome and DNA methylome of 25 

single cancer cells. The authors were able to acquire these multiomic data using a gentle 

lysis procedure that dismantled the cellular membrane of an individual cell while keeping 

the nucleus intact. This preserved nucleus was used as a substrate for single cell DNA 

methylomic analysis, while the cytoplasmic lysate was used to acquire transcriptomic 

information from the same cell. They identified two distinct subpopulations within these 

cells and showed the transcriptomic heterogeneity within each subpopulation270 affected 

cell function. In another example, scientists used NGS to concurrently measure 

transcriptomic and epigenomic data, in order to evaluate the mechanisms of 

neurodegeneration in Alzheimer’s disease, and how the environment and the genome act 

through different cell types271. Once again, the authors used a novel experimental approach 
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to acquire the data; more specifically, the authors performed in parallel chromatin 

immunoprecipitation and RNA sequencing on harvested mouse hippocampus. This 

allowed seven different epigenetic modifications that mark distinct functional chromatin 

states and the corresponding changes in gene expression to be analyzed simultaneously. 

By profiling transcriptional and chromatin state dynamics, they found that immune-cell-

specific enhancer regions and response genes were more accessible to transcription factors, 

suggesting the pathogenic capacity of the immune system in Alzheimer’s disease. A 

coordinated decrease in synaptic plasticity genes was also found, linking these multiomic 

readouts to a potential mechanism of disease progression.  

The coupling of protein mass spectrometry to genomics, known as 

proteogenomics272, 273, is another new class of technologies to generate multiomic datasets. 

Although mass spectrometry has analytical limitations274, these are being addressed. To 

date, proteogenomics has been applied to traditional biological problems. For example, 

scientists characterized human colon and rectal cancer272; using proteogenomics, the 

authors identified 4 subtypes of diffuse gastric cancers, associated with proliferation, 

immune response, metabolism, and invasion, respectively275. However, through these 

studies, best practices have been established that provide a framework to characterize 

protein-nanomaterial interactions. Thus, proteogenomics has the potential to be applied to 

the protein corona and other interactions between nanomaterials and proteins. Although 

multiomics approaches have not – to date – been applied to nanomaterials, these techniques 

permit scientists to characterize complex cellular responses276, 277. It is therefore very likely 

that multiomics can help elucidate how cells respond to nanomaterials.   

6.2.2 Transcriptomics can uncover how cells respond to nanoparticles  
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In contrast with multiomics, transcriptomics has already been used to interpret the 

complex effects that nanomaterials and biomaterials have on gene expression. There are a 

number of recent examples of the nanotechnology field taking advantage of 

transcriptomics, both in vitro and in vivo. Carrow et al. recently used RNA-seq to identify 

more than 4000 genes whose RNA expression changed when human mesenchymal stem 

cells (hMSCs) interacted with nanosilicates278. Notably, they found that particular 

signaling pathways were upregulated, including the stress-responsive and surface receptor-

mediated MAPK pathways. The authors also characterized a number of biophysical and 

biochemical cellular behavior and found that nanosilicates promote stem cell osteochondral 

differentiation. In particular, by analyzing changes in genes that are part of biological 

pathways related to osteogenesis, researchers saw that hMSCs exposed to nanosilicates 

tended to favor bone and cartilage lineages. They found that genes such as cartilage 

oligomeric matrix protein, aggrecan, and collagen type I α1 chain were upregulated; these 

genes are characteristic of osteochondral differentiation. Taken together, these data suggest 

that proliferation and differentiation pathways were influenced by nanomaterials.  

As another example, Feliu et al. utilized primary human bronchial epithelial cells 

to show that cationic dendrimers caused significant changes in gene expression, even at 

doses that did not lead to acute or overt signs of cytotoxicity279. After administering a dose 

of 0.1 μM PAMAM dendrimers – which translates to a dose of roughly 1.4 μg/mL in vitro 

– to these cells, they found that the expression of 203 genes changed. Interestingly, by 

performing gene ontology enrichment analysis, the authors found that many of these genes 

were part of pathways related to cell division and cell cycle regulation. The authors created 

network diagrams to visualize predicted impacts on downstream pathways after 
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upregulation and downregulation of specific genes. These results are important, given that 

many studies rely on overt assays to screen for nanoparticle toxicity. The results may also 

have implications for tumor-targeted nanoparticles, since tumor growth can be driven by 

aberrant cell division and cell cycle regulation. In another example, Lucafò et al. reported 

the interaction of fullerenes with human MCF7 tumor cells showing that they cause a time-

dependent alteration of gene expression, arresting cell cycle progression and promoting the 

entry in G0 phase280. By performing whole-transcriptome RNA-seq analysis on cells 

exposed to fullerenes, the authors found that mTOR signaling, which regulates cell growth 

and proliferation, was inhibited while genes upstream of TGF-β, important for cell 

remodeling and adhesion, were upregulated – suggesting that nanoparticles can alter cell 

cycle regulation. In addition, Gliga et al. showed that cerium oxide nanoparticles 

negatively affect neuronal differentiation and interfere with cytoskeletal organization in 

the murine cell line C17.2, which can be used as a model for developmental neural stem 

cells281. Cerium oxide nanoparticles were known to show cytoprotective effects. However, 

by analyzing gene expression using RNA sequencing this study found that the expression 

of at least 795 genes changed over a 7-day period after C17.2 cells were exposed to 

nanoceria. Changes in gene expression were compared to changes elicited with a common 

antioxidant, N-acetylcysteine, and samarium-doped nanoceria, which has previously been 

shown to have lower antioxidant activity than nanoceria alone. Notably, the authors found 

that nanoceria inhibited neuronal stem cell differentiation extensively, compared to N-

acetylcysteine and samarium-doped nanoceria, when they analyzed the genes that were 

changed, illustrating that antioxidant properties were not necessarily beneficial in all cases. 

In Chlamydomonas reinhardtii, a model organism, authors found that exposure to four 
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different commonly used metal nanoparticles – nano-Ag, nano-TiO2, nano-ZnO, and 

CdTe/CdS quantum dots (QD) – had both similar and relatively distinct effects on the 

transcriptome. More specifically, Zn, QD and Ti based nanoparticles had upregulation 

and/or downregulation of similar genes, whereas Ag elicited an opposite transcriptional 

response in Chlamydomonas reinhardtii when compared to the other three nanoparticles. 

Notably, some of the changes included potential proteasome inhibition which could 

suggest interest as a cancer chemotherapy agent282. Also, in C. reinhardtii, Beauvais-Flück 

et al. showed that up to 4784 transcripts were dysregulated when exposed to subnanomolar 

methyl mercury even after two hours. Genes involved in cell motility, nutrition, and 

photosynthesis were among the main regulated transcripts highlighting the tolerance 

mechanisms for microalgae at sublethal methyl-mercury concentrations283.  

Finally, additional evidence that nanoparticles alter genome-wide gene expression 

has been found in vivo; engineered iron sulfide nanoparticles were shown to cause 

substantial gene expression alterations in pathways related to immune and inflammatory 

responses, detoxification, oxidative stress and DNA repair and damage, in adult 

zebrafish284. These results illustrate that major transcriptional changes can be tracked in 

vivo when an organism is exposed to a nanoparticle. These examples are complemented by 

evidence suggesting the composition, size, or shape of a biomaterial potentiates the cellular 

response to that material285. Studies that record the cellular response to biomaterials have 

been collated in the Compendium for Biomaterial Transcriptomics (cBiT)286, a collection 

of transcriptional profiles of cells after biomaterial exposure; this resource will likely 

continue to become even more valuable as more data become available.  
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As demonstrated by the studies above, best practices for RNA-seq data generation 

and gene expression analysis are established287. The first step is to clearly define a 

biological question. One simple test case would be ‘What RNAs are affected by a given 

nanomaterial and can the RNAs identify a specific cellular signaling cascade that responds 

to that nanomaterial?’. Second, extract the cellular RNA and convert it to a countable pool 

of complementary DNA (cDNA) via reverse transcription using polydT or random 

hexamers using standard kits. Third, sequence this pool of DNA using NGS. Fourth, 

perform quality control analyses on the data in order to statistically correct biases that arise 

during sample preparation or sequencing. Fifth, analyze the ‘clean’ data using an 

appropriate bioinformatics pipeline, thereby identifying genes with up- or down-regulated 

expression in response to the nanomaterial287. Sixth, use network analysis or cell ontology-

based approaches to understand whether alterations in gene expression can identify cellular 

pathways altered by the nanomaterial. Finally, once pathways are identified, it is feasible 

to make predictions about how the nanomaterial will affect the cellular phenotype (cell 

growth, death, toxicity, etc.).  

6.2.3 Methods to analyze large datasets appropriately  

As the output from sequencing platforms reaches the order of terabytes (and billions 

of sequencing reads), it will be increasingly important to visualize and interpret the data 

related to biomaterials using best practices. Here we describe common issues faced when 

interpreting data sets of this size, as well as ways to ensure the data interpretation is 

appropriate189, 287. One important consideration when analyzing large data sets is 

dimensionality. For example, some transcriptomic studies can have 20,000 dimensions; 

each dimension is the expression of a gene. Given that visualizing data on 20,000 axes is 
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not feasible, datasets are reduced to a smaller number of dimensions so they can be 

visualized (Fig. 6.2A). High-dimensional objects are replotted in a low-dimensional map; 

individual objects are represented by a point, and objects that behave similarly are 

‘clustered’ nearby. In addition to making data easier to interpret visually, reducing 

dimensionality can be used to identify important variables in a complex, multivariable 

experiment.  

Dimensionality reduction is often performed using principle component analysis 

(PCA)288, 289. Put succinctly, PCA provides a statistical framework whereby the maximum 

amount of variance is captured with the lowest possible number of dimensions. In 

biological experiments, where there are usually many more observations than variables, 

the number of principle components (PCs) is the same as the number of variables. The PCs 

are sorted by their statistical importance. For example, suppose factors contributing to the 

cost of a car were studied by generating a dataset with the cost, size, brand, color, and 

number of wheels of different vehicles. Since all cars have 4 wheels, this variable will not 

contribute to the variance in car costs. However, the cost might matter, as might the brand, 

and these two factors co-vary. In this case, principal component 1 (PC1) would be the linear 

combination of variables that contributed the most amount to variance (e.g. PC1 = 4*cost 

+ 2.4*brand + 1.1*size + 0.3*color + 0.001*num. wheels). In this linear combination, the 

number of wheels negligibly contributes to the variance, and is therefore unimportant. 

Then, after factoring in PC1, a second set of relationships can be seen, where (for example) 

the size and color might co-vary: (e.g. PC2 = 2*size + 1.2*color + 0.7*brand + 0.1*cost + 

0.001*num. wheels). Every factor contributes to each PC, but only the factors that explain 

a lot of the variance and are correlated have high weights for the same PC. In the case of 
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studying nanomaterial-biological interactions, the factors may be the sets of genes that are 

up or down-regulated in response to a specific nanomaterial. One important limitation to 

PCA however is that relationships between variables are often non-linear. In addition, PCA 

is usually specific for each dataset, making it difficult to compare PCs across studies. As a 

result, when considering whether a nanomaterial dataset can be analyzed with PCA, it is 

best to consult an expert in data analysis. 

Even with these nuances, PCA can still be used effectively to reduce 

dimensionality. In biological applications, applying PCA to data with N variables will 

generate N PCs; if the first PC is responsible for a large percentage of the variance, the 

dimensionality of the dataset can be reduced by excluding PCs with much smaller 

contributions. PCA is commonly applied to biological datasets in order to identify 

experimental conditions that drive variance in gene expression289; in a typical gene 

expression profiling experiment, the first 5 PCs drive up to 50% of the variance, while the 

remainder explain just one or two percent of the variance and can be ignored. As a result, 

although nuances in the data can be lost during dimensionality reduction, the general 

structure of the dataset is preserved. As PCA is applied to nanomaterials, experiments will 

need to be designed in order to maximize the number of repetitions per observation. 

Another useful feature of PCA is that once the PC is identified, it can help identify what 

drives similarities among samples, and remove unimportant sources of variation.  

Supervised and algorithmic options for analyzing these factors are widely used in 

transcriptomics290, 291, and therefore, should be applied to nanomaterial datasets.  

Currently, PCA is used in biology to answer questions related to (i) genetic 

differences between cell populations or (ii) gene importance when it comes to 
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understanding a cellular response to specific stimuli. This can be closely related to nano-

bio interactions, which would replace a normal biological stimulus (e.g., a cancer drug) 

with a nanomaterial, thus allowing scientists to probe mechanisms behind these 

interactions. However, since PCA is easy to perform, it can be applied to datasets 

inappropriately292. For instance, PCA is typically not useful when (i) the variance is 

somewhat evenly distributed among the principle components, and (ii) the dataset is small 

and the number of variables and variance within the dataset is large. What constitutes an 

appropriately large nanomaterial dataset? As larger datasets are generated using 

nanotechnology, this question will need to be addressed. Once again, consulting with 

scientists who specialize in PCA will be important for nanomaterial labs. However, lessons 

from biological studies may help answer the question. It is generally accepted that 

biological studies with a large number of replicates can be analyzed with PCA, whereas 

studies with a small number of biological replicates (e.g., N=3 or fewer), and therefore, 

relatively high experimental variability, cannot. As a control, biological replicates should 

cluster together. The larger the number of variables being analyzed; the more technical and 

biological replicates are required to make statistically powered statements about data. For 

biological, and nano-related applications, biological replicates should be strongly 

correlated. Minimizing biological variance within an experiment is also crucial to correct 

analysis of data. For example, when analyzing nanoparticle delivery data, it will be 

necessary to separate cells that had ‘low’, ‘medium’, and ‘high’ levels of delivery, in order 

to obtain interpretable data. Given that the absolute values of low, medium, and high can 

vary with the type of drug being delivered, nanotechnologists will need to provide the 

rationale for their selection clearly. The advantages and limitations of PCA, as well as best 
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practices, have been reviewed in other fields288, 289. These best practices will be a useful 

starting point for nanotechnologists. 

PCA is a dimensionality reduction technique that is mathematically designed to 

identify axes with maximum variance. However, in some cases, preserving small 

differences between similar objects is preferred293. For example, single-cell sequencing 

experiments regularly reveal heterogeneity amongst cells that were previously thought to 

be homogenous294, 295, and often identify important rare cell sub-populations. For example, 

Shalek et al. found that the core antiviral response in pathogenically stimulated primary 

mouse bone-marrow-derived dendritic cells was coordinated by only a small proportion of 

the population296. In particular, the group found that only 0.8% of the 1700 sequenced cells 

exhibited antiviral gene expression very early, thereby leading to a larger response from 

the entire population. Given that immune cell subpopulations have been found in many 

other biological contexts, these approaches may be useful in overcoming three key 

limitations to nanomaterials. First, nanomaterials are cleared by circulating immune cells 

as well as immune cells within tissues. We find it likely that subsets of immune cells – 

driven by particular signaling pathways - respond more ‘aggressively’ to nanomaterials. 

Understanding these pathways could lead to pre-emptive, transient interventions designed 

to reduce nanoparticle toxicity. Second, nanoparticles can interact with cells via surface 

receptors. It is feasible that cell subpopulations express higher levels of a given surface 

receptor, thereby making it easier to specifically target that cell subtype. Third, since many 

nanoparticles enter cells via endocytic pathways, escaping the endosome is critical. It may 

be possible to identify cell subsets that are particularly amenable to drug delivery, simply 

due to the expression of genes related to endosomal escape. In order to identify cell 
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subpopulations with these phenotypes, the best practice would be to analyze single cells, 

measuring immunostimulation, biodistribution, or cytoplasmic release, and, at the same 

time, measuring the transcriptomic profile of the cell. In these experiments, it would be 

important to group cells so small differences between cell types are preserved. For such 

situations, algorithms like t-distributed stochastic neighbor embedding (t-SNE) are 

appropriate. T-SNE, first described by Maaten and Hinton in 2008293, has allowed 

researchers to analyze cell heterogeneity in new ways294, 295. Algorithms to visualize t-SNE 

plots have been adapted for use in multiple languages, including R, python, and MATLAB, 

making the technique easy to use. Biological predictions made by t-SNE have also been 

validated using traditional biochemical techniques. For example, DroNc-seq, a method that 

combines single cell and single nuclei RNA sequencing, was used to identify distinct cell 

populations with t-SNE. These populations were then confirmed using 

immunohistochemistry and other methods294. t-SNE is useful as an alternative cell 

clustering and visualization tool when trying to understand cell response to nanomaterials.  

Although t-SNE has generated validated predictions when used correctly, it can 

also be used to draw incorrect conclusions. t-SNE plots are generated using several input 

parameters, most notably perplexity and the number of iterations run297. Authors have 

shown that selecting incorrect input variables can lead to images that contain clusters when 

in fact no clusters exist297 (Fig. 6.2B); these are analogous to false positives. Moreover, 

every time a t-SNE plot is generated, the plot changes slightly, since all t-SNE plots are 

stochastic293. As a result, although the general structure is preserved and has meaning, 

interpreting relationships between individual points on the plot is inappropriate since the 

position of each individual point varies each time the analysis is performed (Fig. 6.2C). 
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A second approach used to analyze large datasets is unbiased clustering. Unbiased 

clustering helps visualize experimental groups that performed more similarly to one 

another than they did to other groups, without losing any information. Since clustering 

algorithms rely on different mathematical assumptions, it is important that clustering is 

performed with the appropriate algorithm, and that altering the algorithm does not 

dramatically alter the clustering pattern189. The most common algorithms are hierarchical, 

centroid/partition (e.g. k-means), density-based (e.g. DBSCAN)298, and self-organizing 

maps (SOMs)299. In k-means clustering, the user selects a k value based on the number of 

clusters that the data will be partitioned into. If the user expects there to be many clusters, 

a high k number is selected; if the user expects few clusters, a low k number is selected. 

The algorithm associates nearby values based on their means; as more values are 

associated, the mean of all the values becomes the new mean until k clusters are formed300. 

Conversely, DBSCAN clusters are based on how closely points pack together and outliers 

are determined based on their presence in low density regions298. When measuring how 

cellular mRNA expression changes with response to a drug (or a biomaterial), hierarchical 

clustering or SOMs are often used. The appropriateness of a given clustering algorithm 

depends on the size and complexity of the dataset, as well as the research question being 

asked301, 302, and guides to select the correct clustering algorithm have been published303, 

304. Using appropriate clustering algorithms when analyzing biomaterial data will be 

important. For example, if k-mean clustering is employed, how is the number of clusters 

selected? Scientists studying biomaterials can learn from examples in other fields305. 

Unbiased clustering has been utilized in order to analyze how cells cluster based on 

nanoparticle functional delivery as well as how nanoparticles cluster based on material 
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properties8, 78. Given enough of this type of data, these analyses could be instrumental for 

intuitively designing future generations of nanoparticles.   

To help evaluate whether the data are suitable for a given clustering algorithm, 

validation algorithms have been developed. Validation algorithms are based on metrics that 

evaluate how tight data within a given cluster are, and what the distance between clusters 

is306, 307. Validation algorithms are often subdivided by the type of clustering they employ; 

these include compactness, separation, and connectedness307. For example, to validate k-

nearest neighbor clustering, a validation algorithm was developed based on the following 

idea: if we take a data point from a cluster, its k-nearest neighbors should be in the same 

cluster306. Put simply, the k-nearest neighbor is determined by assigning a value to each 

object; the value is proportional to its distance from the object. Then, depending on the k 

constant, the objects are group based on closeness; when k = 1, the nearest neighbor is 

clustered with the object of interest.  

6.2.4 Visualizing complex biological interactions 

Additional techniques are then required to visualize large datasets. Two common 

methods of data visualization are network diagrams and heatmaps. Network diagrams 

integrate data from many sources to model interactions within a biological system. As an 

example, scientists generate networks combining gene expression and other omics data308. 

Since looking at raw network diagrams can be challenging, they are simplified using 

algorithms that cluster the raw network308. This clustering utilizes gene expression data to 

quantify correlation values between genes. If the expression of A and B always change in 

the same direction, the algorithm tends to cluster them together. Given that even these 
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clustered networks can be difficult to interpret, manual editing of the network diagram can 

be employed to emphasize a specific component of the biological pathway. Alternatively, 

the gene expression may be overlaid on validated pathways using the Kyoto encyclopedia 

of genes and genomes (KEGG)309-311 or the gene ontology consortium312, 313. These 

network diagrams – which are visual and qualitative – are also often augmented by 

including quantitative metrics derived from the dataset. As an example, information from 

gene or protein expression profiles can be included in network diagrams by making over 

or under-expressed genes/proteins stand out on the network. A common tool for creating 

integrated network diagrams is Cytoscape314.  

One related question that will need to be addressed as network analyses are used to 

understand biomaterial/cell interactions is the extent to which subtle biological interactions 

matter. In some cases, studying single genes will suffice. For example, the gene ApoE was 

shown to dramatically impact the delivery of a lipid nanoparticle in vivo; with ApoE, the 

nanoparticle was effective, and without it, the nanoparticle stopped functioning entirely84. 

However, it is likely that most nanoparticle-biological interactions will be driven by many 

genes interacting with one another. In the cases where many genes influence delivery, 

network analysis could focus on interactions between genes involved in endocytosis, 

metabolism, or intra/intercellular transport. To understand how many genes work in 

concert, network diagrams can be used to show interactions between hundreds or thousands 

of genes in a more unbiased way. Once these interactions are identified, scientists can 

evaluate whether the individual interactions are synergistic, additive, or antagonistic. If two 

genes interact synergistically, their effect on a phenotype is greater than the sum of each 

gene’s individual impact. If they interact antagonistically, their effect is less than if they 
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were additive. Importantly, it is possible to evaluate how single genes and collections of 

genes can synergize or antagonize one another in a biological pathway315. 

Like network diagrams, heatmaps can be used to qualitatively highlight regions of 

interest in multivariate data. For example, gene expression heatmaps can identify genes 

that have high and low expression profiles if they cluster. If a clear and broad pattern exists 

within a dataset, heatmaps can highlight that pattern. Heatmaps are regularly used to 

supplement biological analyses. As an example, Subramanian et al. used hierarchical 

clustering to compare how 6 human cancer cell types clustered when analyzed using their 

profiling method, L1000, compared to Affymetrix and Illumina microarrays, and NGS-

based RNA-seq, showing that each cell type clustered with itself independent of the 

sequencing/profiling system used316. They also analyzed 3333 drugs and 2418 additional 

compounds and showed that many of the drugs had potential off-target effects and 

potentially acted on multiple pathways. Honing in on the histone deacetylase (HDAC) 

superfamily of proteins, they were able to cluster inhibitors based on their selectivity for 

13 different HDAC proteins316. Similarly, Hughes et al. assessed the effects of 300 

different mutations and chemical treatments on S. cerevisiae and used hierarchical 

clustering to show that subtle changes in expression profiles can be tolerated and studied317. 

This is especially useful when looking at the effects of knocking out uncharacterized genes 

on a variety of cell processes. Heatmap analysis of sequencing data can be useful for 

identifying how a gene’s expression changes over time in response to a biomaterial, and 

has been used to identify nanoparticles that efficiently deliver drugs7, 78, identify cell types 

that are targeted by similar nanoparticles78, and to identify nanoparticle chemical properties 

that tend to promote in vivo delivery. 
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Like other big data tools, it is important to ensure heatmaps are interpreted 

correctly. As an example, heatmaps use color to denote differences between samples; but 

the same color looks different when placed next to different colors318 (Fig. 6.3A). In 

addition, data can be scaled by row or by column – this decision is dictated by what 

differences are being emphasized within a dataset. For example, a test dataset may have 

‘cell types’ as column labels and ‘genes’ as row labels. The scaling method will dictate 

whether differences in the expression of one gene throughout multiple cell types (scaling 

by row), or differences in multiple genes’ expression throughout one cell type (scaling by 

column) is emphasized. Attempting to qualitatively interpret data between rows if scaling 

colors by row or between columns when scaling colors by column would be incorrect – the 

colors may appear similar, but the absolute values would differ (Fig. 6.3B). Similarly, if 

the dataset has many more dimensions in one variable (e.g., genes) than another variable 

(e.g., cell types), it is best to cluster by the variable with fewer dimensions189. For example, 

if the expression of 20,000 genes is analyzed in 80 cell types, it is better to cluster by cell 

type first. Finally, data normalization (e.g. centering/scaling data around the mean, median, 

standard deviation (STD)) as well as the method used for clustering (e.g. Ward’s, average, 

single, or complete) can change how the data cluster (Fig 6.3C). Finally, it is important to 

avoid dropping samples from the dataset, since this can have a large effect on how the rest 

of the samples cluster, as well as how the data is normalized. By understanding the 

limitations of over interpreting the color of a single box, running the data through more 

than one clustering algorithm (to ensure the clustering pattern does not dramatically 

change), analyzing the colors within the right ‘direction’ (i.e., column or row), and 

avoiding dropping data from the dataset, heatmaps can be generated that provide 
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compelling evidence of trends within complex biological systems; in many cases, these 

trends would be difficult to identify using other methods. 

It is similarly important to understand the variance associated with your large data 

set; variance can be biological or technical. Biological variance is understood and can 

largely be mitigated by using a large number of replicates. Technical variance is still less 

well understood and can change with the experiment. As an example, reverse transcribing 

RNA can lead to bias that alters RNA-seq datasets319. Scientists also found that specific 

sequencing machines perform differently320 and can generate bias321. There are simple 

ways to minimize variance. For example, including a sufficient number of biological 

replicates, and including appropriate positive and negative controls. One additional control 

that is important to consider when analyzing many biomolecules at once is the ‘input’. For 

example, if you administer a pool of DNA-barcoded cells to an animal, it is important to 

sequence that ‘input’ pool, so you can normalize your output appropriately. Finally, any 

hits identified with any initial high-throughput screen should be independently validated 

using a tool like quantitative PCR, although previous studies have shown high correlation 

between the two techniques322-324. 

6.2.5 Future Perspectives 

High-throughput data generation and analysis is not without difficulties, but this 

does not downplay its potential impact on nanomedicine. Recent clinical results using 

nanomedicine are cause for great excitement; these advances can be furthered using 

sequencing technologies. For example, nanoparticles carrying small molecules have been 

safely administered to patients100, and siRNA delivered to hepatocytes by GalNAc 
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conjugates101 or lipid nanoparticles1 have treated genetic disease. At the same time, the 

need for systemically administered nanomedicines that target non-hepatocytes is 

significant, since most systemically administered drug delivery systems are still 

sequestered in the liver. The need for drug delivery is also growing. Traditional small 

molecule therapies have been joined by drugs based on proteins, siRNA, miRNA, mRNA, 

lncRNA, ASOs, ZFNs, TALENs, and CRISPR-Cas proteins. Each class of drugs will 

present numerous opportunities for nanotechnologists; as an example, the nanoparticle 

formulation that delivers a Cas9 mRNA is unlikely to be the best nanoparticle formulation 

for a Cas9 ribonucleoprotein. One additional example is whether the design rules for 

nanomedicines delivering one drug class (e.g., small molecules or proteins) will pertain to 

nanomedicines delivering another drug class (e.g., siRNA or mRNA). On one hand, it is 

possible to foresee a gene acting as a semi-master regulator of drug delivery. On the other, 

the biological response to nanoparticles containing proteins may be entirely different than 

the biological response to nanoparticles containing nucleic acids. 

Using NGS, scientists can now quantify how thousands of nanoparticles target cells 

directly in vivo by formulating nanoparticle to carry rationally designed ‘DNA barcodes’8, 

9, 72, 78, 79, 206, 207, 325 (Fig.  6.4A). In a separate example, scientists have used non-NGS forms 

of DNA analysis to perform high throughput in vivo assays of chemotherapy delivery162 

(Fig.  6.4B). These high throughput in vivo studies may eventually relate nanomaterial 

structure to in vivo delivery. However, future advances still need to be made, particularly 

in the ability to perform multivariate analysis on these large datasets. For example, when 

one of the components making up the nanoparticle is varied (e.g. PEG), interpreting 

causality in the dataset is difficult. If two nanoparticles with varying PEG molar ratios are 
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tested, and the nanoparticle with high molar percentages of PEG performs well, is it due to 

increased PEG, or decreased non-PEG components? PCA, t-SNE and other dimensionality 

reduction techniques are equipped for complex analyses like this. If this high throughput 

in vivo approach is coupled to an improved mathematical framework that permits scientists 

to understand how multivariate changes in nanoparticle structure alter delivery, 

nanoparticles with improved traits can be designed. For example, one key limitation in 

nanoparticle delivery is the unwanted clearance by immune cells, particularly in the liver 

and spleen. By quantifying how thousands of chemically distinct nanoparticles deliver 

drugs to on-target cells as well as these off-target cells, scientists may be able to ‘evolve’ 

nanoparticles that interact with clearance organs less frequently.  

One way in which sequencing technologies may improve nanomedicine is by 

making the pre-clinical ‘pipeline’ used to discover nanoparticles more efficient. For 

example, the standard in the field is to synthesize chemically distinct nanoparticles, screen 

them in vitro, and select a small number of compounds for in vivo studies. However, in 

vitro nanoparticle delivery can be a poor predictor of systemic in vivo nanoparticle 

delivery8. At the same time, certain in vitro systems that recapitulate organ physiology may 

predict in vivo delivery. We envision high throughput studies comparing in vivo delivery 

to organ-on-chip systems158 using thousands of nanoparticles206. By statistically comparing 

how thousands of different nanoparticles behave, these studies could elucidate the 

engineering (or biological) variables that make organ-on-chip systems predictive of in vivo 

behavior. A second inefficiency in the nanoparticle discovery pipeline is the unknown 

relationship between nanoparticle delivery in a mouse, and nanoparticle delivery in a rat, 

pig, NHP, or human. A systematic study of small animal models designed to identify a 
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‘gold standard’ animal to predict delivery in large animals has not been reported; this would 

constitute a significant advance for the field. We anticipate these studies may reveal that a 

given nanomedicine behaves differently in different mouse strains. Mouse strain-specific 

delivery has been observed with a promising virus326, 327 selected using a novel in vivo viral 

evolution based approach327. The correct pre-clinical animal model may also change with 

the desired tissue; as an example, compared to mice, ferrets are better models for human 

airborne viral transduction328. By testing thousands of nanomaterials in vivo and 

understanding how strain- and species-dependent biological factors influence delivery, 

these large datasets may help improve how well pre-clinical models predict delivery in 

humans.  

Big datasets may also be useful for understanding how to design nanotechnologies. 

For example, a method for de novo protein design329 was recently reported; using machine 

learning, Butterfield et al. created a large library of protein-based nanocages (Fig.  6.4C). 

By applying selection pressures, nanocages were evolved using a ‘bottom-up’ approach to 

carry their own mRNA genome. Specifically, the authors performed multiple rounds of 

selection to identify the important nucleocapsid features for enhanced genome packaging, 

nuclease protection, and circulation time in vivo, without compromising the architecture of 

the structure. This was the first reported case of a non-viral container that can encapsulate 

its own genome and evolve in a complex extracellular environment, with the synthetic 

systems serving to rival the best recombinant AAVs. Using a similar approach, scientists 

used computational modeling to design and evolve proteins with different functions, 

including dimerization330 and decreased side effects in a pre-clinical tumor model331. In 

particular, the authors \ designed a variant of interleukin-2 (IL-2) that would bind its 
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receptor on the target cell (T cells) without binding off-target receptors. The authors found 

that by redesigning one of the four helices on native IL-2 protein, they could increase on-

target binding to the IL-2 receptor βγc heterodimer, while decreasing off-target binding to 

IL-2Rα (CD25), thereby driving toxicity. By redesigning these motifs, the authors 

improved IL-2 efficacy in mouse models of melanoma and colon cancer. Using a different 

approach, Guerette et al. coupled transcriptomics and proteomics data to design and predict 

the behavior of biomimetic materials332. The authors were able to rapidly process structural 

and functional novel high-performance eco-friendly materials pertaining to embryo 

protection, predation and adhesion. For example, they engineered silk-like materials from 

squid sucker ring teeth proteins that exceed the mechanical properties of many natural and 

synthetic polymers. Of particular note, the authors found a structural protein, suckerin-39, 

that surrounds squid sucker ring teeth and has high homology to silk, which would not have 

been discovered without the use of a combinatorial approach.  

More recently, a series of papers have generated large biomaterial datasets without 

using NGS. In one example, quantitative structure-property relationship was 

retrospectively performed on a dataset describing nanoparticle formation; using this 

analysis, the authors found specific molecular variables associated with the drugs 

encapsulated in the nanoparticles were predictive of nanoparticle formation. Interestingly, 

the variables were related directly with the electronic configuration of the atoms making 

up the drug. Using only the molecular structure information of drug compounds, the 

authors rationally designed nanoparticles that delivered chemotherapeutics to tumors in 

mice333, exploiting caveolin-dependent nanoparticle endocytosis. Specifically, the authors 

explored a number of different nanomaterial groups (e.g. detergents, azo dyes, and 
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polyelectrolytes) and used their quantitative structure-nanoparticle assembly prediction 

model to predict, and then validate, whether 400 different hydrophobic drugs would 

formulate into nanoparticles. Taken together, these examples constitute an innovative 

approach to coupling computational techniques, experiments, and unbiased screens, in 

order to improve nanomaterial design. In a third example, Yamankurt et al. developed a 

high throughput method based on mass spectrometry to monitor how immune cells 

responded to spherical nucleic acid nanomedicines334. The authors designed a library of 

960 nanomedicines, varying the nanoparticle core (e.g. cholesterol, phospholipid), 

oligonucleotide shell (e.g. phosphodiester or phosphorothioate backbone, and sequence), 

and peptide antigen (e.g. OVA or E7). Their high throughput cell toxicity assay led to 

several structure-function relationships. First, spherical nucleic acid nanomedicines elicit 

more immune activation than linear oligonucleotides, and linear oligonucleotide immune 

activation is dependent on what the oligonucleotide is conjugated to (e.g. cholesterol, 

DOPE) as well as its backbone. Notably, the authors used the data to ‘train’ a machine 

learning algorithm, in order to identify non-linear property interactions (e.g. if there are 5 

different properties, what is the interdependent effect of each property on the other). This 

is important because it can be difficult to decouple the effect of one property on another in 

a high-throughput screen where lots of variables are being changed, thus making it 

challenging to predict the biological response to a nanomedicine. Most recently, Rath et al. 

released a pre-print describing VSEPRnet, a method by which the physical and chemical 

traits of biomolecules are encoded in a way that enables neural network algorithms to make 

predictions335. The authors used this approach to predict binding between small peptides 

and allele-specific MHC-Class-1 molecules. 
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One need in the emerging field of large datasets and nanomedicine is the 

development of selection pressures that can be used to isolate nanoparticles that have 

performed a desired function in vivo. In biological studies, selection pressures are often 

based on cell death/proliferation, or alternatively, on fluorescence of a reporter gene336-338. 

High throughput nanotechnology screens will require assays with their own robust 

selection pressures, including biodistribution, functional cytoplasmic delivery, nuclear 

delivery, immunogenicity, and others. These will all generate different readouts. For 

example, nanoparticle delivery can be classified as (i) non-functional biodistribution, and 

(ii) functional, cytoplasmic delivery. In (i) a nanomaterial adhered to a cell is not 

distinguished from one that gets endocytosed, degraded in a lysosome, or delivered to the 

cytoplasm. However, in (ii) a nanoparticle must reach the cytoplasm of a cell, which 

ensures that only cells functionally delivered to are analyzed. These nanomaterial selection 

pressures can then be sub-divided into (i) up, or (ii) down-screens. Cells functionally 

delivered to in an up-screen change from no signal to a strong ‘on’ signal, whereas cells 

functionally delivered to in a down-screen change from high signal to ‘low’ signal.  

Finally, well-designed studies could help answer key questions pertaining to the 

biology of delivery. First, which molecules play a predominant role in delivery? Proteins 

and lipids affect delivery, but carbohydrates require further exploration. Second, is a 

nanoparticle’s delivery more likely to be due to a small number of master regulatory genes, 

or many genes acting in concert? Third, do lncRNAs and epigenetic modifications alter the 

cellular response to nanoparticles? Given that these molecules regulate many biological 

phenotypes339, we find it likely. Fourth, are there in vitro systems that efficiently 

recapitulate and predict in vivo delivery? Organ-on-chip systems may be poised to answer 
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important biological questions. Finally, is there a ‘gold standard’ animal that can be used 

to predict delivery in large animals? The translation from delivery in small animal models 

(e.g. mice, rats) to efficient delivery in large animals (e.g. pigs, NHPs, humans) is still 

largely unknown. The network analyses needed to answer these questions will be aided by 

multiomics. For example, sequencing technologies that concurrently measure mRNA 

expression and protein expression have been developed340. Multiomics analyses may also 

aid nanomedicines by improving the drugs nanomedicines are meant to deliver. For 

example, the efficacy of RNA therapies is strongly affected by chemical modifications to 

the RNA341. Transcriptomics can identify splicing patterns, as well as the frequency with 

which RNAs are affected by modifications. These modifications are known to affect 

maturation, folding, and metabolism342-344 of mRNAs; understanding the relationship 

between modifications and RNA transport could lead to nucleic acid therapeutics with 

improved safety profiles.  

The interface between materials, medicine, and high-throughput sequencing marks 

a significant opportunity for researchers. To take full advantage of novel technologies, 

nanotechnologists will need to understand molecular biology, data analysis, and data 

visualization. Currently, scientists who design nanoparticles do not typically work 

alongside scientists who study omics-sized data sets. One way to accelerate the marriage 

of omics and nanotechnology is to teach concepts like PCR, primer design, sequencing 

preparation, PCA, and biostatistics in standard engineering and chemistry curricula. Until 

that time, if a chemist, materials scientists, or nanomedicine scientist would like to initiate 

an omics-based experiment, it will be important to consider the following steps. First, 

identify the types of data that are necessary. Is it important to understand the transcriptomic 
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response, epigenetic response, proteomic response, or some combination thereof? Is it 

sufficient to collect these data from many cells, or is it important to measure single cells 

individually? Second, seek out statisticians and bioinformaticians, in order to design your 

experiment correctly. How many groups or experimental conditions should be analyzed? 

What type of data analysis and visualization will be required? What types of experimental 

and technical controls are needed in order to believe the results? Answering these five 

questions will not guarantee the experiment is a success, but it will improve the odds that 

the data can be interpreted. Scientists who embrace NGS and analytics will be positioning 

themselves at the forefront of innovative new approaches that could accelerate the 

development of new materials and broadly benefit precision medicine and human health.  
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Figure 6.1 Development of a high-throughput screening system is necessary to be able 
to screen LNPs for functional delivery in knockout mice. 
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Figure 6.2 After generating large datasets, (A) data can be reduced to a smaller number of 
dimensions. This is done so data can be clearly visualized after identifying the most important 
variables in the experiment. (B) When reducing data dimensionality, selecting incorrect input 
variables can lead to images that contain clustered data when no clusters actually exist. In this 
example, varying the perplexity variable alters clustering. (C) Interpreting relationships between 
individual points in a t-SNE plot is not appropriate since the position of individual dots varies 
with each run of the analysis. Interpreting broad relationships from the data is appropriate. 
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Figure 6.3 Heatmap generation and interpretation depends on the algorithms, conditions, 
and colors used. (A) The same color can look different when surrounded by different colors. 
(B) Heatmaps can be scaled by row or column. If scaling by row, colors can be compared 
within a row. If scaling by column, colors can be compared within the column. (D) 
Dendrogram clusters vary as a function of the normalization method and clustering 
algorithms. 
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Figure 6.4 High throughput in vivo assays have been used to study nanomedicines. A) 
Nanoparticles were formulated to carry DNA barcodes. Nanoparticle 1, with chemical 
structure 1, was made to carry DNA barcode 1; nanoparticle N, with chemical structure 
N, was made to carry DNA barcode N. All N nanoparticles were administered to mice, 
cells of interest were isolated, and next-generation sequencing was using to quantify 
delivery of all N nanoparticles simultaneously. B) Liposome 1 was formulated to carry 
DNA barcode 1 and a chemotherapy; liposome N was formulated to carry DNA barcode 
N and a chemotherapy. Tumor delivery was quantified by measuring live/dead cells 
isolated from the tumor. C) Nanocages consisting of a different protein shell were encoded 
with mRNAs. The protein nanocages were administered to mice, and the effective 
nanocages were isolated from tissues. Sequencing was used to determine the mRNAs, and 
thus, by extension, the protein nanocages that survived in vivo. 
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